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Physical and Causal Judgments for Object Collisions
Depend on Relative Motion

James R. Kubricht1 Hongjing Lu1,2

Department of Psychology1 Department of Statistics2

University of California, Los Angeles

Abstract

Human judgments about the physical attributes of—and causal
relationship between—two colliding objects have been stud-
ied extensively over the past seventy years. Recent computa-
tional evidence suggests that judgments about the mass ratio
of two colliding objects, as well as their perceived causal re-
lation, can be explained by a coherent framework based on a
Newtonian physical model and probabilistic inference result-
ing from noisy observations of object movements. However,
it remains unclear how the physical and causal reasoning sys-
tems interact with the motion perception system when forming
these judgments. The current study aims to examine whether
high-level judgments are guided by object motion represented
as relative motion with reference to a moving background, or
as absolute motion with reference to a stationary position in
the world. Both experimental evidence and model simulation
results support the notion that physical and causal inference in
object collisions depend on relative motion rather than abso-
lute motion.

Keywords: Intuitive physics; causality; mass judgment; refer-
ence frame; Bayesian inference

Introduction
Over the past seventy years, researchers have examined how
human inferences about the attributes of—and causal rela-
tionship between—colliding objects vary according to spa-
tiotemporal properties in observed displays (Cohen, 2006;
Gilden & Proffitt, 1994; Leslie, 1982; Michotte, 1963; Nat-
soulas, 1961; Runeson, 1983; Runeson, Juslin, & Olsson,
2000; Saxe & Carey, 2006; Schlottmann & Anderson, 1993;
Scholl & Nakayama, 2002; Todd & Warren Jr., 1982; White,
2006). In a typical launching event, an initially moving disc
(motor object; or Object A) collides with an initially station-
ary one (projectile object; or Object B) and causes it to move
forwards in the direction that it is pushed. Physically, the mo-
tor object interacts with the projectile object by imparting its
momentum upon it; the sum of the motor and projectile ob-
jects’ momentum remains constant over time: i.e., the princi-
ple of conservation of momentum.

Michotte (1963) found that when people observe launching
events, they report an immediate and irresistible impression
that the motor object causes the projectile to move forwards.
However, participants’ causal ratings were consistently atten-
uated when either (1) a spatial gap was placed between the
colliding objects; (2) the projectile object’s movement was
delayed; or (3) the projectile object moved faster/slower than
the motor object following impact (see Figure 1). These find-
ings indicate that causal impressions are highly sensitive to
the spatiotemporal characteristics of observed events. How-
ever, Runeson (1983) later pointed out that causal impres-
sions were too subjective to reliably measure and instead

turned his attention towards relative mass judgments. Fol-
lowing Gibson’s (1966) doctrine of direct perception, he the-
orized that if people reason according to the principle of con-
servation of momentum, their judgments about which of two
colliding objects is heavier should solely depend on their un-
biased and accurate estimates of each object’s pre- and post-
collision velocity.

Runeson’s predictions were subsequently tested by Todd
and Warren (1982) who found that people are instead consis-
tently biased towards reporting that the motor object is heav-
ier (i.e., the motor object bias). Moreover, people are more
susceptible to this bias when the objects are relatively inelas-
tic: e.g., deformable vs. rigid balls. To explain these findings,
researchers posited that observers form judgments according
to simplified heuristic rules based on salient perceptual cues:
e.g., which object moves faster after impact and the degree
to which each object deflects off of the other (Gilden & Prof-
fitt, 1994; Runeson et al., 2000). Although the heuristic ap-
proach qualitatively explains trends in the reported behavioral
data, a more recent approach has demonstrated that people do
appear to reason about relative mass in accordance with the
principle of conservation of momentum, given that their per-
ception is prone to error and prior beliefs about informative
physical variables are held: i.e., the noisy Newton hypothe-
sis (Sanborn, Mansinghka, & Griffiths, 2013; Sanborn, 2014).

The Noisy Newton Framework
The noisy Newton framework was proposed to explain peo-
ple’s predictions about dynamic physical situations without
the implementation of arbitrary heuristic rules. It has been
employed across a wide range of physical domains, rang-
ing from the movement of non-solid substances to causal
reasoning through counterfactual simulation (see Kubricht,
Holyoak, & Lu, 2017 for a review). The framework
supposes that people possess an intuitive physics “en-
gine” (Battaglia, Hamrick, & Tenenbaum, 2013) encoded in
neural circuitry (Fischer, Mikhael, Tenenbaum, & Kanwisher,
2016) which approximately emulates the laws of physics
to simulate spatially represented variables forwards in time
(see Battaglia, Pascanu, Lai, & Rezende, 2016; Chang, Ull-
man, Torralba, & Tenenbaum, 2016; Grzeszczuk, Terzopou-
los, & Hinton, 1998 for a computational approach). More-
over, since people’s observations are inherently noisy, in-
ferred estimates of observable variables are consistently bi-
ased towards prior expectations.

In the case of object collisions, Sanborn et al.’s (2013)
implementation of the noisy Newton framework adopts the
generic prior in motion perception (i.e., favoring slow motion
in object motion) and a likelihood function which compares
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Figure 1: Three common manipulations to spatiotemporal properties of a collision event display in causal perception tasks. The
dashed grey lines correspond with different time points during the collision event, and the arrows attached to the discs indicate
their magnitude and direction of movement (i.e., velocity). (A) When a spatial gap is placed between the inside edges of two
colliding discs at the moment of impact, perceived causality diminishes. (B) Introducing a pause (temporal delay) between
when the motor object stops and the projectile object begins moving also attenuates perceived causality. (C) The numbers (1 or
2) indicate two possible outcomes; the projectile object moves either slower than the motor object following collision (Outcome
1) or it moves faster (Outcome 2). People report greater causal impressions after observing Outcome 1 relative to Outcome 2.

the observed velocity with the derived velocity from a phys-
ical model. The noisy Newton approach explains the motor
object bias and predicts larger biases for relatively inelastic
collisions. In addition, the noisy Newton model can be ex-
tended to account for causal judgments by comparing how
well a noisy Newtonian model explains observations com-
pared with a non-physical model (Sanborn et al., 2013; see
Appendix for model details).

Importantly, the noisy Newton framework does not specify
how observable input variables should be represented: e.g.,
in a dynamic stimulus, object motion can be represented as
relative motion with reference to a moving background, or
as absolute motion with reference to a stationary position in
the world. Furthermore, the physical inference may vary de-
pending on whether the reasoning system adopts relative or
absolute motion signals. For instance, imagine that you are
looking out of the left window of a resting train and you see
a vehicle move from your left periphery towards a second ve-
hicle parked on the road nearby. The two vehicles collide,
and the second vehicle correspondingly moves in the direc-
tion that it was pushed. You might get an impression that the
two vehicles were equally heavy; but what if the train was
traveling in the same direction as the initially moving vehi-
cle? What if it was traveling in the opposite direction? Would
your judgment about the weight of the two vehicles change?
Would you be equally likely to report that the first vehicle had
launched the second one forwards? Motion perception stud-
ies have shown that humans can perceive both relative and
absolute motion with different degrees of sensitivity (Smeets
& Brenner, 1994). For cognitive tasks probing the ability of
physical and causal reasoning, it is important to understand
what perceptual variables are selected and used for high-level
judgments.

The central effort of the current experiments is to exam-
ine what motion information is extracted from visual inputs
for physical and causal judgments. Previous work on object
collision judgments have exclusively used stationary back-
grounds, providing no distinction between relative and ab-

solute motion. However,in daily life, perceived landmarks
are constantly moving across our visual field as we move
through—and interact with—the environment. In such cases,
representing motion relative to those moving landmarks could
provide a different explanation of physical dynamics than ab-
solute motion does. Across two experiments, we (1) mea-
sured human performance in physical and causal judgment
tasks when viewing object collisions on a moving back-
ground, and (2) compared noisy Newton model predictions
given absolute and relative motion inputs to test the hypoth-
esis that humans encode relative motion when forming mass
judgments and inferring causality.

Experiment 1: Mass Judgments
The goal of the first experiment was to determine (1) whether
a vertical background grid moving with or against the motion
of two colliding objects influences mass ratio judgments; and
(2) if so, whether the noisy Newton model for mass collisions
with relative motion inputs can explain participants’ perfor-
mance.

Participants
A total of 20 undergraduate students (14 female; Mean age
= 21.2) were recruited from the University of California, Los
Angeles (UCLA) Department of Psychology subject pool and
were compensated with course credit.

Materials and Procedure
Collision event videos were presented on a 19” Dell
E198WFP LCD monitor with a refresh rate of 40 Hz at 1440
× 900 resolution. Videos were viewed at a distance of ap-
proximately 70 cm. In each video, an initially moving object
(termed as motor object) collided with a stationary (uB = 0)
object (termed as projectile object). The pre-collision veloc-
ity of the motor object varied across eight values: uA = 1.9,
2.3, 2.6, 3.0, 3.4, 3.7, 4.1, and 4.5 cm/sec. The final velocities
of the two objects were determined by Newtonian principles
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Figure 2: The three panels depict a collision event prior to
impact where the motor object (left) travels towards the pro-
jectile object (right). The vertical gray lines indicate a back-
ground grid which either (A) moves leftward against the di-
rection of the collision event, (B) remains stationary, or (C)
moves rightward in the direction of the collision event. The
black and gray arrows indicate the motor object and back-
ground grid velocities, respectively.

using a fixed restitution value of e = 0.9 and eight mass ra-
tio values: mA/mB = 1/3, 1/2, 2/3, 4/5, 5/4, 3/2, 2/1, 3/1.
In each video, the background also either moved against the
direction of the collision (leftward; -2 cm/sec), with the di-
rection of the collision (rightward; 2 cm/sec), or it remained
at rest (0 cm/sec; see Figure 2). These manipulations yielded
8 (motor speed) × 8 (mass ratio) × 3 (background move-
ment) = 192 collision stimuli presented in a within-subjects
design. Trials were presented in a randomized order, and no
feedback was provided. Each stimulus video lasted 4 sec with
impact occurring 2 sec into each collision event; the impact
location was always at the center of the display. The col-
lision videos were rendered using MATLAB Psychophysics
Toolbox 3. The motor and projectile objects were depicted as
black (RGB = 0 0 0) discs with 2.7 cm diameter. The verti-
cal grid lines spanned the height of the screen (25.4 cm) and
were colored gray (RGB = 150 150 150). Each line was 0.08
cm wide with a horizontal line separation of 2.7 cm.

Prior to the testing trials, participants were informed that
they would be watching a series of videos where two discs
interact with one another. They were told that there would
be vertical lines behind the two discs in each display and that
they would either move leftward/rightward or remain at rest.
In each trial, participants viewed a collision video and then
reported which of the two objects (left or right) they thought
was heavier. Participants were provided with the opportunity
to take two breaks which occurred 1/3 and 2/3 of the way
through the experiment, which lasted approximately 20 min-
utes.

Human Results
The proportion of participants choosing the motor object as
appearing heavier in each mass ratio and background move-
ment condition is displayed in the left panel of Figure 3. Par-
ticipants’ responses—either 0 or 1—were averaged across the
pre-collision motor velocity (uA) conditions prior to analy-
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Figure 3: The measured (left panel) and model predicted
(right panel) proportions of participants choosing the motor
object as appearing heavier. Separate lines indicate whether
the background (BG) moved leftward/rightward or remained
at rest. Proportions are averaged across pre-collision velocity
(uA) conditions.

sis. A two-way repeated measures ANOVA was conducted on
the response proportions to determine whether mass ratio and
background movement influenced mass judgments. Results
from the analysis indicated a significant interaction between
mass ratio and background movement, F(14,6) = 7.37, p =
.01, indicating that the impact of background movement on
mass judgments varied according to mass ratio. As evident
in Figure 3, participants were more likely to report that the
motor object was heavier than the projectile object when the
background moved leftward against the direction of the col-
lision (Figure 2A), and less likely when it moved rightward
in the same direction (Figure 2C). In other words, the point
of subjective equality (PSE; i.e., the mass ratio where each
judgment is equally likely) occurred at a minimum mass ratio
with leftward background movement, PSE = 0.62, a moder-
ate ratio when the background was at rest, PSE = 0.70, and a
maximum ratio with rightward background movement, PSE =
0.99. In the following section, we explore whether the noisy
Newton model for mass ratio judgments can explain this be-
havioral trend.

Model Results
The noisy Newton model for mass ratio judgments (Sanborn
et al., 2013) takes as input the velocities of the motor and
projectile objects and outputs the likelihood of an observer
choosing the motor object as appearing heavier. In the orig-
inal noisy Newton model, the input of observed velocity is
specified relative to a fixed point on the display; we will
refer to these velocities as absolute velocities. This model
can account for the motor object bias and predicts that the
probability of choosing “motor object heavier” changes as
a sigmoid function of the true mass ratio. The noisy New-
ton model with absolute velocity inputs is represented by
the black curve in Figure 3 (right panel) and reveals a fit of
r2(22) = 0.91 (95% CI = [0.80, 0.95]). However, critically,
the model’s performance is not influenced by the presence
and direction of background movement—nor do the model
predictions differ—since the absolute velocity inputs do not
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change across the three background movement conditions.
Therefore, the model predicts the same PSE in each back-
ground condition, PSE = 0.95.

Alternatively, the noisy Newton model can take as input the
motor and projectile velocities specified relative to a moving
point fixed to the background grid. The result is relatively
large velocities when the background moves leftward and
relatively small velocities when it moves rightward. Since
observation noise in the noisy Newton model increases for
larger velocity magnitudes, the influence of the slow motion
prior is greatest in the leftward background condition and
smallest in the rightward background condition. As shown
by the separate curves in the right panel of Figure 3, the noisy
Newton model with relative velocity inputs explains people’s
increasing bias towards reporting “motor object heavier” in
the leftward versus rightward background movement condi-
tion. The model also provides a superior fit to human judg-
ments, r2(22) = 0.97 (95% CI = [0.91, 0.98]), and predicts
human PSEs: Leftward PSE = 0.54, Rest PSE = 0.95, Right-
ward PSE = 1.09. The model results for Experiment 1 used
the same parameters reported in Sanborn et al. (2013): i.e., σ

= 2, kv = .1, wv = .15.

Experiment 2: Causal Ratings
Our first experiment showed that the magnitude of the mo-
tor object bias depends on the background movement direc-
tion in a collision event. The noisy Newton model with rela-
tive motion inputs accounts for human mass ratio judgments
well across a range of testing conditions. The purpose of the
second experiment was to determine whether the same back-
ground manipulation affects perceived causality, and whether
the noisy Newton model can account for human performance.

Participants
A total of 29 undergraduate students (20 female; Mean age
= 20.5) were recruited from the University of California, Los
Angeles (UCLA) Department of Psychology subject pool and
were compensated with course credit.

Materials and Procedure
The apparatus was the same as in Experiment 1. The stim-
uli in Experiment 2 were also the same as previously indi-
cated, except two differences: (1) the motor object was al-
ways stationary after impact (i.e., vA = 0 cm/sec) and (2) the
motor object moved comparatively faster: uA = 6, 11, and 15
cm/sec. Instead of using mass ratio, restitution, and each ob-
ject’s pre-collision velocity to determine their post-collision
velocities in each trial, the ratio of the motor object’s pre-
collision velocity to the projectile object’s post-collision ve-
locity (see Figure 1C) was directly manipulated across trials:
uA/vB = 0.5, 0.7, 1, 1.4, 2. In addition, a temporal delay (see
Figure 1B) was placed between the moment of impact and
the projectile object’s initial movement: t = 0, 70, 140, 210,
280 msec. These manipulations yielded 3 (motor speed) × 5
(velocity ratio) × 5 (temporal delay) × 3 (background move-
ment) = 225 collision stimuli presented in a within-subjects
design. The trials were presented in a randomized order and
no feedback was provided. The experiment lasted approxi-
mately 30 minutes.

Participants began the experiment by viewing a set of in-
structions informing them that they would be viewing videos
of two (equally heavy) discs in motion. Once again, they
were informed that there would be vertical grid lines behind
the discs that would move leftward/rightward or remain at
rest. Following each video, participants were asked, “Did the
left object launch the right object?” and responded on a scale
from 1 (Definitely No) to 9 (Definitely Yes) with a middle
rating of 5 (Unsure).

Human Results
As in the previous experiment, we averaged individual par-
ticipants’ ratings across the three trials with different pre-
collision motor velocity (uA). Mean ratings in each of the
temporal delay, background movement, and velocity ratio
conditions are displayed in the top panels of Figure 4. A
three-way repeated measures ANOVA was conducted on the
mean causal ratings with three within-subjects factors. There
was a significant two-way interaction between temporal de-
lay and velocity ratio, F(16,13) = 2.90, p = .03, indicating
that the impact of velocity ratio on causal ratings depended
on the magnitude of temporal delay. The three-way interac-
tion and remaining two-way interactions were not statistically
significant.

The impact of velocity ratio on causal ratings was ex-
amined in each temporal delay condition. First, we exam-
ined the condition without temporal delay (t = 0 msec) and
found that causal ratings were significantly impacted by ve-
locity ratio, F(4,25) = 4.33, p < .01, which replicated Mi-
chotte’s original finding that causal perception of the launch-
ing effect depends on the ratio between the two objects’ pre-
and post-collision speeds. However, when a noticeable tem-
poral delay was introduced, participants rated their causal
impression primarily based on the length of the temporal
delay—with much less attention given to velocity ratio—as
there was no significant simple main effect of velocity ratio
in the t = 70,140,210,280 msec temporal delay conditions,
F(4,25) = 2.73, .58, 1.07, 1.36; p = .052, .68, .39, .28, re-
spectively.

The impact of relative vs. absolute motion on causal rat-
ings of observed launching events was examined in the ab-
sence of temporal delay (t = 0 msec), because it was in this
condition that velocity had an impact on causal ratings. We
found that causal ratings, in fact, were impacted by back-
ground movement at a 0 msec delay, F(2,27) = 4.02, p = .03
(see Figure 4, top left panel). Specifically, ratings in the right-
ward background condition were significantly smaller than
ratings in the rest background condition, F(1,28) = 7.94, p
< .01, as well as smaller than the leftward background con-
dition, F(1,28) = 5.35, p = .03. These results indicate that
when the relative motions of two colliding objects (with re-
spect to a moving background) are slow, people are less likely
to report that the motor object launches the projectile object
forwards.

Model Results
Predictions from the noisy Newton model with absolute ve-
locity inputs are indicated by the black curves in the bottom
panels of Figure 4. The model predictions were compared
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Figure 4: Human (top) and model predicted (bottom) causal ratings averaged across pre-collision motor speed (uA) for each
velocity ratio (uA/vB) condition. Separate plots (left to right) indicate different temporal delay conditions, and separate lines
indicate different background (BG) movement conditions. Vertical error bars indicate standard error of the mean.

with human ratings in the t = 0 msec condition because it
was here that background movement had a significant impact.
The absolute model reveals a fit of r2(13) = 0.314 (95% CI
= [0.004, 0.718]). The model’s predictions are not influenced
by the background movement condition, so it cannot explain
the behavioral result that rightward background movement
yielded lower causal ratings than resting and leftward back-
ground movement.

However, the causal noisy Newton model with relative mo-
tion inputs—as defined in the previous section—can qualita-
tively explain the impact of background movement on causal
perception. Although the model fit with relative velocity in-
puts is comparable to the absolute velocity model fit, r2(73)
= 0.376 (95% CI = [0.013, 0.761]), the predicted causal
ratings are systematically influenced by background move-
ment (see separate curves in bottom panels of Figure 4).
While there was no observable difference between the left-
ward and rest background predictions, the model shows com-
paratively lower ratings in the rightward background condi-
tion compared with the leftward condition, which is consis-
tent with human results. The model also captures Sanborn
et al.’s (2013) finding that a 1/1 velocity ratio corresponds
with peak causal ratings. Also note that model ratings achieve
floor values at a temporal delay of approximately 210 msec.
This occurs because large temporal delays disagree with the
prior expectation of a 0 msec delay and thus generate a small
temporal likelihood term. Human ratings also appear to reach
floor values at around the same temporal delay. We chose the
following model parameters in Experiment 2 to account for
the human data: σ = 972, kv = .319, kt = .004, wv = .059,
P(O|NC) = 2 × 10−5. Note that a separate set of model pa-
rameters were chosen since the range of velocity input values

was significantly greater than in the previous experiment.

Discussion
The results reported herein demonstrate that (1) the motor ob-
ject bias in mass ratio judgment is strengthened or attenuated
when the background on which colliding objects travel moves
either against or with the direction of their motion, respec-
tively; and (2) impressions of launching are similarly influ-
enced by moving backgrounds when there is no temporal de-
lay between the movements of the two objects. The noisy
Newton model (Sanborn et al., 2013) for object collisions
was implemented and compared with human data in both a
mass ratio judgment and causal rating task. For mass ratio
judgment, the model with relative motion inputs accounts for
human performance well across a range of experimental con-
ditions. The goodness of the fit suggests that humans use
perceived relative motion as the input to high-level cognitive
systems when inferring observable physical properties. For
causal perception, the model with relative motion inputs ex-
plains the finding that background movement with the motion
of colliding objects negatively impacts causal ratings.

In summary, our results show that impressions about the at-
tributes of—and relationships between—entities in the world
are systematically influenced by low-level spatiotemporal
characteristics in observed scenes. However, it remains un-
clear whether the influence of more abstract contextual prop-
erties (e.g., Mayrhofer & Waldmann, 2014) on causal impres-
sions can be explained by their spatiotemporal characteris-
tics alone. Another question is whether human counterfactual
reasoning (Gerstenberg, Goodman, Lagnado, & Tenenbaum,
2015; Gerstenberg, Peterson, Goodman, Lagnado, & Tenen-
baum, 2017) in object collision tasks are also systematically
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influenced by background movement. It would be beneficial
for future work to explore these possibilities.
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Appendix: Noisy Newton Model Details
The noisy Newton model for mass judgment uses Bayes’ rule to cal-
culate a posterior distribution of collision attributes, A, given noisy
observable information O:

P(A|O) =
P(O|A)P(A)

P(O)
, (1)

where P(A) represents prior knowledge people have about hidden
attributes in collision events. Those attributes are mass, mA and mB,
and restitution, e, which is a constant between 0 and 1 that represents
the elasticity in a collision. The model assumes that all restitution
values are equally likely and objects are more likely to be light than
heavy: e ∼ Uniform(0,1); mA, mB ∼ Exponential(1). The P(O|A)
term indicates the likelihood of observed velocities (O = uA, uB, vA,
vB) given a potential set of attributes (A = e, mA, mB). Here, uA
and uB are the pre-collision velocities of Objects A and B, and vA
and vB are the post-collision velocities. Post-collision velocities are
calculated based on the pre-collision velocities, the object masses,
and the collision’s restitution coefficient via the following equations:

vA =
mAuA +mB(uB + e(uB−uA))

mA +mB
(2)

va =
mBuB +mA(uA + e(uA−uB))

mA +mB
(3)

A noisy observation model then links true, hidden variables Ō with
observed variables O such that their difference ε is normally dis-
tributed in logarithmic space: ε∼Gaussian(0,k2

x ). Given a weighted
logarithmic transformation function f (x) = sign(x)log(w|x|+1), the
difference between observed and true observations is expressed as
ε = f (O)− f (Ō).

With the noisy observation model, the P(O|A) in Equation 1 can
be expanded to include both O and Ō:

P(O|A) =
∫

Ō′
P(O|Ō′)P(Ō′|A)dŌ′, (4)

where the P(Ō|A) term is further separated into initial and final ve-
locities: i.e., P(Ō|A)=P(v̄A, v̄B|A)P(ūA, ūB). Note that pre-collision
velocity does not depend on the collision attributes. Instead, values
for ūA and ūB are drawn from the slow motion prior such that ūA,
ūB ∼ Gaussian(0, σ2). Post-collision velocities are then calculated
from Equations 2 and 3.

The noisy Newton model can also be used to predict the marginal
probability of a causal relationship, C, given noisy observable infor-
mation, O:

P(C|O) =
P(O|C)P(C)

P(O|C)P(C)+P(O|NC)P(NC)
. (5)

The P(O|C) term in Equation 5 can be expanded to the following
integral:

P(O|C) =
∫

Ō′,A′
P(O|Ō′)P(Ō′|A′,C)P(A′)dŌ′dA′. (6)

Note that temporal delay, t, can be included as an observable variable
with log-normal uncertainty and a delta function prior centered at 0
msec: P(t̄) = δ(t̄). For the P(O|NC) term, Sanborn et al. (2013)
set this value as a free parameter in their model. The authors also

made the assumption that causal and noncausal models were equally
likely: i.e., P(C) = P(NC).
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