
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Control under energy and time constraints

Permalink
https://escholarship.org/uc/item/9fx0g63z

Author
Pearson, Justin

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9fx0g63z
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Control under energy and time constraints

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Electrical and Computer Engineering

by

Justin Payne Pearson

Committee in charge:

Professor João P. Hespanha, Chair
Professor Andrew R. Teel
Professor Jason R. Marden
Professor Amr El Abbadi

March 2018

The Dissertation of Justin Payne Pearson is approved.

Professor Andrew R. Teel

Professor Jason R. Marden

Professor Amr El Abbadi

Professor João P. Hespanha, Committee Chair

January 2018

Control under energy and time constraints

Copyright c© 2018

by

Justin Payne Pearson

iii

To Jen.

iv

Acknowledgements

I’m very thankful to have met so many nice people during my graduate school

career at UC Santa Barbara.

João Hespanha

João, thank you for encouraging me to come back to grad school. You made

all this possible. I deeply appreciate your time, attention, and guidance the last

several years. Your uncanny intuition about tough problems constantly amazes

your students. Thanks to you, I was able to explore several professional and per-

sonal intellectual interests, like the Certificate in College and University Teaching.

These endeavors really enriched the quality of my life. It was a real pleasure being

your student.

Andy Teel

Andy, thanks for all the advice and the miscellaneous chats about day-to-day

stuff. Your even-keel attitude steadies the turbulence of grad school. Thanks

also for your Hybrid Systems course, which was really mind-expanding. Also, I

really enjoyed working on various CCDC projects with you and Kallie.

Jason Marden

Jason, thank you for the encouragement regarding grad school and my role in

the department. I really appreciate your willingness to meet with me to help me

see the light at the end of the tunnel.

Amr El Abbadi

v

Professor El Abbadi, thanks for your excellent Distributed Systems course, which

helped me pivot to software engineering. Many thanks for your encouragement

during that transition.

Funding Agencies

My research was supported by the Institute for Collaborative Biotechnologies

through grant W911NF-09-D-0001 from the U.S. Army Research Office, and by

the National Science Foundation through grant CNS-1329650, for which I’m very

grateful. Moreover, generous fellowships from the UCSB graduate division, the

UCSB Center for Controls, Dynamical Systems, and Computation, and philan-

thropist Michael Towbes contributed to my scholarship and my quality of life.

CCDC

The Center for Controls, Dynamical Systems, and Computation provided a steady

stream of scholars to speak in a weekly seminar series, and I thank its organizers

for their service in maintaining the Center.

Colleagues

I’m grateful for the company and friendship of my colleagues in João’s lab. I ap-

preciated Jason’s insightful musings, Steven’s quick wit, and Hari’s perseverence

as he straddled the fields of Controls and Biology. David and I worked together

for several months and made me wish I had sought more collaborations with my

lab-mates. Nevertheless, Henrique and I spent many hours at the whiteboard

puzzling over this or that; his great attitude and sense of humor always lifted our

vi

spirits. Combined with Sharad’s keen insights, we whiled away many pleasant

lunch breaks. Calvin, our long-term undergraduate intern, kept my fingers on the

pulse of the undergraduate experience at UCSB; we had many enjoyable conver-

sations about teaching and pedagogy. To our new recruits — Raphael, Murat,

and Matina — you are in good hands. And I thank our many visiting scholars,

who contributed to the lab’s richness: Kyriakos, Masashi, Kunihisa, Michelle,

Victor, Adolfo, Marcio, and Rodolfo. Finally, to my colleagues at UCLA —

Professor Mani Srivastava, Fatima, Amr, Sean, Yi-Fan, and Andrew Symington

— I extend my gratitude for their company and patience during our multi-year,

long-distance collaboration during the Roseline project.

Teachers

One of the highlights of this graduate program was my pursuit of the Certificate

in College and University Teaching. I benefitted from the pedagogical advice

of Lisa Berry and Kim DeBacco in Instructional Development. I truly enjoyed

my collaboration with my co-instuctor Professor Jeff Moehlis as we designed the

first online course in the College of Engineering. I’m also thankful for Computer

Science Professor Jason Isaacs and Department Chair Michael Soltys at Cal State

Channel Islands for the opportunity to teach at another college campus.

Staff

A legion of staff members supports our department and I’m so grateful for their

help sheparding us students through the program. Ken, Keith, Daryl, and Carlos

vii

keep the hackers at bay. Paul, Avery, and Bear keep our shop stocked, our

elevators moving, and the instructional labs functioning despite the undergrads’

best efforts. Dimple, Kallie, Kelsey, Robin, and Shannon get the money where

it needs to go. And the all-knowing Val keeps a watchful eye over everything to

keep our graduate careers streamlined and snag-free. The department is truly

blessed to have these fine folks.

Family and Friends

My wife, family, and friends helped me maintain a healthy work-life balance

during my grad school career, and I’m very thankful for their continued presence

in my life. They mean the world to me, and I’ll leave it at that.

viii

Curriculum Vitæ
Justin Payne Pearson

Education

2018 Ph.D. in Electrical and Computer Engineering (Expected),
University of California, Santa Barbara

2007 M.S. in Mechanical Engineering, Stanford University

2006 B.S. in Mechanical Engineering, University of California,
Santa Barbara

Experience

2012 – 2017 Graduate Student Researcher, University of California, Santa
Barbara

2008 – 2012 Controls Engineer, AeroVironment

2016 Instructor of Record, COMP 150: Introduction to Object
Oriented Programming, California State University at Chan-
nel Islands

2015 Certificate in College and University Teaching, UCSB

2015 Mentor, Robotics internship, Institute for Collaborative Biotech-
nology, UCSB

2015 Instructor of Record, ENGR 3: Introduction to Program-
ming, UCSB

2015 Mentor, School of Scientific Thought, Center for Science and
Engineering Partnerships, UCSB

2014 Teaching Assistant, ENGR 3: Introduction to Programming,
UCSB

2014 Teaching Assistant, ECE 147C: Control System Design Project,
UCSB

Publications

A. Alanwar, F. M. Anwar, Y. Zhang, J. Pearson, J. Hespanha, M. B. Srivas-
tava. “Cyclops: PRU Programming Framework for Precise Timing Applica-
tions.” Proc. of the 2017 IEEE International Symposium on Precision Clock
Synchronization for Measurement, Control, and Communication (ISPCS), Aug.
2017.

J. Pearson, J. Hespanha, D. Liberzon. “Control with minimal cost-per-symbol
encoding and quasi-optimality of event-based encoders.” IEEE Transactions on
Automatic Control, May 2017.

ix

J. Pearson, J. Hespanha, D. Liberzon. “Quasi-optimality of event-based en-
coders.” Proc. of the 54th Conference on Decision and Control, Dec. 2015.

J. Pearson, J. Hespanha, D. Liberzon. “Control with Minimum Communication
Cost per Symbol.” Proc. of the 53nd Conference on Decision and Control, Dec.
2014.

x

Abstract

Control under energy and time constraints

by

Justin Payne Pearson

The performance of a control system is often limited by constraints on tim-

ing, bandwidth, and energy. This dissertation explores the trade-offs between

constraints on these resources, the control system performance, and the system

to be controlled.

We begin by considering a networked control system in which the sensor sends

its measurements to the controller over a limited-bandwidth communications

channel. We explore the observation that the absence of communication nev-

ertheless conveys information — i.e., nothing communication-worthy occurred.

This suggests that energy (or other resources consumed by communication) could

be saved using the timing of messages to transmit information, rather than the

normal practice of transmitting data in the messages themselves. We develop

a framework to explore this idea and derive a condition for the existence of a

stabilizing controller that captures the trade-off between bandwidth, resource

consumption, and the unstable eigenvalues of the linear system to be controlled.

A surprising result is that if this condition is satisfied, then one may design a

stabilizing controller that consumes resources at an arbitrarily small rate, pro-

xi

vided one has access to a sufficiently precise clock. In an extreme example, a

large amount of data is encoded into the precise transmission time of a single bit,

and the receiver decodes this data from the time the bit is received. This result

quantifies the trade-off between bandwidth and time as resources for transmitting

information.

Next, we use our framework to analyze a family of event-based controllers.

We show that these controllers can stabilize a system while consuming resources

at a rate that is within 2.5 times the theoretically-minimum rate. These event-

based controllers are intuitive and easy to implement, and our stability condition

quantifies the cost (in additional required communication resources) that a con-

trol engineer pays for the convenience of implementing an event-based controller

instead of the relatively more complicated controllers from the first section that

use the theoretically-minimum communication rate.

A takeaway from these results is that networked and distributed control sys-

tems can benefit from precise timing. However, even non-networked systems can

benefit from precise timing. We explore this by developing a control architec-

ture that allows a controller running on a non-real-time operating system to run

with a high degree of determinacy, even when the OS task scheduler suspends

the control task. The architecture employs a small microprocessor to be used as

a “real-time processor” that runs independently from the OS and buffers sensor

measurement and actuator commands. We implement this on a Beaglebone Black

xii

single-board computer and demonstrate that this architecture can significantly

improve a controller’s performance in the presence of OS preemption.

xiii

Contents

Acknowledgements v

Curriculum Vitae ix

Abstract xi

List of Figures xvi

List of Tables xviii

1 Introduction 1

2 Control with Minimum Energy Per Symbol 13
2.1 Problem Statement . 14
2.2 Necessary condition for boundedness with limited-communication

encoders . 18
2.3 Sufficient condition for stability with limited-communication en-

coders . 41
2.4 Numerical example . 56
2.5 Conclusion . 58

3 Quasi-optimality of Event-based control 60
3.1 Definition of the event-based scheme 62
3.2 Main result and proof . 64
3.3 Numerical example . 78
3.4 Conclusion . 80

4 Preemption-resistant control on a non-real-time operating sys-
tem 82
4.1 Real-time I/O coprocessor concept 82
4.2 Experimental results . 90

xiv

4.3 Conclusion . 96

A Proofs of lemmas 99

B Beaglebone Black / DC motor test-bed 106
B.1 Summary . 106
B.2 Hardware setup . 107
B.3 Software setup . 109
B.4 Background . 110

C Beaglebone C I/O library 112
C.1 Introduction . 112
C.2 Quick-start . 115
C.3 Hardware setup . 119
C.4 Software . 120
C.5 Details / Notes . 124

D PASM syntax highlighter 128
D.1 Installation instructions . 128
D.2 Syntax-highlighting code . 130

Bibliography 134

xv

List of Figures

1.1 The limited-communication control setup. At sampling times, the
encoder measures the process state and selects symbols from a
finite alphabet to send to the decoder/controller. The decoder/-
controller constructs the actuation signal for the plant. 2

1.2 Timing in an idealized discrete-time system (top) versus a phys-
ical control system running on a non-real-time operating system
(bottom). Due to OS preemption and other sources of nondeter-
minacy, the sensor and actuator signals yk and uk neither occur at
their intended sample times nor align with each other. 9

2.1 The limited-communication setup. At time tk, the encoder samples
the plant state xptkq and selects symbol sk from alphabetA to send
to the decoder/controller. The decoder/controller constructs the
actuation signal uptq for the plant. 15

2.2 A plot of fpγ, Sq versus γ for S “ 1, 4, 20. 20
2.3 A plot of fpγ, Sq versus S for γ “ 0.1, 0.3, 0.7. 21
2.4 A plot of fpγ, Sq and lnLpN,Nγ, Sq{N lnpS`1q versus γ for S “ 1

and N “ 4, 12, 50. 27
2.5 Plot of the closed-loop state estimation error component e1ptq

(blue) and the endpoints α1,k (orange) and β1,k (green) of the
bounding sub-intervals drawn as continuous lines for ease of view-
ing. At transmission time kT1 k P Zą0, the decoder receives a
codeword and adjusts the error to be within rα1,k, β1,ks. 57

2.6 Plot of the closed-loop state x1ptq exponentially decaying to 0 using
the encoding scheme described in Subsection 2.3.1. 58

3.1 Plot of gpγ, Sq (defined in (3.6)) versus γ, for S “ 1 (thick solid
line) and S “ 2 (thin solid line). 67

xvi

3.2 Plot of the closed-loop state estimation error component e1ptq for
the xptq system, using the event-based encoding scheme. Once
the error leaves r´L1, L1s (thin dashed lines), a non-free sym-
bol is transmitted at the next transmission time. The error stays
bounded between ´L1e

pa1`0.1qT1 and ´L1e
pa1`0.1qT1 (thick dashed

lines). Unlike the encoder from Section 2.3 in Figure 2.5, the trans-
mission of non-free symbols is event-triggered and non-periodic. . 79

3.3 Plot of the closed-loop state x1ptq exponentially decaying to 0 using
the event-based encoding scheme described in Section 3. The curve
100e´0.1t is plotted for reference. 80

4.1 Schematic of the control architecture. The real-time I/O copro-
cessor measures sensors yk and applies actuator values uk every
Ts time units from its two buffers. Asynchronously, the controller
retrieves the ns most recent sensor values and transmits na time-
stamped actuator values for the RTU to apply to the plant. . . . 83

4.2 The RTU buffers sensor measurements (circles) and executes buffers
of time-stamped actuator commands (squares) from the controller. 86

4.3 Picture of the hardware setup. A Beaglebone Black drives a DC
motor and measures its shaft angle using a rotary encoder. 91

4.4 Both the standard PID controller and the PRU-based PID con-
troller have similar performance under idle (t ă 2). However,
when subjected to OS preemption (t ą 2), the PRU out-performs
the standard one. 98

B.1 The motor setup. 108

C.1 The Beaglebone Black, motor driver, and 24V DC motor that we
drive with the BBB C I/O library. 113

C.2 How the motor driver is wired into the Beaglebone Black. 114
C.3 Wiring schematic of the Beaglebone Black, LMD18201T motor

driver, and 5V-to-3.3V level-shifting circuit. 121

D.1 After installing pasm.sublime-syntax, Sublime Text 3 displays
pasm code correctly syntax-highlighted. 129

xvii

List of Tables

4.1 RMS reference-tracking error of the controllers under idle and
heavy system load. 95

xviii

Chapter 1

Introduction

Control systems are frequently hampered by constraints on resources like limits

on bandwidth, energy, and processor speed. This work explores the theoretical

and practical trade-offs between these resources and control system performance.

It consists of three chapters, each summarized next.

Control with Minimum Energy Per Symbol

(Chapter 2)

Chapter 2 considers the problem of stabilizing a continuous-time linear time-

invariant process subject to communication constraints. The basic setup is shown

in Figure 1.1, in which a finite capacity communication channel connects the

1

Introduction Chapter 1

process sensors to the controller/actuator. An encoder at the sensor sends a

symbol through the channel once per sampling time, and the controller determines

the actuation signal based on the incoming stream of symbols. The question

arises: what is the smallest channel average bit-rate for which a given process

can be stabilized?

C

!

Plant

EncoderD

Controller	
/	

Decoder

comm.!
channel

sensor!
measurements

symbols

actuation !
signal

Figure 1.1: The limited-communication control setup. At sampling times, the
encoder measures the process state and selects symbols from a finite alpha-
bet to send to the decoder/controller. The decoder/controller constructs the
actuation signal for the plant.

Prior work

Variants of the limited-communication environment in Figure 1.1 were also con-

sidered in [5, 11, 26, 40, 24, 19] and many other works. As pertains to the present

2

Introduction Chapter 1

work, it was shown in [11, 26, 40] that a necessary and sufficient condition for sta-

bility can be expressed as a simple relationship between the unstable eigenvalues

of the open-loop system matrix and the bit-rate of the communication channel.

Extensions of this result have been enthusiastically explored, see [25, 20] and

references therein.

Contributions

A starting point for the present work is the observation that an encoder can

effectively save communication resources by occasionally not transmitting infor-

mation — the absence of an explicitly transmitted symbol nevertheless conveys

information. We formulate a framework to capture this by supposing that each

symbol’s transmission costs one unit of communication resources, except for one

special free symbol that represents the absence of a transmission.

Within this framework, we define an encoder’s average cost per symbol –

essentially the largest average fraction of non-free symbols emitted by that en-

coder over all possible symbol streams. This chapter’s technical contribution is

a necessary and sufficient condition for the existence of a stabilizing controller

and encoder/decoder pair obeying a constraint on its average cost per symbol.

This condition depends on the channel’s average bit-rate, the encoder’s average

cost per symbol, and the unstable eigenvalues of the open-loop system matrix.

The proof is constructive in that it explicitly provides a family of controllers and

3

Introduction Chapter 1

encoder/decoder pairs that stabilize the process when the condition holds. The

pairs are optimal in the sense that they satisfy the stability condition as tightly as

desired. As the constraint on the average cost per symbol is allowed to increase

(becomes looser), our necessary and sufficient condition recovers the condition

from [11].

Moreover, we show that if an encoder can stabilize the process, then it can

do so using arbitrarily small amounts of communication resources per time unit.

One way to achieve this is by transmitting only a few non-free symbols per time

unit, but being very selective about which transmission period to send them in.

Alternatively, the encoder and decoder could share a massive symbol library so

that each symbol carries sufficient information about the state.

Finally, a counterintuitive corollary to our main result shows that if the pro-

cess may be stabilized with average bit-rate r bits per time unit, then there

exists a stabilizing controller and encoder/decoder pair using average bit-rate r

which uses no more than 50% non-free symbols in any stream of symbols it may

transmit.

4

Introduction Chapter 1

Quasi-optimality of Event-based control

(Chapter 3)

In Chapter 3, we use the framework from Chapter 2 to analyze a family of event-

based controllers.

The encoders developed in Chapter 2 are optimal in the sense that they can

stabilize a process with an average cost-per-symbol as low as possible. However,

they are possibly very complex and difficult to implement. In particular, as an

encoder’s cost-per-symbol approaches the minimum bound, its codeword library

grows to infinite size. In this chapter, we develop an easily-implementable event-

based encoder/decoder and compare it to the optimal encoders from Chapter 2.

The framework of Chapter 2 requires symbol transmissions to occur at fixed

transmission times. It would therefore appear to prohibit any sort of event-based

control, in which events can occur aperiodially and extemporaneously. However,

the framework can be regarded as event-based if one interprets non-free symbols

as transmission-worthy events and the free symbol as “no transmission.”

Prior work

Recent results in event-based control [3, 2, 18, 37] indicate that an encoder can

conserve communication resources by transmitting only on a “need-to-know” ba-

5

Introduction Chapter 1

sis. Preliminary work in event-based control assumed that the event-detector

could transmit infinite-precision quantities across the communication channel to

the controller/actuator. To extend this work to finite-bit-rate communication

channels, recent works explore event-based quantized control, typically introduc-

ing an encoder/decoder or quantizer in the communication path to limit the

number of bits transmitted. Several recent works offer strategies for event-based

quantized control that study trade-offs between quantizer complexity, bit-rate,

and minimum inter-transmission intervals. For example, [14] explores an intu-

itive event-based quantized control scheme that sends single bits based on the

state estimation error transitioning between quantization levels. The design in

[16] of an event-based quantized control scheme for a disturbed, stable LTI system

allows the state trajectory to match as closely as desired the state-feedback state

trajectory that would be obtained without communication constraints. In [38] the

authors consider the simultaneous co-design of the event-generator and quantizer

for the control of a non-linear system using the hybrid system framework from

[9]. Sufficient bit-rates for event-triggered stabilizability of nonlinear systems

were also studied in [17]. In [39] a method is developed for event-based quantized

control design that achieves a desired convergence rate of a Lyapunov function of

the state, while guaranteeing a positive lower bound on inter-transmission times

and a uniform upper bound on the number of bits in each transmission.

6

Introduction Chapter 1

Contributions

In contrast to the optimal encoders introduced in Chapter 2, the proposed event-

based encoders are easy to implement but not optimal. However, they are

only slightly sub-optimal. Specifically, this chapter’s main technical contribution

presents a sufficient condition for the existence of an emulation-based controller

and event-based encoder/decoder pair. The condition resembles the sufficient

condition from Chapter 2, and exceeds it by less than a factor of 2.5, meaning

that the proposed event-based encoding scheme needs at most 2.5 times as many

communication resources as an optimal encoding scheme requires. This estab-

lishes that event-based encoding schemes can offer “order-optimal” performance

in communication-constrained control problems.

Preemption-resistant control on a non-real-time

operating system (Chapter 4)

The previous chapters indicate that networked control systems can benefit from

precise timing by embedding information in the timing of messages. In Chap-

ter 4, we turn our attention away from networked control systems and explore

how precise timing can benefit a controller running (locally) on a non-real-time

operating system.

7

Introduction Chapter 1

Modern computing systems offer many performance-enhancing features like

multi-tasking operating systems, multiple layers of caching, and multiprocessor

support. However, these features often result in nondeterminstic runtime behav-

ior, making it a challenge to implement control systems on such platforms (see

Figure 1.2). Consequently, controllers are often implemented on specialized plat-

forms like “bare metal” microcontrollers, real-time OSs, or FPGAs, which offer

finer control of execution and timing. It would be advantageous for a controller

architecture to offer both the flexibility of a general-purpose computing plat-

form and also the determinism of a specialized solution. This chapter proposes a

controller architecture that addresses this need.

Background and prior work

A program may execute nondeterministically for several reasons. On a multi-

threaded processor, the task scheduler may interrupt a task to let another task

use the CPU, or to service an interrupt [31]. The time required to fetch data

from memory varies wildly depending on whether the data was cached [35, 34].

In a Non-Uniform Memory Access (NUMA) multiprocessor architecture, CPUs

are grouped into nodes, each with its own dedicated local memory. The speed of

a memory reference therefore depends on whether the desired data resides in the

executing processor’s local memory or in another node’s memory [15, 36]. Sys-

tem Management Interrupts commandeer the CPU and RAM to perform system

8

Introduction Chapter 1

read

uk
uk+1

ctrlread write read ctrl write t

ykyk�1 yk+1

preempt

ykyk�1 yk+1

uk+1ukuk�1

timestep h

preempt

read

write

read

write

read

write

timing
error

t

Idealized discrete-time system

Actual system
Figure 1.2: Timing in an idealized discrete-time system (top) versus a physical
control system running on a non-real-time operating system (bottom). Due to
OS preemption and other sources of nondeterminacy, the sensor and actuator
signals yk and uk neither occur at their intended sample times nor align with
each other.

9

Introduction Chapter 1

maintenance, e.g., turning on the fan or verifying memory consistency [33].

Several platforms aim to provide determinism in program execution. FPGA

designs are synthesized to obey strict user-supplied timing constraints and are

therefore well-suited for control applications, see [23]. Matlab’s “Simulink Coder”

converts Simulink diagrams into code for embedded targets without OSs; [10]

studies its use in rapid prototyping of real-time control algorithms. Real-time

OSs like VxWorks, Integrity RTOS, µCOS, and FreeRTOS all provide OS-related

functionality like multi-tasking, networking, file system support, and memory

management while providing timing guarantees. The current RTOSs are surveyed

in [4]. RTOS applications to control are explored in [1]. The authors of [6]

analyze RTOS task scheduler algorithms. While powerful, these platforms lack

the flexibility of a true general-purpose OS in terms of availability of libraries and

device drivers.

Work has also been done to modify Linux itself to provide real-time perfor-

mance guarantees. The OS provided by the “Real-Time Linux” project allows

interrupt service routines (ISRs) to be run as regular tasks. Similarly, the Xeno-

mai software augments Linux with a second kernel that runs above the main

Linux kernel. The Xenomai kernel can disable the Linux scheduler in order to

guarantee timely task execution. RT Linux and Xenomai have found applica-

tions in low-latency audio processing [21] and electrical substation automation

[32]. They both allow the user to prioritize userspace tasks above interrupts.

10

Introduction Chapter 1

However, this practice can result in reduced performance if misconfigured, e.g.,

dropping network packets due to the network ISR being neglected in favor of

the control task. These solutions do not overcome the fundamental problem that

when several real-time tasks share the same CPU, preemption is inevitable and

is either managed by the OS or by the programmer.

This work implements the proposed control architecture on a Beaglebone

single-board computer, running the controller on the primary CPU and utilizing

a subsidiary processor core as a real-time I/O coprocessor. The practice of placing

application-specific coprocessors beside a general-purpose procesor is a feature of

the “ARM big.LITTLE” heterogeneous computing architecture and the family

of processors in Texas Instruments’ “Open Multimedia Applications Platform”

initiative, discussed in [7].

Contributions

The specific contribution of this chapter is a controller architecture that enables a

controller to run on a non-real-time OS like Linux, yet maintain precise timing of

the sensing and actuation despite OS preemption. This is achieved by performing

the sensing and actuation on a dedicated “bare metal” microcontroller that in

essence serves as a real-time I/O coprocessor; we refer to this as the “Real-

Time Unit” (RTU). Since the OS may preempt the controller at any time, we

cannot rely on it for precise sampling or actuation. On the other hand, the

11

Introduction Chapter 1

RTU does not run an OS, so it can sample and actuate at precise times without

danger of OS preemption. The key idea is to have the RTU buffer time-stamped

sensor measurements from the plant and apply buffered time-stamped actuation

commands to the plant at precise times. Asynchronously, the controller requests

an array of past measurements from the RTU, computes an array of future time-

stamped actuation commands, and sends it to the RTU to be executed at the

correct times. Consequently, the controller can be preempted but the RTU will

continue to apply actuation on its behalf.

We implemented this controller architecture on a Beaglebone Black (BBB) to

drive a DC motor. For demonstration purposes, a simple PID controller runs on

Linux on the BBB’s main 1-GHz CPU, and we use a subsidiary processor core on

the BBB as the RTU. The RTU reads a rotary encoder and actuates the motor

with PWM every 5 ms with 40 µs accuracy. The PID controller uses a simple

method of predicting future measurements to compute an array of future PWM

values, which it sends to the RTU. We compare this setup to a PID controller

with identical gains that uses the BBB’s standard file-based interface for I/O. We

observe that although both setups perform well when the CPU is idle, when run

alongside several other high-priority tasks the RTU-based setup far out-performs

the standard I/O mechanism.

12

Chapter 2

Control with Minimum Energy

Per Symbol

Parts of this chapter come from [30]:

2017 IEEE. Reprinted, with permission, from J. Pearson, J. Hespanha, D.

Liberzon. Control with minimal cost-per-symbol encoding and quasi-optimality

of event-based encoders. IEEE Trans. on Automat. Contr., 62(5):2286–2301,

May 2017.

In this chapter we consider the problem of stabilizing a continuous-time lin-

ear time-invariant process subject to communication constraints. We develop a

framework for exploring the notion that the absence of communication never-

theless conveys information, yet it consumes no communication resources. We

13

Control with Minimum Energy Per Symbol Chapter 2

model the absence of a communication by appending a special “free” symbol

to the set of symbols offered by the communications channel. Transmitting a

normal symbol costs one unit of communications resources, but transmitting the

free symbol costs no resources. This yields the notion of an encoder’s average

cost per symbol — essentially the average fraction of non-free symbols sent by

the encoder. We then develop a condition under which a stabilizing encoder with

the smallest average cost per symbol may be designed.

This chapter is organized as follows. Section 2.2 contains a necessary condition

for stability, namely that stability is not possible when our condition does not

hold. To prove this result we actually show that it is not possible to stabilize

the process with a large class of encoders — which we call M -of-N encoders —

that includes all the encoders with average cost per symbol not exceeding a given

threshold. Section 2.3 contains a sufficient condition for stability, showing that

when our condition does hold, there is an encoder/decoder pair that can stabilize

the process. We explicitly construct a possible encoding scheme.

2.1 Problem Statement

Consider a stabilizable linear time-invariant process

9x “ Ax`Bu, x P Rn, u P Rm, (2.1)

14

Control with Minimum Energy Per Symbol Chapter 2

for which it is known that xp0q belongs to a known bounded set X0 Ă Rn. A

sensor that measures the state xptq is connected to the actuator through a finite-

data-rate, error-free, and delay-free communication channel, see Figure 2.1.

C

Plant

EncoderD

u(t)

Controller	

/	

Decoder

ẋ = Ax + Bu

x(0) 2 X0

x(tk)

sk 2 A
comm.!
channel

Figure 2.1: The limited-communication setup. At time tk, the encoder samples
the plant state xptkq and selects symbol sk from alphabet A to send to the
decoder/controller. The decoder/controller constructs the actuation signal
uptq for the plant.

An encoder collocated with the sensor samples the state at a fixed sequence of

transmission times ttk P r0,8q : k P Zą0u, and from the corresponding sequence

of measurements txptkq : k P Zą0u causally constructs a sequence of symbols

tsk P A : k P Zą0u from a nonempty finite alphabet A. Without loss of gen-

erality, A “ t0, 1, . . . , Su with S – |A| ´ 1. At time tk the encoder sends the

symbol sk through the channel to a decoder/controller collocated with the actu-

15

Control with Minimum Energy Per Symbol Chapter 2

ator, which causally constructs the control signal uptq, t ě 0 from the sequence

of symbols tsk P A : k P Zą0u that arrive at the decoder. The sequence of trans-

mission times ttku is assumed to be monotonically nondecreasing and unbounded

(i.e., limkÑ8 tk “ `8). The fact that the sequence of transmission times is fixed

a priori prevents the controller from communicating information in the trans-

mission times themselves. Note that because the sequence of transmission times

is not necessarily strictly increasing, this allows multiple transmissions at a sin-

gle time instant, which can be viewed as encoding several symbols in the same

message.

The non-negative average bit-rate r of a sequence of symbols tsku Ă t0, . . . , Su

transmitted at times ttku is the rate of transmitted information in units of bits

per time unit, and is defined as

r – log2pS ` 1q lim sup
kÑ8

k

tk
. (2.2)

We assume that the symbol 0 P A can be transmitted without consuming

any communication resources, but the other S symbols each require one unit of

communication resources per transmission. One can think of the “free” symbol

0 as the absence of an explicit transmission. The “communication resources”

at stake may be energy, time, or any other resource that may be consumed in

the course of the communication process. In order to capture the average rate

16

Control with Minimum Energy Per Symbol Chapter 2

at which an encoder consumes communication resources, we define the average

cost per symbol of an encoder as follows: We say an encoder has average cost

per symbol not exceeding γ if there exists a non-negative integer N0 such that for

every symbol sequence tsku generated by the encoder, we have

1

N2

N1`N2´1
ÿ

k“N1

Isk‰0 ď γ `
N0

N2

@N1, N2 P Zą0, (2.3)

where Isk‰0 – 1 if the kth symbol is not the free symbol, and 0 if it is. The

summation in (2.3) captures the total resources spent transmitting symbols sN1

through sN1`N2´1, independent of the symbols’ transmission times. Motivating

this definition of average cost per symbol is the observation that the left-hand

side has the intuitive interpretation of the average cost per transmitted symbol

between symbols sN1 and sN1`N2´1. As N2 Ñ 8, which corresponds to averaging

over a growing window of symbols, the rightmost term vanishes, leaving γ as an

upper bound on the average long-term cost per symbol of the symbol sequence. To

illustrate the necessity of the N0 term, note that without it, any symbol sequence

with a nonzero symbol at some index k will violate (2.3) for any γ P r0, 1q by

picking N1 – k and N2 – 1; the presence of the N0 term allows an encoder

to have a very small average cost per symbol while still enabling it to transmit

long runs of non-free symbols. Note that because the left-hand side of (2.3)

never exceeds 1, every encoder has an average cost per symbol not exceeding c

17

Control with Minimum Energy Per Symbol Chapter 2

for any c ě 1. Also, note that any encoder with average cost per symbol not

exceeding γ “ 0 can transmit at most N0 non-free symbols for all time, making

it unsuitable for stabilization. For these two reasons, any encoder of interest will

have an average cost per symbol not exceeding some γ P p0, 1s.

Whereas the average bit-rate r depends only on the symbol alphabet A and

transmission times ttku, the average cost per symbol of an encoder/decoder pair

depends on every possible symbol sequence it may generate, and therefore may

in general depend on the encoder/decoder pair, the controller, process (2.1), and

the initial condition xp0q.

The specific question considered in this chapter is: under what conditions on

the average bit-rate and average cost per symbol do there exist a controller and

encoder/decoder pair that stabilize the state of process (2.1)?

2.2 Necessary condition for boundedness with

limited-communication encoders

It is known from [11, 26, 40] that it is possible to construct a controller and

encoder/decoder pair that stabilize process (2.1) with average bit-rate r only if

r ln 2 ě
ÿ

i:RλirAsą0

λirAs, (2.4)

18

Control with Minimum Energy Per Symbol Chapter 2

where ln denotes the base-e logarithm, and the summation is over all eigenvalues

of A with nonnegative real part. The following result shows that a larger average

bit-rate r may be needed when one poses constraints on the encoder’s average

cost per symbol γ. Specifically, when γ ě S{pS ` 1q the (necessary) stability

condition reduces to (2.4), but when γ ă S{pS ` 1q an average bit-rate r larger

than (2.4) is necessary for stability.

Theorem 1. Suppose a controller and encoder/decoder pair keep the state of

process (2.1) bounded for every initial condition x0 P X0. If the encoder uses an

alphabet t0, . . . , Su, has average bit-rate r, and has average cost per symbol not

exceeding γ, then we must have

r fpγ, Sq ln 2 ě
ÿ

i:RλirAsą0

λirAs, (2.5)

where the function f : r0, 1s ˆ Zą0 Ñ r0,8q is defined as

fpγ, Sq–

$

’

’

’

&

’

’

’

%

Hpγq`γ log2 S
log2pS`1q

0 ď γ ă S
S`1

1 S
S`1

ď γ ď 1,

(2.6)

and Hppq – ´p log2ppq ´ p1´ pq log2p1´ pq is the base-2 entropy of a Bernoulli

random variable with parameter p.

It is worth making three observations regarding the function f : First, one

can think of fpγ, Sq as the degradation of an encoder’s ability to convey infor-

19

Control with Minimum Energy Per Symbol Chapter 2

mation due to the constraint that its average cost per symbol not exceed γ. For

example, consider an encoder which transmits symbols 0 and 1, subject to the

constraint that the long-term fraction of 1’s must not exceed γ “ 10%. Due to

this constraint, each transmitted symbol does not convey 1 bit of information on

average, but rather only fp0.1, 1q “ Hp0.1q « 0.47 bits. First, fpγ, Sq is nonde-

creasing and continuous in γ for any fixed S, as illustrated in Figure 2.2. Second,

fpγ, Sq is monotone nonincreasing in S for any fixed γ P r0, 1s, as illustrated in

Figure 2.3.

0.2 0.4 0.6 0.8 1.0
γ

0.2

0.4

0.6

0.8

1.0

S=1

S=4

S=20

Figure 2.2: A plot of fpγ, Sq versus γ for S “ 1, 4, 20.

Therefore, for a fixed r and γ, an encoder can increase its value of fpγ, Sq “for

free” by decreasing S while commensurately decreasing its average transmission

period to keep r constant in accordance with (2.2). This implies that smaller

alphabets are preferable to large ones when trying to satisfy (2.5) with a given

fixed average bit-rate and average cost per symbol.

20

Control with Minimum Energy Per Symbol Chapter 2

2 4 6 8 10
S

0.2

0.4

0.6

0.8

1.0

γ=0.1

γ=0.3

γ=0.7

Figure 2.3: A plot of fpγ, Sq versus S for γ “ 0.1, 0.3, 0.7.

Said another way, an encoder that transmits frequently has more choices as

to when precisely to transmit its non-free symbols, so it has more codewords at

its disposal and can convey more information.

The intuition is as follows: for a particular fixed average bit-rate, an encoder

may either rapidly transmit symbols from a small alphabet or slowly transmit

symbols from a large alphabet. In the former case, since the free symbol occupies

a larger fraction of the alphabet, it will tend to be used more frequently, resulting

in lower resource consumption. For example, the event-based encoder in Chap-

ter 3 achieves an order-optimal performance bound by using S “ 2 and increasing

the transmission rate in order to achieve a suffiently high average bit-rate.

The third observation is that the average cost per time unit, which is given

by

γ lim sup
kÑ8

k

tk
,

21

Control with Minimum Energy Per Symbol Chapter 2

can be made arbitrarily small while still satisfying (2.5). This can be achieved in

several ways:

1. Large symbol library with infrequent transmissions: For a given average cost

per symbol γ, pick the encoder’s transmission times as tk – kT for suffi-

ciently large T so that the average cost per time unit γ lim supkÑ8 k{tk “

γ{T is as small as desired. Then, using r – log2pS ` 1q{T and leveraging

the fact that

rfpγ, Sq “

$

’

’

’

&

’

’

’

%

Hpγq`γ log2 S
T

0 ď γ ă S
S`1

log2pS`1q
T

S
S`1

ď γ ď 1

(2.7)

is monotone increasing in S for fixed γ, pick S large enough to satisfy (2.5).

By choosing a large T and S, this scheme elects to send data-rich symbols

only infrequently. The state — although remaining bounded — may grow

quite large between these infrequent transmissions. Moreover, the large

symbol library may require sizeable computational resources to store and

process.

2. Large symbol library with costly symbols rarely sent: If the encoder’s trans-

mission times ttku are fixed, pick γ small enough to make the average cost

per time unit γ lim supkÑ8 k{tk as small as desired, then increase S as in

the previous case to satisfy (2.5). Like the previous case, this approach

22

Control with Minimum Energy Per Symbol Chapter 2

requires processing a large symbol library.

3. Frequent transmissions with costly symbols rarely sent: If the number of

non-free symbols S is fixed, it is still possible to choose an average cost

per symbol γ and transmission times tk – kT so that (2.5) is satisfied and

the average cost per time unit γ lim supkÑ8 k{tk is as small as desired. To

verify that this is possible, note that the sequences γi – e´i, Ti – e´i
?
i,

i P Zą0 have the property that as i Ñ 8, we have γi Ñ 0, Ti Ñ 0,

and γi{Ti Ñ 0, but Hpγiq{Ti Ñ 8, so leveraging (2.7) we conclude that

rifpγi, Sq ln 2 Ñ 8 (where ri – log2pS ` 1q{Ti). This means that one

can find i P Zą0 sufficiently large to make the average cost per time unit

arbitrarily small and also satisfy the necessary condition (2.5). In practice,

to operate with a very small sampling period T , this approach requires an

encoder/decoder pair with a very precise clock.

Remark 1. The addition of the “free” symbol effectively increases the average bit-

rate without increasing the rate of resource consumption, as seen by the following

two observations:

• Without the free symbols, the size of the alphabet would be S and the

average bit-rate would be

log2pSq lim sup
kÑ8

k

tk
ă log2pS ` 1q lim sup

kÑ8

k

tk
.

23

Control with Minimum Energy Per Symbol Chapter 2

It could happen that this average bit-rate is too small to bound the plant,

yet after the introduction of the free symbol, the condition (2.5) is satisfied.

• Since γ is essentially the fraction of non-free symbols, the quantity rγ is

the number of bits per time unit spent transmitting non-free symbols. But

since fpγ, Sq ě γ, again we see that the free symbols help satisfy (2.5). To

see that fpγ, Sq ě γ, observe that for any S P Zą0, fp¨, Sq is concave and

reaches 1 before the identity function does, hence it is everywhere above

the identity function on p0, 1q, and it matches the identity function at the

endpoints 0 and 1.

2.2.1 Setup and Proof of Theorem 1

We lead up to the proof of Theorem 1 by first establishing three lemmas centered

around a restricted but large class of encoders called M -of-N encoders. We

first define M -of-N encoders, which essentially partition their symbol sequences

into N -length codewords, each with M or fewer non-free symbols. Lemma 1

demonstrates that every encoder with a bounded average cost per symbol is an

M -of-N encoder for appropriate N and M . Next, in Lemma 2 we establish a

relationship between the number of codewords available to an M -of-N encoder

and the function f as defined in (2.6). Then, in Lemma 3 we establish a necessary

condition for an M -of-N encoder to bound the state of process (2.1). Finally, the

proof of Theorem 1 is built upon these three results.

24

Control with Minimum Energy Per Symbol Chapter 2

We now introduce the class of M -of-N encoders. For N P Zą0, ` P Zě0, we

define the `th N-symbol codeword to be the sequence ts`N`1, s`N`2, . . . , s`N`Nu

of N consecutive symbols starting at the index k “ `N ` 1. For M P Rě0 with

M ď N , an M-of-N encoder is an encoder for which every N -symbol codeword

has M or fewer non-free symbols, i.e.,

`N`N
ÿ

k“`N`1

Isk‰0 ďM, @` P Zě0. (2.8)

The total number of distinctN -symbol codewords available to anM -of-N encoder

is thus given by

LpN,M,Sq–

tMu
ÿ

i“0

ˆ

N

i

˙

Si, (2.9)

where the ith term in the summation counts the number of N -symbol codewords

with exactly i non-free symbols. In keeping with the problem setup, the M -of-

N encoders considered here each draw their symbols from the symbol library

A– t0, 1, . . . , Su and transmit symbols at times ttku.

An intuitive property of M -of-N encoders is that they have an average cost

per symbol not exceeding M{N with N0 “ 2M . This result is presented as

Lemma 5 in the appendix.

The fact that an M -of-N encoder refrains from sending “expensive” code-

words effectively reduces its ability to transmit information: For M ă N , we have

25

Control with Minimum Energy Per Symbol Chapter 2

LpN,M,Sq ă LpN,N, Sq and so a codeword from an M -of-N encoder conveys

less information than a codeword from an unconstrained encoder. Specifically,

a codeword sent from an M -of-N encoder conveys log2 LpN,M,Sq bits of infor-

mation, whereas a codeword from an encoder without the M -of-N constraint

conveys log2 LpN,N, Sq “ N log2pS ` 1q bits.

The next lemma, proved in the appendix, shows that the set of M -of-N

encoders is “complete” in the sense that every encoder with average cost per

symbol not exceeding a finite threshold γ is actually an M -of-N encoder for N

sufficiently large and M « γN .

Lemma 1. For any encoder/decoder pair with average cost per symbol not ex-

ceeding γ P p0, 1s, and every constant ε ą 0, there exist M P Rě0 and N P Zą0

with M ă Nγp1` εq such that the encoder/decoder pair is an M-of-N encoder.

The next lemma establishes a relationship between the number of codewords

LpN,M,Sq available to an M -of-N encoder and the function f defined in (2.6).

Lemma 2. For any N P Zą0, S P Zě0 and γ P r0, 1s, the function L defined in

(2.9) and the function f defined in (2.6) satisfy

lnLpN,Nγ, Sq

N lnpS ` 1q
ď fpγ, Sq, (2.10)

with equality holding only when γ “ 0 or γ “ 1. Moreover, we have asymptotic

26

Control with Minimum Energy Per Symbol Chapter 2

equality in the sense that

lim
NÑ8

lnLpN,Nγ, Sq

N lnpS ` 1q
“ fpγ, Sq. (2.11)

The left and right sides of (2.10) are plotted in Figure 2.4.

f(γ,1)

N=4

N=12

N=50

0.2 0.4 0.6 0.8 1.0
γ

0.2

0.4

0.6

0.8

1.0

Figure 2.4: A plot of fpγ, Sq and lnLpN,Nγ, Sq{N lnpS`1q versus γ for S “ 1
and N “ 4, 12, 50.

Proof of Lemma 2. In this proof we use the base-2 logarithm to match the no-

tation of an information theoretic theorem that we invoke. Let N P Zą0 and

S P Zě0 be arbitrary. First we prove (2.10) for γ P
`

0, S
S`1

‰

. Applying the

Binomial Theorem to the identity 1 “ pγ ` p1´ γqqN , we obtain

1 “
N
ÿ

i“0

ˆ

N

i

˙

γip1´ γqN´i.

27

Control with Minimum Energy Per Symbol Chapter 2

Since each term in the summation is positive, keeping only the first tNγu terms

yields the inequality

1 ą

tNγu
ÿ

i“0

ˆ

N

i

˙

γip1´ γqN´i. (2.12)

Next, a calculation presented as Lemma 6 in the appendix reveals that

γip1´ γqN´i ě 2´N Hpγq Si

SNγ
(2.13)

for all N,S P Zą0, γ P
`

0, S
S`1

‰

, and i P r0, Nγs. Using this in (2.12) and taking

log2 of both sides yields

log2 LpN,Nγ, Sq

N
ă Hpγq ` γ log2 S. (2.14)

By the definition of f , we have log2pS ` 1qfpγ, Sq “ Hpγq ` γ log2 S when γ P

“

0, S
S`1

‰

. Thus, (2.14) proves the strict inequality in (2.10) for γ P
`

0, S
S`1

‰

.

Next, suppose γ P
`

S
S`1

, 1
˘

and observe from (2.9) that LpN,M,Sq is a sum of

positive terms whose index reaches tM u, hence LpN,Nγ, Sq is strictly less than

LpN,N, Sq for any γ ă 1. We conclude that

log2 LpN,Nγ, Sq

N
ă

log2 LpN,N, Sq

N

“ log2pS ` 1q (2.15)

28

Control with Minimum Energy Per Symbol Chapter 2

“ log2pS ` 1qfpγ, Sq, (2.16)

where the equality in (2.15) follows simply from the fact that LpN,N, Sq is the

number of all possible codewords of length N and hence equals pS ` 1qN , and

(2.16) follows from the definition of f when γ P p S
S`1

, 1q. This concludes the

proof of the strict inequality in (2.10) for γ P p0, 1q. The proof of (2.10) for γ “ 0

follows merely from inspection of (2.10), and the γ “ 1 case follows from the

equality in (2.15).

Next we prove the asymptotic result (2.11) using information-theoretic methods.

First we prove (2.11) for γ P r0, S
S`1
q. Consider a random variable X parameter-

ized by S P Zě0 and γ P r0, S
S`1
q which takes values in X – t0, 1, . . . , Su with

probabilities given by

PpX “ 0q– p1´ γq

PpX “ iq– γ{S i “ t1, 2, . . . , Su.

Following our convention, we call 0 the “free” symbol and 1, . . . , S the “non-free”

symbols. To lighten notation we write ppxq – PpX “ xq, x P X . The entropy of

the random variable X is

HpXq– ´

S
ÿ

i“0

ppiq log2 ppiq “ Hpγq ` γ log2 S, (2.17)

29

Control with Minimum Energy Per Symbol Chapter 2

where we have overloaded the symbol H so that Hpγq – ´γ log2 γ ´ p1 ´

γq log2p1´ γq is the entropy of a Bernoulli random variable with parameter γ.

Next, for some arbitrary N P Zą0, we consider N -length sequences of i.i.d. copies

of X. Let XN – tpx1, . . . , xNq : xi P X u. We use the symbol xN as short-

hand for px1, . . . , xNq, and we use ppxNq as shorthand for P
´

pX1, X2, . . . , XNq “

px1, x2, . . . , xNq
¯

.

Given an N -length sequence xN P XN , the probability that the N i.i.d. random

variables pX1, . . . , XNq take on the values in the N -tuple xN is given by

ppxNq “ p1´ γqN´
řN
i“1 Ixi‰0

γ
řN
i“1 Ixi‰0

S
řN
i“1 Ixi‰0

. (2.18)

The summation
řN
i“1 Ixi‰0 is the number of non-free symbols in the N -tuple xN .

For arbitrary ε ą 0, define the set A
pNq
ε Ď XN as

ApNqε –

#

xN P XN
ˇ

ˇ

ˇ
N pγ ´ δεq ď

N
ÿ

i“1

Ixi‰0 ď N pγ ` δεq

+

, (2.19)

where δε – ε{ log2
p1´γqS

γ
. That is, A

pNq
ε is the set of all N -length sequences with

“roughly” Nγ non-free symbols. Using (2.17), (2.18), and the definition of δε, we

can express the inequalities in (2.19) as

ApNqε “

30

Control with Minimum Energy Per Symbol Chapter 2

!

xN P XN
ˇ

ˇ

ˇ
2´NpHpXq`εq ď ppxNq ď 2´NpHpXq´εq

)

. (2.20)

Here we relied on the fact that p1´γqS
γ

ą 1 for S P Zą0, γ P r0, S
S`1
q. In the form

of (2.20), we recognize A
pNq
ε as the so-called “typical set” of N -length sequences

of i.i.d. copies of X as defined in [8]. Theorem 3.1.2 of [8] uses the Asymptotic

Equipartition Property of sequences of i.i.d. random variables to prove that for

any ε ą 0, we have

p1´ εq2NpHpXq´εq ď
ˇ

ˇApNqε

ˇ

ˇ (2.21)

for N P Zą0 large enough.

Next, we observe that

ˇ

ˇApNqε

ˇ

ˇ ď L pN,N pγ ` δεq , Sq , (2.22)

because |A
pNq
ε | is the number of N -length sequences with a number of non-frees in

the interval rNpγ ´ δεq, Npγ ` δεqs, whereas the right-hand side counts sequences

with a number of non-frees in the larger interval r0, Npγ`δεqs. Combining (2.21)

and (2.22), we obtain that for any ε ą 0,

1

N
log2p1´ εq `Hpγq ` γ log2 S ´ ε ď

1

N
log2 L pN,N pγ ` δεq , Sq (2.23)

31

Control with Minimum Energy Per Symbol Chapter 2

for N large enough. Moreover, by (2.10) we have

1

N
log2 L pN,N pγ ` δεq , Sq ď

H pγ ` δεq ` pγ ` δεq log2 S (2.24)

for any γ P r0, S
S`1
q, N,S P Zą0, and ε ą 0. Combining these two observations

establishes an upper and lower bound on 1
N

log2 L pN,N pγ ` δεq , Sq. Letting

ε Ñ 0, the upper and lower bounds converge to Hpγq ` γ log2 S , establishing

(2.11) for γ P r0, S
S`1
q. Since the upper and lower bounds are continuous in γ,

this proves (2.11) for γ “ S
S`1

as well.

Lastly, suppose γ P p S
S`1

, 1s. Since L is monotonically nondecreasing in its second

argument, we have

1

N
log2 L

ˆ

N,N
S

S ` 1
, S

˙

ď
1

N
log2 L pN,Nγ, Sq . (2.25)

Moreover, by (2.10) we have

1

N
log2 L pN,Nγ, Sq ď log2pS ` 1q. (2.26)

Combining these establishes an upper and lower bound on 1
N

log2 L pN,Nγ, Sq.

Taking N Ñ 8, the bounds become equal because (2.11) holds for γ “ S
S`1

in

the lower bound. Here we relied on the fact that fpγ, Sq is continuous in γ. We

32

Control with Minimum Energy Per Symbol Chapter 2

obtain

lim
NÑ8

1

N
log2 L pN,Nγ, Sq “ log2pS ` 1q. (2.27)

This concludes the proof of Lemma 2.

The following lemma provides a necessary condition for an M -of-N encoder

to be able to bound the state of process (2.1).

Lemma 3. Consider an M-of-N encoder/decoder pair with average bit-rate r

using a channel with alphabet t0, . . . , Su (with 0 the free symbol). If the pair

keeps the state of process (2.1) bounded for every initial condition, then we must

have

r
lnLpN,M,Sq

N lnpS ` 1q
ln 2 ě

ÿ

i:RλirAsą0

λirAs. (2.28)

Proof of Lemma 3. The proof of this result can be constructed using an argu-

ment similar to the ones found in [11, 40], which considers the rate at which the

uncertainty on the state, as measured by the volume of the set where it is known

to lie, grows through the process dynamics (2.1) and shrinks upon the receipt of

each N -symbol codeword.

We proceed with a proof by contradiction inspired by [11, 40], which considers the

rate at which the uncertainty on the state, as measured by the volume X0 Ă Rn

33

Control with Minimum Energy Per Symbol Chapter 2

of the set where the initial state is known to lie, grows through process (2.1)

and shrinks upon the receipt of information from the encoder. Consider an en-

coder/decoder pair whose encoder is an M -of-N encoder using symbols t0, . . . , Su

and has average bit-rate r. For the sake of contradiction, suppose the controller

and encoder/decoder pair keep the state of process (2.1) bounded for every initial

condition x0 P X0, but that

r ă rmin –
N lnpS ` 1q

lnLpN,M,Sq ln 2

ÿ

i:RλirAsą0

λirAs. (2.29)

After a change of coordinates, process (2.1) can be transformed to

»

—

—

–

9x`

9x´

fi

ffi

ffi

fl

“

»

—

—

–

A` 0

0 A´

fi

ffi

ffi

fl

»

—

—

–

x`

x´

fi

ffi

ffi

fl

`

»

—

—

–

B`

B´

fi

ffi

ffi

fl

u, (2.30)

where x` P Rn` , x´ P Rn´ , u P Rm, n` ` n´ “ n, and the eigenvalues of A

are partitioned between A` P Rn`ˆn` and A´ P Rn´ˆn´ , with A` having the

eigenvalues of A with strictly positive real part and A´ the remaining ones. We

focus our attention on the unstable subsystem

9x` “ A`x` `B`u, x` P Rn` , u P Rm. (2.31)

Let ϕ`pt;x0q denote the solution of (2.31) in closed-loop, that is, where uptq is

determined by the decoder/controller in response to symbols sent by the encoder.

34

Control with Minimum Energy Per Symbol Chapter 2

Suppose that by time t the decoder/controller has observed the specific sequence

of symbols tsk : tk ď tu. Define

X`ptq–

x` P Rn` : Dx0 P X0 : ϕ`pt;x0q “ x`& Encpt, x0q “ tsk : tt k
N

uN ď tu
(

,

where Encpt;x0q denotes the set of codewords that the decoder/controller has

observed from the encoder over time interval r0, ts as process (2.1) runs in closed-

loop from the initial condition xp0q “ x0. The set X`ptq is the tightest set of

points that the decoder/controller can deduce that the state x` lies in at time

t, based on the observation of all N -length codewords up to time t. Since the

decoder/controller cannot be certain of where x`ptq lies within X`ptq, we refer to

X`ptq as the uncertainty region.

Let νptq :“
ş

xPX`ptq dx denote the volume of X`ptq, and let ν`ptq – limτÓt νpτq

and ν´ptq– limτÒt νpτq denote the limits of νptq from above and below.

Let us now explore how the volume of the uncertainty region evolves due to the

process. For arbitrary k P Zą0, consider the open time interval
`

tkN , tkN`N
˘

during which the kth codeword is transmitted. Since no complete codewords

arrive in this time interval, Encpt;x0q remains constant and the set X`ptq simply

expands under process (2.31) for t P
`

tkN , tkN`N
˘

. By the variation of constants

35

Control with Minimum Energy Per Symbol Chapter 2

formula,

x`ptkN`Nq “ eA`ptkN`N´tkN qx`ptkNq ` uk, (2.32)

where uk :“
ştkN`N
tkN

eA`ptkN`N´tkN´τqB`upτqdτ . Therefore

X`ptq “ eA`pt´tkN qX`ptkNq ` uk

for t P
`

tkN , tkN`N
˘

. The volume ν´ptkN`Nq is then given by

ν´ptkN`Nq “

ż

xPeA`ptkN`N´tkN qX`ptkN q`uk
dx. (2.33)

Next we define z :“ eA`ptkN`N´tkN qx ` uk and apply the integral substitution

formula

ż

ϕpUq

gpxq dx “

ż

U

gpϕpzqq |detpDϕqpzq| dz (2.34)

with the values U :“ X`ptkNq, gpxq :“ 1, ϕpxq :“ eA`ptkN`N´tkN qx`uk, for which

Dϕ “ eA`ptkN`N´tkN q. This yields

ν´ptkN`Nq “

ż

xPX`ptkN q
| det eA`ptkN`N´tkN q| dx (2.35)

“ | det eA`ptkN`N´tkN q| ν`ptkNq. (2.36)

36

Control with Minimum Energy Per Symbol Chapter 2

Using the fact that det eM “ etraceM “ e
řn
i“1 λirMs for any n ˆ n matrix M with

eigenvalues λ1rM s, λ2rM s, ..., λnrM s, we conclude that

ν´ptkN`Nq “ eptkN`N´tkN q
řn`
i“1 λirA`sµpX`ptkNqq

“ eptkN`N´tkN q
ř

i:RλirAsą0 λirAsν`ptkNq, (2.37)

where the second equality follows from the fact that the eigenvalues of A` are

precisely the eigenvalues of A with positive real part. Equation (2.37) establishes

the rate of expansion of the uncertainty region between codewords.

Next we characterize how much the uncertainty region shrinks upon the receipt

of a codeword.

Let C Ă t0, . . . , SuN denote the set of N -length codewords with M or fewer non-

free symbols, and note that |C| “ LpN,M,Sq. Consider ν´ptkNq, the volume

of the uncertainty region immediately before a codeword is received at time tkN .

Depending on precisely which codeword is received, the volume of the uncertainty

region may shrink. To capture this, for each codeword c P C let ν`ptkN |cq denote

the volume of the uncertainty region at time tkN supposing that codeword c is

received at that time.

Since for every point x1 in the pre-codeword uncertainty region there must exist

at least one codeword for which x1 is in the post-codeword uncertainty region, we

37

Control with Minimum Energy Per Symbol Chapter 2

must have

ν´ptkNq ď
ÿ

cPC
ν`ptkN |cq (2.38)

ď |C| max
cPC

ν`ptkN |cq, (2.39)

and so there must exist a codeword c˚ – arg maxcPC ν
`ptkN |cq for which

ν`ptkN |c
˚
q ě

1

|C| ν
´
ptkNq

“
1

LpN,M,Sq
ν´ptkNq.

Provided that ν´ptkNq ą 0, there exists a set of initial conditions for which the

closed-loop solution results in codeword c˚ being transmitted at time tkN and

therefore

ν`ptkNq ě
1

LpN,M,Sq
ν´ptkNq. (2.40)

Thus, there exist initial conditions for which, at time tkN , the post-codeword un-

certainty region is at least 1{LpN,M,Sq times as big as the pre-codeword uncer-

tainty region. In other words, for certain initial conditions, at time tkN the scheme

cannot reduce the uncertainty volume by more than a factor of 1{LpN,M,Sq.

Iterating (2.37) and (2.40) from time 0 to tkN for arbitrary k P Zą0, we conclude

38

Control with Minimum Energy Per Symbol Chapter 2

that for appropriately selected initial conditions, we will have

ν`ptkNq ě
1

LpN,M,Sqk
etkN

ř

i:RλirAsą0 λirAsνp0q (2.41)

“ etkN
ř

i:RλirAsą0 λirAs´k lnLpN,M,Sqνp0q (2.42)

Next, let us consider the consequences of our limited bit-rate r ă rmin. Define

δ – rmin ´ r so that rmin ´ δ{2 ą r. Using the definition of r from (2.2) we find

that

rmin ´ δ{2

log2pS ` 1q
ą lim sup

kÑ8

k

tk
, (2.43)

meaning that prmin´δ{2q{ log2pS`1q is an eventual upper bound of the sequence

tk{tku, and therefore also of the sequence tkN{tkNu. This means that for any

ε ą 0, there exists K P Zą0 such that for all k ą K we have

kN

tkN
ă

rmin ´ δ{2

log2pS ` 1q
` ε. (2.44)

In particular, pick ε “ δ{p4 log2pS ` 1qq in (2.44). Using the definition of rmin

from (2.29) and straightforward algebraic manipulations yields

tkN

ˆ

δ lnLpN,M,Sq

4N log2pS ` 1q

˙

ă tkN
ÿ

i:RλirAsą0

λirAs ´ k lnLpN,M,Sq @k ą K.

(2.45)

39

Control with Minimum Energy Per Symbol Chapter 2

The left-hand side is unbounded because the sequence ttku is unbounded. Hence,

we conclude that

lim
kÑ8

¨

˝tkN
ÿ

i:RλirAsą0

λirAs ´ k lnLpN,M,Sq

˛

‚“ 8. (2.46)

Note that this is the exponent in (2.42), which means that the volume of sets

tX`ptqu grows to infinity as t Ñ 8, which in turn means that we can find val-

ues for the state in these sets arbitrarily far apart for sufficiently large t and

thus arbitrarily far from the origin. We thus conclude that the controller and

encoder/decoder pair cannot stabilize the process.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. If γ “ 0, then the encoder transmits at most N0 non-free

symbols, and therefore cannot bound an unstable system for all time. We assumed

that the encoding scheme keeps the state of process (2.1) bounded, so we must

have
ř

i:RλirAsą0 λirAs “ 0, and so (2.5) is satisfied trivially. Now suppose γ ą 0.

By Lemma 1, for any ε ą 0 there exist M P Rě0 and N P Zą0 with M ă Nγp1`εq

for which the encoder/decoder is an M -of-N encoder. Since the state of the

process is kept bounded, by Lemma 3 we have

ÿ

i:RλirAsą0

λirAs ď r
lnLpN,M,Sq

N lnpS ` 1q
ln 2. (2.47)

40

Control with Minimum Energy Per Symbol Chapter 2

Since L is monotonically nondecreasing in its second argument and M ă Nγp1`

εq, we have

r
lnLpN,M,Sq

N lnpS ` 1q
ď r

lnLpN,Nγp1` εq, Sq

N lnpS ` 1q
. (2.48)

Lemma 2 implies that

r
lnLpN,Nγp1` εq, Sq

N lnpS ` 1q
ď rfpγp1` εq, Sq. (2.49)

Combining these and letting εÑ 0, we obtain (2.5). This completes the proof of

Theorem 1.

2.3 Sufficient condition for stability with

limited-communication encoders

The previous section established a necessary condition (2.5) on the average bit-

rate and average cost per symbol of an encoder/decoder pair in order to bound

process (2.1). In this section, we show that with a strict inequality this con-

dition is also sufficient for a stabilizing encoder/decoder to exist. The proof is

constructive in that we provide the encoder/decoder.

The proposed scheme is sometimes called emulation-based because the en-

coder/decoder emulates a stabilizing state-feedback controller u “ Kx. This

41

Control with Minimum Energy Per Symbol Chapter 2

state-feedback controller cannot be used in the limited-communication environ-

ment considered in this chapter because the infinite-precision state xptq P Rn

cannot be sent over the channel and hence is unavailable to the controller. In-

stead, in emulation-based control, the state-feedback controller is coupled to an

encoder/decoder pair that estimates the state as x̂ptq, resulting in the control law

uptq “ Kx̂ptq, t ě 0.

Theorem 2. Assume that A ` BK is Hurwitz. For every S P Zě0, r ě 0, and

γ P r0, 1s satisfying

rfpγ, Sq ln 2 ą
ÿ

i:RλirAsą0

λirAs, (2.50)

where the function f is defined in (2.6), there exists an emulation-based controller

and an M-of-N encoder/decoder pair that uses S non-free symbols, has average

bit-rate not exceeding r, has an average cost per symbol not exceeding γ, and

exponentially stabilizes process (2.1) for every initial condition x0 P X0.

Remark 2. The encoding scheme that follows relies on a strict inequality in (2.50)

for the existence of a suitable M -of-N encoder, and as that gap shrinks to 0,

the codeword length N becomes unbounded. In contrast, we will see that the

event-based encoding scheme presented in Chapter 3 has the property that if its

corresponding data-rate condition (3.4) holds with equality, the scheme bounds

the state of the process, cf. Remark 6.

42

Control with Minimum Energy Per Symbol Chapter 2

The proof of Theorem 2 uses the following lemma, proved in the appendix,

which establishes a useful coordinate transformation for the error system of an

emulation-based controller.

Lemma 4. Consider the process and the (open-loop) state estimator

9xptq “ Axptq `Buptq, xptkq “ x0 @t P rtk, tk`1q (2.51)

9̂xptq “ Ax̂ptq `Buptq, x̂ptkq “ x̂0 @t P rtk, tk`1q. (2.52)

There exists a time-varying matrix P ptq P Rnˆn such that for any tk, tk`1, x0, x̂0,

the state estimation error

eptq– P ptqpxptq ´ x̂ptqq (2.53)

satisfies

eiptq “ eaipt´tkqGipt´ tkqeiptkq, eiptq P Rdi , (2.54)

for all t P rtk, tk`1q and all i P t1, . . . , nbu, where nb is the number of real Jordan

blocks in the real Jordan normal form of A, ai is the real part of the eigenvalue

associated with Jordan block i, and di is the geometric multiplicity of that eigen-

43

Control with Minimum Energy Per Symbol Chapter 2

value; the time-varying real matrix Giptq has the form

Giptq–

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 t t2

2!
. . . tdi´1

pdi´1q!

1 t

. . .

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Rdiˆdi (2.55)

if the ith Jordan block corresponds to a real eigenvalue, and

Giptq–

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

I2 I2t I2
t2

2!
. . . I2

tdi´1

pdi´1q!

I2 I2t

. . .

I2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P R2diˆ2di (2.56)

if it corresponds to a complex conjugate pair, where I2 –

»

—

—

–

1 0

0 1

fi

ffi

ffi

fl

. Moreover,

there exists a positive scalar εP for which

σminpP ptqq ě εP @t ě 0, (2.57)

where σminp¨q denotes the smallest singular value of a matrix.

44

Control with Minimum Energy Per Symbol Chapter 2

2.3.1 Proof of Theorem 2

The basic idea of the proof is as follows. The encoder and decoder each run

internal copies of the process to compute an estimate x̂ of the state. Since there is

no channel noise, the encoder’s and decoder’s state estimates will be equal, which

corresponds to an information pattern “encoder class 1a” in the terminology of

[41].

The encoder monitors the state estimation error and periodically transmits

symbols to the decoder that essentially encode a quantized version of the error,

making sure that the average cost per symbol does not exceed γ. The decoder

then uses those symbols to update its state estimate x̂.

Definition of the encoding and decoding scheme

We first select the integers M and N for our M -of-N encoder. Assume that S,

r, and γ satisfy (2.50), so that

η – rfpγ, Sq ln 2´
ÿ

i:RλirAsą0

λirAs ą 0. (2.58)

In view of (2.10) and (2.11), we conclude that we can pick N sufficiently large to

satisfy

rfpγ, Sq ln 2´ r
lnLpN,Nγ, Sq

N lnpS ` 1q
ln 2 ă η{2, (2.59)

45

Control with Minimum Energy Per Symbol Chapter 2

and we then define M – Nγ. By Lemma 5 in the appendix, this encoder has an

average cost per symbol not exceeding γ.

Now we specify which N -length codewords will be transmitted. Here is the

basic idea: The encoder and decoder each estimate the state of the process as

x̂ptq as defined in (2.52), with t0 – 0 and x̂pt0q – 0. The encoder monitors

the state estimation error eptq– P ptqpxptq ´ x̂ptqq, where P ptq is determined by

Lemma 4. For each of the nb error subsystems eiptq P Rdi given by (2.54) we

employ a sub-encoder i that monitors eiptq and every Ti time units (to be defined

shortly) transmits to the decoder a set of N -length codewords with M or fewer

non-free symbols from the alphabet t0, . . . , Su. The chosen set of codewords is

essentially the index of the di-dimensional quantization cell in which eipkTiq P Rdi

lies. Based on this set of codewords, the encoder and decoder each adjusts their

state estimates, and the procedure repeats.

We now define the scheme formally. We first select the transmission periods

Ti: partition the nb error systems based on whether or not they are stable:

S – ti P t1, . . . , nbu : ai ă 0u

U – ti P t1, . . . , nbu : ai ě 0u,

where ai is the real part of the ith eigenvalue of A. For the subsequent argument,

in the case that ai “ 0 we add a small positive number to it so that (2.50) still

46

Control with Minimum Energy Per Symbol Chapter 2

holds, and use the same label ai to denote this number. Note that, in contrast

with the previous section, we treat eigenvalues with zero real part as unstable.

The error dynamics for ei with i P S are stable and so there is no need to

transmit information on behalf of ei, i P S, since these errors will converge to

zero exponentially fast. So there is no need to define Ti for i P S. For i P U , we

select the transmission period for sub-encoder i to be

Ti – ci
lnLpN,M,Sq

ai

1

1` η{p2
ř

i:RλirAsą0 λirAsq
, (2.60)

where the positive integer ci is chosen large enough so that Ti satisfies

dj´1
ÿ

j“0

T ji
j!
ă eκTi (2.61)

where κ– aiη{p4
ř

i:RλirAsą0 λirAsq ą 0.

Note that for those eigenvalues whose real part was 0, the transmission period

can be arbitrarily large (but finite) because the positive number that was added

to them can be arbitrarily small.

Now we specify how the sub-encoder i selects which codeword to transmit.

For i P S no symbols are transmitted. For i P U , the ith sub-encoder initializes

with Li,0 – supx0PX0
}x0}8 and at time kTi, k P Zą0, performs the following

steps:

1. Divide the di-dimensional box epai`κqTiLi,k´1r´1, 1sdi into LpN,M,Sqcidi

47

Control with Minimum Energy Per Symbol Chapter 2

smaller boxes of equal size by dividing each of its di dimensions into LpN,M,Sqci

intervals of equal length. The sub-encoder i determines in which of these

boxes the error eipkTiq
´ lies and transmits this information to the decoder.

Since there are LpN,M,Sqcidi boxes, this requires sending exactly cidi M -

of-N codewords.

Let Bi,k Ă Rdi denote the indicated box, bi,k P Rdi denote the box’s center,

and wi,k denote the transmitted set of codewords. Note that set Bi,k´bi,k Ă

Rdi is a cube centered at 0.

2. Update the state estimate as

x̂pkTiq
`
“ x̂pkTiq

´
` I 1ibi,k, (2.62)

where x̂`ptq – limτÓt x̂pτq and x̂´ptq – limτÒt x̂pτq, and the matrix Ii P

Rdiˆn “extracts” from the error eptq its component eiptq such that eiptq “

Iieptq. Specifically,

Ii –

„

0diˆd1 0diˆd2 . . . Idiˆdi . . . 0diˆdnb



.

3. Define

Li,k – sup
zPBi,k´bi,k

}z}8 (2.63)

48

Control with Minimum Energy Per Symbol Chapter 2

The sequences twi,ku, tBi,ku, tbi,ku, and tLi,ku are available both to the en-

coder and the decoder, so the decoder can maintain and update its own state

estimate via Step 2, which is used by the state feedback controller u– Kx̂. We

now show that the proposed encoding/decoding scheme satisfies the conditions

of Theorem 2, namely that the state goes to 0 and that the average bit-rate is at

most r.

The scheme exponentially stabilizes the process

From process (2.1) and the definition of eptq in (2.53), the control law u “ Kx̂

results in the following closed-loop dynamics:

9xptq “ pA`BKqxptq ´BKeptq. (2.64)

Since A ` BK is Hurwitz, the state xptq converges exponentially to 0 provided

that eptq Ñ 0 exponentially. We now prove that eptq Ñ 0 exponentially under

the proposed scheme.

The basic idea is as follows: On one hand, in view of (2.54) and (2.61), the

error eiptq grows in magnitude by a factor less than epai`κqTi in the Ti time units

between the transmission of sets of codewords. On the other hand, every Ti time

units the ith sub-encoder sends LpN,M,Sqcidi codewords, allowing the ith sub-

decoder to reduce its uncertainty of eiptq by a factor of LpN,M,Sqcidi . We will

show that condition (2.50) in Theorem 2 implies that LpN,M,Sqcidi ą epai`κqTi ,

49

Control with Minimum Energy Per Symbol Chapter 2

meaning that the sub-decoder’s uncertainty in eiptq shrinks faster than the error

dynamics expands eiptq. Therefore the decoder can determine eptq and drive it

to 0.

First we prove by induction that the rule (2.62) for updating the state estimate

guarantees that }eipkTiq
`}8 ď Li,k. From the definition of eptq and Ii we have

eipkTiq
´
“ IiepkTiq

´
“ Ii

`

xpkTiq
´
´ x̂pkTiq

´
˘

. (2.65)

Solving the update rule (2.62) for x̂pkTiq
´ and substituting the result into (2.65)

yields

eipkTiq
´
“ Ii

`

xpkTiq
´
´
`

x̂pkTiq
`
´ I 1ibi,k

˘˘

“ eipkTiq
`
` bi,k, (2.66)

where we used the fact that xpkTiq
´ “ xpkTiq

` due to the continuity of the

solution xptq. Next, suppose by the induction hypothesis that }eippk´1qTiq
`}8 ď

Li,k´1. Then we have

}eippk ´ 1qTiq
`
}8 ď Li,k´1 (2.67)

ô eippk ´ 1qTiq
`
P Li,k´1r´1, 1sdi (2.68)

ñ eipkTiq
´
P eaiTi}GipTiq}8Li,k´1r´1, 1sdi (2.69)

50

Control with Minimum Energy Per Symbol Chapter 2

ñ eipkTiq
´
P epai`κqTiLi,k´1r´1, 1sdi , (2.70)

where (2.69) holds because eiptq follows the dynamics (2.54) between transmis-

sions, and (2.70) follows because Ti was chosen to satisfy (2.61) and we have

}GipTiq}8 “
řdj´1
j“0 T ji {j!.

Moreover, the set in (2.70) is precisely the box in Step 1 of the proposed

scheme, so therefore we must have eipkTiq
´ P Bi,k.Applying (2.66) yields eipkTiq

` P

Bi,k ´ bi,k, and therefore

}eipkTiq
`
}8 ď sup

zPBi,k´bi,k

}z}8 — Li,k. (2.71)

This demonstrates that }eipkTiq
`}8 ď Li,k for all k P Zą0.

From Step 1 of the encoding scheme, the length Li,k is essentially the side-

length of the cube Bi,k. The set Bi,k was constructed by dividing every dimension

of epai`κqTiLi,k´1r´1, 1sdi into LpN,M,Sqci pieces. Therefore the lengths Li,k are

recursively related via

Li,k “
epai`κqTi

LpN,M,Sqci
Li,k´1, (2.72)

and therefore

Li,k “ eRkLi,0, (2.73)

51

Control with Minimum Energy Per Symbol Chapter 2

where

R – ln
´ epai`κqTi

LpN,M,Sqci

¯

. (2.74)

The transmission period Ti and κ were chosen in (2.60) to satisfy

epai`κqTi

LpN,M,Sqci
ă 1, (2.75)

and so R ă 0. Therefore the event boundaries Li,k shrink to 0 at an exponential

rate.

This implies that eiptq Ñ 0 exponentially, as follows. For any time t we have

t “ kTi ` t, where k – tt{Tiu and t P r0, Tiq. Therefore

}eiptq}8 “ }eipkTi ` tq}8 (2.76)

ď eait}Giptq}8}eipkTiq
`
}8 (2.77)

ď eaiTi}GipTiq}8}eipkTiq
`
}8 (2.78)

ď eaiTi}GipTiq}8Li,k (2.79)

“ eaiTi}GipTiq}8Li,0e
Rk (2.80)

ď eaiTi}GipTiq}8Li,0e
´ReRt{Ti , (2.81)

where (2.77) follows from the error dynamics (2.54), (2.79) follows from (2.71),

and (2.80) follows from (2.73). Since R ă 0, this establishes that eiptq Ñ 0 at an

52

Control with Minimum Energy Per Symbol Chapter 2

exponential rate.

Since this holds for all i, eptq exponentially converges to 0 as well. Therefore

by (2.64), the state xptq exponentially converges to 0.

The scheme’s average bit-rate does not exceed r

Since each sub-encoder is transmitting independently, the average bit-rate of this

encoding scheme as a whole is simply the sum of the sub-encoder’s average bit-

rates. For i P S, the ith sub-encoder never transmits. For i P U , every Ti time

units the ith sub-encoder sends cidi codewords, each from a codeword library of

length LpN,M,Sq. Therefore its average bit-rate is ri – cidi log2 LpN,M,Sq{Ti.

The encoder’s total average bit-rate is therefore

ÿ

iPU
ri “ log2 LpN,M,Sq

ÿ

iPU

cidi
Ti

.

Leveraging (2.60) yields

ÿ

iPU
ri ď

1

ln 2

˜

1`
η

2
ř

i:RλirAsą0 λirAs

¸

ÿ

iPU
diai. (2.82)

Since U contains the non-negative real parts of the eigenvalues of A, we have

ÿ

iPU
ai “

ÿ

i:RλirAsą0

λirAs.

53

Control with Minimum Energy Per Symbol Chapter 2

From this and (2.82) we conclude that

ÿ

iPU
ri ď

1

ln 2

¨

˝

ÿ

i:RλirAsą0

λirAs `
η

2

˛

‚

ă r
lnLpN,M,Sq

N lnpS ` 1q
ď r, (2.83)

where in (2.83) we leveraged (2.58) and (2.59) and then used the fact that L is

nonincreasing in its second argument and so LpN,M,Sq ď LpN,N, Sq “ pS`1qN .

We conclude that this encoding scheme has average bit-rate less than r.

This concludes the proof of Theorem 2.

An unexpected consequence of Theorems 1 and 2 is that when it is possible

to drive the state of process (2.1) to 0 with a given average bit-rate r, one can

always find M -of-N encoders that stabilize it for (essentially) the same average

bit-rate and average cost per symbol not exceeding S{pS`1q, i.e., approximately

a fraction 1{pS ` 1q of the symbols will not consume communication resources.

In the most advantageous case, the encoder/decoder use the alphabet t0, 1u and

the encoder’s symbol stream consumes no more than 50% of the communication

resources.

The following summarizes this observation.

Corollary 1. If process (2.1) can be bounded with an encoder/decoder pair with

average bit-rate r, then for any ε ą 0 and S P Zą0 there exists an M-of-N encoder

using alphabet t0, . . . , Su with average bit-rate r ` ε and average cost per symbol

54

Control with Minimum Energy Per Symbol Chapter 2

not exceeding S{pS ` 1q that bounds its state.

Proof of Corollary 1. Since the original encoder/decoder pair bounds the state,

then by (2.4) we have

ÿ

i:RλirAsą0

λirAs ď r ln 2 ă pr ` εq ln 2

“ pr ` εqf

ˆ

S

S ` 1
, S

˙

ln 2.

Applying Theorem 2 completes the proof.

The price paid for using an encoder/decoder with average cost per symbol

close to S{pS ` 1q is that it may require prohibitively long codewords (large N)

as compared to an encoder with higher average cost per symbol. To see this,

note that fpγ, Sq “ 1 when γ P rS{pS ` 1q, 1s and recall that lnLpN,Nγ, Sq{N

is monotonically nondecreasing in γ and N . Hence, with r and S fixed, one can

decrease γ from 1 toward S{pS` 1q and still satisfy (2.59) by increasing N . This

can be seen in Figure 2.4.

Remark 3. In the problem statement, xp0q was assumed to belong to a known

bounded set. If the region X0 is not precisely known, the proposed scheme could

be modified by introducing an initial “zooming-out” stage as described in [5],

where the encoder picks an arbitrary box to quantize and successively zooms out

at a super-linear rate until the box captures the state.

55

Control with Minimum Energy Per Symbol Chapter 2

2.4 Numerical example

In this subsection we present a numerical example of the M -of-N encoding scheme

presented in this chapter.

Consider process (2.1) with

A–

»

—

—

–

57 ´25

125 ´53

fi

ffi

ffi

fl

B –

»

—

—

–

1

0

fi

ffi

ffi

fl

K –

»

—

—

–

´7

3.784

fi

ffi

ffi

fl

, (2.84)

for which λrAs “ 2 ˘ 10i and K is the state-feedback gain of a stabilizing

emulation-based controller. Suppose the initial condition is known to lie in

the box X0 – tpx1, x2q : ´1 ď xi ď 2u, and that xp0q – p1,´1q. Using

the coordinate transformation from Lemma 4 yields the open-loop error system

9eiptq “ 2eiptq for i P t1, 2u. Note that although the two error components grow

at the same rate, their initial conditions are different: e1p0q “ ´3, e2p0q “ 2.

With average bit-rate r – 10, average cost per symbol γ “ 0.2, and alphabet

A– t0, 1u, the sufficient bound (2.50) is satisfied. Following the encoder design

in Subsection 2.3.1, we pick N – 10, M – 2, and Ti “ 1.9 for i P t1, 2u. There

are LpN,M,Sq “ 56 length-10 codewords with 2 or fewer non-free symbols. In

accordance with the encoder design in Subsection 2.3.1, at time kTi, k P Zą0,

sub-encoder i measures the scalar eipkTiq, quantizes it into one of 56 bins —

one per codeword — and transmits the appropriate 10-symbol codeword to the

56

Control with Minimum Energy Per Symbol Chapter 2

decoder. The two sub-encoders each transmit up to 2 non-free symbols every 1.9

time units, resulting in a total average rate of resource consumption of 2.1 non-

free transmissions per time unit. Then the encoder and decoder each update their

state estimate according to (2.62). One observes the state xptq of the closed-loop

system converging to 0.

Figure 2.5 demonstrates this, and Figure 2.6 shows the state component x1ptq

converging to 0.

5 10 15 20
time

-15

-10

-5

5

10

15
e1(t)

Figure 2.5: Plot of the closed-loop state estimation error component e1ptq
(blue) and the endpoints α1,k (orange) and β1,k (green) of the bounding sub-
-intervals drawn as continuous lines for ease of viewing. At transmission time
kT1 k P Zą0, the decoder receives a codeword and adjusts the error to be
within rα1,k, β1,ks.

57

Control with Minimum Energy Per Symbol Chapter 2

10 20 30 40 50 60
time

-500

500

1000

x1(t)

Figure 2.6: Plot of the closed-loop state x1ptq exponentially decaying to 0
using the encoding scheme described in Subsection 2.3.1.

2.5 Conclusion

In this chapter, we considered the problem of bounding the state of a continuous-

time linear process under communication constraints. We considered constraints

on both the channel average bit-rate and the encoding scheme’s average cost per

symbol. Our main contribution was a necessary and sufficient condition on the

process and constraints for which a bounding encoder/decoder/controller exists.

In the absence of a limit on the average cost per symbol, the conditions recovered

previous work. A surprising corollary to our main result was the observation that

one may impose a constraint on the average cost per symbol without necessarily

needing to loosen the average bit-rate constraint. Specifically, we proved that if

a process may be bounded with a particular average bit-rate, then there exists

58

Control with Minimum Energy Per Symbol Chapter 2

a (possibly very complex) encoder/decoder that can bound it with that same

average bit-rate, while using no more than 50% non-free symbols on average.

One would expect that the prohibition of some codewords would require that the

encoder necessarily compensate by transmitting at a higher average bit-rate, but

this not the case.

Another surprising result was the observation that, for any constraint on av-

erage bit-rate and average cost per symbol satisfying the necessary and sufficient

conditions for stability, one can always construct a stabilizing encoder with an

arbitrarily small average cost per time unit. In many communication-constrained

control problems this is the quantity of interest. We observed that constructing

such an encoder boils down to either having precisely-synchronized clocks be-

tween the encoder and decoder, or storing a large symbol library on the encoder

and decoder.

59

Chapter 3

Quasi-optimality of Event-based

control

Parts of this chapter come from [30]:

2017 IEEE. Reprinted, with permission, from J. Pearson, J. Hespanha, D.

Liberzon. Control with minimal cost-per-symbol encoding and quasi-optimality

of event-based encoders. IEEE Trans. on Automat. Contr., 62(5):2286–2301,

May 2017.

In the last chapter we constructed an N -of-M encoding scheme that stabilizes

process (2.1) provided that the bit-rate and average cost condition (2.50) holds.

This scheme may be difficult to implement in practice if the encoder/decoder

pair use a large number of codewords. In this section we present an event-based

60

Quasi-optimality of Event-based control Chapter 3

encoding scheme that is easy to implement and does not require storing a large set

of codewords. Instead, it uses a library of only three symbols t´1, 0, 1u and does

not group them into codewords. The basic idea is to monitor in parallel each

one-dimensional component of the error system, and as long as it stays inside

a fixed interval, send the free symbol 0. A non-free symbol is sent only when

the one-dimensional component of the error leaves the interval: send ´1 if the

error exited the left side of the interval and send 1 if it exited out the right side.

Communication resources are therefore consumed only upon the occurrence of

this event, justifying the label event-based. The proposed scheme resembles the

distributed-sensor scheme of [41], in that each coordinate of a plant measurement

is sent by a dedicated encoder to a central decoder.

The proposed scheme has similarities with the one from Section 2.3 in the fol-

lowing ways: the encoder and decoder each estimate the process as x̂ using (2.52);

the emulation-based controller is u– Kx̂, where K is a stabilizing state-feedback

gain; Lemma 4 decouples the error system into nb sub-systems; each of nb sub-

encoders monitors the di-dimensional component of the error and transmits a

block of symbols every Ti time units; only the unstable systems U require trans-

mission. If A is diagonalizable over C, then this event-based encoding scheme

reduces to the one proposed in [29].

61

Quasi-optimality of Event-based control Chapter 3

3.1 Definition of the event-based scheme

Unlike the scheme from Section 2.3, this scheme differs in what symbols are sent

and how the state estimate x̂ is updated: For i P U , at time kTi, k P Zą0

(with Ti to be determined shortly), the sub-encoder i monitors the di scalar

components ei,jptq P R, j P t1, . . . , diu of eiptq, and for each one sends a symbol

si,jpkq P t´1, 0, 1u according to

si,jpkq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

´1 ei,jpkTiq ă ´Lj

0 ei,jpkTiq P r´Lj, Ljs

1 ei,jpkTiq ą Lj

k P Zą0, (3.1)

with the event boundaries Lj ą 0 also to be determined shortly. The encoder

and decoder then each update their state estimates as

x̂pkTiq
`
“ x̂pkTiq

´
`P pkTiq

´1vi,j∆i,jpsi,jpkqq,

i P t1, . . . nu, k P Zą0, (3.2)

where the unit vector vi,j P Rdi satisfies ei,jptq “ v1i,jeptq, x̂ptq
` and x̂ptq´ denote

limiting values of x̂ptq from above and below t, P ptq is from Lemma 4, and the

62

Quasi-optimality of Event-based control Chapter 3

decoding function ∆i,j : t´1, 0, 1u Ñ R is defined as

∆i,jpsq–

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

´
Lj
2
p1` exppaiTiqq s “ ´1

0 s “ 0

Lj
2
p1` exppaiTiqq s “ 1,

(3.3)

where ai – RλirAs is defined as before. Note that the nonzero values of ∆i,j are

merely the midpoints of the intervals rLj, Lj exppaiTiqs and r´Lj,´Lj exppaiTiqs.

The event-based encoding/decoding scheme and controller are described in

pseudo-code as Algorithms 1 and 2 below.

Algorithm 1. (Encoder)

Set state estimate x̂p0q Ð 0

Continuously compute state estimate x̂ptq from (2.52)

for each sub-encoder i P U in parallel, do

for time t “ kTi, k P t1, 2, . . .u do

measure state xptq and compute eiptq from (2.53)

for each scalar component ei,jptq, j P t1, . . . , diu, do

compute si,jpkq from (3.1) and transmit it to decoder

update x̂ptq from (3.2)

end for

end for

63

Quasi-optimality of Event-based control Chapter 3

end for

Algorithm 2. (Decoder)

Set state estimate x̂p0q Ð 0

Continuously compute state estimate x̂ptq from (2.52)

Continuously compute actuation signal uptq– Kx̂ptq

for each sub-decoder i “ 1 to n in parallel, do

for time t “ kTi, k “ 1, 2, . . . do

receive si,jpkq from the encoder

update x̂ptq from (3.2)

end for

end for

This concludes the description of the event-based encoder/decoder pair, ex-

cept for the precise choice of the transmission periods Ti and the event boundaries

Lj.

3.2 Main result and proof

The following result states that if the average bit-rate and average cost per symbol

satisfy a particular condition, then one can choose transmission periods Ti and

event boundaries Lj for which this scheme obeys the communication constraints

and bounds the process state.

64

Quasi-optimality of Event-based control Chapter 3

Theorem 3. Consider process (2.1), and assume that A` BK is Hurwitz. For

every γ P r0, 1s and r ą 0 satisfying

r
h´1pγq

ln 3
ln 2 ě

ÿ

i:RλirAsą0

λirAs, (3.4)

hpxq–
x

ln 2
ex´1

, x P p0, ln 3q, hp0q– 0, (3.5)

there exists an emulation-based controller and event-based encoder/decoder pair

of the type described above that keeps the state of the process bounded for every

initial condition in X0; the encoder has average bit-rate not exceeding r and has

average cost per symbol not exceeding γ.

Remark 4. For the special case of n “ 1 (scalar system) and γ “ 1 (no power

constraint), this event-based encoding scheme selects the transmission period

T – h´1p1q{λ “ ln 2{λ and hence bounds the state estimation error within the

interval r´2L, 2Ls.

Remark 5. Whereas the necessary and sufficient bounds from Theorems 1 and

2 had the term fpγ, Sq, the event-based encoding bound in (3.4) has the term

h´1pγq{ ln 3. The ratio

gpγ, Sq–
fpγ, Sq
h´1pγq
ln 3

(3.6)

captures the factor by which the event-based bound exceeds the tight theoret-

65

Quasi-optimality of Event-based control Chapter 3

ical bound developed in the previous sections. This factor is a function of the

encoder’s average cost per symbol γ and the alphabet size S, and is plotted in

Figure 3.1 for S “ 2 and S “ 1. Since the event-based encoder has S “ 2,

the gpγ, 2q curve provides a “fair” comparison between the event-based encoder

and all other encoders with alphabet size S “ 2. The gpγ, 1q curve compares

the event-based encoder with all other encoders with the smallest (most efficient)

alphabet, S “ 1. We observe:

• gpγ, 1q ă 2.43 for all γ P p0, 1s.

• gpγ, 2q ă 2.0 for all γ P p0, 1s.

• gp1, Sq “ ln 3{ ln 2 « 1.58 for all S P Zą0.

The first point guarantees that this encoding and control scheme is never more

than 2.43 times more conservative than the optimal bound established in The-

orems 1 and 2. Specifically, if a given process may be bounded with a certain

average bit-rate r, then there exists an average bit-rate rr not exceeding 2.43r

such that this event-based scheme can bound the process using average bit-rate

rr. The second point establishes that this event-based scheme never requires more

than twice the average bit-rate of any stabilizing N -of-M encoding scheme that,

like this scheme, uses a three-symbol alphabet. The third point states that as the

communication constraint relaxes (γ Ñ 1), this event-based encoding scheme is

only 1.58 times more conservative than the optimal average bit-rate bound from

66

Quasi-optimality of Event-based control Chapter 3

Theorems 1 and 2.

0.0 0.2 0.4 0.6 0.8 1.0
Γmax0.0

0.5

1.0

1.5

2.0

2.5

Figure 3.1: Plot of gpγ, Sq (defined in (3.6)) versus γ, for S “ 1 (thick solid
line) and S “ 2 (thin solid line).

A consequence of gpγ, Sq ą 1 is that event-based encoders are sub-optimal in

the following sense: if r, γ, and S satisfy (3.4), then there exists rr – r{gpγ, Sq ă r

for which rr, γ, and S satisfy (2.50). Therefore, whenever Theorem 3 could be

invoked with pr, γ, Sq to build a stabilizing event-based encoding scheme, one

could instead invoke Theorem 2 with prr, γ, Sq to construct a stabilizing M -of-N

encoding scheme with a smaller average bit-rate. This is the price paid for the

convenience of the simple event-based logic as opposed to having to implement

an encoder/decoder with a (possibly quite large) library of M -of-N codewords.

Remark 6. In Remark 2 it was noted that the sufficiency result in Theorem 2

would not bound the process state if the data-rate condition (2.50) held only with

equality. In contrast, if the present data-rate inequality (3.4) holds with equality,

67

Quasi-optimality of Event-based control Chapter 3

the following event-based scheme bounds the state of the process, as we will show

in the proof of Theorem 3. However, the two sufficiency results of Theorem 2 and

Theorem 3 are consistent in the sense that if their data-rate conditions [(2.50) and

(3.4) respectively] hold with strict inequality, then exponential stabilization can

be achieved, with the rate of exponential convergence determined by the “gap”

in the inequality. To see this for the present scheme, suppose (3.4) holds with

strict equality and let xptq– eεtxptq, where ε ą 0 is small enough that

r
h´1pγq

ln 3
ln 2 ą

ÿ

i:RλirAsą0

λirAs ` nε, (3.7)

and suppose A ` εI ` BK is Hurwitz. Applying Theorem 3 to the x system

provides a controller and encoder/decoder that bounds x. However,

}xptq} ď c ô }xptq} ă ce´εt, (3.8)

so the state xptq converges to 0 exponentially fast.

3.2.1 Proof of Theorem 3

The main idea behind the proof is to show that, when assumption (3.4) holds, it

is possible to allocate the available average bit-rate among sub-encoders in such

a way that each sub-encoder has a sufficiently large average bit-rate to bound its

components of the state estimation error.

68

Quasi-optimality of Event-based control Chapter 3

For the sub-encoder i P U , we pick the transmission period Ti as

Ti – h´1pγq{pai ` ηq, (3.9)

where the definition of h is from (3.5) and η ą 0 satisfies

r
h´1pγq

ln 3
ln 2 ě

ÿ

i:RλirAsą0

λirAs ` nη. (3.10)

As mentioned above, no information needs to be sent on behalf of the stable

systems i P S.

The event boundaries Lj ą 0 are chosen as follows. Define

τ i –
1

ai
ln

ˆ

2

epai`ηqTi ´ 1

˙

. (3.11)

Note that 8 ą τ i ą 0 because ai ą 0 for i P U and 2
epai`ηqTi´1

ą 1 by our choice

of Ti. Next, pick 1 ą φ ą 0 sufficiently small so that

φ ă e´Ti{4 (3.12)

τ i ď
1

ai
ln

ˆ

2

peai Tip1` 2eTiφq ´ 1` 2eτ iφ

˙

(3.13)

69

Quasi-optimality of Event-based control Chapter 3

for all i P U . Finally, define the event boundaries recursively as

Ln – sup
x0PX0

}P p0qx0}8 (3.14)

Lj –
1

φ

n
ÿ

l“j`1

Ll j P t1, . . . , n´ 1u. (3.15)

The proof proceeds in three parts: First we establish that this choice of

transmission periods results in an average bit-rate that does not exceed r. Then

we prove that the scheme bounds the state of process (2.1). Lastly we prove the

scheme’s average cost per symbol does not exceed γ.

The scheme’s average bit-rate does not exceed r

For i P U , sub-encoder i sends di symbols from the alphabet t´1, 0, 1u every Ti

time units, resulting in an average bit-rate of

ri – di log2 3{Ti, (3.16)

and so the average bit-rate used by the encoder as a whole is simply

ÿ

iPU
ri “ log2 3

ÿ

iPU

di
Ti
“

log2 3

h´1pγq

ÿ

iPU
dipai ` ηq (3.17)

“
log2 3

h´1pγq

¨

˝

ÿ

i:RλirAsą0

λirAs ` nη

˛

‚ď r, (3.18)

70

Quasi-optimality of Event-based control Chapter 3

where the last inequality follows from hypothesis (3.4). Hence, this encoding

scheme uses an average bit-rate of r or less.

The scheme stabilizes the process

Next we show that this controller and event-based encoder/decoder pair bound

the state of process (2.1). In view of (2.64), this is ensured if eptq is bounded.

Since eiptq Ñ 0 for i P S, we focus on eiptq for i P U .

We proceed with an inductive proof that the sequence tei,jpkTiq
`ukPZą0 is

bounded for i P U , j P t1, . . . , diu. The base of induction k “ 0 follows from the

definition of Lj in (3.14). Next we prove that ei,jpkTiq
` P r´Lj, Ljs provided that

ei,lpkTi ´ Tiq
` P r´Ll, Lls for l P tj, . . . , diu. If ei,jpkTi ´ Tiq

` is so small that it

does not grow outside the box r´Lj, Ljs by the next timestep, then we naturally

have ei,jpkTiq
` P r´Lj, Ljs. On the other hand, suppose at a specific time t˚

satisfying kTi ´ Ti ď t˚ ă kTi, the scalar error ei,jpt
˚q grows to the boundary of

the box r´Lj, Ljs; without loss of generality suppose ei,jpt
˚q “ Lj. Up to Ti time

units later, the timestep kTi occurs and the sub-encoder i transmits si,jpkq “ 1

to the decoder. Upon receiving symbol 1, the decoder knows from the encoding

scheme (3.1) that the scalar error ei,jpkTiq
´ immediately before the transmission

must have exceeded the event boundary Lj and hence ei,jpkTkq
´ ą Lj. Moreover,

|ei,jpkTiq
´
| “ |v1i,jeipkTiq

´
| (3.19)

71

Quasi-optimality of Event-based control Chapter 3

“ |v1i,je
aiTiGipTiqeipkTi ´ Tiq

`
| (3.20)

ď eaiTi

ˇ

ˇ

ˇ

ˇ

ˇ

di´j
ÿ

l“0

T li
l!
ei,j`lpkTi ´ Tiq

`

ˇ

ˇ

ˇ

ˇ

ˇ

(3.21)

ď eaiTi
´

|ei,jpkTi ´ Tiq
`
|

`

di´j
ÿ

l“1

T li
l!

di´j
ÿ

l“1

|ei,j`lpkTi ´ Tiq|
`
¯

(3.22)

ď eaiTi

˜

Lj `
di´j
ÿ

l“1

T li
l!

di´j
ÿ

l“1

Lj`l

¸

(3.23)

ď eaiTiLj
`

1` eTiφ
˘

, (3.24)

where vi,j P Rdi is a unit vector satisfying (3.19), (3.20) follows from the error

dynamics (2.54) in Lemma 4, (3.21) follows from the definition of the matrix

GipTiq, (3.22) follows from the triangle inequality, (3.23) follows from the induc-

tion hypothesis, and (3.24) follows by the definition of φ, and by upper-bounding

the sum
řdi´j
l“1 T li {l! by eTi . Therefore the decoder can conclude that

ei,jpkTiq
´
P pLj, Lj e

ai Tip1` eTiφqs. (3.25)

We can express the scalar error ei,jpkTiq
´ as the overall error vector epkTiq

´ P Rn

times an appropriate unit vector:

ei,jpkTiq
´
“ v1i,jepkTiq

´ (3.26)

“ v1i,jP pkTiqpxpkTiq
´
´ x̂pkTiq

´
q. (3.27)

72

Quasi-optimality of Event-based control Chapter 3

Rearranging the update rule (3.2) yields an expression for x̂pkTiq
´:

x̂pkTiq
´
“ x̂pkTiq

`
´ P pkTiq

´1vi,j∆i,jp1q. (3.28)

Substituting this into (3.27) yields

ei,jpkTiq
´
“ v1i,jP pkTiq

`

xpkTiq
´
´

x̂pkTiq
`
` P pkTiq

´1vi,j∆i,jp1q
˘

“ v1i,jP pkTiq
`

xpkTiq
´
´ x̂pkTiq

`
˘

`∆i,jp1q

“ ei,jpkTiq
`
`∆i,jp1q,

where we used the fact that xpkTiq
´ “ xpkTiq

` due to the continuity of the

solution xptq. Substituting this into (3.25) and simplifying yields

ei,jpkTiq
`
`∆i,jp1q P pLj, Lj e

ai Tip1` eTiφqs (3.29)

which is equivalent to

ei,jpkTiq
`
P

ˆ

´
Ljpe

ai Ti ´ 1q

2
,
Ljpe

ai Tip1` 2eTiφq ´ 1q

2



. (3.30)

Recall that Ti was chosen to satisfy hpai Tiq “ γ ď 1. Applying h´1 to this yields

ai Ti ď ln 2, and so eai Ti ď 2. Combining this with the upper bound (3.12) on φ

73

Quasi-optimality of Event-based control Chapter 3

yields

Ljpe
ai Tip1` 2eTiφq ´ 1q

2
ă Lj. (3.31)

Applying this to (3.30) establishes that

ei,jpkTiq
`
P p´Lj, Ljq (3.32)

and completes the inductive proof that the sequence tei,jpkTiq
`ukPZą0 is bounded.

Since this holds for arbitrary j P t1, . . . , diu, the sequence teipkTiq
`ukPZą0 Ă Rdi

is also bounded. Following a similar argument to (2.76), we conclude that eiptq

is bounded for any t ě 0. Since eiptq is bounded for all i P U and ejptq Ñ 0

for j P S, this controller and encoder/decoder pair bound the estimation error.

Therefore the state is bounded for all time as well.

The scheme’s average cost per symbol does not exceed γ

Lastly we prove that this encoding scheme has average cost per symbol not ex-

ceeding γ. The symbol stream emitted by the encoder is comprised of the |U |

individual symbol sequences tsi,jpkqukPZą0 , i P U , j P t1, . . . , diu. We first show

that each individual symbol sequence has average cost per symbol not exceeding

γ. Then we show that superimposing these sequences preserves this property.

Consider the scalar error component ei,jptq, i P U , j P t1, . . . , diu. By (3.32)

74

Quasi-optimality of Event-based control Chapter 3

we have |ei,jpkTiq
`| ă Lj with strict inequality. So there will be a strictly positive

period of time with duration τi,j ą 0 starting at time kTi until ei,jptq grows to leave

the r´Lj, Ljs box. During this time, no non-free symbols will be transmitted. The

“dead time” τi,j is simply the amount of time required for the bound Lj

´

eai Tip1`

2eTiφq´ 1
¯

{2 in (3.30) to grow to size Lj. Specifically, the dead time τi,j satisfies

|ei,jpτi,j ` kTiq| “ Lj provided that |ei,jpkTiq| ď Lj

´

eai Tip1 ` 2eTiφq ´ 1
¯

{2. We

now prove that the parameters τ i were chosen so that

|ei,jpτ i ` kTiq| ď Lj (3.33)

provided that

|ei,jpkTiq
`
| ď Lj

´

eai Tip1` 2eTiφq ´ 1
¯

{2, (3.34)

and therefore τ i lower-bounds the dead time τi,j. Following a similar process to

(3.19), we have

|ei,jpτ i ` kTiq| “ |v
1
i,jeipτ i ` kTiq| (3.35)

“ |v1i,je
aiτ iGipτ iqeipkTiq

`
| (3.36)

ď eaiτ i

ˇ

ˇ

ˇ

ˇ

ˇ

di´j
ÿ

l“0

τ li
l!
ei,j`lpkTiq

`

ˇ

ˇ

ˇ

ˇ

ˇ

(3.37)

ď eaiτ i
´

|ei,jpkTiq
`
|

75

Quasi-optimality of Event-based control Chapter 3

`

di´j
ÿ

l“1

τ li
l!

di´j
ÿ

l“1

|ei,j`lpkTiq|
`
¯

(3.38)

ď eaiτ i
´

Lj
eai Tip1` 2eTiφq ´ 1

2

`

di´j
ÿ

l“1

τ li
l!

di´j
ÿ

l“1

Lj`l

¯

(3.39)

ď eaiτ iLj

ˆ

eai Tip1` 2eTiφq ´ 1

2
` eτ iφ

˙

(3.40)

ď Lj, (3.41)

where vi,j P Rdi is a unit vector satisfying (3.35), (3.36) follows from the error

dynamics (2.54) in Lemma 4, (3.37) follows from the definition of the matrix

Gipτ iq, (3.38) follows from the triangle inequality, (3.39) follows from the premise

(3.34) and also (3.32), (3.40) follows by the definition of φ, and by upper-bounding

the sum
řdi´j
l“1 τ li{l! by eτ i , and (3.41) follows from (3.13). We conclude that

τ i ď τi,j.

Therefore by (3.11) we have

τi,j ě τ i –
1

ai
ln

ˆ

2

epai`ηqTi ´ 1

˙

(3.42)

“

ˆ

ai ` η

ai

˙ˆ

Ti
hppai ` ηqTiq

˙

(3.43)

ô
Ti
τi,j

ď
ai

ai ` η
γ ă γ, (3.44)

where (3.43) and (3.44) follow from the definitions of h and Ti. This establishes a

bound on the number of non-free transmissions as follows. Consider the symbol

76

Quasi-optimality of Event-based control Chapter 3

sequence tsi,jpkqukPZą0 emitted by this encoding scheme. Let N2, N1 be arbitrary

positive integers, and let Nnf –
řN1`N2´1
k“N1

Isi,jpkq‰0 be the number of non-free

symbols among symbols si,jpN1q, . . . , si,jpN1 `N2 ´ 1q. Let tl, l P t1, . . . , Nnfu be

the time that the lth non-free transmission occurred. The tl satisfy N1Ti ď t1 ă

. . . ă tNnf
ď pN1 ` N2 ´ 1qTi. Only free symbols are transmitted in the time

interval rtl, tl ` τi,jq, and so

tl ě τi,j ` tl´1, @l “ 2, . . . , Nnf. (3.45)

Iterating this formula over l, we obtain

tNnf
ě τi,jpNnf ´ 1q ` t1. (3.46)

Rearranging this and using the facts that N1Ti ď t1 and tNnf
ď pN1 `N2 ´ 1qTi,

we obtain

N1`N2´1
ÿ

k“N1

Isi,k‰0 — Nnf ď
Ti
τi,j

N2 ` 1 ď γN2 ` 1,

where we leveraged (3.44). This implies the average cost per symbol condition

(2.3), so we conclude that for any i P U and any j P t1, . . . , diu, the symbol

sequence tsi,jpkqukPZą0 has average cost per symbol not exceeding γ.

Finally we show that superimposing the symbol streams results in a stream

77

Quasi-optimality of Event-based control Chapter 3

with average cost per symbol not exceeding γ. Let N1, N2 P N be arbitrary

positive integers, and let Ji, i P U partition tN1, N1 ` 1, . . . , N1 ` N2 ´ 1u such

that Ji is the set of indices between N1 and N1 `N2 ´ 1 where the transmitted

symbol was sent by sub-encoder i. Then
ř

iPU |Ji| “ N2, and we obtain

N1`N2´1
ÿ

k“N1

Isi,k‰0 “
ÿ

iPU

ÿ

kPJi

Isi,k‰0

ď
ÿ

iPU
pγ|Ji| `N0,iq

“ γN2 `N0,

where N0 –
ř

iPU N0,i. The inequality comes from leveraging (2.3) for each

sub-encoder on its respective index interval Ji. This completes the proof of

Theorem 3.

3.3 Numerical example

In this subsection we present a numerical example of the event-based encoding

scheme presented in this chapter. As in the numerical example of the M -of-N

encoder from Section 2.4, consider process (2.1) with A, B, and K defined in

(2.84).

Whereas the M -of-N encoding scheme from in Section 2.4 stabilized the sys-

tem with a average bit-rate of r “ 10 and an average cost per symbol of γ “ 0.2,

78

Quasi-optimality of Event-based control Chapter 3

note that r “ 10 and γ “ 0.2 do not satisfy the sufficient bound (3.4) so they can-

not be used in Theorem 3 to construct a stabilizing event-based scheme. Instead,

we use r – 21, leaving γ – 0.2 as before. This satisfies (3.7) with ε “ 0.1, so

we apply Theorem 3 to obtain an encoder/decoder and controller that together

bound the system xptq– e0.1txptq, and therefore xptq decays exponentially. This

is illustrated in Figures 3.2 and 3.3.

5 10 15 20
time

-6

-4

-2

0

2

4

6

e1(t)

Figure 3.2: Plot of the closed-loop state estimation error component e1ptq
for the xptq system, using the event-based encoding scheme. Once the er-
ror leaves r´L1, L1s (thin dashed lines), a non-free symbol is transmitted at
the next transmission time. The error stays bounded between ´L1e

pa1`0.1qT1

and ´L1e
pa1`0.1qT1 (thick dashed lines). Unlike the encoder from Section 2.3 in

Figure 2.5, the transmission of non-free symbols is event-triggered and non-pe-
riodic.

Recall that the two sub-encoders of the codeword-based encoder from Sec-

tion 2.4 each transmit up to 2 non-free symbols every 1.9 time units, resulting

in a total average rate of resource consumption of 2.1 non-free transmissions per

79

Quasi-optimality of Event-based control Chapter 3

10 20 30 40 50 60
time

-40

-20

20

40
x1(t)

Figure 3.3: Plot of the closed-loop state x1ptq exponentially decaying to 0
using the event-based encoding scheme described in Section 3. The curve
100e´0.1t is plotted for reference.

time unit. On the other hand, the event-based encoder’s two sub-encoders each

transmit a symbol every 0.151 time units, and a fraction γ “ 0.2 of these sym-

bols are non-free. Therefore this event-based encoder consumes communication

resources at a total average rate of 2.65 non-free transmissions per time unit.

This is in accordance with Remark 6: this larger rate of consumption is the price

paid for using an easier-to-implement event-based encoding scheme.

3.4 Conclusion

In this chapter examined an event-based controller based on the framework from

Chapter 2. We proved its average bit-rate requirements were order-optimal with

80

Quasi-optimality of Event-based control Chapter 3

respect to the necessary and sufficient condition for stabilizability from Chapter 2.

This supports the use of event-based controllers in limited-communication control

schemes.

The controller in the proposed event-based scheme required state feedback.

This could be extended to an output-feedback setting by embedding a state ob-

server in the encoder, which is the subject of future work.

81

Chapter 4

Preemption-resistant control on a

non-real-time operating system

In this chapter we consider the problem of stabilizing a system with unpredictable

timing due to the controller running on a non-real-time operating system. We

propose a method of implementing a discrete-time control algorithm on a non-

real-time operating system so that the sensing and actuation occur at precise

times, even if the OS preempts the control task.

4.1 Real-time I/O coprocessor concept

We first describe the architecture of our control and sensing/actuation scheme.

Figure 4.1 illustrates the basic idea, which is that the controller and sensor/actu-

82

Preemption-resistant control on a non-real-time operating system Chapter 4

ator execute on two separate processors. The controller runs on a non-real-time

OS like Linux, whereas the sensing and actuation are performed by a dedicated

“bare-metal” microcontroller called the Real-Time Unit (RTU). The RTU con-

tains two circular buffers, one of size ns for time-stamped sensor measurements,

and one of size na for time-stamped actuator commands. At each timestep, the

RTU reads, time-stamps, and saves a new sensor measurement in the sensor

buffer, and then applies the appropriate actuator command from the actuator

buffer. The controller and RTU may be co-located on the same circuit-board or

even within a single system-on-a-chip.

Plant

Real-Time Unit
(on µController)

ykuk

Controller
(on non-RT OS)

nsna

(i, yi)(j, uj)

async

sync

Figure 4.1: Schematic of the control architecture. The real-time I/O copro-
cessor measures sensors yk and applies actuator values uk every Ts time units
from its two buffers. Asynchronously, the controller retrieves the ns most re-
cent sensor values and transmits na time-stamped actuator values for the RTU
to apply to the plant.

83

Preemption-resistant control on a non-real-time operating system Chapter 4

We now explain Algorithms 1 and 2 below, which summarize the code that

runs on the controller and the RTU.

Algorithm 3. 1: (Controller)

2: while true do

3: Retrieve the RTU’s sample buffer.

4: Generate a list of na time-stamped actuator values.

5: Send the list to the RTU.

6: Wait for next timestep.

7: end while

Algorithm 4. 1: (Real-Time Unit (RTU))

8: while true do

9: if controller requested data, then

10: Send the sensor buffer to the controller.

11: end if

12: if controller sent a new actuation schedule, then

13: Copy the schedule to the actuation buffer.

14: end if

15: Check the time.

16: if sample time Tsk, k P N just elapsed, then

17: Sample sensors and store with time-stamp k.

18: if pk, ukq is in the actuation buffer, then

84

Preemption-resistant control on a non-real-time operating system Chapter 4

19: Apply input uk to the plant.

20: else

21: Apply default input to the plant.

22: end if

23: end if

24: end while

(Algorithm 1: Controller.) At an arbitrary time t, the controller requests the

RTU’s measurement buffer and receives ns time-stamped measurements pk´ns`

1, yk´ns`1q, . . . , pk, ykq, where k – tt{Tsu is the index of the last timestep before

time t. The controller then computes a list of na time-stamped actuator values.

The resulting actuation sequence could follow the retrieved sample sequence by

starting at sample k ` 1, e.g., pk ` 1, uk`1q, . . . , pk ` na, uk`naq. However, if it is

known that the controller will take at least C sample times to run, the controller

may instead compute and send actuation signals to be applied at sample times

k ` C ` 1, . . . , k ` C ` na. In either case, the controller then transmits the

actuation sequence to the RTU’s actuator buffer. Note that because the controller

may be preempted, the controller’s actions occur asynchronously with respect to

the RTU’s sampling and actuation times. Section 4.1.1 discusses the issues of

generating future actuation sequences.

(Algorithm 2: RTU.) The RTU loop starts by checking whether the controller

requested data or delivered a new actuation schedule. If so, the RTU transfers

85

Preemption-resistant control on a non-real-time operating system Chapter 4

write

time

read ctrl write

12 3 4 5 6

1 2
2

3
3

4
4

5
5

6
6

7
7

2 3 5 64 5 6 7 8

read

7
buffered sensorsactuation schedule

Ctrller	
(non-RT OS)

RTU
(µController)

Physical System

OS preemption OS preemption etc.

Figure 4.2: The RTU buffers sensor measurements (circles) and executes
buffers of time-stamped actuator commands (squares) from the controller.

sensor data to the controller or copies new actuation commands into the RTU’s

private buffer. At sample time t “ Tsk, k “ 1, 2, . . ., the RTU reads the sensor

measurement yk and stores the time-stamped measurement pk, ykq in its circular

buffer. It then searches its actuation buffer for an actuation command of the form

pk, ukq and applies uk to the plant over the time interval rTsk, Tspk ` 1qq. If the

actuation buffer does not contain a command for timestep k, the RTU applies

some default actuation, e.g., uk´1 or 0.

The RTU’s ability to sample at precise times depends crucially on its ability

to check the time rapidly. Consequently, it is important that the RTU be able to

execute Algorithm 2 lines 8–13 quickly. Therefore the interconnection between

the controller and the RTU needs to be fast, e.g., a shared memory. Similarly,

the actual sampling and actuation also needs to happen quickly (lines 15–21).

Figure 4.2 illustrates this architecture with buffer sizes ns “ 3 and na “ 5.

At each sample time t “ Tsk, k P N, the RTU reads and stores a sensor mea-

surement. At some time between Ts and 2Ts, the controller delivers an actuation

86

Preemption-resistant control on a non-real-time operating system Chapter 4

schedule pk, ukq, k “ 2, . . . , 6, then gets preempted. Despite the controller be-

ing preempted, the RTU executes the actuation schedule. Some time between

3Ts and 4Ts the controller requests the sensor buffer, which contains pk, ykq,

k “ 1, 2, 3. The controller then begins computing the actuation sequence pk, ukq,

k “ 4, . . . , 8, but gets preempted partway through. Later, between 5Ts and 6Ts,

the controller awakens and delivers the actuation sequence. Note that because

of preemption, the new actuation schedule arrives too late to apply the new (un-

derlined) actuator values intended for sample times 4Ts and 5Ts; instead, the

RTU applied actuator commands u4 and u5 from the previous actuation sched-

ule. After time 7Ts the controller receives the sample buffer with measurements

for k “ 5, 6, 7. Note that sample y4 was overwritten and so is not available to the

controller.

The key idea in this architecture is that the closed-loop system can tolerate

some amount of OS preemption because the RTU continues to gather measure-

ments and apply actuation even while the controller is asleep. The aim is for the

controller to provide a sufficient number of future actuator values so the RTU

can continue to stabilize the plant if the controller gets preempted. Even though

the future actuations are applied “open-loop”, we shall see that they are better

than holding the actuators constant until the controller awakens.

87

Preemption-resistant control on a non-real-time operating system Chapter 4

4.1.1 Building the actuation schedule

The architecture proposed here requires the controller to produce, at each sample

time k, an actuation schedule with control values for the next na future sample

times k ` 1, k ` 2, . . . , k ` na. Two options are available: a model-free approach

that generates the future control signals without an explicit model for the process

and a model-based approach that uses such a model.

To describe both approaches consider a discrete-time nonlinear controller ex-

pressed by the following state-space model

zk`1 “ fpzk, yk, rkq, uk “ gpzk, rkq, (4.1)

where the yk denote sensor measurements, the uk actuation values, and the rk

reference signals.

The model-free approach generates the na future actuator commands

uk`1, uk`2, . . . , uk`na

using polynomial extrapolation. Assuming that the measurement sequence can

be approximated by a polynomial of degree q, one can use the previous q ` 1

measurements

yk´q, . . . , yk´1, yk

88

Preemption-resistant control on a non-real-time operating system Chapter 4

to predict na ´ 1 future measurements

yk`1, yk`2, . . . , yk`na´1

. Feeding these to the controller (4.1), one obtains the desired future actuator

commands

uk`1, uk`2, . . . , uk`na

. As we shall see in Section 4.2, even a low order polynomial (linear extrapolation

with q “ 1) can be used to obtain good results.

When a plant model is available, the accuracy of the predicted measurements

can be improved. Assuming a linear plant model of the form

xk`1 “ Axk `Buk, yk “ Cxk `Duk, (4.2)

if the plant’s state xk can be directly measured or estimated, one can estimate

future measurements by directly solving the process model (4.2), which leads to

ŷk`i “ CAix̂k `
´

i´1
ÿ

j“0

CAi´j´1Buk`j

¯

`Duk`i,

@i P t1, 2, . . . , na ´ 1u, (4.3)

where x̂k denotes the state estimate at time k and uk`1, uk`2, . . . , uk`i a sequence

89

Preemption-resistant control on a non-real-time operating system Chapter 4

of future control signals constructed based on the controller model (4.1) and

previous measurement estimates obtained by (4.3). The use of the plant model

(4.2) permits a more accurate estimate of future measurements and consequently

a better schedule for the future controls. However, our initial experiments indicate

that this approach does not yield significant gains unless the sample time is fairly

large.

Linearity of the process model in (4.2) was assumed solely for simplicity of

presentation, as the sequence of estimated outputs can easily be generated for

a nonlinear process model, provided that the process’ state can be measured

or estimated. Model predictive control (for either linear or nonlinear plants) is

especially attractive for this type of architecture, as it automatically produces a

sequence of future controls.

4.2 Experimental results

In this section we compare the performance of a PID controller driving a DC

motor when it uses a standard file-based I/O interface versus using a real-time

I/O coprocessor.

90

Preemption-resistant control on a non-real-time operating system Chapter 4

Figure 4.3: Picture of the hardware setup. A Beaglebone Black drives a DC
motor and measures its shaft angle using a rotary encoder.

4.2.1 Hardware

Figure 4.3 shows our hardware setup. A TB6612FNG motor driver drives a

hobby-grade permanent-magnet DC motor from a 5-volt power supply. The mo-

tor driver takes a 50 kHz PWM signal and three discrete 3.3 V signals which

determine the motor direction. The motor shaft angle is measured by a US

Digital rotary optical encoder. The encoder has 4096 counts per rotation and

outputs a quadrature-encoded pulse (QEP) signal. A 5V-to-3.3V level-shifting

circuit scales the QEP signal.

The controller runs on a Beaglebone Black (BBB) single-board computer [22].

91

Preemption-resistant control on a non-real-time operating system Chapter 4

The BBB has a 1-GHz processor, 512 MB RAM, HDMI video, an ethernet port,

and a USB port. It ships with Debian Linux installed on its 4 GB flash memory.

It is powered by a Texas Instruments Sitara AM3358BZCZ100 processor, which

contains ADC, PWM, QEP, and GPIO peripherals.

For a real-time I/O coprocessor, we use one of the two “Programmable Real-

Time Units” (PRUs) included in the Sitara microcontroller. Designed for real-

time applications, each PRU is a 32-bit 200-MHz RISC processor core that exe-

cutes independently from the main CPU, has its own 8 kB data RAM, and has

full access to the peripherals on the Sitara. The CPU and PRU have access to

each other’s memory and can therefore exchange time-stamped sensor and actu-

ator data quickly. The PRU is not pipelined, making its execution simpler and

more deterministic: register-level instructions run in 1 cycle (5 ns), and memory

instructions to the PRU’s local memory take 3 cycles. The PRU’s data RAM

does not share a bus with the main RAM, so the PRU can read and write to

it without the risk of bus contention with the main memory. A cycle counter

register within the PRU allows it to track time in increments of 5 ns. For these

reasons, the PRU is well-suited for use as a RTU.

We implemented the control architecture described in Section 4.1 on the PRU

with circular buffer sizes of na “ ns “ 32. The sensor buffer stored time-stamped

QEP samples from the rotary encoder, whereas the actuator buffer stored time-

stamped PWM and GPIO commands for the motor driver. To coordinate data

92

Preemption-resistant control on a non-real-time operating system Chapter 4

transfer between the CPU and the PRU, we double-buffered the sensor and actua-

tor arrays in the PRU data RAM and implemented rudimentary mutual-exclusion

semaphores. Accounting for the time to sample, actuate, and communicate, our

implementation on the PRU achieved sampling and actuation timing accuracy of

40 µs.

4.2.2 Controller Design

A DC motor can be modeled as a series connection of a resistor, inductor, and

back-EMF voltage source, resulting in the dynamic equations

Vm “ iR ` L9i`K1ω

J 9ω “ ´bω `K2i` τext

9θ “ ω,

(4.4)

where i is the current through the motor, R and L are the resistance and induc-

tance of the motor windings, θ is the motor shaft angle, ω is the angular velocity,

Vm is the voltage applied across the motor, K1 and K2 are motor constants, b is

the friction coefficient, J is the angular moment of inertia of the motor, and τext

is any external torque imposed on the motor shaft.

Equations (4.4) form a 3rd-order linear dynamical system. System identifica-

tion was performed on the motor system using ARX on voltage and angle data

93

Preemption-resistant control on a non-real-time operating system Chapter 4

to obtain the following 3rd-order discrete-time linear model of the DC motor:

Θpzq

V pzq
“

´0.5898z´1 ´ 1.121z´2 ´ 0.2757z´3

1´ 1.586z´1 ` 0.3719z´2 ` 0.2136z´3
. (4.5)

The model’s sample time was Ts – 0.005 s. The model was validated with

additional input/output data.

A PID controller was designed using Matlab’s PIDTuner with the discrete-

time transfer function

Cpzq “ kp ` ki
Ts
z ´ 1

` kd
1

Tf ` Ts{pz ´ 1q
, (4.6)

where kp “ ´0.0304, ki “ ´0.106, kd “ ´8.73e´4, and Tf “ 0.00405. The pa-

rameter Tf is the time-constant of a first-order filter on the derivative term. This

controller was implemented as an IIR filter in C. To produce a future actuation

schedule, the two most recent angle measurements were used to linearly extrapo-

late measurements for the future motor angles, and the PID controller was run on

the tracking error between those predicted measurements and a known reference

signal. Specifically, given the sensor buffer ending with sample k, the controller

computed

∆ – θk ´ θk´1

θk`i – θk `∆i

94

Preemption-resistant control on a non-real-time operating system Chapter 4

vk`i – cpθk`i, θk`i´1, θk`i´2, vk`i´1, vk`i´2q,

for i “ 1, . . . , na, where cp¨q is the IIR representation of the controller (4.6), and

θk and vk are the angle measurement and voltage command at the kth sample

time.

4.2.3 Results

Figure 4.4 shows the result of the two PID controllers as they track a triangle-wave

reference signal on motor shaft angle. The top two plots show the performance of

the PID controller when it uses the standard I/O mechanism on the BBB, wherein

the peripherals appear as normal files. The lower two plots show the response

of the PID controller when it uses the PRU as a real-time I/O coprocessor. The

second and fourth plots show the time between each iteration of the PID control

loop running on the main processor.

Table 4.1: RMS reference-tracking error of the controllers under idle and heavy
system load.

PID using standard I/O PID using RTU I/O

Idle 12.0 11.3

Heavy 144 36.3

For the first two seconds, the PID controllers each run with essentially sole

control of the CPU. There are no major OS preemptions during t ă 2 and

the second and fourth plots show that each iteration takes the intended sample

95

Preemption-resistant control on a non-real-time operating system Chapter 4

time Ts “ 0.005 s. We observe that the two control configurations have similar

performance during t ă 2. At t “ 2, several higher-priority CPU-heavy tasks

were spawned. The spikes in the second and fourth plots during t ą 2 corre-

spond to controller preemptions, sometimes lasting 10 times the sample period.

Whereas the PID controller using the standard I/O interface is heavily disrupted

by these preemptions, we observe that the RTU-based controller runs much more

smoothly due to the PRU buffering future control signals. The root-mean-square

tracking errors for each controller under idle and heavily-loaded processor con-

ditions are shown in Table 4.1. Similar results were obtained as the priorities of

the competing tasks were changed to vary the frequency and durations of the OS

preemptions.

4.3 Conclusion

In this chapter, we presented a controls architecture that pairs a real-time I/O

coprocessor with a controller on a non-real-time operating system. The RTU

enables sampling and actuation at precise times, even when the controller is pre-

empted by the OS. This enables control designers to reap the benefits of an OS

with minimal concern for the timing uncertainties associated with the OS task

scheduler. We demonstrated the platform’s utility by designing a preemption-

resistant PID controller on a Beaglebone Black that uses its Programmable

Real-time Unit as a real-time I/O coprocessor. The RTU-based PID controller

96

Preemption-resistant control on a non-real-time operating system Chapter 4

out-performed the standard PID controller in the presence of large OS preemp-

tions. Future directions of this work include using a more sophisticated method

of forward-prediction for the actuation sequence, such as model predictive con-

trol. Also we intend to extend this architecture to multiple controllers distributed

across a network.

97

Preemption-resistant control on a non-real-time operating system Chapter 4

0 2 4 6 8 10
-400

-200

0

200

400
Sysfs: Shaft angle (deg)

ref
angle

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08
Sysfs: Wall-clock time per iteration (s)

0 2 4 6 8 10
-400

-200

0

200

400
PRU: Shaft angle (deg)

ref
angle

0 2 4 6 8 10
cpu time (s)

0

0.02

0.04

0.06

0.08
PRU: Wall-clock time per iteration (s)

Figure 4.4: Both the standard PID controller and the PRU-based PID con-
troller have similar performance under idle (t ă 2). However, when subjected
to OS preemption (t ą 2), the PRU out-performs the standard one.

98

Appendix A

Proofs of lemmas

Proof of Lemma 1. Let ` P Zě0 be arbitrary. Since the pair’s average cost per

symbol is at most γ, (2.3) holds for some N0 P Zą0. Rearranging (2.3) yields

N1`N2´1
ÿ

k“N1

Isk‰0 ď N2γ `N0, @N1, N2 P Zą0. (A.1)

Let N be any positive integer greater than pN0 ` 1q{εγ and define M – tNγ `

N0 ` 1u. Invoking (A.1) for N1 – `N ` 1 and N2 – N yields

`N`N
ÿ

k“`N`1

Isk‰0 ď Nγ `N0 ďM

ď Nγ `N0 ` 1 ă Nγp1` εq. (A.2)

99

Proofs of lemmas Chapter A

Therefore we have found an M and N satisfying M ă Nγp1 ` εq and moreover

(A.2) implies the condition (2.8) defining M -of-N encoders. This completes the

proof.

Proof of Lemma 4. There exists a real invertible matrix Q P Rnˆn that trans-

forms A to its real Jordan normal form, namely

Q´1AQ “ Λ – diag pJ1, . . . , Jnbq ,

where the Ji are real Jordan blocks: for real eigenvalue ai with geometric multi-

plicity di, the corresponding real Jordan block Ji P Rdiˆdi has the form

»

—

—

—

—

—

—

—

—

–

ai 1

. . .

ai

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

; (A.3)

for a complex conjuguate pair of eigenvalues ai ˘ jbi with multiplicity di, the

associated real Jordan block Ji P R2diˆ2di has the form

»

—

—

—

—

—

—

—

—

–

Λi I2

. . .

Λi

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (A.4)

100

Proofs of lemmas Chapter A

where the 2-by-2 matrix Λi P R2ˆ2 has the form

Λi –

»

—

—

—

–

ai bi

´bi ai

fi

ffi

ffi

ffi

fl

. (A.5)

Next, define the time-varying invertible block-diagonal matrix Rptq P Rnˆn, t ě 0

as

Rptq– diag pR1ptq, . . . , Rnbptqq (A.6)

where Riptq – Idi P Rdi if Ji corresponds to a real eigenvalue ai, and Riptq –

diagpΘiptq
´1q P R2diˆ2di if Ji corresponds to a complex conjugate eigenvalue

ai ˘ jbi, where

Θiptq–

»

—

—

—

–

cospbitq ´ sinpbitq

sinpbitq cospbitq

fi

ffi

ffi

ffi

fl

P R2ˆ2. (A.7)

Let P ptq– RptqQ´1, t ě 0. We have

eptq– P ptqpxptq ´ x̂ptqq (A.8)

“ RptqQ´1eAtpxp0q ´ x̂p0qq (A.9)

“ RptqQ´1eQdiagpJiqQ
´1t
pxp0q ´ x̂p0qq (A.10)

101

Proofs of lemmas Chapter A

“ RptqediagpJiqtQ´1pxp0q ´ x̂p0qq (A.11)

“ RptqediagpJiqtep0q (A.12)

“ RptqdiagpeJitqep0q, (A.13)

where (A.11) follows from a well-known property of the matrix exponential, and

(A.12) follows the definition of ep0q and the observation that Rp0q is the identity

matrix. A well-known property of real Jordan blocks is that

eJit “ eait

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 t t2

2!
. . . tdi´1

pdi´1q!

1 t

. . .

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

102

Proofs of lemmas Chapter A

if the real Jordan block Ji corresponds to a real eigenvalue, and

eJit “ eait

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

Θiptq Θiptqt Θiptq
t2

2!
. . . Θiptq

tdi´1

pdi´1q!

Θiptq Θiptqt

. . .

Θiptq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

if it corresponds to a complex conjugate pair. In terms of Riptq and Giptq these

equations become simply

eJit “ eaitRiptq
´1Giptq. (A.14)

Using this in (A.13) yields

eptq “ RptqdiagpeaitdiagpRiptq
´1Giptqqqep0q

eptq “ diagpRiptqqdiagpRiptq
´1
qdiagpeaitGiptqqep0q

eptq “ diagpeaitGiptqqep0q,

implying (2.54).

Lastly, it is straightforward to verify that the minimum singular value of Riptq is

103

Proofs of lemmas Chapter A

σminpRiptqq “ 1 for any t. Moreover, since Q is invertible, there exists ε ą 0 for

which σminpP ptqq ě ε for all t. This concludes the proof.

Lemma 5. For any N P Zą0 and M P Rě0 with M ď N , every M-of-N encoder

has average cost per symbol not exceeding M{N .

Proof of Lemma 5. Suppose M and N are fixed and consider a sequence of N2

symbols starting at index N1, for arbitrary N1, N2 P Zą0. This index sequence

tN1, . . . , N1 `N2 ´ 1u overlaps or partially overlaps with at most rN2{N s` 1 of

the fixed N -symbol codewords. Each codeword has at most M non-free symbols.

Therefore the number of non-free symbols in the sequence is upper-bounded by

N1`N2´1
ÿ

k“N1

Isk‰0 ďM prN2{N s` 1q

ďMpN2{N ` 2q “
M

N
N2 ` 2M. (A.15)

We let N0 – 2M and rearrange terms to obtain (2.3), the definition of average

cost, with γ “M{N .

Lemma 6. The following inequality holds for all N,S P Zą0, q P p0, S{pS ` 1qs,

and i P r0, Nqs:

qip1´ qqN´i ě 2´N Hpqq Si

SNq
(A.16)

104

Proofs of lemmas Chapter A

where Hpqq– ´q log2 q ´ p1´ qq log2p1´ qq is the base-2 entropy of a Bernoulli

random variable with parameter q.

Proof of Lemma 6. Let N,S, q, and i take arbitrary values from the sets de-

scribed in the lemma’s statement. Since log2 is a monotone increasing function,

log2pq{p1´ qqq for q ą 0 is maximized at the right endpoint value, q “ S{pS` 1q,

where it equals log2 S. This leads to

log2 q ´ log2p1´ qq ď log2 S (A.17)

for all S P Zą0 and q P p0, S{pS ` 1qs. Next, i P r0, Nqs by assumption, there-

fore i ´ Nq ď 0. Multiplying (A.17) by i ´ Nq and straightforward algebraic

manipulation yields

i log2 q ` pN ´ iq log2p1´ qq

ě Nq log2 q `Np1´ qq log2p1´ qq ` pi´Nqq log2 S

“ ´NHpqq ` pi´Nqq log2 S,

where the equality follows from the definition of Hpqq. Raising 2 to the power of

both sides, (A.16) follows.

105

Appendix B

Beaglebone Black / DC motor

test-bed

(This project is hosted online at GitHub [28].)

B.1 Summary

This section describes how to interact with the Beaglebone Black’s I/O from the

command line. We use the Beaglebone Black to drive a DC motor with pulse-

width modulation through a motor driver, and measures the motor’s shaft angle

with a rotary encoder that uses quadrature-encoded pulses.

It does this entirely from the command line; there is no C or Python code

needed. This is possible because you can do I/O through special files called “sysfs

106

Beaglebone Black / DC motor test-bed Chapter B

entries”. For example, after loading the PWM device-tree overlay (see below),

you can set the PWM duty cycle and period from the command line with the

following commands:

$ echo 100000 > /sys/devices/ocp.3/pwm_test_P8_34.12/period # nanosec

$ echo 10000 > /sys/devices/ocp.3/pwm_test_P8_34.12/duty # nanosec

(Note: a bug in the PWM driver flips the polarity, meaning that a 10000-ns

duty cycle with a 100000-ns period results in a 90% high square-wave and not a

10% square wave as you’d expect.)

B.2 Hardware setup

Here is the hardware setup:

• $3 5V DC motor from Sparkfun

– Note: Solder capacitors between the motor terminals and case to

reduce inductive kickback into the BBB. Without these capacitors,

sometimes BBB will hang when simultaneously driving the motor and

reading the ADCs.

• $30 Dual H-bridge motor driver from Sparkfun (model: TB6612FNG)

• $100 rotary encoder from US Digital (model: S1-1024-250-NE-B-D)

• Outputs 5V EQEP signal, 4096 EQEP ticks per revolution

• Use the bone eqep1 device-tree overlay

107

https://www.sparkfun.com/products/11696
https://www.sparkfun.com/products/9457
http://www.usdigital.com/products/encoders/incremental/rotary/shaft/S1

Beaglebone Black / DC motor test-bed Chapter B

Figure B.1: The motor setup.

108

Beaglebone Black / DC motor test-bed Chapter B

• transistors for 5V-to-3.3V conversion between rotary encoder and BBB

Note: It would be best to drive the motor using both H-bridges in the motor

driver, driving them in parallel. The driver is rated for 1A continuous current

with 3A peak; driving the 2.5-Ohm motor with 5V across results in 2A continuous

current.

B.3 Software setup

There is no software setup; just set up the hardware and then run run-lil-dc-motor.sh.

After the script runs, it will leave the PWM, EQEP, and GPIO sysfs entries

enabled.

The script run-lil-dc-motor.sh (see [28]) shows how to configure the Bea-

glebone Black to drive the DC motor and read its position with a rotary encoder.

The script does this:

• loads the PWM and EQEP device-tree overlays

• loads the GPIO sysfs entries

• runs the motor clockwise

• runs the motor counter-clockwise

• sets PWM’s “run” to 0 and motor driver’s “standby” GPIO pin to low

(standby)

109

Beaglebone Black / DC motor test-bed Chapter B

Note: This code was developed on the following Beaglebone Linux kernel

(found with uname -a):

Linux beaglebone 3.8.13-bone80 \#1 SMP Wed Jun 15 17:03:55 UTC 2016

armv7l GNU/Linux

B.4 Background

You can control various peripherals on the Beaglebone Black from the command

line. For example, to configure pin P9 31 as an output and set it high (3.3V), do

this:

echo 110 > /sys/class/gpio/export

echo "out" > /sys/class/gpio/gpio110/direction

echo 1 > /sys/class/gpio/gpio110/value

The number 110 is the number of the GPIO that’s wired up to header pin

P9 31. The mapping between BBB header pins (P9 31) and GPIO numbers (110)

is weird, see Derek Molloy’s Exploring Beaglebone Figures (pdf 1, pdf 2)

Line 1 creates /sys/class/gpio/gpio110/ with various files inside like direction

and value. They are not “real” files on disk; the kernel catches reads/writes to

the files inside gpio110/ and invokes a special kernel module to interact with the

GPIO hardware. This method of interfacing with hardware is called “sysfs”.

Line 2 writes the string “out” to the direction sysfs file. This causes the

GPIO kernel module to configure the GPIO as an output.

110

http://exploringbeaglebone.com/chapter6/
http://exploringbeaglebone.com/wp-content/uploads/resources/BBBP8Header.pdf
http://exploringbeaglebone.com/wp-content/uploads/resources/BBBP9Header.pdf

Beaglebone Black / DC motor test-bed Chapter B

Line 3 writes the string “1” to the value sysfs file. This causes the GPIO

KM to set the GPIO to 3.3V (high).

111

Appendix C

Beaglebone C I/O library

(This project is hosted online at GitHub [27].)

C.1 Introduction

We present a simple C library for interacting with the I/O peripherals (PWM,

GPIO, EQEP) on the Beaglebone Black. This library makes it easy to use C to

interface with the Beaglebone Black’s PWM, GPIO, and EQEP sysfs entries that

permit users to modify I/O from userspace. For simplicity, only standard syscall

functions are used: open, close, read, and write.

We demonstrate the library with code that drives a DC motor, see Figure C.1

and Figure C.2. It reads the motor shaft angle with a EQEP-based rotary encoder

and drives the motor with PWM through a motor driver. The motor driver draws

112

Beaglebone C I/O library Chapter C

Figure C.1: The Beaglebone Black, motor driver, and 24V DC motor that we
drive with the BBB C I/O library.

power through a disused desktop power supply’s 12-Volt line.

Some Python code is also provided for comparison. It uses the built-in

Adafruit BBIO library and Nathaniel Lewis’s eqep.py module.

A lot of stuff is hard-coded for expediency. This makes it easy for newcomers

to learn how to use C to interface with the Beaglebone’s sysfs entries, without

getting bogged down with C++ classes or device-tree overlays.

113

https://github.com/Teknoman117/beaglebot

Beaglebone C I/O library Chapter C

Figure C.2: How the motor driver is wired into the Beaglebone Black.

114

Beaglebone C I/O library Chapter C

C.2 Quick-start

C.2.1 Configure Beaglebone, build, & run

• Plug in the BB’s 5V power plug. If the 4 blue LEDs don’t start blinking in

5 seconds, unplug it and re-plug it.

• Then, ssh into the BB from your laptop. (The BB’s IP address is hard-

coded as 10.42.0.123, so make your laptop 10.42.0.2 or something.)

• Note: it’s possible to have a wireless Internet connection while being ssh’d

to the Beaglebone over wired ethernet. See this for setup on Ubuntu.

ssh debian@10.42.0.123

sudo su

date -s "13 Dec 2013 13:43" # or whatever

cd Beaglebone-Motor-Demo/C

./run.sh

The run.sh script does 3 things:

1. Loads the PWM, GPIO, and EQEP device-tree overlays necessary to run

the demo. It essentially does

export SLOTS=$(find /sys/devices -name slots)

echo am33xx_pwm > $SLOTS

115

http://askubuntu.com/questions/10741/how-to-set-up-dual-wired-and-wireless-connections

Beaglebone C I/O library Chapter C

echo bone_pwm_P8_34 > $SLOTS

echo bone_eqep1 > $SLOTS

echo 70 > /sys/class/gpio/export

echo 73 > /sys/class/gpio/export

Moreover, it also generates a header file sysfs-paths.h that just #defines

the paths of the PWM, GPIO and EQEP sysfs entries so that functions in

bb-simple-sysfs-c-lib.h can use them.

Originally, I hard-coded the sysfs paths in bb-simple-sysfs-c-lib.h. But it

turns out that the directories sometimes change between reboots, e.g., sometimes

echo bone pwm P8 34 > $SLOTS

results in a directory

/sys/devices/ocp.3/pwm test P8 34.18/

but sometimes it is called

/sys/devices/ocp.3/pwm test P8 34.12/.

2. Compiles the library (bb-simple-sysfs-c-lib.c/h), tests (tests.c), and

main (main.c) programs.

3. Runs main.

C.2.2 Handy BB commands

• Shutdown: # shutdown -hP now

116

Beaglebone C I/O library Chapter C

• Reboot: # reboot

C.2.3 Turn motor in C

#include "bb-simple-sysfs-c-lib.h"

void main() {

setup();

printf("Shaft angle BEFORE (deg): %lf\n", shaft_angle_deg());

duty(50); // 50% duty cycle

cw(); // clockwise

unstby(); // disable ’stby’ GPIO on motor driver

run(); // set ’run’ sysfs entry for PWM

sleep(1); // let it run for a sec.

duty(0); // set ’duty’ to 0

stop(); // turn off ’run’

stby(); // set ’stby’ GPIO on motor driver

printf("Shaft angle AFTER (deg): %lf\n", shaft_angle_deg());

117

Beaglebone C I/O library Chapter C

shutdown();

}

C.2.4 Proportional controller in C

int main (int argc, char *argv[]) {

setup();

unstby();

run();

cw();

double kp = -.015;

double dt = 0.1; // sec, time per iteration

double max_time = 10; // sec, max time of sim

int num_iters = max_time / dt;

double freq = 1; // Hz, rate of ref angle change

int i=0;

for(i=0; i<num_iters; i++) {

118

Beaglebone C I/O library Chapter C

double angle = shaft_angle_deg();

double ref = 180 * sin(2.0 * M_PI * freq * dt * i); // deg

double error = ref-angle;

double v = kp * error;

voltage(v);

usleep(dt*1000000.0);

}

stop();

stby();

shutdown();

return 0;

}

C.3 Hardware setup

The hardware consists of:

• DC motor (Globe Motors 405A336)

• Motor driver (LMD18201T)

• Rotary encoder (US Digital)

119

Beaglebone C I/O library Chapter C

• Beaglebone Black

• Dell desktop power supply

• 2 10-nF capacitors for motor driver

• Two 2N3906 transistors used for 5V-to-3.3V level-shifting the EQEP sensor

Figure C.3 shows the wiring schematic for this hardware setup.

In particular, note that:

• The motor driver has inputs for PWM, direction, and brake.

• Pin P8 34 is the PWM.

• Pin P8 45 (GPIO) ctrls motor direction.

• Pin P8 44 (GPIO) ctrls motor brake (standby).

• The rotary encoder puts out 5V, but the BB’s GPIOs require 3.3V; the

transistor circuits perform level-shifting from 5V to 3.3V.

• The rotary encoder’s EQEP signal is read by the BBB’s EQEP peripheral.

C.4 Software

The file bb-simple-sysfs-c-lib.c/h provides a very thin C interface to the

Beaglebone Black’s PWM, GPIO, and EQEP sysfs entries.

For expediency, I hard-coded the sysfs entries for the PWM, two GPIOs, and

EQEP in bb-simple-sysfs-c-lib.h:

#define PWM_PATH "/sys/devices/ocp.3/pwm_test_P8_34.18/"

120

Beaglebone C I/O library Chapter C

Figure C.3: Wiring schematic of the Beaglebone Black, LMD18201T motor
driver, and 5V-to-3.3V level-shifting circuit.

121

Beaglebone C I/O library Chapter C

#define GPIO_MOTORDIR_PATH "/sys/class/gpio/gpio70/"

#define GPIO_STBY_PATH "/sys/class/gpio/gpio73/"

#define EQEP_PATH "/sys/devices/ocp.3/48302000.epwmss/48302180.eqep/"

If these sysfs directories don’t exist, execute the following lines to create them:

$ export SLOTS=$(find /sys/devices -name slots)

$ echo am33xx_pwm > $SLOTS

$ echo bone_pwm_P8_34 > $SLOTS

$ echo bone_eqep1 > $SLOTS

$ echo 70 > /sys/class/gpio/export

$ echo 73 > /sys/class/gpio/export

Notes:

• the slots file on my machine lives at /sys/devices/bone capemgr.9/slots.

• The Exploring Beaglebone book’s Fig 6-6 shows that P8 45 (that I con-

nected to the motor driver’s “direction” pin) is GPIO 70, and P8 44 (I

connected to “brake” / standby) is GPIO 73.

• The EQEP directory may be named slightly different; find the precise one

with

$ find /sys/devices/ -iname "*qep*"

122

Beaglebone C I/O library Chapter C

• The same goes for the PWM; use find /sys/devices/ -name duty to

find it.

• Running Python’s Adafruit library wipes out the sysfs entries, e.g,

Adafruit BBIO.PWM.cleanup(),

so you will have to re-echo them to recreate them.

The motor driver draws power from a Dell desktop power supply’s 12V line.

I hard-coded the PWM period to 50kHz. The rotary encoder seems to have a

resolution of 1500 lines per revolution:

#define MAX_VOLTAGE 11.7 // Volts, Dell desktop power supply

#define NS_PER_PWM_PERIOD 20000 // ns per PWM period

#define NS_PER_PWM_PERIOD_STR "20000"

#define EQEP_PER_REV 1500 // I counted by hand, rough estimate

C.4.1 C functions provided

• PWM

– stop() / run(): write 0 / 1 to the “run” PWM sysfs entry

– rawduty(char* c, int len): write a string to the “duty” sysfs file:

“20000” is 0% duty cycle, “0” is 100% duty cycle

– duty(double d): write 0 - 100% to the “duty” sysfs file

123

Beaglebone C I/O library Chapter C

– voltage(double v): convert voltage v into a duty cycle & GPIO

direction and change them appropriately

• GPIO

– stby() / unstby(): set P8 44 to 1 / 0

– cw() / ccw(): set P8 45 to 1 / 0

• EQEP

– int eqep counts(): read eqep “position” file as an int

– double shaft angle deg(): gets eqep position and converts to de-

grees

C.5 Details / Notes

• Note: PWM period is set in something like

/sys/devices/ocp.3/pwm test P8 34.18/period

with units of “ns per PWM cycle”.

• Note: in sysfs, the ‘duty’ file is given in ns, not %. Ex: if period is set to

20000 (ns), then duty takes value between 0 (for 100% duty cycle) to 20000

(for 0% duty cycle)

• Note: polarity is switched on pwm:

124

Beaglebone C I/O library Chapter C

– to do 0% duty cycle, you must write same value to

/sys/devices/ocp.3/pwm test P8 34.18/duty

as you wrote to

/sys/devices/ocp.3/pwm test P8 34.18/period.

– To get 100% duty, must write 0 to duty.

C.5.1 Background: sysfs entries

The BBB uses a sysfs filesystem to provide a userspace interface to the hardware.

For example, set up a 50kHz PWM on pin P8 34 like this:

echo bone_pwm_P8_34 > /sys/devices/bone_capemgr.9/slots

(Note that the location of slots changes between versions of the BBB kernel.)

That creates the directory

/sys/devices/ocp.3/pwm_test_P8_34.18/ (your .18 may be different)

with files like duty, period, and run. Now turn on the PWM:

echo 20000 > period # 20000 ns per PWM cycle => 50kHz

echo 10000 > duty # 50% duty cycle

echo 1 > run

C.5.2 Hardware setup notes

• cw 1 rev: eqep changes by -1450

• ccw 1 rev: eqep changes by 1500

125

Beaglebone C I/O library Chapter C

• the motor may have a gearbox inside.

• stby low: motor turns; hi: motor stops

• pwm 10%: just barely turns. stutters. sometimes stops

• dir pin low: motor turns cw; high: ccw

C.5.3 Sign conventions

For the shaft angle deg() and voltage() functions:

• ccw is positive angle

• positive motor voltage turns motor cw

• cw 1 rev => -1500 encoder ticks

C.5.4 Motor specifications

• motor coil resistance: 14 ohms

• motor coil inductance: 11.52 mH

• rotary encoder: 1500 lines / rev, roughly

C.5.5 Troubleshooting

The EQEP driver isn’t included in the stock BBB kernel, so the command

echo bone eqep1 > $SLOTS

will fail in dmesg; update kernel to latest with

126

Beaglebone C I/O library Chapter C

cd /opt/scripts/tools/

git pull

sudo ./update_kernel.sh

sudo reboot

(Source: http://elinux.org/Beagleboard:BeagleBoneBlack_Debian)

Now you should have

find /lib/firmware -iname "*qep*"

/lib/firmware/bone_eqep0-00A0.dtbo

/lib/firmware/bone_eqep1-00A0.dtbo

/lib/firmware/bone_eqep2b-00A0.dtbo

/lib/firmware/bone_eqep2-00A0.dtbo

Check your new OS version with uname -a:

Linux beaglebone 3.8.13-bone81 #1 SMP

Fri Oct 14 16:04:10 UTC 2016 armv7l GNU/Linux

Make a shell variable SLOTS pointing to your slots file that organizes your

DTOs:

$ export SLOTS=$(find /sys/devices -name slots)

On my BB, $SLOTS is /sys/devices/bone capemgr.9/slots.

Load Device Tree Overlays:

$ echo am33xx_pwm > $SLOTS

$ echo bone_pwm_P8_34 > $SLOTS

$ echo bone_eqep1 > $SLOTS

Have them added automatically by adding to /boot/uboot/uEnv.txt:

optargs=capemgr.disable_partno=BB-BONELT-HDMI,BB-BONELT-HDMIN \

capemgr.enable_partno=BB-ADC,bone_pwm_P8_34,am33xx_pwm,bone_eqep1

127

http://elinux.org/Beagleboard:BeagleBoneBlack_Debian

Appendix D

PASM syntax highlighter

This section contains instructions for configuring Sublime Text 3 to syntax-

highlight the pasm code used by the Beaglebone Black’s Programmable Real-time

Unit (PRU). Figure D.1 shows what this looks like. The pasm commands are

listed in the following Texas Instruments webpage [12, 13].

D.1 Installation instructions

1. Copy the code in Section D.2 into a new file pasm.sublime-syntax. Note:

in the match: lines, remove the newlines and backslashes so as to make a

single long line.

2. Put the file pasm.sublime-syntax in the place where Sublime Text looks

128

PASM syntax highlighter Chapter D

Figure D.1: After installing pasm.sublime-syntax, Sublime Text 3 displays
pasm code correctly syntax-highlighted.

for syntax definitions:

• Mac: /Users/justin/Library/Application Support/Sublime Text

3/Packages/User/

• Linux: ~/.config/sublime-text-3/Packages/User/

3. Restart Sublime Text.

4. In the lower-right language selection, you should see ‘pasm’ (see Figure D.1).

129

PASM syntax highlighter Chapter D

D.2 Syntax-highlighting code

%YAML 1.2

name: pasm

file_extensions: p

scope: source.pasm

contexts:

main:

Assembly instructions

- match: \b(ADD|ADC|SUB|SUC|RSB|RSC|LSL|LSR|AND|OR|XOR|NOT\

|MIN|MAX|CLR|SET|SCAN|LMBD|MOV|LDI|MVIB|MVIW\

|MVID|LBBO|SBBO|LBCO|SBCO|LFC|STC|ZERO|JMP|JAL\

|CALL|RET|QBGT|QBGE|QBLT|QBLE|QBEQ|QBNE|QBA\

|QBBS|QBBC|WBS|WBC|HALT|SLP|LOOP|add|adc|sub\

|suc|rsb|rsc|lsl|lsr|and|or|xor|not|min|max\

|clr|set|scan|lmbd|mov|ldi|mvib|mviw|mvid|lbbo\

|sbbo|lbco|sbco|lfc|stc|zero|jmp|jal|call|ret\

130

PASM syntax highlighter Chapter D

|qbgt|qbge|qblt|qble|qbeq|qbne|qba|qbbs|qbbc\

|wbs|wbc|halt|slp|loop)\b

scope: entity.name.function

Dot commands

- match: \.origin|\.entrypoint|\.setcallreg|\.macro|\

\.mparam|\.endm|\.struct|\.ends|\.u8|\.u16|\

\.u32|\.assign|\.enter|\.leave|\.using

scope: entity.name.function

Preprocessor directives

- match: (#include|#define|#undef|#error\

|#ifdef|#ifndef|#endif|#else)

scope: keyword.control.import.include

Comments

- match: //.*$

scope: comment

Numbers: 123

- match: \b[0-9]+\b

131

PASM syntax highlighter Chapter D

scope: constant.numeric

Hex numbers: 0xC, 0xff

- match: \b(0x[0-9A-Fa-f]+)\b

scope: constant.numeric

Binary numbers: 0b11011000

- match: \b(0b[01]+)\b

scope: constant.numeric

Labels: "INIT_ADC:"

- match: ([0-9a-zA-Z_]+)(:)

scope: keyword.control

Registers: R3

- match: ([rR]\d\d?)

scope: storage

Constant registers: C12

- match: ([cC]\d\d?)

scope: storage.type

132

PASM syntax highlighter Chapter D

Bits & words: R3.t15, C12.w3

- match: \.[tw]\d\d?

scope: storage.type

Strings: "hello world"

- match: \".*\"

scope: string

133

Bibliography

[1] R Alur, K-E Arzen, John Baillieul, TA Henzinger, Dimitrios Hristu-
Varsakelis, and William S Levine. Handbook of networked and embedded
control systems. Springer Science & Business Media, 2007.

[2] K.J. Aström. Event based control. In Analysis and Design of Nonlinear
Control Systems: In Honor of Alberto Isidori, page 127. Springer Verlag,
2007.

[3] K.J. Aström and B.M. Bernhardsson. Comparison of Riemann and Lebesgue
sampling for first order stochastic systems. In Decision and Control, 2002,
Proceedings of the 41st IEEE Conference on, volume 2, pages 2011 – 2016,
dec. 2002.

[4] Sanjeev Baskiyar and Natarajan Meghanathan. A survey of contemporary
real-time operating systems. Informatica (Slovenia), 29(2):233–240, 2005.

[5] R.W. Brockett and D. Liberzon. Quantized feedback stabilization of linear
systems. Automatic Control, IEEE Transactions on, 45(7):1279–1289, Jul
2000.

[6] G. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling
Algorithms and Applications. Real-Time Systems Series. Springer US, 2011.

[7] J. Chaoui, K. Cyr, S. de Gregorio, J. P. Giacalone, J. Webb, and Y. Masse.
Open multimedia application platform: enabling multimedia applications in
third generation wireless terminals through a combined risc/dsp architecture.
In 2001 IEEE International Conference on Acoustics, Speech, and Signal
Processing. Proceedings (Cat. No.01CH37221), volume 2, pages 1009–1012
vol.2, 2001.

[8] T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley, 2012.

[9] R. Goebel, R.G. Sanfelice, and A. Teel. Hybrid Dynamical Systems: Model-
ing, Stability, and Robustness. Princeton University Press, 2012.

134

[10] R. Grepl. Real-time control prototyping in matlab/simulink: Review of tools
for research and education in mechatronics. In 2011 IEEE International
Conference on Mechatronics, pages 881–886, April 2011.

[11] João Pedro Hespanha, Antonio Ortega, and Lavanya Vasudevan. Towards
the control of linear systems with minimum bit-rate. In Proc. of the Int.
Symp. on the Mathematical Theory of Networks and Syst., Aug. 2002.

[12] Texas Instruments. PRU Assembly Instructions, 2017 (accessed January
23, 2017). http://processors.wiki.ti.com/index.php/PRU_Assembly_

Instructions.

[13] Texas Instruments. PRU Assembly Reference Guide, 2017 (accessed January
23, 2017). http://processors.wiki.ti.com/index.php/PRU_Assembly_

Reference_Guide.

[14] E. Kofman and J.H. Braslavsky. Level crossing sampling in feedback sta-
bilization under data-rate constraints. In Decision and Control, 2006 45th
IEEE Conference on, pages 4423–4428, Dec 2006.

[15] Christoph Lameter. Numa (non-uniform memory access): An overview.
Queue, 11(7):40:40–40:51, July 2013.

[16] Daniel Lehmann and Jan Lunze. Event-based control using quantized state
information. In Proc. of the 2nd IFAC Workshop on Distributed Estimation
and Control in Networked Systems (NecSys’10), pages 1–6, Sep. 2010.

[17] Lichun Li, Xiaofeng Wang, and Michael Lemmon. Stabilizing bit-rates
in quantized event triggered control systems. In Proceedings of the 15th
ACM international conference on Hybrid Systems: Computation and Con-
trol, pages 245–254. ACM, 2012.

[18] Jan Lunze and Daniel Lehmann. A state-feedback approach to event-based
control. Automatica, 46(1):211 – 215, 2010.

[19] A. Matveev and A. Savkin. Multirate stabilization of linear multiple sensor
systems via limited capacity communication channels. SIAM Journal on
Control and Optimization, 44(2):584–617, 2005.

[20] A. Matveev and A. Savkin. An analogue of Shannon information theory
for detection and stabilization via noisy discrete communication channels.
SIAM Journal on Control and Optimization, 46(4):1323–1367, 2007.

[21] Andrew McPherson and Victor Zappi. An environment for submillisecond-
latency audio and sensor processing on beaglebone black. In Audio Engi-
neering Society Convention 138. Audio Engineering Society, 2015.

135

http://processors.wiki.ti.com/index.php/PRU_Assembly_Instructions
http://processors.wiki.ti.com/index.php/PRU_Assembly_Instructions
http://processors.wiki.ti.com/index.php/PRU_Assembly_Reference_Guide
http://processors.wiki.ti.com/index.php/PRU_Assembly_Reference_Guide

[22] Derek Molloy. Exploring BeagleBone: Tools and Techniques for Building
with Embedded Linux. John Wiley & Sons, 2014.

[23] E. Monmasson and M. N. Cirstea. Fpga design methodology for industrial
control systems — a review. IEEE Transactions on Industrial Electronics,
54(4):1824–1842, Aug 2007.

[24] Girish N. Nair and Robin J. Evans. Exponential stabilisability of finite-
dimensional linear systems with limited data rates. Automatica, 39(4):585 –
593, 2003.

[25] G.N. Nair. A nonstochastic information theory for communication and state
estimation. Automatic Control, IEEE Transactions on, 58(6):1497–1510,
June 2013.

[26] G.N. Nair and R.J. Evans. Communication-limited stabilization of linear
systems. In Decision and Control, 2000. Proceedings of the 39th IEEE Con-
ference on, volume 1, pages 1005 –1010, 2000.

[27] Justin Pearson. Beaglebone Motor Demo, 2017 (accessed Feb 13, 2017).
https://github.com/justinpearson/Beaglebone-Motor-Demo.

[28] Justin Pearson. Beaglebone drives a motor from the command line,
2017 (accessed Jan 27, 2017). https://github.com/justinpearson/

Beaglebone-motor-from-command-line.

[29] Justin Pearson, João Pedro Hespanha, and Daniel Liberzon. Quasi-
optimality of event-based encoders. In Proc. of the 54nd Conf. on Decision
and Contr., pages 4800–4805, Dec. 2015.

[30] Justin Pearson, João Pedro Hespanha, and Daniel Liberzon. Control with
minimal cost-per-symbol encoding and quasi-optimality of event-based en-
coders. IEEE Trans. on Automat. Contr., 62(5):2286–2301, May 2017.

[31] Jan Reineke, Björn Wachter, Stefan Thesing, Reinhard Wilhelm, Ilia Po-
lian, Jochen Eisinger, and Bernd Becker. A Definition and Classification of
Timing Anomalies. In Frank Mueller, editor, 6th International Workshop
on Worst-Case Execution Time Analysis (WCET’06), volume 4 of Ope-
nAccess Series in Informatics (OASIcs), Dagstuhl, Germany, 2006. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[32] Stefano Rinaldi, Paolo Ferrari, and Matteo Loda. Synchronizing low-cost
probes for iec61850 transfer time estimation. In Precision Clock Synchroniza-
tion for Measurement, Control, and Communication (ISPCS), 2016 IEEE
International Symposium on, pages 1–6. IEEE, 2016.

136

https://github.com/justinpearson/Beaglebone-Motor-Demo
https://github.com/justinpearson/Beaglebone-motor-from-command-line
https://github.com/justinpearson/Beaglebone-motor-from-command-line

[33] H. Sanchez, B. Kuttanna, T. Olson, M. Alexander, G. Gerosa, R. Philip, and
J. Alvarez. Thermal management system for high performance powerpc/sup
tm/ microprocessors. In Proceedings IEEE COMPCON 97. Digest of Papers,
pages 325–330, Feb 1997.

[34] Alan J. Smith. Disk cache — miss ratio analysis and design considerations.
ACM Trans. Comput. Syst., 3(3):161–203, August 1985.

[35] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A primer on memory con-
sistency and cache coherence. Synthesis Lectures on Computer Architecture,
6(3):1–212, 2011.

[36] Per Stenström, Truman Joe, and Anoop Gupta. Comparative performance
evaluation of cache-coherent numa and coma architectures. SIGARCH Com-
put. Archit. News, 20(2):80–91, April 1992.

[37] P. Tabuada. Event-triggered real-time scheduling of stabilizing control tasks.
Automatic Control, IEEE Transactions on, 52(9):1680 –1685, sept. 2007.

[38] P. Tallapragada and N. Chopra. On co-design of event trigger and quantizer
for emulation based control. In American Control Conference (ACC), 2012,
pages 3772–3777, June 2012.

[39] P. Tallapragada and J. Cortes. Event-triggered stabilization of linear systems
under bounded bit rates. ArXiv e-prints, May 2014.

[40] S. Tatikonda and S. Mitter. Control under communication constraints. Au-
tomatic Control, IEEE Transactions on, 49(7):1056 – 1068, july 2004.

[41] Sekhar C. Tatikonda. Control under communication constraints. PhD thesis,
Massachusetts Institute of Technology, 2000.

137

	Acknowledgements
	Curriculum Vitae
	Abstract
	List of Figures
	List of Tables
	Introduction
	Control with Minimum Energy Per Symbol
	Problem Statement
	Necessary condition for boundedness with limited-communication encoders
	Sufficient condition for stability with limited-communication encoders
	Numerical example
	Conclusion

	Quasi-optimality of Event-based control
	Definition of the event-based scheme
	Main result and proof
	Numerical example
	Conclusion

	Preemption-resistant control on a non-real-time operating system
	Real-time I/O coprocessor concept
	Experimental results
	Conclusion

	Proofs of lemmas
	Beaglebone Black / DC motor test-bed
	Summary
	Hardware setup
	Software setup
	Background

	Beaglebone C I/O library
	Introduction
	Quick-start
	Hardware setup
	Software
	Details / Notes

	PASM syntax highlighter
	Installation instructions
	Syntax-highlighting code

	Bibliography

