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Abstract

Background: Amorphous calcifications noted on mammograms (i.e., small and indistinct 

calcifications that are difficult to characterize) are associated with high diagnostic uncertainty, 

often leading to biopsies. Yet, only 20% of biopsied amorphous calcifications are cancer. We 

present a quantitative approach for distinguishing between benign and actionable (high-risk 

and malignant) amorphous calcifications using a combination of local textures, global spatial 

relationships, and interpretable handcrafted expert features.

Method: Our approach was trained and validated on a set of 168 2D full-field digital 

mammography exams (248 images) from 168 patients. Within these 248 images, we identified 276 

image regions with segmented amorphous calcifications and a biopsy-confirmed diagnosis. A set 

of local (radiomic and region measurements) and global features (distribution and expert-defined) 

were extracted from each image. Local features were grouped using an unsupervised k-means 
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clustering algorithm. All global features were concatenated with clustered local features and used 

to train a LightGBM classifier to distinguish benign from actionable cases.

Results: On the held-out test set of 60 images, our approach achieved a sensitivity of 100%, 

specificity of 35%, and a positive predictive value of 38% when the decision threshold was set to 

0.4. Given that all of the images in our test set resulted in a recommendation of a biopsy, the use 

of our algorithm would have identified 15 images (25%) that were benign, potentially reducing the 

number of breast biopsies.

Conclusions: Quantitative analysis of full-field digital mammograms can extract subtle shape, 

texture, and distribution features that may help to distinguish between benign and actionable 

amorphous calcifications.

Keywords

Radiomics; Machine learning; Mammography; Microcalcifications

1. Introduction

Calcifications are a common mammographic finding. Radiologists use Breast Imaging, 

Reporting & Data Systems (BI-RADS) to report standardized qualitative descriptors of 

shape (e.g., popcorn-like, rodlike, round) and distribution (e.g., diffuse, segmental) to 

determine which calcifications are suspicious for malignancy. This risk stratification guides 

management decisions such as whom to recommend shortterm imaging follow-up or biopsy. 

Calcifications that are too small and indistinct to assign a distinct shape are considered 

amorphous [1]. Prior studies have reported that the malignancy rate of biopsied amorphous 

calcifications is 20% [2].

While millions of women are encouraged to undergo mammography screening each year, 

radiologists continue to be challenged in evaluating and deciding which calcifications to 

biopsy. Unnecessary callbacks and biopsies lead to increased medical costs, patient anxiety, 

and potential morbidity. Studies have suggested that multiple descriptors for amorphous 

calcifications can lead to a higher positive predictive value (PPV) of malignancy [3]. 

However, the dependence on qualitative descriptors given by the radiologists is a limitation, 

given that many calcifications do not fit clearly into one morphologic or distribution 

category and manifest as a combination of descriptors [4]. Moreover, there is known inter 

and intraobserver variability in analyzing these calcifications [5].

Machine learning (ML) algorithms can potentially help overcome these limitations. 

Prior work on processing 2D full-field digital mammography (FFDM) has shown that 

calcifications can be detected and segmented with high sensitivity and accuracy [6-8]. 

A number of quantitative (radiomic) features can be calculated from these segmented 

calcifications to characterize the morphology, distribution, and texture of the calcifications 

and their surrounding regions. Radiomic features are defined using explicit formulas and 

are computed consistently across different images. Moreover, these features capture the 

subtle patterns that are difficult to assess visually by radiologists. Previous work has 

established that subtle differences in texture (e.g., differences in breast density) correlate 
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with increased cancer risk [9]. Given this existing work, we present an AI/ML approach 

for utilizing radiomic features to predict their malignancy risk and inform whether further 

diagnostic workup is warranted. We use a combination of radiomic and graph-theoretic 

features to distinguish between amorphous calcifications that are either benign (e.g., usually 

requiring only imaging follow-up) or actionable (e.g., requiring consideration of surgical 

intervention given the likelihood of having a high-risk/malignant lesion). We hypothesize 

that using more quantitative and precise descriptors of amorphous calcifications and the 

surrounding tissue can improve the PPV of identifying actionable (high-risk/malignant) 

lesions. Our contributions include 1) the characterization of amorphous calcifications using 

local textures, global spatial relationships, and other interpretable features; and 2) the 

use of unsupervised clustering to obtain a consistent set of local features independent of 

the number of calcifications across all images. We demonstrate how quantitative features 

generated from amorphous calcifications and their surrounding regions on 2D FFDM can 

help distinguish between women with benign findings versus those who require further 

workup (e.g., high-risk or malignant findings).

2. Materials and methods

2.1. Data collection

Following an Institutional Review Board-approved protocol, we collected a retrospective 

dataset with 1462 2D FFDM diagnostic exams performed at UCLA between 2017 and 

2019. All cases had identified calcifications noted on the mammogram and underwent 

core breast biopsy. The presence of calcifications was identified using our breast screening 

registry (MagView, Fulton, MD). From this list, we selected the 359 exams with “amorphous 

calcification” findings mentioned in the radiology report and retrieved their corresponding 

images (n = 2137) from our picture archive and communications system (PACS). A 

diagnostic exam may consist of images corresponding to different views (e. g., craniocaudal, 

mediolateral, exaggerated views). For this analysis, magnification views and images 

acquired using digital breast tomosynthesis were excluded, reducing the dataset by 71 

exams. 87 exams with multiple pathology results (e.g., a case with malignant and high-

risk lesions in the same breast) or non-amorphous calcifications upon re-review were 

omitted. After applying the exclusion criteria, a dataset with 178 diagnostic exams was 

generated consisting of 261 images with amorphous calcifications. Using the final radiology 

report, a trained researcher (CM), under the supervision of a fellowship-trained radiologist 

(BL), specified regions of interest (ROIs) on the FFDM pertaining to where the grouped 

amorphous calcifications were identified and ultimately biopsied. In total, 290 ROIs were 

annotated and matched with core-needle biopsy results. The breakdown of regions is as 

follows: 207 benign, 42 high-risk, 41 malignant. All images were acquired using a Hologic 

Selenia device at 0.07 mm per pixel resolution and 12-bit grayscale, with ~8.5 million pixels 

in each image.

2.2. Data preparation

The input to our classification algorithm is a suspicious ROI showing amorphous 

microcalcifications that have been segmented. We executed the Hessian Difference of 

Gaussians Regression (HDoGReg) method to segment individual microcalcifications, a 
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technique developed by Marasinou et al. [10], on the entire 2D FFDM. The method consists 

of two stages: (1) bright candidate objects were delineated using difference-of-Gaussians 

blob detection with Hessian analysis for shape extraction, and (2) a convolutional regression 

model was applied to choose the candidate objects corresponding to microcalcifications. 

The resulting segmentation mask was used for classification analysis. 14 ROIs (13 images, 

10 exams) did not overlap with any segmented calcifications and were omitted from 

our analysis. In total, 276 ROIs (248 images, 168 exams) were utilized for classification 

analysis. We split exams into two parts: 75% were assigned for training and 25% for testing. 

Fig. 1 summarizes the process for selecting and excluding exams. A breakdown of the 

dataset used to train and test our classifier is presented in Table 1.

2.3. Overall approach

An overview of the classification pipeline is shown in Fig. 2. Three types of binary masks 

were generated using the inputted ROIs with segmented microcalcifications: foreground, 

background, and dilated foreground, as explained below. From each of these masks, local 

and global features were extracted. Local features quantify the shape and texture of 

individual microcalcifications and their immediate surrounding regions. These local features 

are then aggregated using a k-means clustering algorithm to create a fixed-dimensional 

feature vector per image to characterize their distributions.

Global (distribution and expert-defined) features, calculated from the foreground and dilated 

foreground masks, characterize the overall distribution of the microcalcifications within an 

ROI. All global features were concatenated with clustered local features and utilized to train 

a LightGBM classifier to distinguish benign from actionable cases. The model was tuned to 

achieve high sensitivity given the clinical importance of catching all potential high-risk and 

malignant lesions. Classification metrics of the final model were reported.

2.4. Mask generation

We applied the microcalcification segmentation algorithm [10] to generate three different 

types of segmentation masks, resulting in 10 masks per ROI:

• 1 x foreground mask, individual microcalcifications are identified in the 

foreground mask. An example is shown in Fig. 3(b).

• 1 x background mask, a 25-pixel band surrounding each micro-calcification 

to capture the surrounding tissue. Fig. 3(c) provides an example. The thickness 

of the layer was determined based on feedback from expert radiologists on the 

relevance of surrounding breast tissue in informing the diagnosis.

• 65x dilated foreground masks, a morphological dilation of the foreground mask 

at eight different scales (e.g., 1x-65x). Dilated mask examples at two different 

scales are shown in Fig. 4. These dilated masks are used to determine the spatial 

relationships among groups of calcifications when computing the topological 

features.
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2.5. Local features

Using the generated foreground and background masks, radiomic features (e.g., intensity, 

shape, texture) and region properties (e.g., area, intensity) of each labeled region 

were then extracted to create three sets of features, which are enumerated in the 

Supplementary Materials. From the foreground mask, which consists of individually 

segmented microcalcifications, 90 radiomic features (using pyradiomics [11]) and 13 region 

measurements (using regionprops module of scikit-image [12]) were generated. From the 

background mask, which corresponds to the breast parenchyma immediately surrounding the 

calcification group, 87 radiomic features (using pyradiomics [11]) were computed.

2.6. Global features

Region-level features were extracted using the foreground mask and the eight dilated 

foreground masks. The features characterize the distribution of microcalcifications and their 

topological structure. In total, 67 global features per ROI were extracted as described below.

Multiscale topological features: Following the work of Chen et al. [13], we computed 

eight features describing the distribution of micro-calcifications at 65 different scales, 

dilation factors zero to 64, resulting in a total of 520 features. Using feature importance, 

122 features were selected. Next, connectivity graphs between individual calcifications were 

constructed. Each calcification in the foreground mask represente a node in the graph. For 

each of the dilated foreground masks, overlapping objects due to the dilation operation 

were considered connected, and a graph vertex was drawn between them, leading to the 

generation of 8 graphs per ROI. Then, for each graph, eight topological features were 

extracted: 1) number of subgraphs, 2) average vertex degree, 3) maximum vertex degree, 4) 

average vertex eccentricity, 5) diameter, 6) average clustering coefficient, 7) giant connected 

component ratio, and 8) the percentage of isolated points. The formulae for computing these 

features are given in the Supplementary Materials.

Handcrafted features: Based on input from a fellowship-trained breast radiologist (BL) 

and comparison with deep learning-based feature extractors, we considered three additional 

types of features:

1. Standard Deviation of Area: the microcalcifications that vary in size and shape 

tend to be considered highly suspicious for malignancy [14]. To quantify 

the variability, we calculate the standard deviation of the areas of individual 

microcalcifications within ROIs of each image.

2. Correlation Coefficient: the microcalcifications’ patterns are crucial in 

determining whether they are suspicious or not. Since most malignancies are 

ductal, the linear distribution patterns of micro-calcifications suggest that the 

patient needs further follow-up [15]. Therefore, we calculated the correlation 

coefficient of the x and y coordinates of the centroids of microcalcifications from 

ROIs of each image to quantify the extent of their linear distribution.
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3. Pairwise distances: calcifications that are spread over a large volume or over 

the entire breast are more likely to be benign [14]. To quantify the spread, we 

computed the pairwise mean distance of the microcalcifications in ROIs.

2.7. Clustering and concatenation

The three local feature sets (foreground radiomics, foreground region properties, and 

background radiomics) are used as inputs into the classifier but are proportional to the 

number of objects (micro-calcifications and background regions) in each image, which 

varies. To obtain a consistent set of features for each image, we applied an unsupervised 

approach for aggregating local features in each feature set to represent their distribution 

as a fixed-dimensional vector. An unsupervised K-means clustering was utilized to group 

individual microcalcifications or background regions with similar characteristics. All objects 

within an ROI were labeled using an integer representing their K-means cluster for each 

image. After counting the number of microcalcifications and background regions in each 

cluster, a K-dimensional feature vector was then constructed where each element represented 

the percentage of objects belonging to a particular cluster. This process was carried out for 

each of the three local feature sets. The K-means clustering model was fitted the training 

data. As an alternative to K-means clustering, we represented the distribution of local 

features by computing the mean and standard deviation of each feature value across all 

objects.

The three vectors representing local feature sets were then concatenated with the global 

features (distribution and handcrafted features) to form an image’s final feature vector. An 

illustration of the aggregation method of one feature set is shown in Fig. 5.

2.8. Model training and evaluation

The LightGBM classifier [15] was used to perform a grid search with five-fold cross-

validation on the training data to identify the best hyperparameters for this classification 

task. To address the issue of class imbalance, SMOTE + Edited Nearest Neighbor 

resampling technique was used before training [16]. Along with the hyperparameters 

(regularization, number of trees, learning rate, number of leaves, max depth), the probability 

threshold, and the optimal number of clusters, K was also tuned on the training set to 

obtain the best possible sensitivity to ensure that we do not miss any cancerous cases. The 

optimal number of clusters, K, was determined using five-fold cross-validation to maximize 

the classification sensitivity, yielding K = 15 and a decision threshold of 0.4. The model 

was retrained using the chosen hyperparameters on the entire training set, and the images in 

the test set were classified. Metrics such as accuracy, sensitivity, specificity, F1, PPV, and 

receiver operating characteristic (ROC) curve area under the curve (AUC) are reported.

We also compared our radiomics-based clustering approach against three alternatives: 

1) transfer learning by fine-tuning a ResNet-50 model pre-trained using ImageNet with 

weighted cross-entropy loss; 2) a LightGBM classifier with features extracted from the 

fine-tuned ResNet-50 model, and 3) a radiomic feature-based approach with statistical 

features (i.e., mean and standard deviation) computed across all microcalcifications instead 

of clustering.
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For fine-tuning the ResNet-50 pre-trained with ImageNet, we split the training exams into 

80% training and 20% validation. The model that gave the best F-1 on the validation data 

was used for evaluation. To address the problem of class imbalance, we used weighted 

cross-entropy loss as an objective function and data augmentations to avoid overfitting.

To estimate an unbiased generalization performance of our algorithm, we performed nested 

cross-validation on the entire dataset. The outer loop of the nested cross-validation estimates 

the model performance, while the inner loop is used for hyperparameter tuning using grid 

search. For the outer loop, in addition to the results of the single 75% training-25% testing 

split reported previously, we re-ran our entire analysis on the remaining three stratified 

splits. For the inner loop, the training data was further divided into five stratified folds 

(80% training, 20% testing), out of which one fold was used for validation, and the rest of 

the folds were used for training. The best parameters obtained from the grid search were 

then used to train the final model on the training data and then evaluated on the test data. 

This procedure was carried out on all four splits, and the averaged results were calculated, 

assessing whether the clustering approach consistently outperforms the alternative methods.

3. Results

3.1. Sensitivity and specificity

On the held-out test set of 60 images, we obtained 100% sensitivity when the decision 

threshold was 0.4 (Table 2). The PPV was 38% due to the high number of false positives. 

Specificity can be improved by increasing the decision threshold. The values of accuracy, 

f1, and specificity for alternative decision thresholds are shown in Supplemental Materials. 

Compared to using the mean and standard deviation of the amorphous calcification features, 

the clustering approach is superior, though both methods achieve a sensitivity of 100%.

3.2. ROC analysis

Evaluating using the independent test set, the area under the ROC curve (shown in Fig. 

6) is 0.73 classifying an ROI as either benign or actionable using the clustering approach. 

The clustering approach outperformed the approach using local features’ mean and standard 

deviation to create global features (ROC AUC = 0.55).

Recent advances in machine learning have yielded deep feature extractors capable of 

automatically learning informative features from the data rather than handcrafted features. 

To compare the performance of a model using deep features, we conducted three 

experiments in which we ran our classification pipeline using (a) our local and global 

features and (b) the 2048 features from the last layer of the fine-tuned ResNet-50 model. (c) 

the 4096 features from the last layer of the fine-tuned VGG-16 model. While the specificity 

of the ResNet-50-based approach was comparable to our clustering approach (0.35 for the 

clustering approach versus 0.37 for the fine-tuned ResNet), the sensitivity (1.0) and ROC 

AUC (0.73) achieved by our clustering approach were superior compared to the sensitivity 

(0.89) and ROC AUC (0.58) that was obtained using fine-tuned ResNet-50 features at the 

probability threshold of 0.4. We note that the ResNet model was overfitted during training 

and performed poorly during testing, even with data augmentation, early stopping, and 
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other regularization methods like weight decay having been applied. The VGG-16-based 

features also followed a similar pattern and achieved a sensitivity of 0.95 and ROC AUC 

of 0.52, which is lower than our clustering approach. The specificity of 0.12 compared to 

0.35 (achieved using our clustering approach). These observations demonstrated that despite 

the use of data augmentations, the ResNet-50/VGG-16-based models were overfitted to our 

training data and failed to perform well in a data-scarce scenario such as this.

3.3. Confusion matrix

The confusion matrices are shown in Table 3, comparing the clustering and mean and 

standard deviation approaches. For the clustering approach, all 17 images were correctly 

classified as actionable and 15 classified as benign for probability threshold = 0.4 with 

our clustering approach. We chose a threshold that emphasized higher sensitivity (e.g., not 

missing any potential cancers) at the cost of an increased number of false positives (e.g., 

obtaining biopsies on benign findings).

3.4. Generalization performance of our approach

Reporting results from the full nested cross-validation, our clustering approach remained the 

best performing approach, a mean ROC AUC of 0.71 ± 0.12 compared to: 1) a pre-trained 

VGG-16 (not fine-tuned) + LightGBM approach, resulting in an ROC AUC of 0.54 ± 0.1, 

2) a finetuned VGG-16 model resulting in an ROC AUC of 0.48 ± 0.04, 3) a finetuned 

VGG-16 + LightGBM approach 0.52 ± 0.03 4) a pre-trained ResNet-50 (not fine-tuned) + 

LightGBM approach resulting in an ROC AUC of 0.47 ± 0.07, 5) a fine-tuned ResNet-50 

model, resulting in an ROC AUC of 0.42 ± 0.07, 6) a ResNet-50 + LightGBM approach, 

resulting in an ROC AUC of 0.48 ± 0.07, and 7) a radiomic feature-based approach with 

statistical features, resulting in an ROC AUC of 0.53 ± 0.06.

4. Discussion

Amorphous microcalcifications on mammography images are challenging for radiologists to 

assess and lead to a high number of biopsies of benign findings. Quantitative analysis of 

the morphology and distribution of amorphous microcalcifications has the potential to better 

distinguish between benign and actionable findings. In this analysis, we demonstrated that 

in a challenging subset of cases that were all referred for biopsy, the algorithm correctly 

identified 15/60 (25%) benign images, potentially saving these women from undergoing 

unnecessary breast biopsies. Moreover, the algorithm using unsupervised clustering achieved 

a 38% PPV compared to a PPV of 28% that radiologists achieved on these images. In our 

test set, perfect sensitivity was achieved in identifying all actionable findings, but at the 

continued cost of many false positives despite the improvement in PPV.

Several related studies on classifying different calcifications have been previously published, 

but none focused on developing and testing algorithms for challenging amorphous 

calcifications. Fanizzi et al. [17] utilized SURF (Speeded Up Robust Features) to detect 

a range of calcifications and extract wavelet decomposition features from the surrounding 

regions on screening digital mammograms. Trained on 130 ROIs (75 benign, 55 malignant) 

and tested on another 130 ROIs, they reported 0.92 ROC AUC, 88% accuracy, 87% 
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sensitivity, and 88% specificity to classify microcalcifications that are associated with 

benign/malignant lesions. Karahaliou et al. [18] utilized 85 full-field digitized screen-film 

images originating from the Digital Database for Screening Mammography (DDSM) and 

extracted 128 × 128 ROIs centered around detected microcalcification clusters. They 

reported a ROC AUC of 0.84, and given a threshold that optimizes sensitivity, they achieved 

94.4% sensitivity but with a high false positive rate (20% specificity). We achieve a similar 

sensitivity but much higher specificity in our work on the subset of more challenging smaller 

amorphous microcalcifications. Finally, Stelzer et al. [19] manually segmented various 

calcifications from magnification views of diagnostic FFDMs and extracted 249 features 

from 235 cases with stereotactic biopsy-proven diagnoses. They showed that 37–46% of 

biopsies could be avoided per reader at the cost of one false-negative. Focusing on the 

clinically challenging amorphous calcifications, our method could avoid biopsying 25% of 

the images with no false negatives.

To identify the most informative features for this classification task, we examined the most 

represented features in the trees used to build the classifier. These features include 1) 

region property distributions of foreground regions (i.e., area, perimeter, axes lengths, the 

solidity of the microcalcification regions); 2) graph-based feature clusters (i.e., calcification 

distribution); 3) pairwise mean distance (i.e., the spread of the microcalcifications); and 4) 

standard deviation of calcification size (i.e., variation in the calcification size).

Several limitations of our work are noted. First, the input dataset consists of 261 annotated 

images, which is limited but similar to previously reported studies [17-19]. The number 

of images is also constrained due to our focus on amorphous calcifications. This subset of 

calcifications is associated with the greatest diagnostic uncertainty and a high false positive 

rate of breast biopsies. Second, our analysis only included cases where the segmentation 

algorithm generated a result: images in which the segmentation algorithm detected no 

objects or only outputted a single object were excluded. This assumption may introduce 

a source of bias. Third, given the small and hazy nature of amorphous calcifications, 

the segmentation algorithm could identify false positive objects that may have impacted 

the accuracy of the classifier. Further analysis involving a larger number of images and 

data from external institutions and mammography devices is needed to investigate the 

robustness and generalizability of the pipeline. Fourth, the pre-trained VGG-16 and fine-

tuned ResNet-50-based models’ performance was suboptimal due to overfitting. While a 

more diverse training set could improve their performance, our clustering approach achieves 

consistently better performance despite the limited sample size.

In summary, this work provides initial evidence that a quantitative approach to 

characterizing amorphous microcalcifications noted on mammography examinations, 

generating information about the shape and distribution of each calcification, can improve 

the ability to distinguish between benign and actionable findings. Our algorithm identified 

as benign 25% of microcalcifications that were originally deemed suspicious by the 

radiologists (and leading to a breast biopsy), potentially decreasing the number of false 

positive biopsies.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Cohort selection.
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Fig. 2. 
Classification pipeline.
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Fig. 3. 
(a) An example ROI, (b) the foreground mask, and (c) the background mask.
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Fig. 4. 
Visualizations of dilated foreground masks at two representative scales.
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Fig. 5. 
K means clustering-based feature aggregation pipeline. During training, we generated 

clusters using the features extracted from the objects of training ROIs. During testing, we 

utilized the clusters created during the training phase to predict the clusters of the objects 

from the testing ROIs. The process was repeated to generate three local feature sets followed 

by their concatenation with global features.
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Fig. 6. 
ROC curve of the classification using (a) K-means clustering-based aggregation of local 

textural features and global features with LightGBM classifier (b) Features extracted from 

fine-tuned VGG-16 using weighted cross-entropy loss + LightGBM classifier (c) Features 

extracted from fine-tuned ResNet-50 using weighted cross-entropy loss + LightGBM 

classifier (d) Mean and standard deviation aggregation of local features + LightGBM 

classifier.
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Table 1

Breakdown in the training and testing set reported as # of ROIs (# of images).

Labels – (pathology outcome from breast
biopsy)

Train
# ROIs (#
images)

Test
# ROIs (#
images)

Benign 154 (131 images) 46 (43 images)

Actionable (High-risk/DCIS/invasive) 57 (57 images) 19 (17 images)

Total 211 (188 images) 65 (60 images)
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Table 2

Classification results - Clustering approach versus using mean and standard deviation.

Clustering Approach (K = 15
and probability threshold =
0.4)

Approach using Mean and Standard
Deviation of amorphous calcification
features (Probability threshold = 0.4)

Accuracy 0.53 0.31

Sensitivity 1.0 1.0

Specificity 0.35 0.04

F1 0.51 0.08

PPV 0.38 0.29

ROC AUC 0.73 0.55

Comput Biol Med. Author manuscript; available in PMC 2023 January 13.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Marathe et al. Page 20

Table 3

Confusion matrix for clustering approach and probability threshold of 0.4 and approach using mean and 

standard deviation.

Clustering approach Approach using Mean and
standard deviation

Benign
(Predicted)

Actionable
(Predicted)

Benign
(Predicted)

Actionable
(Predicted)

Benign 15 28 2 41

Actionable 0 17 0 17
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