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Fringe formation in the two-grating interferometer is analyzed in the presence 

of a small parallelism error between the diffraction gratings assumed in the 

direction of grating shear. Our analysis shows that with partially coherent 

illumination, fringe contrast in the interference plane is reduced in the 

presence of nonzero grating tilt with the effect proportional to the grating tilt 

angle and the grating spatial frequencies. Our analysis also shows that for a 

given angle between the gratings there is an angle between the final grating 

and the interference plane that optimizes fringe contrast across the field. 

1. Introduction 

Many authors have studied the details of fringe formation in the two-grating interferom­

eter [1-7]. To date, however, all of the theory describing fringe formation in the far-field 
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two-grating interferometer has assumed parallel diffraction gratings. In near-field Talbot in­

terferometry (which also uses two gratings) Patorski [8,9] and Liu [10,11] have shown that 

fringe formation is sensitive to small parallelism errors between the diffraction gratings. It is 

reasonable to assume that fringe formation in the far-field two-grating interferometer is also 

sensitive to small grating parallelism errors. 

Cheng [6] has shown that the fringe depth of the parallel two-grating interferometer is 

inversely proportional to the spatial frequency of the gratings and the numerical aperture 

(NA) of the illumination. It is reasonable to believe that the effects of small grating paral­

lelism errors may also scale inversely with grating spatial frequency and illumination NA. 

Experimental evidence [12] suggests that when low-NA sources are used, the requirements on 

grating parallelism are well within the capability of typical alignment stages. On the other 

hand, for high spatial frequency implementations (rv 1S-nm grating pitch), using higher­

NA sources, it is reasonable to suspect that the requirements on grating parallelism might 

become a significant issue in practice. 

Extreme ultraviolet (EUV) lithography is the leading candidate for high-volume chip pro­

duction beyond the 32-nm technology node [13,14]. Owing to their low cost, there is cur­

rently an interest in developing stand-alone EUV interference lithography (IL) printing tools. 

Unfortunately, stand-alone coherent sources are not mature enough to support the rapid de­

velopment of coherent IL tools [16]. To date, the best source options for stand-alone EUV IL 

tools are incoherent (broad) sources [17]. Due to the large collection NA of these sources and 

the high grating frequencies required to print features beyond the 32-nm technology node, 

there are serious concerns about the feasibility of implementing incoherent EUV IL tools in 

practice. 

In this paper we will examine fringe formation in the far-field two-grating interferometer 

in the presence of a small parallelism error between the diffraction grartings. The goal of this 

paper is to address the impact of the parallelism error and other experimental uncertainties 

on fringe formation as a function of illumination NA, spectral bandwidth, center wavelength 
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and nominal angle of incidence. 

2. Previous work on the parallel two-grating interferometer 

The parallel two-grating interferometer has been analyzed to several orders of accuracy in 

the literature. The analysis by Leith et al. [2-4] was based on a first-order approximation of 

the transfer function of free space. It was found that nonlocalized fringes form for polychro­

matic plane-wave illumination at any angle e and localized fringes form for extended sources 

(multiple illumination angles), regardless of source spectral bandwidth (color content). This 

work concluded that in defocused interference planes, different illumination angles produce 

shifted versions of the same fringe pattern with the fringe patterns of all spectral elements 

(colors) coinciding. The net fringe dephasing between extreme illumination angles in the 

illumination cone was found to be proportional to the illumination NA and the longitudinal 

distance from the nominal interference plane. 

In follow-up work by Cheng [6], a higher order analysis of the parallel two-grating interfer­

ometer was performed using a geometrical ray-tracing approach. This analysis showed that 

the h = 2,h case, where 11 and .12 arc the spatial frequencies of the first and second gratings, 

respectively, is a special configuration in which many of the second-order terms are mitigated. 

To second order with the h = 2,h geometry, it was found that for on-axis illumination, the 

interference fringes produced by different spectral clements coincide with one another. It 

was also found that as the illumination angle goes off axis, the interference fringes produced 

by different spectral elements no longer coincide except in the nominal (zero-defocus) in­

terference plane. The work by Cheng showed both the illumination NA and source spectral 

bandwidth playa role in fringe localization in the parallel two-grating interferometer. 

To study the nonparallel two-grating interferometer we will use a phase tracking technique 

similar to the transfer function approach used by Leith. Instead of explicitly writing the 

illumination in terms of spatial frequency content we will leave the incidence angle and 

illumination wavelength dependence separated so that we can easily study how angle content 
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and spectral content independently affect the interferometer. 

3. Phase tracking framework 

The geometry of the two-grating interferometer is shown in Figure 1. The incoming light 

strikes grating G1 (spatial frequency 11, assumed sinusoidal) and splits into three diffracted 

orders. The ±1 diffracted orders from G1 propagate a distance Zl to grating G2 (spatial 

frequency h, assumed sinusoidal) where they are redirected back towards the optic axis. 

The =r= 1 diffracted orders from G2 propagate a distance Z2 past the second grating to a 

interference plane where they may overlap and produce a modulated intensity pattern. 

Before we can track the phase of the two beams as they propagate through the nonparallel 

interferometer we need to derive the propagation phase of free space between nonparallel 

planes. We also need to work out the diffraction grating phase for non-tilted and tilted 

gratings. As has been done in the past will ignore diffraction effects from the edges of gratings 

and apertures [2-7]. 

3. A. Propagation phase 

Consider a plane wave propagating at an angle e with respect to the optical axis. To de­

termine the phase acquired by the plane wave in propagating an axial distance Zl we must 

compare the relative phase of the plane wave at the same transverse point x in the longitu­

dinal planes Z = 0 and Z = Zl. 

3.A.L Parallel planes 

Let's look at the transverse point x = 0 for simplicity. As shown in Figure 2 (left), the point 

(x = 0, Z = 0) lies on the surface of the original wavefront, on axis. The ray reaching the point 

(x = 0, Z = Zl) on G2 , however, comes from an off-axis location on the original wavefront. 

The ray reaching the point (x = 0, Z = Zl) must travel a distance ZlCOSe from the original 

wavefront surface that was in phase with the (x = 0, Z = 0) point. Using this geometry, we 

determine the propagation phase of free space propagation between two parallel planes [18]: 
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21f 
¢(z, e, A) = >:z cos e (1) 

where z is the on-axis longitudinal separation between the two planes, e is the propagation 

angle with respect to (with respect to) the optic axis and A is the wavelength. 

3.A.2. Tilted planes 

For the case of tilted planes we need to look at an off axis x point to observe the effect 

of the tilt. As shown in Figure 2 (right) the ray reaching the x coordinate of the tilted G2 

plane (the solid line) comes from a different location on the original wavefront than the ray 

reaching the same x coordinate of the non-tilted G2 plane (the dashed line). The grating tilt 

angle 9 causes the ray to travel an extra tilt-induced distance x tan 9 cos e in addition to the 

distance Zl cos e traveled in the parallel configuration. This extra path length lends itself to 

a nice physical picture, namely, the notion of an x dependent axial distance: 

z~ (x) = Zl + x tan 9 (2) 

By including the possibility of a tilt in the first plane, we develop the propagation phase of 

free space propagation between two tilted planes: 

21f 
¢(z, e, A) = >:(z - xtane1 + x tan ( 2 ) cose (3) 

where e1,2 are the tilt angles of planes 1 and 2 relative to the normal of the optic axis, e is the 

propagation angle with respect to the optic axis, and z is the on-axis longitudinal separation 

between planes 1 and 2. The two x dependent terms are understood as tilt corrections to 

the propagation phase. 

S.B. Grating phase 

It is well known [19] that diffraction gratings add a linear phase ¢(x) = 21fmJx to the 

outgoing (diffracted) field where J and m are the grating spatial frequency and dif-fraction 
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order, respectively. To correctly use this phase, however, the incoming field distribution 

must be written in the coordinate system whose optic axis is normal to the grating plane. 

Our geometry poses a problem for nonzero grating tilt 9 because in these configurations the 

field will be written in a coordinate system whose optic axis is tilted with respect to the 

grating normal. Nevertheless it is not very difficult to develop the framework to correctly 

describe the effect of grating phase with our geometry. 

By definition, the grating phase is simply the phase difference between the field just before 

and just after the grating surface. Consider a plane wave propagating at an angle B with 

respect to the optic axis (which we define as the normal to Gd and impinging on G2 . For 

the non-tilted case (Figure 3 left), as you move away from the optical axis along the surface 

of the grating, you observe light that has travelled a distance x sin B further than the light 

that strikes the grating at the optical axis. If we tilt the grating (Figure 3 right) by an angle 

9 and keep the same observation coordinate x, we observe that the light reaching the grating 

travels an extra tilt-induced distance x tan 9 cos B in addition to the original distance x sin B 

traveled in the non-tilted configuration. Using these geometric distances we determine the 

phase (¢) of the field on the front surface of the grating as a function of the transverse 

distance x from the optical axis. 

(4) 

where Bin is the incoming propagation angle with respect to the optic axis. We can also 

compute the phase of the field on the rear surface of the grating using similar arguments: 

27f 
¢rear(x) = -:\x(sin Bout + tan 9 cos Bout) (5) 

where Bout is the outgoing propagation angle with respect to the optic aXIS. The phase 

difference between the field at the front and rear surfaces of the grating, the grating phase, 

is given by: 
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To compute Bout we use the grating equation: 

Bout = arcsin [sin(Bin + g) + mAf]- g (7) 

where f is the grating spatial frequency, m is the diffraction order and it is understood that 

we transfer into a coordinate system normal to the grating surface, use the standard grating 

equation [20], and then transfer back to the original coordinate system. With this propagation 

phase and grating phase framework we can now propagate a plane wave through the two-

grating interferometer for arbitrary illumination angles, grating frequencies, axial distances 

and grating tilts. 

4. Propagation through the interferometer 

Vve now set out to determine the intensity distribution in the overlap region for arbitrary 

B, A, iI, ,h, ,ZI, Z2, g and interference plane tilt w. For bookkeeping purposes we will break 

the two-grating interferometer into two regions: 1 and 2; and two beams: top (T) and bottom 

(B) as shown in Figure 4. As an example of the nomenclature we write sin BT2 for the sin of 

the propagation angle of the top (T) beam in region 2. The optic axis will be defined as the 

normal to the surface of G I so that all grating tilts are absorbed into G2 . The grating phase 

assigned to a region will be the grating phase from the diffraction grating at the beginning of 

the region, i.e., region 1 is assigned the grating phase from G I . The prescription for tracking 

the phase of a beam through the nonparallel two-grating interferometer is as follows: 

1. Input a monochromatic (wavelength /\) unit amplitude plane wave propagating at angle 

B with respect to the optic axis. 

2. Apply grating phase for non-tilted G I 
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3. Apply propagation phase for propagating the axial distance Zl at angle e1 between 

non-tilted G1 and tilted G2 

4. Apply grating phase for tilted G2 

5. Apply propagation phase for propagating the axial distance Z2 at angle e2 between 

tilted G2 and tilted interference plane 

The fields of the top and bottom beams in the tilted interference plane can be used to 

compute the intensity pattern created by the input plane wave: 

I(x) = JET + EBJ 2 
= JETJ 2 + JEBJ 2 + ETE~ + E~EB 

= 2 + 2 cos ( cP (x, e, A, h, .12, Zl, Z2, 09, w)) 

where cP = cPT - cP B is the phase difference between the top and bottom beams in the tilted 

interference plane; we will omit the explicit x, e, A, h, .12, ,Zl, Z2, 09, w dependence from 

here on out. Tables 1 and 2 summarize the propagation phase and grating phase, respec­

tively, acquired by each beam during propagation through the two-grating interferometer. 

To determine the propagation angles of the top and bottom beams in regions 1 and 2 we use 

Eq. (7): 

eTl = arcsin [sin e + AhJ 

eEl = arcsin [sin e - Ai1J 

eT2 = arcsin [sin( eTl + g) - Af2J - 09 

eB2 = arcsin [sin(eEl + g) + AhJ - 09 

8 
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When computing the phase difference cP between the top and bottom beams in the tilted 

interference plane, all of the terms explicitly involving the C2 tilt (g) cancel; the influence 

of the grating tilt remains buried inside the terms containing region 2 propagation angles. 

(9) 

where 

5. Revealing the impact of the grating tilt 

Up to this point, there have been no approximations except that we have ignored diffraction 

effects from the edges of the gratings and apertures. In an attempt to unmask the implicit 

effect of the C2 tilt buried in cP we now set out to simplify the troublesome terms involving 

the region 2 propagation angles governed by Eq. (7). Vve begin by introducing the notion of 

an effective spatial frequency f~ for C2 in the presence of a small tilt g. That is, we wish to 

create a virtual non-tilted grating C; with frequency f~ that generates the same propagation 

angles as the true tilted C2 at spatial frequency fz. Assuming a small grating tilt allows us 

to use the expansion: 

arcsin(o: + 5) ~ arcsin 0: + 5(1- 0:
2)-1/2 (10) 

on Eq. (7) to pull the grating tilt inside the arcsin argument, i.e., 

Bout ~ arcsin [sin(Bin + g) + mAf - 9 (1 - [sin(Bin + g) + rnAfl2) 1/2] 
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Furthermore, since small g is assumed, we can make another expansion, namely: 

sin( Bin + g) ~ sin Bin + g cos Bin 

so that Eq. (7) is well approximated by: 

Bout ~ arcsin [sin Bin + m.At] (11) 

where 

is the effective spatial frequency of the virtual grating (a function of .t, A, g, Bin and m.). 

Continuing our efforts to unmask the effect of the G2 tilt, we will now assume several 

restrictions on the interferometer geometry that make the problem tractable. As described 

by Cheng [6], the h = 2!I, Zl = Z2 configuratioll of the parallel two-grating interferometer is 

a special case in which many of the second-order spectral bandwidth and angle bandwidth 

terms drop out. For the remainder of our analysis we will consider practical implementations 

of this configuration and assume h = 2!I(1 + 'Y) and Z2 = Zl + d where 'Y is understood as 

a small unitless G2 pitch error and d is a small defocus parameter. \iVith this configuration, 

it can be shown (see Appendix A) that the effective spatial frequency of G; for both beams 

(top and bottom) is well approximated by: 

Using the notion of the virtual non-tilted G; we can use Eq. (11) with the above .t~ to write 

approximate expressions for the region 2 propagation angles that were originally obtained 

with Eq. (7) . 
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eTl = arcsin [sin e + AlI] 

eEl = arcsin [sin e - AlI] 

e B2 ~ arcsin [sin eTl + 2AII 'Y - gCl] (12) 

To simplify the C2 term with the rewritten propagation angles we introduce the expansion: 

(52 
cos [arcsin(sin Ct + 5)] ~ cos Ct - Han Ct - 3 

2 cos Ct 
(13) 

where we have expanded the function f(x) = cos [arcsin(x)] = (1 - X2)1/2 to second order 

about the nominal value sin Ct and have assumed 5 is a small correction term. Using Eq. (13) 

to expand C2 to first order in the small parameters 09 and 'Y we obtain: 

where: 

Simplifying the 8 2 term in Eq. (9) is relatively straightforward with the new propagation 

angles from Eq. (12); the result is 8 2 ~ -2II(1 + 2'Y)/A. Combining all of these approxima-

tions we achieve an expression for the phase that explicitly shows the impact of G2 tilt and 

pitch error: 
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¢ ~ - 21fx(2h)(1 + 21') + 21fx/ A [2gCl + tan w (-Cl + 2A1nTl - gClTl )] 
, ~ , .I 

v 
desired modulaiton 

+ 21f / A [-dCl + Zl (2Aln - gCl) T l ] , v-----------~' 
I), .A dependent fringe shift 

v 
unwanted modulation 

Regarding the unwanted modulation term, it can be shown that when the interference plane 

tilt, w, is exactly twice the grating tilt, 09, all first order terms in small parameters 09 and 

I' cancel leaving only terms of 0(2) and higher in the small parameters. For the remainder 

of the analysis we will assume that w = 209 and drop the unwanted modulation term. Any 

remaining interference plane tilt error with respect to the nominal tilt of 209 can be lumped 

into a transversely varying defocus. The expression for the phase becomes: 

and we remind the reader that C l and Tl are both functions of e, A, and h. The first 

and last terms in this expression represent the usual defocus term described in detail in the 

literature [6,7] and the desired modulation at spatial frequency 2h (1 + 21'), respectively. The 

second and third terms represent I' and 09 induced limitations, respectively, on the tolerable 

illumination tJ.e and tJ.A that maintain fringe contrast in the interference plane - even with 

zero defocus. 

6. Discussion 

We begin by reminding the reader that the analysis leading to Eq. (14) extends only to 

the limited class of two-grating interferometers with small tilts between the gratings and 

with Z2 ~ Zl and h ~ 2h· In this special configuration we've obtained an expression for 

the phase ¢ that explicitly shows the effects of grating tilt, pitch mismatch and interference 

plane defocus. 
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The utility of the interferometer, however, doesn't depend on the phase itself, but how 

rapidly it changes as a function if illumination color and angle. For nonzero g, I and d, 

the first three terms in Eq. (14) independently cause dephasing between the fringe patterns 

associated with different illumination colors and angles. To have an interferometer in working 

order (i.e., having reasonable fringe contrast) the fringe-pat tern-shift from the two extreme 

illumination spatial frequencies should be less than the width of a fringe. Satisfying this 

specification requires the net dephasing from the first three terms in Eq. (14) to be less than 

Jr. 

6. A. Illumination conditions 

At this point it is useful to define two illumination classes that limit fringe contrast ll1 

clear-cut ways: 

1. Temporally limiting illumination 

• Polychromatic with bandwidth ~A and center wavelength). (partially temporally 

coherent). 

• One incidence angle at eo (spatially coherent) 

2. Spatially limiting illumination 

• Monochromatic at wavelength). (temporally coherent). 

• Full-N A of incidence angles ~e centered at eo (partially spatially coherent). 

For temporally limiting illumination in the ideal configuration (g 0) it has been 

shown [6,7] that the temporal-limited depth of focus is given by: 

DOFt::,.)., = cos
4 eo 

2A~Aff tan eo (15) 

where the DOF is defined as the twice the largest d that limits the net dephasing from 

diffcrent colors in the illumination to a maximum valuc of Jr (term 1 in Eq. (14)) . In a 
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similar fashion (see Appendix B) a spatially-limited DOF can be obtained for the ideal 

configuration (09 = / = 0) with spatially limiting illumination: 

DOF = cos
2 eo 

M 2hfle (16) 

When fle and flA are both nonzero, the above expressions are useful for determining whether 

or not one form of dephasing dominates the other; this is often the case in practice. "'Ie define 

the illumination to be NA-limited when the dephasing from illumination spectral content 

(flA) is negligible in comparison to the dephasing from illumination angle content (fle). The 

specification requires DOF6.0 « DOF6.)" or: 

(17) 

When broad source illumination is used, the illumination is often NA-limited. For example, 

when fle = 4° (0.07 rad), eo = 15° and >-h = 0.25, NA-limitation requires flAj>- « 3.9 which 

is satisfied by almost any existing source at any center wavelength. Although we've argued 

this case for the ideal configuration, is reasonable to assume that these characteristics also 

hold in the 09 =1= 0, / =1= 0 configuration. For the remainder of the discussion we will consider 

the class of nonparallel interferometers that operate in the NA-limited regime: this enables 

us to treat the specific case of spatially limiting illumination and apply the results to the 

larger context of all NA-limited illumination schemes. We now focus our attention on Eq. 

(14), specifically, we wish to determine how eo, fle, 09, /, and d affect fringe formation. 

6.B. Grating parallelism tolerances 

Before we examine the interplay between the various terms in Eq. (14) we will approximate 

C1 and T1 with Eq. (13) and with the following expansion: 

5 352 sin 0: 
tan [arcsin(sin 0: + 5)] ~ tan 0: + --3- + " 

cos 0: 2 cos" 0: 
(18) 
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Here we have expanded the function f(x) = tan[arcsin(x)] = x/(1 - X)1/2 to second order 

about the nominal value sin a and have assumed 6 is a small correction term. Using Eqs. 

(13) and (18) we obtain: 

Gl ~ -2)..JI tan e 

T 
~ 2 e 3)..2j{sine 

1 ~ tan + ~ e 
cos" 

(19) 

where for small e the first term in Eq. (19) for Tl suffices for calculation purposes. With 

these approximations the various terms in Eq. (14) become easier to analyze. 

The first term in in Eq. (14) has already been analyzed in this paper as well as in the 

literature [6,7]. The third term in Eq. (14) is unique to the case of nonparallel diffraction 

gratings and requires some discussion. Using the expressions in Eq. (19) to approximate 

the G1Tl product as -4)..JI tan2 e, we observe that grating tilt (which shows up entirely in 

term 3) causes different illumination angles to produce different phR.sed (spatially shifted) 

fringe patterns. For spatially limiting illumination, the dephasing between the extreme angles 

in the illumination cone is (to first order) proportional to g, .il, Zl and 6...e and increases 

substantially as eo moves off-axis. To visuali7,e the eo dependence, Figure 5 shows the G1Tl 

product and it's derivative for several values of 'f) == )..JI E [0.05, 0.25] with -45 < e < 45 

degrees. These plots clearly show that the local slope of G1Tl increases nonlinearly from zero 

as eo moves off-axis. 

To come up with a tolerance spec on 9 that enables a workable DOF we require that 

the dephasing caused by the grating tilt term in Eq. (14) (term 3) is much less than the 

dephasing caused by the DOF term (term 1). \1I/e first consider the case of an illumination 

cone centered on-axis, with no grating pitch mismatch (ry = 0). For illumination with full-NA 

6...e and eo = 0° the dephasing requirement leads to the following condition [23]: 
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(20) 

As an example, we consider parameters suitable for an incoherent EUV 1L tool: 1/.h = 30 

nm, Zl = 20 mm and t::.e = 4°. These parameters require 9 « 300 Jirad which is manageable 

in practice. As the nominal illumination angle moves off-axis, parallelism tolerances get 

tighter. The local slopes of C1T1 and C1 can be approximated by: 

(21 ) 

where for e < 30° the first term in Eq. (21) for C1T1 suffices for calculation purposes. To 

determine the new spec for tolerable 9 in off-axis geometries we require: 

Using Eq. (21) (only the first terms) we can solve for g: 

d 
g«---

4Z1 tan eo 

(22) 

(23) 

Eq. (23) is equivalent to Eq. (20) with t::.e replaced by 8 tan eo. With the EUV 1L tool 

parameters form above we find that eo = 5° requires 9 « 30 Jirad; increasing eo to 30° 

tightens the spec even more to 9 « 5 Jirad. These findings suggest that interferometers 

operating in the NA-limited regime should avoid off-axis implementations (which would be 

required if reflective gratings are used), especially in applications where high spatial frequency 

gratings and larger numerical apertures are used. 

16 



6. C. Grating pitch mismatch and optimization 

Up to this point we have assumed that " the grating pitch mismatch, is zero. We now include 

the possibility of a grating pitch mismatch, however, we treat it in the sense that the pitch 

mismatch is fixed at one value and cannot be altered. Because 9 and d can be manipulated 

in practice, there is the possibility of using a nominal defocus and/or grating tilt to partially 

mitigate the effects of the pitch mismatch. 

One straightforward optimization scheme is to use the dephasing from a small amount 

of defocus to mitigate most of the dephasing due to the grating pitch mismatch. For this 

optimization we use term 1 to cancel term 2 in Eq. (14) at the center wavelength and center il­

lumination angle. The optimized value for the defocus is dideal = 2Z1 ).,!llT1 (eo, ).,) / C1 (eo, )"). 

In order to include the possibility of a focus error, now with respect to dideal, we redefine the 

defocus parameter: d == dideal + d' where d' is understood as the defocus with respect to to 

dideal' The expression for the phase in this optimization is written: 

(24) 

where 

describes the ,-dephasing that could not be cancelled with defocus. For the remainder of 

the discussion we will drop the prime on d'. Assuming spatially limiting illumination we 

can simplify the expression for N with the substitution A == ).,. In section 6.B we concluded 

that off-axis implementations should be avoided in applications with large NA's and high 

grating frequencies; we limit our discussion of pitch mismatch tolerances to illumination cones 

centered on-axis. When eo = 00 we can use Eq. (19) to write a very good approximation for 

N. 
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where the final approximation is valid only for small e. A workable DOF requires that the 

dephasing caused by the remaining pitch mismatch term in Eq. (24) (term 2) is much less 

than the dephasing caused by the DOF term (term 1). The dephasing requirement leads to 

the following condition: 

d 1 
'Y « 6,\2 JlZl(6..e)2 = 24,\2z1 (!I6..e)3 (25) 

For the EUV 1L tool example with l/.fI = 30 nm, Zl = 20 mm, 6..fJ = 4° and'\ 13.5 

nm, Eq. (25) requires 'Y « 10-2 or a pitch mismatch much less than one part in a hundred. 

As the nominal operation wavelength increases and the illumination NA decreases this spec 

becomes more lenient. We remind the reader that the specification determined here is for 

the straightforward optimization scheme where defocus dephasing is used to compensate for 

pitch mismatch dephasing. The optimization parameter space, however, is quite large as it 

contains three interrelated parameters fJo, g, and d; determining the optimal combination of 

9 and d for each eo would require a detailed numerical study that will not be pursued in this 

work. 

7. Summary 

By using a two-dimensional phase tracking approach we have obtained the exact expression 

for the interference pattern in a two-grating interferometer when the angle between the 

gratings (g) and the angle between the final grating and the interference plane is ar bi trary. 

When practical implementations of the 12 = 2!I, Z2 = Zl configuration are considered and 

small 9 is assumed, several binomial expansions of the arguments inside the cosine function 

of the fringe pattern bring out the wavelength and incidence-angle dependence of grating 

tilt, grating pitch mismatch, interference plane tilt, and interference plane defocus. 
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For on-axis and off-axis nominal incidence angles we have derived specifications for tolera­

ble g. It was found that for off-axis nominal incidence angles the specification for tolerable 9 

can become 1 or 2 orders of magnitude more strict than the specification for eo = 0°. In gen­

eral, the g-induced dephasing is proportional to g, iI, Zl and ~e and increases substantially 

as eo moves off-axis. For tilt angle 9 between the two gratings, we have found the optimal 

angle between the final grating and the interference plane is also g. In this configuration all 

unwanted modulation terms are of 0(2) or higher in the small parameters g, 'Y, and d. 

It was found that for a small grating pitch mismatch [we assume h = 2iI(1 +'Y)], nonzero 

nominal defocus and grating tilt may be used to partially mitigate the pitch mismatch de­

phasing in broad-source implementations. In the straightforward optimization scheme where 

dephasing from defocus is used to mitigate clephasing form pitch mismatch, a specification 

for tolerable pitch mismatch has been obtained. 

The work presented here has shown that experimental limitations in grating alignment, 

grating pitch matching and interference plane focus control have an increasingly significant 

impact on interferometer performance as the grating period decreases and the illumination 

NA increases. For incoherent EUV IL tools it is clear that off-axis reflection-based imple­

mentations should be avoided due to the impractical tolerance on grating alignment. The 

operation of on-axis transmission-based incoherent EUV IL tools, however, appears to be 

within the capabilities of existing alignment stages and nano-fabrication facilities. 
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A. Effective grating frequency 

Starting with Eq. (11): 

I 9 [ ([ . ]2) 1/2] f = f + mA cos ein - 1 - sm ein + 9 cos ein + mAf 

we wish to determine f~T' the effective spatial frequency of the virtual grating G~ for the 

top beam. We make the following substitutions in Eq. (11): f = 2h(1 + i'), m = -1, and 

sin ein = sin eTl = sin e + \h. We obtain: 

where we've used sin e - /\h = sin e B1 inside the small-bracketed term. As we're only in-

terested in keeping terms that are first order in the small parameters 9 and i', we drop the 

9 cos eTl - 2Ah i' term before the squaring operation; we're able to do this because of the 

preceding 9 that multiplies everything inside of the large brackets. After simplification we 

obtain: 

where the bracketed term is equivalent to C1 . The calculation for f~B (the effective spatial 

frequency of the virtual grating G~ for the bottom beam) is done in a similar fashion and 

yields the exact same result. 

B. Spatially-limited D.O.F. 

Starting with: 

we can use Eq. (13) to second order [22] to obtain: 
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With this approximation for Cl we can differentiate with respect to e to obtain: 

BCl 2\h 
Be ~ - cos2 e 

Using the above relationship, we can determine the value of d where the net dephasing (fringe-

pattern-shift) of all the incidence angles within the illumination cone reaches a maximum 

value of 'if. 

Defining the DOF as twice the maximum dephasing distance, we obtain: 

where 6.e is the illumination full numerical aperture (NA) and eo is the nominal illumination 

angle. 
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Fig. 1. The two-grating interferometer. All diffraction gratings are assumed 
sinusodial. For instructive purposes, the illumination contains two distinct 
wavelengths, Al and A2, in a small numerical aperture (NA) of incidence angles 
centered on-axis. It is assumed the zero-order transmitted beam is blocked at 
the second grating so it is not shown. Darker shades indicate locations where 
the two distinct colors spatially overlap. 
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Fig. 2. Computing the propagation phase of free space. This is a side-view 
schematic of the two-grating interferometer in non-tilted (left) and tilted 
(right) configurations. The dashed line in the tilted case shows the ray that is 
used for the non-tilted case. See section 2.A for an in-depth description. 

27 



Non-tilted 
Grating 

G 

t 
z 

Tilted 
Grating 

z 

1\ \ \..--:;: cose 

1

\· \ t\a~g 
-'\'"\ \ 

9 \ ' . 

I 

Fig. 3. Computing the grating phase. This is a side-view schematic of a plane 
wave propagating at angle e striking a diffraction grating in non-tilted (left) 
and tilted (right) configurations. For the tilted case to the right, the ray that 
would be used for the non-tilted case is shown with dashed lines. See section 
2.B for an in-depth description. 
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Fig. 4. Two-grating interferometer nomenclature. This is a side-view schematic 
of the two-grating interferometer and describes the nomenclature used 
throughout this paper for distances, angles, regions, etc. 
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Table 1. Tracking the propagation phase 

Beam 
T1 
B1 
T2 
B2 

Propagation Phase 
2; (Zl + x tan g) cos eTl 
2; (Zl + x tan g) cos e B1 
2; (Z2 - x tan 9 + x tan w) cos eT2 

2; (Z2 - x tan 9 + x tan w) cos e B2 
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Beam 
T1 
B1 
T2 
B2 

Table 2. Tracking the grating phase 

Grating Phase 
2; x(sin BTl - sin B) 
2; X (sin B Bl - sin B) 
2; x(sin BT2 - sin BTl) + 2; X tan g( cos BT2 - cos BTl) 
2;x(sinBB2 - sinBBl) + 2;xtang(cosBB2 - COSBBl) 
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Fig. 5. Plots of the CITI product (left) and it's derivative with respect to. e 
(right) for for several values of 7J == \h E [0.05,0.25] with -45 < e < 45 
degrees. 
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