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Abstract A search for heavy resonances with masses
above 1 TeV, decaying to final states containing a vector
boson and a Higgs boson, is presented. The search considers
hadronic decays of the vector boson, and Higgs boson decays
to b quarks. The decay products are highly boosted, and each
collimated pair of quarks is reconstructed as a single, massive
jet. The analysis is performed using a data sample collected
in 2016 by the CMS experiment at the LHC in proton-proton
collisions at a center-of-mass energy of 13 TeV, correspond-
ing to an integrated luminosity of 35.9 fb−1. The data are
consistent with the background expectation and are used to
place limits on the parameters of a theoretical model with a
heavy vector triplet. In the benchmark scenario with mass-
degenerate W

′
and Z′ bosons decaying predominantly to

pairs of standard model bosons, for the first time heavy res-
onances for masses as high as 3.3 TeV are excluded at 95%
confidence level, setting the most stringent constraints to date
on such states decaying into a vector boson and a Higgs
boson.

1 Introduction

The discovery of the Higgs boson (H) at the CERN LHC [1–
3] represents a milestone in the understanding of the stan-
dard model (SM) of particle physics. However, the degree
of fine-tuning required to accommodate the observed mass
of 125 GeV [4–7] suggests the presence above 1 TeV of
new heavy particles beyond the SM (BSM), possibly lying
within reach of the LHC. These resonances, denoted as X, are
expected to be connected to the electroweak sector of the SM,
with significant couplings to the SM bosons. Hence, these
heavy resonances potentially could be observed through their
decay into a vector boson (V = W or Z) and a Higgs
boson.

� e-mail: cms-publication-committee-chair@cern.ch

The VH resonances are predicted in several BSM theo-
retical models, most notably weakly coupled spin-1 Z′ [8,9]
and W

′
models [10], strongly coupled composite Higgs mod-

els [11–13], and little Higgs models [14–16]. The heavy vec-
tor triplet (HVT) framework [17] extends the SM by intro-
ducing a triplet of heavy vector bosons, one neutral Z′ and
two charged W

′
s, collectively represented as V’ and degen-

erate in mass. The heavy vector bosons couple to SM bosons
and fermions with strengths gVcH and g2cF/gV, respectively,
where gV is the strength of the new interaction, cH is the cou-
pling between the HVT bosons, the Higgs boson, and lon-
gitudinally polarized SM vector bosons, cF is the coupling
between the HVT bosons and the SM fermions, and g is the
SU (2)L gauge coupling. In this paper, two different bench-
mark scenarios are considered [17]. In model A (gV = 1,
cH = −0.556, cF = −1.316), the coupling strengths to the
SM bosons and fermions are comparable, and the new par-
ticles decay primarily to fermions. In model B (gV = 3,
cH = −0.976, cF = 1.024), the couplings to fermions are
suppressed with respect to the couplings to bosons, resulting
in a branching fraction to SM bosons close to unity.

This paper describes the search in proton-proton colli-
sions at 13 TeV for heavy resonances decaying to final states
containing a SM vector boson and a Higgs boson, which sub-
sequently decay into a pair of quarks and a pair of b quarks,
respectively. Use of the hadronic decay modes takes advan-
tage of the large branching fractions, which compensate for
the effect of the large multijet background. This search con-
centrates on the high mass region, as previous searches [18–
25] have excluded mX in the region below a few TeV. As a
result of the large resonance mass, the two bosons produced in
the decay have large Lorentz boosts in the laboratory frame,
and consequently the hadronic decay products of each boson
tend to be clustered within a single hadronic jet. The jet mass,
substructure, and b tagging information are crucial to identi-
fying hadronically decaying vector bosons and Higgs boson
candidates, and to discriminating against the dominant SM
backgrounds.
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This search complements and significantly extends the
reach of the CMS search with 2015 data for VH resonances
with semileptonic decay modes of the vector bosons [24],
which excludes at 95% confidence level (CL) W

′
and Z′ res-

onances with mass below 1.6 TeV and mass-degenerate V’
resonances with masses up to 2.0 TeV in the HVT benchmark
model B. The ATLAS Collaboration has performed a search
in the same final state with a comparable data set, excluding
W

′
and Z′ bosons with masses below 2.2 and 1.6 TeV, respec-

tively, and a V’ boson with mass below 2.3 TeV in the HVT
model B scenario [25].

2 Data and simulated samples

The data sample studied in this analysis was collected in
2016 with the CMS detector in proton-proton collisions at
a center-of-mass energy of 13 TeV, and corresponds to an
integrated luminosity of 35.9 fb−1.

Simulated signal events are generated at leading order
(LO) with theMadGraph5_amc@nlo 2.2.2 matrix element
generator [26]. The Higgs boson is required to decay into a
bb pair, and the vector boson to decay hadronically. Other
decay modes are not considered in the present analysis. Dif-
ferent hypotheses for the heavy resonance mass mX in the
range 1000 to 4500 GeV are considered, assuming a nar-
row resonance width (0.1% of the mass), which is small
with respect to the experimental resolution. This narrow-
width assumption is valid in a large fraction of the HVT
parameter space, and fulfilled in both benchmark models A
and B [17].

Although the background is estimated using a method
based on data, simulated background samples are gener-
ated for the optimization of the analysis selections. Mul-
tijet background events are generated at LO with Mad-

Graph5_amc@nlo, and top quark pair production is sim-
ulated at next-to-leading order (NLO) with the powheg 2.0
generator [27–29] and rescaled to the cross section com-
puted with Top++ v2.0 [30] at next-to-next-to-leading order.
Other SM backgrounds, such as W+jets, Z+jets, single top
quark production, VV, and nonresonant VH production, are
simulated at NLO in QCD with MadGraph5_amc@nlo

using the FxFx merging scheme [31]. Parton showering
and hadronization processes are interfaced with pythia

8.205 [32] with the CUETP8M1 underlying event tune [33,
34]. The CUETP8M2T4 tune [35] is used for top quark pair
production. The NNPDF 3.0 [36] parton distribution func-
tions (PDFs) are used in generating all simulated samples.
Additional collisions in the same or adjacent bunch crossings
(pileup) are taken into account by superimposing simulated
minimum bias interactions onto the hard scattering process,
with a frequency distribution matching that observed exper-
imentally. The generated events are processed through a full

detector simulation based on Geant4 [37] and reconstructed
with the same algorithms as used for collision data.

3 The CMS detector

The central feature of the CMS detector is a superconduct-
ing solenoid with a 6m internal diameter. In the solenoid
volume, a silicon pixel and strip tracker measures charged
particles within the pseudorapidity range |η| < 2.5. The
tracker consists of 1440 silicon pixel and 15,148 silicon
strip detector modules and is located in the 3.8T field of the
solenoid. For nonisolated particles of transverse momentum
1 < pT < 10 GeV and |η| < 1.4, the track resolutions are
typically 1.5% in pT and 25–90 (45–150) μm in the trans-
verse (longitudinal) impact parameter [38]. A lead tungstate
crystal electromagnetic calorimeter (ECAL), and a brass and
scintillator hadron calorimeter (HCAL), each composed of
a barrel and two endcap sections, provide coverage up to
|η| < 3.0, which is further extended by forward calorime-
ters. Muons are measured in drift tubes, cathode strip cham-
bers, and resistive-plate chambers embedded in the steel flux-
return yoke outside the solenoid.

The first level of the CMS trigger system [39], composed
of custom hardware processors, uses information from the
calorimeters and muon detectors to select the most interesting
events in a fixed time interval of less than 4 μs. The high-
level trigger (HLT) processor farm decreases the event rate
from around 100 kHz to about 1 kHz, before data storage.

A detailed description of the CMS detector, together with
a definition of the coordinate system used and the relevant
kinematic variables, can be found in Ref. [40].

4 Event reconstruction

The event reconstruction employs a particle-flow (PF) algo-
rithm [41,42], which uses an optimized combination of infor-
mation from the various elements of the CMS detector to
reconstruct and identify individual particles produced in each
collision. The algorithm identifies each reconstructed parti-
cle either as an electron, a muon, a photon, a charged hadron,
or a neutral hadron. The PF candidates are clustered into jets
using the anti-kT algorithm [43,44] with a distance param-
eter R = 0.8, after passing the charged-hadron subtraction
(CHS) pileup mitigation algorithm [45]. For each event, a pri-
mary vertex is identified as the one with the highest sum of
the p2

T of the associated reconstructed objects, jets and iden-
tified leptons, and missing transverse momentum. The CHS
algorithm removes charged PF candidates with a track lon-
gitudinal impact parameter not compatible with this primary
vertex. The contribution to a jet of neutral particles originat-
ing from pileup interactions, assumed to be proportional to
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the jet area [46], is subtracted from the jet energy. Jet energy
corrections as a function of the pT and η are extracted from
simulation and data in dijet, multijet, γ +jets, and leptonic
Z+jets events. The jet energy resolution typically amounts to
5% at 1 TeV [47,48]. Jets are required to pass identification
criteria in order to remove spurious jets arising from detec-
tor noise [49]. This requirement has negligible impact on the
signal efficiency.

Although AK8 CHS jets are considered for their kinematic
properties, the mass of the jet and the substructure variables
are determined with a more sophisticated algorithm than
the CHS procedure, denoted as pileup-per-particle identifica-
tion (PUPPI) [50]. The PUPPI algorithm uses a combination
of the three-momenta of the particles, event pileup proper-
ties, and tracking information in order to compute a weight,
assigned to charged and neutral candidates, describing the
likelihood that each particle originates from a pileup interac-
tion. The weight is used to rescale the particle four-momenta,
superseding the need for further jet-based corrections. The
PUPPI constituents are subsequently clustered with the same
algorithm used for CHS jets, and then are matched with near
100% efficiency to the AK8 jets clustered with the CHS con-
stituents.

The soft-drop algorithm [51,52], which is designed to
remove contributions from soft radiation and additional inter-
actions, is applied to PUPPI jets. The angular exponent
parameter of the algorithm is set to β = 0, and the soft
threshold to zcut = 0.1. The soft-drop jet mass is defined
as the invariant mass associated with the four-momentum of
the jet after the application of the soft-drop algorithm. Ded-
icated mass corrections, derived from simulation and data
in a region enriched with tt events having merged W(qq)

decays, are applied to each jet mass in order to remove any
residual jet pT dependence [53], and to match the jet mass
scale and resolution observed in data. The measured jet mass
resolution, obtained after applying the PUPPI and soft-drop
algorithms, is approximately 10%.

Substructure variables are used to identify single recon-
structed jets that result from the merger of more than one par-
ton jet. These variables are calculated on each reconstructed
jet before the application of the soft-drop algorithm including
the PUPPI algorithm corrections for pileup mitigation. The
constituents of the jet are clustered iteratively with the anti-kT

algorithm, and the procedure is stopped when N subjets are
obtained. A variable, the N -subjettiness [54], is introduced:

τN = 1

d0

∑

k

pT,k min(�R1,k,�R2,k, . . . ,�RN ,k).

The index k runs over the jet constituents and the distances
�RJ,k are calculated with respect to the axis of the J th

subjet. The normalization factor d0 is calculated as d0 =∑
k pT,k R0, setting R0 to the radius of the original jet. The

variable that best discriminates between quark and gluon jets
and jets from two-body decays of massive particles is the ratio
of 2-subjettiness and 1-subjettiness, τ21 = τ2/τ1, which lies
in the interval from 0 to 1, where small values correspond to
a high compatibility with the hypothesis of a massive object
decaying into two quarks. The normalization scale factors
relative to the τ21 categories are measured from data in a
sample enriched in tt events in two τ21 intervals (0.99±0.11
for τ21 < 0.35, and 1.03±0.23 for 0.35 < τ21 < 0.75) [53].
These two selections are approximately 50 and 45% effi-
cient for identifying two-pronged jets produced in a decay of
a massive boson, and 10 and 60% efficient on one-pronged
jets, respectively. The threshold values are chosen in order to
maximize the overall sensitivity over the entire mass spec-
trum.

The Higgs boson jet candidates are identified using a ded-
icated b tagging discriminator, specifically designed to iden-
tify a pair of b quarks clustered in a single jet [55]. The
algorithm combines information from displaced tracks and
the presence of one or two secondary vertices within the
Higgs boson jet in a dedicated multivariate algorithm. The
decay chains of the two b hadrons are resolved by associat-
ing reconstructed secondary vertices with the directions of
the two N -subjettiness axes. Tight and loose operating points
are chosen for Higgs boson jets that have corresponding false-
positive rates for light quark and gluon jets being identified
as jets from b quarks of about 0.8 and 8%, with efficien-
cies of approximately 35 and 75%, respectively. Scale fac-
tors, derived from data in events enriched by jets containing
muons [55], are applied to the simulation to correct for the
differences between data and simulation.

Since the analysis concentrates on hadronic final states,
events containing isolated charged leptons or large miss-
ing transverse momentum are rejected. Electrons are recon-
structed in the fiducial region |η| < 2.5 by matching the
energy deposits in the ECAL with tracks reconstructed in the
tracker [56]. Muons are reconstructed within the acceptance
of the CMS muon systems, |η| < 2.4, using the information
from both the muon spectrometer and the silicon tracker [57].
The isolation of electrons and muons is based on the summed
energy of reconstructed PF candidates within a cone around
the lepton direction. Hadronically decaying τ leptons are
reconstructed in the |η| < 2.3 region by combining one or
three hadronic charged PF candidates with up to two neutral
pions, the latter also reconstructed by the PF algorithm from
the photons arising from the π0 → γ γ decay [58]. The miss-
ing transverse momentum is calculated as the magnitude of
the vector sum of the momenta of all PF candidates projected
onto the plane perpendicular to the beams.
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5 Event selection

Events are collected with four triggers [39]. The first requires
HT, defined as the scalar sum of the transverse momentum
of the PF jets, to be larger than 800 or 900 GeV, depending
on the instantaneous luminosity. The second trigger, with a
lower HT threshold set to 650 GeV, is also required to have
a pair of PF jets with invariant mass larger than 950 GeV,
and pseudorapidity separation |�η| smaller than 1.5. A third
trigger requires at least one PF jet with pT larger than 450
GeV. The fourth trigger selects events with at least one PF jet
with pT > 360 GeV passing a trimmed mass [59] threshold
of 30 GeV, or HT > 700 GeV and trimmed mass larger
than 50 GeV. In all these triggers, reconstruction of PF jets
is based on the anti-kT algorithm with R = 0.4, rather than
R = 0.8 as used offline.

In the offline preselection, the two jets with highest pT

in the event are required to have pT > 200 GeV and
|η| < 2.5, and |�η| ≤ 1.3. At least one of the two jets
must have a soft-drop jet mass compatible with the Higgs
boson mass, 105 < mj < 135 GeV (H jet), and the other
jet a mass compatible with the mass of the vector bosons,
65 < mj < 105 GeV (V jet). The jet mass categoriza-
tion is shown in Fig. 1. The H jet and V jet candidates are
required to have a combined invariant mass mVH larger than
985 GeV, to avoid trigger threshold effects and thus ensure
full efficiency. Events with isolated electrons or muons with
pT > 10 GeV, or τ leptons with pT > 18 GeV, are rejected.
The reconstructed missing transverse momentum is required
to be smaller than 250 GeV.

Soft-drop PUPPI jet mass (GeV)
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Fig. 1 Distribution of the soft-drop PUPPI mass after the kinematic
selections on the two jets, for data, simulated background, and signal.
The signal events with low mass correspond to boson decays where one
of the two quarks is emitted outside the jet cone or the two quarks are
overlapping. The distributions are normalized to the number of events
observed in data. The dashed vertical lines represent the boundaries
between the jet mass categories

The events passing the preselection are divided into eight
exclusive categories. Two categories are defined for the H
jet, depending on the value of the b tagging discriminator: a
tight category containing events with a discriminator larger
than 0.9, and a loose category requiring a value between
0.3 and 0.9. Similarly, two categories of V jets are defined
using the subjettiness ratio: a high purity category containing
events with τ21 ≤ 0.35, and a low purity category having
0.35 < τ21 < 0.75. Although it is expected that the tight and
high purity categories dominate the total sensitivity, the loose
and low purity categories are retained since for large dijet
invariant mass they provide a nonnegligible signal efficiency
with an acceptable level of background contamination.

Two further categories are defined based on the V jet mass,
by splitting the mass interval. Events with V jet mass closer
to the nominal W boson mass value, 65 < mj ≤ 85 GeV,
are assigned to a W mass category, and those with 85 <

mj ≤ 105 GeV fall into a Z mass category. Even if the W
and Z mass peaks cannot be fully resolved, this classification
allows a partial discrimination between a potential W

′
or Z′

signal. The signal efficiency for the combination of the eight
categories reaches 36% at mX = 1.2–1.6 TeV, and slowly
decreases to 21% at mX = 4.5 TeV. The N -subjettiness and
b tagging categorizations are shown in Fig. 2.

6 Background estimation

The background is largely dominated by multijet produc-
tion, which accounts for more than 95% of the total back-
ground. The top quark pair contribution is approximately
3–4%, depending on the category. The remaining fraction
is composed of vector boson production in association with
partons, and SM diboson processes.

The background is estimated directly from data, assum-
ing that the mVH distribution can be described by a smooth,
parametrizable, monotonically decreasing function. This
assumption is verified in the V jet mass sidebands (40 <

mj < 65 GeV) and in simulation. The expressions con-
sidered are functions of the variable x = mVH/

√
s, where√

s = 13 TeV is the center of mass energy, and the number of
parameters pi , including the normalization, is between two
and five:

p0

x p1
,

p0 (1 − x)p1

x p2
,

p0 (1 − x)p1

x p2+p3 log(x)
,

p0 (1 − x)p1

x p2+p3 log(x)+p4 log2(x)
.

Starting from the simplest functional form, an iterative pro-
cedure based on the Fisher F test [60] is used to check at 10%
CL if additional parameters are needed to model the back-
ground distribution. For most categories, the two-parameter
functional form is found to describe the data spectrum suf-
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Fig. 2 Distribution of the N -subjettiness τ21 (upper) and b tagging
discriminator output (lower) after the kinematic selections on the two
jets, for data, simulated background, and signal. The distributions are
normalized to the number of events observed in data. The dashed vertical
lines represent the boundaries between the categories as described in
the text

ficiently well. However, in more populated categories, with
loose b tagging or low purity, three- or four-parameter func-
tions are preferred. The results of the fits are shown in Figs. 3
and 4 for the W and Z mass regions, respectively. Although
the fits are unbinned, the binning chosen to present the results
is consistent with the detector resolution. The event with the
highest invariant mass observed has mVH = 4920 GeV and
is in the W mass, low purity, tight b tag category.

The shape of the reconstructed signal mass distribution
is extracted from the simulated signal samples. The signal
shape is parametrized separately for each channel with a
Gaussian peak and a power law to model the lower tail, for
a total of four parameters. The reconstruction resolution for
mVH is taken to be the width of the Gaussian core, and is 4%
at low resonance mass and 3% at high mass.

Dedicated tests have been performed to check the robust-
ness of the fit method by generating pseudo-experiments

after injecting a simulated signal with various mass values
and cross sections on top of the nominal fitted function. The
pseudo-data distribution is then subjected to the same proce-
dure as the data, including the F test, to determine the back-
ground function. The signal yield derived from a combined
background and signal fit is found to be compatible with the
injected yield within one third of the statistical uncertainty,
regardless of the injected signal strength and resonance mass.
These tests verify that the possible presence of a signal and
the choice of the function used to model the background do
not introduce significant biases in the final result.

7 Systematic uncertainties

The background estimation is obtained from the fit to the
data in the considered categories. As such, the only relevant
uncertainty originates from the covariance matrix of the dijet
function fit, as indicated by the shaded region in Figs. 3 and 4.

The dominant uncertainties in the signal arise from the
H jet and V jet tagging. The b tagging scale factor uncer-
tainties [55] are varied by one standard deviation, and the
difference in the signal yield is estimated to be 4–8% for
the tight categories and 2–5% for the loose categories. The
same procedure is applied to the τ21 scale factors, whose
uncertainty is measured to be 11% for the high purity and
23% for the low purity category, as reported in Sect. 4. The
uncertainties associated with the Higgs boson mass selection
and the V jet tagging extrapolation from the tt scale to larger
jet pT are estimated by using an alternative herwig++ [61]
shower model, and are found to be 5–7% and 3–20% for the
H and V jet candidates, respectively. Both b tagging and τ21

uncertainties are anti-correlated between the corresponding
categories.

Uncertainties in the reconstruction of the hadronic jets
affect both the signal efficiency and the shape of the recon-
structed resonance mass. The four-momenta of the recon-
structed jets are scaled and smeared according to the uncer-
tainties in the jet pT and momentum resolution. These effects
account for a 1% uncertainty in the mean and a 2% uncer-
tainty in the width of the signal Gaussian core. The jet mass
is also scaled and smeared according to the measurement of
the jet mass scale (resolution), giving rise to 2% (12%) nor-
malization uncertainties, respectively, and up to 16% (18%)
migration effects between the W and Z mass regions depend-
ing on the category and signal hypothesis.

Additional systematic uncertainties affecting the signal
normalization include the lepton identification, isolation and
missing transverse momentum vetoes (accounting for 1%
each), pileup modeling (0.1%), the integrated luminosity
(2.5%) [62], and the choice of the PDF set [63] (1% for accep-
tance, 6–25% for the normalization). The factorization and
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Fig. 3 Dijet invariant distribution mVH of the two leading jets in the
W mass region: high purity (upper) and low purity (lower) categories,
with tight (left) and loose (right) b tagging selections. The preferred
background-only fit is shown as a solid blue line with an associated
shaded band indicating the uncertainty. An alternative fit is shown
as a purple dashed line. The ratio panels show the pulls in each bin,

(N data − N bkg)/σ , where σ is the Poisson uncertainty in data. The hor-
izontal bars on the data points indicate the bin width and the vertical
bars represent the normalized Poisson errors, and are shown also for
bins with zero entries up to the highest mVH event. The expected con-
tribution of a resonance withmX = 2000 GeV, simulated in the context
of the HVT model B, is shown as a dot-dashed red line

renormalization scale uncertainties are estimated by varying
the scales up and down by a factor of 2, and the resulting
effect is a variation of 4–13% in the normalization of the
signal events.

8 Results and interpretation

Results are obtained by fitting the background functions and
the signal shape to the unbinned data mVH distributions in
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Fig. 4 Dijet invariant distribution mVH of the two leading jets in the
Z mass region: high purity (upper) and low purity (lower) categories,
with tight (left) and loose (right) b tagging selections. The preferred
background-only fit is shown as a solid blue line with an associated
shaded band indicating the uncertainty. An alternative fit is shown
as a purple dashed line. The ratio panels show the pulls in each bin,

(N data − N bkg)/σ , where σ is the Poisson uncertainty in data. The hor-
izontal bars on the data points indicate the bin width and the vertical
bars represent the normalized Poisson errors, and are shown also for
bins with zero entries up to the highest mVH event. The expected con-
tribution of a resonance withmX = 2000 GeV, simulated in the context
of the HVT model B, is shown as a dot-dashed red line

the eight categories. In the fit, which is based on a profile
likelihood, the shape parameters and the normalization of
the background in each category are free to float. System-
atic uncertainties are treated as nuisance parameters and are
profiled in the statistical interpretation [64]. The background-
only hypothesis is tested against the signal hypothesis in the
eight exclusive categories simultaneously. The asymptotic

modified frequentist method [65] is used to determine limits
at 95% CL on the contribution from signal [66,67]. Limits are
derived on the product of the cross section for a heavy vector
boson X and the branching fractions for the decays X → VH
and H → bb, denoted σ(X)B(X → VH)B(H → bb).

Results are given in the spin-1 hypothesis both for W
′ →

WH and Z′ → ZH separately (Fig. 5) as well as for the
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Fig. 5 Observed and expected 95% CL upper limits on the prod-
uct σ(X)B(X → WH)B(H → bb) (upper) and σ(X)B(X →
ZH)B(H → bb) (lower) as a function of the resonance mass for a
single narrow spin-1 resonance, for the combination of the eight cat-
egories, and including all statistical and systematic uncertainties. The
inner green and outer yellow bands represent the ±1 and ±2 standard
deviation uncertainties in the expected limit. The purple and red solid
curves correspond to the cross sections predicted by the HVT model A
and model B, respectively

heavy vector triplet hypothesis V′ → VH summing the mass-
degenerate W

′
and Z′ production cross sections together

(Fig. 6), where they are compared to the cross sections
expected in HVT models A and B. Upper limits in the range
0.9–90 fb are set on the product of the cross section and the
combined branching fraction for its decay to a vector boson
and a Higgs boson decaying into a pair of b quarks, and com-
pared to the HVT models A and B. In this case, the value
of B(H → bb) is assumed to be 0.5824 ± 0.008 [68]. The
uncertainties in the signal normalization from PDFs, and fac-
torization and renormalization scales, are not profiled in the
likelihood fit, as they are reported separately as uncertainties
in the model cross section. From the combination of the eight
categories, a narrow W

′
resonance with mW′ < 2.37 TeV

and 2.87 < mW′ < 2.97 TeV can be excluded at 95%
CL in model A, and mW′ < 3.15 TeV except in a region
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Fig. 6 Observed and expected 95% CL upper limits with the ±1 and
±2 standard deviation uncertainty bands on the product σ(X)B(X →
VH)B(H → bb) in the combined heavy vector triplet hypothesis, for
the combination of the eight categories. The purple and red solid curves
correspond to the cross sections predicted by the HVT model A and
model B, respectively

between 2.45 and 2.78 TeV in model B. A Z′ resonance with
mZ′ < 1.15 TeV or 1.25 < mZ′ < 1.67 TeV is excluded
in the HVT model A, and the ranges mZ′ < 1.19 TeV and
1.21 < mZ′ < 2.26 TeV are excluded in model B.

The excluded regions for the HVT masses are 1.00–
2.43 TeV and 2.81–3.13 TeV in the benchmark model A.
The ranges excluded in the framework of model B are 1.00–
2.50 and 2.76–3.30 TeV, significantly extending the reach
with respect to the previous

√
s = 8 TeV and

√
s = 13 TeV

searches [20,24]. The largest observed excess, according to
the modified frequentist CLs method [67], corresponds to a
mass of 2.6 TeV and has a local (global) significance of 2.6
(0.9) standard deviations.

The exclusion limit shown in Fig. 6 can be interpreted
as a function of the coupling strength of the heavy vectors
to the SM bosons and fermions in the

[
gVcH, g2cF/gV

]

plane. Here, the uncertainties in the signal normalization
from PDFs, and factorization and renormalization scales,
are profiled in the fit. The excluded region of the parame-
ter space for narrow resonances determined with an analysis
of the combined eight categories of data is shown in Fig. 7.
The region of the parameter space where the natural width
of the resonances exceeds the typical experimental width of
4%, and thus invalidates the narrow width approximation, is
also indicated in Fig. 7.

9 Summary

A search for a heavy resonance with a mass above 1 TeV and
decaying into a vector boson and a Higgs boson, has been
presented. The search is based on the final states associated
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Fig. 7 Observed exclusion in the HVT parameter plane[
gVcH, g2cF/gV

]
for three different resonance masses (1.5, 2.0,

and 3.0 TeV). The parameter gV represents the coupling strength of
the new interaction, cH the coupling between the HVT bosons and the
Higgs boson and longitudinally polarized SM vector bosons, and cF the
coupling between the heavy vector bosons and the SM fermions. The
benchmark scenarios corresponding to HVT model A and model B are
represented by a purple cross and a red point. The gray shaded areas
correspond to the region where the resonance natural width is predicted
to be larger than the typical experimental resolution (4%) and thus the
narrow-width approximation does not apply

with the hadronic decay modes of the vector boson and the
decay mode of the Higgs boson to a bb pair. The data sam-
ple was collected by the CMS experiment at

√
s = 13 TeV

during 2016, and corresponds to an integrated luminosity of
35.9 fb−1. Within the framework of the heavy vector triplet
model, mass-dependent upper limits in the range 0.9–90 fb
are set on the product of the cross section for production
of a narrow spin-1 resonance and the combined branching
fraction for its decay to a vector boson and a Higgs boson
decaying into a pair of b quarks. Compared to previous mea-
surements, the range of resonance masses excluded within
the framework of benchmark model B of the heavy vector
triplet model is extended substantially to values as high as
3.3 TeV. More generally, the results lead to a significant
reduction in the allowed parameter space for heavy vector
triplet models.
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