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Abstract

Visual Analytics for

Domain-Specific Knowledge Exploration and Exploitation

In the past decade, the proliferation of data and the emergence of large language

models have presented both opportunities and challenges in academia. The expanding

volume of data, which records knowledge from various human activities, enables data-

driven approaches to optimizing numerous aspects of industrial manufacturing and

people’s daily life. These improvements largely stem from machine learning models

trained with this data. However, the industry still faces limitations in both extracting

knowledge from large, unstructured, or heterogeneous datasets and transforming the

extracted knowledge into actionable insights. This challenge is exacerbated in highly

specialized domains where only a few analysts possess the expertise to interpret the

data. Despite the recent advancements of large language models providing more

intelligent assistance for many data analysis tasks, it remains essential to ensure that

these machine learning models and the knowledge they encompass are safe to use and

employed for social good with human verification.

In my dissertation work, I develop visual analytics (VA) and human-computer in-

teraction (HCI) methodologies for representing and interacting with various forms of

knowledge and data, particularly text data. I propose a visual knowledge discovery

framework that integrates human expertise with computational approaches through-

out the knowledge discovery process, while also addressing the limited availability of

domain experts and the increasing scale of data. Moreover, I investigate how visual

analytics can efficiently and safely harness extensive knowledge from large machine

learning models, enabling users to effectively steer the exploration process and make

well-informed decisions.

This dissertation presents six published research works organized around my vi-

sual knowledge discovery framework and its three key tasks: knowledge exploration,

knowledge presentation, and knowledge exploitation. Firstly, I demonstrate how vi-
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sual analytics can support knowledge exploration with large, high-dimensional, and

heterogeneous data in the domain of manufacturing and machine maintenance. Sub-

sequently, I introduce two knowledge presentation solutions for two distinct types of

data—numerical data facts and unstructured text data. Lastly, I showcase three visually-

assisted knowledge exploitation applications in various domains and scenarios, encom-

passing document summarization, technical text annotation, and data-driven machine

learning model validation.

My work demonstrates how mixed-initiative methods through visual analytics ap-

plications can resolve real-world challenges in highly-specialized domains. I leverage

state-of-the-art machine learning techniques, particularly natural language processing

models, while always involving domain practitioners in the loop. My approach fa-

cilitates communication among parties with mismatched knowledge levels, including

domain experts, data analysts, computer scientists, and artificial intelligence. Mean-

while, I prioritize the critical role of human knowledge and integrate it into intelligent

visualization interfaces that undergo qualitative evaluations. I believe that domain ex-

perts’ insights, supervision, and verification are invaluable, regardless of how advanced

machine learning techniques become. Through the projects outlined in this disserta-

tion, I hope to encourage philosophical and social discussions surrounding the rapidly

expanding field of artificial intelligence. Ultimately, my objective is to contribute to

a future where intelligent visual analytics systems can augment and enhance human

capabilities, enabling individuals to navigate through the potential challenges brought

by advanced AI techniques.
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Chapter 1
Introduction

1.1 Motivation
Over the past decade, there has been a significant increase in interest and applications

of artificial intelligence across various research fields. Large language models such as

BERT [85], CLIP [264], and GPT-4 [266] have emerged and demonstrated their ability to

solve complex, cross-modal tasks and generate exceptional results. More recently, the

booming of online artificial intelligence systems like ChatGPT [267] and DALL-E [265]

has made these large machine-learning models more accessible to a broader range of

users and has attracted significant societal attention. However, it is crucial to be aware

that the outstanding capability of these large machine learning models is built upon

the proliferation of training data and the knowledge embedded within it, which is a

double-edged sword for all users. On the one hand, such models could serve as more

comprehensive knowledge sources and powerful intelligent assistants to support vari-

ous tasks, such as question answering, recommendation, and generation. On the other

hand, the quality and reliability of the data can significantly influence the performance

and output of the machine learning models, making it unwise to treat them as com-

plete black boxes and rely solely on them without any human verification. Therefore,

it is essential to ensure that these machine learning models and the knowledge they

contain are safe to use and used for social good, truly benefiting people’s daily lives,

commercial interactions, and industrial manufacturing.

It is important to note the significant challenge presented by the management and

integration of diverse forms of knowledge from humans, data, and machine learning

models. Knowledge entwined with data can appear in various formats, with its volume

and complexity continually escalating. This intricacy is further intensified in highly
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specialized domains where data is interpretable only by experts possessing substantial

domain knowledge. Such data interpretation process is often time-consuming and

resource-intensive, often requiring experts to review thousands of entries. While the

recent emergence of large machine learning models offers a new way of storing and

utilizing knowledge, human involvement remains indispensable for directing model

behavior and making crucial decisions.

In my dissertation research, I employ visual analytics—"the science of analytical

reasoning facilitated by interactive visual interfaces" [76]—to address these challenges.

My work assists domain experts and practitioners in comprehending and engaging

with data and machine learning models, and ensure that they can steer the knowledge

exploration and exploitation process according to their expertise and at their discretion.

In particular, I accomplish the following three research objectives in collaboration with

my colleagues and published multiple research papers:

1. Develop user-friendly visual analytics tools to aid domain experts in examining

knowledge within large and complex datasets;

2. Determine suitable visualizations for presenting existing knowledge originating

from diverse sources and various forms;

3. Establish robust workflows for capitalizing on the amalgamated knowledge in a

secure, reliable, and personalized manner.

In the remainder of this chapter, a background description is furnished in Section

1.2 to establish the theoretical foundation of this dissertation. Subsequently, a overview

of the content is presented in Section 1.3, encompassing my contributions to each task

and the corresponding publications.

1.2 Background
To facilitate a comprehensive understanding of the work presented in this disserta-

tion, this section provides a concise review of the relevant background. First, I define

domain-specific knowledge, outline its two categories, and discuss the associated chal-

lenges. Next, I examine existing knowledge discovery models and propose a visual

2



knowledge discovery framework based on these models. Lastly, I delineate the role of

visual analytics in three core tasks of this framework: knowledge exploration, knowl-

edge exploitation, and knowledge presentation. The content of this dissertation is

organized according to these three tasks, ensuring a coherent and logical presentation

of the research findings.

1.2.1 Domain-Specific Knowledge
Domain-specific knowledge is a concept with various definitions and transdisciplinary

developments in the literature of educational research, psychology, linguistics, and

philosophy of science. One of the original and higher-level definitions of domain

knowledge comes from the field of educational research, which identifies three key

elements of domain knowledge: declarative knowledge (knowing that), procedural knowledge

(knowing how), and conditional knowledge (knowing when and where) [7]. This dissertation

is informed by this definition, but contextualized to the perspective of library and

information science (LIS), where the main focus is “highly selective and relevant knowledge

that is to provide users with as complete a view as possible of theories, topics, and approaches

to a given subject and make it possible for them to be informed and to select according to

their needs” [156], rather than “automated commonplace” knowledge. Such knowledge

typically has to be learned from domain experts or specialists and can vary in forms.

As Nonaka et al. describe in the “Knowledge-Creating Company” [257], knowl-

edge can be classified into two categories: tacit knowledge and articulated knowledge,

which lie at opposite poles of the epistemological dimension. In the context of domain-

specific knowledge, tacit knowledge encompasses unformatted insights about the do-

main dataset, experience regarding the priority of multiple domain tasks, and action-

able decisions from domain experts. At the other end of the pole, tacit knowledge

can be formatted into articulated knowledge, which includes unstructured documents,

structured tables, knowledge graphs (such as ontology), and more. In recent years,

the advent of artificial intelligence has also enabled the integration of domain-specific

knowledge into large machine learning models, particularly large language models like

BERT [85] and GPT-4 [266], which can be leveraged for specific prediction tasks.
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The exploration and exploitation of domain-specific knowledge can be a difficult

task. First, capturing and formalizing tacit knowledge is challenging due to communica-

tion barriers between domain experts and knowledge engineers, so they must establish

a common language and develop a shared vocabulary to communicate effectively. Even

if tacit knowledge is formatted into articulated knowledge, it may still be incomplete,

inconsistent, and difficult to share. For example, articulated knowledge formatted as

unstructured text can be terse and jargon-laden and may vary in consistency across data

entry personnel. In such cases, developing a lexicon, or domain-specific vocabulary, is

often necessary to interpret text data in a semantically consistent way. The General In-

quirer [339] is one of the earliest attempts to build a lexicon for the content analysis of the

text. More recently, researchers have developed word embeddings—representations

of words and their semantic relationships in a vector space—to “characterize words

by the company they keep” [109]. However, it is critical to verify the reliability of

knowledge in such word embeddings or large machine learning models before apply-

ing them to real-world applications. For instance, the ChatGPT chatbot [267], powered

by GPT models [266], has been known to provide plausible answers with inaccurate

“facts”. In this dissertation, I introduce multiple visual analytics techniques to provide

human-in-the-loop solutions to these issues, particularly human-centered AI [323] and

explainable AI [15,353], to leverage knowledge from large machine learning models in

a trustworthy manner.

1.2.2 Domain-Specific Knowledge Discovery Models
Knowledge discovery, as a nontrivial information extraction process, aims to identify

implicit, previously unknown, and potentially useful patterns from the dataset [113].

Knowledge discovery in database (KDD) is a broad and well-established research area

that has been studied by researchers from academia and industry over the past thirty

years. It is also referred to as data mining by researchers in this area, for their shared

interest in machine discovery, machine learning, data visualization, knowledge acqui-

sition, knowledge-based systems [110], etc. The scope of this dissertation overlaps with

KDD in the field of domain-specific knowledge exploration and exploitation with visual
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Figure 1.1: The linear pipeline of knowledge discovery in database proposed by Mitra et al. [244]

analytics technology. Respectively, knowledge exploration is related to the searching,

sensemaking, and innovation of new possibilities, while knowledge exploitation is re-

lated to the selection, refinement, and presentation of old certainties [229]. They are

also two typical roles knowledge could play in a linear KDD pipeline—as input or out-

put. However, I consider it more reasonable to model the entire KDD process as a loop

where both knowledge exploration and exploitation happen. I will review dominant

knowledge discovery models and introduce my loop model in the following text.

To streamline the knowledge discovery process, it is critical to understand the key

analysis steps involved and identify areas where visual analytics (VA) tools can provide

assistance. Knowledge discovery models or workflows may differ in their structure, key

steps, and application domain, depending on the specific requirements of the analysis

tasks. To emphasize the advantages of loop models over linear models, I categorize

existing models into three groups based on the presence and location of iterations

within the workflow:

Naive Linear Model. Linear models without any iterations are quite rare and

mostly appeared in the early stage of this research field. Date back to 1993, Matheus

et al. proposed their “idealized knowledge-discovery system” as a linear pipeline with

user input and knowledge base paralleled with the main workflow [231]. Mobasher

et al. also provided a linear workflow with several parallel paths, but the input was

slightly different because the model was specially designed for pattern discovery in

world wide web transactions [245]. In Mitra et al.’s later survey about data mining

in soft computing tools [244], they separate the KDD process into seven stages and
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Figure 1.2: The famous KDD process proposed by Fayyad et al. [102–104,108]

organize them linearly ( Figure 1.1). The advantage of such models exists in their

simplicity and clearness. However, the lack of feedback from the later steps limits the

amount and quality of knowledge they could discover.

Linear Model with Inner Feedback. This type of model is featured by small inner

loops among several steps inside the pipeline, but the output knowledge is not directly

fed back to the input one. One representative model of this type is the well known

KDD process proposed by Fayyad et al. ( Figure 1.2) [102–104, 108]. In this model,

there is an interaction between any two steps in the pipeline, but the overall process

is still linear instead of a complete loop. Similar models can be seen in [83, 114] with

minor adjustment of step names and where the inner loops take place. In particular,

[114] emphasizes the role of visualization in the process of knowledge discovery, and

two transformation operations are added before and after the visualization stage to

accommodate the data. Pragmatic as these models are, knowledge is considered as

static patterns inherit from the input data instead of the sustainable resource that can

be iteratively used to inspire new observations.

Circular Model. In 1992, Frawley et al. framed the process of knowledge discovery

in databases as an iterative loop [113], where the domain-knowledge acts both as an

output and as an input of the discovery system (Figure 1.3). This framework provides

the foundation for my visual knowledge discovery model. Besides, circular knowledge

discovery models for the general purpose also appear in [21, 158, 280] as well as the
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Figure 1.3: The loop of knowledge discovery in database proposed by Frawley et al [113].

series work by Silberschatz and Tuzhilin [324–326]. In particular, [21] provides a unique

framework about knowledge creation derived from [257], where articulated knowledge

and tacit knowledge are contrasted as the two poles of the epistemological dimension.

Circular models are also widely utilized for domain-specific knowledge discovery. For

instance, the model introduced by Shaw et al. [316] is for knowledge management and

data mining for marketing. Wagner et al. described a knowledge generation loop for

clinical gait analysis [366], in which the role of clinician and patients is specified. In the

field of maintenance and manufacturing, the application domain ofchapter 2, there are

also quite a few circular models being proposed [61,65].

1.2.3 Visual Knowledge Discovery Framework
As mentioned above, I base my visual analytics framework for knowledge exploration

and exploitation (see Figure 1.4) on the knowledge discovery loop proposed by Fraw-

ley et al. [113]. Unlike Frawley’s framework, which centers around a discovery method

comprising search and evaluation algorithms, my framework places an interactive vi-

sual interface at its core to highlight the crucial role of interactive discovery. For the

same purpose, I consolidate the “selection”, “preprocessing”, and “transformation”
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Figure 1.4: The visual knowledge discovery framework proposed in this dissertation.

steps in the classic Fayyad model [103] into step 1 in my framework. After incorpo-

rating domain-specific knowledge, the “transformed data” would contain sufficient

information for the interactive visual interface (step 2). Step 4 represents the con-

tinuous interaction among the technician/analyst, the visualization dashboard, and

the underlying machine learning model to harness existing articulated knowledge and

extract new tacit knowledge. I refer to this process as “knowledge exploration” and

discuss further details in section 1.2.3.1. Both steps 2 and 4 necessitate careful design

for “knowledge presentation”, which I address in section 1.2.3.2. Finally, the extracted

knowledge that passes evaluation (step 3) constitutes the initial result of the first iter-

ation. To incorporate this feedback into subsequent iterations, I either directly update

the transformed data (step 5) or update the domain-specific knowledge database or

machine learning model (steps 6 and 7). I name this process “knowledge exploitation”

and will discuss it in section 1.2.3.3.

1.2.3.1 Knowledge Exploration

To define knowledge exploration, I would first refer to John Tukey’s famous description

of exploratory data analysis (EDA)—“looking at data to see what it seems to say”—from

his 1977 book [356]. Knowledge exploration is a special case of EDA where the goal is

to discover “implicit, previously unknown and potentially useful patterns” [113].
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The preference of users towards visualizations and interactions in the exploration

process can vary greatly depending on specific tasks and challenges. Kandel et al.

summarize five high-level data analysis tasks, i.e. discover, wrangle, profile, model,

and report, in their interview study with 35 enterprise analysts [172]. Alspaugh et

al. identify multiple challenges in the exploratory analysis process corresponding to

these tasks based on their interview study with 30 professional data analysts [9]. More-

over, with the constant increase of data size and complexity, the more heterogeneous

and multiple-dimensional dataset has imposed new challenges to the exploration pro-

cess [11, 38, 385]. In response to these tasks and challenges, Blascheck et al. observe

seven exploration strategies including eyes only, reading text, opportunistic interac-

tions, entry points, structural interactions, permutation interactions, and leveraging

the familiar after tracking and analyzing the eye movement and interaction data of 24

participants in a controlled environment [27].

To accommodate the various exploration tasks and strategies, I utilize a similar

principle as that used in [172] to categorize existing research and tools. In the original

paper, the authors identified three archetypes: the hacker, the scripter, and the appli-

cation user, based on their programming proficiency and preferred tools. Within the

context of this dissertation, I categorize these archetypes as three exploration patterns,

each featuring a different archetype based on the primary type of knowledge possessed

by the user, namely programming, modeling, and domain knowledge, respectively.

Users with more programming knowledge (hackers) are capable of manipulating

the source data and tend to customize the analysis workflow by themselves. Visual

analytics tools serving this group of users need to allow more interaction and opera-

tion flexibility, or even exposes the plug-in interface to them. For instance, the event

sequence exploration interface developed by Law et al. supports a recursive manner

for users to interweave self-defined queries and interactive pattern mining during the

exploration process [194]. The knowledge retrieval system developed by Stitz et al. also

allows users to define an analysis state by explicitly formulating a search query [338]. In

recent years, there has been a trend of presenting visual analytics techniques as interac-
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tive notebooks [119,203,403] to accommodate this group of users’ inclination to design

their workflow using lower-level programming languages [172]. In Chapter 6, I present

my solution for technical text annotation verification and customization as a computa-

tional notebook. Additionally, hackers are more accepting of complex interactions and

corresponding algorithms, such as edge bundling for biclustering algorithms [341] or

minimum description length principle [51], which allows for the integration of more

robust tools irrespective of their steep learning curve. It is worth noting that this group

of users tends to develop less sophisticated statistical models than scripters due to their

focus on prior-modeling steps and limited knowledge of modeling [172].

Indeed, the knowledge of mathematical modeling grants the second group of users

(scripters) the ability to build and evaluate more advanced models. The correspond-

ing visualization tools need to provide more complete and intuitive ways for users

to explore the models as well as more reliable measures to test them. Plenty of re-

search work has made such effort to facilitate easier correlation detection [401], model

comparison [75, 89], parameter tuning [50, 300] and result comparison [92]. To win

the trust of users in this group towards the analysis result is also challenging, due to

their rigorous skepticism along with excessive knowledge about the pros and cons of

those models. For instance, Xu et al. visualize the complete ensemble analysis process

and provide an intuitive comparison to support the evaluation of the anomaly detec-

tion algorithms [388]. Blumenschein et al. provide automatically calculated statistical

measures to increase the users’ trust in the patterns revealed by the system [28].

Finally, there are domain experts who, though might not understand too much about

the underlying statistical or implementation mechanism of the tool, possess abundant

knowledge of the specific application domain and the data (application user). The

knowledge required to interpret the data is sometimes out of the scope of the tool

developers, so collaboration between developers and the domain experts is critical.

One typical example is the multiscale visual drill-down tool developed by Furmanova

et al. to assist proteomic experts in exploring multi-body protein complexes [120].

To fulfill the need of this user group, the information provided by the tool need to
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be concise but accurate. One neat solution is to build the visualization upon the

primary structure or relationship embedded in the dataset, which allows users to

quickly align the views they see with their knowledge about the dataset. For instance,

a tree-like graph can be used to resemble hierarchical genealogy [256] while node-link

graph and density map can simulate social connections in social network datasett [213,

384]. There are even automatic tools to completely free domain experts from the

tedious learning curve of new tools, such as Gramazio’s automated classifiers for cancer

genomics visualization [132]. There is also a trustiness issue for this group of users,

but it is more related to their level of understanding of the underlying mechanism of

the tool. To make sure the domain experts trust the tool and the result provided by

it, the cybersecurity analysis tool developed by Goodall et al. not only facilitates them

identifying anomalous IPs, but also provides additional context information explaining

why they are anomalous [130].

1.2.3.2 Knowledge Presentation

My dissertation work centers on knowledge representations that leverage visual inter-

faces to present knowledge, which I refer to as knowledge presentation. This aspect is

a essential component in almost all visual analytics systems intended for knowledge

discovery. The choice of knowledge presentation techniques varies based on the ap-

plication scenario and target audience. For instance, according to Chandrasegaran et

al.’s review on knowledge representation in product design systems [55], which ex-

amines the classification and implementation of knowledge representation in product

design, popularization could be used for educational purposes, communication for

collaborative purposes, and sensemaking for exploration purposes.

One of the primary tasks of knowledge presentation is to support knowledge ex-

ploration, sensemaking, and analysis. This requires carefully selecting and presenting

specific information at the right moment and in the right place to meet the different

requirements of the exploration stages. Following the famous mantra for visual infor-

mation seeking, “Overview first, zoom and filter, then details-on-demand” [322], the

first critical information to be presented is an overview of the dataset. Ideally, intuitive
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and concise representations such as hierarchical layout [126, 319], geographical distri-

bution [368], or clustering information [206,386] can reveal the primary structure of the

data during this stage. As the user interacts with the system via various operations,

more details need to be presented without overwhelming the users. Numerous pre-

vious works have adopted Lindstrom’s [211] level of detail (LOD) principle and show

different information granularities based on the user’s visual interaction. However,

some researchers believe that “you can’t always sketch what you want” [197] and pre-

fer to provide more accurate query approaches for users [338]. As a guideline, Sarikaya

et al. provide a systematic review and research directions for the usage of dashboards in

knowledge exploration and presentation [306]. Besides, understanding the differences

among multiple data of interest is crucial for knowledge exploration, where parallel

views are widely adopted for conceptual comparison [81,127], and timelines for chroni-

cle comparison [63,217]. Finally, it would be beneficial to provide incremental updating

of the visualization to reflect users’ thoughts or discoveries during the exploration pro-

cess, as described in section 1.2.3.3. Sarvghad et al. utilize scented widgets to reveal

users’ analysis history and help them form new questions by reviewing the different

perspectives of their past work [308].

In VA systems where at least two users are collaborating, it is crucial to facilitate their

communication and bridge the knowledge gap with appropriate presentation technol-

ogy. This process is challenging in both synchronous and asynchronous collaborations

when the “curse of knowledge” hinders visual data communication [387]. When the

collaborators possess significantly unequal domain knowledge, cognitive biases can

hinder smooth communication. To address this, Xu et al. designed a chart constella-

tion graph accessible to all collaborators to reflect their findings during the analysis in

synchronous scenarios [390]. Similarly, Zhao et al. introduced the knowledge-transfer

graph (KTGraph) to automatically capture tacit knowledge and hand off partial findings

in asynchronous scenarios [402]. For a comprehensive reference, Chandrasegaran et al.

reviewed a vast number of state-of-the-art solutions in their survey [55], among which

ontologies are a preferred form to eliminate bias. In line with this direction, I introduce
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a technique to use an ontology as the knowledge base and visualize domain-specific

knowledge in documents in Chapter 4.

Finally, when it comes to the case that knowledge needs to be presented to mul-

tiple audiences, the major challenge is to maintain the trade-off between conveying

the excessive obscure information and accessing the general public efficiently, such

as exhibiting large cultural heritage collections in digital galleries [380], disseminate

complex astronomical phenomena in popular media [29] or communicating personal-

ized health risk with patients [142]. Cui and Wang et al. approach this problem by

completing a series of work to convert the data facts into infographics, slideshow, and

fact sheets [60,79,370,373]. Roberts et al. provide a pipeline called explanatory visual-

ization framework (EVF) to guide learners in their explanatory visualization designing

process for complex computational algorithms [298]. In response to the popularity of

deep neural networks, Wang et al. [371] and Kahng [171] et al. both make their attempt

to assist learners to understand the DNN architectures with multiple visualizations.

Apart from conventional solutions, new interaction modals and forms have been

introduced for knowledge presentation and interaction in recent years. To extend the

limited interaction provided by mouse and keyboard, Ma et al. involve the museum

visitors in their plankton populations visualization with a touch table and control

the average data interpretation time under one minute [226]. With a similar device,

Agarwal et al. manage to accommodate both single or co-located users with different

levels of visualization expertise [5]. Researchers make even further attempts to present

the knowledge with wheeled micro-robots [195]. Another trendy branch is immersive

analytics with devices such as immersive headsets or CAVE. As a reference, Marai et

al. summarize their experience and perspective about immersive analytics based on

their 25-year-long practice with multiple immersive devices and analytical tasks [228].

Beyond the visual channel, researchers have also been exploring approaches to leverage

the touch, gesture, hearing [159], and smelly [277] channels for novel and tangible

knowledge presentation. While many of the works are still in the fragile beta testing

phase, they demonstrate promising interaction possibilities that have the potential to
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significantly enhance the capability and accessibility of knowledge presentation. For

further reference„ Lee et al. offers a detailed forecast of the future direction of Post-

WIMP interaction techniques [196].

1.2.3.3 Knowledge Exploitation

According to March’s definition [229], knowledge exploitation emphasizes the utiliza-

tion and extension of existing possibilities compared to knowledge exploration. In

other words, it retrieves knowledge that has already been created or identified [225]

and incrementally accumulates it with "moderate but certain and immediate returns" [218].

Inspired by this definition, I distinguish the knowledge exploitation process into two

types: immediate local updating and global knowledge base updating. These are

also two different sources of exploited knowledge. Immediate local updating utilizes

knowledge generated during the VA system’s operation, while global knowledge base

updating is based on existing knowledge collected and formalized before the opera-

tion [105]. This separation is also reflected in my knowledge discovery workflow, as

described in Section 1.2.2 and depicted in Figure 1.4.

In Figure 1.4, the path from visualization dashboard via step 5 to transferred data is

the instant way of knowledge exploitation, where the locally optimized data, models, or

parameters drew from the user interaction will be directly fed into the transformed data

and thenceforth the visualization. It proves to be very helpful to steer the underlying

data model of a visual analytic system in this way. For instance, Kwon et al. have built

multiple visual analytic dashboards driven by models derived from domain knowledge

of expert users. Such knowledge is extracted from multiple types of user inputs such

as sketching lines [190] or temporal interactive information [189]. Ming et al. leverage

the information from sentiment analysis and predictive diagnostics to steer their deep

sequence model and update the visualization in real time [241]. Another common

practice is to draw semantic and syntactic knowledge from the user-input text by uti-

lizing several natural language processing techniques such as topic modeling and text

summarization. Sperrle et al. build a system to learn linguistic knowledge from user

interactions and use it to provide automatic annotation suggestions of argumentative
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text [333]. Lu et al. provide an automatically generated outline as well as multiple writ-

ing suggestions to support the prewriting process [222]. The immediate local updating

is also widely adopted for the analysis of sports data, given the empirical and uncertain

nature of sports activities. For example, Chung et al. create a knowledge-assisted rank-

ing framework to extract the tacit knowledge about sports event ranking from users

and produce visualizations upon the analytical model of this knowledge. [66]. Wang

et al. take use of the tactics used by table tennis players to simulate competitions and

facilitate strategy exploration [369]. Sometimes even the reasoning process itself is the

treasure. To preserve the reasoning steps in the sensemaking or collaboration process,

Camisetty et al. provide a JavaScript library to enhance existing web-based applications

and support the knowledge capturing and replaying [46].

In another path, tacit knowledge can be carefully evaluated, verified, and format-

ted before being incorporated into the next round of iteration (step 3→step 6→step

7 in Figure 1.4). The byproduct of this route is an updated knowledge base that

can be stored and shared for future usage. As a typical example of such struc-

tured knowledge representation models [123], ontology is widely used in the field

of medicine/biology [125–127], engineering [299, 381], sociology [154], computer sci-

ence [271, 340], etc. According to various application fields and utilizing purpose,

there are multiple methods to exploit the knowledge stored in an ontology and turn it

into visualization. The review of Katifori and Akrivi [173] systematically categorized

these methods according to the dimensions of the visualization. Dudáš et al. [93] fur-

ther extended this work by adding more recently emerged visualizations. Apart from

ontology, Stitz et al. provide a method to create formatted knowledge by retrieving

analysis states from user interactions and structuring them as provenance graphs [338].

Similarly, the clinical gait analytics solution provided by Wagner et al. allows patients

to externalize and store their implicit knowledge and share it for later inspection [366].

It is also worth noting that visualization holds a distinct role in exploiting tacit

knowledge from domain experts in the recent trend of human-centered AI [323]. Such

knowledge remains critical for many machine learning model optimization tasks, par-
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ticularly when domain knowledge is necessary for interpreting the training data. Re-

searchers have utilized visual interfaces to present machine learning model perfor-

mance intuitively and efficiently gather tacit expert knowledge for model optimiza-

tion [82,241,242]. In my collaborative research project with Bosch Research (see Chap-

ter 7), I employ this methodology for slice-based machine learning model optimization

and intend to apply it in more of my ongoing and future research.

1.3 Content Overview
This dissertation is organized into different chapters according to the visual knowledge

discovery framework (Figure 1.4) and its three key tasks described in Section 1.2.3.

Chapter 2 takes the domain of manufacturing (machine maintenance) as an example

to demonstrate a visual analytics system for task 1, knowledge exploration. This chapter

introduces a visual analytics approach that uses multiple dimensionality reduction

and clustering algorithms to visualize and group different components of the data. My

approach assists analysts to make sense of machines’ maintenance logs and their errors,

and their gained insights help them carry out preventive maintenance. I illustrate and

evaluate my approach through use cases and expert studies respectively, and discuss

generalization of the approach to other heterogeneous data. A version [348] of the

research in this chapter was presented at IEEE Pacific Visualization Symposium 2021.

The following two chapters addresses task 2, knowledge presentation, for two types

of data. Chapter 3 explores an approach to present numerical data facts by automat-

ically generating infographics from natural language statements. I first describe a

preliminary study conducted to explore the design space of infographics. Based on the

preliminary study, I show how to build a proof-of-concept system that automatically

converts statements about simple proportion-related statistics to a set of infograph-

ics with pre-designed styles. Finally, I demonstrate the usability and usefulness of

the system through sample results, exhibits, and expert reviews. A version [79] of

the research in this chapter was published in IEEE Transactions on Visualization and

Computer Graphics and was presented at IEEE Visualization Conference 2019.
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Chapter 4 presents ConceptScope, a technique that represents the conceptual rela-

tionships in document data by referring to a domain ontology and leveraging a Bubble

Treemap visualization. ConceptScope facilitates exploration and comparison of sin-

gle and multiple documents respectively. I demonstrate ConceptScope by visualizing

research articles and transcripts of technical presentations in computer science. A ver-

sion [347] of the research in this chapter was presented at ACM Conference on Human

Factors in Computing Systems (CHI) 2021.

The next three chapters showcase visual-assisted knowledge exploitation (task 3) for

three applications in different domains and scenarios. Respectively, Chapter 5 presents

ConceptEVA, a technique that exploit knowledge from domain ontology to support

document summary customization for academic reading. I describe a mixed-initiative

approach to generate, evaluate, and customize summaries for long and multi-topic

documents by leveraging an existing knowledge base, DBpedia, and human input.

A version [349] of the research in this chapter was presented at ACM Conference on

Human Factors in Computing Systems (CHI) 2023.

Chapter 6 presents LabelVizer, a technique that exploit knowledge from domain

experts to support technical text validation and relabeling for smart manufacturing.

LabelVizers is a human-in-the-loop workflow that incorporates domain knowledge

and user-specific requirements to reveal actionable insights into annotation flaws, then

produce better-quality labels for large-scale multi-label datasets. I present my workflow

as an interactive notebook and report the evaluation result with with two use cases and

four expert reviews. A version [351] of the research in this chapter was presented at

IEEE Pacific Visualization Symposium 2023.

Chapter 7 presents SliceTeller, a technique that exploit knowledge from domain

experts to support machine learning model validation for autonomous driving, smart

home, and AI fairness. Besides, I present an efficient algorithm, SliceBoosting, to

estimate trade-offs when prioritizing the optimization over certain slices. I report

the evaluation results with three use cases, including two real-world use cases of

product development, to demonstrate the power of SliceTeller in the debugging and
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improvement of product-quality ML models. A version [350] of the research in this

chapter was published in IEEE Transactions on Visualization and Computer Graphics

and was presented at IEEE Visualization Conference 2022. This work also won the Best

Paper Honorable Mention Award of IEEE Visualization Conference 2022.

Finally, Chapter 8 provides a succinct summary of the contents and insights gleaned

from my dissertation work, as well as my vision for future research on visualization-

assisted knowledge discovery and utilization.
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Chapter 2
Knowledge Exploration with
Multidimensional and Heterogeneous
Data

In machine repair and maintenance, error diagnosis is a crucial task to identify abnor-

mal patterns, formalize root-cause analysis, and plan preventive maintenance. To make

such diagnoses, analysts often refer to maintenance logs. However, analyzing mainte-

nance logs is not as straightforward because they tend to be large, multidimensional,

and heterogeneous (i.e., consisting of numerical, categorical, and text components).

This challenge is further compounded by inconsistent and/or missing entries. To

conduct an effective diagnosis, it is important to explore knowledge from the data with

support from analytic algorithms while involving the human in the loop. In this chap-

ter, I introduce a visual analytics approach that uses multiple dimensionality reduction

and clustering algorithms to visualize and group different components of the data.

To help analysts label the clusters, each clustering view—one for each data type—is

supplemented with visualizations that contrast a cluster of interest with the rest of the

dataset. My approach assists analysts to make sense of machines’ maintenance logs and

their errors, and their gained insights help them carry out preventive maintenance. I

illustrate and evaluate our approach through use cases and expert studies respectively,

and discuss generalization of the approach to other heterogeneous data.

2.1 Introduction
Making sense of large-scale, heterogeneous data is one of the main challenges faced

by data science and visualization communities in real-world application scenarios. For
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instance, in large-scale manufacturing setups, human- and machine-created logs of

operation and maintenance need to be analyzed to identify problem areas and prevent

major failures before they occur [44]. The size of collected logs can easily number over

hundreds of thousands of records and often include multiple types of data: numerical

data (e.g., operating temperatures), categorical data (e.g. machine types), ordinal data

(e.g. error severity), and text data (e.g. machine status description) [157]. In addition,

manually-entered components—especially natural-language descriptions—can feature

different forms of inconsistencies. For instance, the same problem may be described

using different wording by different operators, or even the same operator at different

times [314]. This type of information is captured by most maintenance departments,

and the issues are thus ubiquitous across the maintenance industry. These factors

make it difficult for managers and technicians—even with the help of data analysts—to

analyze logs to identify patterns (e.g., common phenomena seen in some type of errors),

and perform preventive maintenance.

Machine learning (ML) assisted visual analytics have been developed to address the

challenge in reviewing large, high-dimensional data [301,343]. For instance, researchers

have used dimensionality reduction (DR) to provide an overview of high-dimensional

data in lower dimensions [169, 358] and clustering to summarize the information of

large data into a small number of groups [18,189]. Contrastive learning, which extracts

salient patterns in one dataset relative to the other, is then used to help interpret the

results of DR and clustering [116, 118]. Maintenance log analysis can benefit from

methods to extract and explain important patterns that are common across or specific

to certain kinds of issues. At the same time, the problem of data inconsistency can be

mitigated by keeping the human in the loop. However, these ML methods are designed

to apply to a single data type, such as numerical or categorical. Thus, when analyzing

heterogeneous data, we need to consolidate different methods. In addition, existing

contrastive learning methods are applicable only to either numerical or binary data.

New methods for other datatypes (e.g., categorical and text) are required.

In this work, we present an approach to separate different variable types—numerical,
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categorical, and text—in a heterogeneous dataset and provide lower-dimensional, clus-

tered visualizations for each type. We then use ccPCA [116]—contrasting clusters

in Principal Component Analysis—as the contrastive learning method for numerical

variables in the data. In order to provide a similar functionality for categorical vari-

ables, we introduce a method called contrasting clusters in Multiple Correspondence

Analysis (ccMCA). ccMCA helps characterize a selected cluster (of categorical data) by

comparing its attributes with those of the remaining data. For text variables, we first

convert natural-language descriptions into high-dimensional vectors using word em-

beddings [332], and then perform DR and clustering. In place of contrastive learning,

we plot text frequencies compare each cluster with the rest of the data.

Finally, we link the visualizations across all the views to help the analyst characterize

clusters in the context of the other data dimensions. We illustrate our approach with

use-case scenarios and expert reviews using a real-world dataset of maintenance and

repair logs for heating, ventilation, and air-conditioning (HVAC) systems.

Our main contributions include: (1) an approach to analyze multidimensional,

heterogeneous maintenance log data by separating numerical, categorical, and text

dimensions and creating coordinated views of lower-dimensional projections and clus-

ters for each data type, (2) a new contrastive learning method called ccMCA to help

the user characterize data clustered on the basis of categorical dimensions, and (3)

the application of existing methods to characterize the data clustered on the basis of

numerical and text dimensions.

2.2 Related Work
While the proposed work falls under the application area of machine maintenance

data analysis, our approach draws from and contributes to existing approaches in

heterogeneous and high-dimensional data. We highlight representative research on

these topics here.
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2.2.1 Machine Maintenance Log Analysis
With an increasing emphasis on smart manufacturing and a push toward reducing

machine down time, process monitoring, diagnostics, and prognostics have gained

prevalence. This trend, coupled with cheaper and easier-to-obtain sensors and data

storage solutions, has led to increases of maintenance data [44]. Despite the potential

benefits of uses of high volume maintenance data for better machine management,

companies frequently struggle to adopt advanced manufacturing technologies and

strategies due to cost and lack of technical expertise in data analysis [166]. Simple yet

powerful solutions for data analysis are necessary to aid manufacturers in improving

their practices. Annotation methods for short-text maintenance work orders [224, 313]

has been the subject of recent research. For instance, Sexton et al. [315] developed

Nestor, an open-source tool that uses internal “importance” heuristics and domain-

expert annotation of seed data to annotate large volumes of short texts, as maintenance

logs tend to be, with domain-relevant tags1.

Visual analytics is another technique that has gained popularity in this domain in

recent years. Recent work includes ViDX [389], a visual analytic system for histori-

cal analysis and real-time monitoring of factory assembly lines. La VALSE [137] and

MELA [318] are scalable visualization tools with multiple visualization interfaces in-

corporating different logs for interactive event analysis. ViBR [51] provides a visual

summary of large bipartite relationships by using a minimum description length prin-

ciple and is used for vehicle fault diagnostics. These approaches are created for specific

data or a data type. On the other hand, we treat the data as high-dimensional, het-

erogeneous datasets that include unstructured text, thus allowing our approach usable

across different organizations and domains.

2.2.2 Visualizing Heterogeneous Data
The challenges of visualizing heterogeneous data, i.e., data with mixed data types or

variables, such as numerical, categorical, and text, were recognized early in visual-

ization. Almost 25 years ago, Zhou and Feiner [407] provided a systematic approach

1https://nist.gov/services-resources/software/nestor
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to design visualizations for heterogeneous data based on data characteristics and the

tasks involved. The size of heterogeneous datasets poses additional challenges for

visualization, such as requiring large screens and appropriate visual mappings. Dif-

ferent approaches were developed to address these challenges, such as developing

automated specification algorithms to map data attributes to visual attributes [47], and

high-resolution immersive visualization environments [290].

Visualizing heterogeneous data also provides a way for the user to establish con-

text. For instance, coordinated timeline visualizations of audio, video, and text data

of human-human or human-machine interactions can provide context to observations

about movement, speech, and activity data [52, 112]. More recently, immersive visu-

alizations of system activity overlaid on a spatial layout corresponding to the physical

locations of said systems were used to provide contextual information in real-time

network security analysis [227].

Unstructured text also forms an important datatype. Descriptive text about prob-

lems and repairs are often entered by operators and maintenance personnel who assume

familiarity with the machines and related processes. The text thus tends to be terse and

laden with jargon, and is often inconsistent across people. Developing a lexicon—a

domain-specific vocabulary—is often necessary to interpret such text data in a seman-

tically consistent way. The General Inquirer [339] is one of the earliest attempts to build

a lexicon for content analysis of text. Categories such as Linguistic Inquiry and Word

Count (LIWC) [281] focus on psychological relevance (such as moods) and general-

purpose applications. Such models are trained on general text corpora such as news

articles, online forums, and fiction. For application to large-scale technical text data,

automated tagging needs to be balanced with manual sifting of the text.

Visual analytics has been used to achieve better balanced tags, using a combination

of high-dimensional data visualizations and user-steered analyses. For instance, Con-

ceptVector [272] visualizes word-to-concept similarities to guide users to categorize text

data given a specific domain, such as politics or finance. Similar vector space represen-

tations are used by Heimerl and Gleicher [152] to design visualizations that help users
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understand word vector embeddings. In addition, several tools such as the Exploratory

Labeling Assistant [106] and AILA [64] use machine-learning based recommendations

to help users characterize or label documents.

Drawing from this combination of statistical and manual approaches, we use word

embeddings to translate short texts to high-dimensional vectors, and apply DR and

clustering to find groups of semantically related short texts in a 2D space. We use

similar DR and clustering representations for numerical and text data dimensions,

which gives us consistent representations across data types.

2.2.3 Visualizing High-Dimensional Data
Most machine maintenance log data tend to be high-dimensional, with information

about each breakdown or maintenance event consisting of multiple fields relating to

different personnel and/or departments [314]. While high dimensionality has its ad-

vantages, such as the ability to contextualize and correlate features of the data, it also

makes the data less usable for any form of sampling or statistical analysis [90]. Dimen-

sionality reduction provides a lower-dimensional representation while still preserving

the essential information of the original data [360]. Nonlinear DR techniques such as

t-SNE [358], LargeVis [345], and UMAP [233] are especially relevant for large-scale,

high-dimensional data as they preserve local neighbor relationships, which can help

identify subgroups in the data.

DR can be further exploited to cluster the data with higher speed and perfor-

mance [320] or to produce an overview of the data [216, 302]. During this process,

visual analytics of the clustered data is often needed to help users determine which

attributes contribute to the distinctness of each cluster [39]. Statistical charts (e.g. box-

plots) [189] or density plots [335] of selected clusters from the DR result have been used

for this purpose. However, showing one statistical chart for each attribute becomes

visually overloaded as the number of attributes increases. A better approach would be

to identify and visualize salient attributes that contribute to a selected cluster. For in-

stance, Broeksema et al. [41] visualized the results of multiple correspondence analysis

(MCA)—a variant of principal component analysis (PCA) for categorical data—together
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Figure 2.1: Data processing pipeline for individual views, based on the category of data dimension
(categorical, text, and numerical). The figure also shows which views are linked via selection and
filtering interactions.

with a colored Voronoi cell that represents a highly-related attribute to each data point.

Similarly, Joia et al. [169] drew a convex hull around each cluster and filled the resulting

polygon with a word cloud consisting of names of the attributes related to the cluster.

Faust et al. [101] took a different approach, using local perturbations in the input data

to represent how the higher dimensions are represented in the projected views. More

recently, Fujiwara et al. [116] used contrastive learning to find attributes that contrast

a selected cluster from the rest of the data. We incorporate this contrastive learning-

based approach to analyze the numerical attributes of the maintenance log data, while

introducing an analogous approach for the categorical attributes.

2.3 Requirements
Typically, visual analysis of heterogeneous, multidimensional data is performed with

the goal of identifying patterns within the data and extracting meaning from them [13,

385]. With our application area in mind, we draw our requirements from existing work

on maintaining and tagging machine performance, error, and maintenance log data.

Most of our requirements are based on prior work by Brundage et al. [42, 44] who

generate a set of commonly-occurring data elements from their study of various main-

tenance work order datasets including temporal (e.g., time between failures, machine

down time etc.), machine (machine type, location etc.) human (operator/tech name,
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Figure 2.2: Dashboard interface showing projected views of categorical components of the dataset
using MCA (A1), text components of the dataset using UMAP (B1), and numerical components of the
dataset, also using UMAP (C1). Each projected view is clustered using a chosen clustering algorithm
(DBSCAN in the example above). Each projected view is supported by an additional view that is used
to characterize a chosen cluster in that view. For the categorical data view, ccMCA (A2) is used to
show the selected cluster’s separation and the attribute values that contribute to it. A text frequency
chart (B2) contrasts the text that occurs most frequently in the selected cluster against the overall text
frequency in the dataset. Finally, ccPCA is used to display a heatmap of cluster vs. data dimensions
and a histogram showing the value distribution of a selected numerical dimension against the rest of
that data (C2). Raw data for any chosen cluster can be viewed using a slide-out tabular view (D).
Linking across views A1, B1, and C1 shows the distribution of data clustered in the active view (in
color) across the other two views (grayscale).

skill level etc.), raw text (problem descriptions, solution etc.), and tagged elements

(items, actions, etc.). Broadly speaking, these elements can be classified based on

their data type as numerical, categorical, and text. They also propose a maintenance

management workflow with six steps: (1) analyzing the work order, (2) selecting &

prioritizing work orders, (3) planning equipment, resources, and labor, (4) scheduling

the tasks involved, (5) executing the tasks, and (6) completing and documenting the

tasks performed. Our goal is to aid the user—assumed to be a planning engineer or

an analyst—in the execution of Steps 1–3. Depending on the scenario, this may require

accurate identification of the maintenance task involved, using maintenance logs to

anticipate component failure, or correcting work orders with misdiagnosed problems

or misidentified tasks.

We thus infer that a system that uses maintenance log data to aid maintenance
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planning and management needs to be robust to different types of data dimensions,

supports visual analysis of data at scale, and helps the user characterize and label parts

of the data based on their domain knowledge. The system requirements are:

R1 Robustness to Data Type: The system should accommodate all three types of

data commonly required for the analysis of maintenance logs, i.e., numerical,

categorical, and text data. Given the inherent difference between the data types,

an appropriate analysis approach is needed for each.

R2 Scalability: Maintenance log data in an organization can vary from a few thou-

sand records to hundreds of thousands of records, depending on the organization

size. With each record consisting of several dimensions of mixed data types, the

system needs to be robust to different data scales.

R3 Data Subset Identification: When visualizing large-scale data with heteroge-

neous dimensions, it is not optimal or practical to start by examining individual

data points. It is more important and efficient to be able to identify subsets com-

prising data points that are closely related to each other. This may mean that

all data points in an identified subset have common attributes, or that they may

be related to each other based on their values along multiple dimensions. With

different dimensions composed of different data types, the system should allow

subset identification approaches suitable across data types.

R4 Data Subset Characterization: Analyzing maintenance log data requires not only

the identification of patterns/subsets within the data, but also their characteriza-

tion, or what separates them. For instance, a problem common to a group of

machines could be characterized by all machines being similar (e.g., lathes) or

all machines requiring replacement of the same component or components sup-

plied by the same vendor. Identification of such common characteristics become

more difficult as the relationship shared by a subset of maintenance logs becomes

more complex. Thus, the system should provide an effective analysis support to

characterize the subsets from many dimensions.

R5 Extensibility: Different organizations may choose to log information about their
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maintenance activity in different forms and granularities. The only aspects that

may be common across these datasets is that they are multidimensional and het-

erogeneous. The system should be extensible to different datasets with minimal

effort, not overly dependent on any one specific dataset’s attributes or format.

2.4 Data Processing & Visualization
Based on the requirements identified in section 2.3, it is clear that the three types of

data common to machine maintenance logs—numerical, categorical, and text—need to

be processed appropriately and visualized using approaches that are robust to changes

in the data scale. In this section, we describe the data processing approaches and

visualization designs that address the identified requirements.

2.4.1 Workflow
In section 2.2, we see that visualizing heterogeneous data is advantageous as it allows

the user to draw inferences based on context from different data dimensions. We also

see that the issues of scale and dimensionality make it challenging for such observations

and inferences to be drawn. Both issues are addressed by using clustering techniques to

form subsets within the data (R3). These can then be visually and interactively explored

to understand the relationship between the data points that make up the subset.

To aggregate the techniques mentioned above, we model our data processing and

visualization workflow as a pipeline with six steps: Step 1: grouping the data dimen-

sions together based on their data type (Figure 2.1 stage 1); Step 2: performing DR

for numerical, categorical, and text data separately and obtaining a 2D projection for

each (Figure 2.1 stage 2); Step 3: clustering the 2D data to form subsets (Figure 2.1

stage 2); Step 4: visualizing the 2D projection and clustering results to provide scalable

overviews of the dataset (Figure 2.1 stage 3 and Figure 2.2 A1, B1, C1); Step 5: character-

izing the clusters separately for each data type using contrastive learning or statistical

methods (Figure 2.1 stage 2); Step 6: cluster characterization for each data type with an

appropriate visualization (Figure 2.1 stage 4 and Figure 2.2 A2, B2, C2). Each step is

detailed in the rest of this section.
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2.4.2 Identifying Subsets in Heterogeneous Data
DR (step 2) and clustering (step 3) are two essential data processing steps to identify

subsets in the data. Based on our review of DR and clustering techniques in section 2.2.3,

we use Uniform Manifold Approximation and Projection (UMAP) to project the data to

a lower-dimensional space. Note that high-dimensional representations are obtained

for the categorical data with one-hot encoding, and for text with word embeddings (see

section 2.4.4.1) before the DR step. The 2D projection of the data can then be clustered

using any approach.

We choose DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [99]

as it uses a density-based approach that is more suitable for data that may have outliers

(e.g., uncommon machine breakdown or repair). Combined with our visualization

approach, this technique is more suitable for our case as the analyst can probe into

individual records in the case of outliers, and can also examine larger clusters using the

linked views. By separating the data dimensions based on data type, we ensure that

our approach is robust to datasets with different dimensions with mixed data types

(requirement R1). This approach of dimension grouping by data type, DR & clustering

to find subsets, and characterizing based on contrastive learning and text frequency

comparison makes our approach extensible to most heterogeneous datasets (R5).

2.4.3 Scalable Overview
To show an overview of the DR and clustering results (step 4), we use a hexbin plot [48]

for each data type in the dashboard visualization shown in Figure 2.2, i.e., categorical

(Figure 2.2A1), text (B1), and numerical (C1) dimensions. The hexbin plot is robust to

different data scales (requirement R2) in that its rendering speed is not significantly

impacted by data size or screen resolution. Instead of using a linear color scale typical

to hexbin plots, we use a different hue for each cluster and map data density to color

intensity within every cluster.

We also preserve the conventional DR representation, i.e., a scatterplot with each

data object shown by a dot. We adopt Lindstrom’s [211] Level of Detail (LOD) ren-

dering and allow users to switch between these two plots or change the granularity of
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hexagonal bins by simply zooming in or out of the area they are interested in. Thus,

only a small part of the scatterplot needs to be rendered when the users zoom in close.

Finally, users can choose to examine the data objects in detail by perusing the slide-out

tabular view (Figure 2.2D) or by hovering over the dots.

Note that at any point, only one of the three clustered views (A1, B1, or C1 in

Figure 2.2) can be active. The active view is indicated by its clusters highlighted with a

categorical color palette. The remaining views are monochromatic/greyscale to prevent

the user from mistakenly assuming that a cluster of one color (e.g., blue) in one view

corresponds to a cluster of the same color in another view.

2.4.4 Characterizing Clusters
Characterizing a cluster or subset in the data (requirement R4) requires determination

of how the cluster is different from the rest of the data. Different data types neces-

sitate different contrastive analysis techniques. We discuss the techniques we use to

characterize clusters for text, numerical, and categorical data in this subsection.

2.4.4.1 Text Dimensions

Detailed text descriptions of problems, symptoms, and solutions, form perhaps the

richest component of maintenance log data. They are also rife with inconsistencies,

typographical errors, or the use of non-standard shorthand that is endemic to that

particular organisation. Text descriptions are also often supplemented by “tags”—

standardized phrases that label the descriptions to identify the problems, items, and

solutions. These tags are typically assigned partly based on the knowledge of the user

who tags the descriptive text, and partly using machine learning approaches [313,315].

In order to group the data based on text dimensions, the meaning of the text needs to

be considered instead of specific keywords that may vary across technical personnel. To

convert this text into a more consistent semantic representation, we use word embed-

dings, which are vector representations of words that take into account their semantic

relationships [357]. Words such as “warm” and “hot” can thus be translated to vectors

that are close to each other, but distant from a vector representing a word different

in meaning, such as “telephone”. We create high-dimensional vector representations
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Figure 2.3: Text processing steps and its display in the text panel. The supporting view shows frequen-
cies of text occurring in the selected cluster and contrasts it with both, the frequencies of corresponding
text in the overall dataset as well as the text that is most frequently-occurring in the dataset but not in
the selected cluster.

for the descriptive text by summing and normalizing words in the text. We then use

a suitable DR technique (UMAP) to obtain 2D projections of the vectors, and cluster

them using DBSCAN (Figure 2.3).

Each cluster represents a collection of descriptions. To characterize a given cluster,

we overlay a frequency plot of the most common terms occurring in the cluster on a

frequency plot of terms occurring in the overall dataset (Figure 2.3 right). Contrasting

the most frequent terms of both plots helps the user identify defining characteristics of

the cluster. For instance, examining the frequency plots of Cluster 1 in Figure 2.3, we

can surmise that the cluster represents maintenance logs of ventilation systems related

to lower room temperatures, commonly remedied by adjusting certain valves. The

user can examine the raw data related to any cluster using the slide-out tabular view

(Figure 2.2D) to further gain insight into the cluster and characterize it (requirement

R4). Each of the cluster labels is editable, so the user can change the cluster name from

“Cluster 1” to a more descriptive “Lower temperature adjustment”.
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Table 2.1: Summary of notations.

X𝑇 , X𝐵 target, background matrices
X𝐸, X𝐾 , X𝑅 matrices of the entire, target cluster, rest data points

C𝑇 , C𝐵, C𝐸, C𝑅 covariance matrices of X𝑇 , X𝐵, X𝐸, X𝑅

G𝑇 , G𝐵, G𝑇 , G𝑅 disjunctive matrices of X𝑇 , X𝐵, X𝐸, X𝑅

Z𝑇 , Z𝐵, Z𝐸, Z𝑅 probability matrices of G𝑇 , G𝐵, G𝑇 , G𝑅

B𝑇 , B𝐵, B𝐸, B𝑅 Burt matrices of X𝑇 , X𝐵, X𝐸, X𝑅

𝛼 contrast parameter

2.4.4.2 Numerical Dimensions

As Brundage et al. [42] illustrate with different maintenance key performance indicators

(KPIs), measures such as problem/breakdown counts and time between failures are

ways to quantify the role of other performance indicators such as machine type, problem

severity, and technician skill. Other parameters such as cost can be derived from these

factors. To understand how those parameters contribute the separation of clusters for

numerical data, we adopt a method called contrasting clusters in PCA (ccPCA) [116].

We briefly describe ccPCA and its application to our system. Notations used in the

following sections are summarized in Table 2.1.

Introduction to cPCA. cPCA aims to reveal enriched patterns in a target matrix X𝑇
relative to a background matrix X𝐵. To do so, cPCA finds directions (called contrastive

principal components, cPCs) that maximally preserve the variation in X𝑇 while simul-

taneously minimizing the variation in X𝐵. This can be achieved by performing EVD

on (C𝑇 − 𝛼C𝐵) where C𝑇 and C𝐵 are covariance matrices of X𝑇 and X𝐵, respectively.

𝛼 (0 ≤ 𝛼 ≤ ∞) is a hyperparameter, called a contrast parameter, which controls the

trade-off between having high target variance and low background variance. When

𝛼 = 0, the resultant cPCs only maximize the variance of X𝑇 (i.e., the same with using

ordinary PCA). As 𝛼 increases, cPCs place greater emphasis on directions that reduce

the variance of X𝐵.

Introduction to ccPCA. In order to characterize clusters, ccPCA utilizes cPCA as

its base. Let X𝐸, X𝐾 , and X𝑅 be matrices of the entire dataset, a target cluster selected

from the entire dataset, and the rest of data points, respectively. ccPCA enhances the
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Figure 2.4: Projection and visualization of numerical data along with the ccPCA view shows that the
selected cluster has lower labor cost than the rest of the data.

original cPCA by using X𝐸 as a target matrix and X𝑅 as a background matrix, instead

of using X𝐾 and X𝑅 as target and background matrices, respectively. ccPCA finds the

directions that preserve both the variety and separation between a target cluster and

others. By referring to feature contributions (called contrastive principal component

loadings or cPC loadings) to the directions, we can obtain the information of which

numerical features contribute to the uniqueness of a target cluster relative to others.

Visualization. ccPCA provides how strongly each dimension contributes (posi-

tively or negatively) to each cluster’s contrast with the rest of the data. This contribu-

tion is shown as a heatmap (Figure 2.4(3)) that indicates the magnitude and direction of

contribution of the numerical dimensions to each cluster with a blue-green-to-brown

diverging colormap [148]. By selecting a cell in the heatmap, Figure 2.4(2) shows his-

tograms of the corresponding dimension’s value distributions of the selected cluster

and the rest of the data with the cluster color and gray color, respectively. Based on Fig-

ure 2.4(2), we can infer that the numerical dimension “actual labor cost” (ActLabCost)

contributes strongly to Cluster 0’s contrast against the rest of the data, and the his-

tograms show that the ActLabCost values for the selected cluster are much lower than

the rest of the data. The user can further investigate this cluster by selecting it in the
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Table 2.2: Comparison of representation learning methods. ccMCA is a new method we introduce in
this work.

data type method purpose solution

numerical,
binary

PCA preserving the variance of X𝑇 EVD on C𝑇

cPCA identifying enriched patterns in X𝑇 EVD on (C𝑇 −𝛼C𝐵)
ccPCA characterizing a cluster X𝐾 EVD on (C𝐸 −𝛼C𝑅)

categorical,
binary

MCA preserving the variance of X𝑇 EVD on B𝑇
cMCA identifying enriched patterns in X𝑇 EVD on (B𝑇 −𝛼B𝐵)
ccMCA characterizing a cluster X𝐾 EVD on (B𝐸 −𝛼B𝑅)

DR view (Figure 2.4(1)) to examine the corresponding data distribution in the text and

categorical dimension views as described in subsection 2.4.3, or examine the cluster in

detail using the tabular view (Figure 2.2(D)). Note that even though only two numerical

dimensions are shown in Figure 2.4 (C1 & C2), where making the DR step redundant,

the clustering and ccPCA computations are still useful in identifying and characterizing

subsets within the data.

2.4.4.3 Categorical Dimensions

For the characterization of categorical data (R4), we cannot use ccPCA as it requires the

data to be numerical or binary. Thus, we introduce a new contrastive learning method,

called contrasting clusters in MCA (ccMCA)2 by extending multiple correspondence

analysis (MCA). Table 2.2 compares the related methods.

Multiple Correspondence Analysis (MCA) Here, we provide a brief introduction

to MCA. MCA can be considered as PCA for categorical data analysis. That is, MCA

learns a lower-dimensional representation from high-dimensional categorical data as

it maximally preserves the variance of the data. The issue of PCA when applying to

categorical data is that PCA handles each category in the data as a numerical value

and, as a result, it unnecessarily ranks the categories (e.g., red: 0, green: 1, blue: 2).

To avoid this, MCA first converts an input matrix X𝑇 of categorical data into a

disjunctive matrix G𝑇 (or disjunctive table) by applying one-hot encoding to each cat-

egorical dimension. For example, when X𝑇 consists of two columns (or often called

questions) of “color” and “shape” and each has categories (i.e., categorical answers)

2The source code of ccMCA will be released upon publication.
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of {“red”, “green”, “blue”} and {“circle”, “rectangle”}, G𝑇 will have five columns of

“red”, “green”, “blue”, “circle”, and “rectangle” and each of the matrix element will

be either 0 or 1. Afterward, by dividing each cell in G𝑇 with a total of G𝑇 , we obtain a

probability matrix (or correspondence matrix) Z𝑇 . This probability matrix corresponds

to an input feature matrix for PCA. Similar to PCA, we apply normalization to Z𝑇 . With

the normalized Z𝑇 , we can obtain a Burt matrix B𝑇 with B𝑇 = Z⊤
𝑇

Z𝑇 . B𝑇 corresponds

to a covariance matrix used in PCA (note: in PCA, a covariance matrix of X𝑇 can be

obtained with C𝑇 = X⊤
𝑇

X𝑇). Thus, as PCA obtains principal components by perform-

ing eigenvalue decomposition (EVD) on C𝑇 , MCA obtains the principal directions by

performing EVD on B𝑇 to preserve the variance of G𝑇 .

Contrastive MCA (cMCA) Now, we introduce contrastive version of MCA (cMCA) [117]

and enhance cMCA to ccMCA in the next subsection. As described above, MCA and

PCA fundamentally share the same idea of finding the best directions to preserve the

variance by using EVD on a covariance matrix. Therefore, we can extend MCA to

cMCA by employing the same idea with cPCA.

Extension from MCA to cMCA. As described in section2.4.4.2, the only difference

between PCA and cPCA is that while PCA directly performs EVD on a target covariance

matrix C𝑇 , cPCA takes a subtraction of target and background covariance matrices with

a contrast parameter (i.e., C𝑇 −𝛼C𝐵) and then performs EVD on it. To reveal enriched

patterns in a target matrix of categorical values, we can use the same idea that we use

with cPCA and apply it to MCA. As stated in section 2.4.4.3, in MCA, a Burt matrix

B𝑇 contains similar information with a convariance matrix C𝑇 in PCA. Therefore, we

can obtain contrastive directions by computing B𝑇 − 𝛼B𝐵, where B𝑇 and B𝐵 are target

and background Burt matrices, and then performing EVD on (B𝑇 − 𝛼B𝐵). Here, 𝛼

(0 ≤ 𝛼 ≤ ∞) is also a contrast parameter and has the same role with cPCA.

Contrasting Clusters in MCA (ccMCA) For the cluster characterization, we enhance

cMCA to ccMCA. Here, we apply the similar idea of the extension from cPCA to ccPCA.

Extension from cMCA to ccMCA. cMCA can be enhanced to ccMCA by using X𝐸
and X𝑅 as input target and background matrices. Since the directions identified by
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Figure 2.5: Projection of categorical data (1), with the ccMCA view showing the separation of the
selected cluster (2), and its corresponding category distribution (3). The categories of “EQUIPMENT”
with value “GG”, “WOPRIORITY” (work priority) and “SUPERVISOR1” ids appear to be the what sep-
arate this cluster from the rest.

ccMCA differs based on the contrast parameter 𝛼, we also provide the automatic selec-

tion method of 𝛼 by employing the same method introduced by Fujiwara et al. [116],

which utilizes the histogram intersection for its optimization. Figure 2.5(2) shows the

ccMCA result when selecting the green cluster from Figure 2.5(1) as a target cluster.

The green points are clearly separated from others while keeping a high variance.

One ccMCA’s major and different challenges from ccPCA is that how we inform

the feature contributions. ccMCA also provides contributions (or loadings) of each

dimension (i.e., category) of G𝑇 with w𝑖 =
√
𝜆𝑖v𝑖 where w𝑖 is feature contributions to

the 𝑖-th principal direction, 𝜆𝑖 is the 𝑖-th top eigenvalue generated via EVD, and v𝑖
is the corresponding eigenvector. Because EVD is performed on Burt matrices of G𝑇

and G𝐵, which are obtained by applying one-hot encoding to X𝑇 and X𝐵, w𝑖 shows

a contribution for each category (e.g., “red”, “green”, and “blue”) but not for each

question (e.g., “color”). Therefore, the number of dimensions of w𝑖 can be easily

overwhelmed. For example, when there are 6 questions and 5 categories for each

question, the number of dimensions in w𝑖 becomes 30. Also, as each data point’s

position in a ccMCA projection (e.g., Figure 2.5(2)) reflects a compound of contributions,

looking at each contribution may not be sufficient to understand the association between
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the projection and contributions. For instance, even when one category may have a

strong contribution to positive direction of the first axis (𝑥-axis in Figure 2.5(2)), this

does not ensure that data points with large positive 𝑥-coordinates have answered the

corresponding category because, at the same time, many other categories may have a

weak contribution to the positive direction.

To address this issue, similar to MCA, we provide the principal cloud of categories (or

column principal coordinates), as shown in Figure 2.5(3). In MCA, the principal cloud of

categories (PCC) is used to grasp which categories each data point likely have answered

by comparing the positions of data points in a MCA projection (or the principal cloud of

individuals, PCI) and categories in PCC. When a data point in PCI is placed at a close

position with certain categories in PCC, this data point tends to have these categories

as its answers. We can also perform the same analysis above for ccMCA.

In MCA, PCC Ycol
𝑇

is usually obtained by taking a product of a diagonal matrix D𝑇

of the sum for each column of G𝑇 and the top-𝑘 eigenvectors W𝑇 obtained by EVD (i.e.,

Ycol
𝑇

= D𝑇W⊤
𝑇

). However, because ccMCA performs EVD on (B𝑇 − 𝛼B𝐵) and the result

is influenced by X𝐵 as well, we cannot compute PCC with the above manner. Thus,

instead, we use MCA’s translation formula from PCI to PCC. The translation from PCI to

Cluster 
selected 
by user

Text DimensionsCategorical Dimensions 21 In Numerical Dimensions3

Brush 
subtraction

Figure 2.6: Linking between the projected views of categorical, text, and numerical data allows the
user to explore the data clusters from the perspective of data types. For instance, selecting Cluster
“cold, room, poc” from the projected and clustered view of the text dimensions (2) highlights the distri-
bution of the same points in the other two views (1) & (3). We can see some correlation between the
selected cluster and the “room, poc, found” cluster in the categorical dimension view. The brush and
Boolean subtraction tools can be used to refine the selection and reveal the correlation between the
two clusters.
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Figure 2.7: Characterising clusters in the use case scenario (section 2.6).

PCC can be performed with:

Ycol = D−1
𝑇 Z⊤𝑇Yrow

𝑇 diag(𝝀)−1/2 (2.1)

where Yrow
𝑇

is PCI of a target matrix and 𝝀 is a vector of the top-𝑘 eigenvalues. An

example of the resultant PCC is shown in Figure 2.5(3). By referring to Figure 2.5(2) and

(3), the analyst can characterize a selected cluster by understanding which categories

highly associated with the uniqueness of the cluster.

2.4.5 Linking and Interactions
The visualizations across all six panels of the dashboard along with the tabular view are

fully linked, and support brushing and direct selection (of a bin/cluster). For instance,

users can select a cluster of interest in one of the three projected 2D views (A1, B1,

or C1 in Figure 2.2), and observe the distribution of the cluster in the remaining two

views. Each projected view is supported by a cluster characterization view (A2, B2, and

C2 in Figure 2.2). When a cluster is selected from any one of the projected views, all

three characterization views update to show the results of that cluster’s characterization

analysis based on categorical (A2), text (B2) and numerical (C2) data dimensions. The

tabular view also updates to show the attributes of the data in the selected cluster.

The linked views update in a similar manner even if—instead of selecting a cluster—

the user selects, say, a single hexbin, or brushes across multiple hexbins. Boolean

operations such as union, intersection, and difference are also supported for more

sophisticated selection of data across the three projected views. For instance, the user
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can intersect multiple clusters across different views to find points common across

clusters, or combine the clusters by union.

Figure 2.6 shows an example of interactive linking. The user selects a cluster labeled

“cold, room, poc” in panel 2 (projected view of text). This highlights hexbins in the other

two views that correspond to this cluster. In the example shown, most of the data points

overlap with Cluster “room, poc, found” in panel 1 (categorical dimensions), indicating

a correlation between these two clusters. To better observe the overlapping points,

the user subtracts the two outliers in panel 1 by brushing them out, and checks the

supplementary views. Panel 3 shows the points distributed across clusters, indicating

no correlation between the selected clusters along their numerical dimensions.

2.5 Implementation
The dashboard visualization is implemented as a web framework, with a Flask server

at the backend. The separation of numerical, categorical, and text dimensions is cur-

rently performed manually. We conduct dimensionality reduction and clustering at the

backend for each of these three dimensions and visualize the results by creating an in-

teractive web-based dashboard application. We use HTML/JavaScript for the frontend

using Bootstrap and React libraries, and D3 [34] to create the interactive visualizations.

We use the Scikit-Learn [278] machine learning library for most of the DR and clus-

tering algorithms, except for UMAP and ccPCA, for which we use implementations by

McInnes et al. [233] and Fujiwara et al. [116] respectively. We use our own implementa-

tions of MCA and ccMCA for DR and contrastive learning for categorical dimensions.

For the text dimensions, we use the Natural Language Toolkit (NLTK) [221] for the text

processing, ConceptNet Numberbatch [332] as the word embedding to vectorize the

text, and Gensim [291] to perform the word-vector lookup.

Using NLTK, we tokenize the descriptive text and tags, and remove stop words. Of

the remaining text, individual words are looked up in the word embedding to return

their vectors. These vectors are then added and normalized to obtain a single vector

representing the unstructured text component of each data point. While ConceptNet
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Figure 2.8: Examining a subset of the original data characterized by temperature-related complaints.
The selected purple cluster is—using the category contribution view (3)—shown to be related to high
costs associated with two supervisors (see section 2.6).

Numberbatch contains a fairly large vocabulary of over 500,000 words, there may be

domain- or organization-specific terms used in maintenance logs that are not present

in the word embedding. In our current implementation, we discard these terms on

the assumption that enough of the meaning is captured in the rest of the text for

clustering data. However, in future iterations, we plan to update word embeddings

using vocabulary from technical manuals and organizational documentation.

2.6 Use Case Scenario
We illustrate the use of our system using maintenance log data of heating, ventilation,

and air conditioning (HVAC) systems used in multiple office buildings of an organiza-

tion. The maintenance logs consist of over 21,000 records collected over ten years, and

contain multiple dimensions of categorical, text and numerical data. For the purpose

of this use-case scenario, we select dimensions of the data that have the least number

of missing fields. The dataset is grouped by the following sets of dimensions.

The first group involves the categorical dimensions of (1) building number in which

the HVAC system is installed or where a complaint was recorded, (2) equipment type

of the HVAC subsystem or machine, (3) priority of the work order, (4) location of the

system or complaint (building number + floor + room), (5) the index of the supervisor
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in charge of the systems at the time of logging the problem/solution.

Most of the numerical dimensions in the data involve dates and times of logging,

and are not accurate or consistent enough to compute meaningful timespans. The

second group thus involves the two remaining numerical dimensions of (1) actual

labor hours incurred, and (2) actual labor cost incurred.

The third group consists of the text dimensions of (1) long description or a de-

scription of the problem or complaint that needed addressing, (2) description or a

small set of keywords highlighting the important aspects of the problem, and (3) a set

of multiple tags assigned to each maintenance record. The text fields were cleaned to

remove extraneous characters (e.g., HTML tags, symbols, URLs etc.), remove punctua-

tion, normalize whitespace sequences, and correct typographical and unicode errors.

Our scenario involves Alice, a maintenance supervisor responsible for the smooth

running of HVAC systems across the organization. Alice uses our prototype to exam-

ine the dataset and identify patterns in the logs to identify potential issues and plan

preventive maintenance. One of her initiatives has been to try and allocate manpower

for recurring or preventable maintenance problems.

Overview. Alice loads all three data groups discussed above into the prototype to

get an overview of the data after DR and clustering. She looks over the default tags

assigned to each cluster and notices such commonly-occurring terms as “room”, “air”,

“hot”, and “cold”. The largest cluster in panel B1 (Figure 2.2) showing text dimensions

appears to contain complaints related to room temperature, with the tags “too hot”

and “too cold” being the most common. From experience, she figures these represent

the most typical complaints about HVAC systems in offices. The top keywords in the

frequency plot (B2 in Figure 2.2) confirm her hunch.

Looking over at the numerical data projection (C1 in Figure 2.2), Alice notices that

it appears to be linearly correlated. Examining the heatmap in the feature contribution

panel (C2 in Figure 2.2) confirms this observation as she finds that the “actual labor

hours” do indeed correlate with “actual labor cost”. She makes a mental note to refer to

the correlation to filter the data by time or cost in her analysis.
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Cluster characterization. Apart from the clusters related to the temperature prob-

lems, Alice notices a unique brown cluster in the text dimension views tagged as “fan,

alarm, fail” (B1 in Figure 2.2) and decides to take a closer look at it. From panel B2, she

finds that the top keywords in this cluster—fan, alarm, fail, reset, repair—are significantly

different from those in the rest of the dataset. She also finds that the cluster overlaps

with all clusters in the categorical view (A1 in Figure 2.2) that have the above three

terms as one of their main tags. The highest overlap in the categorical data view is with

a cyan cluster tagged with “alarm”, “reset”, and “fan”.

She uses the Boolean operator to separate the intersection between these two clus-

ters. From the category contribution panel (Figure 2.7), she notices that several types

of equipment including “RAF” (Return Air Fan), “EF” (Exhaust Fan), “VSD” (Variable

Speed Drive), “CRU” (Customer Replaceable Unit), and “AHU” (Air Handling Unit)

contribute the most to this cluster. From her experience, she knows that the above

equipment has always had relatively unreliable fans. Cross-checking with the numer-

ical data panel, she realizes that the labor cost is relatively low for these problems, so

she makes a note to have regular preventive maintenance done on the equipment.

Projection Interpretation. Now Alice decides to have the “too hot/cold” issue looked

into further, and calls in an engineer to filter the dataset by these two tags and examine

this filtered dataset separately. After loading the subset into the system, she notices

a symmetry in the layout pattern of the text dimension view, about a horizontal axis.

The clusters in the upper half of the projection all contain the keyword “cold” while

those on the lower half contain “hot”. She infers that the vertical direction in the

projected space relates to temperature, and becomes interested in the clusters located

in the middle, especially the solitary purple cluster with tags “proper, operation, verified”

(Figure 2.8-1). She notices a significant variation of labor cost and hours in this cluster

(Figure 2.8-2). Selecting all points with a higher labor cost and hours, she learns from

the updated keyword frequency plot that they correspond to the action “replaced”.

From the category contribution panel, she finds that this part of the data is highly

related to two supervisors “S1” and “S8” (Figure 2.8-3). She confirms this observation
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by checking the tabular view (Figure 2.8-4). She believes that the high cost may either

a clerical mistake, or an issue with the vendor supplying the parts. She decides to talk

with these two supervisors to get to the bottom of the issue.

2.7 Expert Review
Our prototype was reviewed by three experts in machine maintenance analysis to

determine its usefulness and throw light on the kinds of patterns or insights it might

reveal to domain practitioners. The first expert (E1) was a data scientist from industry

who had developed approaches for extracting actionable information from maintenance

data for over six years. The second expert (E2) was an industrial engineer specializing

in model-based systems engineering methodologies. Finally, the third expert (E3) was

computer scientist from academia who worked on algorithm development and natural

language processing for 25 years.

Informed by two pilot studies with our coauthors, we designed a semi-structured,

open-ended expert review. We followed Elmqvist and Yi’s “pair analytics” paradigm [98]

with one of the authors as the experimenter and the domain expert as the participant.

The study used a video conference setup where the experimenter controlled the tool

while the expert remotely observed the visualizations and suggested filters, queries,

and interactions via screen sharing. The experts perused a document explaining the

views and functions of the prototype prior to the study, and were shown a 20-minute

tutorial demonstrating the prototype at the start of the study. They were then asked

to explore two datasets (30 mins each), one the HVAC dataset described in section 2.6,

and the other a subset of 17,000 records from the HVAC dataset involving temperature-

related complaints.

We categorize our observations on the domain experts’ remarks during the ex-

ploratory tasks and their feedback on the prototype into functionality of the prototype,

visual encoding, and interaction.

Functionality. The tutorial and demonstration at the start of the study involved use

cases and obserations such as the one presented in section 2.6. At the end of the
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demonstration, all three experts found our workflow to be “highly reasonable” (E2) and

found the cases compelling. Yet, during the exploratory part of the study, they found it

difficult to pin down the questions they could ask and answer of the data. For instance,

E2 asked, “What key question am I to answer?” Based on the experts’ questions about the

visualizations, filters, and interactions during the exploratory study, we infer that the

difficulty encountered by the experts was partly due to the relatively short time they

spent with the interface, and their unfamiliarity with the data.

Visual Encoding. Domain experts found the linked views to be intuitive and useful.

E3 remarked, “I like the ways that the panels are automatically updated with respect to the

selections that (are) made. And being able to see the three types of data all together is good.

Definitely a good idea to have them combined”. On the other hand, they found the notion of

separating the data dimensions into categorical, numerical, and text to be too abstract.

As E1 explained, “Looking at categorical, text and numerical data makes sense from a data

perspective, but it’s not necessarily the functional break down that makes sense.” Instead, they

reported that they would have preferred a way of representing the data that allowed

them to see the problems in a functional way, e.g., where in the building, or where

in the machine a problem occurred, or what temporal patterns were observable in the

data. E1 and E3 also found it a little confusing that the default cluster labels in the

numerical and categorical panels still used keywords from the text component of the

data. On the other hand, while they were able to characterize at least one of the clusters,

none of them re-labeled the cluster(s). All three experts also found the characterization

view for the categorical data difficult to understand. E1 said that they had “a really hard

time understanding this visualization”. E3 noted that they had “never seen the information

displayed in this way with two side by side panels of the cloud of individuals and categories...

it’s a little non-specific as far as whether the dots that show up in the (cloud of) categories are

close enough to the dots in the (cloud of) individuals and how relavant it is."

Interactions. All three experts found the brushing and linking to be highly useful,

though the hexbin plots were a little confusing for E1 and E2, who took a highlighted

hexbin in one view to indicate that all the points in that bin were linked to the cluster

44



selected in another view. E1 suggested providing “a measurement of how much the

correlation or lack of correlation is.” E3 initially found the Boolean operations to be less

intuitive, but after asking for and seeing examples of how they were used, deemed the

operations to be highly useful. Finally, E3 suggested the addition of numerical filters

using which they could identify maintenance costs higher than a certain threshold,

while E2 suggested filtering out data associated with commonly-occurring tags to help

examine less-common problems.

Overall, the experts found the datatype-based separation less intuitive, but consid-

ered the coordinated views and Boolean operations across the views to be of value.

They recommended more tangible ways of grounding the data in the domain famil-

iar to them by using locations of machines in buildings, locations of components in

machines, and filtering by cost, dates, and keywords.

2.8 Discussion
The use case scenario and the expert review illustrate the importance of interactive

visual analysis in the maintenance workflow [44]. The use case scenario illustrates how

the overview visualizations can provide useful groupings for analysts to explore and

interpret using their domain knowledge. The expert review illustrates the usefulness

of interaction and filtering in helping interpret unfamiliar visual abstractions, and

highlights a need to ground the representations in a way that is familiar to the domain

experts.

In the use case scenario, we saw how the overview visualizations can help identify

common patterns across the dataset (e.g., the “hot/cold” cluster) and help small but

closely related clusters stand out (e.g., maintenance of equipment involving fans). The

ccMCA views (Figure 2.7) allowed the user to not only verify common traits—such as the

presence of unreliable fans, or replacements ordered by a small subsets of supervisors—

across a problem group, but also identify which equipment (in the case of fans) and

supervisors (in the case of replacements) had the common traits.

The expert review highlighted both the advantages and disadvantages of our ap-
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proach. When the domain experts were demonstrated scenarios such as that described

in section 2.6, they were convinced and impressed by the capability of the prototype.

Their validation of the workflow used to create the projected views and characterization

views (Figure 2.1) also verified that our approach was well-motivated. On the other

hand, the experts found the data separation and visualization too abstract to pick up

in a single session. They preferred a more tangible means of viewing the data, based

on location of the machines, locations of the components in the machines, and based

on cost. However, representing high-dimensional data based on only one or two char-

acteristics may not reveal important insights. In addition, one of the main advantages

of our approach—its generalizability to other domains—will be lost by grounding it

too much in one domain. However, there may be a middle ground wherein the user

is able to add an additional “custom” view based on familiar data characteristics. We

will explore this in future iterations.

In spite of the difficulty the experts faced with the abstract representations, they

found the coordination or linking across views to be a useful feature that helped them

understand the data better. As with the representations, they did express a preference

for more tangible filters (e.g., based on specific cost ranges). However, at least one

expert (E3) had started to appreciate the sophisticated filtering possible through the

coordinated views and Boolean operations. The expert feedback suggested that some of

what they found difficult about the interface was more due to the short duration of the

sessions rather than the data abstractions themselves. A longitudinal study—though

unrealistic at the this time with restrictions on data sharing and the current constraint

of remote sessions—would help address some of the familiarity issues that the domain

experts currently faced.

2.9 Summary
In this work, I present a design effectively coupling machine learning with interactive

visualization for analyzing large, heterogeneous, multidimensional maintenance log

data. A key approach is to separate the dataset’s dimensions based on whether the
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data falls under numerical, categorical, or text data, and use lower-dimensional, clus-

tered views that reveals groups in the dataset by each dimension type. I apply existing

techniques such as ccPCA and word embeddings with frequency plots to characterize

the dataset based on its numerical and text dimensions. Notably, a unique capabil-

ity is provided with our new contrastive learning method, ccMCA, to characterize a

dataset with its categorical dimensions. I present these approaches to clustering and

characterization in the form of a dashboard with linked views, and illustrate its utility

through a use-case scenario and an expert review. In particular, the scenarios allow us

to highlight the power of ccMCA in identifying categorical dimensions and their values

that contribute to a cluster, while the expert review highlighted the usefulness of linked

views to characterize clusters across different dimension types. I also identify the need

for more grounded, domain-specific representations of data to scaffold the experts’

understanding of the system. I will continue the discussion on the application scenario

of machine maintenance log analysis and demonstrate how experts’ knowledge can be

leveraged to enable efficient technical text annotation in Chapter 6 .
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Chapter 3
Knowledge Presentation with
Numerical Data Fact

Infographics, which embeds numerical data in visual embellishments, is an effective

visual representation to convey information and impress the audience. Existing tools

are capable of but not sufficient enough in the creation of professional infographics. As

a result, such tools are not attractive enough to those who are not equipped with the

design expertise to create a professional infographic and find it difficult to go through

the learning curve of the tools. In this chapter, I introduce a knowledge presentation

approach that automatically generates infographics from natural language statements.

I contributed to the published version [79] of this work as the second author when I

interned at Microsoft Research Asia (MSRA). I conducted a preliminary study to explore

the design space of infographics as well as participated in the building of a proof-of-

concept system that automatically converts statements about simple proportion-related

statistics to a set of infographics with pre-designed styles. I will provide more details

about my contribution while briefly mention the work accomplished by my colleagues,

such as part of the technical details and the evaluation of usability and usefulness of

the system through the generated infographics and the expert reviews.

3.1 Introduction
Information graphics (a.k.a. infographics) is a type of data visualization that combines

artistic elements (e.g. clip arts and images) with data-driven content (e.g. bar graphs

and pie charts) to deliver information in an engaging and memorable manner [147]. Due

to these advantages, they are widely used in many areas, such as business, finance, and

health-care, for advertisements and communications. However, creating a professional

48



Figure 3.1: Example infographics generated by Text-to-Viz. (a)-(d) are generated from the state-
ment:“More than 20% of smartphone users are social network users.” (e) and (f) are generated from
the statement: “40 percent of USA freshwater is for agriculture.” (g) and (h) are generated from the
statement: “3 in 5 Chinese people live in rural areas.” (i) and (j) are generated from the statement:
“65% of coffee is consumed at breakfast.” (k)-(m) are generated from the statement: “Among all stu-
dents, 49% like football, 32% like basketball, and 21% like baseball.” (n) and (o) are generated from
the statement: “Humans made 51.5% of online traffic, while good bots made 9.5% and bad bots made
29%.”

infographic is not an easy task. It is a time-consuming process and also often requires

designer skills to ensure the perceptual effectiveness and aesthetics.

Much research has been devoted to investigating the design aspect of infograph-

ics [33, 162, 328] and developing authoring tools [184, 309, 374] to facilitate the creation

of data-driven infographics. Based on different considerations, these authoring tools

all strive to reach a balance between the ease-of-use and the power of features, and then

to speed up the authoring process. However, these tools generally target advanced

users. With complicated editing operations and technical concepts, these tools are not

friendly to casual users, who, we believe, form another major category of infographic

creators, other than professionals, such as graphic designers and data scientists [220].

Consider a hypothetical example in which a program manager, Nina, is preparing

a presentation for her manager and wants to emphasize in her slides that “40% of US

kids like video games.” She decides to add an infographic next to the statement with

an authoring tool, e.g., DDG [184] or InfoNice [374]. Since Nina is not a professional

graphic designer, she first needs to spend time (re-)familiarizing herself with the tool,
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such as the user interface and work flow. However, even if she were familiar with the

tool, she still may not know where to begin to create a desired infographic, because all

the existing authoring tools assume that the users have a clear or rough idea of what the

final infographic may look like. Unfortunately, Nina has no design expertise and has

little to no knowledge of how a professional infographic would look like. Therefore,

she likely needs to go through existing well-designed infographics (in books or on the

Internet) to look for inspiration. Based on the examined samples, she then settles on a

design choice that has the best “return of investment” in terms of authoring time and

her purpose of emphasizing the message.

From this example, we can summarize some common patterns for this user category.

First, creators in this category only occasionally create infographics and thus are not pro-

ficient in the authoring tools. Second, they do not aim for the most creative/impressive

infographics, which often involve complex designs and a long authoring time and are

unnecessary in terms of “return of investment”. Instead, something effective but pro-

fessional is often sufficient for their purposes. Third, they often only have little design

expertise, and would likely be unclear on how to design a decent infographic from

scratch. On the other hand, if they were provided with good and relevant samples,

they could often quickly pick one based on their personal preferences.

To address the needs of users in this category, we explored a new approach to

automatically generate infographics based on text statements. Since text is the most

common form of communication to exchange information, we believe that this approach

can help more people take advantage of infographics. To achieve this goal, there are

two major challenges to overcome. The first one is to understand and extract appro-

priate information from a given statement. The second one is to construct professional

infographics based on the extracted information. For the text understanding challenge,

we first collected a corpus of real-world samples. Then, these samples were manually

labeled to train a CRF-based model to identify and extract information for infographic

constructions. For the infographic construction challenge, we analyzed and explored

the design space of infographic exemplars that we collected from the Internet. Based on
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the design space, we proposed a framework to systematically synthesize infographics.

Considering the numerous types of information that can be represented by info-

graphics [283, 327], and the numerous ways to express the same information textually

and visually, it is impossible to cover the entire space in one paper. Instead, we decided

to focus on a relatively small and isolated text-infographic space and build a proof-of-

concept system for it. To achieve this goal, we first conducted a preliminary survey

on the existing infographics to identify a category of information that is commonly

represented by infographics and also has clear textual and visual patterns to process

systematically. Based on the preliminary survey, we chose a subtype of information

related to proportion facts (e.g., “Less than 1% of US men know how to tie a bow tie.”)

and built an end-to-end system to automatically convert simple statements containing

this type of information to a set of infographics with pre-designed styles. Finally, we

demonstrate the usability and usefulness of the system.

3.2 Preliminary Study
3.2.1 Infographics Collection
The goal of our study is to look into the ways of numerical facts visualization, so a

representative corpus of numerical facts as well as the corresponding visualization

output are needed. In actual practice, we combine the collection process of these two

groups to ensure every numerical fact has proper visualization result. First, we gather

infographics with numerical facts and build the visualization item dataset. Then we

extract the numerical facts from these figures to build the numerical fact dataset.

As a pre-processing step, we split infographics to their minimum unit. In general,

infographics do not appear alone but are tiled in a larger poster to present multiple

numerical facts. We collect over 100 posters from a wide range of sources, e.g., Visual.ly

and Visualnews.com and manually separate them into 889 valid infographics. An info-

graphic identified as "valid" fulfills the following four criteria: 1) it contains at least one

numerical fact; 2) it contains at least one visual element; 3) it is visually and semantically

complete; 4) it cannot be divided into smaller subset fulfilling the first three criteria.
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3.2.2 Characterizing Numerical DataFacts
The choice of visualization idiom may vary greatly for different types of numerical facts.

So it is necessary to declare the classification of the numerical facts before looking into

their visual representation. Based on our survey of the 889 subjects, we divide the

numerical facts along two orthogonal dimensions: function and multiplicity. Figure 3.2

shows the statistical distribution of the them in each dimension. In this section, we

define different types of numerical facts within each dimension, along with presenting

their visual form and supporting examples from our survey.

(a) Function (b) Multiplicity
Figure 3.2: Categories of Numerical Data Fact

3.2.2.1 Dimension 1: Function

The function of a numerical fact is decided by what information the sentence conveys to

the audience [293]. Generally, it will provide basic instruction on which visual encoding

form to choose when we visualizing the numerical facts. We have identified eight types

of numerical facts according to their function:

Proportion This kind of numerical fact contains statistical information about how

much a part occupies the whole. Samples that fall into this category typically contain

numerical facts in three forms:

1. percentage: 𝑥%

e.g. "Less than 1% of US men know how to tie a bow tie [282]"
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2. ratio: 𝑥1 in 𝑥2, 𝑥1 out of 𝑥2

e.g. "In some emerging economies, 3 in 10 youths cannot do basic arithmetic [307]"

3. fraction: 𝑥1/𝑥2

e.g. "More than 1/3 of the U.S. adult population is obese [40]"

The numerical fact of this type describes the distribution of the data in a concise but

power way, thus is favored by data scientists. According to our survey, it proves to be

the most common used type: 411 (68.73%) of the 889 numerical facts in our dataset

contain proportion. Because of its prevalence, there are many visual elements specially

designed for the representation of proportion, like pie chart and donut chart. We will

further discuss the visual representation of this type in next section.

3.2.2.2 Quantity

This kind of numerical fact simply contains an absolute value about the amount of the

entity, i.e. price, population, duration, etc. It is the second-most populated type in

our dataset: 247 (41.3%) out of the 889 samples. For quantity, the visualization strategy

may vary greatly depending on the feature of target object and the magnitude of the

value. However, there is one common point for its visualization – since quantity is used

to provide a straightforward knowledge about the amount, the value in the sentence is

often highlighted with extra visual forms.

Change This kind of numerical fact typically describes the entity’s change in value

over a period of time. Samples in this category either employ words like "increase",

"decrease", "drop" to explicitly show change, or list different value in different time point

to implicitly show change. It is worth mention that numerical fact of this type may be

confused with proportion or quantity sometimes, because it also employs expressions like

percentage or absolute value. However, change has richer semantics than the previous

two. And an effective to distinguish them is to check whether the sentence conveys

any information about transform. For example, "Crop yield could drop 30% by the

end of the century [135]" and "In 2012, 75 million U.S. adults used a mobile phone as a

healthcare tool. In 2013, this number increased to 95 million [393]" are both numerical

facts that should be grouped into change. Visual representation for this kind often
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involves specific icon like arrow or line/bar chart to show difference over time.

Times This kind of numerical fact indicates the multiple relationship between two

entities. It is easy to identify literally with comparative adjectives or expressions like

"more than","more likely", "𝑎x times", etc. Typical sentences belong to this category

include "Posts with photos generate up to 180% more engagement than those without

[1]" and "Grad students borrow 3x more per year than undergrads [187]". As for visual

expression, it often takes use of the comparison of size, length or amount of icons to

present the multiple relationship.

Range This kind of numerical fact does not provide a definite value but a value set with

borders. It has similar semantic to "interval" in mathematics. Therefore, sentence of

this type generally contains expression like "𝑥1 to 𝑥2", "𝑥1-𝑥2" in analogy with bounded

interval [𝑥1, 𝑥2], or "< 𝑥1", "> 𝑥2" in analogy with unbounded interval (−∞, 𝑥1], [𝑥2,+∞).
A simple example of this kind is "Users often leave web pages in 10-20 seconds [235]".

In our infographics dataset, some numerical facts of range is presented with a bounded

area in bar chart or pie chart. But a more common type of numerical facts of range is

time point interval (e.g. 2012-2013). It often acts as a supplementary information of

other numerical facts and is not independently visualized.

Rank This kind of numerical fact reflects the relative position of the entity in a group.

It is also easy to identify with ordinal numeral (e.g. "Florida has 3rd largest homeless

population [179]) or specific symbols like "#", "No." or "Top 𝑛" (e.g. "Lack of money is

the #1 reason why adults in America do not receive proper mental health services [262]).

The visualization form of single rank and multiple rank is different. For multiple rank

data, the icons of entities are often arranged as an ordered list according to the rank

value. However, the single rank data is often not specially visualized.

Position This kind of numerical fact is the spatial data providing a location in two-

dimensional (2D) or three-dimensional (3D) space, i.e. a latitude-longitude pair spec-

ifying the location on Earth or a three dimensional coordinate describing the location

within a medical CT [251]. It often appears with map or figures in professional field,

but it is quite rare in our infographics dataset. 5
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Table 3.1: Category of Multiplicity

Category Subjects(S) Facets(F)

Single 1 1

Grouped 1 n

Comparison n 1

Composition n→ 1 1

Independent n n

Others There are a large quantity of numerical facts that does not have clear statistical

meaning, thus do not belong to the seven categories discussed above. They actually

act as a symbol instead of value in the sentence, i.e. date, age, serial number, phone

number, etc. In corresponding infographics, they often appear on title, legend or x-axis

of a chart to distinguish its corresponding subject with others in the same context.

3.2.2.3 Dimension 2: Multiplicity

Apart from function, the choice of visualization idiom is also influenced by how many

numerical facts to cover and their relationship. Based on this fact, we define multiplicity

according to the number of subjects(S) and corresponding facets(F) described by all the

numerical facts in current context. In this section, "subjects(S)" refers to which person

or object the numerical fact describes, and "facets(F)" refers to which type of property

it quantifies. As shown in table 3.1, we define five types of multiplicity:

Single (1S1F) There is only one numerical fact in the sentence, it describes one facet

of the only subject. This is the simplest but the most common (31.94%) multiplicity form

in our dataset. There are no mutual relationship between numerical facts, so the choice

of visualization form of this type are generally decided by its function (Dimension 1).

Grouped(1SnF) In this category, the numerical facts depicts more than one facets of

the common subject to form a complete picture of it. For example, in the sentence "In

the United States alone, there were 10.5 billion searches in July 2009, which is a 106%

increase from 5.1 billion in Dec. 2005 [297]", all of the numbers are used to provide

information about "searches in the United States". This type of numerical fact is also
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very common in our dataset (31.77%). Since there is a common subject, icons about

this subject are often used to construct the main body of the infographic. The closer a

numerical fact relates to the subject, the higher priority it has to influence the type of

the final visualization idiom.

Comparison(nS1F) For this type, multiple numerical facts are provided to compare

the same facet of different subjects. Taken "70% of members want to bank online, while

66% of members want to walk in branch [329]" as an example, "66%" and "70%" compare

the "online bank" and "walk-in branch" in terms of number of members. The role of

each numerical fact in the context is the same. Therefore, they are either combined

into a bar chart or placed in parallel with same type of visual elements. When visual

elements are placed in parallel, distinguished color, size or icon are usually used to

show difference and achieve comparison.

Composition(n→1S1F) This type of numerical facts also depicts one single facet for

different subjects. But these subjects have inner connection and can be combined to

form a larger whole. That is why we name it "n→1S1F" in the title. In another word, one

subject has been partitioned to smaller subjects according to one specific feature, which

can be reflected by the numerical facts. This is also the main difference between this

type and comparison. A typical example for composition is "60% of the population are

visual learners, 30% are auditory, 10% are kinesthetic". If represented in proportion,

the numerical facts of this kind generally add up to 100%, which makes it easier to

distinguish from comparison. And because of this special feature, data scientists prefer

to combine all the data into one pie chart, donut chart or stacked bar chart, instead of

visualize each numerical fact separately.

Independent(nSnF) For this type, there is no direct relationship between numerical

facts (but they are usually about the same topic). So they may depict any facet of any

subject. This situation is quite rare and only appears 3 times in our dataset. Because of

the content independence, the choice of visual idiom is quite free. Generally the most

important information has the highest priority to be visualized.
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3.3 Proportion-Related Information
We provide general instruction on how to choose visual idioms for each category of

numerical facts in last section. In this section, we conduct detailed analysis on the

visualization strategies for numerical facts of proportion. We select this type because

of its popularity and abundant samples. According to our survey, proportion make up

almost 70 percent of the numerical facts in view of dimension 1. Generally, the two main

components of infographics are description and image. In the following discussion,

we first summarize the layout which defines how to arrange description and image

spatially. Then we report our discoveries about these two kinds of components for

proportion respectively. Finally, we provide some suggestion about color theme choice

for designers.

3.3.1 Layout
The components of infographics are organized in different style depending on the

character of numerical facts, resulting in a layout. It provides general scheme for

spatial arrangement of description and image in current infographic. There are some

existing description about layout types in previous work [312] [17], though none of them

specially discuss layout for infographics of numerical fact. Based on the taxonomies

raised in these papers, we discuss the layout for infographics of single proportional

numerical facts first. Then we also provide two strategies to construct infographics for

multiple proportional numerical facts based on the result of single infographics.

3.3.1.1 Layout for Single Proportion

Single proportional numerical facts are the simplest while the most common type in

proportion. We choose to discuss the infographics layout for this type first, because

they act as the building blocks for other types of proportion according to our survey. In

order to provide a more practical instruction on the implementation of the visualization

system, we divide the infographics of single proportional numerical facts in our dataset

into four groups according to the number of their two main components – description

and image. Specifically, they are "1 description - 1 image", "2 descriptions - 1 image",
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"1 description - 2 image" and "2 descriptions - 2 images". For each group, we observe

that there are some general layout styles which are applicable to all the numerical facts

in this group. Besides, if the numerical facts contain specific information and can be

represented as maps, statistical charts or container pictures, there are also some special

layout styles for them.

The general layout arranges description or image in horizontal, vertical or tiled

panels. The panels have clear margins between each other, but they do not have to be

not equally-sized. There is no specific requirement for the content of numerical facts.

So this kind of layout is applicable for most infographics of numerical facts. In fact, it

is the most common type of layout in our dataset. However, this kind of layout cannot

present any special relationship about numerical facts and less aesthetic to some extent.

If the numerical fact contains some geographic information, it can be shown in a

map with notation. Generally, the center of this kind of layout is the map, with a

notation related to a certain location on it. The content of the notation could either

be a paragraph of description or a statistical chart about the numerical fact. If there is

additional information like title or supplementary instruction, an additional panel of

description can also be placed above or below the map.

If the numerical fact can be represented as a statistical chart, the layout can be

arranged as the chart with notation. In this case, the notation is usually a piece of

description and related to a certain point on the chart. Additional description can act

as the title or legend of the chart.

If the numerical fact can be matched to some special icons that are able to act as

container, the other images or description can be placed inside the blanks of the container.

On this occasion, the distribution of the blanks actually decides the layout of the whole

infographic, including the number, size and position of other panels. Although the

final result is quite impressive for this kind of layout, the matching process is quite

challenging and may require manual work.
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3.3.1.2 Layout for Multiple Proportion

Infographics layout for multiple proportional numerical facts can be built upon the

layout of single proportional ones. This is based on our observation that each of

the numerical fact in the sentences with multiple proportional numerical facts can be

represented as a single infographic with the same layout style. So these numerical facts

can be visualized separately first. Then their infographics can be combined as a whole

according to some rules. According to our survey, there are two common strategies to

achieve the combination process.

The first strategy is to merge the single infographics by sharing some of their com-

mon elements. This method keeps the original layout of the single infographics while

shows multiple data in virtue of some mathematic or design inspiration. It can be

further divided into four types according to which visual element they share:

1. Share axes. This type aligns the visual marks of all single infographics so that

they can be placed in a common coordinate system. It is applicable for statistical

charts with axes, like bar chart or scatterplots. However, if the measurement of

numerical facts are incomparable or their range of value varies too much, this

type may lose effectiveness because of the failure of sharing axes.

2. Share center. This type arranges multiple numerical facts in form of concentric

circles or sectors with the same center. It is applicable for circular charts with

center, like pie chart or Nightingale rose chart. The main limitation for this

method is the scalability. If there are too many numerical facts, the concentric

circle will become extremely big or the sectors will become hard to distinguish.

3. Share illustration. This type links multiple annotations to different position of the

shared illustrative image. It is applicable for annotated diagrams with the same

illustration, like map or anatomy. This method requires the original sentence to

contain clear location information, which limits the feasibility of it in most cases.

4. Share container. This type is applicable for infographics sharing the common

background. At the same time, this background acts as the container for all the

descriptions of the infographics. In another word, there are some blank space
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in the background image to place the descriptions from different infographics.

So the main challenge of this method is to find ideal background image with

appropriate number and size of banks.

The second strategy is to keep the single infographics separated and arrange them in

a larger canvas according to some rules. For this type, the original layout of the single

infographics are nested in a larger layout. And this strategy can be further divided

according to the feature of this large layout:

1. Parallel. This is the most straight-forward layout strategy. If all the numerical

fact are equipped with the same visual elements, they can be easily positioned

in parallel, either vertically or horizontally. Because of the similar visual assets,

more attention of the audience is attracted to the difference among the content

of numerical facts. This kind of layout is effective when the expected effect is to

show discrepancy between several numerical facts.

2. Tiled. The single infographics are arranged in tiled panels. Each panel has clear

border and only contains one single infographic. There might be only one row or

one column of panels, and they may be not equally-sized.

3. Circle. Generally there is a panel in the center of the canvas. And the single

infographics are arranged around this panel to form a circle. This kind of lay-

out provides an extra space to show the common information of the multiple

numerical facts, which makes the single infographics more closely related.

4. Hierarchical. The single infographics are arranged in a tree structure to present

the hierarchical relationship between them. The expected reading order for this

type is generally to follow the expanding or collapsing of the tree. A common

scenario for using this layout is to show hierarchical information about different

part of the main body.

5. Stacked. The single infographics are not regularly arranged but well organized to

minimize the blank space of the canvas. For example, description may surround

the image according to the outline of the icon, and the text direction also varies to

fit current space. This kind of layout is also suitable for most cases. But finding
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the best layout for given text and image is not an easy job and may need extra

optimization algorithm.

3.3.2 Description
We have mentioned above that description is one of the two main types of components

in the infographics of numerical fact. The direct source of the description is the original

numerical facts. In this section, we will discuss several most common types of descrip-

tion and their relationship with the original sentences. Besides, we consider "value"

as a special type of description and have additional discussion about it, because it is

generally presented with distinguished visual effect.

3.3.2.1 Single Proportion

The original sentences(S) with numerical fact of single proportion generally contains

some specific clauses or phrases, which are the basic building blocks of the description.

Syntactically, a complete sentence should contain subject(SB) and verb-object phrase

(VOP). Semantically, the sentence provides information about value(V), part(P) and

whole(W) of the proportion. Based on the position of value, the sentence can also be

trimmed to the sentence without value {S−V} or part before value (PBV) and part

after value (PAV).

With above representation, we list five most common types of description as follows:

1. S

2. V + {S−V}
3. V + VOP

4. {V_𝑜 𝑓 _W} + P

5. PBV + V + PAV

where "+" splits different components of the description. One complete description

may has 1 to 3 separate components. The choice of description should be decided

according to the actual layout, like how many components and how much space for the

description.

61



3.3.2.2 Multiple Proportion

For description of multiple proportional numerical facts, there are two possible strate-

gies. The first strategy is to separate the original sentence to a group of single pro-

portional numerical facts. Then the description can be extracted according to the rules

for single proportional numerical facts. For example, the sentence "3 out of 4 U.S.

farmworkers earn less than $10,000 annually, and 3 out of 5 live below the federal

poverty line" can be separated to "3 out of 4 U.S. farmworkers earn less than $10,000

annually" and "3 out of 5 live below the federal poverty line". Each of them contains

the information to generate the five types of description for single numerical fact. This

strategy requires relatively independent structure and complete information for each

sub-sentence. So it is more suitable for the type group or independent.

The second strategy, in contrast, is to view the original sentence as a whole. It

presents some closely related numerical facts that can be packed into certain charts like

donut chart or bar chart. Generally there is a common-part for all the proportional

facts and multiple counterparts for each value. The common-part, counterparts and

their corresponding value are the description for this type. For instance, in the sentence

"Only 4 percent of elementary schools, 8 percent of middle schools and 2 percent of high

schools provide daily physical education for all students", the common-part is "provide

daily physical education for all students", and the counterpart-value pairs are "elemen-

tary schools-4 percent", "middle schools-8percent" and "high schools-2 percent". This

strategy requires the distinguished numerical facts to depict a common facet of their

subject, so it is more suitable for the type comparison or composition.

3.3.3 Image
Image is another basic component of the infographics for single proportional numerical

fact. In this section, we discuss the type of visual encoding idioms and corresponding

application scenario in the case of single proportion. We also report our discovery

about the icon selection process for some types of infographics.
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Figure 3.3: Percentage of Image Types

3.3.3.1 Type

Based some existing visualization taxonomies, we go through our dataset and summa-

rize frequently-used image types. Although there are over 30 potential visualization

idioms available according to [33], suitable ones for single proportional numerical facts

can be narrowed to seven types, which can be covered by a smaller taxonomy in [10].

Figure 3.3 shows the statistical result of their appearance rate.

Pictograph is the most frequently-used types of image (Figure 3.4(a)). It is a group

of duplicate content-related icons. The content is usually reflected in two aspects: 1)

the vision of icon reflects the keywords of sentence; 2) the number of icons or their

color-fill status reflects the value in numerical fact. Pictograph is suitable for numerical

facts in which the number of icons can be easily found and is no more than 10. For

example, most of proportion that is in the form of ratio, like "𝑥1 out of 𝑥2", is represented

in pictograph. And for the data in the form of proportion as well as divisible by 10 or

5, pictograph is also quite common.

Single icon is a content-related picture (Figure 3.4(b)). Since the single picture

can only reflect keywords but not value of the numerical facts, it is generally more

colorful and informative than the icons in pictograph, covering more than one keyword

sometimes. In order to compensate for the lack of value visualization, the "value" in

description usually has extra highlight with strategies mentioned in last section. This
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(a) Pictograph (b) Single Icon (c) Donut Chart

(d) Pie Chart (e) Filled Icon (f) Scaled Icon

(g) Bar Chart
Figure 3.4: Examples for Different Image Types

type of image is applicable in most of the cases so long as there is a suitable icon.

But because of the limited information it conveys, it is often chosen when the original

numerical fact is not very important or the space is limited.

Traditional statistical chart is the third commonly used visualization idiom. For

single proportion, donut chart (Figure 3.4(c)), pie chart (Figure 3.4(d)) and bar chart

(Figure 3.4(g)) is more suitable. Although donut chart is actually a variant of the pie

chart, we treat them separately. That is because there is a circular space in the middle

of the donut chart to put extra image or description, which makes donut chart more

informative than pie chart. These three types of charts are also suitable for most single

proportional numerical facts. But in view of their shape, pie chart or donut chart is

preferred when the prospective space for image is square, while bar chart is preferred

when the space is linear.

There are several other types of images like filled icon (Figure 3.4(e)) or scaled icon

(Figure 3.4(f)). Filled icon reflects the value of numerical fact with the percentage it is

filled and scaled icon reflects that with its size. Both of them reflects the keywords with
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the vision of icon. They require the icon to have attributes like "fillable" or "scalable",

and the filling direction is also dependent on the meaning of the icon. Because of these

constraints, they are not that commonly used in the infographics for single proportion.

3.3.3.2 Icon

Icon is the basic graphic primitives in pictograph, single icon, filled icon and scaled

icon. The keywords of the original sentence and the space reserved for image are the

two main considerations for icon selection. Firstly, icon should be closely related to the

content of the original sentence. The more keywords it covers, the better it fits current

case. It is possible that icon does not exactly match the keyword, but is a concretization,

subset or close neighbor of it. For example, for the keyword "video games", the logo

of Xbox is also a good choice. Secondly, the shape of the icon decided whether it

is suitable for current layout. Different stretch direction of icon and reserved space

can result in big blanks and loose layout, which greatly reduces the aesthetic of final

infographics. Besides, additional attributes like "fillable" or "scalable" should also be

taken into account for filled icon and scaled icon as mentioned before.

3.3.4 Theme
Color is a complex topic and influenced by many factors. In this section, we concentrate

on the palette choice strategies and how to distribute colors in the palette to different

components of the infographic.

3.3.4.1 Palette

The choice of palette for infographics is mainly influenced by the semantic topic of

numerical facts apart from aesthetic. We notice that there are already many websites

(e.g. [4] [77] [62]) providing color schemes that fulfill the aesthetic requirement. Most of

them provide palette options with 3-5 types of suggested color and a brief description of

application scenarios. Generally, the topic of numerical facts matches the application

scenarios of the palette. For example, if the numerical facts is about environment

protection, it is highly possible that its palette has description like "natural and earthy"

and contains color like green and blue. However, the number of the palettes is limited
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and the palette description is often quite ambiguous in order to cover more situation.

So it is possible that the numerical facts cannot exactly match a palette, or cannot match

any palette at all. Therefore, the content of the numerical facts just influences the choice

of color scheme necessarily but not sufficiently.

3.3.4.2 Color Distribution

Based on our discussion about components of infographics, we can further divide them

into several parts in the view of color distribution, including "title", "text", "value",

"background", "empty" and "fill". Among these parts, "title", "text" and "value" are

corresponding to the component "description". The "background" defines the color of

background. As for "empty" and "fill", they are used to color foreground color and

background color of the component "image" if the type belongs to pictograph or chart.

However, it is also possible that the original icon already contains color information,

especially for single icon. On this occasion, the original color is preferred and the color

in the palette is discarded.

The color in the palette is assigned to different parts according to some common

rules. Generally, there is a main color in the palette which is the most closely re-

lated to the description of this palette. It is often assigned to "background", because

"background" often occupies the biggest area of the whole infographic. The color that

contrasts the most to "background" is assigned to parts belonging to "description" in

order to help them stand out from the "background". The "text", "title" and "value" do

not have to use completely different color, but the color of "title" and "value" is often

different from "text" to achieve highlighting and echoing. If "empty" and "fill" for "im-

age" is in use, they should show relatively bigger contrast. Meanwhile, "empty" often

belong to the same tone with "background". If the original color of icon is used, their

color should also in harmonious with the ones in the palette. Besides, only two kinds

of color are not enough for "image" sometimes, like some complex charts for multiple

proportion. In this case, the variants of the original "empty" and "fill" with different

lightness or saturation are the most ideal compensaton.
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3.3.4.3 Value Highlight

Value is the quantitative representation of the numerical fact and often requires extra

emphasis. Most of the samples in our dataset highlight value with distinguish size,

color and font (Figure 3.5(a)(b)(c)). A second way to highlight value is to embellish

it with background picture (Figure 3.5(d)) or turn itself into wordart (Figure 3.5(e)).

Besides, value is often placed at the optical center like middle or top part of the picture

to draw more attention from audience.

(a) (b) (c)

(d) (e)
Figure 3.5: Value can be highlighted with distinguished size, color, font or additional embellishment.

3.4 Implementation and Evaluation
The prototype system contains two main modules, namely text analyzer and visual

generator. First, users provide a textual statement about a proportion fact, such as

“More than 40% of students like football.” Then, our text analyzer identifies the essential

segments in the statement, including modifier, whole, part, number, and others. Then

the original statement and the extracted segments are fed into the visual generator

for infographic construction. For each dimension (i.e., layout, description, graphic,

and color), a set of visual elements are generated or selected. Then, we enumerate all

combinations of these elements, to synthesize valid infographic candidates. Finally, all
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the synthesized results are evaluated and ranked, and the ones with high scores are

recommended to users. Then, users can either directly export any of them as an image

to integrate into their reports or presentation slides, or select one and further refine it

based on their personal preferences.

To demonstrate the diverse designs that our system can automatically create, we

present a variety of infographics created with our system (Figure 3.1). For example,

Figure 3.1(a)-(d) and Figure 8(b) are all generated based on the same statement, “More

than 20% of smartphone users are social network users.” We can see that different

templates can produce different infographics. In particular, we can see that Figure 8(b)

is based on the layout blueprint illustrated in Figure 8(a). However, since the template

does not reserve a place for the modifier component, the generated infographic is less

accurate than the others, and hence has a lower informative score. Figure 3.1(e) shows

an example of a filled icon, while Figure 3.1(f) shows an example of a tilted layout.

Figure 3.1(g) and (h) demonstrate two examples of how our system handles proportion

information in the form of “m in n”. Our system can either choose the correct number

of icons to form a pictograph (Figure 3.1(g)) or convert the information to a percentage

number and show it with other visualizations (Figure 3.1(h)). Figure 3.1(i) and (j) show

that our color strategy can correctly select colors based on semantic information. Since

one of our color palettes has the descriptive keyword coffee, this color palette will be

ranked higher when choosing colors for infographics. Figure 3.1(k)-(o) demonstrate

the results for showing multiple percentages. Specifically, Figure 3.1(k)-(m) show a

comparison case, in which proportion facts cannot be logically accumulated, while

Figure 3.1(n) and (o) show an accumulation case. To understand how general users

perceive our system, we further conducted a set of casual interviews with a wide variety

of audiences in two exhibit events. The last assessment involved expert evaluation with

three professional graphic designers.

Given I did not primarily contribute to the technical innovation and interview

procedures of the prototype system, I skip further details related to these two parts of

work. Readers who want further reading could refer to our publication [79].
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3.5 Summary
The use of infographics to present numerical facts enables rapid and clear communi-

cation of underlying knowledge, without requiring extensive background knowledge

from the audience. In this chapter, I present a preliminary study that systematically

analyzes the layout, components (description and image), and theme for conveying nu-

merical facts of proportions. Based on the study, I introduce a framework for automati-

cally generating infographics and demonstrate its feasibility through a proof-of-concept

system. The example results and interviews with users/designers highlight the tool’s

usability and its potential for widespread adoption in everyday life. In the future, I aim

to expand this work to support a broader range of statistical information and explore

other types of infographics, such as timelines and locations. With advancements in

machine learning-based techniques, it is also promising to enhance the system and

infographic quality through data-driven approaches.
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Chapter 4
Knowledge Presentation
with Unstructured Text Data

Current text visualization techniques typically provide overviews of document con-

tent and structure using intrinsic properties such as term frequencies, co-occurrences,

and sentence structures. Such visualizations lack conceptual overviews incorporating

domain-relevant knowledge, needed when examining documents such as research ar-

ticles or technical reports. To address this shortcoming, I present ConceptScope, a new

technique and system that utilizes a domain ontology to represent the conceptual re-

lationships in a document with a Bubble Treemap visualization. Multiple coordinated

views of document structure and concept hierarchy with text overviews further aid

document analysis. ConceptScopefacilitates exploration and comparison of single and

multiple documents respectively. I demonstrate ConceptScopeby visualizing research

articles and transcripts of technical presentations in computer science. In a compara-

tive study with DocuBurst, a popular document visualization tool, ConceptScopewas

found to be more informative in exploring and comparing domain-specific documents,

but less so when it came to documents that spanned multiple disciplines.

4.1 Introduction
Text visualization techniques have evolved as a response to the virtual explosion of

text data available online in the last few decades. Specifically, they aim to provide a

visual overview—what digital humanities now call “distant reading” [248]—of large

documents or large collections of documents, and help the researcher, investigator, or

analyst find text patterns within and between documents (e.g. [337]). Most of these visu-

alization techniques are domain-independent, and do not provide a knowledge-based
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overview of documents. There have been approaches to provide a visual overview of

the semantic content of documents (e.g. [73]). Such approaches have typically looked

to lexical hypernymy (is-a relationships) to provide a conceptual overview of the text.

However, when examining domain-specific documents such as research papers,

medical reports, or legal documents, it is necessary to examine the documents from the

point of view of that specific domain. For instance, when examining a research paper in

computer science, a computer science researcher may be interested in whether the paper

concerns a general overview of a subject, such as “computer graphics”, or concerns more

specific concepts such as “infographics” or “TreeMap visualizations”. Similarly, the

researcher may want to compare papers that appear in the same conference session to

see the similarities and differences that may exist between the papers. In such scenarios,

the overview visualizations should also represent the computer science domain and

how the knowledge is structured in the domain.

While approaches such as topic modeling can provide a bottom-up categorization

or thematic separation of a document’s text, domain knowledge is often organized

formally by experts in the corresponding domains using Ontologies. An ontology,

defined as an “explicit specification of a conceptualization” [136, p. 199], is a widely-

accepted way in which domain knowledge is formally represented. A knowledge-based

overview of a document that uses as a reference the corresponding domain ontology

can thus provide a conceptual overview for the domain expert. Such a view can also

be used structurally to help the expert compare two or more documents based on the

concepts they cover.

In order to provide documents examination from the viewpoint of a specific do-

main, we present ConceptScope, a text visualization technique that provides a domain-

specific overview by referring to a relevant ontology to infer the conceptual structure

of the document(s) being examined. ConceptScope uses a Bubble Treemap view [131]

to represent concept hierarchies, highlighting concepts from the ontology that exist

within the document and their relationships with other concepts in the document, as

well as key “parent” concepts in the Ontology. Each concept “bubble” is also populated
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with a word cloud that represents text from the document that relates to the concept,

providing a contextual overview. Through a set of multiple coordinated views of

text, structural overviews, and keyword-in-context (KWIC) views, ConceptScope helps

users navigate a document from a specific domain perspective. ConceptScope can also

be used to visually and conceptually compare multiple documents using the same do-

main ontology as a reference. To aid a domain novice, we also provide the user with

navigable tooltips that provide concept explanations linking to external references.

We illustrate the utility of ConceptScope by building a prototype application that

visualizes computer science-related documents such as research abstracts and articles

using the Computer Science Ontology (CSO) as its reference. Through a set of use-case

scenarios, we highlight the navigation, exploration, and comparison functions afforded

by the technique, and discuss its extension to other domains and scenarios. We also

present a brief comparison of ConceptScope with DocuBurst [73] through a qualita-

tive, between-subjects study. Based on our observations, we find that ConceptScope’s

ontology-based visualization and its grouping of concept-related word clouds in the

Bubble Treemap helps participants define and contextualize concepts, and explore new

concepts related to a given concept. However, ConceptScope’s domain-dependency

makes it less suitable for viewing and comparing documents that span domains.

4.2 Related Work
This chapter proposes an interactive knowledge-based overview representation of text

content. For our approach, we draw from existing techniques to identify themes or

topics in the text, and visual representations of these topics. In this section, we outline

existing work in this area and explain our reasoning behind our choice of inspiration

from the existing work.

4.2.1 Thematic Visualizations of Document Content
Initial approaches to providing overview visualizations of document content used

metrics such as sentence length, Simpson’s Index, and Hapax Legomena as “literature

fingerprints” to characterize documents [178]. This approach was later used to create a

72



visual analysis tool called VisRA [260] that helped writers review and edit their work

for better readability using these representations. Among less abstract representations,

Wordle [364] is the most popular. Wordle represents a text corpus as a cluster of words

called a word cloud, with each word scaled according to its frequency of occurrence in

the text. This idea is adapted to other techniques to characterize document content and

structures within text, such as the Word Tree [375], which aggregated similar phrases in

sentences in a text, Phrase Nets [361] that visualized text as a graph of concepts linked

by relationships of the same type found in the text, and Parallel Tag Clouds [74], that

show tag clouds on parallel axes to compare multiple documents.

When examining multiple text documents, it is important to identify the various

types of connections between them. One of the most well-known tools used to identify

inter-document connections is Jigsaw [337], which uses names, locations, and dates to

show list, calendar, and thumbnail views of multiple documents. While Jigsaw simply

uses text occurrences to form the connections, more sophisticated approaches have

since been proposed. Tiara [376]—another system designed for intelligence analysis—

uses topic modeling with a temporal component to highlight the change in document

themes over time. ThemeDelta [121] allows thematic comparison between multiple

documents (or similar documents over time) by combining word clouds with parallel

axis visualizations.

More recently, topic modeling-based approaches have been incorporated to provide

thematic overviews of text content. For instance, TopicNets [133] uses a graph-based

representation where both documents and topics are nodes and links exist between

documents and topics, thus serving to form clusters of thematically-related documents.

Serendip [6] refines this idea and provides a multi-scale view of text corpora. It uses

topic modeling along with document metadata to view patterns at the corpus level, text

level, and word level. Oelke et al. [261] use a topic model-based approach to compare

document collections, using what they call a “DiTop-View” with topic glyphs arranged

on a 2D space to represent the document distribution. ConToVi [95] is a more recent

work that uses topic modeling on multi-party conversations to reveal speech patterns of
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individual speakers and trends in conversations. While topic model-based approaches

are useful for identifying themes within collections of documents, a knowledge-based

approach requires the use of human-organized representations of information, which

are discussed in the following section.

4.2.2 Knowledge-Based Visualizations
As structured knowledge representation models [126], ontologies are widely used in

the field of medicine/biology [126], engineering [299, 381], sociology [154], computer

science [340] and so on. Achich et al. [2] review different application domains and

generic visualization pipelines of ontology visualization.

According to various application fields and utilizing purpose, there are multiple

methods to visualize the knowledge stored in ontology. The review of Katifori and

Akrivi [173] systematically categorized these methods according to the dimension of

the visualization. Ten years later, Dudáš et al. [93] further extended this work by

adding more recently emerged visualizations. Among these visual encodings, we find

inspiration in the matrix view of NodeTrix [154], the sunburst view of Phenotype [126]

and the context view of NEREx [96].

Our work is inspired by DocuBurst [73], which was the first visualization from the

point of view of human-organized structure of knowledge. DocuBurst uses hyponymy,

or “is-A” relationship in the English lexicon to identify hierarchical relationships within

a given documents, or when comparing two documents. The hierarchy is visualized

as a sunburst diagram supported by coordinated views of text content and keyword-

in-context views. While DocuBurst uses WordNet—a lexical database of the English

language—as its reference, we use open-source domain ontologies, e.g. Computer

Science Ontology (CSO)1, in order to provide a more focused, domain-specific overview

of documents.
1https://cso.kmi.open.ac.uk/home
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4.2.3 Hierarchical Layouts
Visualization of a knowledge-based document overview needs to incorporate the hi-

erarchical information inherent to the knowledge base. While a tree is the common

representation of such a hierarchy, it is usually more suitable for showing the structure

rather than the content of the information presented. The most famous alternative for

representing hierarchical information is the TreeMap [321], a two-dimensional, space-

filling layout that represents hierarchy through nesting and a second quantity such as

percentage contribution to the whole as the area. Alternatives to TreeMaps such as Icicle

plots and Radial TreeMaps [20] and Sunburst diagrams [336] have since been proposed

and incorporated into standard visualizations of hierarchies. DocuBurst [73] referenced

in the previous section uses the Sunburst diagram as its hierarchical visualization.

While the original TreeMap has afforded enough space in the representation to

portray content, it often comes at the cost of some loss of detail in the hierarchy.

Alternatives such as circle packing [372] and more recently, Bubble Treemaps [131]

have been proposed to address this issue. We incorporate the Bubble Treemap into our

design for its relative compactness compared to circle packing, and its use of space that

allows for some content representation.

4.3 Design Requirement
In this section, we break down our overall need to provide a knowledge-based overview

of document content into specific requirements to inform the design of ConceptScope.

R1 Provide Conceptual Overview: When reading a long document from an unfamil-

iar domain—such as an academic paper—the reader can benefit from a high-level

overview of the information provided. While word clouds can provide a simple

overview of the text in the document, a lack of understanding of the technical

terms might hinder the reader in understanding the overview representation. In-

stead, an overview that stems from a fundamental categorization of the domain

itself—as represented by the hierarchical organization of concepts often available

in an ontology—can provide an overview that is accessible to both novices and
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experts in the domain.

R2 Reveal Contextual Information: The document text and the ontology do not

always overlap. From the point of view of the ontology, the document contains

non-relevant information, but information nevertheless important for the reader.

For instance, a research paper introducing a new search algorithm can introduce

several concepts in the knowledge base of search algorithms. The paper would

also make arguments for and against certain algorithms. The reader may benefit

considerably from the structure and content of these arguments, which are lost if

the overview visualization focuses solely on the ontological components. A way

to provide the contextual information surrounding these concepts is thus needed.

R3 Support Exploration of New Knowledge: When exploring a concept that is a

subdomain of a domain that is only partially known to the reader, they may

be interested in other sub-domains of the domain. For example, if the term

“quicksort” appears in an algorithm paper, the reader might want to know of other

sorting algorithms such as “bubble sort” and “merge sort”. They may also want

to learn about related terms such as “divide and conquer” and “time complexity”.

These new terms may not appear in the document text, but forms an essential

component of knowledge that extends from—and aids the understanding of—

the core concept (i.e. quicksort). We thus need ways to enable users to access

information from the ontology that is related to the concept of interest.

R4 Support Multi-document Comparison: Document comparison is a common

requirement that emerges from the creation of visual overviews of documents [73].

In the case of our scenario, the comparison is likely to be conceptual: to get a quick

comparison of concepts that are common to multiple documents, and those that

are unique to one. The reader may also want to simply compare the differences

between the information provided in two documents. While documents such as

academic papers may contain abstract which summarizes the main content of the

article, it may not be sufficient enough to cover all the concepts that are covered

in the papers, not to mention the similarities and differences. Therefore, our tool
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Figure 4.1: Data processing pipeline for ConceptScope.

should be able to provide visual support for users to compare and analyse the

conceptual structure and content between two or more documents.

4.4 Implementation
In order to provide the knowledge-based conceptual overviews of a given document,

an appropriate mechanism is needed to parse the document and compose queries to

the reference ontology. An appropriate representation of the concept needs to be auto-

matically generated in a way that reflects its hierarchy in the domain ontology as well

as its occurrence in the document. To achieve this, we need to incorporate techniques

from multiple areas including natural language processing, ontology querying, and

information visualization. Figure 4.1 shows the framework of assembling them into a

pipeline and the section number describing the corresponding technical details.

4.4.1 Generating Query Candidates
Ontology queries are typically performed using SPARQL (SPARQL Protocol And RDF

Query Language) [365], which typically use “triples” (subject, predicate, and object)

or parts thereof. In our case, trials showed that an exact triple was unlikely to be

constructed from the document, nor was it deemed necessary. Instead, it was more

important to have the subjects or object be specific terms that are likely to be present

in the ontology. We construct these queries from the document with a sentence-level

granularity. In order to construct the query terms, we use two approaches: noun
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chunking, and n-gram identification.

Noun chunking is the process of extracting subsets of noun phrases such that they

do not contain other noun phrases within them [26]. This allows us to identify specific

terms that may be relevant to a domain ontology. For instance, when referencing the

computer science ontology, terms such as “object-oriented programming” and “local

area network” are much more meaningful than the individual words that make up these

terms (“local”, “object”, or “area”). For this reason, we also do not resort to stemming

or lemmatization as they change the morphology of the word (e.g., “oriented”, if

lemmatized to “orient”, forms “object-orient programming”) which renders the noun

chunk invalid as a query candidate. Noun chunks can also include leading or trailing

stop words, which are trimmed in order to generate the query candidates.

Noun chunking can produce phrases that contain query candidates, but are not

query candidates themselves. For instance, a paper about animation may include mul-

tiple variances of animation like “2D computer animation”, “stop-motion animation”

and “animated transition”. Some of these may appear within noun chunks, but not by

themselves. To identify such cases, we identify groups of words that commonly occur

together in the document as n-grams.

4.4.2 Mapping Queries to Concepts
Once the query candidates are identified, the next step is to map these candidates to the

corresponding concepts in the domain ontology of interest. This involves two steps: (1)

perform identical matches, i.e. concepts that correspond exactly to those in the ontology,

and (2) reduce the number of “failed” matches, i.e. concepts that are related but not

present in the ontology. Step 2 is often necessary due to the incompleteness and lack of

strict formatting in some of the domain ontologies. For instance, the computer science

ontology is not as well-populated as, say, medical or biological ontologies such as the

human phenotype ontology.

The two steps—accurate matching and “fuzzy” matching—are illustrated in lines

8 through 15 in Algorithm 1. For any given candidate, we first look for an accurate

match in the domain-specific ontology. We then construct a dictionary that includes
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all of the concepts in the ontology for an effective search. However, the number of

concepts that can be directly detected by accurate matching is small. This is because of

the mismatch between specific forms in which a concept is listed in the ontology and its

many variations in the document. For instance, “object-oriented programming” may

be the exact match in the ontology, but it might appear in the text as “object-oriented

approach” which is clearly related buy cannot be identified with an accurate match. In

order to solve this problem, we introduce a fuzzy match.

Algorithm 1 Detect CSO Concepts in Document
Input: document text 𝑠𝑡𝑟𝑖𝑛𝑔𝐷𝑜𝑐

Output: concept dictionary 𝑑𝑖𝑐𝑡𝐶𝑜𝑛𝑐𝑒𝑝𝑡

1: 𝑙𝑖𝑠𝑡𝑆𝑒𝑛𝑡← 𝑆𝑝𝑙𝑖𝑡(𝑠𝑡𝑟𝑖𝑛𝑔𝐷𝑜𝑐)
2: 𝑚𝑜𝑑𝑒𝑙𝑁𝐺𝑟𝑎𝑚← 𝑇𝑟𝑎𝑖𝑛𝑁𝐺𝑟𝑎𝑚(𝑙𝑖𝑠𝑡𝑆𝑒𝑛𝑡)
3: 𝑑𝑖𝑐𝑡𝐶𝑜𝑛𝑐𝑒𝑝𝑡← ∅
4: for 𝑠𝑡𝑟𝑖𝑛𝑔𝑆𝑒𝑛𝑡 in 𝑙𝑖𝑠𝑡𝑆𝑒𝑛𝑡

5: 𝑙𝑖𝑠𝑡𝐶ℎ𝑢𝑛𝑘← 𝑁𝑜𝑢𝑛𝐶ℎ𝑢𝑛𝑘𝑖𝑛𝑔(𝑠𝑡𝑟𝑖𝑛𝑔𝑆𝑒𝑛𝑡)
6: 𝑙𝑖𝑠𝑡𝑁𝐺𝑟𝑎𝑚← 𝑚𝑜𝑑𝑒𝑙𝑁𝐺𝑟𝑎𝑚(𝑠𝑡𝑟𝑖𝑛𝑔𝑆𝑒𝑛𝑡)
7: 𝑙𝑖𝑠𝑡𝐶𝑎𝑛𝑑← 𝑙𝑖𝑠𝑡𝐶ℎ𝑢𝑛𝑘 ∪ 𝑙𝑖𝑠𝑡𝑁𝐺𝑟𝑎𝑚

8: for 𝑠𝑡𝑟𝑖𝑛𝑔𝐶𝑎𝑛𝑑 in 𝑙𝑖𝑠𝑡𝐶𝑎𝑛𝑑

9: if 𝑄𝑢𝑒𝑟𝑦𝐶𝑆𝑂(𝑠𝑡𝑟𝑖𝑛𝑔𝐶𝑎𝑛𝑑) ≠ ∅
10: 𝑑𝑖𝑐𝑡𝐶𝑜𝑛𝑐𝑒𝑝𝑡← 𝑑𝑖𝑐𝑡𝐶𝑜𝑛𝑐𝑒𝑝𝑡∪𝑄𝑢𝑒𝑟𝑦𝐶𝑆𝑂(𝑠𝑡𝑟𝑖𝑛𝑔𝐶𝑎𝑛𝑑)
11: else

12: 𝑙𝑖𝑠𝑡𝐶𝑎𝑛𝑑← 𝐷𝐵𝑝𝑒𝑑𝑖𝑎𝑆𝑝𝑜𝑡𝑙𝑖𝑔ℎ𝑡(𝑠𝑡𝑟𝑖𝑛𝑔𝐶𝑎𝑛𝑑)
13: 𝑙𝑖𝑠𝑡𝐶𝑎𝑛𝑑← 𝐹𝑖𝑙𝑡𝑒𝑟(𝑙𝑖𝑠𝑡𝐶𝑎𝑛𝑑, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)
14: if 𝑄𝑢𝑒𝑟𝑦𝐶𝑆𝑂(𝑙𝑖𝑠𝑡𝐶𝑎𝑛𝑑) ≠ ∅
15: 𝑑𝑖𝑐𝑡𝐶𝑜𝑛𝑐𝑒𝑝𝑡← 𝑑𝑖𝑐𝑡𝐶𝑜𝑛𝑐𝑒𝑝𝑡∪𝑄𝑢𝑒𝑟𝑦𝐶𝑆𝑂(𝑙𝑖𝑠𝑡𝐶𝑎𝑛𝑑)

The goal of fuzzy match is to match the candidate to a concept that is very close to but

not exactly equal to the candidate. In our prototype system, we use the computer science

ontology (CSO) as the domain-specific ontology. The CSO also incorporates links

of the form “sameAs” (http://www.w3.org/2002/07/owl#sameAs), that connect to
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DBPedia [198], a broader, but less strictly-defined and less domain-specific ontology. We

use these links and leverage the DBpedia Lookup Service [153] to find related DBpedia

concepts and link them back to CSO. After checking the Wu-Palmer similarity between

the CSO concept detected in this way and the original candidate using WordNet [107],

we add the concept to the dictionary if the similarity is above a threshold. This threshold

is currently determined by trial and error.

4.4.3 Hierarchy Reconstruction
The concept dictionary constructed thus far does not yet incorporate hierarchical infor-

mation. In order to retrieve and store the hierarchical information from the ontology, we

query the paths from every detected concept to the root of the ontology and use them

to restructure the concept dictionary as a tree. The final output of this algorithm—the

concept tree—can be directly converted to a JSON file and used to automatically render

the visualization.

4.5 Visualization
In this section we discuss the visualization design and the interactions built upon the

visual interface of ConceptScope.

4.5.1 Visual Encoding
We choose Bubble Treemaps proposed by Görtler et al. [131] as our primary visualiza-

tion. This visualization is originally designed for uncertainty visualization, but we find

it suitable for our application in terms of hierarchy representation and space organiza-

tion. We use the original layout algorithm of the Bubble Treemap, but adapt the visual

encoding and interaction strategies to meet our design requirements.

4.5.1.1 Hierarchy Presentation

In a Bubble Treemap, the deepest levels of the hierarchy are represented as circles,

with successive higher levels forming contours around their “child” levels. We use

the circles to represent the terms that appear (or have corresponding synonyms) in the

original document as well as in the ontology. The outer contours represent concepts
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Figure 4.2: The ConceptScope interface representing two research papers discussing animation. The
Bubble Treemaps (a) provide overviews, with the one on right showing a paper covering more specific
topics than the one on the left. Supporting transcript (b) and text (c) views, along with a concept list
(e) allow exploration and comparison between the documents.

that do not explicitly appear in the document, but still represent parent concepts from

the ontology. These parent concepts are identified using the ontology query process

demonstrated in Algorithm 1. The outermost contour forms the “root” of the ontology,

with successive inner contours representing its child concepts. For example, in the

computer science ontology (CSO) [305] we use for our case studies, the term “computer

science” is the root concept in the ontology.

Inner Circles The function of the innermost circles—representing concepts that are

present in the ontology and in the document—is to provide a clear representation

of the terms that are directly connected to the document. The size of the circles

are proportional to the frequency with which the corresponding term appears in the

document. The fill color of a given circle corresponds to the highest “parent concept”

it belongs to, just below the root. Although the Bubble Treemap layout already gathers

together circles that share the same parents, we visually reinforce such relationship by

assigning the same color to circles with common highest ancestor (besides the root).

These “highest parent concepts”, divide the root term into several subclasses and help

users to better grasp the various areas the document covers. In order to make sure the

circles’ colors are perceptually uniform, we create the isoluminant palette [186] from
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the CIELAB color space to ensure perceptual uniformity between the concepts shown.

Surrounding Contours The contours surrounding the circles show hierarchical re-

lationships between the concepts that occur in the document. After exploring several

encoding options for the contours to best represent related concepts while highlighting

hierarchies, we chose fill colors of decreasing luminance to represent “deeper” contours

in the hierarchy.

4.5.1.2 List Presentation

Effective as the Bubble Treemap is, it is not intuitive enough for the users to understand

and grasp all necessary information at a glance. We therefore augment the visualization

with a multi-function widget which combines concept list, legend, and bar charts

representing term frequencies to solve this problem. Inspired by scented widgets [378],

the multi-function widget presents important supporting information in a compact

representation. As a concept list, this tool represents every concept detected in current-

loaded document(s) as a list item, the background color of which is the same as the

corresponding concept circle(s) shown in the Bubble Treemap. We group the concepts

sharing the “highest super topic” together, with an additional list item showing the

common “highest super topic” of each group. This concept list also acts as a legend

showing the connection between each color and their corresponding “highest super

topic”. We also attach a sparkline for each list item to show the distribution of current

concept across multiple documents (when multiple documents are loaded).

4.5.1.3 Incorporating Word Clouds

An unlabeled Bubble Treemap can be too abstract a representation for the user to

comprehend. On the other hand, labeling every concept may result in a cluttered

view which would also make comprehension difficult. We thus provide three levels

of labeling for the concept: unlabeled (if the concept circle is too small), labeled (if the

concept circle is large enough to fit its corresponding concept name), and labeled with

context (where a word cloud of related terms from the document is combined with the

concept label). The interactions to retrieve information from these views are discussed

in the following section.
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4.5.2 Interaction
ConceptScope provides linking between views and semantic overview and detail views

to help analyze the document(s) and its concepts. These interactions support two modes

of document analysis: exploration and comparison. We will first describe the overview

and detail interactions and follow them with the modes of analysis.

4.5.2.1 Overview+Detail Interactions

To eliminate the potential confusion caused by the users’ unfamiliarity with the Bubble

Treemap, we introduce interactions to acquaint them with the visual schema and

provide details on demand [322]. The Bubble Treemap provides a compact view of

the domain-relevant concepts, their hierarchical structure in the ontology, as well as

their context in the original document. In order to make this compact representation

easier to understand, we design two interactions to present information that the user

may seek: (1) a level slicer to “slice” the Bubble Treemap at any level to examine parent

concepts, and (2) semantic zooming, which allows the user to zoom in to a concept circle

to examine its corresponding word cloud (described in section 4.5.1.3. The users can

chose and combine these two tools according to their preference.

The Level Slicer is designed to help novice users quickly build a connection between

the nested layout of the Bubble Treemap and the hierarchical structure of ontology. This

tool allows the user to choose the level of the parent concept that they want to see on

the screen by sliding the slider bar. When the view initializes, all levels of the Bubble

Treemap are shown to provide an overview, but the labels corresponding to parent

contours are are concealed. Once the “child” concepts are sliced away by the slicer,

the corresponding label of the newly exposed parent concepts are made visible. This

tool facilitate users to inspect any cross section they are interested in from the whole

hierarchical structure.

Semantic Zooming is designed to provide different granularity of information based

on the users’ need. As explained in section 4.5.1.3, users may see three levels of detail

for the same concept circle: unlabeled, labeled, and labeled with word cloud. When

users zoom in and our of the graph, the size of every circle changes and its appearance
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transforms among the three based on the available space inside it.

ConceptScope also reveals more information about a concept including its thumb-

nail, definition, related concepts, and its context in the text. These views allow the

exploration of concepts that do not themselves occur in the document, but are related

to the ones that do occur.

4.5.2.2 Exploration Mode

The exploration mode—meant for inspecting a single document—provides conceptual

overview and detail representations of the document using the ontology as a reference.

With the static Bubble Treemap, it is almost impossible for novice users to build the

connection between a circle in the graph and a word/phrase in the original text. Users

might want to explore related knowledge in the domain ontology about the concepts

shown in the Bubble Treemap. Following the information-seeking mantra [322], we

design a set of small widgets which can be easily evoked and interacted with to the

Bubble Treemap.

To connect the Bubble Treemap and the original document, we create a high-level tran-

script view and a raw text view. The high-level transcript view can be seen as a

“minimap” of the document, with each sentence represented by a series of horizontal

lines scaled to sentence lengths (Fig. 4.2 (b)). In the raw text view, the raw text is shown

to provide a convenient context acquisition (Fig. 4.2 (c)). These two views as well as

the Bubble Treemap view are fully coordinated, so that interacting with one view high-

lights related information in the other views. For example, if the users hover over a

circle representing a concept in the Bubble Treemap view, the lines corresponding to

the sentences that contain this concept in the transcript view and the text of the sentence

in the raw text view are also be highlighted.

Interacting with a concept circle also reveals a tooltip that shows the concept defi-

nition, thumbnail, and a link to the relevant concept page on DBPedia. The tooltip also

provides links to other related concepts that may not be present in the document, to

provide context from an ontology point of view.
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4.5.2.3 Comparative Mode

The comparative mode assists users in comparing multiple documents and explore

conceptual similarities and differences between the documents. As the name suggests,

loading multiple documents creates multiple, side-by-side Bubble Treemap views, one

for each document. Concepts common to two or more documents are encoded in the

same color across the Bubble Treemaps.

The comparative mode provides similar interactions as the exploration mode. In

additionm the sparklines mentioned in section 4.5.1.2 can provide the users a quick

overview of the relative frequency with which each concept occurs across the docu-

ments. The users can compare the concepts that interest them by hovering or searching.

If they know where a concept is located in any of the Bubble Treemaps, the user can

simply hover on the corresponding circle or contour, which highlights the concept—if

available—across all the Bubble Treemaps. They can also directly search for the con-

cept in the search field (top right corner in Fig. 4.2) to highlight all relevant circles and

contours across the Bubble Treemaps. The users can thus quickly get an idea about

where and how their concepts of interest are distributed across different documents.

The switchover between exploration mode and comparative mode does not require

explicit user operation. Loading a single document shows the exploration mode, while

loading additional documents sets ConceptScope to comparison mode. The exploratory

features are always available regardless of the number of documents, as comparison

also requires a degree of exploration. We also provide a “switch” for semantic zooming

to make sure the users can explore or compare the Bubble Treemap(s) at whatever

number of levels and size they want.

4.6 Use Case Scenarios
We briefly illustrate the use of ConceptScope for exploring and comparing documents

with two use-case scenarios: exploring an academic paper, and comparing the tran-

scripts of three TED talks.
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(a) ConceptScope Interface (b) DocuBurst Interface

Figure 4.3: Overview of an IEEE VIS 2019 Paper [79] in (a) ConceptScope and (b) DocuBurst.

4.6.1 Exploring an Academic Paper
We first use ConceptScope to visualize an academic paper [79] on automatic infograph-

ics generation, published in IEEE VIS 2019. To ensure the accuracy of our natural

language processing components, we only keep the natural-language parts of the orig-

inal paper, and remove text in references, tables, formulas and figure labels. We use

the computer science ontology (CSO) as the reference ontology for this work. Fig. 4.3

shows the visualization, with the same paper shown in DocuBurst [73] for reference.

The Bubble Treemap shows over 30 computer science concepts directly or indirectly

mentioned in the paper (requirement R1). Inspecting the concept list on the left, we

see that the highest parent concepts of the ones identified in the document range

from “human-computer interaction” to “artificial intelligence” to “computer system”.

Zooming in, we click on the bubble representing “OCR” (optical character recognition)

and a tooltip pops up with the definition of this concept as well as the recommendation

of concepts related to this one (R3). We examine the definitions and where the concept

appears in the word cloud to see that it points to the use of OCR to identify key text in

existing infographics (R2). We also see that these and most concepts under “artificial

intelligence” appear under the related work section. We thus infer that these concepts

might only be mentioned as background or references to other work, and not as a

fundamental contribution of the paper.

Figure 4.3 (right) shows the DocuBurst visualization using the root “message”. We

notice that almost all computer-science-related concepts identified by DocuBurst can
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The case for anonymity online
Speaker profile: Organization founder
Tag: Internet origin stories
Duration: 11:09

What happens when our computer gets 
smarter than we are?
Speaker profile: Data Scientist
Tag: Artificial intelligence
Duration: 16:03

The wonderful and terrifying implications 
of computers that can learn
Speaker profile: Philosopher
Tag: Artificial intelligence
Duration: 19:17

Figure 4.4: ConceptScope visualizations comparing the transcripts of three TED Talks. The title of
each talk is shown in red under each visualization, along with the speaker profile and talk metadata.

be detected by ConceptScope as well. In terms of space efficiency, DocuBurst has

the advantage of providing more compact visualization with its Sunburst diagram.

However, DocuBurst offers fewer options for contextual views. In ConceptScope, the

word clouds in each concept circle provide a contextual overview, and aids concept

exploration outside the realm of the document with our thumbnail views of concepts

and the links to DBPedia.

4.6.2 Comparing Transcripts of TED Talks
To illustrate multi-document comparison, we load the transcripts of three TED Talks [35,

160,246], all of which are tagged under the “computers” category on the TED webpage.

Fig. 4.4 shows the distribution and depth of concepts, along with information about

each talk.

Loading all three documents into ConceptScope creates three panels (similar to

that shown for two papers in Fig. 4.2), each containing the Bubble Treemap view,

transcript view and raw text view for the corresponding transcript. The Bubble Treemap

immediately illustrates the differences and similarities between concepts across the

three talks, which can further be explored as all three views are coordinated. We

notice that all three of the talks mention concepts under the parent topics of “internet”,

“computer security” and “artificial intelligence”. One reasonable explanation is that
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these topics covers many basic terms in computer science, so it is almost unavoidable

to use them in a computer-science-related technical presentation. When inspecting the

concept list and Bubble Treemaps, we notice that concepts that belong to “artificial

intelligence” appear more in talk No. 2 and talk No. 3, which makes sense as the two

talks have the additional tag of “AI” on the TED webpage.

Talk No. 1 discusses the issue of privacy on online forums, and concepts of privacy

and anonymity fall outside the current version of the computer science ontology. In

addition, the talk does not delve deep into computer science concepts. This results

in a Bubble Treemap that covers very few concepts. Talk No. 2 is delivered by a

data scientist who talks about computer science concepts, specifically “algorithms”,

“machine learning”, and “deep learning”, which are reflected in the Bubble Treemap.

Finally, Talk No. 3 is presented by a philosopher who talks about broader implications

of machine learning, also providing a historical perspective. This is reflected in the

Bubble Treemap, showing the broadest concept coverage of the three talks, with no one

concept being too dominant.

4.7 User Study
We conducted a controlled study to evaluate whether the visualization & interaction

design and the use of a domain-specific reference ontology renders ConceptScope effec-

tive in exploring single documents or comparing multiple documents. Specifically, we

intended to understand whether ConceptScope was effective in helping users: (1) sum-

marize the content of a document effectively with a domain-specific concept overview

(R1); (2) glean what a document says about any given concept in the context of the

document (R2); (3) become aware of new concepts and their connections (R3); and (4)

discover enough similarities and differences among multiple documents (R4). In order

to provide a baseline, we used DocuBurst [73], the popular content-oriented document

visualization tool that provides a non-domain-specific overview of documents using

the WordNet [107] taxonomy. We thus conducted a between-subjects study comparing

participants that used ConceptScope with participants that used DocuBurst.
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4.7.1 Participants
We recruited 18 participants (10 female, 8 male) aged between 18 and 44 years. The

participants comprised 16 Ph.D. students, 1 undergraduate student, and 1 employee of

a technology company. Seventeen participants had computer science backgrounds, of

which 12 specialized in visualization and HCI, 1 in high performance computing, 1 in

natural language generation and multi-modal learning, while 3 didn’t report their spe-

cialized field. The one remaining participant had a design and education background,

specializing in learning and user experience design. Two of the 18 participants reported

themselves as native English speakers.

4.7.2 Conditions and Task Design
We chose DocuBurst as a baseline for our evaluation because both tools visualize

document content from the perspective of a human-curated knowledge base, instead

of computationally-derived classifications such as topic modeling or latent semantic

indexing. DocuBurst provides an overview of documents based on the non-domain-

specific “is-a” relationship in WordNet, while our prototype is based on domain-specific

ontologies, in this case the Computer Science Ontology (CSO). We asked each partici-

pant to perform the same tasks using the interface assigned to them (ConceptScope or

DocuBurst) and compared interaction and behavior patterns across participants. Par-

ticipants were given time to familiarize themselves with their assigned interface. They

were then asked to perform the following tasks:

T1 Explore a single document: This task was divided into several sub-tasks, each

aligned with a corresponding design requirement: (1) summarize the documents

and provide relevant keywords (R1); (2) describe a specified concept based on its

usage in the document (R2); (3) select (from a list of description) the context in

which a given concept is used in the document (R2); (4) define several concepts

before and after using the system, as well as rate confidence with the definition

(R3); (5) identify concepts in the document related to given concept (R3); and

(6) list the concepts (that the participants did not know before the study) in the

document (R3). Participants were also asked whether they read the documents
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before the study to account for potential confounds.

T2 Compare two documents: The participants were asked to compare two docu-

ments at a conceptual level (R4). Therefore, they were asked to identify common

and unique concepts, as well as overall similarities and differences of the two

documents. Again, they were asked whether they read the documents before the

study to eliminate bias.

T3 Compare three documents: The questions that participants were asked to answer

in this task were generally the same as task T2 but upon three documents. The

participants were suggested to “identify a theme and explain their difference

within the theme” when identifying the difference among three documents. Since

DocuBurst was not capable of comparing more than two documents, this task was

only assigned to participants using ConceptScope in the study.

In order to simulate participants’ regular reading experience, we chose computer-

science related academic papers or technical reports for all tasks of this study. For

task T1 we used Munzner’s nested model for validating visualizations [250]. Task T2

involved two papers discussing animation techniques: the first, a general evaluation of

how animation could help users build mental map of spatial information [23], while

the other focused on the role of animation in dynamic graph visualization [12]. To

alleviate participant fatigue and manage their time, we chose to use relatively shorter

transcripts of three 15–20 minute Ted Talks [35, 160, 355] in the “artificial intelligence”

playlist instead of academic papers for task T3.

4.7.3 Study Setup
We conducted the study remotely owing to safety measures surrounding COVID-19.

The participants were asked to access either of the tools from a remote server and

participate in the study with their own machine and external devices. Fourteen of

them used laptops with screen size ranging from 13 in. to 16 in. The other 5 used

monitors with screen size ranging from 24 in. to 32 in. Fifteen participants used the

Chrome browser, 2 used Safari, while one used Firefox for the tasks.

The setup, tasks, and durations were decided based on a within-subjects pilot of
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the study described above with 2 participants: one native and one non-native English

speaker. ConceptScope and DocuBurst employed different datasets in this study. The

decisions to suggest time durations for the questions and to set up the final study as a

between-subjects study were made based on the long duration of each session and on

participant’s fatigue toward the end of each session.

4.7.4 Procedure
Participants first responded to an online pre-survey providing their demographic and

background information. Once they had finished familiarizing themselves with the

interface, the participants performed the tasks described in section 4.7.2. Participants

followed a concurrent think-aloud protocol while executing the tasks, with the mod-

erator recording their verbalizations and their screen through a videoconferencing

application. Finally, the participants were invited to finish a brief survey about the tool

and share their feedback about their experience with the interface, both as open-ended

responses and on the NASA TLX scale [149].

4.8 Results and Discussion
4.8.1 General Behavior Patterns
We categorized participants into two groups based on how they attempted to gather the

information they needed to answer the questions: those that mainly used the visualiza-

tion, and those that mainly used the raw text display. Seven of the 9 participants who

used ConceptScope primarily used the main Bubble Treemap visualization to glean

the required information, while the remaining 2 relied more on the raw text reading

from the document. In DocuBurst, only 5 of the 9 participants used the main sunburst

diagram as their main source of information, while 4 of the 9 chiefly relied on close

reading of the text.

Participants using ConceptScope used the main visualization more than participants

using DocuBurst. This was partly due to the raw text reading experience offered by the

two interfaces, and partly due to the ability of the visualizations and the knowledge

base in conveying a relevant overview. In ConceptScope, documents were split into
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sentences and displayed in a relatively small vertical space (see Fig. 4.2c). Therefore,

participants tended to read only a few sentences prior to and after the key sentence for

a specific task instead of going through larger blocks of text. As participant 𝑃𝑐7 stated,

“because my resolution is small and my mouse is sensitive, so when I move it jumps between

the text very easily (in transcript view). And this box (the tooltip showing the corresponding

sentence) doesn’t include the complete paragraph, so it’s easy to get lost...”. In contrast,

DocuBurst showed text as paragraphs in a view that used more vertical space, such

that users were able to read the sentences more easily. “One thing I like this system is

when I click some words, they divide it as paragraph rather than the entire document...help me

read more specifically”, said participant 𝑃𝑑3.

When answering a given question, 7 of the 9 participants using ConceptScope

searched or explored related information in the interface and summarized their find-

ings. The remaining 2 mainly attempted to recall the answer from earlier explorations,

and then referring to the interface to confirm. For DocuBurst, this distribution was 5

participants chiefly exploring the interface, and 4 chiefly recalling the answer. Com-

pared to ConceptScope, more participants using DocuBurst answered questions from

memory, almost equal to the number of participants who explored the visualizations

to find answers. Participant comments indicated that they felt they might spend too

much time in locating the required information. For instance, when trying to find com-

mon concepts between two documents (task T2), participant 𝑃𝑑9 who used DocuBurst

commented that “it is really hard to see all of them (words in the sunburst diagram). And I

really wanna expand one of those, but then I’m not sure if it will cover all the things that I wanna

see. . . . It’s hard to go back to where you came from”. Similar comments were also made by

those using DocuBurst to first gather information before answering the question.

4.8.2 Task-Level Observations
We further separate task-wise participant behavior based on how they achieved specific

objectives within tasks. This behavior was not restricted to any one task; rather, it

characterized how certain participants chose to access information across tasks.

Document Sensemaking: When exploring the full document (T1), participants
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across both interfaces attempted to use the visualization to quickly get a sense of

what topics were addressed in the document. Ten of the 18 participants (6 using

ConceptScope, 4 using DocuBurst) were able to quickly identify that the document was

an “InfoVis paper”. Certain participant behaviors were similar across both interfaces.

Most of them explored the document using the main visualization first, and only later

resorted to close reading of the text. Even after recognizing it as an academic paper,

only 2 participants relied on the paper structure (e.g., abstract/introduction) to get a

sense of the document.

However, DocuBurst users were more easily overwhelmed by the large number of

words in the Sunburst diagram, many of which (they felt) were not closely related to

the main theme of the document. Participant 𝑃𝑑3 observed, “some words maybe appear

really frequently, but it’s actually not very important ... it’s just because it’s used very frequently

by any document.” Another participant (𝑃𝑑2) found it difficult to organize the words

into themes, saying “it is a little bit hard to place the information together, because you don’t

know what the correlation is between (among) these things (i.e. the concepts provided)”

Participants’ perception of the document when using ConceptScope was largely

influenced by the extent of overlap between the document text and the ontology. For

instance, the concept “visualization” being well-defined in the ontology, was success-

fully identified by 8 out of 9 participants in T1. However, the concept “animation”

was not as well-defined in CSO, as a result of which 5 out of 9 participants failed to

determine that task T2 involved papers discussing animation. In comparison, 8 of the

9 using DocuBurst were able to successfully identify the animation theme.

Concept Sensemaking: When making sense of a concept (R2, R3), most of the

participants chose to locate it in the main visualization first, and only then looked

at the other views to answer relevant questions. To locate a specific concept in the

visualization, participants’ strategies varied based on the solutions available in the

interface and their preference.

In ConceptScope, 5 of the 9 participants used the search feature, while the others

preferred to visually search the concept in the interface, i.e. looking it up in the concept
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list or directly checking the Bubble Treemap. Since DocuBurst did not feature a search

box available, all 9 participants set the concept to locate as the root word. However,

eight of the 9 participants failed with this strategy and had to set alternatives of the

original concept (e.g. the a parent concept, a synonym, or a substring of the target

concept) as root words. One unique strategy that at least 3 participants used to search in

DocuBurst was to start from higher level concepts and dive deeper towards their targets

in the sunburst diagram. Once again, their success depended on their choice of parent

concepts: they often lost their way as they could not retrace their steps. In comparison,

participants found it more straightforward to locate concepts in ConceptScope.

While participants using either interface chiefly attempted to define a concept (R1)

by referring to the context of its use (R2), their approach to identify the context was

different across the interfaces. In ConceptScope, the concordance view was used the

most, with all 9 participants using this view to identify the context at least once. This was

followed by the close reading of the transcript (used by 7 participants), with the word

cloud being used by 6 participants at least once. Although DocuBurst also provided a

word cloud, only 2 participants used it for context. This was likely because DocuBurst’s

word cloud was not organized into concepts as in ConceptScope, and furthermore,

the word cloud in DocuBurst—designed to supplement the main visualization—only

featured proper nouns that would not otherwise be visualized in the Sunburst diagram.

To find related concepts (R3), participants using ConceptScope chiefly referred to the

Bubble Treemap while DocuBurst users referred to the raw text view.

Multi-document Comparison: We observed participants’ behavior when compar-

ing documents both at the conceptual level and the full-text level (R4). Participants us-

ing ConceptScope used several techniques including highlighting concepts in the Bub-

ble Treemap, highlighting concepts in the concept list, checking the relevant sparklines,

and comparing the word cloud within a concept group. Five of the 9 participants

reported that these techniques were sufficient to answer all of the questions in tasks

T2 and T3. Participant 𝑃𝑐1 observed, “just looking at this (the Bubble Treemap for the third

document in T3), you can see some colors are different, means some different concepts exist
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here... you can immediately see it”. When the visual clues were not enough to aid them

summarize the similarities or differences between/among the documents, the other 4

participants resorted to close reading of the document.

In contrast, most of the participants using DocuBurst mentioned that the visual-

izations and interactions were not sufficient to help them compare the concepts or full

text of the documents. Participant 𝑃𝑑5 commented, “the visual encoding (distinguishing

concepts between documents) is confusing to me”. Participant 𝑃𝑑9 felt “it is really hard to

see all of them (concepts)” when they tried to identify unique concepts of one document.

Both participant 𝑃𝑑1 and 𝑃𝑑8 were distracted by general words like “part” and “paper”,

because they were the only few words marked as being shared by both documents. As

a solution, they chose to read the document text closely to make sure their responses

to the questions were accurate enough.

4.8.3 Overall Feedback
Fig. 4.5 shows the difference in participant experience for the study between Con-

ceptScope and DocuBurst. We can see from the figure that participants’ experience was

more or less similar between the two interfaces with the exception of frustration: par-

ticipants using ConceptScope were less frustrated (𝑀𝑑 = 2, 𝐼𝑄𝑅 = 1) than those using

DocuBurst (𝑀𝑑 = 4, 𝐼𝑄𝑅 = 4). Observation and feedback indicated that participants

using DocuBurst found themselves distracted by less relevant concepts. Participant

𝑃𝑑3 stated that the interface didn’t provide “important” keywords as expected: “When

I click ‘person’... it (the corresponding sector in sunburst diagram) is really big, means that

it is important. However, I don’t think it is important based on what I’ve seen”. Participant

𝑃𝑑4 mistook the document in task T1 for a medical paper and participant 𝑃𝑑9 mistook

those in T2 as related to chemistry, based on their (mistaken) interpretation of proper

nouns in the word cloud.

As a general feedback, most participants using ConceptScope considered it suit-

able to provide an overview for unfamiliar documents, while those using DocuBurst

felt it was better suited as a supplementary tool when exploring familiar documents.

Typical comments about ConceptScope included “these multiple views are nice and easy
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Figure 4.5: Distribution of NASA TLX responses showing participant feedback towards ConceptScope
and DocuBurst (Rate 1 represents “very low”, while rate 7 represents “very high”).

to understand”(participant 𝑃𝑐2), “it seems like a pretty useful tool especially for exploring

large set of documents to get an idea of what the main topics are, what kind of researchers are

active” (𝑃𝑐7). With DocuBurst, participant 𝑃𝑑2 suggested that “the tool should be used as

a supplementary tool ... doesn’t help too much with understanding the document”. In addition,

participants also reflected that the the learning curve for both tools were relatively long.

“It was hard at the beginning, but not so hard later”, commented by participant 𝑃𝑐4.

When regarding the features of each interface, the Level Slicer (section 4.5.2.1) in

ConceptScope was marked as least useful by participants. Participant 𝑃𝑐1 observed

that “the level slicer is probably useful if the document is extremely complex ... but this dataset

is relatively simple”. Three of the participants thought the list view (section 4.5.1.2) was

the most useful feature. We also observed 7 participants used it for comparison tasks

and 4 participants used it to search target concepts in the study. Only 2 participants

rated the Bubble Treemap (section 4.5.1.1) as the most useful feature, while one marked

it as the least useful one. Yet, we did see 7 participants used it as their major source

of visual clues when comparing multiple documents. It is likely that the participants

used the Bubble Treemap as providing supplementary information to the concept list

view, which they found to be most useful.

4.9 Summary
In this work, I propose ConceptScope, an interface that aids a knowledge-based ex-

ploration and comparison of documents based on a reference domain ontology. I
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present the use of a Bubble Treemap visualization as the primary overview visualiza-

tion to show the distribution of concepts for a document of interest, and describe our

approach to translate document content into appropriate queries that best reflect the

concept spread and show their hierarchical relationships in the domain ontology.

I illustrate our approach using the computer science ontology as our reference. I

demonstrate the use of ConceptScope for document exploration and comparison, and

then evaluate ConceptScope against DocuBurst, the first and most popular overview

visualization based on human-curated knowledge. Based on participant behavior and

feedback, I illustrate that ConceptScope’s ontology-based visualization and grouped

word clouds help participants define and contextualize concepts and explore concepts

related to one given concept. On the other hand, ConceptScope’s domain dependency

makes it unsuitable for reviewing text that covers more than one discipline. In contrast,

DocuBurst’s domain-agnostic reference allows it to be applied more widely, though

the overviews are less useful when highly domain-specific content is visualized. In

addition, DocuBurst’s interface is more amenable to close reading of the document.

For future work, I plan to address issues relating to the ontology lookup. One

main disadvantage is the dependence on ontologies that may or may not be mature.

I currently use DBPedia to “broaden” our lookup, but using DBPedia detracts from

the strict definitions and relationship requirements to which domain ontologies need

to adhere. Our Bubble Treemap visualization as well as our ontology lookup can

currently support only one ontology. This makes it difficult to view documents of an

interdisciplinary nature. I also intend to explore the application of our approach to

real-time visualizations of online forums or technical communication in the form of

emails or instant messengers.
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Chapter 5
Knowledge Exploitation for Document
Summarization

In this chapter, I introduce ConceptEVA, a mixed-initiative approach to generate, evalu-

ate, and customize summaries for long and multi-topic documents by exploiting knowl-

edge from an existing knowledge base, DBpedia, and human input. This application

is inspired by the inefficiency of existing natural language processing and artificial

intelligence approaches to summarize long and multi-topic documents—such as aca-

demic papers—for readers from different domains. ConceptEVA incorporates a custom

multi-task longformer encoder decoder to summarize longer documents. Interactive

visualizations of document concepts as a network reflecting both semantic relatedness

and co-occurrence help users focus on concepts of interest. The user can select these

concepts and automatically update the summary to emphasize them. In this chap-

ter, I present two iterations of ConceptEVA evaluated through an expert review and

a within-subjects study. We find that participants’ satisfaction with customized sum-

maries through ConceptEVA is higher than their own manually-generated summary,

while incorporating critique into the summaries proved challenging. Based on our

findings, I also make recommendations for designing summarization systems incorpo-

rating mixed-initiative interactions.

5.1 Introduction
The notion of automated text summarization—compression of long text passages into

shorter text without losing essential information—has been an open problem since

over half a century ago [223]. The main goals of automated text summarization are to

present the salient concepts of a given document in a compact way, and to minimize
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repetition of the presented ideas or concepts [97]. Earlier techniques fall under the

umbrella of extractive summarization where summaries are generated by extracting

terms, phrases, or entire sentences from the source text using statistical techniques [139].

With advances in machine learning and specifically sequence-to-sequence language

models, abstractive summarization—an approach that generates paraphrased text that

still retains concepts from the original text—has gained recent popularity as it mimics

summaries created by humans [317].

However, significant challenges in abstractive summarization remain, such as the

summarization of long, complex, documents that span multiple knowledge domains.

While approaches have been proposed for summarizing domain-specific text [210]

and others for summarizing long documents [382], the challenge remains that there

is no one “ideal” summary for such long and multi-domain documents. Automated

summarization systems typically do not fare well when the source document spans

multiple topics regardless of approach, i.e., extractive [140], abstractive, or hybrid [97].

Academic papers, especially those in the fields of design or human-computer in-

teraction (HCI) where research tends to be cross-disciplinary, tend to fall under this

category of long, multi-topic documents. For instance, a research article might span the

fields of wearable technologies, privacy, and social justice. A summary of this article

that is deemed useful by a researcher in wearable technology would be different from

one deemed useful to a researcher in security and privacy. Yet, both summaries may

still be perfectly valid summaries of the article. This subjectivity means that purely

automated, black-box approaches to summary generation will not work. Instead, a

human-in-the-loop approach is needed to allow the user to steer the automated sum-

mary generator to interactively generate a summary relevant to the user’s interests.

To address this challenge, we present ConceptEVA, a mixed-initiative system for aca-

demic document readers and writers to generate, evaluate, and customize automated

summaries. We build a multi-task Longformer Encoder Decoder (LED) [24] from a

pretrained LED trained for scientific document summarization by fine-tuning it on

two downstream tasks—paraphrasing and semantic sentence embedding—to handle
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Figure 5.1: The ConceptEVA Interface shows a multi-disciplinary research paper [258] and its auto-
generated summary. The interface can be separated into three main panels vertically. The panel on
the left (1) shows a section-wise collapsed view of the research paper, while the panel on the right
(3) shows the generated summary in the summary editor. At the center is the concept view (2), which
displays the concepts extracted from the paper based on a reference ontology. The circles represent
concepts whose layouts are decided by their text embedding and co-occurrence relationship with
other concepts. The links indicate whether and how frequently the concepts they connect co-occur
in the same sentence. A concept glyph comparing the concept’s appearance distribution across the
document and the summary is shown in (2e) upon user request. Users can also adjust the concept
layout in (2) according to their interests by changing (2a) the information encoded with circle size, (2b)
the text embedding projection algorithm, (2c) the percentage of concepts visible, or focusing on the
concepts they are interested in (2d). They can also interactively edit (3a), reorder (with drag and drop),
or delete any sentences in (3). The user can select concepts of interest for the summary generator,
which then generates a new summary incorporating the selected concepts.

long documents. This approach uses the notion of attention mechanisms from trans-

formers [363] at local levels to reduce memory usage, and at global levels to preserve

information fidelity in longer documents.

In addition, ConceptEVA also supports summary customization for the user by

visualizing the concepts—in this scenario, topics explicitly defined in an ontology or

knowledge graphs—occurring in the document. The concepts are identified using

a multi-domain ontology [16], and visualized as a force-directed layout of a graph

network using metrics such as concept relatedness and concept co-occurrence in the

document. We introduce a function that we call “focus-on”, that allows the user
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to select concept(s) of interest to surface and highlight other concepts related to the

selected ones. The user can identify concepts to focus on and use them to steer the

automated summarizer to generate a summary text in which the concepts of interest

feature prominently. The user can also further edit the summary at the concept level by

navigating the original document and selecting text to emphasize using the concepts

of interest as a filter. They can also edit it at the sentence level by selecting alternative

paraphrasing and sentence ordering.

The design of ConceptEVA informed by an initial survey of eight research practi-

tioners, and refined through two stages of development and evaluation:

Iteration 1. A hierarchical summarization approach with a glyph-based visualization

of concepts embedded in a two-dimensional projection, evaluated through an

expert review of 3 participants;

Iteration 2. The final LED approach to summarization described above with concepts

visualized as a force-directed layout that preserves both semantic relatedness

and concept co-occurrence within the document. This version is evaluated by a

within-subjects study of 12 participants using manually-generated summaries as

a baseline.

Findings from the user study indicate that ConceptEVA is seen as helpful for partici-

pants in examining and verifying ideas, and using specific concepts of interest to explore

related concepts and how they are addressed in the source document. ConceptEVA

was also reported as more useful when the participants evaluated and customized a

summary of a document that lay outside their domain of interest, while it was seen as

less useful when the participant was knowledgeable about the domain or had a spe-

cific idea of what the summary should include. Using ConceptEVA for summarization

allowed participants to address content-specific aspects of the summary, but inexepe-

rienced participants found it more difficult to incorporate critique such as limitations

and implications into the summary.

The chief contribution of this work is ConceptEVA, a mixed-initiative system that

integrates interactive visual analysis and NLP techniques for evaluating and customiz-
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ing long document summaries. Specifically, we fine tune an LED trained for scientific

document summarization for paraphrasing and semantic sentence embedding, identify

and visualize concepts from a given academic document using a reference ontology,

and provide an interactive visualization system to identify concepts of interest and use

them to customize the summary. I also present insights from a user study on how well

users are able to follow summarization guidelines when using ConceptEVA. Finally,

this chapter includes recommendations for future development and analysis of mixed-

initiative summarization systems such as maintaining the user’s mental map of the

original document by preserving its layout, allowing users to create custom groupings

of concepts that will help them add critique to the summary, and minimizing interactive

latency for a more fluid interface.

5.2 Related Work
ConceptEVA introduces a human-in-the loop, mixed-initiative approach to evaluate

and customize document summary generation. In this section, we review prior work

in the domains of summary generation, summary evaluation, and text and document

visualization on which we build to create ConceptEVA.

5.2.1 Summary Evaluation
Summary evaluation techniques can be divided into two main categories: intrinsic [145]

and extrinsic [252]. Intrinsic evaluation methods evaluate a summary based on how

well its information matches the information in a reference summary, which is typically

human-generated. Some examples of intrinsic evaluation of summarization include

ROUGE [209] and BERTScore [398]. Bommasani and Cardie [31] propose separate in-

trinsic scores for compression, topic similarity, abstractivity, redundancy, and semantic

coherence. In contrast, extrinsic evaluation methods evaluate summaries based on their

suitability to specific tasks such as following instructions, assessing topic relevance, or

answering questions [91, 155, 252]. In extrinsic approaches, humans subjects are asked

to use different summaries to perform a task and uses metrics for their performance—

such as completion time and success rate—to evaluate the summaries.
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My work incorporates the principles behind extrinsic summary evaluation methods.

By effectively revealing and comparing the important concepts in a document and its

summary, readers can gain confidence in a qualified summary by confirming that it

includes all interested concepts, or see which concepts are missing in a “poor” summary.

5.2.2 Summary Generation and Customization
Advances in deep learning and AI has made the automatic generation of good-quality

summaries for long document text possible, featured by the success of Transform-

ers [363] with its innovative architecture and attention mechanism. Unsupervised

pre-training methods—Masked LM (MLM) and Next Sentence Prediction (NSP)—

proposed by Devlin et al. [85] for their Bidirectional Encoder Representations from

Transformers (BERT) enables modeling natural language on a huge corpus, and then

fine tuning the model on downstream tasks like summarization. Inspired by BERT,

other researchers [200, 284, 285, 397] propose different pre-training methods and im-

prove the quality of summarization. For instance, Li et al. [204] propose a multi-task

training framework for text summarization that trains a binary classifier to identify

sentence keywords that guides summary generation by mixing encoded sentence and

keyword signal using dual attention and co-selective gates. Wu et al. [382] use a top-

down approach to recursively summarize long articles like books. In this work, we use

the Longformer Encoder Decoder (LED) [24] for long scientific document summariza-

tion, which turns a full attention mechanism—computing relationships between every

pair of words in the document—to a local attention mechanism—computing relation-

ships between a more “local window” of limited words that precede and succeed any

given word. This has two benefits: faster computation and lower memory usage, which

makes it more capable of processing longer documents without a significant drop in

the summary quality.

For the summary customization task, most existing NLP techniques utilizes mem-

ory to adjust the auto-regressive language model’s output distribution such that the

models can retrieve external information given the input prompt. Nearest-Neighbour

Language Models [181] merge the retrieved information into the output distribution
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and boost up the language model’s perplexity without training. Borgeaud et al. [32]

show that by incorporating a large-scale explicit memory bank, a smaller language

model can achieve performance comparable to models like GPT-3 with 25 times more

parameters, and can update its memory bank without additional training. Inspired by

these methods, we apply Johnson’s method [168] to retrieve the k-nearest sentences for

each sentence relevant to a chosen concept, and we customize summaries given these

sentences as context.

Besides fully automated approaches, there are also semi-automatic solutions that

incorporate humans in the loop. Post-editing [192, 247] is a common semi-automatic

approach for summarizing text, which allows humans to edit AI-generated summaries

to ensure accurate and high-quality summarization. Compared to post-editing, Con-

ceptEVA’s approach better exploits human-AI collaboration and iteratively improves

the summary by leveraging such collaboration. In contrast to post-editing which only

allow human to edit the summary at the end, ConceptEVAsupports users to itera-

tively evaluate and refine the summary by inputting their intention on what should be

summarized to the AI models. In ConceptEVA, users can also edit the AI-generated

summary. But instead of direct manual editing, ConceptEVAleverages AI models to

provide aids, such as connections to the concepts, and suggestions for paraphrasing.

5.2.3 Interactive Visual Analysis for Text Data
This work involves designing interactive visualizations of word embedding and the-

matic infographics to facilitate summary evaluation and customization. Visualization

of word embeddings [152, 214, 330] has been used for supporting text data analysis,

such as selecting synonyms, relating concepts, and predicting contexts. In a differ-

ent way, thematic visualizations are useful for exploring document and conversational

texts. For instance, ConToVi [95] uses a dust-and-magnet metaphor [331] to visual-

ize the placement of conversational turns (dust) in relation to a set of topics (magnets).

NEREx [96] provides a thematic visualization of multi-party conversations by extracting

and categorizing named entities from transcripts. The conversation is then visualized

as connected nodes in a network diagram, allowing a visual, thematic exploration of
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the conversation. TalkTraces [53] uses a combination of topic modeling and word em-

beddings to visualize a meeting’s conversation turns in real time against a planned

agenda and the topics discussed in prior meeting(s). VizByWiki [208] automatically

links contextually relevant data visualizations retrieved from the internet to enrich new

articles. Kim et al. [182] introduced an interactive document reader that automatically

references to corresponding tables and/or table cells. All these works exploited visu-

alizations to provide contexts or additional information for helping readers to better

comprehend text contents.

The application of concept-based clustering is not limited to text analysis: Park et

al. [273] cluster neurons in deep neural networks based on the concepts they detect

in images, and in addition create a vector space that embeds neurons that detect co-

occurring concepts in close proximity to each other. Berger et al. [25] propose cite2vec, a

visual exploration of document collections using a visualization approach that groups

documents based on the context in which they are cited in other documents, creating

a combined document and word embedding. Closest to our own proposed work is

VitaLITy [254], an interactive system that aids academic literature review by providing

a mechanism for serendipitously discovering literature related to a topic or article of

interest. VitaLITy uses a specialized transformer model [70] to aid academic literature

recommendations that use additional data such as citations. These recommendations

are presented via a 2-D projection of the document collection embeddings generated

from the transformer model. This work also uses word embeddings to project a view

of relevant concepts onto a 2D space, but is different from VitaLITy in the purpose: our

focus is on interactively exploring the concepts of a generated summary as well as gen-

erating summaries that emphasize concepts of interest within an academic publication.

In this work, we use visualization of word embeddings to provide overviews of all

the important concepts in a document and identify which concepts are missing in the

summary for evaluation. Thematic infographics is used in the visualization of word

embedding to show the details and occurrences of a concept in both the document and

summary for comparison.
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5.3 Design Requirements
In order to better understand the different requirements and motivations when sum-

marizing an academic article, we conducted a preliminary survey of 8 higher education

professionals: one professor, 4 associate professors, and 3 assistant professors (7 male,

1 female, all between 25–44 years of age). The survey covered open-ended questions

concerning how they motivated and guided students’ paper summaries, how they

evaluated such summaries, and what they consider to be a good summary and why.

Based on the experts’ responses, we grouped their remarks and suggestions under

three categories: process, representing approaches they use or suggest students to fol-

low in order to summarize an academic document; content, representing what should

be included in the summary; requirements, representing attributes that make for a

“good” summary. Each remark or statement below is suffixed with a count showing

the number of experts who shared the corresponding opinion.

• Process: Approaches to follow when summarizing.

(1) Prioritize referring to abstract, conclusion, introduction, and title (7 experts).

(2) Use the abstract & introduction as a “backbone” for the summary (1 expert).

(3) Familiarize oneself with background and context, then identify strengths &

weaknesses (1 expert).

(4) Find parts of the paper relevant to one’s context or interest and focus on them

(1 expert).

• Content: What the summary should include.

(1) An Explanation of what the paper is about and what its contributions are (5

experts).

(2) The major ideas of the proposed solution and its difference from prior work

(3 experts).

(3) The results generated by the solution, and how they address the problem/research

question (3 experts).

(4) The problem addressed by the paper and the research questions it answers (2

experts).
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(5) An outline of existing approaches to address the research question or problem,

their advantages and limitations, and the challenges (2 experts).

(6) The advantages/disadvantages of the solution and the strengths/ weaknesses

of the paper (2 experts).

• Requirements

(1) The summary should have an indication that the summarizer has not simply

paraphrased the paper but also thought about and understood the underlying

ideas (3 experts).

(2) The summary should show reflection on the ideas and discuss implications

for practice/research. (3 experts)

(3) The summary should include a figure if possible (2 experts).

(4) The summary should have a clear structure & emphasis (2 experts)

(5) The summary should be specific and provide details, paraphrasing where

necessary and quoting from the paper where necessary (1 expert).

While the above responses are relevant for manual summarization, we also exam-

ined existing approaches of evaluating automated summarization techniques, such as

fluency, saliency, novelty, and coherence [344]. Saliency is an especially complex issue

as saliency of a given summary may vary across readers depending on each reader’s

background and research focus. Based on the responses and on prior work on auto-

mated summarization, we synthesized the following requirements that we prioritize

for mixed-initiative approaches that help the user evaluate and customize summaries

of scientific articles:

R1 Accuracy Evaluation: The technique should help the user efficiently verify whether

a summary accurately reflects the content of the original document based on the

criteria established by the user (see R4: Flexibility below). This requirement is

synthesized from participant responses categorized under “criteria” and “struc-

ture”.

R2 Provenance Evaluation: The technique should show direct or indirect contrib-

utors to a summary to help the user verify whether the summary reflects the
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structure and key components of the original document. This includes the parts

of the original document—a research article in this case—that contribute to the

summary. It also includes external references (see R3: Contextualizations) that

influence parts of the summary. This requirement is synthesized from responses

under “topics”, “structure”, and “strategies”.

R3 Contextualization: The technique should be able to provide some context in

which the work presented in the paper exits. Such a context includes the contri-

bution of the work, as well as the significance of the work, its strengths, weak-

nesses and so on. This can include information presented within the paper itself

but should not be restricted to it. This requirement is based on the participant

responses under “criteria”.

R4 Flexibility: The technique should be flexible enough to change the summaries

based on the priority of the user. For instance, the summary may focus on

the relevance of the paper to a concept of interest to the user. Alternatively, the

summary may also be one that examines the paper’s contributions, approach, and

methods—or any combination thereof. The requirement is based on participant

responses under “topics” and “strategies’.

5.4 Methodology
In ConceptEVA, we support summary evaluation and customization by empowering

the exploratory visual analysis (EVA) with multiple natural language processing (NLP)

techniques. In this section, we first introduce the data processing and visual analy-

sis framework of ConceptEVA, then describe the major NLP techniques backing the

functionalities of the system.

5.4.1 Framework Overview
ConceptEVA leverages knowledge graphs, NLP, and EVA techniques to facilitate sum-

mary evaluation and customization for academic document readers. We bridge the

original document and the summary with a concept view visualizing all of the concepts

identified from the document. As shown in Fig. 5.2, we start by extracting concepts from
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Figure 5.2: The framework of ConceptEVA. The core idea is to bridge the document and the summary
with a concept view. In iteration 1, the concept view shows an embedding-based layout that allows
users to select concepts to include in the machine-generated customized summary (red boxes &
arrows). In iteration 2, the concept view also includes the co-occurrence information in a force-directed
layout, and a summary editor with mixed-initiative interactions is added (green boxes & arrows). In
both iterations, the user can repeat the human-in-the-loop summary customization for multiple rounds
till they are satisfied with the result.

an academic document according to a reference ontology, converting them into text em-

beddings and projecting them onto a two-dimensional space (Sec. 5.4.1.1). After that,

we present the semantic and contextual information of the concepts in an interactive

visual interface that supports flexible concept exploration and customized concept(s)

prioritizing (Sec. 5.4.1.2). Finally, we provide an interactive summary editor to facilitate

dedicated refinement of a new version of the summary we generated according to the

user-specified concepts of interest (Sec. 5.4.1.3). In this way, we help the users evaluate

the quality of an AI-generated summary and see how well it addresses the readers’

focus of interest in the paper, as well as support them customizing the summary to

alter their specific requirements if the automated one is not satisfied enough.

5.4.1.1 Concept Extraction and Projection

In order to effectively extract the key concepts from a large body of texts, knowledge

graphs, such as DBpedia [16], Freebase [30], and Wikitology [286], can be used to look

up established concepts in specific domains. We use DBpedia-Spotlight [238] to extract

concepts and rank their importance by term frequency. We then visually highlight

concepts to show which ones are included or missed in the AI-generated or customized
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summary. To vectorize these concepts, ConceptEVA leverages text embeddings to

represent concepts, sentences, and descriptions of the concepts as high-dimensional

vectors. Two-dimensional projections of these “concept vectors” are computed using

dimensionality reduction techniques, such as PCA [352], t-SNE [359], or UMAP [234].

Semantically similar concepts are placed closer together in the projections, while dif-

ferent concepts are placed farther apart.

5.4.1.2 Exploratory Visual Analysis

To allow readers to explore and reason about the concepts, ConceptEVA provides

interactive visualizations to help trace these concepts back to the source document text

as well as to the generated summary. A visual representation (see Sec. 5.5 for details)

is designed to show the importance of the concepts and help the user compare their

occurrences in the document text and the summary. Readers can use ConceptEVA’s

interactive visual interface to explore and understand each concept, as well as selecting

concepts that are relevant to their research interests. The selected concepts are used

to recompute the importance and relevance of each concept in the high-dimensional

embedding and recreate the projection, allowing the readers to “steer” the exploration.

5.4.1.3 Summary Editing with Mixed-Initiative Interactions

While generating a good summary that can satisfy the user’s needs and interests cannot

solely rely on NLP techniques, ConceptEVA provides a set of mixed-initiative interac-

tions for quickly customizing and editing an AI-generated summary. From the user

interface, users can easily select which concepts in the document are important or match

their interests. If the generated summary did not provide enough context or description

of these concepts, the user can indicate where in the summary that they want to add a

sentence about a particular concept, then ConceptEVA will immediately generate a list

of sentences that describe that concept for the user to choose. In addition, ConceptEVA

allows users to paraphrase any of the sentences based on its NLP models.
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5.4.2 Natural Language Processing: Multi-Task Longformer Encoder
Decoder

As shown in Fig. 5.2, ConceptEVA uses several NLP techniques at various stages of

summary generation and customization. At the center of these techniques is a multi-

task Longformer Encoder Decoder (LED) [24] that we develop for iteration 2. We

describe in this section the motivation to use LED and its functions at specific stages in

summary generation and customization.

In the first iteration of ConceptEVA, we developed a a hierarchical summarization

method with BERT Extractive Summarizer [239] and a Pegasus abstractive summa-

rizer [397] for summary generation and customization of long documents. However,

this approach could easily incur high interaction latency caused by sentence clustering

and iterative summarization of long documents. To alleviate these issues, we develop

for the second iteration a multi-task Longformer Encoder Decoder (LED) [24], capable

of processing longer documents. In addition, we take advantage of weight sharing,

i.e., every task shares weights on the common parts of the network’s memory, thus

optimizing the time and space efficiency of ConceptEVA and speeding up the system’s

responses to human input.

Our multi-task LED is employed in ConceptEVA for four functionalities: scien-

tific document summarization, paraphrasing, semantic text encoding, and summary

customization (see Fig. 5.3). We describe these functionalities below.

Scientific Document Summarization: The LED model was trained on the ArXiv

dataset of scientific papers [69]. Due to its local self-attention mechanism, the memory

complexity of LED grows linearly, making it capable of handling up to 16384 tokens,

which is typically long enough for handling academic papers. These factors render

the LED suitable for generating summaries of academic papers. These automatically-

generated summaries (see item ‘10’ in Fig. 5.2) act as a starting point for users to evaluate

and customize upon according to their interests.

Text Paraphrasing: One of the functions in ConceptEVA’s mixed-initiative interac-

tions is the ability to paraphrase text, or specifically, generate alternative summaries
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Figure 5.3: ConceptEVA uses a multi-task LED model [24] to help generate, evaluate, and customize
summaries. Specifically, LED performs four functions, shown above as subfigures a–d with detailed
explanations in Sec. 5.4.2. The text below each subfigure indicates the corresponding function in
Fig. 5.2 for which the model is used. In each subfigure, the blue rounded boxes represent the weights
from the LED trained for summarizing scientific papers and shared across all tasks. The yellow, pur-
ple, and green rounded boxes represent fine-tuned layers for downstream tasks. The functions are:
(a) Scientific document summarization: The LED’s training data, local self-attention mechanism,
and high memory complexity make it suitable to summarize academic papers. (b) Sentence para-
phrasing: We fine tune the last two decoder layers (shown in yellow) with a set of “paraphrasing
datasets”—datasets that contain multiple paraphrases of a given set of sentences. This helps in gen-
erating alternative sentences for a given sentence when editing a summary. (c) Text embedding: To
generate the concept layout (see Fig. 5.1-2) and fetch relavant context for summary customization,
we compute text embeddings—vector representations of concepts or sentences in a high-dimensional
space. This is done by adding a mean pooling layer (green) and a projection head (purple) to the en-
coder and fine-tuning it (see Sec. 5.4.2 for details). (d) Summary customization. Pre-computed
embeddings of every sentence in the source document are queried using vector representations—
retrieved from the text embedding shown in (c)—of user-selected concepts. Nearest sentences are
appended to provide ‘context’ for the selected concepts, and then summarised. The resulting sum-
marized sentences are appended to the existing summary (see details in Sec. 5.4.2).

for a selected sentence. To achieve this capability, we fine tune the pre-trained model

on relatively small datasets with small learning rates. We “freeze all the layers” of the

model, i.e., we keep all model weights the same during training except for the last two

decoder layers. The decoder takes a sequence of tokens as the input and generates the

next token based on its weights. We train these two decoder layers on a dataset that

contains 147,883 sentence pairs, with each pair containing two alternative paraphrases

of one sentence (Fig. 5.3b). We build this dataset by merging three other datasets:

PAWS [399], MRPC from GLUE [367], and TaPaCo [310]. Once fine-tuned, this model

is capable of taking as input one sentence and providing a paraphrased sentence as an
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output. In item ‘11’ in Fig. 5.2, this model is accessed via the summary editor when the

user opts for automated paraphrasing of a selected sentence.

Text Embedding: To generate the concept layout (see Fig. 5.1-2) and fetch relevant

context for summary customization, text embeddings—representing the relationships

between concepts or sentences in a high-dimensional space—need to be computed.

To compute sentence embeddings, we follow the siamese network architecture from

SentenceBERT [292], an approach to generate sentence embeddings, i.e., vector repre-

sentations of sentences that preserve semantic relationships. We add a ‘mean pooling

layer’—a function that averages the embeddings of input tokens—and a ‘projection

head’—a function that computes a high-dimensional space that captures semantic sim-

ilarities between all sentences—on the LED’s encoder (Fig. 5.3c). We then fine-tune

the encoder for learning meaningful sentence embeddings by freezing all layers of

the encoder and only training on the projection head. For the training data, we once

again follow SentenceBERT: we combine the SNLI [36] and MultiNLI [379] datasets,

and format each data sample as a triplet of an ‘anchor sentence’, a ‘positive sentence’,

and a ‘negative sentence’. The training involves fine-tuning the embedding such that

in each triplet, the positive sentence ends up closer to the anchor sentence than the

negative sentence. We also follow data augmentation approaches. inspired by those

followed in SentenceBERT [292]. The resulting model is used in two main functions

of ConceptEVA: generation of the “concept view” (Fig. 5.2), the “focus-on” function

(Sec. 5.5.2), and subsequent summary customization (see items ‘7’ and ‘8’ in Fig. 5.2).

Summary Customization: ConceptEVA customizes a generated summary by up-

dating it to include concepts of interest selected by the user. To achieve this, we

pre-compute embeddings for every sentence in the source document. When a user

selects a concept or concepts of interest, we retrieve corresponding text embeddings

using the model described in the previous paragraph. We then use these embeddings

as ‘queries’ to search for sentences in the pre-computed embeddings that are closest

to the query vectors (see Fig. 5.3). We apply Faiss [168]—a similarity search library of

dense vectors in large scale—to implement this approach. The nearest sentences are
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Figure 5.4: The concept glyph extends the concept circle to support the in-place comparison of con-
cept distribution between the document and the summary. This glyph is shown for all dominant con-
cepts in iteration 1 and in a floating tooltip upon request in iteration 2.

concatenated in the order of their appearance in the original document and included in

the input to the summarizer as ‘context’ for the selected concepts. The resulting, newly-

summarized sentences are then appended into the previously-generated summary. In

this form of summary customization, new concepts add to the existing summary but

do not result in the erasure of parts of the existing summmary. The summary editor

provides the option for the user to manually delete the sentences.

5.5 Interface Design
The ConceptEVA interface (Fig. 2.2) consists of three main panels: a document view

on the left (with green header & accents) that collapses into a section-wise overview, a

summary view (blue header & accents) on the right displaying the generated summary

and associated metadata, and a central concept view (orange header & accents) showing

the relative dominance and associations between the concepts found in the document.

Additional controls for visualizing and filtering the concepts are also provided on top of

the concept view. The interface design has gone through two iterations of development,

incorporating feedback and insights from the expert review (Sec. 5.6). We detail the

visualization and interaction design choices of the final version of the system and the

underlying rationale in this section.
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5.5.1 Concept View: Document-Summary Relations
In the concept view, we provide an overview of the document-summary relation from

the perspective of concepts. We represent each of the concepts occurring in the doc-

uments as a node—a “concept circle”—the size of which shows the dominance of the

concept in the source document. User-specific metrics of dominance, such as “fre-

quency” and “tf-idf” are available for the user to choose.

To convey information about the structure of the document and of the summary

(R2), we incorporate the user’s orientation to the interface—the document on the left

and summary on the right—into the concept view to represent concepts that are present

in the document and concepts present in both the document and the summary. We

design the concept glyph—a pair of histograms representing the distribution of the

concept across the source document and the summary respectively (see Fig. 5.4). The

histograms are oriented vertically and share a common axis. This way, the histogram

on the left indicates the source document and the curved line on the right (histogram

smoothed with a kernel density estimation) represents the summary. The number

of bins on the histogram on the left matches the number of sections in the source

document, while the right one maps to the number of sentences in the summary. For

instance, the concept “prototype” is missing in the summary shown in Fig. 2.2 because

the right half of the glyph is missing. To further reinforce this connection between the

histogram and the document view, we create an echo of the histogram overlaid on top

of the section headers (Fig. 5.4-a). This allows the user to identify the sections of the

document in which the concept is most dominant, and examine the content of those

sections closely if needed.

When determining the two-dimensional(2D) layout of these concepts on the con-

cept view and the amount of information to reveal for each of them, we started with an

embedding-based layout in iteration 1 where the concept glyph of every concept were

displayed and distributed according to the text embedding (Fig. 5.5-a). While this

layout was designed to help the user efficiently compare the occurrence of concepts in

the original document against those in the summary, the expert review results (Sec. 5.6)
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(a) Concept View in Iteration 1 (b) Default Layout of
Concept View in Iteration 2

(c) “Focus-on” Layout of
Concept View in Iteration 2
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Figure 5.5: A comparison of the embedding-based layout in iteration 1 and the context-augmented
latyout in iteration 2 for the concept view. All three figures show 80% of the concepts from the pa-
per [250]. The circle size represents frequency (The size scale and ontology query parameters are
slightly different between iteration 1 and 2). The "focus-on" layout in (c) focuses on the concept “al-
gorithm”.

indicated that showing such a comparison for all the concepts in one visualization

was too overwhelming to the users. To reduce such perception load, we shifted to a

more intuitive visualization design in iteration 2 where the visual representation of the

concepts were simplified to solid circles (Fig. 5.5-b) in a force-directed layout. The coor-

dinates of these circles are initialized by a 2D projection of the concepts’ semantic word

embedding and adjusted by links representing the co-occurrence relationship of two

concepts in the same sentence per experts’ request for more co-occurrence information

support. In this way, we created a context-augmented layout with the coordinates of

each concept influenced by both its semantic meaning and its co-occurrence relation-

ship with the other concepts in the specific academic document (R3). For instance,

Fig. 5.1-2 shows that the concepts “organ” and “prototype” are semantically remote

but co-occur frequently in [258], while aligns with the fact of this document. Our

context-augmented layout could capture such document-specific concept co-locations

and adapt the initial text embedding in concept view to reflect the document context.

To efficiently support the user to evaluate the summary quality from the perspective

of concept appearance, we move the concept glyph with detailed document-summary

information for each concept to a tooltip which can be triggered by hovering in itera-

tion 2. This provides an effective overview and detail-on-demand exploration of the

concepts in a document using interactive visual analysis.
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5.5.2 Summary Evaluation
To facilitate the users to get an intuition about concepts from the document that are

included in the summary compared the the concepts excluded from the summary (R1),

we designed the concept glyphs (Fig. 5.1-2e) as described in Sec.5.5.1. Users can quickly

filter out all but the “important” concepts, and then compare their distribution and

context in the document and in the summary using the concept glyphs and the linked

view to the document on the left (R3). To cater to user-specific analysis requirements

(R4), we allow users to (1) choose the criteria (frequency or tf-idf) by which concepts

should be considered “important” (Figure 5.1-2a), (2) choose the dimensionality re-

duction method (PCA, tSNE, or UMAP) to project the concepts (Figure 5.1-2b and 3),

and filter them to only show the top K percent of concepts based on ConceptEVA’s

importance metric (Figure 5.1-2c).

Inspired by the experts’ attempt to locate concepts with the “focus-on” function

and their significant interest in it, we enhanced the “focus-on” function in iteration 2

to allow the user to switch perspectives and evaluate how well the current version of

the summary addresses their specific areas of interest (Figure 5.5-c). When the user

triggers the “focus-on” function, they will be able to select from full list of the concepts

sorted by their appearance frequency in the original document (Figure 5.1-2d). Users

can select one or multiple concepts based on their research interests and trigger a

corresponding update of the concept view layout. The concept they choose to focus on

will “float to the top” of the concept view, i.e., move to the top of the view, and the rest

of the concept will “sink” to the bottom, with semantically or contextual-wise more

relevant concepts pulled higher towards the top and less relevant concepts pushed lower

towards the bottom. Meanwhile, the horizontal layout remains to reflect the concepts

semantic and contextual distance determined by the user-chosen projection method.

For instance, the layout in Fig. 5.5-c was focused on the concept “algorithm”. We

can see the related concepts including “methodologies”, “validation”, and “systems”

are also pulled upwards. Meanwhile, the layout of the remaining concepts Fig. 5.5-

b is locally maintained, continuing to reflect their semantic and contextual closeness
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in the document. This will further facilitate the concept selection and inform the

customization task described in Sec. 5.5.3.

5.5.3 Summary Customization
Reflecting on the requirements we collect for a “good” summary (Sec 2.3), we approach

summary customization in two ways: at a concept level, we see summary customization

as determining what concepts are included when generating the summary, while at a

structural level, we see it as inserting, reordering, and rewriting content. Users can

achieve the concept-level summarization by selecting a group of concepts from the

concept view to prioritize for the next version of the summary. Based on user selection,

the summarizer extracts relevant sentences from the document as described in Sec. 5.4.2

and inputs them to the summarization pipeline for a customized summary that better

addresses the concepts of interest.

The AI-generated summarization approach focuses more on the content than the

flow of the summary, and was seen in the expert review as compromising the logical and

narrative connection from one sentence to the next (see Sec. 5.6 for details). To address

these concerns about the summary quality, we extended the interactions supported in

ConceptEVA with an interactive summary editor to facilitate better human-AI collabo-

ration in iteration 2. With the AI-generated summary as a starting point, the summary

editor (Figure 5.1-3) helps users iteratively customize or extend the summary (R1 &

R2) by: (1) choosing from a list of candidate sentences for all user-selected concepts

categorized by concept name, and inserting them into the summary, (2) updating a par-

ticular sentence in the summary with automatically paraphrased sentences generated

with the paraphrasing model in Sec. 5.4.2 (Figure 5.1-3a), and (3) interactively edit-

ing, reordering, or deleting any sentences. In this way, a human-in-the-loop summary

will be generated as the final output of the summary customization process in which

user knowledge and judgments are effectively cooperated with the NLP techniques

described in Section 5.4.2.
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5.6 Expert Review of Iteration 1
Iteration 1 of ConceptEVA was evaluated through expert review with three participants

(2 male, 1 female). Given our prototype was backed with a NLP model more suited for

scientific document analysis, we invited three experts with Ph.D. degrees in computer

science with InfoVis as their research focus. Participant details are listed below, with

years of experience in reading/reviewing academic papers included in parentheses.

• E1: software engineer (5–10 years).

• E2: senior applied scientist and former academic (10–20 years).

• E3: data scientist (5 to 10 years).

The review was conducted online via a video conference setting. Participants were

first introduced to ConceptEVA’s functions and features and given trial tasks with a test

dataset to familiarize them with the interface.

Participants then used ConceptEVA to finish two open-ended tasks while following

a concurrent think-aloud protocol: (1) verify the auto-generated summary for a given

document, and (2) generate a customized summary according to a set of requirements

provided to them. Since the participants were experienced researchers in infovis, we

also collected their feedback and recommendations on the system as suggestions to

incorporate into iteration 2. Iteration 1 was received positively in general, especially

idea of evaluating a document summary by examining the concepts (E1, E2, E3), context

and support views to compare the document and the summary (E2, E3), but the quality

of the generated summary was not considered sufficient (E1, E2, E3). Specific feedback

is listed as follows:

• Concept extraction & separation: Concept identification through fuzzy matching be-

tween document terms and the reference ontology sometimes produced results

that the experts (E1, E2, E3) found confusing. Iteration 1’s implementation of

the “focus-on” interaction was also not deemed helpful likely due to the issues

concerning the fuzzy matching (E1, E2, E3), though all experts expressed con-

siderable interest and pointed out potential ways for improvement. E1 and E2

also expressed that they expected a better-functioned “focus-on” tool with more
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intuitive interaction. E3 also suggested providing concept searching functions,

showing the frequency of the concepts, and sorting the searching list accordingly.

• Information support: The visual representation of the concepts and the way they

supported the comparison of the summary against the document was deemed

helpful (E2, E3). Showing co-occurrence information of concepts was recom-

mended (E1, E2, E3).

• Summary quality and presentation: An initial paragraph-like summary shown to E1

& E2 was deemed to not have a logical flow, while a bullet-point format change

with E3 was received well. However, E3 was uncertain on how well they could

“trust” the summary if it were of an unfamiliar paper, and recommended showing

additional information to increase the user’s confidence in the summary.

5.7 User Study of Iteration 2
Lessons learned from the expert review helped focus the redesign of ConceptEVA

and focus its evaluation through tasks that reflect how a researcher may approach

summarizing an academic paper. Specifically, we decided to focus our study on whether

and how a participant is able to generate a summary of a paper with which they are

familiar using ConceptEVA such that the summary is relevant to their research interests.

While comparing the use of ConceptEVA with an existing summarization tool would

be ideal, to our knowledge there is no existing summarization tool designed for research

documents. We thus chose human-generated summaries by each participant as the

baseline for that participant. While this means there is no “standard” baseline across

all participants, this approach gives us better ecological validity as each participant

would generate a summary that is relevant to their own interests and research contexts.

Therefore, the current baseline for researchers would be to generate a summary by

themselves—unaided by other tools. This would serve two purposes. Firstly, by

generating their own summary manually, they gain familiarity with the document and

are able to use ConceptEVA as a tool to refresh their memory, navigate the concepts

relevant to the document, and be able to compare the summary they generate using
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ConceptEVA against their own manually-generated summary. Secondly, the process

serves to emphasize our idea that ConceptEVA is not intended as a replacement for

reading the document; it is intended to augment the way the document is explored.

This necessitated a study with a within-subjects component where each participant

first generated a summary manually before attempting the same task on ConceptEVA.

For the same reason, there was no counterbalancing: asking all participants to perform

the manual summarization task first allowed us to ensure they were familiar with

the document before they used ConceptEVA. It also allowed participants to critically

examine the extent to which they could create a summary that was relevant to their own

interest in the document. We used two test papers [258, 347], one for six participants

who participated in our study.

5.7.1 Participants
We recruited 12 participants (4 female, 8 male, aged 25–44 years), comprising 10 Ph.D.

students, 1 university faculty, and 1 research engineer from a technology company.

Seven participants reported they had been actively reading academic papers for 5-10

years, and the remaining five reported less than 5 years. And 10 participants reported

they had written a summary/abstract/short description for an academic paper more

than 10 times before the study, and the remaining two did it for 3-10 times. Two of the

12 participants reported themselves as native English speakers.

5.7.2 Experimental Setup
We conducted the study remotely considering the varied geographical locations of the

participants and a safety measures surrounding the uncertain conditions of COVID-

19. Instructions for the offline study task T1 were shared with participants no less

than 12 hours before the online study session began. For the online study session,

the participants were asked to access ConceptEVAfrom a remote server and participate

in the study with their own machine and external devices. Six participants used the

Chrome browser with the Windows operating system, four used Chrome with MacOS,

and the remaining two used the Safari browser with MacOS for the tasks. The setup,
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tasks, and durations were decided based on a pilot study with three participants: one

native and two non-native English speakers.

We asked the participants to follow the “think aloud” protocol and audio- and

video-recorded them during the task. Each participant received a $10 Amazon gift

card as a compensation for their participation.

5.7.3 Summarization Guidelines
Based on findings from our survey of research practitioners explained in Sec. 2.3, we

constructed a set of guidelines for participants to follow when generating a summary

manually or using ConceptEVA. The guidelines were presented in the form of the

following list of questions that participants could try and answer in their summary.

G1 Content. What is the paper about? What are the contributions?

G2 Approach. If the paper addresses a problem, how does it do it?

G3 Comparison. If the paper addresses a problem, how does its approach compare

to existing approaches to address the same problem?

G4 Insights. What insights does the paper offer from its analysis or evaluation of the

approach?

G5 Critique. What are the strengths and weaknesses of the approach?

G6 Implications. What are the implications of the work to your own interests and/or

research?

We made it clear to participants that they were free to choose some, all, or even

none of the guidelines below when generating the summary. In the procedure be-

low, we would ask the participants which of the guidelines they followed for each

summarization process: manual and using ConceptEVA.

5.7.4 Procedure
Each participant was provided with a research paper a few days in advance of the sched-

uled session with the study moderator, along with the guidelines listed in Sec.5.7.3.

Each participant was then assigned the following tasks:
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T1: Manual summarization.

• We asked participants to read the paper and manually generate a summary

between a minimum of 100 and a maximum of 150 words reflecting what

they found interesting in the paper. This summary was to be sent to the

moderator in advance of their scheduled session. This represents the baseline

for each participant, indicating the summary they would generate without

ConceptEVA. It also ensures that participants read the paper before the start

of the study.

• After their summary was received, participants were also asked to fill in

a survey relating to their background and demographics. They were also

asked to respond on a 7-point Likert scale (one for each guideline in Sec. 5.7.3)

the extent to which they followed the guideline.

• Participants were also asked to report on their experience of the summariza-

tion task on the NASA TLX scale [149].

T2: Automated summarization.

• Participants were shown the automated summary generated without human

intervention and asked to read through it.

T3: Human-in-the-loop summarization.

• Participants were introduced to the ConceptEVA interface and allowed to

explore it through mini-tasks that reflected the process they would follow

in their main task. This training/exploration session used a paper different

from the one used for their tasks.

• Participants were then instructed to generate a summary of the same paper

as in T1, following the same prompts and guidelines, but this time using Con-

ceptEVA to explore and focus on concepts of interest and choosing relevant

concepts to steer the summary generated. Throughout this exploration par-

ticipants were instructed to follow a concurrent think-aloud protocol where

they verbalized their thinking during their exploration.

• At the end of this process, they responded to a 7-point Likert scale (same as
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in T1) showing the extent to which they followed each of the guidelines from

Sec. 5.7.3.

• Participants reported on their experience of the summarization task on the

NASA TLX scale.

T4: Rating all summaries.

• Participants finally rated on a 7-point Likert scale their satisfaction with (a)

their manually-generated summary from T1, (b) ConceptEVA’s automated

summary with no human intervention from T2, and (c) the summary they

generated in T3 using ConceptEVA by focusing on concepts of interest. They

were allowed to re-read all three summaries before reporting on their satis-

faction. The reason behind choosing “satisfaction” as a metric and for having

participants rating their own summaries as opposed to others’ summaries

are related. Recall that the reason behind proposing ConceptEVA was that

different readers of the same research article may emphasize different aspects

when generating a summary of the paper. A participant with their own con-

cepts of interest in a given paper would have takeaways that are influenced

by these interests, which would in turn be reflected in their summary of

the paper. We deemed that it would be less insightful for them to evalu-

ate a summary generated by a different participant with different interests

and takeaways. Instead, having the participant examine the summaries they

have themselves created through three approaches could potentially reveal

more insights into how well the human-in-the-loop approach has worked,

as each participant can examine all summaries through the lens of their in-

terest in the paper. For the same reason, “satisfaction” as a measure along

with participant responses explaining the reasoning behind the rating allows

us a way to understand what aspects of human-in-the-loop summarization

are valuable for participants, albeit at the expense of specific insights more

objective measures may provide.

The study did not focus on speed or quality of task performance, but on partic-
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Figure 5.6: Distribution of participant responses on a 7-point Likert scale showing their level of sat-
isfaction with the summaries from the automated approach in task T2, manual approach from task
T1, and the human-in-the-loop approach in task T3 created with ConceptEVA. The three charts on
the left show the distribution as response counts for each summarization approach. The right chart
shows average values for each approach for the two papers used in the study, ConceptScope [347]
and BodyVis [258], with error bars indicating 95% confidence intervals.

ipants’ own satisfaction with their experience and outcome. Thus task times were

not restricted, and we did not track the time participants spent on Task 1, only their

self-reported experience in writing the summary as described above. Participants in

general spent between 60 and 90 minutes on tasks T2–T4.

5.8 Results and Discussion

5.8.1 Summary Satisfaction
As mentioned in Sec. 5.7, we used each participant’s manually-generated summary

(T1) as a unique baseline for that participant. Ten of the 12 participants rated the

automated summary (task T2) lower than the baseline, 8 out of 12 participants rated

the summary generated using ConceptEVA’s human-in-the-loop approach (task T3)

higher than the baseline (Fig. 5.6). Recall that two papers were used in the study—6

participants summarized ConceptScope [347] and 6 summarized BodyVis [258]. Fig. 5.6

also includes a pointplot showing average ratings split across both papers. While the

small participant pool makes it difficult to state with sufficient confidence whether

participant satisfaction with the human-in-the-loop summarization using ConceptEVA
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is equivalent to their satisfaction with their own manually-generated summary, Fig. 5.6

suggests such an equivalence. In addition, a chi-squared test of independence showed

a significant association between summarization approach and summary satisfaction

rating, 𝜒2 (8) = 23.5, 𝑝 < 0.01. On the other hand, a chi-squared test of independence

showed no significant association between the paper used and summary satisfaction

rating, 𝜒2 (4)= 0.87, 𝑝 = 0.93. This indicates that the differences seen in Fig. 5.6 are more

likely to be due to the summarization approach rather than the paper used in the task.

Participants who gave a higher rating for the human-in-the-loop approach reported

being able to locate and focus on concepts more efficiently (P4, P6, P9), and on the

content of the summary itself (P7). P7 observed that “the contribution of this paper, was

also well described in the (human-in-the-loop generated) summary.” Participants who

preferred the manual version of their summary to the human-in-the loop approach

(P1, P3, P11) explained that they had their own idea of a summary that they wanted

the generated version to reflect. For instance, P11 wanted the summary to focus on

the paper methodology, so they deleted all sentences from the automated summary,

directing the system to pull new sentences from the paper focusing on “visualization”,

“concept”, and “ontology”. They proceeded to edit these new sentences based on

their recall of the document and even manually wrote some text from scratch. These

participants also reported a lower level of trust in the AI component of ConceptEVA

through the study.

Participants’ level of trust in the generated summary also appeared to be influenced

by their confidence in their knowledge of the domains addressed in the paper. For

instance, BodyVis [258], one of the papers used in the study, covers domains like par-

ticipatory design, physiological sensing, and tangible learning, which the participants

were relatively unfamiliar with. Their response to the summary generated by Con-

ceptEVA was more positive. P4 reflected that “in terms of ... describing the (BodyVis)

system, maybe the one generated by ConceptEVA is kind of better... In the manually generated

summary, although I put my focus there, I didn’t do a good job like mentioning it. I don’t think

if I mentioned it.” P10 noted the automated summary addressed some of their own
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omissions: “In my manual summary. I actually skipped some details, like I didn’t really men-

tion ... the feedback from children and the teachers (about BodyVis).” In contrast, for a topic

they were knowledgeable in, participants seemed to prefer their own interpretations

and emphases, as P1 states: “For the papers, if I already know that area, I have a certain

expectation of what I need to look at. Then I would still prefer to write the summary by myself.”

In terms of the process, all participants reported being able to follow guidelines

G1 (content) and G2 (approach) i.e., they rated themselves above 4 on a 7-point Likert

scale. Six out of 12 participants reported being able to follow G4 (insights) and G6

(implications) as shown in Fig. 5.7. Participant ratings on being able to follow G3

(comparison) and G5 (critique) were skewed heavily toward the lower end of the scale.

Participants P4 and P8 found it the most difficult to address these two guidelines, and

they had a common approach: they attempted to find concepts related to “limitations”

or “cons” to see the weaknesses reported in the paper itself and found this approach

difficult to critique the paper and compare it with existing work. A low chance of

success is expected with this approach as it is difficult to critique a paper by only

examining the paper without a general sense of the related work. A summary that

features such critique is difficult to automate as it would need knowledge as well as

critical thinking about related work.

5.8.2 Summarization Experience
When responding to the NASA TLX scale (see Fig. 5.7) and rating their summarization

experience, participants described the experience of using ConceptEVA as “helpful”(P1,

P3, P7, P9, P11), “useful”(P1, P4, P6, P8, P9), “amusing” (P5) and “enjoyable” (P5).

Eight participants reported that the concept view provided useful information such

as the importance, appearance frequency, and co-occurrences of concepts. P4 and P6

also reported finding the focus-on function helpful to explore relationships with less

dominant concepts. “sometimes a concept is kind of minor...sheltered by those big circles...but

by lifting it up you can see all the relation to other concepts. you can also like, and identify it

directly.” (P4).

The glyphs from the earlier iteration that were redesigned to be revealed only on

127



2 6 4

ConceptEVA (T3)

1 1 3 3 4

2 3 1 2 2 2

1 1 3 1 2 4

3 2 2 3 1 1

5 1 1 2 3

1 2 3 4 5 6 7

1 2 2 2 3 2

3 2 4 2 1

1 5 3 2 1

1 1 4 5 1

3 5 2 1 1

1 2 3 4 5 6 7

8 4G1G1. "What is the paper about, and what are the contributions?"

To what extent you followed the guideline: Manual (T1)

1 1 1 4 5G2G2. "If the paper addresses a problem, how does it do it?"

1 2 1 1 5 2G3G3. "If the paper addresses a problem, how does its approach compare to existing approaches?"

1 2 3 4 2G4G4. "What insights does the paper offer from its analysis or evaluation of the approach?"

1 2 1 1 3 3 1G5G5. "What are the strengths and weaknesses of the approach?"

4 1 1 1 4 1

1 2 3 4 5 6 7
G6G6. "What are the implications of the work to your own interests and/or research?"

not
followed

followed
closely

Participant responses on the NASA TLX scale:

1 4 2 5N1N1. Mental Demand: How mentally demanding was the task?

2 4 2 2 2N2N2. Temporal Demand: How hurried or rushed was the pace of the task?

2 3 1 2 4N3N3. Performance: How successful were you in accomplishing what you were asked to do?

1 1 3 5 2N4N4. Effort: How hard did you have to work to accomplish your level of performance?

3 6 1 1 1

1 2 3 4 5 6 7
N5N5. Frustration: How insecure, discouraged, irritated, stressed, and annoyed were you?

very
low

very
high

Figure 5.7: Ratings for manually-generated summary in T1 and human-in-the-loop summary in T3.
Median ratings are in gray.

detailed inspection were also deemed helpful by 6 participants, indicating perhaps

that the glyph in isolation was helpful but several together were distracting. Since Con-

ceptEVAwas implemented for the browser, we also observed participants incorporating

built-in browser functionalities such as search, translation (for bilingual/multilingual

participants), and grammar checkers.

Participants also expressed their frustration when they “can’t find anything useful

about the word they identified”(P3) or “lose the full picture of the paper”(P8). Identifying

relevant concepts is a function of the ontology, and a balance between the specificity

of domain ontologies and the breadth of a general ontology such as DBpedia. On the

other hand, issues related to identifying strengths and weaknesses of the work that

may not be explicitly stated in the paper—echoing participant experiences described in

Sec. 5.8.1—may be possible to address by additional visualization of document affect

and sentiment [188].

5.8.3 Influence Factors on User Experience
When conducting tasks T3 and T4, we observed four dominant factors that appeared

to influence participants’ use and preferences of certain functionalities in ConceptEVA.

• Academic reading experience and skill influences exploration. Participants such as
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senior PhD students and faculty/researchers preferred to read the original text of

the paper. P5, a graduate student with 5–10 years of experience reading academic

papers, said they preferred to read the original text of the paper, but also said

that the concept view “is actually really good with the way my brain is... I just think of

words, and then it (the focus-on function) has the words I want. This kind of maps with my

thinking, which is very amusing.” In contrast, participants with either less academic

experience or from a different domain found direct text reading difficult. For

example, P7 thought the paper reading process was“very overwhelming” while P8

reported that they “don’t have the full picture of the paper in this way”. They preferred

to use the visualizations—the projection view or the Focus-on too—to get a high-

level overview, and then “grab information based on the concept that I’m giving”(P11).

While this is part of the intention behind designing the visualizations (esp. R3),

a longitudinal study may be needed to explore how ConceptEVA may be used as

a way to scaffold students’ ability to read and understand academic text. Note

that P5, P7, P8, and P11 are all graduate students, but P5 identifies as a native

English speaker while the others do not. While this may not be the reason for the

difference, it brings up the issue of reading skill, a factor that was not evaluated

in the study.

• Academic writing experience influences summarization. An extension of the above ob-

servation means that participants’ academic writing experience would influence

how they used ConceptEVA to summarize text. P5 found the workflow afforded

by ConceptEVA useful, and that it was “doing most of the work for me”, such as

“constructing sentences I would put in my paper, or something letting me take what

either my problem is or what I’m thinking about looking at the paper, and like merging

these things together”. They also appreciated “the freedom of allowing more editing”

in the summary editing panel (R4), and used it to directly edit the summary

sentences. P10 reported finding it useful to “pull out the related sentences catego-

rized by each of the concepts you selected” (R3). Other experienced participants like

P11 reported that ConceptEVA “doesn’t encode (sic) their standard of generating the
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summary.” Note that P11 is also the participant who heavily edited the generated

summary (Sec. 5.8.1).

• Domain familiarity influences use of ConceptEVA. Participants’ reflections indicated

that their knowledge of the domain covered in the document would influence

how they would use ConceptEVA. P1 mentioned that “if I’m reading a machine

learning paper or deep learning one that I’m not quite familiar with (the domain)”, they

would prefer to use the concept view to “understand what kind of concepts they (the

paper) have” and would like to see definitions of the concept in ConceptEVA. On

the other hand, for documents in their own domain, they said they would “have a

certain expectation of what I need to look at. Then I would still prefer to write the summary

by myself.” This was also seen in P8’s approach in the study: they were unfamiliar

with the paper they were asked to read and requested more information support

as they did not have “a general picture of the paper.”

• Mental map of document influences use of visual interface. Eleven of the 12 participants

reported being happy with the visual interface for the summary customization

task. While distributing their time to the three panels in ConceptEVAin different

ways, 11 out of the 12 participants embraced the visual interface for the summary

customization task in our study. Participants preferred different aspects of the

interface depending on the way they approached ideas in the paper. P5, quoted

earlier in this section, stated how the concept view layout mirrored the way they

think. P11, on the other hand, preferred the “paper info” panel to the concept

view “because I can see I know where it (the concept) is (in the paper).” They even

chose to search the concept directly in the PDF version of the paper after briefly

exploring the Focus-on function in the concept view panel, explaining that “it’s

quite a huge number of information ... it’s a little bit hard to draw the connection

between the information inside the original paper and the (concept view) exploration

panel. That’s why I just ignore the exploration panel.” Others found the paper info

panel disorienting as it provided a view of the paper that was different from the

PDF layout they had initially read, stating, “I don’t have, like the mental map of the
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original pdf. It’s gone” (P5), “Here everything’s like um very flat. So I don’t know where

it is.” (P12), and ‘‘I didn’t use this. Yeah, this part was well overwhelming” (P7).

5.8.4 Limitations and Future Work
One of the issues that came up through the iterations is striking the right balance

between the use case scenarios of ConceptEVA, specifically its use to explore a paper as

an alternative to reading. Similar “distant reading” approaches in the social sciences

have received criticism for being suggested as objective alternatives to close reading,

a practice considered integral to scholarship [14]. In our studies, the expert review

evaluation for the first iteration of ConceptEVA did not require participants to read

the paper in advance. Thus they spent more time using the system to understand the

paper content—which was not the main focus of the system—than to generate and

evaluate the summary. The study setup following iteration 2 ensured that participants

were already familiar with the paper, which allowed them to focus on the summary

evaluation and customization tasks. Participant reflections we saw in Sec. 5.8.1 and

Sec. 5.8.3 show that participants still used ConceptEVA as a way to check if they missed

any important concepts, especially if they were unfamiliar with the domain of the

paper. Participant P3 suggested using ConceptEVA as a way to skim through papers

so that “if frequent concepts are not what I care, I can just leave this paper and turn to others.”

On the other hand, comments about the disorienting effect of the paper layout in the

paper info panel (see “mental maps” in Sec. 5.8.3) indicates that a better application of

ConceptEVA would be toward supporting and summarization and verification, rather

than exploration. Integral to this approach would be to design a paper information

view that preserves the appearance of the PDF view, thus preserving the reader’s

mental map and allowing them to build upon their close reading of the paper.

The two test papers we chose for the user study were corresponding to the two

different conditions—highly interdisciplinary papers spanning at least five domains

and relatively typical CHI papers describing the algorithm, user study, and visualiza-

tion design. Because of the authors’ limited knowledge background, we chose two

CHI papers in which we had a better understanding and control of the content for our
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user study. We will eliminate this limitation by testing ConceptEVA on more diverse

papers in the future. Besides, we are aware of the different summarization complexity

for papers from different domains [164, 289, 382, 391], but consider it more of an NLP

research problem rather than our main focus.

Participants also made suggestions for additional functions and features. The most

popular suggestions fell under the category of richer view coordination between the

panels. Specifically, participants suggested being able to support concept provenance

and filtering within a selected section, or a direct linking between the summary text

and the paper information panel. However, this would also mean that ConceptEVA

becomes more of an exploration tool providing an alternative to reading the paper rather

than a support to summarize a paper, which is a different scope of work altogether,

and a requirement that needs closer examination in terms of benefits and pitfalls. On

the other hand, other suggestions such as the one by P1 about being able to group

concepts into groups relevant to the summary such as “definition”, “pipeline”, and

“preprocessing method”. While the groups listed by P1 might work for a data science

or data visualization domain, other domains might require entirely different groups

than can then be examined to summarize contributions, offer critique, and present

other salient ideas. Allowing the user to create custom groups aided by additional

NLP approaches like sentiment analysis and topic modeling could help users reflect

on and critique the paper, and can be a helpful function to consider integrating into

ConceptEVA in a future iteration of this work.

Finally, a limitation of our study include technical issues such as network delays, ren-

dering performance issues, and back-end computations to update concept embedding,

sentence paraphrasing, or summary generation itself. These, when they occurred,

resulted in latency that influenced participants’ experience and potentially their re-

sponses to questions like the NASA TLX scale. While the focus of this work is not

engineering or optimisation of the system, our future iterations will attempt to cut

down performance or networking issues relating to latency.
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5.9 Summary
This chapter presents ConceptEVA, an interactive document summarization system

aimed at long, and multi-domain documents of the kind seen in academic publica-

tions. I show the iterative development and evaluation of ConceptEVA through two

iterations. The first iteration incorporates a hierarchical summarization technique with

an interactive visualization of concepts extracted from the document using a reference

ontology. The second iteration, developed after evaluating the first iteration through

an expert review, incorporates a multi-task longformer encoder decoder pre-trained

for scientific documents that we fine-tune for paraphrasing and sentence embedding to

handle long documents, and concepts visualized using a force-directed network that

preserves semantic as well as co-occurrence relationships of document concepts. I also

introduce a “focus-on” function that allows users to choose concepts of interest, ex-

amine their relationship with co-occurring concepts, and choose relevant concepts that

will then be incorporated into a custom summary. An evaluation of ConceptEVA’s sec-

ond iteration through a within-subjects study using manually-generated summaries as

baseline shows that ConceptEVA was helpful to participants for content-specific aspects

of summarization, but participants with less experience struggled with critique-related

aspects of summarization. Participants largely preferred the summary created through

ConceptEVA’s human-in-the-loop approach over their own manually-generated sum-

maries. I also discuss the implications of our findings and suggest future development

and evaluations of mixed-initiative summarization systems.
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Chapter 6
Knowledge Exploitation for Technical
Text Annotation

In this chapter, I present LabelVizier, a human-in-the-loop workflow that exploits domain

knowledge and user-specific requirements to reveal actionable insights into annotation

flaws, then produce better-quality labels for large-scale multi-label datasets. This ap-

plication is inspired by the rapid accumulation of text data produced by data-driven

techniques and the increasing importance of extracting “data annotations”—concise,

high-quality data summaries from unstructured raw text. The recent advances in weak

supervision and crowd-sourcing techniques provide promising solutions to efficiently

create annotations (labels) for large-scale technical text data. However, such annota-

tions may fail in practice because of the change in annotation requirements, application

scenarios, and modeling goals, where label validation and relabeling by domain experts

are required. We implement our workflow as an interactive notebook to facilitate flex-

ible error profiling, in-depth annotation validation for three error types, and efficient

annotation relabeling on different data scales. We evaluated our workflow in assisting

the validation and relabelling of technical text annotation with two use cases and four

expert reviews. The results show that LabelVizier is applicable in various application

scenarios, and users with different knowledge backgrounds have diverse preferences

for the tool usage.

6.1 Introduction
Building on the discussion in Chapter 2, data-driven approaches have pervaded man-

ufacturing in the age of Industry 4.0, producing a large amount of digitized data in

the form of unstructured technical text [296]. For example in machine maintenance,
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machine operators and repairing technicians often create maintenance work orders

(MWOs) to record their maintenance activities. However, the rich text of asset manage-

ment history in MWOs usually sits untouched because of the potential inconsistency,

incompleteness, or incorrectness [43] in the descriptive text. Compared to raw unstruc-

tured text, a set of high-quality annotations summarizing the content is preferred for

“robust and reproducible” [43] analysis of large-scale technical text. In particular, these

annotations can be utilized for the systematic problem identification and classification,

root cause analysis, and product life cycle prediction [111], which provides precious

insights and facilitate the key performance index (KPI) assessment and budget plan-

ning process. For instance, the statistics of the label “too_hot” in a heating, ventilation,

and air conditioning (HVAC) system maintenance log dataset (see Sec. 6.6.1) could

indicate how well the air conditioning system has been maintained and thus inform

maintenance budget planning. This is also a critical research topic in technical language

processing (TLP) [87].

However, it is not easy to create quality annotations and many important annotated

datasets are riddled with labelling errors [259]. Given the exponentially increasing vol-

ume of unstructured text, researchers have gradually discarded conventional manual

annotation approaches and turned to more efficient state-of-the-art machine learning

(ML) techniques or commercial crowd-sourcing [165] platforms. Particularly, recent

advances in weak supervision [287, 362] promise efficient large-scale text annotation.

However, it is necessary to sufficiently validate and improve the annotations generated

by such methods before delivering them to down-streaming tasks. Limited research

efforts have been devoted to validation and relabeling of such large-scale technical text

annotation. To facilitate this process, we developed LabelVizier, a human-in-the-loop

workflow encapsulated as a visual analytic solution that supports reliable and efficient

annotation validation and relabelling for domain practitioners to meet their specific

application requirements.

LabelVizier helps identify and correct three types of annotations errors: (1) dupli-

cate, (2) wrong, and (3) missing labels. Inspired by the practice of debugging in software
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engineering, we profile the potential errors in the existing labels and devise visual an-

alytics procedures to facilitate an efficient skimming of the labels and their context

based on the domain expert’s annotation preferences. We supplement this validation

process by training a surrogate model to approximate the agnostic annotation process,

visualizing the prediction metadata to expose potential errors, and providing LIME

explanations [294] for root cause analysis. For the user-identified annotation errors, we

support flexible relabelling of the dataset on the corpus, sub-group, and record levels.

We implement this workflow as a web-based interactive notebook containing editable

function blocks and an interactive visual analytic interface designed in close collabora-

tion with the two domain experts on our team. We demonstrate how LabelVizier can

benefit different application scenarios in two use cases and evaluate them with expert

reviews from four domain practitioners. The results show that the domain experts

appreciated the efficiency and accessibility of LabelVizier and are interested in using

LabelVizier for their text-based analysis tasks. This work has the potential to impact

a number of data-driven fields that emphasize annotation quality and, in particular,

benefit multidisciplinary areas that deal with critical problems such as maintaining the

vital infrastructure and ensuring community resilience.

The main contributions of this work can be summarized as follows:

1. Proposing a human-in-the-loop workflow that supports domain practitioners to

efficiently conduct validation and relabeling tasks for large-scale technical text

annotations from weak supervision.

2. Encapsulating this workflow as a web-based interactive notebook with a visual

analytic interface that facilitates the identification of annotation errors and rela-

beling for different scales of data.

3. Distilling insights from domain experts in different domains and observe var-

ious preferences corresponding to their backgrounds, which could shed light

on directions for improving LabelVizier and fulfil the needs of diverse domain

practitioners.
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6.2 Related Work
6.2.1 Technical Language Processing
Process monitoring, diagnostics, and prognostics have gained prevalence with the in-

creased emphasis on smart manufacturing, and reduced machine downtime. This

trend—coupled with lower cost, more accessible sensors and data storage solutions—

has increased the volume of maintenance data [44]. Despite the potential benefits,

companies frequently struggle to adopt advanced manufacturing technologies due to

cost of and lack of technical expertise in data analysis [166]. Simple yet powerful solu-

tions for data analysis are necessary to aid manufacturers improve their practices. There

has been an increasing focus on sensor data and predictive maintenance using AI tech-

niques [49, 342]. However, these works often neglect a large part of maintenance data:

natural language contained short-text maintenance logs, which leads organizations to

turn to NLP.

Technical text, however, poses challenges to commonly used NLP methods. Techni-

cal fields are often low-resource settings from an NLP perspective; they lack available

resources such as annotated data and algorithms appropriate for specific analyses [88].

Transfer learning is the traditional strategy for addressing low-resource domains in ma-

chine learning [87]. Models that were generated from annotated data from resource-rich

domains are adapted for the low-resource domain. Transfer learning approaches often

assume limited differences between two different domains. But the technical text that

appears in industrial information systems deviates considerably from “standard” En-

glish [87], full of expressions like “1 W Mech Insp Ball Mill BM001” and ”DSHT Cons

Thkner rplace bed press”.

The lexical, grammatical, and terminological differences between “standard” En-

glish and industrial technical text have spawned bespoke domain-specific NLP adap-

tations that are largely outside of mainstream NLP [87]. TLP is a human-in-the-loop,

iterative approach that addresses perceived shortcomings of applying standard NLP

(natural language processing) to technical text data [87]. Originating with manu-

facturing maintenance, it is an adaptation of NLP that focuses on the technical text
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communicated within specialized domains. TLP emphasizes the practical importance

of semantic information and extends its system boundaries beyond algorithms and

pipelines to include human input and community resources [43]. The short-text from

maintenance work orders (MWOs) are important analysis corpora for TLP [224, 313].

They record in detail the maintenance history of equipment and collectively capture

vital information about inspections, diagnoses, and corrective actions [43]. Annota-

tion methods for MWOs have been the subject of recent research in TLP. Tools, such

as Nestor1 have been developed to support the manual injection of critical real-world

knowledge by allowing for the annotation of the MWO text descriptions via tagging to

facilitate automated categorization and analyses. Machine learning systems can then

use these tags as a signal to help ensure correct outcomes [87].

6.2.2 Large-Scale Text Annotation
The exponential growth of text data has made the current manual text annotation ap-

proaches, e.g., crowd-sourcing [165], deficient in meeting the pressing demands for

high-quality large-scale annotations [212, 394]. As an alternative, researchers have de-

veloped the weak supervision techniques [115,212,287] that leverage human-defined la-

beling functions (LFs) [287], small labeled datasets [362], or existing text paradigms with

multi-type metadata [237] for more efficient text annotating. However, most of these

approaches trade off labeling speed or cost with annotation quality [212, 237, 287, 362],

and the generated labels are mainly evaluated by numerical performance matrices, such

as accuracies [287], F1 scores [362]. Without human review, it is uncertain whether such

annotations are of sufficient quality for real-world applications. In light of the deficien-

cies of manual and automatic text annotation approaches, a series of semi-automatic text

annotation frameworks have been proposed, allowing humans to annotate large-scale

text data with the help of automatic modules, which can be coordinated labeling mod-

ules [400] or deep learning techniques such as attention model [64], human-validated

labeling functions [100,295], and transductive semi-supervised learning [84]. However,

the annotation quality of such frameworks still lacks human validation—they either

1https://nist.gov/services-resources/software/nestor
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only verify quantitative performance matrices [400], or sample a small subset for hu-

mans to inspect results [84, 100]. Although there are a few works for improving the

annotation quality [22,215,346], they are mainly designed for image or video data and

hence not directly applicable to technical language datasets. Given the importance

of high-quality annotations [94, 232], a human-centered tool is needed to support the

validation of large-scale text annotations.

6.2.3 Technical Text Visualization
In the past decade, the idea of applying visualization and visual analytics to technical

text analysis has been broadly embraced. Manufacturing enterprises are becoming

aware of the value of maintenance records they collect and are supporting visualiza-

tion research [8, 54, 59, 138]. Academic researchers have developed visual analytical

strategies for maintenance records [348] and error logs [180,205,255,318]. In particular,

La VALSE [137] and MELA [318] are scalable visualization tools with multiple visual-

ization interfaces incorporating different logs for interactive event analysis. ViBR [51]

provides a visual summary of large bipartite relationships by via minimum description

lengths and is used for vehicle fault diagnostics. However, existing solutions have pre-

requisites on either the text format or the quality of the labels. Some assume that there

exists a well-defined set of labels [143] to train a classification modelfor the annotation

task or assume a trivial effort to define these labels in the pre-processing stage [86,404]

when they are not available as input. Others expect that the text can be generated from

grammar or rules so that the labels can be derived from clustering [137].

In this work, we address inconsistent technical text created by human maintainers

that contains domain jargon and labels of unknown reliability. Unlike other approaches,

we do not have prerequisite text formats nor do we make assumptions about the labels

or their quality. We also do not rely on the text’s grammatical structure

6.3 Validation and Relabeling for Text Annotations
In this section, we define the problem we wish to solve and clarify our assumptions. We

also derive the annotation error types and design requirements based on the industrial
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Figure 6.1: The LabelVizier workflow consists of three phases: Error Profiling, Annotation Validation,
and Annotation Relabeling. It is implemented as a web-based interactive notebook which takes tech-
nical text and the corresponding labels as input. With the actionable insights provided by the surrogate
model, the XAI method, and the visualization, users can identify three error types and improve anno-
tation quality at three different data scales.

experience of two coauthors and an exploration of a machine maintenance log dataset.

6.3.1 Problem Definition
Like software development, TLP often requires machine-assistance in the validation of

large, complex, and context-specific sets of text. To fulfill this need, we aim to facilitate

the validation of annotations and the correction of labelling errors by designing visual

analytic techniques for domain practitioners.

Our target users are domain practitioners and data analysts in need of assessing

and improving the annotations for large-scale technical text data. We expect they

have the analytical skills to interpret the model performance metrics and interact with

LabelVizier. We also make two assumptions about the technical log text and labels:

1. There exists a finite set of labels 𝐿 = {𝑙1, 𝑙2, ..., 𝑙𝑛}. And the mapping from each

record 𝑠𝑖 to the labels is defined by 𝑙𝑖 = 𝑓 (𝑠𝑖), where 𝑙𝑖 ⊆ 𝐿. In the context of this

chapter, 𝑓 (𝑠𝑖) is agnostic and the quality of 𝐿 requires expert verification.

2. There exists a finite set of label categories 𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑛}. Each label 𝑙 in 𝐿

belongs to one label category in 𝐶. Note that the “label category” in our context

is a higher-level taxonomy of labels. For instance, label “air-conditioner” belongs

to “Item” and “too_hot” belongs to “Problem” in Sec. 6.6.1.

Given there is no formalized taxonomy of labeling errors in the TLP domain, we

target three dominant types of annotation errors distilled from two coauthors’ long-
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term industrial experience:

E1 Duplicate Labels share duplicated words (e.g., “temperature” and “room_temperature”)

and/or express semantic meanings (e.g., “too_cold_building” and “temperature_too_cold”).

E2 Wrong Labels involve labels with conflicting meanings (e.g., one record is labeled

with “too_cold” and “too_hot” simultaneously). It can also refer to an unreasonable

label name (e.g., “building_building”) where the label refers to a non-existent class.

E3 Missing Labels refer to labels that should be assigned to technical records but

are absent (see examples in Sec. 6.6.1). Missing labels are relatively hard to detect

if there are already other labels assigned to the record.

The output of our workflow is a set of labels with improved quality.

6.3.2 Design requirements
After much discussion on a weekly base, our team, which included two TLP domain

experts, agreed to four design requirements for LabelVizier to address the problem

defined in Sec. 6.3.1:

R1 Label Overview: As the first step of label debugging, LabelVizier needs to provide

users with a summary overview of all technical text and labels. The visual

interface needs to present label distribution in the finite label set 𝐿 and illustrate

their categories 𝑐 (if available) intuitively. The visual interface also needs present

the currently assigned labels of one or multiple record(s) 𝑠𝑖 in different levels

of detail and from different perspectives per user demand to support intensive

context comprehension.

R2 Label Quality Screening: LabelVizier need to support an efficient evaluation

of the quality of existing annotations. In particular, the visual interface needs

to allow users to quickly locate labels that potentially fall into the three types

of errors (see Sec. 6.3.1). After that, it should help users confirm the error by

providing sufficient context information about the related labels and explaining

how they were assigned to specific records.

R3 Interactive Relabeling Support: Once the errors are identified and confirmed,

LabelVizier needs to interactively collect the user’s relabeling suggestions and
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apply them to specific scales of the dataset per user request. In particular, users

should be able to make suggestions to remove or modify an existing label or

insert new labels according to their best judgment. After that, such modifications

should be applied to entire corpus, a sub-group, or an individual record per user

demand.

R4 Accessibility and Flexibility: LabelVizier should be accessible to domain prac-

titioners of varying backgrounds. On the one hand, the basic functionalities of

the visual interface should be intuitive enough for users without a computing

background during the validation and relabeling tasks. On the other hand, La-

belVizier should provide users with in-depth information on demand and the

flexibility to adjust the data processing or model training settings so that the anal-

ysis process also satisfies experts with more computing experience and special

analysis needs.

6.3.3 Datasets
We involve two TLP datasets, HVAC and NLU, in this work:

HVAC is an internal dataset from our industrial collaborators with over 21,000

pieces of maintenance records from an HVAC system. Each record contains two text

fields: “LONG_DESCRIPTION” and “DESCRIPTION”. “LONG_DESCRIPTION” de-

scribes the detailed maintenance information, including the problem, the solution, the

maintainer, the corresponding machine, etc., while “DESCRIPTION” is a concise ver-

sion, which is often a sentence or a set of keywords. There are also eight categories

of labels available for each record, including “P” (Problem), “S” (Solution), “I” (Item),

“PI” (Problem Item), “SI” (Solution Item), “X” (Irrelevant), “U” (Unknown), and “NA”.

For example, the category “P” includes labels such as “too_hot”, “leak”, and the category

“SI” includes labels such as “adjust thermostat”, “replace valve”, etc. These labels were

produced by a weak supervision method, and their quality remains agnostic.

NLU [37] contains over 25,000 human-robot interaction records and the correspond-

ing labels, collected from a voice AI agent serving in an intelligent home system. Each

record includes three text fields: “question” is a pre-designed human-robot interaction
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question; “answer” and “answer_normalized” contain the original and normalized user

answers, respectively. There are three categories of labels, including “scenario”, “in-

tent”, and “suggested_entities”. For example, the category “scenario” includes labels

such as “weather”, “music”, and the category “intent” includes labels such as “request”,

“send email”, etc. These labels were generated from a crowd-sourcing platform, and

their quality requires validation as well.

6.4 Methodology
6.4.1 Workflow
We designed the LabelVizier workflow as an iterative framework with three major

phases: (1) Error Profiling, (2) Annotation Validation, and (3) Annotation Relabeling.

A regular analysis process starts from the Error Profiling phase, in which we train a

surrogate model with the technical text and their existing labels to approximate the prior

annotation process. Then, users can conduct the first round of Annotation Validation

through the integrated visual analytic interface, where multiple coordinated views are

provided to assist an efficient investigation of labels (6.3.2) and detection of three types

of errors. After that, users can move on to the Annotation Relabeling phase and

relabel the identified results at three different levels: corpus level, sub-group level, and

record level (6.3.2). A more detailed description of our visual and interactive support

on these three levels is provided in Sec. 6.5. After the first pass of the three phases, users

can iterate between Annotation Validation and Annotation Relabeling for multiple

rounds till the annotation quality converges with their standard of satisfaction. It is

also worth mentioning that LabelVizier simplifies the input and output of phase(1) so

that users only need to make minor hyperparameter adjustments to execute different

use cases with various analysis purposes (Sec. 6.3.2).

6.4.2 Surrogate Model for Error Profiling
In the first phase of the LabelVizier workflow, we train a surrogate ML model [78]

to approximate the generation process of existing labels in the dataset. To ensure

that the surrogate model can achieve satisfactory performance and reflect potential
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annotation issues, we tuned the model architecture with the interactive notebook to

fit the specific dataset. Then, by visualizing the model’s intermediate results (e.g.,

prediction probability [170]) in the second and third workflow phases, we help users

uncover potential annotation flaws. In this way, users start their label validation from

those suspicious labels related to unusual model behaviors (Sec. 6.3.2) and locate a

group of potential labeling errors for inspection. After addressing these labels, users

can retrain the surrogate model with the better-quality dataset to obtain a reusable

model incorporating domain knowledge from human experts and save it for future

annotation tasks.

The error profiling phase of LabelVizier require the surrogate model to be: (1)

lightweight, so that the model tuning is time-effective; (2) accurate in producing similar

results to existing annotations. For (1), we utilize lightweight and time-effictive word-

embedding and ML methods to process text data and train the annotation classifier. For

instance, to process the input technical text data, we adopt computationally efficient and

widely-used word embedding techniques, including TF-IDF (term frequency-inverse

document frequency) [377] and truncatedSVD (Singular value decomposition) [129], to

encode the original text into real-valued vectors. For (2), we iterate multiple processes

with different model training settings, and audit quantitative performance matrices

in the validation split until reaching the best result. Thus, we ensure the surrogate

model achieves satisfactory performance, i.e., the alignment between the predicted

labels and the existing annotations is reasonable for the surrogate model to simulate

the annotating process and provide hints for users. Specifically, the average hamming

loss is 0.02, the micro f1 score is 0.8044, and the average macro f1 is 0.6703, where

smaller hamming loss, and larger micro & macro f1 scores indicate better performance.

Besides, the predicted probabilities 𝑝𝑟𝑒𝑑𝑃𝑟𝑜𝑏𝑎 of the fitted LinearSVC 𝑓 𝑖𝑡𝑡𝑒𝑑𝑀𝑜𝑑𝑒𝑙 is

obtained to act as the clue of finding suspicious labels.

The data processing pipeline of the Error Profiling phase is illustrated with Al-

gorithm 2. The inputs of the Error Profiling phase of LabelVizier are the technical

text data and their finite set of labels (refer to 1) annotated by automatic tagging tools
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Algorithm 2 Surrogate model for simulating label generation
Input:

Technical text data, 𝑡𝑒𝑐ℎ𝑇𝑒𝑥𝑡;

Programmatically-created labels in text format, 𝑙𝑎𝑏𝑒𝑙𝑇𝑒𝑥𝑡;

Label categories as a list, 𝑐𝑎𝑡𝑒 𝑔𝐿𝑖𝑠𝑡;

Output:

Word vector encoded from text, 𝑤𝑜𝑟𝑑𝑉𝑒𝑐𝑡𝑜𝑟;

Surrogate models for each category, 𝑚𝑜𝑑𝑒𝑙𝐷𝑖𝑐𝑡;

Predicted probabilities of the models, 𝑝𝑟𝑒𝑑𝑃𝑟𝑜𝑏𝑎;

1: 𝑣𝑒𝑐𝑡𝑜𝑟𝑇𝑒𝑚𝑝← TF-IDF(𝑡𝑒𝑐ℎ𝑇𝑒𝑥𝑡, 𝑠𝑡𝑜𝑝𝑤𝑜𝑟𝑑𝑠)

2: 𝑤𝑜𝑟𝑑𝑉𝑒𝑐𝑡𝑜𝑟← truncatedSVD(𝑣𝑒𝑐𝑡𝑜𝑟𝑇𝑒𝑚𝑝)

3: 𝑙𝑎𝑏𝑒𝑙𝑉𝑒𝑐𝑡𝑜𝑟𝑇𝑜𝑡𝑎𝑙← OneHotEncoding(𝑙𝑎𝑏𝑒𝑙𝑇𝑒𝑥𝑡)

4: 𝑙𝑎𝑏𝑒𝑙𝑉𝑒𝑐𝑡𝑜𝑟𝐷𝑖𝑐𝑡← Categorize(𝑙𝑎𝑏𝑒𝑙𝑉𝑒𝑐𝑡𝑜𝑟𝑇𝑜𝑡𝑎𝑙)

5: 𝑚𝑜𝑑𝑒𝑙𝐷𝑖𝑐𝑡← { }
6: 𝑝𝑟𝑒𝑑𝑃𝑟𝑜𝑏𝑎← [ ]
7: for 𝑐𝑎𝑡𝑒 𝑔𝑜𝑟𝑦 in 𝑐𝑎𝑡𝑒 𝑔𝐿𝑖𝑠𝑡 do

8: 𝑙𝑎𝑏𝑒𝑙𝑉𝑒𝑐𝑡𝑜𝑟← 𝑙𝑎𝑏𝑒𝑙𝑉𝑒𝑐𝑡𝑜𝑟𝐷𝑖𝑐𝑡[𝑐𝑎𝑡𝑒 𝑔𝑜𝑟𝑦]
9: 𝑓 𝑖𝑡𝑡𝑒𝑑𝑀𝑜𝑑𝑒𝑙← LinearSVC(𝑤𝑜𝑟𝑑𝑉𝑒𝑐𝑡𝑜𝑟, 𝑙𝑎𝑏𝑒𝑙𝑉𝑒𝑐𝑡𝑜𝑟)

10: 𝑚𝑜𝑑𝑒𝑙𝑃← Pipeline(TF-IDF, truncatedSVD, 𝑓 𝑖𝑡𝑡𝑒𝑑𝑀𝑜𝑑𝑒𝑙)

11: 𝑚𝑜𝑑𝑒𝑙𝐷𝑖𝑐𝑡[𝑐𝑎𝑡𝑒 𝑔𝑜𝑟𝑦] ← 𝑚𝑜𝑑𝑒𝑙𝑃

12: 𝑐𝑢𝑟𝑃𝑟𝑜𝑏𝑎← 𝑓 𝑖𝑡𝑡𝑒𝑑𝑀𝑜𝑑𝑒𝑙.𝑝𝑟𝑒𝑑_𝑝𝑟𝑜𝑏𝑎(𝑤𝑜𝑟𝑑𝑉𝑒𝑐𝑡𝑜𝑟)
13: 𝑝𝑟𝑒𝑑𝑃𝑟𝑜𝑏𝑎← 𝑝𝑟𝑒𝑑𝑃𝑟𝑜𝑏𝑎.𝑐𝑜𝑛𝑐𝑎𝑡(𝑐𝑢𝑟𝑃𝑟𝑜𝑏𝑎)
14: end for

15: return 𝑤𝑜𝑟𝑑𝑉𝑒𝑐𝑡𝑜𝑟, 𝑚𝑜𝑑𝑒𝑙𝐷𝑖𝑐𝑡, 𝑝𝑟𝑒𝑑𝑃𝑟𝑜𝑏𝑎

or weak supervision techniques (refer to Fig. 6.1). The technical text data is fed into

a word embedding process, whose main goal is to encode the text into real-valued

vectors [191]. Consistent with 2, the labels are grouped into different pre-defined cat-

egories according to its semantic meanings, e.g., labels “too_hot”, “too_cold”, “noisy”

in a machine-maintenance dataset are categorized as “P” (Problem). Then, a machine
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Figure 6.2: The LabelVizier interface with the HVAC dataset. (A) Label Investigation View visual-
izes the label and category hierarchy relationships; each category can be expanded to present label
co-occurrences (see Fig. 6.3 (A)). (B) Record Projection View presents the record distribution oto
support sub-group validation, layout by model confidence vectors or input word vectors. The color
represents “model prediction confidence” or “record info density”. (C) Inspection & Operation View
includes multiple tabs, “Inspect” for record and label inspection, “Categorize” for category-based in-
vestigation, “Explain” for model behavior interpretation (c1), and “Relabel” for relabeling operations.

learning classifier is trained by taking the word vectors as the input and the labels from

each category as the ground-truth, which means we will get a multi-label annotation

classifier for each category. Finally, LabelVizier will automatically pack the fitted word

embedding tool together with each of the classifier respectively as callable functions,

allowing the integrated visual interface to easily access the functions and visualize the

models’ behaviors.

6.4.3 Model Behavior Explanation
LabelVizier utilizes one of the state-of-the-art eXplainable Artificial Intelligence (XAI)

techniques–LIME (Local Interpretable Model-Agnostic Explanations) [294]–to support

the annotation validation. For each of the constructed surrogate models, LIME performs

perturbation-based analysis over a given text record and presents the explanation by

highlighting the rationale behind the model’s prediction. It exposes the weakness

of the model and the pitfalls of the input technical text and thus could help users

more accurately inspect a potential annotation error and make a reasonable relabeling

decision. The LIME explanation is integrated into the “Explain” tab of Record Projection
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Figure 6.3: Duplicate label validation with the HVAC dataset (Sec. 6.6.1). The chord diagram (A)
shows that labels “office too_hot”, “room too_hot”, “too_hot building”, and “too_hot room” co-occur
frequently. Duplication is confirmed via record details in (c1) and fixed in “Relabel” tab (c2).

View LabelVizier and is triggered when users select a record from the “Categorize” tab

for further inspection (more details in Sec. 6.5 and examples Sec. 6.6).

6.4.4 Implementation
To maximize its accessibility for sharing and flexibility for customization (R4), we

implement the LabelVizier workflow as a computational notebook. We use multiple

Python data analysis libraries including Pandas [269], Numpy [146], and Joblib [167] for

data processing and intermediate metrics analysis. In addition, the word embedding

techniques (TF-IDF and truncated SVD) and ML methods (LinearSVC) discussed in

Sec. 6.4.2 are implemented with scikit-learn [279], and the LIME technique is with

LimeTextExplainer [294]. To ensure smooth integration and faster rendering speed,

we embed the visual interface (Fig. 6.2) in the computational notebook with Plotly’s

JavaScript Graphing Library and Plotly Dash. And we use the t-distributed stochastic

neighbor embedding (t-SNE) algorithm for dimensionality reduction when visualizing

the high-dimensional word vectors and confidence vectors for the Record Projection

View. We also deliberately separate the functions in the notebook so that users can

easily plug in any word embedding and dimensionality reduction algorithms for their

specific analysis needs with minor programming.
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6.5 Visual Analytic Interface
To fulfill the design requirements in Sec. 6.3.2 and concretize the LabelVizier workflow

in Sec. 6.4.1, we design a visual analytic interface (see Fig. 2.2) that contains three

major components: (A) Label Investigation View, (B) Record Projection View, and (C)

Inspection & Operation View. In this section, we demonstrate how we can coordinate

these views to locate the three types of errors and perform multi-level validation and

relabeling on annotations.

6.5.1 Annotation Validation
With the coordination among different components of LabelVizier, users can efficiently

validate the annotation quality and identify the three major types of error introduced

in Sec. 6.3.1 (R2).

6.5.1.1 Duplicate Label Detection

To support duplicate label detection, we designed the Label Investigation View (Fig. 6.2

(A)) and the “Inspect” tab of Inspection & Operation View. We choose the sunburst

diagram for Label Investigation View to provide an overview of the hierarchical re-

lationship between labels and their category (R1), as well as the distribution of the

labels across categories – the size of the label sectors at the outermost layer represents

the number of records in the dataset assigned with the corresponding label. We also

encode the possibility of duplicate labels into the sectors colors to provide a priority

recommendation for the user inspection. This duplication possibility is the average of

a ratio of co-occurrence number 𝐶𝑜(𝑙𝑖 , 𝑙 𝑗) to the total appearance 𝑁𝑢𝑚(𝑙𝑖) of each label

𝑙𝑖 in the category:

𝑃𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =
1

𝑛𝑐𝑎𝑡𝑒 𝑔

𝑛𝑐𝑎𝑡𝑒 𝑔∑
𝑖=1
( 1
𝑛𝑜𝑐𝑐𝑢𝑟

𝑛𝑜𝑐𝑐𝑢𝑟∑
𝑗=1

𝐶𝑜(𝑙𝑖 , 𝑙 𝑗)
𝑁𝑢𝑚(𝑙𝑖)

) (6.1)

The sunburst diagram is expandable per user request. And in the zoom-in view, we

embed a chord diagram to illustrate the label co-occurrence in the same record, which

is a strong indicator of duplicate labels (e.g., Fig. 6.3 (A)). In this chord diagram, the co-

occurring labels are connected with white chords, with their thickness representing the
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co-occurrence frequency. For example, the chord between the label “room too_hot” and

“too_hot room” is thicker than that between “room too_hot” and “water leak”, indicating

a heavier co-occurrence pattern and potential duplication of the former pair. A larger

number of thicker chords also indicates a higher possibility of existing duplicated labels

in this category, which corresponds to the brighter sector color described above.

Users can further inspect the context of any suspect labels by clicking on them

and checking the updated data table under the “Inspect” tab in the Inspection &

Operation View (Fig. 6.2 (C)). This data table presents all the records across the dataset

assigned with the selected label. In this way, users can efficiently locate and evaluate

the correctness of potential problematic labels.

6.5.1.2 Wrong Label Detection

Wrong labels can be detected with the Record Projection View (Fig. 2.2 (B)) in coordi-

nation with the “Categorize” and “Explain” tabs of Inspection & Operation View. To

provide a two-dimensional (2D) overview for all records (R1), we apply the t-SNE [358]

algorithm to project the customized record vectors onto the 2D space and visualize

each of them as a dot. The customized record vector can be a “word vector” or a “confi-

dence vector”. When the “word vector” is used for layout, the distance among the dots

indicates the semantic closeness of descriptions in their corresponding records. When

the “confidence vector” is used for layout, the distance among dots indicates the model

behavior towards similarity when predicting labels for the corresponding records. We

provide two options to color the record projections — “information density” and “con-

fidence score”. The “information density” is more useful in locating missing labels, so

we will discuss it in Sec. 6.5.1.3. The “confidence score” is the mean value of all di-

mensions of the aforementioned “confidence vector”, which could expose the records

containing more labels predicted with low confidence, and thus provide hints to locate

sub-groups that potentially contain labeling mistakes (Fig. 2.2 (B)).

Once a cluster with low confidence is identified and selected, a heatmap under the

“Categorize” tab in Inspection & Operation View (Fig. 6.4 (c1)) will be triggered, where

each row refers to a single record; each column represents one label category, and the
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color indicates the model’s average confidence score.

To support deeper understanding of the model reasoning process, we provide LIME

explanations under the “Explain” Tab (Fig. 6.2 (c1)). The explanation includes three

parts: the left bar chart visualizes the top five predicted labels and their prediction

probabilities; the middle bar chart visualizes the “score of contribution” of the input

words to the top label; the right side shows more context information and the original

text record, where the positive and negative contributors are highlighted with different

colors. Combining these three kinds of information, we aim to help users verify whether

the rationale behind the model’s decision aligns with their knowledge (R2).

6.5.1.3 Missing Label Detection

The detection of missing labels also involves the Record Projection View (Fig. 6.2 (B))

and “Inspect” tabs of Inspection & Operation View. We designed the “information

density” metric to highlight records more likely to have missing labels. This metric is

determined by the ratio of label count and the input text length:

𝐷𝐼𝑛 𝑓 𝑜 = 𝑙𝑜𝑔(
𝐶𝑜𝑢𝑛𝑡(𝑙𝑎𝑏𝑒𝑙𝑠)

𝑊𝑜𝑟𝑑𝐶𝑜𝑢𝑛𝑡(𝑡𝑒𝑥𝑡)) (6.2)

Once the users locate and select a cluster of records with low “information density”,

the “Inspect” tab of Inspection & Operation View will be updated for verification of

the label missing issue. It is also worth mentioning that higher “information density”

can insufficiently indicate the existence of duplicate labels, but further verification is

required with the process in Sec. 6.5.1.1.

6.5.2 Annotation Relabelling
After confirming a labeling error, users can improve the annotation quality of the

dataset (R3) on three data scales: corpus level, sub-group level, and record level:

1. Corpus level relabeling updates the label across the entire technical text dataset.

It is achieved by clicking on a label from Label Investigation View and use the

“Relabel” tab of Inspection & Operation View to “remove”, “modify”, or “insert”

it. For example, the label “building_building” is considered to be a “wrong label”
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error at the corpus level. Users can select it from Label Investigation View and

remove it from all affected records.

2. Sub-group Level relabeling involves a sub-group of records within the dataset.

It is achieved by selecting a sub-group of records with the lasso tool in Record

Projection View and relabeling them with the “Relabel” tab. The number of

records in one sub-group can vary from a dozen to hundreds.

3. Record level relabeling updates individual record(s) associated with a specific

label error. For example, a user looks over the records through the “Inspect”

tab and notice two records missing the label “alarm”. They can select these two

record(s) with the checkbox and relabel them under the updated “Relabel” tab.

These relabeling operations are only applied to the selected records.

To eliminate waiting for dataset updates and projection re-rendering, the visual inter-

face is only re-rendered when the user request to apply the changes. To achieve this,

we record the relabeling operations as a history list and sequentially apply them to the

database per request.

6.6 Use Case Scenarios
This section describes two use case scenarios where LabelVizier assists domain experts

in validating the quality of technical text annotations and conducting efficient relabeling

for the incorrect annotations.

6.6.1 Case 1: Maintenance Management for HVAC System
This use case involves Amy, a maintenance manager who monitors machine mainte-

nance records to track maintenance-related issues and to plan for future maintenance

resources (e.g. budgets, maintainers, etc.). With the HVAC dataset, we demonstrate

how she uses LabelVizier to validate the label quality of MWOs and make maintenance

management based on the more accurate labels.

After finishing data processing and surrogate model training in the programmable

cells of LabelVizier, Amy starts validating labels through the interface. Because the

frequency of similar labels reflects the prevalence of a maintenance issue and influ-
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ences decision priorities and budgets, Amy chooses to screen duplicate labels at first.

She notices from the Label Investigation View (Fig. 2.2 (A)) that the category “PI” is

the most likely to contain duplicate labels, so she expands it to check for label co-

occurrance (Fig. 6.3 (A)). As indicated by the chord thickness, “office too_hot”, “room

too_hot”, “temperature too_hot”, “too_hot building”, and “too_hot room” co-occur very fre-

quently. Because these labels have similar semantic meanings, Amy further inspects

their context in the “Inspect” table (Fig. 6.3 (c1)) and confirms that they are duplicates.

Such duplication will overemphasize air-conditioner-related “too hot” issues and may

cause excessive allocation of maintenance resources. Amy removes the redundant la-

bels and unifies the rest with “room too_hot” with the “Relabel” (Fig. 6.3 (c2)). Now that

Amy has created more accurate and consistent labels for temperature-related problems,

she counts their frequency, evaluates the problem severity, and decides to arrange for

regular examination of all air-conditioners across the company.

Amy moves on to the Record Projection View (Fig. 2.2 (B)) to screen for wrong labels

which are another type of error that can mislead maintenance planning. Amy notices

that there are several clusters with lower confidence scores (Fig. 6.4 (B)), indicating

that the surrogate model performed worse and might predict the wrong labels for the

corresponding records. After selecting one, she learns from the updated “Inspect”

tab that the labels “Richard” in category “I” and “br richard” in category “X” appear in

many records. Amy browses the context to check if this is related to a maintainer’s name

or is an improper description but finds the phrase “br richard" doesn’t appear to be

semantically relevant to either “DESCRIPTION” or “LONG_DESCRIPTION”. Seeing

this issue also appears in many other clusters, Amy decides to further investigate its

cause with the “Categorize” and “Explain” functions. Under the “Categorize’ tab,

she clicks on the cell indicating lowest prediction confidence in category “I” and “X”

(Fig. 6.4 (c1)) to trigger a LIME explanation. As shown in the left bar chart in Fig. 6.4

(c2), the model’s top prediction for the selected record is the label “br richard”. However,

the middle and right part shows that most positive contributors to this prediction are

HTML metadata such as “TEXT” and “RICH”. Amy realizes that the wrongly-predicted
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Figure 6.4: Wrong label detection in HVAC dataset using LabelVizier (Sec. 6.6.1). Users can select a
sub-group with lower confidence in (B) and inspect model confidence of each category in (c1). Then
they can click on cells in (c1) to activate LIME explanation in (c2) for model behavior interpretation.
After confirming the error, users can remove the wrong labels with (c3).

label “br richard” might originate from the presensce of HTML tags. After seeing similar

LIME explanations for more records in this cluster, her hypothesis is confirmed – the

model referred to HTML tags to predict the wrong labels. Amy removes these wrong

labels (Fig. 6.4 (c3)) and decides to conduct a thorough cleaning of the dataset later to

remove HTML tags.

Amy also checks the info density and does not find any severe label missing issues.

Then she reloads the updated labels into LabelVizier and confirms that the new an-

notations are satisfactory. Finally, Amy executes the code cells of the computational

notebook (Sec. 6.4.4) to re-train the surrogate model with the relabeled dataset. In this

way, she preserves her domain knowledge in the model that can be used to annotate

any future maintenance records.

6.6.2 Case 2: Data Cleansing for NLU Model Training
In this section, we demonstrate how LabelVizier can help modify the annotations of the

training data for a specific application scenario. This use case involves Steven, a data en-

gineer working in a company that provides conversational agent (CA) services. Steven

coordinates the large-scale crowd-sourcing process to provide high-quality training

data for the natural language understanding (NLU) model [37] embedded in the CAs,

153



User Inserted Labels

Missing 
Labels

Zoom-in and validate a sub-group Select different color and projection matrices

Hover over and find a think chord
(duplicate label error)

A

b1

c1

c2

b2

Contain Duplicate Labels

Figure 6.5: Finding duplicate and missing labels in NLU dataset using LabelVizier (Sec. 6.6.2). The
chord diagram in the Label Investigation View (A) reveals the duplicate labels “currency_source” and
“currency_target”. The clusters with low 𝑖𝑛 𝑓 𝑜_𝑑𝑒𝑛𝑠𝑖𝑡𝑦 in the Record Projection View (b1) highlight
records with missing labels. The “Inspect” tab (c1) shows that the “suggested_entities” for selected
records in (b2) are missing. User-suggested labels can be inserted through the “Relabel” tab (c2).

which summarizes the semantic content of user utterances by mapping it to structured,

abstract representations (labels) that support the decision making process.

Steven uses LabelVizier to validate and debug the crowd-sourced annotation re-

sults before delivering the dataset for the downstream machine learning tasks. The

NLU model requires all labels to be independent and accurate so that the voice AI

agent can exclusively query them in the search engine and provide correct answers

to the users. To remove those dependent labels with semantic duplication, so Steven

starts by looking for them via the Label Investigation View. According to the coloring

of the categories, the category “suggested_entities” is most likely to include dupli-

cate, so Steven expands this category to inspect the label co-occurrences. The thick

chord indicates that the labels “currency_source” and “currency_target” heavily overlap

(Fig. 6.5 (A)). Steven inspects the detailed context of the corresponding records with

the Inspection & Operation View and finds that most of these records are related to

currency exchange questions. Although the two labels “currency_source” and “cur-

rency_target” appear reasonable, Steven still decides to merge them into the single label

“currency_source_and_target” to facilitate the down-streaming task.

When using the “Inspect” tab to investigate the duplicate label issues above, Steven
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notices that missing labels are a common with this dataset. He moves on to the

Record Projection View to facilitate find more missing labels. He chooses the options

of “Color by Info Density” and “Layout by Word Vector” to highlight clusters with

similar semantic meanings and lower info density (Fig. 6.5 (b1)). Then he uses the lasso

tool to select the most notable cluster and observes from the Inspection & Operation

View (Fig. 6.5 (c1)) that all the records in this cluster were labeled as “QA” under the

category “scenarios” and “object_query” under the category “intent”, but not assigned

with any labels under the category “suggested_entities”. With a second look at the input

“questions”, “answers”, along with the model’s reasoning process from the “Explain”

tab, Steven figures out the cause — the model only captured the information from the

records’ shared “question” but ignored the “answers”. To fill the missing labels, Steven

zooms into this cluster in the Record Projection View (Fig. 6.5 (b2)) and uses the lasso

tool to select each sub-clusters with similar semantic meaning. After selecting one sub-

cluster (Fig. 6.5 (b2)), Steven notices similar semantic meanings of the selected records

– for “answer_normalized”, those records have sentences such as “how do you think the

world ends”, “tell me how the world begin” and “do you believe in god”, etc. Considering these

questions were asked by their CA users, Steven believes “apocalypticism” or “philosophy”

would be proper labels for the category “suggested_entities”. He inserts them into the

selected sub-group of records with the help of the “Relabel” tab. Steven conducts the

same operation to the few other low-info-density clusters, and fix the label missing

issues accros the entire dataset.

Finally, Steven applies his relabeling operations to the dataset and updates the

interface. After confirming the quality of the annotations, he delivers the dataset to

the machine learning engineers for the downstream training tasks. With LabelVizier,

Steven optimizes the annotation quality from crowd-sourcing results and avoids the

potential flaws that can bias the training of the voice AI agent.
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6.7 Expert Reviews
LabelVizier was developed with the participation of TLP domain experts (Sec. 6.3.2)

over the course of two years. To evaluate the generalisability of our workflow and

reveal insights from or practical value to domain practitioners, we invited another two

TLP domain experts (E1 and E2) and two experts from other domains (E3 and E4) into

our expert review studies.

6.7.1 Expert Demographics
All experts were experienced in data analysis and performed data annotation tasks in

their daily work. E1 and E2 was research engineers from the TLP community, who were

familiar with and had worked on the analysis of the HVAC dataset (Sec. 6.6.1) before

the study for several years. E3 was an economist and statistician who analyzed large-

scale tabular datasets to gain insights into community resilience. E4 was a research

social scientist who manually annotated large-scale datasets about risk perception and

evacuation decision-making, and was in need of speeding up this process.

6.7.2 Tasks and Setup
We conducted two pilot studies to simulate the remote setup, test the LabelVizier

execution environment (online Colab via a local Jupyter Notebook) and adjust the

content of the tutorial sessions. Then we finalized a semi-structured, open-ended expert

review in which each expert was asked to explore one of the two datasets described in

Sec. 2.6. Based on their domain of expertise and familiarity with the dataset, E1 and E2

used the HVAC Dataset while E3 and E4 used the NLU Dataset. We shared the original

dataset and its documentation2 with E3 and E4 before the study so that they could

get familiar with it in advance. Because the existing annotation in the NLU Dataset

is relatively clean, we used an adapted version with two manually inserted errors for

each error type in Sec. 6.3.1 in the study.

The study was conducted online via a video conferencing where the domain experts

accessed LabelVizier from Google Colab Notebook3 via their personal computers. We

2https://github.com/xliuhw/NLU-Evaluation-Data
3https://colab.research.google.com/
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shared the tutorial document with the experts no less than two days before the study.The

online study session started with a 25-min tutorial session that combined an introduc-

tory presentation, a live demonstration, and the mini-tasks. An example mini-task for

the HVAC dataset was “Please use LabelVizier to find one pair of duplicated labels

under the category ‘PI’ (Problem Item), and then suggest how to modify it with the

‘Relabel’ tab”. After the tutorial session, the experts were asked to freely explore their

assigned dataset to validate and relabel the annotations (20-25 minutes). During this

process, the experts followed the think-aloud protocol to verbalize their thinking and

suggestions. Finally, the experts responded to a questionnaire with their demographic

information and general feedback of LabelVizier.

6.7.3 Observations
In our study, all experts appreciated the value of LabelVizier for facilitating annotation

refinement and expressed willingness to use it in their daily work, describing it as a

very good tool (E2) that was “helpful at a high level of quickly and...pleasantly...identifying

issues than just scrolling through a spreadsheet” (E4). Meanwhile, we observed that do-

main experts with differing backgrounds interacted distinctly with LabelVizier and

sometimes provided divergent comments towards the same features. We categorize

the their behaviors and feedback during the exploratory and describe them below.

Learning Curve. Based on their familiarity with the dataset and the tool, domain

experts required differing times to overcome the learning curve (R4). For instance, E1

and E2 had previously worked on the HVAC dataset with other annotation tools, so

they spent less time grasping LabelVizier compared to the other two experts (E3, E4).

E2 expressed great interest in the methodology “under the hood” and asked many tech-

nical questions to understand the underlying mechanism during the tutorial session.

Although E3 and E4 needed more hands-on instructions about using our tool, they

were capable of replicating the moderator’s operations and accomplishing the explo-

ration task after the tutorial sessions. They praised our tutorial session design, saying

“it helped very much...after (the moderator) demonstrated, it very easy to replicate” (E2).

Functionality. In all four studies, the experts were able to efficiently evaluate the
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quality of the annotations (6.3.2) and successfully accomplish the relabelling (6.3.2) by

coordinating information from the three major views of LabelVizier (Fig.2.2). More-

over, E1, E2, and E4 successfully mastered the relatively complex “Categorize” and

“Explain” functions and utilized them to understand the root cause of a potential

wrong label. We also received requests for more delicate annotation manipulations

and more complicated information support from experts with shorter learning curves,

such as modifying the name of a label category (E2) or showing the percentage value of

the duplicated labels (E1, E2). However, experts with longer learning curves requested

simpler operations and more exploration guidance from the tool, such as simplified

projection view (E3) or “pop-up reminders...to remind people what these different tools are

for in a really obvious way” (E4). How to support more delicate label manipulation as

well as ensure the accessibility of LabelVizier ((6.3.2)) is an inspiring topic that we will

discuss in Sec. 6.8.

Visualization. Interestingly, experts with different backgrounds and experience

using (semi-) automatic annotation tools also showed different preferences towards

our two major visualization components – the Label Investigation View and the Record

Projection View. Though all experts expressed their favor of the Label Investigation

View, saying they “particularly like the chord diagram” (E3) because it was “very

helpful”(E1), “intuitive enough” (E2) and they “haven’t seen labels presented in this way"

(E4), E2 mentioned “the co-occurrence is less useful because I don’t have enough flexibility to

dive down into why there’s that co-occurrence.” For the Record Projection View, experts

knowing more about machine learning (E1 and E2) picked it up faster and appreciated

its value in finding wrong and missing labels better. “I think the projection view is super

useful,” said E2. They “would like to see even more options of projection spaces and be able

to play around with those.” In contrast, E3 felt the same function was too complex and

required “a lot of playing around.” E4 didn’t even get a chance to try out the different

projection options because of the time constraint.

Interaction. During the study, we received precious interaction improvement sug-

gestions, including more cross-view coordination, operation history tracking, and typ-
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ing suggestions. E1, E2, and E4 suggested more flexible interactions, such as cross-view

Boolean operations and subset highlighting. For example, when E2 inspected the label

“time,” they mentioned that this label might involve different types of redundancy ac-

cording to their prior knowledge about the dataset. As a result, they requested Boolean

operations between the Label Investigation View and Record Projection View to sift

those records of their specific need. E3 and E4 suggested providing ways to keep track

of the editing history, such as an undo function (E3), a history list (E4), and some hints

of what the user has just clicked (E4). E2 suggested adding typing suggestions for

relabel tab, such as auto-complete or alternative recommendation functions. These

suggestions reflected the experts’ tacit knowledge gained from their long-term anno-

tation practice and will direct us to a more accountable annotation tool in the next

development iteration.

6.8 Discussion
The observations and feedback from the expert reviews indicated that LabelVizier

provides a means for domain practitioners to validate and relabel the technical text

annotations “quickly” and “pleasantly”. They also suggest potential future work for our

workflow and tool. Below, we organize the lessons learned.

Accessibility v.s. Functionality. We observed in our expert review that users with

less machine learning and (semi-) automatic annotation tool experience may go through

longer learning curves with LabelVizier. They requested more exploration guidance

or relabelling recommendations when using the tool, while the other group of users

requested more complex functions, saying LabelVizier was “good to find gross errors, but

not for perfectionism”(E2). This is understandable because we required domain experts

with diverse backgrounds to learn a relatively complex system within a limited time.

We plan to alleviate this problem by leveraging user modeling techniques [141] to

analyze the user behavior and guide them to start from different levels of complexity.

This way, it will also be safe to extend LabelVizier with more intricate functions, as

recommended by the domain experts.
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Automation v.s. Human Trust. As computer science researchers, we tended to

incorporate more automation in LabelVizier during the development process, which

was discouraged by our collaborators with technical text annotation backgrounds. We

observed that most of the data analysts tended to be “over conservative” (E2) and had

to closely check the raw text before “starting to believe the systems is working”(E1). They

also said that many cases were ambiguous, so they tended to examine more context

before making relabelling decisions. Because of this, LabelVizier currently still involves

considerable manual work, as demonstrated in Sec. 2.6. LabelVizier also only provides

recommendations and explanations instead of one-step relabelling suggestions to sup-

ply users with a comfortable amount of information. Indeed, there were no complaints

about too much manual work during the expert review but we did receive praise that

our tool helped “focus their energy”(E4).

Application Domains. LabelVizier was originally designed to serve as a component

of technical language processing, but it is generalizable to other annotation verification

tasks. The error profiling process can take any natural language descriptions and their

labels as input and allow users to perform validation and relabelling via the interface.

If label categories are available, as was for our use cases (Sec. 6.3.1), there will be two

layers in the Sunburst diagram of Label Investigation View. Otherwise, the Sunburst

diagram will devolve into a pie chart, with other functionality remaining unchanged.

6.9 Summary
In this chapter, I presented LabelVizier, a human-in-the-loop workflow that can help

domain experts efficiently validate and improve the quality of multi-labeled techni-

cal text annotations. LabelVizier utilizes a web-based interactive notebook to enable

flexible data processing and model training, and integrates a visual analytic system to

leverage human knowledge in annotation relabeling. The interface coordinates differ-

ent visual components for multi-type error detection (duplicate, missing, and wrong

labels) in different dataset scopes (corpus level, sub-group level, and record level), and

provides a human-centered solution targeting the quality enhancement for large-scale
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text annotations. I demonstrate the usability of LabelVizier via two use case cases, and

four experts evaluated the effectiveness of our workflow through a study consisting of

one-on-one qualitative evaluations. I believe this work will encourage the design of

visual analytics for other domain-driven problems and inspire future research efforts

in creating higher-quality annotations for larger-scale text datasets.
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Chapter 7
Knowledge Exploitation for Machine
Learning Model Validation

Real-world machine learning applications need to be thoroughly evaluated to meet

critical product requirements for model release, to ensure fairness for different groups

or individuals, and to achieve a consistent performance in various scenarios. For

example, in autonomous driving, an object classification model should achieve high

detection rates under different conditions of weather, distance, etc. Similarly, in the

financial setting, credit-scoring models must not discriminate against minority groups.

These conditions or groups are called as “Data Slices”. In product MLOps (Machine

Learning Operations) cycles, product developers must identify such critical data slices

and adapt models to mitigate data slice problems. Discovering where models fail,

understanding why they fail, and mitigating these problems are therefore essential tasks

requiring the knowledge from domain experts to steer the MLOps life-cycle. In this

chapter, I present SliceTeller, a novel tool that allows users to leverage their domain

knowledge for debugging, comparing, and improving machine learning models driven

by critical data slices. SliceTeller automatically discovers problematic slices in the data,

helps the user understand why models fail. I also present an efficient algorithm,

SliceBoosting, to estimate trade-offs when prioritizing the optimization over certain

slices. Furthermore, our system empowers model developers to compare and analyze

different model versions during model iterations, allowing them to choose the model

version best suitable for their applications. We evaluate our system with three use cases,

including two real-world use cases of product development, to demonstrate the power of

SliceTeller in the debugging and improvement of product-quality ML models.
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Figure 7.1: SliceTeller applied to the comparison of two machine learning models (ResNet50 and
GroupDRO) for hair color classification (gray hair, not gray hair), trained on the CelebFaces Attributes
Dataset (CelebA). (A) Slice Matrix: The data slices (represented as rows), slice descriptions (encoded
as columns), and slice metrics (Support and Accuracy). Slices are sorted by model accuracy. (A -
Tooltip) Confusion matrix for Slice 1. (B) Estimated effects of optimizing the model for two data slices
(Slices 1 and 2, highlighted in blue). (C) Accuracy comparison between the two models, ResNet50
and GroupDRO. (D) Slice Detail View containing image samples from a data slice. (E) Slice Detail
View containing the comparison of two data slices using the MatrixScape visualization. (F) System
menu, containing options for model selection, effect estimation of focusing on a slice during model
training, and data slice summarization.

7.1 Introduction
Recently, Machine Learning (ML) has been used in a variety of critical applications,

including autonomous driving, medical imaging, industrial fire detection, and credit

scoring [150, 185, 236, 270]. Such applications need to be thoroughly evaluated before

deployment to assess model capabilities and limitations. Unforeseen model mistakes

may cause serious consequences in the real world: for example, a false sense of security

in ML models may cause safety issues in driver-assistance [150] and industrial systems

[185], misdiagnoses in medical analysis [270], and biases against minorities [236].

During our collaborations with MLOps (Machine Learning Operations) engineers

for product-quality model development, we have identified that the evaluation of crit-
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Figure 7.2: Product MLOps engineer’s workflow for model validation and iteration over critical data
slices. Experts sliced their data based on product and domain requirements, computed model per-
formances per slice, and explored the data to identify the root causes for potential model mistakes.
Based on these observations, they would iterate over the model, by retraining while re-prioritizing cer-
tain data slices over others.

ical ML models is usually conducted beyond the aggregated level (e.g., a single per-

formance metric). Instead, they need to thoroughly evaluate model performance on

carefully specified usage scenarios or conditions in order to meet important ML product

requirements. Based on this analysis, experts can then take actions to 1) attempt to make

the model more robust to various conditions and 2) make customers aware of model

limitations in certain conditions, aiding in the development of mitigating measures.

During the evaluation of ML models, model developers often have to slice their data

based on the specified product usage conditions, to ensure satisfactory performance

under such critical conditions. For example, in the autonomous driving setting, ex-

perts need to ensure high detection rates for multiple environmental conditions, such

as sunny weather and rain, and specific object types, such as cars and pedestrians.

Figure 7.2 shows a common workflow for critical model analysis and iteration.

Challenges on Model Evaluation and Iteration. While the slice-based analysis is

essential for the critical applications, this approach has several limitations. 1) Manually

slicing the data is a very time-consuming task. In our interviews, experts mentioned

that this task involved manually creating rules to slice the data, running evaluation

scripts on the data subsets, and comparing the results on various data subsets. 2) ML

experts cannot explore all possible data subsets to identify relevant failures cases for

their application. Data slices can be created by any number of interpretable meta-data
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(e.g., weather and temperature for autonomous driving), resulting in an exponentially

large search space. Therefore, they must rely on domain-specific priors to select what

meta-data they will slice the data based on. 3) Once the critical failures are identified,

experts have the options to either collect more data to cover the weakness scenarios or

retrain their models by prioritizing the critical slices. While the former requires addi-

tional investment on data collection, the latter is usually time-consuming, particularly

for training neural network architectures. Moreover, it is unclear how the new model

will trade-off performance on other slices and whether the result can still meet the

product requirements.

Our Approach. We develop SliceTeller, a novel data slice-driven model validation

tool that automates slice finding, enables slice-based model validation and comparison,

and allows what-if analysis for slice prioritization. Our tool takes as input the data (non-

interpretable features), metadata (interpretable properties that can be used to slice the

data), dataset labels and model predictions. A state-of-the-art slice-finding algorithm

is adapted to find slices on the data for which a performance metric (for example,

accuracy) is significantly different from the overall model metric. Once these slices are

found, we use a binary matrix graphical encoding to show the data slices compactly, as

well as metrics for these data slices (4.2). We also provide various visualization to help

users understand and interpret these data slices. After a data slice of interest is found,

users can estimate the performance impact of optimizing the model for this data slice

using our effect estimation algorithm, SliceBoosting. Finally, users can quickly find

problematic data slices on their model and derive actionable insights to improve the

results according to their product requirements in a next training iteration.

The main contributions of this work include the following:

1. A novel Visual Analytics (VA) tool, SliceTeller, for the evaluation and comparison

of ML models using a data slicing approach. SliceTeller combines data slice

finding, together with effective visual representations for data slices and model

metrics, to facilitate the iteration and comparison of ML models.

2. An efficient algorithm, SliceBoosting, for the quick estimation of data slice trade-
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offs during model training to improve model iteration efficiency. This algorithm

estimates the performance effect of focusing on one or more data slices during

model training, highlighting potential trade-offs between data slice optimization

and overall model performance.

3. Three use cases, including two real-world use cases of product development,

to demonstrate the effectiveness of our approach in assessing, comparing, and

iterating over ML model results. We believe our method and design process

together with product R&D partner and MLOps Engineers can benefit the practice

and research of using VA for model validation at large.

In summary, SliceTeller, is a novel VA tool for ML model validation with a data-slice

driven approach. This tool is model-agnostic and can be easily plugged in MLOps

life-cycles. This work also resonates with recent data-centric AI trends focusing on data

instead of models. We hope this work can inspire more research questions innovating

VA approaches to address data-driven model validation challenges.

7.2 Related Work
7.2.1 Slice-Oriented Model Validation
Finding the subgroups of specific quality is one of the classical combinatorial optimiza-

tion problems, named Constraint Satisfaction Problem (CSP) [354]. This problem is

defined as slice finding in the context of ML model evaluation, the aim of which is to

identify the data subgroups over which the ML subgroups underperforms [19].

Most of the existing solutions in commercial tools use greedy heuristics to balance

the tradeoff between searching speed and accuracy. For instance, the FreaAI in IBM

IGNITE [3], Slice Finder in Tensorflow [67, 68], Amazon Sagemaker [207], and Ro-

bustnessGym [128] are built upon heuristic techniques such as clustering, self-defined

metrics (e.g., highest posterior density), model-based, and rule-based data slicing. Ef-

ficient as they are, heuristic solutions could miss critical data slices if they fall into the

blind area of the heuristic rules (e.g., the slice size is too small). Thanks to the devel-

opment of parallel computing devices, researchers could solve this problem by using
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exhaustive searching with a reasonable time cost. For example, SliceLine includes size

and score pruning to boost the performance of exhaustive search, which can be easily

deployed onto the parallel devices [303]. DivExplorer [274–276] enumerate the data

lattice to look for all candidate itemsets with the highest divergence and support the

customization of itemset size. Since such flexibility would allow us to let the users

decide the slices they are interested in, we choose DivExplorer as the slice finding tool

for our system. The research work in this direction is still in the exploratory stage, and

there is an increasing trend of introducing ML for solving the classical combinatorial

optimization problems [163,230].

However, these approaches mainly focus on search efficiency and scalability, but

largely ignore how to understand and interpret the impact of these data slices. Also,

it is a non-trivial task to customize and select data slices of interest based on domain-

specific requirements. This is where our VA-based approach can help.

7.2.2 Model Robustness over Data Groups
ML robustness research focuses on achieving consistent model performance under

various conditions. Due to data collection, sampling or annotation biases, ML mod-

els trained on real-world data tend to identify spurious correlations, connections that

appear extensively in the training data, but do not hold in novel scenarios [193, 253].

Under distribution shift, models that rely on these spurious correlations often degrade

significantly in performance [122,240].

One powerful approach to alleviate this issue is group distributionally robust opti-

mization (DRO) [161, 268]. Group DRO utilizes prior knowledge of spurious correla-

tion to define groups over training data, and optimizes the worst-case loss among the

groups, instead of the expected loss of the entire distribution. As a result, the trained

model is capable of significantly improving minority group performance while main-

taining similar performance over the majority groups. In [304], the authors investigate

group DRO in the context of over-parameterized deep neural networks (DNNs). They

discovered that as opposed to shallow ML models that can directly benefit from group

DRO, DNNs require strong regularizations during training to achieve minority group
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Figure 7.3: Workflow of model analysis and improvement using SliceTeller. The validation data, to-
gether with the model predictions, are used for automatic slice identification. The produced data slices
can be explored using our VA solution (Slice Matrix and Slice Detail View). Users can prioritize groups
of data slices and quickly evaluate the effect of this action on the rest of the model slices. Finally, ex-
perts can use the insights gained from the system to fine-tune the model and continue the analysis
with SliceTeller.

improvements. Recent works along the direction of group DRO research incorporates

instance-level weighting to tackle imperfect group partition [405], leverages human

annotation to discover and optimize over unmeasured variables [334], and scales up

the optimization method for large-scale problems [199].

In this work, we utilize distributionally robust deep neural network described

in [304] as the slice optimization model. Our VA framework addresses the follow-

ing core limitations of group DRO for practical usage: a) Group DRO requires that the

group information of training data is known beforehand. Although empirical results

have provided evidence of spurious correlations in popular public datasets [193, 268],

such insights are not readily available for most real-world ML problems. b) Group DRO

training is time-consuming. It is therefore infeasible to exhaustively apply group DRO

on all combinations of data slices in order to determine the ideal slices for optimiza-

tion. By integrating slice discovery, effect estimation and model optimization under

the same VA framework (Figure 7.3), we help users identify problematic slices, under-

stand the optimization trade-off among slices, and eventually optimize the model, thus

significantly speeding up model iteration.
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7.2.3 Visualization for Slice-Based Model Optimization
There are various VA techniques supporting the creation and analysis of data slices [83,

177, 392]. In the context of model exploration, CoFact [174] is a VA system that helps

users explore counterfactual subsets and thus understand the confounding facts in

large and complex datasets. CoFact is close to the first part of our work, but its focus

is on spurious feature correlations, not providing any model or data optimization

recommendations. FairVIS [45] and Manifold [396] also allow data subgroup analysis

based on human interaction, but do not provide automated methods for data slicing.

Finally, Errudite [383] provides a domain-specific language for data grouping with

unstructured text data analysis, while we mainly focus on structured data.

Most of these works focus on the data exploration stage and rarely provide opti-

mization solutions to close the entire loop. Therefore, we provide a VA solution for the

entire loop of slice-based model optimization that supports slice finding, model opti-

mization, and model comparison with a Matrix visualization inspired by UpSet [201]

and PipelineProfiler [263], along with carefully-designed interactions driven by the do-

main requirements described in Sec. 7.3.1. To the best of our knowledge, our system is

the first of its kind to provide an end-to-end solution for users to identify, understand

and optimize model performance on problematic data slices.

7.3 SliceTeller
In this section, we describe SliceTeller, a system for data slice-driven validation of ML

models. We first present a desiderata for our system, distilled from interviews with

four industry partners from the product R&D team. Next, we describe the visual

components of our system. Finally, we present SliceBoosting, an algorithm that can

estimate performance divergences after a slice-based model optimization.

7.3.1 Data and Domain Requirements
SliceTeller was developed based on a collaborative product project with three industry

MLOps engineers over the period of six months. We received continuous feedback from

our partners, who worked on tabular and image-based classification problems. These
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experts work on products in critical applications, including autonomous driving and

fire detection for building security. Therefore, they often conduct extensive validation

of their models before deployment to production.

In the context of autonomous driving, experts were interested in modeling the ul-

trasonic sensors to understand the car surroundings. It is a critical modality in the

sensor-fusion pipeline to enhance the overall system robustness. The raw ultrasonic

sensor data are not directly interpretable by human. However, every sample also con-

tained metadata describing the experiment setup, for example, the object type, distance,

sensor location, time of day, etc. Experts had trained a tree boosting model to classify

nearby objects’ heights (as “high” or “low”) using the sensor-derived tabular features.

While evaluating their models, they wanted to make sure that certain critical objects

had a low error rate. In some cases, they would trade-off between the performance of

non-critical objects for the performance of the critical objects. For instance, children,

curbstones, and nearby cars should have the highest priority. Therefore, in every eval-

uation iteration, they had to slice the data, evaluate the model on the data subsets,

and retrain the model with different parameters to mitigate critical mistakes. Experts

mentioned that these tasks were tedious and time-consuming.

For the fire detection application, experts trained a deep neural network to detect

smoke and fire on video frames. In this setup, every video segment was associated

with interpretable metadata that described the video collection process in detail, for

example, the recording location, time of day, the smoke density, and whether there were

blinking lights in the scene. While the overall performance of this model was high,

experts were interested in identifying situations where it failed. Therefore, they spent

a large amount of time inspecting the model and using the video metadata to identify

these situations. Transparency with customers was a high priority for model release:

they wanted to clearly communicate the model capabilities, where it was effective and

where it failed. Furthermore, they wanted to understand why the model was failing,

and what were the possible confounding features on their dataset.

While these two applications used different techniques and data types, the experts
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developing them shared a common goal. 7.2 shows the model evaluation workflow

derived from our interviews. In both cases, experts desired to slice the data into various

scenarios, thoroughly evaluate their models, understand the failure cases, and develop

strategies to tune the models to improve performance. They noted that this workflow

usually took several iterations, requiring significant effort and trial-and-error. Based on

these observations, we have compiled the following desiderata for a data slice-driven

model validation system:

1. Data Slice Finding and Overview: Users often spend a significant amount of

time slicing the data based on certain heuristics to learn the boundaries of the

model. Our system should automatically identify these data slices in the valida-

tion dataset and present an overview to the user.

2. Slice-Based Data Understanding and Valuation: Users should be able to explore

the data slices in order to understand them and value how critical they are. The

system should allow the user to explore the data, model metrics, and distributions

to explain these scenarios.

3. Slice-Based Model Optimization: In critical applications, experts need to trade-off

the performance of certain scenarios in order to focus on critical use cases. To do

so, they need to train models from scratch, which can be very time-consuming.

The system should enable the quick experimentation with the slice-based model

optimization, highlighting possible trade-offs in the data.

4. Slice-Based Model Comparison: Users need to train and evaluate multiple models

in order to tune parameters and mitigate problems. However, this comparison

is usually done at the aggregated level (e.g., a single metric value). The system

should allow the comparison of model performances at the slice level, facilitating

the identification of trade-offs between data slices.

7.3.2 System Workflow
In order to fulfill the requirements identified in the previous section, we developed

SliceTeller, a system that tells a story about the evolution of ML models from the per-

spective of data slices, allowing their evaluation, exploration and comparison. Section
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7.3 shows the general workflow for model analysis and improvement with SliceTeller.

The input to SliceTeller is the validation dataset consisting of validation data (e.g., raw

images or tabular features extracted from the sensor signals), metadata (interpretable

features that can be used to slice the data), and ground truth labels (e.g., object classes

or obstacle height). Note that we use a validation dataset for model analysis instead

of training data since it is unseen by the model. In the case of model overfitting, we

observe all slices in the training data having high accuracies. Given the input, the

system works as follows:

1. First, the system uses an automatic slice finding algorithm to identify data slices

where the performance measures (e.g., accuracy) are the most different from the

overall model performance. We use the DivExplorer algorithm [275], a Frequent

Pattern Mining-based approach for this task (Section 7.3.3).

2. Next, a VA system allows the users to quickly visualize and summarize the pro-

duced data slices using the Slice Matrix View (where rows correspond to slices,

and columns, to slice descriptions and associated metrics). The user can select

slices to view its details using the Slice Distribution View, which can present

metadata distributions and correlations to the user. These two views allow the

user to identify critical slices in the data, i.e. slices where the model performance

has issues (Section 7.3.4).

3. When a critical slice is found, the user can test mitigating measures using the

‘Slice Prioritization - What-If Analysis’ tool. This tool uses our SliceBoosting

algorithm to evaluate the effect of optimizing the model for particular data slices.

SliceBoosting fits a shallow boosting model on top of the original model to estimate

the effect of prioritized optimization (Section 7.3.5).

4. Finally, when the user found a group of slices to optimize, they can export the

selected slices back to their programming environment, make changes on data,

hyperparameter or model, and insert the new model back into SliceTeller to

compare models (Section 7.3.6).
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7.3.3 Data Slicing
We begin our analysis by automatically finding problematic data slices using the Div-

Explorer algorithm [275] (illustrated in 7.4). The algorithm takes the model predictions

and the meta-data (interpretable features of the dataset) as input, and executes an

exhaustive slice search by frequent pattern mining [144]. The minimum support (i.e.,

minimum slice size) is defined as a parameter by the user. Then, a model metric such

as accuracy is computed for every data slice found.

To reduce the searching time for datasets with a larger number of metadata features,

we conduct a two-iteration slice finding procedure using DivExplorer. First, we run

DivExplorer with a large minimum support to identify the relevant metadata features

which are most correlated with poor performance. Then, we run DivExplorer again

using the relevant metadata features, this time with a lower minimum support to

perform a more fine-grained search. The level of granularity (minimum support) can

be fine-tuned by the user in order to find the relevant slices for their model. For example,

users can fine-tune the parameter to find slices with sufficiently high support and low

performance (such attributes are problem-specific and user-defined).

The DivExplorer algorithm can find an exponential number of data slices (exponen-

tial in the number of unique feature-value pairs). Therefore, we use a summarization

approach to reduce the number of slices to be explored by the user 1. We allow users

to summarize data slices with a redundancy pruning approach [275] (slider in 4.2(F)).

If the introduction of an item 𝛼 (e.g., 𝑊𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑆𝑢𝑛𝑛𝑦) in a slice 𝑆 will cause an

absolute performance change below a redundancy threshold 𝜖, only the slice without

𝛼 (denoted 𝑆 \ {𝛼}) will be presented to the user. This guarantees that the more general

slices can be investigated first. More specifically, let 𝑝 be the function that computes the

performance score on a data slice. A data slice 𝑆 is pruned if: |𝑝(𝑆)− 𝑝(𝑆 \ {𝛼})| < 𝜖.

7.3.4 Visualization Design
4.2 demonstrates the visualization design of SliceTeller. The main visualization com-

ponents of SliceTeller are the Slice Matrix (A) and the Slice Detail View (D-E). The Slice

Matrix shows a summary of all the data slices with a performance metric that diverges
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Figure 7.4: Data slicing workflow. It takes as input model predictions combined with interpretable
metadata and utilizes frequent itemset mining to automatically identify the most critical slices. It then
performs slice merging and redundancy removal to generate concise data slice results.

from the overall model. The user can drill down on the slices in order to explore one

or more data slices simultaneously using the Slice Detail View. The System Menu (F)

allows users to switch between data slices from the multiple ML models, summarize

model slices and perform What-if analyses to estimate the effect of optimizing the

model for a particular data slice. These operations are described later in this section.

7.3.4.1 Slice Matrix

The Slice Matrix (4.2(A)) provides an overview of the problematic data slices to the

user 1. First, the data slices are identified using DivExplorer [275], described in 7.3.3.

After the data slices are found, they are graphically represented using Slice Matrix, an

adaptation of the UpSet [201] matrix encoding, where sets are represented as rows, and

set members, as columns. In the context of data slices, we use a similar encoding where

each slice is represented as a row (set), and slice descriptions (items), as columns. Our

adaptation also includes data slice metrics on the UpSet visualization encoding.

Model and data metrics are computed and displayed together with their respective

slices (2 and 4). For model-agnostic metrics, a bar chart is displayed and, for model-

specific metrics, a color-coded 1-D scatter plot is shown. In 4.2(A), the metrics “Support”

and “Accuracy” are displayed. We show a truncated scale for “Support”, since the sup-

port of the entire dataset (slice “All Data”) is always equal to 1. Additional metrics can
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be defined, including “Precision”, “Recall”, and “F1 Score”. Previous VA systems have

enabled users to interactively compare ML models [56, 80, 124, 263, 388, 396]. However,

to the best of our knowledge, SliceTeller is the first of its kind to allow a detailed model

comparison using automatically computed data slices to guide the analysis process.

7.3.4.2 Slice Detail View

During our interviews, experts expressed their interest in understanding the content

of the data slices and valuing how much impact they have in their application 2. We

design two types of slice detail view to cater two major data types in our use cases: a

Slice Distribution View ( 7.8(D)) for tabular data, and a MatrixScape View (4.2(D-E) [150])

for image data.

Slice Distribution View. In this view, users can select the metadata to understand the

distribution shifts across slices. We present the distribution of each metadata feature

as a sorted histogram and align those for the same feature of different slices to facilitate

a more convenient comparison. For example in 7.8(D), two data slices are selected (“All

Data” and “Slice 1”) and “Object” metadata distribution is shown.

MatrixScape View. While looking at distributions was useful, the experts working

with image data wanted to be able to explore the images themselves. In particular,

they wanted to check whether they could identify potential sources for model mistakes

in these samples. To allow this task, we used the MatrixScape visualization [150],

which can contextualize images with metadata information. In MatrixScape, images

can be laid out in a canvas according to different metrics and aggregated at multiple

levels of detail. At the coarsest aggregation level, MatrixScape shows a heatmap of a

particular data metric (for example, accuracy), grouped by metafeatures chosen by the

user (4.2(E). Upon zooming in, users can see individual data samples as well (4.2(D)).

7.3.5 SliceBoosting: Estimating the Effect of Data Slice Optimization
During our interviews with the domain experts, they expressed the need to create mul-

tiple models and evaluate trade-offs between them 3 from the perspective of manually

created data slices. In their current approach to train multiple models from scratch

for comparison, there are mainly three pain points: 1) Since the model training pro-
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Figure 7.5: Illustration of SliceBoosting algorithm to estimate model optimization effect. Given the
selected slice 1, we train a shallow regressor to estimate that, under the ideal scenario where the
optimization model correctly fits to slice 1, how will the performance on slice 2 and 3 be affected. We
design the prediction target of the regressor as the residuals of the original model predictions to the
ground truth validation labels. To focus on the effect estimation of slice 1, we set the residual values
only for slice 1, while keeping the residuals of all other slices as 0. The predicted residuals from the
regression are in the range of [−1,1]. We then aggregate the sample-level residual predictions to
obtain slice-level estimation results: how will the accuracy on these slices increase or decrease?

cess is time-consuming, the experimentation cycle is easily interrupted, and the model

iteration is slow. 2) It requires significant efforts from the experts to keeping track

of multiple models trained across different data slices. 3) To draw experimentation

conclusions and identify the slice trade-offs, they have to switch between development

tools multiple times.

Denote the original input model to SliceTeller as 𝑓 parameterized by 𝜃. Let the

training data be 𝑋 𝑡𝑟𝑎𝑖𝑛 ∈ R𝑁 𝑡𝑟𝑎𝑖𝑛×𝐷 , where 𝑁 𝑡𝑟𝑎𝑖𝑛 is the number of samples in training

set and 𝐷 is the feature dimension. Similarly, let the validation data be 𝑋𝑣𝑎𝑙 ∈ R𝑁𝑣𝑎𝑙×𝐷 .

We use 𝑆𝑣𝑎𝑙 to denote the slices selected by user as in Section 7.3.4, and 𝑆𝑡𝑟𝑎𝑖𝑛 to

denote the training data slices that correspond to the same description as 𝑆𝑣𝑎𝑙 (e.g.,

𝑊𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑆𝑢𝑛𝑛𝑦,𝑂𝑏𝑗𝑒𝑐𝑡 =𝑊𝑎𝑙𝑙). We can utilize the optimization approaches (details

in Section 7.3.6) to retrain 𝑓 on 𝑋 𝑡𝑟𝑎𝑖𝑛 to prioritize on 𝑆𝑡𝑟𝑎𝑖𝑛 , in order to obtain the

optimized model 𝑓 ′. However, due to the scale of 𝑋 𝑡𝑟𝑎𝑖𝑛 and the high complexity of 𝑓 ,

the optimization is time-consuming. It is therefore infeasible to try out different slice

combinations to obtain the optimal 𝑓 ′ that could satisfy the product requirements.

To facilitate fast slice-based experimentation, our objective is to estimate the per-
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formance difference between 𝑓 ′ and 𝑓 without explicitly training for 𝑓 ′. We develop a

novel SliceBoosting algorithm to perform the estimation. The main idea is that instead

of training the full model to evaluate slice trade-offs, we can train a shallow model to ap-

proximate the residuals (errors) of the slices, in an approach similar to boosting [175].

We denote the shallow model as ℎ. Due to the shallowness, the training process is

significantly faster than training the full model from scratch.

We have two assumptions: 1) The validation set𝑋𝑣𝑎𝑙 has a similar distribution to the

training data 𝑋 𝑡𝑟𝑎𝑖𝑛 while being significantly smaller. This allows us to train the shal-

low model on the validation set to approximate the full model behavior on the training

set. This assumption is valid in most cross-validation experiment settings. 2) The op-

timization approach (details in Section 7.3.6) is sufficiently powerful to steer the model

to make correct predictions on the selected validation slices. Under these assumptions,

we train the shallow model to fit to the selected validation slices 𝑆𝑣𝑎𝑙 together with the

associated labels. After it is trained, its predictions on other slices will contain the ap-

proximation of the full model’s behavior with further optimization. Similar approaches

have used weak learners to reduce model biases and improve performance, including

Multicalibrated Predictor [151] and MultiAccuracy Boosting [183]. However, while

these approaches train and evaluate multiple boosted models to improve model accu-

racy, SliceBoosting uses a simplified approach with a single boosted model to estimate

the effect of subgroup optimization and allow quick experimentation.

Since the shallow model is a “weak learner", it is challenging to encode all validation

data and labels. Inspired by gradient boosting [175] and surrogate model explanation

approaches [71,72], we design the shallow model to instead fit to the residuals (errors)

of the original model on the selected slices. Since the original model is powerful

(e.g., ResNet-50 Deep Neural Networks), its prediction is close to ground truth labels.

Therefore, predicting the residual is a significantly easier task for the shallow model.

As shown in Figure 7.5, the residual is calculated as the difference between the ground

truth validation labels and the predicted labels, in one-hot-encoded format:

residual𝑖 = 𝑦𝑣𝑎𝑙𝑖 − 𝑦̂
𝑣𝑎𝑙
𝑖 (7.1)
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where 𝑦𝑣𝑎𝑙
𝑖

denotes the one-hot-encoded ground truth validation label for sample 𝑥𝑣𝑎𝑙
𝑖

,

and 𝑦̂𝑣𝑎𝑙
𝑖

denotes the one-hot-encoded predicted label from the original model 𝑓 . We

illustrate the residual for a certain class in Figure 7.5. There are three possible values

in the residuals calculated from Eq. (7.1): 0 denoting the model prediction is correct,

1 denoting the model missed the detection of the class, and -1 denoting the model

wrongly predicted the class. Note that since we focus on the selected slices, samples

from all other slices have residual of 0.

We then train the shallow regressor ℎ using XGBoost [57] to learn the residuals from

𝑆𝑣𝑎𝑙 . To achieve fast response for visual interaction, we use only 3 training iterations and

maximum tree height 5 in XGBoost (these parameters can be fine-tuned depending on

the problem). To emphasize on the small set of misclassified samples, we increase their

weights in the loss function. After ℎ is trained, we infer the residual and prediction

label for the full optimized model (𝑦̃𝑣𝑎𝑙
𝑗

) as follows:

𝑝𝑟𝑒𝑑_𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑗 = ℎ(𝑥𝑣𝑎𝑙𝑗 )

𝑦̃𝑣𝑎𝑙𝑗 = 𝑝𝑟𝑒𝑑_𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑗 + 𝑦̂𝑣𝑎𝑙𝑗

Here, 𝑥𝑣𝑎𝑙
𝑗

contains data features of the validation set belonging to Slice 𝑗. A good

estimation is achieved if 𝑦̃𝑣𝑎𝑙
𝑗

is close to the true label 𝑦 𝑗 . After obtaining all estimated

predictions, we measure the new accuracy in each slice and compare it with the original

model accuracy to determine final estimated effect. More specifically, let𝐴 be the vector

containing the accuracy of the original model on all data slices, and 𝐴′ be the vector

containing the accuracy of the boosted model 𝑓 ′ on all data slices. The estimated

effect 𝐸′ is given by 𝐸′ = 𝐴′−𝐴. As illustrated in Figure 7.5, in the estimation effect, a

positive number indicates that the performance on the slice might improve with model

optimization. On the other hand, a negative number suggests that the performance on

the slice could be reduced.

In order to evaluate SliceBoosting, we can check whether its estimated effects agree

with the real optimized model performance (outlined in Section 7.3.6) . We measure

this Agreement Score using Pearson correlation coefficient [311] for the first two use

cases in Section 7.4. More specifically, let 𝐴 be the original model accuracy on all data

178



Slice 2

Slice 3

Slice 1

Training Data

Assign Weight 0.7

Unselected 
Slices

Selected 
Slice

Assign Weight 0.3

Cost 
Minimization

Importance Weighting

Slice 2

Slice 3

Slice 1

Training Data

Evaluated
Loss 3.9

Unselected 
Slices

Selected 
Slice

Evaluated
Loss 1.2

Group DRO (at Iteration t)

Max Cost 
Minimization

Figure 7.6: Illustration of the model optimization methods considered in our work. During re-training,
they prioritize slices in the training data according to user’s decision.

slices and 𝐴′′ be the retrained model accuracy on all data slices. The real performance

effect 𝐸 is given by 𝐸 = 𝐴′′−𝐴. We compute the Pearson correlation coefficient between

the estimated effect 𝐸′ and the real effect 𝐸 as: Agreement Score = 𝑐𝑜𝑟𝑟(𝐸,𝐸′). We

note that in both use cases, the Agreement Score was greater than 0.8, showing high

correlation between the estimated slice optimization effects and the real effects. We

further validate the SliceBoosting algorithm by evaluating the Agreement Score of ten

estimated effects, computed for the top five worst data slices of the two aforementioned

use cases (a new estimate and model are computed for each data slice). In Case 1, the

estimates for five models optimized on the five worst slices had an Agreement Score

of 0.860± 0.050. In Case 2, the estimates for five models optimized on the five worst

slices had an Agreement Score of 0.776±0.054. A detailed description the SliceBoosting

evaluation is available in Appendix A.
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7.3.6 Model Optimization
In this section, we utilize state-of-the-art model optimization methods to improve the

performance on the selected slices, while minimizing the trade-off for the averaged

model performance on the entire dataset 3. These methods adapt the loss function

based on identified slice prioritization and subsequently perform additional training to

steer the model towards the user requirement. Note that our framework is compatible

with data-centric model improvement strategies as well (e.g., additional data collection

and data augmentation/synthesis) and we leave the discussion to Section 6.8. Here, we

focus on optimization-based model improvements without any change of the dataset.

Figure 7.6 illustrates the model optimization methods in SliceTeller, i.e. importance

weighting and group DRO. Note that we merge all unselected slices into a single slice

for optimization. In general, importance weighting method changes the loss function

by assigning heavier weights to the training samples in the worst-performing slices. On

the other hand, group DRO prioritizes the worst-performing slices during the training

process. Here we briefly describe the two approaches. Detailed descriptions can be

found in [304].

Importance Weighting. Importance weighting modifies the expected loss by em-

phasizing training samples belonging to the slices 𝑆𝑡𝑟𝑎𝑖𝑛 . Denote the number of samples

in 𝑆𝑡𝑟𝑎𝑖𝑛 as 𝑛𝑡𝑟𝑎𝑖𝑛 , the number of samples in the training set as𝑁 𝑡𝑟𝑎𝑖𝑛 , and the total num-

ber of slices as 𝑀. The weight for slice 𝑆 is calculated as:

𝑤𝑆𝑡𝑟𝑎𝑖𝑛 =
𝑁 𝑡𝑟𝑎𝑖𝑛

𝑀×𝑛𝑡𝑟𝑎𝑖𝑛
Intuitively, the selected slices with lower performance correspond to the minority

groups in training set. We can therefore specify the weights of the slices as inverse

proportional to the respective slice size. Then, the modified expected loss can be

defined as follows [304]:

E(𝑥𝑡𝑟𝑎𝑖𝑛 ,𝑦𝑡𝑟𝑎𝑖𝑛 ,𝑆𝑡𝑟𝑎𝑖𝑛)∼𝑃[𝑤𝑆𝑡𝑟𝑎𝑖𝑛 𝑙(𝜃; (𝑥𝑡𝑟𝑎𝑖𝑛 , 𝑦𝑡𝑟𝑎𝑖𝑛))] (7.2)

where 𝑃 is the distribution of training data 𝑋 𝑡𝑟𝑎𝑖𝑛 and 𝑙 is the loss.

Group DRO. Compared to importance weighting that upweights the selected slices

by heuristic rule, group DRO adopts a different optimization scheme. Instead of opti-

180



mizing the averaged loss over entire training data, it optimizes for the worst-case loss

over the groups in the training data. Specifically, the expected loss is defined as [304]:

max
𝑆𝑡𝑟𝑎𝑖𝑛
E(𝑥𝑡𝑟𝑎𝑖𝑛 ,𝑦𝑡𝑟𝑎𝑖𝑛)∼𝑃

𝑆𝑡𝑟𝑎𝑖𝑛
[𝑙(𝜃; (𝑥𝑡𝑟𝑎𝑖𝑛 , 𝑦𝑡𝑟𝑎𝑖𝑛))] (7.3)

During training, the optimization can be conducted by either recording the historical

losses of all groups [268], or utilizing gradient ascent [304].

7.4 Use Cases
In this section, we present three use cases to demonstrate the power of SliceTeller on

the analysis, validation and improvement of ML models. Case 1 shows how a fictional

user would validate an image classification problem for data biases. The next two case

studies are taken from our interviews with three MLOps engineers who work on real

industry products. Case 2 shows how one engineer working on an ultrasonic object

height classification model can use our system to improve their models on critical data

slices. Finally, Case 3 shows how two MLOps engineers used our system to explore an

image-based fire detection model and identify potential data issues. Fig. 7.1 shows a

summary of the three use cases.

Table 7.1: Use Case Summary

1) Bias Detection 2) Height Classification 3) Fire Detection

Data Type Image Tabular Image

Validation Size 40,520 47,322 126,912

Input Metadata 40 binary 8 numeric / categ. 7 numeric / binary

Target (Binary) Yes / No High / Low Yes / No

7.4.1 Case 1: Bias Detection for AI Fairness in Image Classification
Models

To showcase how SliceTeller helps ML practitioners detect bias caused by the imbal-

anced distribution of image dataset, we describe how Hedy, a PhD student interested in

computer vision, profiles ResNet50 performance on the CelebFaces Attributes Dataset

(CelebA) [219] and identify a gender-related bias inherited in the model.
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The CelebA dataset contains 202,599 face images of 10,177 celebrities, along with

40 binary attribute annotations including gender, skin color, smiling, etc. for each

image. It is widely used in the computer vision community for tasks including image

classification [176].

Table 7.2: Accuracy of Image Classification Models (Val / Test)

Slice Description ResNet-50 Group DRO

0 All Data 0.98 / 0.98 0.95 / 0.95

1 Gray_Hair=Yes, Male=No 0.65 / 0.5 0.91 / 0.81

2
Gray_Hair=Yes, Double_Chin=No,

Wearing_Necktie=No
0.65 / 0.69 0.90 / 0.93

Hedy first divides the data into three splits: training (70%), validation (20%) and

testing (10%). She fine-tunes a ResNet50 model on the CelebA dataset to classify gray

hair and obtains an overall validation accuracy of 0.98. She wanted to investigate how

different models performed over attributes of 𝑀𝑎𝑙𝑒 and 𝐺𝑟𝑎𝑦_𝐻𝑎𝑖𝑟. The system ini-

tially identified 22 slices for Hedy to explore (using DivExplorer support=0.02). Upon

inspecting the model with the matrix view of SliceTeller (Fig. 4.2(A)), she notices that

the model can only achieve a low accuracy of 0.65 on Slice 1, which is defined as

females (𝑀𝑎𝑙𝑒 = 𝑁𝑜) with gray hair (𝐺𝑟𝑎𝑦_𝐻𝑎𝑖𝑟 = 𝑌𝑒𝑠) (Fig. 4.2). She checks the

distribution of the dataset over the dimension of 𝑀𝑎𝑙𝑒 and 𝐺𝑟𝑎𝑦_𝐻𝑎𝑖𝑟, and finds

that such a significant performance drop is caused by the highly skewed data dis-

tribution in this slice (Fig. 4.2(E) left). She verifies this observation by browsing the

sample images in Slice 1 (Fig. 4.2(D)). Interestingly, Hedy observes that Slice 2, defined

by (𝑊𝑒𝑎𝑟𝑖𝑛𝑔_𝑁𝑒𝑐𝑘𝑡𝑖𝑒 = 𝑁𝑜, 𝐷𝑜𝑢𝑏𝑙𝑒_𝐶ℎ𝑖𝑛 = 𝑁𝑜, and 𝐺𝑟𝑎𝑦_𝐻𝑎𝑖𝑟 = 𝑌𝑒𝑠), also only

achieves an accuracy of 0.65. Although the attribute 𝑊𝑒𝑎𝑟𝑖𝑛𝑔_𝑁𝑒𝑐𝑘𝑡𝑖𝑒 seems related

to gender bias as well, it is unclear if this is the true cause of the low performance.

Therefore, she decides to take a closer look of these two slices by using the effect

estimation functionality in SliceTeller.

Hedy starts by conducting a what-if analysis with SliceTeller to estimate the effect
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of optimizing upon Slice 1 and 2 jointly. The estimation result from SliceTeller indicates

that the model performance on the worst eight slices will all improve significantly if

optimizing Slice 1 and 2 together (Fig. 4.2(B)). The improvement is higher as compared to

optimizing over Slice 1 alone. Hedy checked the support size of Slice 2 (Fig. 4.2(A)) and

its data distribution, then realized that this slice accounts for more minority attributes

than females with gray hair. This explains why optimizing Slices 1 and 2 together can

improve the performance of the worst eight slices. Such optimization effect appears

promising to Hedy, so she retrains a GroupDRO model [304] that dynamically optimizes

upon the two slices. Sec. 7.2 shows the validation and test accuracy of the two models.

After the optimization, Hedy adds the performance result of GroupDRO into SliceTeller

to compare it with the previous ResNet50 model. She immediately observes that

the new model’s performance on the gray-haired female images improve significantly

(Fig. 4.2(C)). As predicted in the effect estimation stage, the optimized model’s perfor-

mance on the worst eight slices are improved, with a small trade-off on overall model

performance. To confirm that she has alleviated the model bias towards females on

classifying gray hair, she places the “All Data" slice of both ResNet50 and GroupDRO

side by side in the MatrixScape view and compares them from the 2D dimension Male

and gray hair (Figure 4.2(E)). The result confirms that the GroupDRO’s performance clas-

sifying gray-hair females has significantly improved, with slight performance change

on the other blocks.

7.4.2 Case 2: Ultrasonic Object Height Classification for Autonomous
Driving

We now consider a real-world application: object height detection for autonomous

driving. One of our domain experts worked on a model for object height prediction

based on vehicle ultrasonic sensors. The sensors produced tabular data has 157,743

records that consists of 71 numerical features, and the expert’s goal was to predict

object height as a binary label: ‘high’ or ‘low’. Such predictions would help improve

the overall robustness of sensor fusion in the model pipeline, preventing collisions and

aiding in the decision-making process of the car.
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Figure 7.7: A third iteration of the model is added for comparison. (A) Performance of the three models
on the worst data slices from Model_1. Samples from highlighted slices were more heavily weighted
on the training of Model_3. Model_3 has better accuracy than Model_1 on slices 1, 2, 7, 10, and
comparable accuracy on slices 139 and 142. (B) Visualization of the worst data slices from the three
models. Slices highlighted in red have Model_3 performance worse than Model_1.

The car’s on-board processor has limited compute power and cannot handle very

complex models, such as neural networks. Therefore, the expert chose to train an XG-

Boost [57] model for this problem, which we will call Model_1. The expert split the data

into three splits: training (60%), validation (30%) and testing (10%). They obtained an

overall validation accuracy of 0.88, and were interested in evaluating the model using

SliceTeller in order to find failure cases. Every sample in the dataset contained associ-

ated metadata about the environmental and sensor conditions. The metadata included

‘Object Type’, ‘Distance’, ‘Sensor Approach’, ‘Scene Clutter’, ‘Direction’, ‘Speed’, ‘Tem-

perature’ and ‘Weather’. In this section, we show an example of such analysis. Because

this is a private dataset, the results are anonymized.

SliceTeller identified 145 data slices (using the DivExplorer algorithm with sup-
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Figure 7.8: Analysis of the original model for object height classification (Model_1). (A) The summa-
rized data slices for this model. The highlighted slices were selected by the expert to be improved
in further model iterations. (B) SliceBoosting results showing the estimated effect of optimizing the
model for the selected slices. (C) The comparison between the original model (Model_1) and the
model optimized for the selected slices (Model_2). (D) The Slice Distribution View, containing the
distribution of metadata ‘Object’ for Slices ‘All Data’ and ‘Slice 1’.

port=0.05). As a first step, the expert used the Slice Summarization tool to reduce the

number of data subsets to analyze. They set the Redundancy Threshold to 0.10 and

obtained 11 distinct data slices for analysis. Sec. 7.8(A) shows the analysis of the data

slices from Model_1. The expert noticed that Slices 1 (sunny weather, high clutter and high

temperature (in the range (20.6, 29])), 2 (high clutter and low speed), 7 (curbstones) and 10

(container sides) performed significantly worse than the overall model.

Before investing into additional data acquisition for the characterized scenario, the

expert wanted to check whether optimizing the model for these slices would be possible.

Therefore, they used the SliceBoosting algorithm to estimate the effect of training

the model with higher weights on these slices. The result of this run is shown in

Sec. 7.8(B). Note that the performance of these slices is expected to improve, as well as

the performance of slices 11 and 21.

They trained a new XGBoost model using the importance weighting method de-

scribed in Section 7.3.6, this time adding higher sample weights to the samples belong-

ing to Slices 1, 2, 7 and 10. Model_2 (Sec. 7.8(C)) contains the result of this optimized

model. The performance of Model_2 is higher on the optimized slices, with an accuracy

increase of more than 0.2 for every optimized slice (the Agreement Score of the real

model with the estimate model is 0.83412.). This improvement was appreciated by the

expert. However, they noticed that there was a trade-off with slices 139, 142 and 143.

In particular, the expert noted that slices 139 (Weather=Rain) and 142 (Object=Wall)
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are critical for the autonomous driving application, and therefore should not have a

significant drop in performance.

To fix this issue, they trained a new model, this time weighting the samples by the

previously optimized slices, as well as slices 139 and 142. Sec. 7.7(A) shows the results

of this optimization. Model_3 has better performance than Model_1 on the data slices

where the model performs the worst, and comparable results on the slices Rain and

Wall. To conclude the analysis, the expert wanted to visualize the worst data slices

from all 3 trained models (Sec. 7.7(B)). We see that overall, Model_3 performs better

than the other models on the their worst data slices. We highlighted the slices where

Model_3 performs worse, noting that this difference was not considered significant by

the expert. Fig. 7.3 shows the performance of the three models on the data slices of

interest for validation and test data.

Table 7.3: Accuracy of Object Height Classification Models (Val / Test)

Slice Description Model_1 Model_2 Model_3

0 All Data 0.88 / 0.74 0.92 / 0.84 0.95 / 0.84

1
Clutter=High, Weather=Sunny,

Temp=(20.6, 29.0]
0.53 / 0.60 0.82 / 0.87 0.96 / 0.85

2 Clutter=High, Speed=(1.5, 3.4] 0.56 / 0.67 0.82 / 0.86 0.89 / 0.84

7 Object=Charging Curbstone 0.67 / 0.36 0.94 / 0.85 0.91 / 0.87

10 Object=Containerside 0.70 / 0.66 0.97 / 0.99 1.00 / 1.00

139 Weather=Rain 0.98 / 0.83 0.88 / 0.88 0.95 / 0.90

142 Object=Wall 0.99 / 0.88 0.81 / 0.80 0.93 / 0.83

7.4.3 Case 3: Image-Based Fire Detection
Image-based fire detection is an important problem in the industrial setting, having the

potential to identify fires in its early stages, preventing accidents and losses. In order

to address this problem, our partner MLOps product team trained a Convolutional

Neural Network on image frames to predict the label ‘Fire’ / ‘No Fire’, obtaining a

validation accuracy score of 0.94. Transparency with customers is paramount in this
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business application. Therefore, the engineering team wanted to identify and convey

the model limitations to their customers.

Each video had six interpretable metadata that could be used for exploration with

SliceTeller. These metadata were: ‘Location’ (Outdoor, Indoor), ‘Reflections or Shad-

ows’ (Yes, No), ‘Motion’ (Yes, No), ‘Approaching Object’ (Yes, No), ‘Blinking Light’

(Yes, No), and ‘Smoke Density’ (integer between 0 and 4). This metadata was assigned

to every video frame, together with a new value: ‘Normalized Frame’ (real number in

the range [0, 1]), describing the frame position in the video. After inserting this data

into SliceTeller, the system initially discovered 115 data slices (using the DivExplorer

algorithm with support=0.2). They used the slice summarization slider at multiple

thresholds in order to inspect the results and select data slices for exploration. Fig. 7.9

shows the most interesting data slices found by them.

The experts first inspected the worst data slice in the model, which was defined by

scenes with ‘Blinking Lights’ and ‘no reflections or shadows’ (Fig. 7.9(A)). Using the

confusion matrix, they saw that this data slice contained solely videos without fire, but

it had many false alarms (Accuracy of 0.61). According to them, it was known that

blinking lights negatively influenced the classifier prediction. However, they did not

expect this large effect, with an accuracy decrease of 0.33.

They also identified data slices with problems in the beginning and ending of the

videos. The accuracy of the beginning frames was lower (Fig. 7.9(B)), with the worst

slice having an accuracy of 0.86. The problems in the start of the videos were expected,

as cameras were moved around at this time and, as a result, frames would get blurry.

The problems at the end of the videos (Fig. 7.9(C)), however, were surprising. They

investigated the video frames using the Slice Distribution View and formulated the

hypothesis that at the end of the videos, the smoke was already dissipated and hard

to see. This was a useful insight for the experts, who decided to ignore those frames

because their goal was to stop fires when they started.

Another surprising data slice contained samples in the middle of the recording

(Fig. 7.9(D)). This slice contained many false alarms (error rate of 0.14). However, the
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expert mentioned that “it looks like we should be able to get this case right”. Using

the Slice Detail View, they attributed these mistakes to mislabeled data. Based on this

insight, they decided to double check the sample labels. Furthermore, they were very

interested in using SliceTeller to find more cases like this, noting that too many false

alarms can annoy customers.

In order to mitigate the problems found in the data slices, their strategy consisted

of increasing the training data size, using data collection and data augmentation. To

improve particular data slices, they said they would collect more samples in the same

conditions of the slices of interest. They would thoroughly inspect the new samples in

order to ensure data quality. Another mitigation strategy mentioned is data augmen-

tation. Currently, the MLOps team is in the process of testing different augmentation

strategies, such as including frames with added noise and blur to their training data.

They were very interested in comparing multiple model versions using our system.

Figure 7.9: Image-Based Fire Detection Use Case: interesting data slices found by the MLOps engi-
neers. (A) Blinking light. (B) Start of video. (C) End of video. (D) Middle of video.

7.5 Expert Interviews
SliceTeller was developed with continuous feedback from our product partners (7.3.1)

over the course of six months. In this section, we discuss their analyses, insights

and feedback for our system during a final round interview. First, we discuss the

feedback from one expert working on the autonomous driving problem, who have used

SliceTeller to evaluate and iterate over their object height classification models. Next,
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we discuss the feedback from two experts working on the image-based fire detection

problem, who derived actionable insights and identify data slices that require more

training data using SliceTeller.

Expert User Demographics. We interviewed three ML experts (MLOps engineers)

to evaluate SliceTeller. All experts have more than four years of experience in machine

learning and have a graduate degree in STEM. They did not report any visual disabilities

and were not color blind. The experts are not authors of this work.

7.5.1 Ultrasonic Object Height Classification Experts
In 7.4.2, we have shown an example of the analysis conducted together with one

MLOps engineer from the product R&D team working on the ultrasonic object height

classification problem. The expert used our system to evaluate their current model,

as well as experiment on new models. The expert was interested in finding potential

problems in their models. In particular, they wanted to identify misclassified samples

close to the cars, as these mistakes can be critical. In their current workflow, they

frequently evaluate their models on hand-curated data slices and fine tune them to

achieve near-zero errors within a distance threshold. This workflow relies on many

handcrafted scripts that have to be executed sequentially to evaluate and iterate over

their models, making the process difficult to use. Therefore, they needed a simpler and

more efficient alternative to this workflow.

During their analyses, they found a set of problematic slices that they wanted to

optimize their model for. They did two model iterations, and were able to produce

a solution that maintained a good trade-off across the multiple data slices of interest.

They mentioned that the automatic data slicing and the slice matrix component were

“very useful”, because they could reduce the model testing time and effort significantly.

However, they noted that they still needed to guarantee a customer-defined quality on

the hand-crafted slices. Thus they were interested in combining SliceTeller in their

current evaluation strategy, which would allow them to identify problems in their

models that they did not think to look at before. As a feature request, they would like

to propose problem-specific metrics for slice evaluation. We are currently working with
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the ultrasonic team to learn about their metrics and include them in the next iteration.

7.5.2 Image-Based Fire Detection Experts
We interviewed two MLOps engineers working on the image-based fire detection prob-

lem. During their analyses, the experts were able to discover potential model issues, as

well as formulate strategies to mitigate these issues. They used the Slice Matrix View

and the Slice Summarization Slider the most frequently and expressed that these two

views could facilitate the model exploration and help reduce the amount of time they

needed to spend looking at data slices. They also liked to use the Slice Detail View:

after identifying critical data slices, the experts used the Detail View to explore video

frames and formulate hypothesis about the root cause.

Regarding model iteration, these experts did not show too much interest in fine-

tuning models. Instead, they wanted to collect quality data to retrain and improve the

existing models. They described their own experiments with data augmentation, such

as noise and blur, with positive results. They mentioned the model comparison feature

would be a powerful tool during model iteration.

They also had feature requests. They were interested in investigating the expla-

nations for the model predictions. In particular, having importance maps displayed

together with the images, so they could see where the model was “looking” when mak-

ing a prediction. Furthermore, they wanted to be able to manually add data slices to

SliceTeller, in order to keep track of critical slices for which 100% accuracy was required.

These features will be implemented in the future.

SliceTeller provided our experts with new insights about their model, as well as

validated hypothesis previously held by them. The experts mentioned that the system

could be very useful, especially because they wanted to identify “interpretable, quan-

tifiable boundaries for our system”. These quality boundaries could be shared with

customers, who can make an informed decision about their models.
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7.6 Discussion
Other Mitigation Solutions for Model Improvements. As mentioned in Section 7.3.6,

we focused on optimization-based model improvement approaches for SliceTeller with-

out changing the training data. In practice, data-centric model improvement [249] is a

promising direction to tackle real-world challenges. For example, after SliceTeller iden-

tifies particular weakness scenarios (e.g., snowy condition for autonomous driving) as

indicated by the most critical slices, additional data can be collected corresponding

to the scenarios. Recent work in data-centric AI focus on weakly-supervised learn-

ing [58, 288] and self-supervised learning [134, 243, 395] to reduce the annotation cost

and facilitate fast model iteration. Another approach is to use image processing and

deep learning-based image synthesis techniques to perform data augmentation. For

example, adversarial objects can be placed on top of the images in order to improve the

robustness of a model [150].

Limitations of SliceBoosting. The SliceBoosting algorithm in Section 7.3.5 was

developed based on the assumption that, with a powerful optimization method, the

model is able to make correct predictions on the selected slices in the validation data.

The hardness of this task is determined by the generalization gap between training

and validation slices. As shown in [304], strong regularization strategies in DRO train-

ing help to significantly close the gap and we utilized them in the implementation of

GroupDRO. Robust optimization [202, 405] and domain generalization [406] are active

research topics in the ML community. Although our empirical results in Section 7.4

demonstrated strong correlation between SliceBoosting estimation of the model im-

provement and the real improvement from importance weighting and GroupDRO, we

plan to evaluate the effect with additional model optimization techniques as well as

more public datasets.

Application Domains. In this chapter, I have shown how SliceTeller can be used for

the analysis of classification models for image and tabular data. However, our system

design is not specific to these domains, and can be applied to other data types, e.g., text

data. The Slice Matrix abstracts the data features by using interpretable metadata to
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describe the data slices. Therefore, it does not need to be adapted to other data types.

The Slice Detail View, however, is dependent on the domain, and needs to be adapted

to display a summary of the selected slices. For example, in the case of text domains,

we foresee the use of text visualizations to convey the data slice’s content (e.g., word

clouds). Other data types would require custom visualization implementations for the

inspection of data samples. An extension of SliceTeller is also possible for regression

models: in this case, the slice finding algorithm needs to be adapted to have a measure

of how correct a prediction is, and when it should be considered a defect.

Requirement on Metadata. One limitation of our system is the need for inter-

pretable metadata to slice the models. This metadata usually requires intensive manual

annotation, and is therefore expensive to create. Therefore, as future work, we would

like to investigate automatic methods to generate such information. For example, for

images, one possible research direction is to use self-supervised learning [134, 395] to

automatically identify interpretable visual concepts.

7.7 Summary
In this chapter, I present SliceTeller, a novel VA system for data slice-driven validation of

ML models. SliceTeller allows users to quickly identify problematic data slices, investi-

gate the failure cases, understand the potential optimization trade-offs, and eventually

iterate on new model solutions.

I demonstrated the power of this tool with three use cases that show how SliceTeller

can be used to analyze, validate, and improve ML models in diverse application areas.

SliceTeller was developed and improved in close collaboration with industry ML Ops

engineers and domain experts working on product R&D. With the positive feedback,

my industrial collaborators are currently working on incorporating SliceTeller into their

ML development workflows to facilitate fast product iteration and model release.
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Chapter 8
Conclusion

Language and text have served as the oldest and most instinctive mediums for preserv-

ing and disseminating knowledge for millennia. Their inherent capacity to encapsulate

information and convey meaning, coupled with the exponential growth of textual data

in our modern era, has significantly contributed to the emergence and advancement

of large language models (LLMs) in recent times. My dissertation work offers a more

reliable and transparent approach to harnessing the potential of LLMs. Specifically,

I adopt the human-in-the-loop methodology and human-centered design principles

in the development of intelligent visual analytics systems. Through my projects, I

highlight the irreplaceable role of human intelligence and demonstrate how interactive

visualization tools can enable greater human participation in the decision-making pro-

cess of advanced AI models. By converting human interpretation of data into actionable

insights, my research provides a safer and more trustworthy method for leveraging the

knowledge and power of machine learning.

This dissertation presents several techniques that integrate interactive visual analyt-

ics (VA) with state-of-the-art machine learning, specifically natural language processing

techniques, to facilitate knowledge exploration, presentation, and exploitation for do-

main experts. In Chapter 2, I demonstrate how these techniques can aid in knowledge

exploration for manually or automatically generated technical logs of machine mainte-

nance, enabling domain experts to participate in the analysis process for issue diagnosis

and alleviation. After that, I introduce two knowledge presentation solutions for two

distinct data types. In Chapter 3, I describe Text2Viz, a tool for generating infographics

from natural language statements on numerical facts. In Chapter 4, I present Con-

ceptScope, a tool for visualizing knowledge formalized as scientific documents based
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on ontology. Finally, as the utilization and extension of insights are highly application-

oriented, I showcase three visually-assisted knowledge exploitation projects driven by

industry requirements. Chapter 5 presents ConceptEVA, a collaborative work with re-

searchers from TUDelft and Databricks to exploit knowledge from domain ontology to

support document summary customization for academic reading. Chapter 6 presents

LabelVizier, a collaborative work with data analysts from the National Institute of

Standard Technology (NIST) to facilitate the validation and relabeling of technical text

annotations by creating computational notebooks for domain experts. Finally, Chap-

ter 7 presents SliceTeller, my internship project with Bosch Research to utilize human

knowledge for machine learning model validation and optimization in autonomous

driving and intelligent fire detection.

My future plans involve integrating all tasks of the visual knowledge discovery loop

(Chapter 1) to enable more advanced and real-world applications that serve for social

good, particularly in the domains of education and smart manufacturing. I aspire for my

work to offer solutions to the potential challenges arising from increasingly intelligent

AI systems, and to pave the way for more human-centered research, regardless of

how advanced machine learning techniques may become. Ultimately, I hope to spark

philosophical and social discourse surrounding the roles of humans, machines, and

robots within the ever-expanding field of artificial intelligence.
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Appendix A
Appendix for Chapter 7

In this Appendix, I provide the supplementary materials for the SliceTeller paper. In

Section A.1, we include a detailed evaluation of the SliceBoosting algorithm, using

models and datasets from the first two use cases of the paper. In Section A.2 we

provide experiment details for the three use cases, including model hyperparameters

and a complete list of data slices.

A.1 SliceBoosting Evaluation
In order to evaluate the SliceBoosting algorithm, we have taken the original models

from Case 1 (Bias Detection for AI Fairness) and Case 2 (Ultrasonic Object Height

Classification for Autonomous Driving), computed the data slices for these models

(Paper: Section 4.1 and 4.2), and validated the estimated effect of optimizing these

models for their worst data slices.

For each use case, we selected the top five data slices and retrained five new models

with an emphasis on each of these slices (i.e. each model is optimized for a single

data slice). Next, we estimate the performance effect of optimizing a model for each

of its worst five slices using SliceBoosting. Finally, we compute the Agreement Score

between the estimated effects and the real performance effects of the optimization. The

results for the Agreement Scores of the slices for Case 1 are presented in Table A.1 and

the Agreement Scores of the slices for Case 2, in Table A.2.
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Table A.1: SliceBoosting Evaluation - Case 1: Agreement Score of hair color classification models
retrained on CelebA Dataset with emphasis on the top 5 worst data slices.

Model Slice Desc Agreement

Slice 1 Gray_Hair=Yes,Male=No 0.774557

Slice 2 Wearing_Necktie=No,Gray_Hair=Yes,Double_Chin=No 0.895770

Slice 3 Wearing_Necktie=No,Gray_Hair=Yes 0.890753

Slice 4 Gray_Hair=Yes,Double_Chin=No 0.860036

Slice 5 Gray_Hair=Yes 0.878247

Table A.2: SliceBoosting Evaluation - Case 2: Agreement Score of Models retrained on Ultrasonic
Object Height Classification Dataset with emphasis on the top 5 worst data slices.

Slice Slice Desc Agreement

Slice 1 Clutter=High,Temperature=(20.6, 29.0],Weather=Sunny_dry 0.837487

Slice 2 Clutter=High,Speed=(1.49, 3.4] 0.733722

Slice 3 Approach=Approach 4,Clutter=High,Temperature=(20.6, 29.0] 0.727766

Slice 4 Approach=Approach 4,Clutter=High,Weather=Sunny_dry 0.832735

Slice 5 Approach=Approach 4,Distance=(399.999, 441.0],Clutter=High 0.748457

A.2 Use Cases
A.2.1 Case 1: Bias Detection for AI Fairness in Image Classification

Models
For this study, a pretrained ResNet50 model (PyTorch implementation1) was fine tuned

to classify “Gray Hair” on the CelebA dataset Images. The last fully connected layer

was trained for 50 epochs using the Adam optimizer with learning rate 𝑙𝑟 = 0.0001,

obtaining an overall accuracy of 0.98. A complete list of data slices found for the

ResNet50 model and their validation accuracy are shown in Table A.3.

After the users selected Slices 1 and 2 to optimize the model for, a new model was

trained using the same architecture (ResNet50), but with the GroupDRO training strat-

egy (a loss function that focuses on a subset of the data, i.e. selected slices). The Group-

DRO parameters are as follows: Generalization Adjustment=0.1, L2 Regularization=0.1,

1https://pytorch.org/vision/0.13/models.html
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Learning Rate=0.0001, Number Epochs=25. The new model obtained an overall accuracy

of 0.95, with improved performance on the optimized slices. The performances of the

GroupDRO model on the validation data slices are shown in Table A.3.

Table A.3: Accuracy of Data Slices for Use Case 1 (AI Fairness)

Slice Description Support Acc. ResNet50 Acc. GroupDRO

Slice 0 All Data 1.000000 0.980269 0.952836

Slice 1 Male=No, Gray_Hair=Yes 0.010470 0.649038 0.908654

Slice 2 Gray_Hair=Yes, Dou-

ble_Chin=No, Wear-

ing_Necktie=No

0.023406 0.651613 0.903226

Slice 3 Gray_Hair=Yes, Wear-

ing_Necktie=No

0.030302 0.682724 0.915282

Slice 4 Gray_Hair=Yes, Double_Chin=No 0.033573 0.683658 0.911544

Slice 5 Gray_Hair=Yes 0.048674 0.719752 0.921406

Slice 6 Gray_Hair=Yes, Chubby=Yes 0.014849 0.755932 0.942373

Slice 7 Wearing_Necktie=Yes,

Gray_Hair=Yes

0.018372 0.780822 0.931507

Slice 8 Double_Chin=Yes,

Gray_Hair=Yes

0.015100 0.800000 0.943333

Slice 9 Wearing_Necktie=Yes, Dou-

ble_Chin=Yes

0.016862 0.862687 0.826866

Slice 10 Wearing_Necktie=Yes,

Chubby=Yes

0.017567 0.865330 0.836676

Slice 11 Young=No, Wearing_Necktie=Yes 0.046459 0.874323 0.834236

Slice 12 Young=No, Bald=Yes 0.015352 0.878689 0.685246

Slice 13 Double_Chin=Yes 0.049076 0.902564 0.838974

Slice 14 Bald=Yes 0.020688 0.909976 0.754258

Continued on next page
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Table A.3: Accuracy of Data Slices for Use Case 1 (AI Fairness)

Slice Description Support Acc. ResNet50 Acc. GroupDRO

Slice 15 Chubby=Yes 0.061207 0.914474 0.865954

Slice 16 Wearing_Necktie=Yes 0.072633 0.918919 0.893278

Slice 17 Young=No 0.253435 0.927110 0.857398

Slice 18 Young=No, Gray_Hair=No, Wear-

ing_Necktie=Yes

0.028137 0.933810 0.771020

Slice 19 Gray_Hair=No, Double_Chin=Yes 0.033976 0.948148 0.792593

Slice 20 Pointy_Nose=Yes, Wear-

ing_Necktie=Yes

0.013842 0.949091 0.901818

Slice 21 Gray_Hair=No, Bald=Yes 0.015151 0.960133 0.677741

A.2.2 Case 2: Ultrasonic Object Height Classification for Autonomous
Driving

For this study, an XGBoost model trained by MLOps engineers was investigated. The

model performed binary classification of object heights (High / Low) based on ultra-

ssonic sensor features (tabular, 71 numerical features). Because the model is proprietary,

we do not share its hyperparameters in this document.

The users inspected the data slices for this model (Model_1, shown in Table A.4)

using SliceTeller, and trained two new models with the same hyperparameters, this

time using higher sample weights on the selected data slices (as described in Section

3.6). Model_2 was optimized based on Slices 1, 2, 7 and 10. Model_3 was optimized

based on Slices 1, 2, 7, 10, 139, 142. The validation accuracy of all models are shown in

Table A.4.
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Table A.4: Accuracy of Data Slices for Use Case 2 (Ultrasonic Object Height Classification)

Slice Description Support Acc. Model_1 Acc. Model_2 Acc. Model_3

Slice 0 All Data 1.000000 0.879098 0.925205 0.951332

Slice 1 Temperature=(20.6, 29.0],

Weather=Sunny_dry,

Clutter=High

0.055328 0.527778 0.824074 0.962963

Slice 2 Speed=(1.49, 3.4], Clut-

ter=High

0.052254 0.558824 0.823529 0.892157

Slice 3 Temperature=(20.6, 29.0],

Approach=Approach 4,

Clutter=High

0.066598 0.607692 0.746154 0.861538

Slice 4 Weather=Sunny_dry,

Approach=Approach 4,

Clutter=High

0.117316 0.646288 0.877729 0.960699

Slice 5 Approach=Approach 4,

Distance=(399.999, 441.0],

Clutter=High

0.057377 0.651786 0.821429 0.946429

Slice 6 Weather=Sunny_dry,

Distance=(399.999, 441.0],

Clutter=High

0.060963 0.655462 0.848739 0.983193

Slice 7 Object=Charging Curb-

stone

0.066086 0.666667 0.937984 0.914729

Slice 8 Approach=Approach 4,

Object=Containerside

0.050205 0.673469 0.969388 1.000000

Slice 9 Temperature=(20.6, 29.0],

Clutter=High

0.090164 0.693182 0.806818 0.892045

Slice 10 Object=Containerside 0.054816 0.700935 0.971963 1.000000

Continued on next page
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Table A.4: Accuracy of Data Slices for Use Case 2 (Ultrasonic Object Height Classification)

Slice Description Support Acc. Model_1 Acc. Model_2 Acc. Model_3

Slice 11 Temperature=(20.6, 29.0],

Speed=(5.3, 7.2]

0.059939 0.709402 0.854701 0.965812

Slice 12 Distance=(399.999, 441.0],

Clutter=High

0.089139 0.712644 0.873563 0.965517

Slice 13 Weather=Sunny_dry,

Clutter=High

0.157787 0.714286 0.883117 0.967532

Slice 14 Temperature=(12.2, 20.6],

Weather=Sunny_dry,

Speed=(1.49, 3.4]

0.054303 0.726415 0.933962 0.971698

Slice 15 Approach=Approach 4,

Clutter=High

0.158299 0.728155 0.860841 0.919094

Slice 16 Weather=Sunny_dry,

Speed=(1.49, 3.4], Ap-

proach=Approach 4

0.099385 0.742268 0.932990 0.963918

Slice 17 Clutter=Medium, Ob-

ject=Charging Curbstone

0.052254 0.745098 0.960784 0.911765

Slice 18 Distance=(441.0, 471.0],

Clutter=High

0.080943 0.746835 0.854430 0.905063

Slice 19 Temperature=(20.6, 29.0],

Weather=Sunny_dry, Ap-

proach=Approach 4, Dis-

tance=(399.999, 441.0]

0.062500 0.754098 0.885246 0.967213

Slice 20 Temperature=(12.2, 20.6],

Distance=(399.999, 441.0],

Clutter=High

0.050717 0.757576 0.949495 0.989899

Continued on next page
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Table A.4: Accuracy of Data Slices for Use Case 2 (Ultrasonic Object Height Classification)

Slice Description Support Acc. Model_1 Acc. Model_2 Acc. Model_3

Slice 21 Clutter=High 0.242828 0.759494 0.881857 0.938819

Slice 22 Approach=Approach 1,

Weather=Cloudy

0.088115 0.767442 0.953488 0.936047

Slice 23 Temperature=(12.2, 20.6],

Weather=Sunny_dry,

Approach=Approach 4,

Clutter=High

0.070184 0.773723 0.934307 0.963504

Slice 24 Approach=Approach

4, Speed=(1.49, 3.4],

Distance=(399.999, 441.0]

0.053279 0.778846 0.932692 0.971154

Slice 25 Temperature=(20.6, 29.0],

Weather=Sunny_dry, Ap-

proach=Approach 4

0.174693 0.780059 0.923754 0.973607

Slice 26 Temperature=(20.6, 29.0],

Weather=Sunny_dry, Dis-

tance=(399.999, 441.0]

0.086066 0.785714 0.904762 0.976190

Slice 27 Temperature=(20.6, 29.0],

Approach=Approach 4,

Distance=(399.999, 441.0]

0.074795 0.787671 0.876712 0.945205

Slice 28 Temperature=(12.2, 20.6],

Approach=Approach 4,

Speed=(1.49, 3.4]

0.094262 0.793478 0.929348 0.967391

Slice 29 Temperature=(12.2, 20.6],

Clutter=High

0.138832 0.800738 0.948339 0.966790
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Table A.4: Accuracy of Data Slices for Use Case 2 (Ultrasonic Object Height Classification)

Slice Description Support Acc. Model_1 Acc. Model_2 Acc. Model_3

Slice 30 Temperature=(20.6, 29.0],

Weather=Sunny_dry, Dis-

tance=(471.0, 499.0], Ap-

proach=Approach 4

0.059426 0.801724 0.956897 0.974138

Slice 31 Approach=Approach 1 0.140369 0.802920 0.956204 0.941606

Slice 32 Temperature=(20.6, 29.0],

Weather=Sunny_dry

0.245389 0.805846 0.933194 0.968685

Slice 33 Weather=Sunny_dry,

Speed=(1.49, 3.4]

0.147541 0.809028 0.944444 0.972222

Slice 34 Approach=Approach 4,

Speed=(1.49, 3.4]

0.165471 0.814241 0.922601 0.950464

Slice 35 Temperature=(12.2, 20.6],

Approach=Approach 4,

Clutter=High

0.091189 0.814607 0.943820 0.960674

Slice 36 Temperature=(12.2, 20.6],

Weather=Sunny_dry, Dis-

tance=(441.0, 471.0], Ap-

proach=Approach 4

0.052766 0.815534 0.990291 0.990291

Slice 37 Temperature=(12.2, 20.6],

Approach=Approach 1

0.111168 0.815668 0.963134 0.953917

Slice 38 Temperature=(20.6, 29.0],

Clutter=Low

0.067623 0.818182 0.962121 0.977273

Slice 39 Weather=Sunny_dry,

Speed=(5.3, 7.2]

0.119365 0.819742 0.905579 0.969957
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Table A.4: Accuracy of Data Slices for Use Case 2 (Ultrasonic Object Height Classification)

Slice Description Support Acc. Model_1 Acc. Model_2 Acc. Model_3

Slice 40 Temperature=(20.6, 29.0],

Weather=Sunny_dry, Dis-

tance=(441.0, 471.0]

0.071209 0.820144 0.942446 0.978417

Slice 41 Temperature=(20.6, 29.0],

Approach=Approach 4

0.222336 0.820276 0.894009 0.940092

Slice 42 Speed=(1.49, 3.4], Dis-

tance=(399.999, 441.0]

0.078381 0.823529 0.862745 0.941176

Slice 43 Temperature=(20.6, 29.0],

Weather=Sunny_dry,

Speed=(1.49, 3.4]

0.067111 0.824427 0.954198 0.969466

Slice 44 Weather=Sunny_dry,

Distance=(441.0, 471.0],

Speed=(1.49, 3.4]

0.052766 0.825243 0.951456 0.970874

Slice 45 Weather=Sunny_dry, Dis-

tance=(441.0, 471.0], Ap-

proach=Approach 4

0.130123 0.826772 0.964567 0.988189

Slice 46 Approach=Approach 4,

Distance=(441.0, 471.0],

Speed=(1.49, 3.4]

0.059939 0.829060 0.940171 0.965812

Slice 47 Temperature=(20.6, 29.0],

Distance=(399.999, 441.0]

0.111680 0.830275 0.903670 0.958716

Slice 48 Temperature=(12.2, 20.6],

Weather=Sunny_dry,

Clutter=High

0.093750 0.830601 0.950820 0.972678
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Table A.4: Accuracy of Data Slices for Use Case 2 (Ultrasonic Object Height Classification)

Slice Description Support Acc. Model_1 Acc. Model_2 Acc. Model_3

Slice 49 Distance=(471.0, 499.0],

Clutter=High

0.072746 0.830986 0.922535 0.943662

Slice 50 Distance=(471.0, 499.0],

Approach=Approach 4,

Speed=(1.49, 3.4]

0.052254 0.833333 0.892157 0.911765

Slice 51 Clutter=High,

Weather=Cloudy

0.079918 0.833333 0.871795 0.878205

Slice 52 Speed=(5.3, 7.2], Dis-

tance=(399.999, 441.0]

0.077869 0.835526 0.907895 0.980263

Slice 53 Distance=(471.0, 499.0],

Clutter=Low

0.053279 0.836538 0.875000 0.884615

Slice 54 Weather=Sunny_dry, Ap-

proach=Approach 4

0.404201 0.837769 0.949303 0.980989

Slice 55 Speed=(7.2, 9.1], Clut-

ter=High

0.060451 0.838983 0.881356 0.923729

Slice 56 Weather=Sunny_dry, Dis-

tance=(399.999, 441.0]

0.183914 0.844011 0.930362 0.980501

Slice 57 Speed=(7.2, 9.1], Tem-

perature=(12.2, 20.6],

Weather=Cloudy

0.055840 0.844037 0.889908 0.899083

Slice 58 Clutter=Medium, Ap-

proach=Approach 1

0.062500 0.844262 0.967213 0.934426

Slice 59 Temperature=(20.6, 29.0] 0.323258 0.844691 0.912837 0.942948

Slice 60 Distance=(441.0, 471.0],

Speed=(5.3, 7.2]

0.057377 0.848214 0.955357 0.973214
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Table A.4: Accuracy of Data Slices for Use Case 2 (Ultrasonic Object Height Classification)

Slice Description Support Acc. Model_1 Acc. Model_2 Acc. Model_3

Slice 61 Clutter=Medium,

Speed=(3.4, 5.3],

Weather=Cloudy

0.054816 0.850467 0.943925 0.943925

Slice 62 Speed=(7.2, 9.1], Dis-

tance=(471.0, 499.0]

0.061988 0.851240 0.876033 0.925620

Slice 63 Clutter=Medium, Tem-

perature=(12.2, 20.6],

Weather=Cloudy

0.106557 0.855769 0.956731 0.937500

Slice 64 Temperature=(12.2, 20.6],

Distance=(399.999, 441.0],

Weather=Cloudy

0.085553 0.856287 0.976048 0.976048

Slice 65 Clutter=Very low, Tem-

perature=(12.2, 20.6], Dis-

tance=(441.0, 471.0]

0.050205 0.857143 0.948980 0.979592

Slice 66 Speed=(3.4, 5.3], Clut-

ter=High

0.064549 0.857143 0.936508 0.960317

Slice 67 Weather=Sunny_dry 0.563525 0.857273 0.939091 0.974545

Slice 68 Distance=(471.0, 499.0],

Weather=Sunny_dry, Ap-

proach=Approach 4

0.134221 0.858779 0.958015 0.977099

Slice 69 Temperature=(12.2, 20.6],

Weather=Sunny_dry, Ap-

proach=Approach 4

0.174693 0.859238 0.964809 0.985337

Slice 70 Speed=(5.3, 7.2] 0.204918 0.860000 0.930000 0.967500
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Table A.4: Accuracy of Data Slices for Use Case 2 (Ultrasonic Object Height Classification)

Slice Description Support Acc. Model_1 Acc. Model_2 Acc. Model_3

Slice 71 Speed=(7.2, 9.1], Temper-

ature=(20.6, 29.0]

0.078381 0.862745 0.921569 0.960784

Slice 72 Speed=(1.49, 3.4] 0.268443 0.864504 0.908397 0.950382

Slice 73 Approach=Approach 4 0.631660 0.868613 0.932685 0.954582

Slice 74 Temperature=(12.2, 20.6],

Weather=Cloudy

0.243340 0.869474 0.957895 0.953684

Slice 75 Clutter=Very low, Ap-

proach=Approach 4,

Speed=(1.49, 3.4]

0.059426 0.870690 0.965517 0.974138

Slice 76 Speed=(5.3, 7.2],

Weather=Cloudy

0.055840 0.871560 0.954128 0.954128

Slice 77 Clutter=Medium,

Weather=Cloudy

0.138320 0.877778 0.929630 0.929630

Slice 78 Clutter=Very low,

Speed=(5.3, 7.2]

0.067111 0.877863 0.969466 0.977099

Slice 79 Speed=(3.4, 5.3],

Weather=Cloudy

0.093238 0.879121 0.939560 0.923077

Slice 80 Speed=(3.4, 5.3], Temper-

ature=(12.2, 20.6], Dis-

tance=(441.0, 471.0]

0.059426 0.879310 0.965517 0.974138

Slice 81 Clutter=Very low,

Weather=Sunny_dry,

Approach=Approach 4

0.102971 0.885572 0.965174 0.985075
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Table A.4: Accuracy of Data Slices for Use Case 2 (Ultrasonic Object Height Classification)

Slice Description Support Acc. Model_1 Acc. Model_2 Acc. Model_3

Slice 82 Clutter=Very low,

Weather=Sunny_dry,

Distance=(441.0, 471.0]

0.058402 0.885965 0.991228 1.000000

Slice 83 Speed=(3.4, 5.3], Ap-

proach=Approach 1

0.050205 0.887755 0.989796 0.928571

Slice 84 Weather=Cloudy 0.323770 0.890823 0.927215 0.925633

Slice 85 Clutter=Low 0.158299 0.893204 0.915858 0.935275

Slice 86 Clutter=Medium, Tem-

perature=(12.2, 20.6],

Speed=(3.4, 5.3]

0.069160 0.896296 0.992593 0.962963

Slice 87 Distance=(471.0, 499.0],

Speed=(5.3, 7.2]

0.069672 0.897059 0.933824 0.948529

Slice 88 Temperature=(12.2, 20.6],

Approach=Approach 4,

Distance=(399.999, 441.0]

0.114754 0.897321 0.968750 0.986607

Slice 89 Clutter=Very low, Dis-

tance=(441.0, 471.0]

0.090676 0.898305 0.966102 0.988701

Slice 90 Clutter=Very low,

Weather=Sunny_dry

0.164959 0.900621 0.953416 0.972050

Slice 91 Clutter=Very low, Dis-

tance=(471.0, 499.0]

0.098873 0.901554 0.922280 0.943005

Slice 92 Clutter=Medium, Ap-

proach=Approach 4,

Weather=Cloudy

0.062500 0.901639 0.885246 0.918033
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Table A.4: Accuracy of Data Slices for Use Case 2 (Ultrasonic Object Height Classification)

Slice Description Support Acc. Model_1 Acc. Model_2 Acc. Model_3

Slice 93 Approach=Approach

4, Speed=(3.4, 5.3],

Weather=Cloudy

0.052254 0.901961 0.892157 0.901961

Slice 94 Temperature=(20.6, 29.0],

Approach=Approach 4,

Speed=(3.4, 5.3]

0.063012 0.902439 0.926829 0.943089

Slice 95 Clutter=Very low,

Speed=(1.49, 3.4]

0.080430 0.904459 0.968153 0.980892

Slice 96 Clutter=Very low, Ap-

proach=Approach 4

0.196209 0.906005 0.958225 0.971279

Slice 97 Speed=(3.4, 5.3], Dis-

tance=(441.0, 471.0]

0.098873 0.906736 0.922280 0.958549

Slice 98 Clutter=Very low, Tem-

perature=(20.6, 29.0]

0.067111 0.908397 0.946565 0.931298

Slice 99 Speed=(7.2, 9.1], Dis-

tance=(399.999, 441.0]

0.067111 0.908397 0.938931 0.931298

Slice 100 Clutter=Medium, Dis-

tance=(399.999, 441.0]

0.100922 0.908629 0.918782 0.934010

Slice 101 Temperature=(12.2, 20.6],

Weather=Sunny_dry, Dis-

tance=(471.0, 499.0]

0.090164 0.909091 0.937500 0.977273

Slice 102 Clutter=Medium, Tem-

perature=(12.2, 20.6]

0.201332 0.910941 0.944020 0.951654

Continued on next page

208



Table A.4: Accuracy of Data Slices for Use Case 2 (Ultrasonic Object Height Classification)

Slice Description Support Acc. Model_1 Acc. Model_2 Acc. Model_3

Slice 103 Clutter=Medium, Dis-

tance=(441.0, 471.0],

Weather=Cloudy

0.054816 0.915888 0.943925 0.962617

Slice 104 Clutter=Medium,

Speed=(5.3, 7.2]

0.061475 0.916667 0.966667 0.966667

Slice 105 Speed=(3.4, 5.3] 0.290984 0.917254 0.952465 0.957746

Slice 106 Temperature=(12.2, 20.6],

Weather=Sunny_dry,

Speed=(3.4, 5.3]

0.081455 0.918239 0.974843 0.987421

Slice 107 Clutter=Very low 0.284836 0.919065 0.951439 0.967626

Slice 108 Approach=Approach 4,

Distance=(441.0, 471.0],

Weather=Cloudy

0.065061 0.921260 0.858268 0.897638

Slice 109 Distance=(441.0, 471.0],

Clutter=Low

0.055840 0.926606 0.926606 0.954128

Slice 110 Temperature=(12.2, 20.6],

Speed=(5.3, 7.2]

0.118852 0.926724 0.978448 0.978448

Slice 111 Clutter=Medium 0.314037 0.928222 0.939641 0.954323

Slice 112 Weather=Sunny_dry,

Speed=(3.4, 5.3]

0.165984 0.929012 0.969136 0.981481

Slice 113 Temperature=(3.8, 12.2] 0.095287 0.930108 0.887097 0.940860

Slice 114 Clutter=Medium, Ap-

proach=Approach 4,

Distance=(399.999, 441.0]

0.066086 0.930233 0.976744 0.976744

Slice 115 Object=Pole25mm 0.052766 0.932039 0.961165 0.980583
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Table A.4: Accuracy of Data Slices for Use Case 2 (Ultrasonic Object Height Classification)

Slice Description Support Acc. Model_1 Acc. Model_2 Acc. Model_3

Slice 116 Approach=Approach 4,

Weather=Cloudy

0.190061 0.932615 0.902965 0.911051

Slice 117 Clutter=Medium, Dis-

tance=(471.0, 499.0],

Approach=Approach 4

0.069672 0.933824 0.955882 0.948529

Slice 118 Clutter=Medium, Tem-

perature=(12.2, 20.6],

Distance=(441.0, 471.0]

0.072234 0.936170 0.985816 0.978723

Slice 119 Clutter=Very low,

Weather=Cloudy

0.073770 0.937500 0.965278 0.965278

Slice 120 Temperature=(12.2, 20.6],

Clutter=Low

0.065574 0.937500 0.875000 0.898438

Slice 121 Speed=(1.49, 3.4],

Weather=Cloudy

0.078381 0.941176 0.934641 0.954248

Slice 122 Temperature=(3.8, 12.2],

Approach=Approach 4

0.063525 0.943548 0.943548 0.943548

Slice 123 Clutter=Medium, Ap-

proach=Approach 4

0.202357 0.944304 0.959494 0.972152

Slice 124 Clutter=Medium, Tem-

perature=(12.2, 20.6],

Speed=(1.49, 3.4]

0.065574 0.945312 0.875000 0.953125

Slice 125 Clutter=Medium, Dis-

tance=(471.0, 499.0],

Weather=Sunny_dry

0.052766 0.951456 0.990291 1.000000
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Table A.4: Accuracy of Data Slices for Use Case 2 (Ultrasonic Object Height Classification)

Slice Description Support Acc. Model_1 Acc. Model_2 Acc. Model_3

Slice 126 Clutter=Medium, Dis-

tance=(441.0, 471.0]

0.109119 0.953052 0.957746 0.976526

Slice 127 Approach=Approach 2 0.066598 0.953846 0.976923 0.976923

Slice 128 Clutter=Very low, Dis-

tance=(399.999, 441.0]

0.095287 0.956989 0.967742 0.973118

Slice 129 Clutter=Medium, Tem-

perature=(20.6, 29.0]

0.098361 0.958333 0.953125 0.973958

Slice 130 Approach=Approach

4, Speed=(1.49, 3.4],

Weather=Cloudy

0.051742 0.960396 0.920792 0.940594

Slice 131 Temperature=(12.2, 20.6],

Approach=Approach 4,

Speed=(5.3, 7.2]

0.078893 0.961039 0.987013 0.993506

Slice 132 Clutter=Medium,

Speed=(1.49, 3.4]

0.093750 0.961749 0.890710 0.950820

Slice 133 Object=Dummyadult 0.068135 0.962406 0.992481 1.000000

Slice 134 Temperature=(20.6, 29.0],

Weather=Cloudy

0.071721 0.964286 0.850000 0.864286

Slice 135 Clutter=Medium, Ap-

proach=Approach 4,

Distance=(441.0, 471.0]

0.066598 0.969231 0.946154 0.992308

Slice 136 Temperature=(12.2, 20.6],

Weather=Sunny_dry,

Speed=(5.3, 7.2]

0.052766 0.970874 0.990291 0.990291
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Table A.4: Accuracy of Data Slices for Use Case 2 (Ultrasonic Object Height Classification)

Slice Description Support Acc. Model_1 Acc. Model_2 Acc. Model_3

Slice 137 Clutter=Medium,

Weather=Sunny_dry

0.142930 0.971326 0.989247 0.996416

Slice 138 Clutter=Very low, Tem-

perature=(12.2, 20.6], Dis-

tance=(399.999, 441.0]

0.055328 0.981481 0.990741 1.000000

Slice 139 Weather=Rain 0.094775 0.983784 0.875676 0.951351

Slice 140 Clutter=Medium, Tem-

perature=(12.2, 20.6],

Weather=Sunny_dry

0.068648 0.985075 1.000000 1.000000

Slice 141 Clutter=Very low,

Speed=(3.4, 5.3]

0.085041 0.987952 0.981928 0.969880

Slice 142 Object=Wall 0.087602 0.994152 0.812865 0.929825

Slice 143 Approach=Approach 5 0.054816 1.000000 0.841121 0.943925

Slice 144 Object=Bush 0.092213 1.000000 1.000000 1.000000

A.2.3 Case 3: Image-Based Fire Detection
In this case study, MLOps engineers investigated a Convolutional Neural Network

model trained for classifying the presence of fire in images. Because the model is

proprietary, we do not share its hyperparameters in this document. The experts used

SliceTeller to investigate their model in detail, and found data and model problems

based on their inspection (Section 4.3). A complete list of data slices for the fire

detection model is shown in Table A.5.
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Table A.5: Accuracy of Data Slices for Use Case 3 (Image-Based Fire Detection)

Slice Description Support Acc. Model

Slice 0 All Data 1.000000 0.935606

Slice 1 BlinkingLight=Yes, ReflectionsOrShad-

ows=No

0.047222 0.614973

Slice 2 Motion=No, Frame=(0.199, 0.399], Loca-

tion=Indoo...

0.020707 0.670732

Slice 3 BlinkingLight=Yes, Frame=(0.199, 0.399] 0.020960 0.674699

Slice 4 Location=Indoor, Motion=No, Blinking-

Light=Yes

0.072980 0.737024

Slice 5 ObjectApproaching=No, Motion=No,

BlinkingLight=Yes

0.072980 0.737024

Slice 6 Motion=No, ObjectApproaching=No,

Frame=(0.199, ...

0.026515 0.742857

Slice 7 ObjectApproaching=No, Blinking-

Light=Yes

0.076010 0.747508

Slice 8 Motion=No, BlinkingLight=Yes 0.080556 0.761755

Slice 9 Motion=No, Frame=(0.199, 0.399], Loca-

tion=Indoo...

0.030808 0.770492

Slice 10 Location=Indoor, BlinkingLight=Yes 0.084596 0.773134

Slice 11 Motion=No, Location=Indoor, SmokeDen-

sity=0.0, R...

0.089899 0.786517

Slice 12 BlinkingLight=Yes 0.092172 0.791781

Slice 13 SmokeDensity=0.0, Motion=No,

Frame=(0.199, 0.39...

0.036616 0.806897

Slice 14 Motion=No, Frame=(0.199, 0.399], Loca-

tion=Indoo...

0.038636 0.810458
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Slice 15 Motion=No, Frame=(-0.001, 0.199], Loca-

tion=Indo...

0.029798 0.813559

Slice 16 Motion=No, ObjectApproaching=No,

Frame=(-0.001,...

0.026263 0.817308

Slice 17 Location=Indoor, Frame=(0.599, 0.799],

Blinking...

0.020960 0.819277

Slice 18 Frame=(0.599, 0.799], BlinkingLight=Yes 0.022980 0.835165

Slice 19 Frame=(0.199, 0.399], Location=Indoor,

SmokeDen...

0.046465 0.836957

Slice 20 Location=Indoor, SmokeDensity=0.0, Mo-

tion=No, R...

0.142929 0.839223

Slice 21 SmokeDensity=0.0, Motion=No, ObjectAp-

proaching=...

0.120202 0.840336

Slice 22 SmokeDensity=3.0, Frame=(0.799, 1.0] 0.023990 0.842105

Slice 23 SmokeDensity=0.0, Motion=No, Frame=(-

0.001, 0.1...

0.036111 0.846154

Slice 24 Frame=(-0.001, 0.199], Location=Indoor,

SmokeDe...

0.040404 0.850000

Slice 25 Motion=No, Frame=(-0.001, 0.199], Loca-

tion=Indo...

0.034091 0.851852

Slice 26 SmokeDensity=0.0, ObjectApproach-

ing=No, Frame=(...

0.052273 0.855072

Slice 27 Location=Indoor, SmokeDensity=0.0, Mo-

tion=No, F...

0.054040 0.859813
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Slice 28 Location=Indoor, SmokeDensity=0.0,

Frame=(0.199...

0.056566 0.861607

Slice 29 Motion=No, Frame=(0.599, 0.799], Objec-

tApproach...

0.023737 0.861702

Slice 30 SmokeDensity=0.0, Motion=No,

Frame=(0.199, 0.39...

0.055051 0.862385

Slice 31 Location=Indoor, SmokeDensity=0.0,

Frame=(-0.00...

0.050253 0.864322

Slice 32 Location=Indoor, SmokeDensity=0.0, Mo-

tion=No, F...

0.048990 0.865979

Slice 33 SmokeDensity=0.0, Motion=No, Reflec-

tionsOrShado...

0.173232 0.867347

Slice 34 Motion=No, Frame=(0.599, 0.799], Loca-

tion=Indoo...

0.026768 0.867925

Slice 35 Motion=No, Frame=(0.399, 0.599], Loca-

tion=Indoo...

0.027525 0.871560

Slice 36 SmokeDensity=0.0, Frame=(0.199, 0.399],

Reflect...

0.062374 0.874494

Slice 37 Location=Indoor, SmokeDensity=0.0, Mo-

tion=No, O...

0.176768 0.875714

Slice 38 ObjectApproaching=No, Motion=No,

Frame=(0.199, ...

0.078030 0.877023

Slice 39 Location=Indoor, SmokeDensity=0.0, Ob-

jectApproa...

0.208081 0.877427
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Slice 40 ObjectApproaching=No, Motion=No,

Frame=(0.799, ...

0.024747 0.877551

Slice 41 SmokeDensity=0.0, Frame=(-0.001, 0.199],

Reflec...

0.056818 0.880000

Slice 42 Location=Indoor, SmokeDensity=0.0,

Frame=(0.199...

0.090404 0.882682

Slice 43 Motion=No, Frame=(0.799, 1.0], Loca-

tion=Indoor,...

0.028030 0.882883

Slice 44 ObjectApproaching=No, Loca-

tion=Outdoor, Motion=...

0.048232 0.884817

Slice 45 Location=Indoor, SmokeDensity=0.0, Re-

flectionsO...

0.261111 0.887814

Slice 46 Location=Indoor, ObjectApproaching=No,

Motion=N...

0.090152 0.887955

Slice 47 Motion=No, Frame=(0.199, 0.399], Reflec-

tionsOrS...

0.088131 0.888252

Slice 48 SmokeDensity=0.0, Frame=(0.599, 0.799],

Motion=...

0.032576 0.891473

Slice 49 SmokeDensity=0.0, Motion=No, Frame=(-

0.001, 0.199]

0.074747 0.891892

Slice 50 SmokeDensity=0.0, Motion=No, ObjectAp-

proaching=No

0.255303 0.892186

Slice 51 Location=Indoor, SmokeDensity=0.0, Mo-

tion=No

0.260101 0.893204

Slice 52 SmokeDensity=3.0, Frame=(-0.001, 0.199] 0.024242 0.895833
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Slice 53 Frame=(0.399, 0.599], SmokeDensity=0.0,

Motion=...

0.034091 0.896296

Slice 54 Frame=(0.599, 0.799], Location=Indoor,

SmokeDen...

0.044192 0.897143

Slice 55 Motion=No, Frame=(0.599, 0.799], Loca-

tion=Indoo...

0.037121 0.897959

Slice 56 SmokeDensity=0.0, ReflectionsOrShad-

ows=No

0.291667 0.899567

Slice 57 Location=Indoor, SmokeDensity=0.0,

Frame=(-0.00...

0.098232 0.899743

Slice 58 SmokeDensity=0.0, Frame=(0.199, 0.399],

ObjectA...

0.108838 0.900232

Slice 59 ObjectApproaching=No, Loca-

tion=Outdoor, Reflect...

0.055808 0.900452

Slice 60 Location=Indoor, SmokeDensity=0.0,

Frame=(0.199...

0.109848 0.901149

Slice 61 Location=Indoor, Motion=No,

Frame=(0.199, 0.399]

0.105556 0.901914

Slice 62 ObjectApproaching=No, Motion=No,

Frame=(0.199, ...

0.106566 0.902844

Slice 63 Frame=(0.199, 0.399], ReflectionsOrShad-

ows=No

0.113889 0.906874

Slice 64 Location=Indoor, SmokeDensity=0.0,

Frame=(0.399...

0.052020 0.907767
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Slice 65 Frame=(0.799, 1.0], ReflectionsOrShad-

ows=No

0.102525 0.908867

Slice 66 ObjectApproaching=No, Frame=(0.799,

1.0]

0.141667 0.909091

Slice 67 Motion=No, Frame=(0.799, 1.0] 0.122980 0.909651

Slice 68 Motion=Yes, ObjectApproaching=No,

Frame=(0.199,...

0.028030 0.909910

Slice 69 SmokeDensity=0.0, Frame=(0.599, 0.799],

Motion=...

0.053283 0.909953

Slice 70 Frame=(-0.001, 0.199], ReflectionsOrShad-

ows=No

0.113636 0.911111

Slice 71 Motion=No, Frame=(0.399, 0.599], Reflec-

tionsOrS...

0.022980 0.912088

Slice 72 SmokeDensity=0.0, Motion=No 0.391414 0.912903

Slice 73 Motion=No, Frame=(-0.001, 0.199] 0.131566 0.913628

Slice 74 Location=Indoor, SmokeDensity=0.0,

Frame=(0.599...

0.053030 0.914286

Slice 75 ObjectApproaching=No, Frame=(0.199,

0.399]

0.160354 0.914961

Slice 76 Frame=(0.399, 0.599], SmokeDensity=0.0,

Motion=...

0.050505 0.915000

Slice 77 SmokeDensity=0.0, ObjectApproach-

ing=No

0.505556 0.915085

Slice 78 Location=Indoor, Frame=(0.199, 0.399] 0.161364 0.915493
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Slice 79 Location=Indoor, Motion=Yes,

Frame=(0.199, 0.39...

0.030051 0.915966

Slice 80 Location=Indoor, SmokeDensity=0.0 0.520202 0.916505

Slice 81 SmokeDensity=2.0, Frame=(0.199, 0.399] 0.024495 0.917526

Slice 82 Frame=(0.399, 0.599], SmokeDensity=0.0,

Reflect...

0.058586 0.918103

Slice 83 SmokeDensity=0.0, Frame=(0.599, 0.799],

Reflect...

0.058838 0.918455

Slice 84 ReflectionsOrShadows=No 0.551768 0.921739

Slice 85 Frame=(0.799, 1.0] 0.190909 0.921958

Slice 86 BlinkingLight=No, Motion=No, Frame=(-

0.001, 0.1...

0.032576 0.922481

Slice 87 Location=Indoor, Frame=(0.799, 1.0], Mo-

tion=Yes

0.049495 0.923469

Slice 88 ObjectApproaching=No, Frame=(0.799,

1.0], Motio...

0.047222 0.925134

Slice 89 Frame=(-0.001, 0.199] 0.199242 0.925222

Slice 90 Frame=(0.399, 0.599], SmokeDensity=0.0,

Motion=No

0.077778 0.925325

Slice 91 Location=Indoor, ObjectApproaching=Yes,

Frame=(...

0.021212 0.928571

Slice 92 Location=Indoor, ObjectApproaching=No,

Frame=(0...

0.043939 0.931034

Slice 93 Frame=(0.799, 1.0], ReflectionsOrShad-

ows=Yes

0.088384 0.937143
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Slice 94 Location=Outdoor, Motion=No, Reflection-

sOrShado...

0.101010 0.937500

Slice 95 ObjectApproaching=Yes, Motion=No,

Frame=(0.799,...

0.028535 0.938053

Slice 96 ObjectApproaching=No, Frame=(0.799,

1.0], Refle...

0.036869 0.938356

Slice 97 ObjectApproaching=No, Motion=Yes 0.250253 0.938446

Slice 98 Location=Indoor, Motion=Yes 0.260101 0.939806

Slice 99 Location=Indoor, ObjectApproaching=Yes 0.101010 0.940000

Slice 100 Location=Outdoor, Motion=No, Frame=(-

0.001, 0.199]

0.025758 0.941176

Slice 101 ObjectApproaching=Yes, Frame=(-0.001,

0.199]

0.045455 0.944444

Slice 102 BlinkingLight=No 0.907828 0.950209

Slice 103 ObjectApproaching=Yes, Motion=No 0.136111 0.951763

Slice 104 Motion=No, Frame=(0.799, 1.0], Loca-

tion=Indoor,...

0.020960 0.951807

Slice 105 Location=Outdoor, Motion=No 0.131313 0.951923

Slice 106 ReflectionsOrShadows=Yes 0.448232 0.952676

Slice 107 Motion=Yes 0.348485 0.952899

Slice 108 Location=Outdoor, Frame=(0.799, 1.0] 0.043434 0.953488

Slice 109 Frame=(0.399, 0.599] 0.198990 0.954315

Slice 110 Frame=(0.599, 0.799], SmokeDensity=2.0 0.023232 0.956522

Slice 111 ObjectApproaching=No, Motion=No,

Frame=(-0.001,...

0.023232 0.956522
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Slice 112 BlinkingLight=No, Frame=(0.199, 0.399] 0.185101 0.961801

Slice 113 Frame=(0.199, 0.399], ReflectionsOrShad-

ows=Yes

0.092172 0.964384

Slice 114 ObjectApproaching=No, Blinking-

Light=Yes, Reflec...

0.028788 0.964912

Slice 115 ObjectApproaching=Yes, Motion=No, Re-

flectionsOr...

0.083081 0.966565

Slice 116 SmokeDensity=2.0 0.121717 0.966805

Slice 117 ObjectApproaching=Yes 0.234343 0.967672

Slice 118 Frame=(0.399, 0.599], Motion=Yes 0.070455 0.967742

Slice 119 Location=Outdoor 0.219697 0.967816

Slice 120 Motion=Yes, Frame=(0.199, 0.399], Reflec-

tionsOr...

0.025758 0.970588

Slice 121 Motion=No, Location=Indoor, SmokeDen-

sity=0.0, O...

0.103788 0.973236

Slice 122 ObjectApproaching=No, Motion=No,

Frame=(0.199, ...

0.028535 0.973451

Slice 123 BlinkingLight=Yes, ReflectionsOrShad-

ows=Yes

0.044949 0.977528

Slice 124 Frame=(0.399, 0.599], Motion=Yes, Reflec-

tionsOr...

0.045960 0.978022

Slice 125 Motion=No, Frame=(0.399, 0.599], Loca-

tion=Indoo...

0.071717 0.978873

Slice 126 ObjectApproaching=Yes, ReflectionsOr-

Shadows=Yes

0.181313 0.979109
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Slice 127 SmokeDensity=0.0, BlinkingLight=No,

Frame=(0.19...

0.049242 0.979487

Slice 128 SmokeDensity=3.0, Frame=(0.199, 0.399] 0.025000 0.979798

Slice 129 Motion=No, Frame=(0.199, 0.399], Reflec-

tionsOrS...

0.045960 0.983516

Slice 130 SmokeDensity=0.0, BlinkingLight=No,

Motion=No, ...

0.063889 0.984190

Slice 131 Motion=No, ObjectApproaching=No, Re-

flectionsOrS...

0.072980 0.986159

Slice 132 Motion=No, Frame=(0.599, 0.799], Reflec-

tionsOrS...

0.021970 0.988506

Slice 133 ObjectApproaching=Yes, Loca-

tion=Outdoor

0.133333 0.988636

Slice 134 ObjectApproaching=Yes, Motion=Yes 0.098232 0.989717

Slice 135 SmokeDensity=3.0, Frame=(0.599, 0.799] 0.026768 0.990566

Slice 136 Location=Outdoor, Motion=Yes 0.088384 0.991429

Slice 137 SmokeDensity=2.0, Frame=(-0.001, 0.199] 0.030051 0.991597

Slice 138 Frame=(0.399, 0.599], ObjectApproach-

ing=Yes, Re...

0.033081 0.992366

Slice 139 Location=Outdoor, Frame=(0.199, 0.399] 0.044697 0.994350

Slice 140 ObjectApproaching=Yes, Frame=(0.199,

0.399]

0.045707 0.994475

Slice 141 SmokeDensity=2.0, Frame=(0.799, 1.0] 0.021212 1.000000

Slice 142 Frame=(0.399, 0.599], Location=Outdoor,

ObjectA...

0.024495 1.000000
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Slice 143 Frame=(0.399, 0.599], SmokeDensity=3.0 0.026263 1.000000

Slice 144 ObjectApproaching=Yes, Loca-

tion=Outdoor, Frame=...

0.026515 1.000000

Slice 145 Location=Outdoor, ReflectionsOrShad-

ows=No

0.030556 1.000000
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