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Spectral Embedding Norm: Looking Deep into the Spectrum of 
the Graph Laplacian

Xiuyuan Cheng*, Gal Mishne†

*Department of Mathematics, Duke University, Durham, NC.

†Halicioğlu Data Science Institute, University of California, San Diego

Abstract

The extraction of clusters from a dataset which includes multiple clusters and a significant 

background component is a non-trivial task of practical importance. In image analysis this 

manifests for example in anomaly detection and target detection. The traditional spectral clustering 

algorithm, which relies on the leading K eigenvectors to detect K clusters, fails in such cases. In 

this paper we propose the spectral embedding norm which sums the squared values of the first I 
normalized eigenvectors, where I can be significantly larger than K. We prove that this quantity 

can be used to separate clusters from the background in unbalanced settings, including extreme 

cases such as outlier detection. The performance of the algorithm is not sensitive to the choice of I, 
and we demonstrate its application on synthetic and real-world remote sensing and neuroimaging 

datasets.

Keywords
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1. Introduction.

In unsupervised learning and data analysis, one of the most common goals is to group the 

data points into clusters. A variant task is to extract interesting clusters from the data when, 

in practice, data points do not perfectly fall into K clusters. We consider a non-trivial setting 

in which data consist of not only interesting sub-groups, namely “clusters”, but also a large 

component containing points which are less structured or of less interest, which we call 

“background”. Important examples in imaging data analysis include image segmentation and 

saliency detection where the clusters are regions of interest in the image, and the background 

consists of the rest of the image [4, 28]. Another example is the task of anomaly (or outlier) 

detection where anomalous samples (small clusters) in the dataset differ from the normal 

ones (background) and indicate that something important has happened or a problem has 

occurred. By the very nature of the problem, most data points belong to the background and 

only a small fraction of data points are anomalies. Anomaly detection in images is an 

important task in a variety of applications such as target detection in remote sensing 
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imagery, detecting abnormalities such as tumors in biomedical imagery and for quality 

inspection in production lines. An automated solution highlighting only suspicious regions 

to be reviewed by an expert would save greatly on time.

In theory, one may view the background component as an extra cluster, however the 

unbalanced size of the clusters versus background components poses challenges for 

traditional clustering methods. The popular spectral clustering algorithm [25, 33, 41] 

reduces the dimensionality of the data using a spectral embedding, and then performs 

clustering in the low-dimensional space. The method originally proposed to cluster data into 

K clusters by applying k-means to the leading K eigenvectors (the low-lying eigenvectors of 

the graph Laplacian) computed from an affinity matrix built from the data [24, 25, 41, 45]. A 

question is then how to set the parameter K, and this is especially important for exploratory 

data analysis when the number of clusters underlying the data is not known a priori. The 

traditional solution is to use the spectral gap of the eigenvalues to determine K [39], yet in 

practical settings, such a gap may not exist. In particular, when the cluster sizes are 

unbalanced, or a large background component is present, there is no spectral gap after the K-

th eigenvalue and the leading eigenvectors do not localize on K given clusters, but rather 

tend to be supported mostly on the large component due to the slow mixing time of the 

diffusion process restricted to it. The unbalanced case of outlier detection is a classical 

scenario where traditional spectral clustering fails to identify the existing clusters [23, 43, 

46]. As has been shown in [7, 18, 26, 42] and will be demonstrated, the eigenvectors which 

indicate clusters or outliers may lie deep within the spectrum of the affinity matrix. This 

gives rise to the notion of abandoning the guideline of focusing on K eigenvectors and rather 

choosing to look deeper into the spectrum in such settings.

In this paper we consider a cluster-background splitting model of the graph, including 

anomaly detection as a special case. The model is motivated by applications and will be 

tested on real-world datasets. We propose a quantity called the spectral embedding norm, 

which maps each node in the graph to a positive number, and separates clusters from 

background with a theoretical guarantee. The idea is closely related to the “localization” 

pattern of the eigenvectors, namely where they are supported on—either mainly on the 

cluster block or on the background block— and this pattern maintains even when the 

spectral gap vanishes. Viewing the affinity matrix as a perturbed one from a baseline affinity 

where the background and clusters are completely disconnected, one can analyze the 

consequent deformation of the spectrum of the graph Laplacian matrix. However, the 

instability of eigenvectors under the deformation poses difficulty to the use of individual 

eigenvectors in this environment. The spectral embedding norm, on the other hand, improves 

the stability by using a summation over multiple eigenmodes and provides guaranteed 

detection of the clusters by simple thresholding. The algorithm involves a parameter which 

is the number of eigenvectors summed over, and the performance is not sensitive to the 

parameter choice.

Our result thus provides a way to go beyond dominating eigenvectors of the graph Laplacian 

to unbalanced data clustering tasks with theoretical verification. It suggests that, in the 

presence of cluttered background samples, it is beneficial to look deep into the spectrum to 

identify important and subtle structures. By providing a simple measure by which to 
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separate clusters from background, the method allows the application of signal processing 

and machine learning methods to the cluster samples only without contamination from the 

background. Our analysis spans a setting of multiple clusters against background to the 

extremely unbalanced case of outlier detection.

In the rest of the paper, we review more related literature before ending the current section. 

The spectral embedding norm is introduced in Section 2, with an illustrative example to 

show the main idea. The theoretical result is presented in Section 3, experiments on 

synthetic and real-world image datasets in Section 4, proofs in Section 5, and further 

remarks in the final section.

Notations. | · | stands for the cardinal number of a set. Ac means the complement of a set A.

1.1 Related works.

As spectral clustering and variants have been intensively studied in literature, we list the 

most relevant works to our problem.

The spectral embedding for clustered data has been previously analyzed in many places. 

While Schiebinger et al. [32] analyzed a nonparametric mixture model to show that under 

certain conditions the embedded points lie in an orthogonal cone structure and k-means 

succeeds in clustering the data, Nadler and Galun [23] showed that even for well separated 

Gaussians the top K eigenvectors do not necessarily localize on K clusters, based on the 

analysis of a diffusion process in a multi-well potential [24, 34]. Different approaches, e.g. 

[10, 45], attempted to align the eigenvectors axes with the different clusters and improve the 

robustness of cluster identification. Zelnik-Manor and Perona [45] proposed to estimate the 

number of clusters from the eigenvectors instead of from the spectral gap, and empirically 

demonstrated improved performance when a background cluster is present. Damle, Minden 

and Ying [10] considered the case of balanced block-like affinity matrix. The embedding 
norm studied in the current work differs from the above approaches, and it involves a simple 

algorithm with theoretical guarantee under the specified settings.

Spectral embeddings have been used for anomaly detection in several modified ways: based 

on the first non-trivial eigenvector of an affinity matrix [16, 26], eigenvector selection [18, 

42], out-of-sample extension [1, 19, 20, 22], the algebraic structure of the weighted 

magnitude sum of Laplacian eigenfunctions [6] and multiscale constructions of spectral 

embeddings [19, 29], and usually requiring tuning of multiple parameters. For a general 

review of anomaly detection methods, the interested reader is referred to [2, 5, 13, 14]. In 

particular, “eigenvector selection” has been proposed to determine eigenvectors that localize 

on clusters or specifically on anomalies, using unsupervised spectral ranking [26], kurtosis 

[42], relevance learning [43], entropy [11, 46], the L1 norm [18], tensor product [9] and 

local linear regression [12]. Both [43, 46] proposed calculating Km eigenvectors where m > 

1 and then select informative eigenvectors. Wu et al. [42] analyzed the adjacency matrix of a 

graph, while Miller, Bliss and Wofle [18] considered the modularity matrix of a graph. In the 

current paper, we analyze the spectrum of the (normalized) random-walk Laplacian matrix 

which has a more stable spectrum with finite samples [40].
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The proposed notion of embedding norm formally resembles the probability amplitude in 

quantum mechanics, which sums squared modulus of the low-energy wave functions. It is 

also similar to the leverage score in statistics, defined to be the squared sum of principal 

components, which has been used as an indicator of outlier samples in linear regression and 

other statistical applications [15]. The generalized form of the embedding norm with 

exponentially decaying weights has been previously suggested as a tool to identify salient 

features in shape analysis, called Heat kernel signature [37]. However, the settings in the 

previous statistical and computer graphical studies are different from our consideration of 

the cluster-background separation, and particularly, the equal weights on the truncated sum 

over eigenvectors which more resembles probability amplitude has its own motivation, see 

more in the last section.

2. Spectral Embedding Norm.

Given n data points in the feature space, an undirected weighted graph can be constructed 

which has n nodes, denoted by V, and the weight on edge (x, y) is the affinity between 

nodes x and y denoted by W(x, y). W is an n-by-n real-symmetric matrix of non-negative 

entries W(x, y) = W(y, x) ⩾ 0, called the graph affinity matrix. In applications, W is built as 

a pairwise affinity between data points in a feature space, e.g., W(x, y) = k(x, y), where k is 

a symmetric kernel function applied to the feature vectors of data points x and y. In our 

analysis we assume that W has been constructed.

2.1. Cluster-Background splitting in the graph.

Suppose that V can be divided into two disjoint subsets, background and clusters, denoted 

by ℬ and C respectively. The typical scenario which we consider is when data points in C
are concentrated in the feature space and well-clustered into K sub-clusters, whereas those in 

ℬ can be “manifold-like” and spread over the space. The precise assumptions will be 

formulated in terms of the graph-Laplacian spectra constrained to the subgraphs of C and ℬ
(see Assumption 1). We also assume the connections between C and ℬ are weak. As a 

result, the submatrix of W constrained to C is close to having K blocks, and is almost 

separated from the submatrix of ℬ. Define matrix W0 by removing all the connections 

between ℬ and C from W, i.e. W0 is a block-diagonal matrix consisting of two blocks of C
and ℬ respectively, and E is the matrix consisting of the ℬ − C connections. We introduce a 

pseudo-dynamic parametrized by time t as

W (t) = W 0 + tE, t ∈ [0, 1] (2.1)

so that W(0) = W0 and W(1) = W. To simplify the analysis, we assume that the K sub-

clusters are of equal size, that is,

|C| = δ|V|, |ℬ| = (1 − δ)|V|,

and each of the K clusters in C has δ|V|
K  nodes. The result extends to the unequal-size case.
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2.2. Graph Laplacian and embedding norm.

Consider the normalized random-walk graph Laplacian of W

L = I − D−1W ≔ I − P ,

where D is a diagonal matrix defined by Dii = ∑jW ij, and P is a Markov matrix. We shall 

see that D is always invertible. P is similar to D−1/2WD−1/2 which is real-symmetric, thus P 
is diagonalizable and has n real eigenvalues. Let

Pψk = λkψk, k = 1, ⋯, n, ψk
TDψj = δkj, (2.2)

where {λk}k are the eigenvalues of P, {ψk}k are the corresponding right eigenvectors and 

δkj = 1 when k = j and 0 otherwise. Given that |λk| ⩽ 1 (Perron-Frobenius theorem), and 

when W is a positive-definite kernel matrix then all the eigenvalues are between 0 and 1. 

The largest eigenvalue of P is 1 and the associated eigenvectors is the constant vector. Note 

that time dependence is omitted in the above notations: As we introduced the deformation of 

W in (2.1), D, P and consequently ψk and λk also depend on t. We assume that at t = 1 the 

eigenvalues are sorted to be decreasing, and for other t, the indexing k is arranged so that ψk 

and λk are differentiable with respect to t [17].

The spectral embedding norm of every node x ∈ V is defined to be

S(x) = ∑
k ∈ I

ψk(x)2
(2.3)

where I is a subset of the eigenvalue indices {1, …, n}. S(x) is the (squared) Euclidean norm 

of the embedded vector of x in the spectral embedding space using eigenvectors of indices in 

I. When needed, we include the time dependence in the notation written as S(x, t), t ∈ [0, 1]. 

A typical choice of I is I = {1, …, |I|}, when the eigenvalues are sorted to be descending. 

The cardinal number |I| is a parameter of the method and in the scenario of outlier detection 

it is typically larger than K. In practice, estimates of K can be used if K is not known. We 

will show that the result is not sensitive to the choice of |I|, in analysis and experiments.

The embedding norm S is able to separate C from ℬ by a provable margin under certain 

assumptions (Theorem 3.5). A general weighted form of S can be introduced and the result 

extends directly. This is naturally related to the diffusion distance [8], and we will explain 

more on this in the last section.

2.3. A prototypical toy example.

The prototypical scenario which motivates the proposed method is illustrated in the toy 

example in Figure 1. (A) shows data points in ℝ2 consisting of two groups: a large group, 

denoted by ℬ, which lie close to the unit circle (blue) and a small one, denoted by C, which 

form a small cluster lying close to the circle (red), and |C|
|V| = δ = 0.01. Traditional spectral 

clustering and k-means will fail to separate the cluster (C component) from the circle (ℬ
component), as shown in Figure A.4 (a)–(c). Variations of this model involve multiple sub-
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clusters in C (see Figure 3 and the applications on real-world data), and the qualitative 

picture is the same.

The affinity matrix W built from the data is shown in (B). The first few eigenvalues, 

evolving over time t, are shown in (C), and the associated eigenvectors evaluated on two 

nodes, one in C and one in ℬ, are plotted in (D) and (E). We sort the eigenvalues of P from 

large to small, and the first eigenvalue is always 1. The embedding norm S(x) takes the 

squared-sum of the first 40 eigenvectors on each node (c.f. (2.3)) and is plotted in (F) over 

time. The figure demonstrates that

1. Though two blocks C and ℬ exists in the graph, there is no clear eigen-gap 

between the second and third eigenvalues. Actually, the leading eigenvalues are 

all very close to 1 throughout time 5 (the eighth eigenvalue is greater than 0.998).

2. While the second eigenvector ψ2 distinguishes C at short time t, once t is greater 

than 0.01 ψ2 fails to indicate the cluster C. (D) shows the value on one node and 

it is typical for the value of ψk’s on C. The transition actually happens when the 

initial gap between λ2 and λ3 almost vanishes. However, the high-index 

eigenvectors may take large value on C (the eighth eigenvector starts to take 

large magnitude on C around t = 0.1, and the trend of high-indexed eigenvectors 

localizing on C continues, which is not shown). This is evident by S(x) 

consistently distinguishing C from ℬ over time, as shown in (F).

This suggests that when the leading eigenvectors fail to identify the cluster C, the 

information of the location of C may be contained in higher-indexed eigenvectors, and 

looking deep into the spectrum may be helpful. However, the selection of informative’ 

eigenvectors is generally a challenging problem. In particular, as shown in (D)(E), the 

deformation of eigenvectors is not stable when eigenvalues get close, which makes it 

difficult to study them individually. Instead, the embedding norm we proposed varies 

smoothly over time and preserves a gap between C and ℬ. As a result, one can detect C
from ℬ by thresholding the value of S at t = 1. Note that 40 eigenvectors are used in the 

summation, which is much larger than 2. We will justify this improved stability in the 

analysis.

3. Theoretical Analysis of Cluster Detection.

At t = 0 in (2.1), the matrix W0 has a two-block structure, and the spectrum of the graph 

Laplacian of W0 also splits into two groups, one residing on C and the other on ℬ
respectively. However, as t increases, interactions among the eigenvectors develop and the 

perfect splitting pattern is no longer preserved. The embedding norm varies more stably than 

individual eigenvectors over time, and serves as a measure by which to separate C from ℬ
up to time t = 1.

3.1. Initial separation by S and assumptions.

Since we will use S to separate ℬ and C, we need it to do so at least at t = 0 when the two 

blocks ℬ and C are perfectly separated by removing all the edges connecting them. Note 
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that this does not necessarily happen unless certain assumptions are made: Because the 

eigenvalues of the ℬ block can be close to 1 and the clustering in the C block may not be 

perfect, the first |I| eigenvectors may be supported either on C or on ℬ, and there is generally 

no guarantee that the squared sum (2.3) will distinguish the two blocks. We make the 

following two assumptions:

1. At t = 0, the eigenvectors in I which are supported on ℬ are sufficiently 

delocalized (“flat”) and those on C are close to the well-clustered case;

2. The fraction δ of |C| is sufficiently small so that the eigenvectors on C are of 

sufficiently larger magnitude than those on ℬ, due to the eigenvector 

normalization (2.2). The precise condition depends on the choice of |I|, the node 

degrees and so on.

We denote the volume of set A at time t by ν(A, t) defined as the sum of the degrees at time 

t,

ν(A, t) = ∑
x ∈ A

d(x, t), d(x, t) = ∑
y ∈ V

W (x, y; t) . (3.1)

We also define lower and upper bounds

d0 ≔ min
x ∈ V

d(x, 0), d0 ≔ max
x ∈ V

d(x, 0), (3.2)

and assume that d0 > 0. By construction (2.1), the degree d(x, t) of any node monotonically 

increases over time. Thus d0 is the universal degree lower-bound:

Lemma 3.1. For all x ∈ V and all 0 ⩽ t ⩽ 1, d(x, t) ⩾ d0 > 0.

At t = 0, since the affinity matrix decomposes into two separated blocks ℬ and C, so do the 

eigenvectors. We call them initial eigenvectors, and the set of eigenvectors which are only 

supported on ℬ are called the ℬ − eigenvectors., denoted by Ψℬ, and similarly for 

C − eigenvectors and ΨC. The assumption on these eigenvectors and the index set I is the 

following:

Assumption 1 (ℬ and C − eigenvectors).—At t = 0,

a. The index I includes K C − eigenvectors and |I| − K ℬ − eigenvectors.

b. Each of the K eigenvectors in I ∩ ΨC (up to a K-by-K rotation of these K 
vectors) is associated with one of the K clusters in the following sense: There 

exists 0 ⩽ ε1 < 1, and for each ψ ∈ I ∩ ΨC, there is a unique j, 1 ⩽ j ⩽ K, s.t.

1 − ε1
ν Cj, 0 ⩽ ψ(x)2 ⩽ 1 + ε1

ν Cj, 0 , ∀x ∈ Cj, (3.3)
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ψ(x)2 ⩽ ε1
ν(C, 0) , ∀x ∈ C\Cj, (3.4)

a. There exists ε2 ⩾ 0, s.t. for any ψ ∈ I ∩ Ψℬ,

ψ(x)2 ⩽
1 + ε2
ν(B, 0) , ∀x ∈ B .

The above assumption, while appearing to be complicated, poses only generic conditions on 

the subgraphs ℬ and C:

In the perfectly separated case the largest K C − eigenvalues are 1, and the (K+1)-th one is 

strictly less than 1 and depends on the mixing time of the Markov chain within each cluster. 

This spectral gap is usually significant since we primarily work with a well-clustered C
which takes a small fraction of nodes and is localized in the graph, e.g., C is an outlier 

cluster, or several localized regions of interest. As a result, even when the clustering is not 

perfect, the (K + 1)-th C − eigenvalue is still sufficiently far away from the first K ones, and 

they can be excluded from the index set I, since I selects the largest |I| eigenvalues. This 

fulfills (a).

If the K clusters in C are perfectly separated, one can verify that ε1 = 0 in (b). Thus (b) holds 

when C (without the ℬ component) is not far from being well-clustered.

Assumption 1(c) requires that the eigenvector ψ is sufficiently delocalized, or “flattened” on 

ℬ: Recall that (2.2)

∑
x ∈ ℬ

ψ(x)2d(x, 0) = 1,

and the first eigenvector (associated with eigenvalue 1) takes the constant value 

ψ(x)2 = 1
ν(B, 0) .

If all the other eigenvectors are flattened, then (c) holds with some small ε2. The 

delocalization widely applies when ℬ are built from data vectors lying on certain regular 

manifolds: assuming that the discrete eigenvectors well approximate the continuous limits 

which are eigenfunctions of the manifold Laplacian, the delocalization of the former inherit 

from that of the latter (Quantum Ergodicity Theorem [44, 47]). When the spectral 

convergence is poor, the finite-sample effects may create some localized pattern in the 

“noisy” eigenvectors, however, since |I| is typically a small number compared to n, we 

assume that the selected ℬ − eigenvectors are sufficiently close to the population ones.

The second assumption is on the proportion of cluster nodes: Recall that δ = |C|
|V| ,

Assumption 2.—The constants δ, |I| and K satisfy that
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δ
1 − δ

|I| − K
K < d0 1 − ε2

d0 1 + ε1
, (3.5)

where ε1, ε2 are as in Assumption 1.

Prototypical cases where Assumption 1 and 2 are satisfied include the example in Section 

2.3 (Figure 1) and in Section 4.1 (Figure 3, A.1). Theoretically, the above two assumptions 

guarantee that the embedding norm S(x, 0) separates the blocks C and ℬ at time t = 0, 

together with an upper bound of S(x, 0) over V:

Proposition 3.2 (Initial separation by S(x)).—Under Assumption 1, at time t = 0,

1
nd0

K
δ 1 − ε1 ⩽ S(x) ⩽ 1

nd0
K
δ 1 + 2ε1 , ∀x ∈ C . (3.6)

S(x) ⩽ 1
nd0

1 + ε2 (|I| − K)
1 − δ , ∀x ∈ ℬ, (3.7)

If furthermore, Assumption 2 holds, then

1. The initial gap between ℬ and C is at least

g0 ≔ 1
nd0

K
δ ( # ), ( # ) ≔ d0 1 − ε1

d0
− δ

1 − δ
|I| − K

K 1 + ε2 , (3.8)

that is, ∀x ∈ C and y ∈ ℬ, S(x) – S(y) ⩾ g0 > 0.

1. At t = 0,

sup
x ∈ V

S(x) ⩽ 1
nd0

K
δ 1 + 2ε1 . (3.9)

Proof in Section 5.

3.2. Stable deformation of S and separation.

We will prove the stability of S(x, t) over time making use of the Hadamard variation 

formula for the eigenvalues and eigenvectors, after properly indexing them. Specifically, 

since we assume that d0 > 0, the diagonal matrix D is invertible throughout time, and the 

Markov matrix P = D−1W is diagonalizable and similar to D−1/2WD−1/2. Under the matrix 

perturbation model (2.1) which is linear in t, the n eigenvalues of the Markov matrix P can 

be indexed as λ1(t), …, λn(t), so that they are descending at t = 0, i.e. λk+1(0) ⩽ λk(0), and 

differentiable with respect to t for 0 ď t ⩽ 1 (Chapter 2 of [17]). Similar to the classical 

Hadamard variation formula, the evolution equation of λk can be shown to be

λ̇k = ψk
T Ẇ − λkḊ ψk, (3.10)
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and the equation of the associated eigenvector ψk is, when valid,

ψ̇k = − 1
2 ψk

TḊψk ψk + ∑
j ≠ k

ψjT Ẇ − λkḊ ψk
λk − λj

ψj, (3.11)

that is, (3.11) holds on time intervals when no eigen-crossing of any pair of λk and λj 

happens. The derivation of (3.10), (3.11) is left to Appendix B.

Though the n eigenvalues are ordered from large to small at t = 0, an eigen-crossing (or 

neighboring eigenvalues becoming very close) may happen as t increases, as illustrated in 

the diagram in Figure 2, and numerically in the toy example in Figure 1. This voids a direct 

adoption of (3.11) unless one shows that the singularity does not affect the differentiability 

of the eigenvector branches before and after the crossing, which is still possible in our 

setting [17]. However, even if (3.11) can be made valid with such an effort, when an eigen-

crossing or a near crossing happens there is generally no control on the speed of change of 

the associated pair of eigenvectors. Some steep changes of eigenvectors are shown in the toy 

example in Figure 1, at times of (near) eigen-crossings. This instability of eigenvectors 

under matrix perturbation underlies the main difficulty to justify the use of leading 

eigenvectors in this environment, for both theoretical analysis and algorithms.

The main observation of this work is to overcome such instability by considering the 

spectral embedding norm instead of individual eigenvectors. A key quantity needed in the 

stability bounds (of both the eigenvalues and the embedding norm) is the C − ℬ “connection 

strength”, measured by

C ≔ ∑
x ∈ B
y ∈ C

W (x, y) .
(3.12)

The analysis needs C to be a small compared to the magnitude of the node degrees, 

specifically, C
d0

 needs to be a small constant. We note that the condition may be much 

stronger than encountered in applications due to the reliance on a spectral gap between I and 

Ic eigenvalues. To be specific, we define the I-eigen-gap (depending on time t) to be

Δ(t) ≔ min
i ∈ I
j ∉ I

|λi(t) − λj(t)|, t ∈ [0, 1] .
(3.13)

Such an “I-eigen-gap” prevents eigenvalues from I and Ic to get too close, but allows 

arbitrary eigen-crossings within I and within Ic. While needed in the perturbation analysis, 

we note that Δ(t) should be viewed as an artifact due to the limitation of our theory (see 

remark after Theorem 3.5). However, this is essentially different from the traditional spectral 

gap assumed after the K-th eigenvalue. All proofs in this section are in Section 5.

The following proposition proves the preserved I-eigen-gap assuming an initial one, based 

upon the stable evolution of eigenvalues c.f. (3.10).
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Proposition 3.3 (Preservation of I-eigen-gap).—Under (A1), C as in (3.12), if for 

some constant Δ > 0, Δ(0) ⩾ 2Δ and

C
d0

⩽ 1
8Δ, (3.14)

then

Δ(t) ⩾ Δ, ∀0 ⩽ t ⩽ 1.

As shown in the proof, the constant C in (3.14) can be improved to be a smaller one which 

only involves the maximum of the row sum of E rather than the summation of all the entries 

in E. We however keep the stronger condition with C here as control by C is needed later in 

Theorem 3.5 to control the deformation of S(x) for each x.

The significance of the preserved I-eigen-gap is that we can derive the evolution equation of 

the embedding norm S(x, t) without being concerned with the eigen-crossings within I (and 

within Ic). This is possible by relying on S(x) being the (x, x)-th diagonal entry of the 

spectral projection matrix C
d0

, which can be written in form of a contour integral of the 

resolvent in the complex plane where the contour circles the eigenvalues in I throughout t ∈ 
[0, 1], as illustrated in Figure 2. The evolution equation below only requires eigenvalue 

difference λk − λj to be non-vanishing when one is from I and the other is from Ic. Actually, 

this difference is bounded from below by the constant Δ by Proposition 3.3.

Proposition 3.4 (Evolution of S).—When Proposition 3.3 applies, for 0 < t < 1,

∂
∂t S(x, t) = − ∑

k ∈ I
j ∈ I

ψjTḊψk ψk(x)ψj(x) + 2 ∑
k ∈ I
j ∉ I

ψjT Ẇ − λkḊ ψk
λk − λj

ψk(x)ψj(x)

.

(3.15)

We then derive the main result:

Theorem 3.5 (Separation at t = 1).—Under (A1)-(A3), if for some constant Δ > 0, the 

following conditions are satisfied:

i. Δ(0) ⩾ 2Δ, Δ(t) as in (3.13),

ii. C as in (3.12),

C
d0

⩽ Δ
8

1
1 + Δ

4
log 1 + 1

2 ⋅ ( # )
1 + 2ε1 (3.16)

where (#) is defined in (3.8), and (#) > 0 under Assumption 2.

Then the two parts ℬ and C can be separated by thresholding the embedding norm, i.e., 

there exists a constant τ s.t. at t = 1
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S(x) > τ, ∀x ∈ C,

S(x) < τ, ∀x ∈ ℬ .

In practice, τ can be set to a certain quantile of the empirical values of S(x) on all the nodes. 

The proof controls the pointwise change of S(x) using the condition (3.16), which can be 

viewed as bounding the change after adding one weighted edge in the C − ℬ connection 

(one entry in E) and then summing over accumulatively for all such edges.

We now make a few comments on the assumptions needed in Theorem 3.5:

First, we show that in the typical setting the r.h.s. of (3.16) can be simplified to be a multiple 

of Δ similar to the form of (3.14) ((3.16) implies the latter, as will be shown in the proof): 

Note that the r.h.s. is greater than (using that log 1 + x
2 > 2

5x for 0 < x ⩽ 1)

Δ
8 ⋅ 1

1 + Δ
4

2
5 ⋅ ( # )

1 + 2ε1
, (3.17)

and thus unless (#) is too small, this term would be comparable to Δ
8 . To be specific, suppose 

that δ is so small that the first term in the formula of (#) (3.8) dominates, which makes (#) 

approximately 
d0
d0

, assuming that ε1 and ε2 are small constants. This is reasonable since we 

typically apply the proposed method when the initial separation is large, where the initial 

gap g0 = K
nd0

( # )
δ . Furthermore, in such cases, if the graph has balanced degree, i.e., d0 ≈ d0, 

then (#) would be close to 1. Combined with Δ being small, e.g., Δ < 0.1, (3.17) is then 

approximately Δ
8 .

Second, our theory relies on the I-eigen-gap condition (3.16). Empirically, we have observed 

that the matrix P = I − L may have a bulk of eigenvalues near 1, and when moving from 1 

(towards 0), namely going “deeper” into the the spectrum, the eigen-gaps may be larger 

compared to immediately near 1. The eigenvalue distribution also depends on the 

construction of the graph affinity W. For example, when the bandwidth parameter kST used 

in the self-tuning kernel is large the eigen-gaps are usually also larger. The empirical 

eigenvalues and eigengaps for the data example in Figure 1 are shown in Figure A.4(d)(e). 

Our theory thus improves over the traditional eigen-gap constraint on the K-th eigengap, 

where K is the number of clusters.

Nevertheless, we conjecture that the requirement on C in (3.16) and the need for an I-eigen-

gap are more restrictive than what occurs in practical applications. We have observed that in 

practice the embedding norm S can successfully separate C from ℬ even when these 

conditions are not satisfied. This suggests that the analysis here is likely to be not tight: for 
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one thing, the relaxation of the term 1
λk − λj

 for k ∈ I, j ∈ Ic by 1
Δ  is crude, and can be 

improved, e.g., under proper assumptions of the eigenvalue distribution. We think that 

further analysis should be able to relax the constraints in (3.16) and the I-eigen-gap.

3.3. Extensions of the analysis.

The main result Theorem 3.5 extends to the following cases, with proof sketches given.

1. Weighed embedding norm.—The definition of the embedding norm S can be 

generalized as

S(x) = ∑
k ∈ I

f λk ψk(x)2, (3.18)

where f(λ) is a (complex) analytic function which is real-valued on real λ. With f being a 

power of λ and certain exponential function, S is related to diffusion distance [8] and heat 

kernel signature [37] respectively, to be discussed more in the last section.

We have been addressing the special case where f = 1. To extend the analysis to any analytic 

f, consider the contour integral of f(z)R(z), R being the resolvent (defined in (5.10)), and 

then the time-evolution equation of S(x, t) can be shown to be

Ṡ(x) = 2 ∑
k ∈ I
j ∉ I

f λk
λk − λj

ψk
T Ẇ − λkḊ ψj ψk(x)ψj(x)

+ ∑
k, j ∈ I
k ≠ j

f λk − f λj
λk − λj

ψk
TẆ ψj −

λkf λk − λjf λj
λk − λj

ψk
TḊψj ψk(x)ψj(x)

+ ∑
k ∈ I

f′ λk ψk
TẆ ψk − (zf(z))′ λk ψk

TḊψk ψk(x)2,

where in case that the eigenvalues λk and λj coincide, the term 
f λk − f λj

λk − λj
 is replaced by f′

(λk) and 
λkf λk − λjf λj

λk − λj
 by (zf(z))′(λk). So the r.h.s. is well-defined when an eigen-

crossing within I happens, and the terms 
f λk − f λj

λk − λj
 and 

λkf λk − λjf λj
λk − λj

 are uniformly 

bounded due to the analyticity of f. When f = 1, the equation reduces to (3.15). Proceeding 

with the same technique as in the proof of the main result, the deformation bound of S(x, t) 
will then involve constant factors which depend on the boundedness of f and f′ on [0, 1]. 

Specifically, the constant C will need to be redefined to be c1 +
c2
Δ

2C
d0

 where c1 and c2 are 

absolute constants. E.g., when f(λ) = λp, p > 0, c2 remains 4 (which is the dominating term 

with small Δ) and c1 = (p + 1).

2. Unequal cluster size in C.—The requirement of equal cluster size of the K clusters 

in C can be relaxed. Specifically, suppose that the K clusters have varying sizes |Cj| = δjn, 

Cheng and Mishne Page 13

SIAM J Imaging Sci. Author manuscript; available in PMC 2021 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and ∑k = 1
K δj = δ. Let δmin = min

1 ⩽ j ⩽ K
δj, and similarly define δmax. Then under Assumption 

1, (3.6) and (3.7) become

1 − ε1
nd0δj

⩽ S(x, 0) ⩽ 1
nd0

ε1
δ/K + 1 + ε1

δj
, ∀x ∈ Cj for some j . (3.19)

S(x, 0) ⩽ 1
nd0

1 + ε2 (|I| − K)
1 − δ , ∀x ∈ ℬ, (3.20)

Define for j = 1, …,K,

gj, 0 ≔ 1
nd0

d0 1 − ε1
d0δj

− 1 + ε2 (|I| − K)
1 − δ , (3.21)

and the minimum of gj,0 is

gmin, 0 = 1
nd0

d0 1 − ε1
d0δmax

−
1 + ε2 (|I| − K)

1 − δ .

Modify Assumption 2 to be that gmin,0 > 0, then the initial separation of S(x, 0) on C and ℬ
is at least gmin,0 (and more precisely gj,0 between Cj and ℬ), and (3.9) becomes

S(0) = sup
x ∈ V

S(x) ⩽ 1
nd0

( ε1
δ/K + 1 + ε1

δmin
) . (3.22)

Note that Proposition 3.3, Proposition 3.4 and claims (1) (2) in the proof of Theorem 3.5 do 

not rely on Assumption 1 or Assumption 2 and are valid. As a result, it can be shown that the 

t = 1 separation between C and ℬ by S holds as long as

gmin, 0 ⩾ 2(eC − 1) 1
nd0

( ε1
δ/K + 1 + ε1

δmin
), C = 1 + 4

Δ
2C
d0

. (3.23)

This condition is more restrictive when the cluster sizes in C are less balanced, namely when 

the difference δmax−δmin becomes larger. In our numerical experiments, all the sub-clusters 

are of comparable sizes (in the outlier detection in images, K = 1 or 2, and in image 

segmentation the clusters are of similar sizes), while we note that an extremely unbalanced 

cluster size, e.g., very small δmin, could affect the performance of the method.

3. Detection of parts of C.—The above argument leads to a “personalized” detection 

condition for each cluster Cj in C, that is, even when S(x, 1) fails to separate some clusters in 

C from ℬ it may still successfully detect the rest. To see this, note that the proof of the 

theorem actually gives the following: For any subsets E1 and E2 of V, if
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min
x ∈ E1

S(x, 0) − max
x ∈ E2

S(x, 0) ⩾ gE1, E2 > 0

then E1 and E2 can be separated by S(x, 1) by some threshold as long as

gE1, E2 ⩾ 2(eC − 1)S(0) .

The previous results correspond to E1 = C and E2 = ℬ. Let E1 be any individual cluster Cj, 

then since S(0) is upper-bounded by (3.22), we have that each cluster Cj can be separated 

from ℬ by S(x, 1) if gj,0 as defined in (3.21) is larger than the r.h.s. of (3.23).

4. Initial inclusion of I.—The Assumption 1 (a) can be relaxed by only requiring K′ 
C − eigenvectors in I, 0 < K′ ⩽ K, as long as they contribute to a sufficiently large S(x, 0) on 

C, or any subset of C such as an individual cluster Cj. The separation guarantee at time 1 

follows the same argument as in item 2. above, where the quantities (3.19) (3.20) and 

consequently (3.21) (3.22) need to be modified. The precise condition is not pursued here. In 

practice, this means that even if less than K “nearly” C − eigenvectors are included in I, the 

method may still be able to detect part of C from ℬ.

4. Experiments.

In this section we will apply the spectral embedding norm to both synthetic and real-world 

datasets, in scenarios of both single outliers and multiple clusters in a cluttered background. 

Codes are available at https://github.com/xycheng/EmbeddingNorm.

4.1. Manifold data toy example.

We begin with a simulated dataset in ℝ2 composed of a manifold-like background ℬ and 

clusters in C according to the following model. The background ℬ consists of i.i.d samples 

xi distributed as xi = yi + ni, where yi are uniformly distributed on the unit circle, which is a 

one-dimensional manifold, and ni N 0, ϵℬ
2 I , with ϵℬ = 0.01. C contain K equal-sized sub-

clusters, each has i.i.d. samples drawn from N μj, ϵC
2 I , where μj are centered close to the 

circle, and ϵC = 0.02. We generate n = 5000 points, and the number of points in C is set to be 

δn for positive δ, rounded to the closest integer. To measure the accuracy of the detection of 

C we compute the F1 score: F1 = 2pr
p + r , where p ≔ TP

TP+FP , r ≔ TP
TP+FN , and TP, FP and FN 

stand for True Positive, False Positive and False Negative respectively. The δ-quantile of the 

empirical values of S is used as the threshold τ when computing the classification.

Figure 3 shows results for a typical realization of the dataset with K = 10, δ = 0.1. From (C) 

it can be seen that the eigenvalues do not reveal any clear eigen-gap at K = 10. The first K 
eigenvectors do not give a clear indication of the cluster C, but are mainly supported on the 

ℬ − eigenvectors, as shown in (E) for k = 2 and 8. Examining up to the first k ~ 40 ones, 

certain eigenvectors are more localized on C when k > K, e.g., k = 24 and 26. The 
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embedding norm SI clearly separates C from ℬ, as shown in (D). The results are not 

sensitive to algorithmic parameter choices. Let kST be the k-nearest neighbor used to set the 

local self-tuning scale [45] in constructing the affinity matrix W. Then, throughout varying 

values of the parameter kST, the F1-score of the detection by thresholding S reveals a 

“plateau” of valid values of |I|, e.g., when kST = 8, the range of |I| is about 30 ~ 45, with the 

optimal F1 score obtained at |I| = 36. The best F1 score for kST = 4, 8 or 16 are all greater 

than 0.98.

Similar results are obtained for smaller K = 2 where δ = 0.02, as shown in Figure A.1. The 

condition (3.5) in Assumption 2 suggests that |I| is chosen to be proportional to K
δ , and this 

is revealed in Figure 3 and Figure A.1 (in these two examples K
δ  is kept to be the same) as 

the plateaus of valid |I| are at about the same range, across values of kST.

4.2. Image anomaly detection.

Anomaly detection can be seen as a special case of clustering in which there is a vast 

imbalance in the size of clusters, i.e., background vs. anomaly, and the density of each 

cluster. In image anomaly detection, the goal is to detect a small compact region (subset of 

connected pixels) that differs from the normal image background. In general, we can assume 

the number of anomalies K to be small or even 1.

Figure 4 shows the numerical result on a synthetic image which consists of anomaly patches 

against a slowly varying background, as a model of patterned images. The image is a 

function on [−1, 1]2 expressed as

I(x, y) = 1 + 1
2cos (0.05x + y + 1.5)2 ⋅ 2π + 0.6 exp{− x2 + y2

2 ⋅ 0.052},

where the first term models the background stripes, and the second term models the outlier 

region in the center, as shown in (A). The image size is 200 × 200, and n = 4096 image 

patches of size 9 × 9 are extracted with a stride of 3. True outlier patches are identified by 

thresholding the value of the Gaussian bump with a fraction of δ ≈ 0.01. The graph affinity 

is computed with self-tuning bandwidth [45] and kST = 32. The spectral embedding norm 

computed for various values of |I| is shown in (B-E), all of which identify the outlier region 

with improved performance for |I| = 200 and 250. The leading eigenvectors up to k = 100 

fail to be indicative of the outlier region, while those with higher k may be, as shown in (G). 

To quantitatively evaluate the performance of the proposed method, we threshold SI at the 

0.99 quantile to detect the anomaly patches, and compute the F1 score. We repeat 100 

experiments by randomly subsampling 3000 patches and the average F1 score is shown in 

(F) with standard deviation. The method achieves an average best F1 = 85.02 when |I| = 229. 

The results are similar with kST = 16 and 64.

In Figure 5 we demonstrate on real-world images that eigenvectors localizing on the 

anomaly can be buried deep within the spectrum of the image, and that by calculating the 

spectral embedding norm we can separate the anomalies from a cluttered background. We 

Cheng and Mishne Page 16

SIAM J Imaging Sci. Author manuscript; available in PMC 2021 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



examine two side-scan sonar images containing a single sea-mine, displayed in (A) and (C), 

where we consider the sea-mine to be an anomaly (indicated by a red circle). The sea-mine 

can appear as either either a bright highlight (A) or a only a dark shadow (C), which is due 

to the object blocking the sonar waves from reaching the seabed. The background is 

composed of sea-bed reverberations and exhibits great variability in appearance. For the 

side-scan sonar images, in practice δ is in the range of 5 × 10−3 ~ 5 × 10−4. To construct the 

affinity matrix W, we extract all overlapping patches of size 8, and build a nearest neighbor 

graph with 64 neighbors, setting kST = 32. (B) and (D) display S(x) for all pixels x in the 

image, for increasing values of |I|. For both images the sea-mine is revealed consistently for 

a wide range of values, while the background is suppressed. Note that in both cases this 

requires looking deep enough in the spectrum, and summing over the first few eigenvectors 

brings out background structures. Finally, (E) displays eigenvectors ψk for the side-scan 

sonar image in (C), where the three left eigenvectors localize on the background ℬ, 

revealing its periodic nature at different scales and orientations, while the eigenvectors in the 

right two plots localize on the sea-mine C.

4.3. Calcium imaging.

Calcium imaging is an experimental method in neuroscience that enables imaging the 

individual activity of hundreds of neurons in an awake behaving animal, at cellular 

resolution [38]. The acquired data is composed of a spatiotemporal volume, where, after 

motion correction, the neuron locations are fixed and the temporal activity consists of 

hundreds to tens of thousands of time-frames. There is also varying temporal activity in the 

background (neuropil). Thus, this data can also be viewed as an image whose pixels lie in a 

high-dimensional space (time-frames), consisting of hundreds of clusters (neurons) in an 

image plane with a non-trivial background, which matches our problem setting.

The analysis pipeline of calcium imaging typically includes calculating a 2D image that 

depicts the structure that exists in this volume and highlights the existing neurons. Such 

images serve for manual segmentation, to align volumes across days (where the field of view 

may shift), to display neurons detected by automatic and manual means, and even for 

initialization of automatic ROI extraction algorithms methods [27, 30]. A common choice is 

the temporal correlation image [35], or the temporal mean image. Here we show that the 

spectral embedding norm provides a meaningful visualization of the data, with sharp 

morphology and suppression of noise from the background clutter. For these datasets, 

depending on the brain region and neuron type being imaged, K is in the range of dozens to 

few hundreds, and δ⪅0.1.

In Figure 6, we analyze a publicly available dataset from Neurofinder [3]. The images are 

512 × 512 pixels and 8000 time frames have been recorded at 8 Hz. Ground truth labels 

provided with the dataset include 197 identified neurons, however note that recent papers 

point out that the ground truth on Neurofinder datasets is probably lacking, i.e. not all 

neurons are labeled [30, 36]. The affinity matrix W is calculated using a nearest neighbor 

graph for all pixels, represented as high-dimensional vectors in time, with 50 nearest 

neighbors. To accelerate the nearest neighbor search dimensionality is reduced from 8000 to 
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300 using PCA. (A) displays examples of eigenvectors from both the background (top) and 

localizing on single neurons (bottom).

In (B) we compare the spectral embedding norm (right) to the temporal mean (left) and 

temporal correlation image (middle). In each image, the values (mean/correlation/norm) 

appear in the green channel, while we overlay in the red channel a mask of the ground truth 

labels that were manually detected (where the two overlap it appears as yellow). The mean 

image exhibits a strong background, while neurons appear as typical “donuts” [27]. In the 

correlation image, the background mostly appears as noise. In comparison, the background 

has been suppressed in the spectral embedding norm image, while neurons which are barely 

or not at all visible in the correlation image appear as bright clusters.

To quantify, the separation of background and clusters, we segment the spectral embedding 

norm image for increasing |I|, and compare the overlap between the segmented clusters and 

the given ground-truth mask. We set the threshold τ to be the value of the 93-rd percentile of 

S values for each value of |I|. In (C) we plot the F1 score for this segmentation and 

demonstrate a plateau of stable F1-score values for |I| in the range 200–250. To demonstrate 

the property of the spectral embedding norm to perform partial detection of C, we display 

S(x) for multiple values of |I| in (D). Note that we are not performing clustering here, but 

rather demonstrating how the embedding norm can be used to separate meaningful structure 

from background clutter. Thus beyond visualization, this approach can then serve to remove 

the background, and focus only on the remaining clusters in C, thus simplifying subsequent 

clustering and data analysis tasks.

5. Proofs.

H3

Proof of Proposition 3.2.—It suffices to prove (3.6) and (3.7), because Assumption 2 

implies that the r.h.s of (3.7) is strictly less than the l.h.s. of (3.6) by g0, and then claims (1) 

and (2) directly follow.

To prove (3.6): Note that for any x ∈ C, at t = 0,

S(x) = ∑
k ∈ I

ψk(x)2 = ∑
k ∈ I ∩ ΨC

ψk(x)2 .

By Assumption 1 (a), up to a possible K-by-K rotation among the K eigenvectors in I ∩ ΨC, 

we assume that ψj is the eigenvector associated with the sub-cluster Cj, j = 1, …, K, and 

then

S(x) = ∑
j = 1

K
ψj(x)2, (5.1)

as the rotation preserves the squared sum. Furthermore, suppose that x ∈ Cjx, Assumption 1 

(b) gives
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ψj(x)2 ∈ 1
ν Cj, 0

1 − ε1, 1 + ε1 , j = jx,

ψj(x)2 ⩽
ε1

ν(C, 0) , j ≠ jx .

Plugging into (5.1), it shows that

S(x) ⩽
1 + ε1

ν Cjx, 0
+ (K − 1)

ε1
ν(C, 0) ,

and together with ν Cj = ∑x ∈ Cjd(x, 0) ⩾ d0|Cj| = d0
δn
K  for any j (the K sub-clusters are 

equal-size) and similarly ν(C) ⩾ d0|C| = d0δn, it gives the upper bound in (3.6). Consider the 

lower bound, (5.1) continues as

S(x) ⩾ ψjx(x)2 ⩾
1 − ε1

ν Cjx, 0
.

Combined with ν Cj = ∑x ∈ Cjd(x, 0) ⩽ d0|Cj| = d0
δn
K  for any j, this gives the lower bound in 

(3.6).

To prove (3.7): For any x ∈ ℬ, at t = 0,

S(x) = ∑
k ∈ I

ψk(x)2 = ∑
k ∈ I ∩ Ψℬ

ψk(x)2 ⩽ ∑
k ∈ I ∩ Ψℬ

1 + ε2
ν(B, 0) , (5.2)

where ν(B, 0) = ∑x ∈ ℬd(x, 0) ⩾ d0|ℬ| = d0n(1 − δ), and the last inequality is by Assumption 1 

(c). Meanwhile, |I ∩ Ψℬ| = |I| − K by Assumption 1 (a). Plugging into (5.2), this proves 

(3.7).

Proof of Proposition 3.3.—We will establish that for any k = 1, …, n,

|λk(t) − λk(0)| ⩽ 4C
d0

t, 0 ⩽ t ⩽ 1. (5.3)

Given that this inequality holds, then by (3.14),

|λk(t) − λk(0)| ⩽ 4C
d0

⩽ 1
2Δ, ∀1 ⩽ k ⩽ n . (5.4)

This means that it is impossible for Δ(t) < Δ: Otherwise, there exist |λk1(t) − λk2(t)| < Δ, 

where k1 ∈ I and k2 ∉ I, and then (5.4) implies that |λk1(0) − λk2(0)| < 2Δ which contradicts 

the assumption that Δ(0) ⩾ 2Δ.

It suffices to show (5.3) to finish the proof. To do so, we prove the following bound
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|λ̇k| ⩽ 4C
d0

, ∀k, ∀t . (5.5)

From (3.10),

|λ̇k| = |ψk
T Ẇ − λkḊ ψk| ⩽ |ψk

TẆ ψk| + |λk‖ψk
TḊψk| .

As |λk| ⩽ 1 (Perron-Frobenius), then

|λ̇k| ⩽ |ψk
TẆ ψk| + |ψk

TḊψk| . (5.6)

If the following claim is true, then (5.5) follows directly from (5.6):

|ψl
TẆ ψk|, |ψl

TḊψk| ⩽ 2C
d0

, ∀k, l = 1, ⋯, n, ∀0 ⩽ t ⩽ 1. (5.7)

Proof of (5.7): To bound |ψl
TẆ ψk|, note that Ẇ = E, and then

|ψl
TEψk| ⩽ ∑

x ∈ C, y ∈ ℬ
|W (x, y) ψl(x) ψk(y)|

+ ∑
x ∈ ℬ, y ∈ C

|W (x, y) ψl(x) ψk(y)| . (5.8)

We prove a stronger claim which replaces C with

C1 ≔ max{ max
x ∈ C

∑
y ∈ ℬ

W (x, y), max
y ∈ ℬ

∑
x ∈ C

W (x, y)}

in (5.7), and C1 ⩽ C. To proceed, by Cauchy-Schwarz,

∑
x ∈ C, y ∈ ℬ

W (x, y)|ψl(x) ψk(y)| ⩽ ∑
x ∈ C, y ∈ ℬ

W (x, y)ψl(x)2
1/2

∑
x ∈ C, y ∈ ℬ

W (x, y)ψk(y)2
1/2

⩽ C1 ∑
x ∈ C

ψl(x)2
1/2

C1 ∑
y ∈ ℬ

ψk(y)2
1/2

.

We then use that ∀k,

1 = ∑
x ∈ V

ψk(x)2d(x) ⩾ d0 ∑
x ∈ V

ψk(x)2, (5.9)

which gives that

∑
x ∈ C

ψl(x)2, ∑
y ∈ ℬ

ψk(y)2 ⩽ 1
d0

.
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This proves that

∑
x ∈ C, y ∈ ℬ

W (x, y)|ψl(x)‖|ψk(y)| ⩽
C1
d0

,

and using the same argument in the second term in (5.8), we have that

|ψl
TEψk| ⩽

2C1
d0

.

For |ψl
TḊψk|, similarly,

|ψl
TḊψk| ⩽ ∑

x ∈ V
|ψl(x)‖ψk(x)‖ḋ(x)|

= ∑
x ∈ V

|ψl(x) ψk(x)|∑
y

E(x, y)

⩽ C1 ∑
x ∈ V

|ψl(x) ψk(x)|

⩽
C1
d0

,

where Cauchy-Schwarz and (5.9) are used to obtain the last inequality.

Note that while time dependence has been omitted in all the notations, the above arguments 

hold throughout time t ∈ [0, 1].

Proof of Proposition 3.4.—As explained in the text, one may first establish the validity 

of (3.11) and then verify the formula (3.15) based on the former by observing the 

cancelation of terms. As an alternative approach, we use the contour integral of the 

resolvent.

For z ∈ C and not an eigenvalue of P = D−1W, define

R(z) = (W − zD)−1

where the time dependence is omitted. By that P = ΨΛΦT, Λ = diag{λ1, ·,λn}, Φ = DΨ and 

ΨT Φ = I, one can verify the equivalent form of R as

R(z) = Ψ(Λ − zI)−1ΨT = ∑
k = 1

n ψkψk
T

λk − z . (5.10)

This means that

PI = ∑
k ∈ I

ψkψk
T = − 1

2πi ∮
Γ

R z dz,
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where the contour Γ is such that the eigenvalues in I (Ic) stay inside (outside) Γ throughout 

time t (Figure 2), and such Γ exists due to Proposition 3.3. Thus the above expression of PI 

holds for all time t, and as a result

ṖI = − 1
2πi ∮

Γ
Ṙ(z)dz .

By differencing both sides of

W − zD R = I,

one obtains that

Ṙ = − R(Ẇ − zḊ)R .

This means that

ṖI = 1
2πi∮

Γ
R z (Ẇ − zḊ)R(z)dz

= ∑
k = 1

n
∑
l = 1

n 1
2πi∮

Γ

ψk
T(Ẇ − zḊ)ψl

λk − z λl − z ψkψl
Tdz

= ∑
k = 1

n
∑
l = 1

n
ψk

T αklẆ − βklḊ ψl ψkψl
T

(5.11)

where

αkl = 1
2πi ∮

Γ

1
λk − z λl − z dz, βkl = 1

2πi ∮
Γ

z
λk − z λl − z dz .

By Cauchy’s integral formula, one can verify the following:

a. When k ∈ I, l ∈ I, αkl = 0, βkl = 1.

b. When k ∈ I, l ∉ I, αkl = 1
λk − λl

, βkl =
λk

λk − λl
.

c. When k ∉ I, l ∈ I αkl = −1
λk − λl

, βkl =
−λl

λk − λl
.

d. When k ∉ I, l ∉ I, αkl = 0, βkl = 0.

Then (5.11) continues as
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ṖI = ∑
k ∈ I
l ∈ I

− ψk
TḊψl ψkψl

T + ∑
k ∈ I
l ∉ I

ψk
T Ẇ − λkḊ ψl

λk − λl
ψkψl

T + ∑
k ∉ I
l ∈ I

ψk
T −Ẇ + λlḊ ψl

λk − λl
ψkψl

T

= ∑
k ∈ I
l ∈ I

− ψk
TḊψl ψkψl

T + ∑
k ∈ I
l ∉ I

ψk
T Ẇ − λkḊ ψl

λk − λl
ψkψl

T + ψlψk
T .

Since S(x) = PI(x, x), the claim follows by evaluating at the entry (x, x) on both sides.

Proof of Theorem 3.5.—We firstly show that condition (ii) implies (3.14): Note that

( # ) ⩽
d0 1 − ε1

d0
⩽

d0
d0

⩽ 1,

thus

log 1 + 1
2 ⋅ ( # )

1 + 2ε1
⩽ log 1 + 1

2( # ) ⩽ log 1 + 1
2 < 0.5.

Together with 1
1 + Δ

4
< 1, this means that the r.h.s. of (3.16) is less than 0.5Δ

8 .

As a result, under these assumptions, Proposition 3.3 and Proposition 3.4 apply. By (3.15),

S(x, t) − S(x, 0) = ∫
0

t
− ∑

k ∈ I
j ∈ I

ψjTḊψk ψk(x)ψj(x)

+ 2 ∑
k ∈ I
j ∉ I

ψjT Ẇ − λkḊ ψk
λk − λj

ψk(x)ψj(x) dτ,

(5.12)

where in the integrand all the variables involving time take value at time τ.

Introducing the notation

S(t) ≔ sup
x ∈ V = ℬ ∪ C

S(x, t), (5.13)

we are going to prove the following two claims: For any t ∈ [0, 1],

1. ∀x ∈ V = ℬ ∪ C,

|S(t, x) − S(0, x) | ⩽ C∫0
t
S(τ)dτ, C ≔ 1 + 4

Δ
2C
d0

,
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1. S(t) ⩽ eCtS(0)

If true, then

|S(t, x) − S(0, x) | ⩽ C∫0
t
S(τ)dτ ⩽ C∫0

t
S(0)eCτdτ = S(0)(eCt − 1) .

Meanwhile, by Proposition 3.2 (2), S(0) ⩽ 1
nd0

K
δ 1 + 2ε1 , thus

|S(t, x) − S(0, x) | ⩽ (eCt − 1)
K 1 + 2ε1

nδd0
, ∀x ∈ V .

By Proposition 3.2 (1), the initial separation on ℬ and C by S(x) is at least g0, so the 

threshold claimed in the theorem exists as long as

g0 ⩾ 2(eCt − 1)
K 1 + 2ε1

nδd0
.

This is reduced to

2(eCt − 1) ⩽ ( # )
1 + 2ε1

,

which is guaranteed by condition (ii).

To prove Claim (1): By (5.12), ∀x ∈ V,

|S(x, t) − S(x, 0)| ⩽ ∫0
t
I(x, τ) + II(x, τ) + III(x, τ)dτ,

where

I(x, τ) = | ∑
k ∈ I
j ∈ I

ψjTḊψk ψk(x)ψj(x)|
(5.14)

II(x, τ) = 2| ∑
k ∈ I
j ∉ I

ψjTẆ ψk
λk − λj

ψk(x)ψj(x)|
(5.15)

III(x, τ) = 2| ∑
k ∈ I
j ∉ I

λkψjTḊψk
λk − λj

ψk(x)ψj(x)| .
(5.16)

For I(x, τ), note that
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I(x, τ) ⩽ ∑
k ∈ I
j ∈ I

∑
y ∈ V

|Ḋ(y)‖ψj(y)‖ψk(y)‖ψk(x)‖ψj(x)|

= ∑
y ∈ V

|Ḋ(y)|( ∑
k ∈ I

|ψk(y)‖ψk(x)|)2

⩽ ∑
y ∈ V

|Ḋ(y) | ( ∑
k ∈ I

|ψk(y)|2)( ∑
l ∈ I

|ψl(x)|)2)

= ∑
y ∈ V

|Ḋ(y) |S(y)S(x) .

Utilizing the relation that DΨΨT = I, thus ΨΨT = D−1, we have that

S(x) = ∑
j ∈ I

ψj(x)2 ⩽ ∑
j = 1

n
ψj(x)2 = 1

d(x) ⩽ 1
d0

, ∀x ∈ V,

and then

I(x, τ) ⩽ S(x) ∑
y ∈ V

|Ḋ(y) | 1
d0

= S(x) 1
d0 ∑

y ∈ V
| ∑
z ∈ V

E(y, z)| = S(x)2C
d0

.

By the definition of S in (5.13), this gives

I(x, τ) ⩽ S(τ)2C
d0

. (5.17)

For II(x, τ), by Proposition 3.3, in the denominator |λk − λj| ⩾ Δ, and then
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II(x, τ) ⩽ 2 ∑
k ∈ I
j ∉ I

|ψjTẆ ψk|
|λk − λj| |ψk(x) ψj(x)|

⩽ 2
Δ ∑

k ∈ I
j ∉ I

|ψjTEψk ψk(x) ψj(x)| (Ẇ = E)

⩽ 2
Δ ∑

k ∈ I
j ∉ I

∑
y ∈ V
z ∈ V

E(y, z)|ψj(y) ψk(z) ψk(x) ψj(x)|

= 2
Δ ∑

y ∈ V
z ∈ V

E(y, z) ∑
k ∈ I

|ψk(z)||ψk(x)| ∑
j ∉ I

|ψj(y) ψj(x)|

⩽ 2
Δ ∑

y ∈ V
z ∈ V

E(y, z)( ∑
k ∈ I

ψk(z)2)1/2( ∑
l ∈ I

ψl(x)2)1/2

( ∑
j = 1

n
ψj(y)2)

1/2
( ∑
m = 1

n
ψm(x)2)

1/2

⩽ 2
Δ ∑

y ∈ V
z ∈ V

E(y, z) S(z) S(x) 1
d(y)

1
d(x)

(definition of S, ∑
j = 1

n
ψj(x)2 = 1

d(x) )

⩽ 2
ΔS(τ) 1

d0 ∑
y ∈ V
z ∈ V

E(y, z)

 (by that S(x), S(z) ⩽ S(τ),  and d(y), d(x) ⩾ d0)

which means that

II(x, τ) ⩽ 2
ΔS(τ)2C

d0
. (5.18)

For III(x, τ), since |λk| ⩽ 1, and Ḋ(y) = ∑z ∈ VE(y, z), one can show that

III(x, τ) ⩽ 2
ΔS(τ)2C

d0
(5.19)

using a similar argument as in bounding II(x, τ). Putting (5.17) (5.18) (5.19) together, one 

has that

|S(x, t) − S(x, 0)| ⩽ ∫0
t
S(τ)2C

d0
1 + 4

Δ dτ = ∫0
t
S(τ)Cdτ,

namely Claim (1).

To prove Claim (2): Note that

S(t) − S(0) ⩽ sup
x ∈ V

(S(x, t) − S(x, 0))
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(suppose that S(t) = S x0, t  for some x0, then S x0, t − S(0) ⩽ S x0, t − S x0, 0 ). Since Claim 

(1) holds uniformly for x, this implies that

S(t) − S(0) ⩽ C∫0
t
S(τ)dτ,

and the claim then follows by Gronwall’s inequality.

6. Further Comments.

H3

Eigenvector selection.—Related works have devised different methods to perform 

eigenvector selection to identify anomalies [18, 42]. The proposed spectral embedding norm 

can also be used for eigenvector selection. [21] demonstrated that it can be used to identify 

pixels which define clusters and find the embedding coordinates that best separate them 

from the background. An example in the anomaly detection case is given in Appendix A.

Viewed as diffusion distance.—With f(λ) = λp, S(x) can be interpreted as the (squared) 

diffusion distance between node x and the origin at diffusion time p
2  [8]. The diffusion 

distance can be interpreted as a geometric distance between two nodes when the affinity 

graph is built from data points lying on a manifold embedded in the ambient space, and the 

distance is intrinsic to the manifold geometry and invariant to the specific embedding. Since 

λk
p 0 when p is large (except for λk = 1), the origin point is the limiting point of the 

diffusion map embedding. Thus for x in a sub-cluster in C, the weighted norm S(x) with 

positive p can be viewed as a measurement of the extent of metastability (the depth of the 

well) of the potential well associated with the sub-cluster. In view of the diffusion distance, 

under the setting of this paper, nodes in ℬ are very similar to one another, and in comparison 

nodes in C are distinct from those in ℬ (as well as from other sub-clusters in C, which is not 

reflected in S). A similar weighted form has also been studied in [6] for graph-based outlier 

detection. In the primary application considered in this paper, the leading eigenvalues are all 

close to 1, which means that the weighted form (3.18) is not very different unless p is large. 

On the other hand setting p to be large may suppress the high-index eigenvectors by small 

weights while they are actually the informative ones to indicate C. Due to these reasons, we 

mainly consider f = 1 in the current paper, though the analysis directly extends.

Relation to Heat kernel signature.—With f(λ) = e−(1−λ)t from some positive t, S(x) 

takes the form of the Heat Kernel Signature (HKS) proposed by Sun, Ovsjanikov, and 

Guibas [37]. HKS is used in the shape analysis community as a concise multiscale feature 

descriptor on manifolds or 3D meshes in tasks of shape matching, correspondence and 

retrieval. Note that the HKS has been used locally to identify salient features on a given 

shape, similar to the spectral embedding norm used for outlier detection in this paper. The 

application setting for HKS focuses on Riemannian manifolds and 3D mesh, which differs 

from here as we analyze the affinity matrix of a high dimensional dataset composed of 

clusters and background. In particular, for reasons explained above, we mainly consider f = 
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1 in the definition of S(x). We experimentally compare the Embedding norm with HKS in 

Appendix C.

Indexing eigenvectors by support regions.—The phenomenon studied here also 

suggests that sorting by the magnitude of eigenvalues may not be the most informative way 

to index the eigenvectors, a problem recently addressed in [31]. Here we study the special 

case where eigenvectors can be grouped by where they are mainly supported on. In the 

pseudo-dynamic (2.1), the eigenvectors begin with being exactly supported on either C or ℬ
at t = 0, and as time develops this pattern is nearly preserved as long as the C − ℬ inter-

block connections are not too strong. The distinct support regions of eigenvectors appears to 

be irrelevant to the magnitude of the eigenvalues nor the existence of spectral gaps. This 

suggests that grouping eigenvectors by their localization regions maybe a better way to 

arrange them in such cases. However, one still needs to be careful with the instability of 

eigenvectors: As shown in the numerical example, when two eigenvalues get close in the 

pseudo-dynamic, the associated pair of eigenvectors “swap” their values. (The swapping 

may be analyzed by the differential equation (3.11): assuming that among all the pairs of 

neighboring eigenvalues only one pair pλk − λjq is approaching zero, then the dynamic of 

ψk evolution is dominated by that pair, which approximates a rotation among the indices j 
and k.) Our analysis in the current paper handles this by the summation in S over the index 

group I, which makes S invariant to such swaps as long as j and k both belong to I. 
Generally, since eigen-crossings only happen at isolated times in the deformation dynamics 

[17], these special times can be excluded. Then one can say that the eigenvectors continue to 

almost localize on one of the two blocks most of the time.
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Appendix A.: Selection of eigenvectors in anomaly detection.

Eigenvector selection can be used to better visualize and characterize an anomaly in the data, 

by finding a subspace in which it is separated from the normal data. Let xmax = argmaxx S(x) 

be the pixel with the maximal embedding norm. In Figures A.2–A.3 we select the three 

eigenvectors with maximum absolute value on xmax, plotting |Ψk(xmax)| on the left). In the 

middle plot we color the pixels in the image according to pseudo-RGB values assigned to 

the three selected coordinates (right plot). Note that for Figure A.3, the selected coordinates 

are quite deep in the spectrum: k = 59, 47, 48.
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Figure A.1. 
Same plot as Figure 3. K = 2 clusters, δ = 0.02.

Figure A.2. 
Selected eigenvectors of the graph Laplacian computed from the side-scan sonar image in 

Figure 5(a). (Left) Plot of |Ψk(xmax)| where xmax = arg max
x

S x , and x-axis is the index k. 

(Middle) Each x pixel colored according to RGB colors assigned to the three embedding 

coordinates, (Right) with maximum absolute value on xmax.

Appendix B.: Derivation of (3.10) and (3.11).

Recall that λk k = 1
n  are the n real-valued eigenvalues of P, and ψk is the eigenvector 

associated with λk. By definition,

W ψk = λkDψk, ψk
TDψl = δkl,
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where W, D, λk and ψk all depend on t (the dependence is omitted in the notation) and are 

differentiable over time. Taking derivative w.r.t t of both sides,

Ẇ ψk + W ψ̇k = λ̇kDψk + λkḊψk + λkDψ̇k (B.1)

0 = ψ̇k
TDψl + ψk

TḊψl + ψk
TDψ̇l (B.2)

Figure A.3. 
Same plot as Figure A.2 for the side-scan sonar image in Figure 5(c).

Applying ψk
T  to both sides of (B.1) gives

ψk
TẆ ψk = λ̇kψk

TDψk + λkψk
TḊψk = λ̇k + λkψk

TḊψk

where in the first equality we use Wψk = λkDψk. This proves (3.10).

To prove (3.11), since {ψk}k form a D-orthonormal basis of ℝn, let

ψ̇k = ∑
j = 1

n
bjψj, bj = ψ̇k

TDψj .

Apply ψjT , j ≠ k, to both sides of (B.1) gives

ψjTẆ ψk = λk − λj ψjTDψ̇k + λkψjTḊψk,

thus

βj =
ψjT Ẇ − λkḊ ψk

λk − λj
, j ≠ k

whenever λk − λj ≠ 0. Letting l = k in (B.2) gives

2ψ̇k
TDψk + ψk

TḊψk = 0,
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thus

βk = − 1
2ψk

TḊψk .

This proves (3.11).

Appendix C.: Comparison to classical methods and HKS.

k-means and spectral clustering.

Traditional k-means or spectral clustering fails to separate C from ℬ in the synthetic 2D 

examples in the paper, c.f. Figure 1, Figure A.1, Figure 3, and similarly on the real-world 

data examples.

Figure A.4. 
(a) Results of k-means, k = 2 applied to the example in Figure 1, and (b),(c) spectral 

clustering using the first 2 and 5 eigenvectors. (d),(e): Eigenvalues and differences between 

consecutive eigenvalues of the normalized graph Laplacian for different setting of the graph 

construction parameter kST.

The results on the data in Figure 1 are shown in Figure A.4. In this case, the difficulty of k-

means to cluster the data is due to the unbalanced size of the clusters, both in terms of 

cluster diameter (the circle in ℬ can be large) and the number of nodes in each cluster (the 

parameter δ defined to be ratio of number of nodes in C and total number of nodes is small). 

Spectral clustering is problematic due to the unbalanced cluster and the manifold-like 

component ℬ, as has been pointed out in [23]. Specifically, for this example in Section 2.3, 
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none of the leading 10 eigenvectors will indicate the small cluster ℬ, thus using the leading 

eigenvectors will not detect the cluster ℬ.

HKS (Heat Kernel Signature).

For the scenario considered in the current paper, the Embedding norm can outperform HKS 

on detecting small clusters. The results of HKS on the side-scan sonar image data in Figure 

5 with multiple values of the time t are shown in Figure A.5: the best results are with t = 8 or 

16, while the embedding norm removes the background in a much “cleaner” fashion in 

comparison, c.f. |I| = 13 in Figure 5(D). The weights f(λk) given to the k-th eigenvector by 

HKS is plotted in Figure A.5(f).

In this example, the first eigenvector which gives a significant indication of the small cluster 

C (the seamine) starts at k = 6, c.f. Figure 5(E), while the first 5 leading eigenvectors are 

mainly supported on the background. Due to the exponential decay of the weights in HKS, 

when t is small, the weights given to higher-indexed eigenvectors are large, which gives a 

poor result as shown in Figure A.5(a), apart from the computational issue of computing 

much more eigenvectors. Increasing t will suppress the tail, as shown in (f), while giving 

much smaller weights to k = 6 than the first 5 eigenvectors which are not indicating C. This 

results in relatively large values on the background in the HKS, as shown in (b)-(c), and 

when t ⩾ 32 mainly the first 3 eigenvectors remain to contribute to HKS and the C
disappears from the plot as in (d) (e). In comparison, the Embedding norm gives the same 

weights to the first |I| eigenvectors which help to enhance C when |I| ~ 10, as shown in 

Figure 5(D). The negative effects of decaying weights is similar with the Diffusion Distance 

scheme f λk = λk
t .
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Figure A.5. 
(a)-(e): Plots of HKS on the side-scan sonar image data in Figure 5(C) with multiple values 

of the time t. (f): The weights f(λk) given to k-th eigenvector by HKS with different t and by 

the Embedding norm.
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Figure 1. 

Plots of eigenvalue and eigenvectors of P = D−1W over time. (A) n = 5000 data points in ℝ2

sampled on ℬ ∪ C, where points in ℬ lie close to a circle (blue) and points in C form the 

small cluster lying close to the circle (red). In this case, K = 1, δ = 0.01. (B) The affinity 

matrix W(t) at t = 1, c.f. (2.1). (C) Plot of the first 8 eigenvalues as t increases from 0 to 1 

(excluding λ1 = 1). (D) The absolute values of the associated first 8 eigenvectors at x1 ∈ C
over time. (E) Same plot at x2 ∈ ℬ. (F) The values of the embedding norm S(x) defined in 

(2.3) at x1 and x2 over time, where |I| = 40.
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Figure 2. 
Diagram showing the evolution of eigenvalues of the Markov matrix as W(t) changes over 

time as in (2.1). The trivial eigenvalue λ = 1 is omitted. At t = 0, circles indicate ℬ
eigenvalues, and crosses indicate C ones. In this example, K = 3, and |I| = 10. Eigenvalues of 

the ℬ − submatrix are shown in circles, and those of C − submatrix in crosses. Note that ℬ
can have eigenvalues close to 1 even at t = 0. As t increases, at most times the eigenvalues 

are all of multiplicity one. Eigen-crossings may happen within I and Ic but not in between, 

and the I-spectral gap denoted by Δ(t) is preserved (Proposition 3.3). The differential 

equation (3.15) is obtained by the contour integral Γ, which exists for all t due to positive 

Δ(t).
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Figure 3. 

Detection of C from a manifold-like ℬ: (A) n = 5000 data points in ℝ2 sampled on ℬ ∪ C, 

where ℬ points lie close to a circle (blue) and C points form K = 10 clusters lying nearby 

(red), δ = 0.1. (B) The affinity matrix W(t) at t = 1, c.f. (2.1). (C) The first 100 eigenvalues 

of the Markov matrix. (D) The plot of S. (E) k-th Eigenvectors of multiple k’s of the Markov 

matrix. (F) F1-score of the detection of C by thresholding the values of SI, where |I| varies 

from 2 to 100, and for multiple choice of self-tuning parameter (k-nearest neighbor in self-

tuning, denoted by kST). Mean and standard deviation of F1-score are shown, and optimal 

value of |I| are indicated by a red cross.
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Figure 4. 
Detection of outlier patches in a synthetic image. (A) Image consisting of background 

stripes and an anomaly region in the center, δ ≈ 0.01. (B-E) Embedding norm SI computed 

with |I| = 150, 200, 250, 300 respectively, plotted as images where the pixel value indicates 

the value of SI and the pixel location is the center of every image patch. (F) F1-score of the 

detection of outlier patches by thresholding the values of SI, where |I| varies from 100 to 

400. Randomness is attained by subsampling image patches and running independent 

replicas of the experiment. Mean and standard deviation of F1-score are shown, and optimal 

value of |I| are indicated by a red cross. (G) Eigenvectors for various index k, plotted as 

images. The last three show high-index exemplar eigenvectors which are localized on the 

outlier patches, while the first 100 eigenvectors are mainly supported on the background.
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Figure 5. 
Detecting anomalies in side-scan sonar images. A.,C.: Side-scan sonar images with sea-

mines indicated by red circle. B. Spectral embedding norm SI for image (A) with increasing 

|I|. |I| = 50 reveals the sea-mine and the separation is stable up to |I| = 100. D. Spectral 

embedding norm SI for image in (C) with increasing |I|. The sea-mine first “appears” for |I| = 

6. For |I| = 13 the sea-mine separates cleanly from the background, and as |I| increases to 100 

the Embedding norm starts to slightly reveal background components as well. E. Exemplar 

eigenvectors computed from the image in (C) plotted as an image demonstrating localization 

on the background in the three left plots and localization on the sea-mine in the two right 

plots.
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Figure 6. 
A. Example of Laplacian eigenvectors on a calcium imaging dataset from Neurofinder, 

either mainly supported on the background clutter (top) or localizing on neurons which are 

clusters (bottom). B. Images of the Temporal mean (left) Temporal correlation(middle) and 

Spectral embedding norm (right) for a Neurofinder dataset. The spectral embedding norm 

has both removed the background (which is present in the mean image) and enhanced the 

appearance of the structure in the image: neuronal soma and dendrites, with sharp 

morphology. The correlation image is much noisier with fewer visual neurons. C. F1-score 

of segmenting neurons from background based on the spectral embedding norm image, for 

increasing |I| values. For a range of values (200–250) the F1 score plateaus, and then 

decreases as the number of included eigenvectors increases. D. S(x) for |I| = 20, 49, 100, 250 

demonstrates how more and more clusters are revealed.
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