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Deep Learning–based Eco-driving System for Battery 
Electric Vehicles 

EXECUTIVE SUMMARY 

The uninterrupted growth in transportation activities, for both people and goods movement, 
has been exerting significant pressure on our socio-economics and environment. However, 
emerging technologies such as connected and automated vehicles (CAVs), transportation 
electrification, and edge computing have been stimulating increased efforts by engineers, 
researchers, and policymakers to tackle transportation-related problems, including those 
focused on energy and the environment. The eco-driving strategies based on CAV technology 
particularly have attracted significant interest from all over the world due to its potential to 
save energy and reduce tail-pipe emissions. Among all CAV based eco-driving strategies, the 
Eco-Approach and Departure (EAD) application at Signalized Intersections has shown the most 
significant promise. In this system, an equipped vehicle can take advantage of the signal phase 
and timing (SPaT) and geometric intersection description (GID) information from the upcoming 
signalized intersection and calculate the optimal speed to pass on a green light or to decelerate 
to a stop in the most eco-friendly manner. Speed recommendations may be provided to the 
driver using a driver-vehicle-interface (DVI) or to the vehicle systems that support automated 
longitudinal control capabilities. 

In this project, the research team conducted a thorough literature review of EAD algorithms, 
and identified a major research gaps in the following areas: (1) the balance between system 
optimality and computational efficiency; (2) designated algorithms for electric vehicles (e.g., 
consideration of regenerative braking); and (3) taking into account downstream traffic 
information (e.g., prediction of preceding vehicle’s state). To address these gaps, the research 
team proposed a deep learning–based trajectory-planning algorithm (DLTPA) for EAD 
application, which can be considered as an approximation of a global optimal algorithm (called 
a graph-based trajectory planning algorithm or GTPA) that the research team previously 
developed. The proposed DLTPA has two processes: offline (training) and online 
(implementation), and it is composed of two major modules: 1) a solution feasibility checker 
that identifies whether there is a feasible trajectory subject to all the system constraints, e.g., 
maximum acceleration or deceleration; and 2) a regressor to predict the speed of the next time 
step. 

Preliminary simulation study in microscopic traffic modeling software PTV VISSIM showed that 
the proposed DLTPA can achieve a great balance of energy savings vs. computational efforts 
when compared to the baseline scenario where no EAD was implemented and the optimal 
solution (in terms of energy savings) was provided by GTPA.
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Introduction 

The uninterrupted growth in transportation activities, for both people and goods movement, 
has exerted significant pressure on our socio-economics and environment. The transportation 
sector in the United States consumed approximated 27.5 quadrillion BTUs (British thermal unit) 
of energy in 2016, 92.2% percent of which came from petroleum [1]. In addition, the latest 
annual report by the U.S. Environmental Protection Agency (USEPA) estimated that surface 
transportation modes (such as passenger cars, trucks, buses, and motorcycles) contributed 
1,556 MMT CO2eq to greenhouse gas (GHG) emissions in 2016, accounting for 28.5% of 
nationwide GHG emissions [2]. According to the same report, transportation just slightly 
surpassed the electric power industry (28.4%) and became the largest source of GHG across all 
U.S. economic sectors in 2016. 

On the other hand, emerging technologies such as connected vehicles (CV), transportation 
electrification, and edge computing have stimulated increased efforts from engineers, 
researchers and policymakers to tackle transportation-related energy and environmental 
problems. Good examples include the Applications for the Environment: Real-Time Information 
Synthesis (AERIS) Program initiated by the U.S. Department of Transportation [3], and the 
eCoMove project funded by the European Commission [4]. A variety of environmentally-
friendly CV applications, in particular those related to eco-driving strategies, have been 
proposed, developed, and validated [5]. Among all environmentally-friendly eco-driving 
strategies, the Eco-Approach and Departure (EAD) at Signalized Intersections application has 
shown significant promise [6–10]. In this system, a vehicle can take advantage of the signal 
phase and timing (SPaT) and geometric intersection description (GID) information from the 
upcoming signalized intersection and calculate the optimal speed to pass on a green light or to 
decelerate to a stop in the most eco-friendly manner. Speed recommendations may be 
provided to the driver using a driver-vehicle-interface (DVI) or to the vehicle systems that 
support automated longitudinal control capabilities.  

Due to the benefits of EAD-like eco-driving algorithms, numerous studies have focused on their 
development and testing [11–20]. However, many of these algorithms are not flexible enough 
to effectively handle customized powertrain characteristics, interaction with other traffic, road 
grade, and travel through multiple intersections [33]. This project aims to address some of 
these gaps, and the uniqueness of this research includes: 

• Customized electric powertrain. Based on real world data, an electric vehicle (EV) energy 
consumption model is developed and integrated into a new eco-driving algorithm and 
the regenerative braking effect is taken into account. 

• Prediction of downstream vehicle’s trajectory. Machine learning technique is applied to 
a snippet of a vehicle’s downstream trajectory (which may be obtained from an on-
board sensor, such as radar) to predict its movement (e.g., stopping, acceleration, 
cruising). This information may help the vehicle better plan its trajectory for saving 
energy. 
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• Deep learning–based EAD algorithm. This algorithm can achieve a balance between 
solution optimality and computational efficiency. 

Literature Review 

In this section, we first review previous research on Eco-Approach and Departure (EAD) 
applications and then give a brief introduction on the powertrain model used for fuel/energy 
consumption estimation in this study. 

The State-of-the-Art on Eco-Approach and Departure 

In the past decade, a variety of studies have been conducted on EAD, especially from the 
perspective of an isolated intersection. Mandava et al. [11] proposed a piecewise linear-
trigonometric function–based vehicle trajectory planning algorithm for eco-driving along an 
urban arterial road. The algorithm was extensively evaluated and validated in simulations [21] 
and field testing [22], in the form of an advanced driver assistance system [23] and partially 
automated control [24]. It showed excellent real-time performance and substantial benefits in 
reducing fuel consumption and tailpipe emissions. However, significant efforts may be 
necessary to modify the algorithm to adapt it to customized powertrain models and rolling 
terrain. Based on the VT-Micro1 model, Rakha and Kamalanathsharma [13] developed a 
constant deceleration based eco-driving strategy to avoid full stops at signals. They later 
improved upon this, using multi-stage dynamic programming and recursive path-finding 
principles, as well as evaluation with an agent-based model [25]. Asadi and Vahidi [14] 
proposed a two-step predictive cruise control concept, aiming to reduce fuel use and trip time 
by using traffic signal status information. The first step is to determine the target speed based 
on an available green window, and the second step is to perform the optimal tracking of the 
target speed. Katsaros et al. [15] developed a Green Light Optimized Speed Advisory (GLOSA) 
system designed to minimize average fuel consumption and average stop delay at a traffic 
signal. By taking into account the queue discharging process, Chen et al. [16] developed an eco-
driving algorithm for a vehicle approaching and leaving a signalized intersection to minimize a 
linear combination of emissions and travel time, without taking into account roadway grade 
information. Jin et al. [17] formulated the power-based optimal longitudinal connected eco-
driving problem into a 0-1 Binary Mixed Integer Linear Programming (MILP), which is applicable 
to signalized intersections, non-signalized intersections, and freeways. The approach can take 
into account road grade effects and powertrain dynamics, but has relatively low computational 
efficiency. Li et al. [18] used the Legendre Pseudo-Spectral method and knotting technique to 
overcome the discrete gear ratio issue in the optimal control for eco-driving at signalized 
intersections. Huang and Peng [19] adopted a simplified powertrain model and applied the 
Sequential Convex Optimization approach to optimize vehicle speed trajectory at signalized 
intersections, which aimed to keep a balance between the optimality and real-time 
performance.  

                                                      

1 A microscopic vehicle energy/emission model developed by Virginia Polytechnic Institute and State University 
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When considering the application of an Eco-Approach and Departure system in a more realistic 
environment, many studies took a “reactive” approach to cope with the disturbance from the 
downstream traffic (e.g., switching to the car-following mode control if the subject vehicle was 
too close to its predecessor) or assumed traffic signals were running in a fixed-time mode [20, 
26, 27]. To address these issues, some researchers specifically focused on tackling the queuing 
effects for Eco-Approach and Departure at Signalized Intersections (EADSI) by applying the 
shockwave theory [28] or data-driven techniques [29] to predict the queue length or, in 
essence, the trajectory of the subject vehicle’s predecessor. Other approaches were dedicated 
to dealing with uncertainties in traffic signal operation such as countdown information by 
improving the prediction of SPaT [30] or developing more robust eco-driving strategies [31, 32]. 

Estimation of Electric Vehicle Energy Consumption 

Recently, a good deal of effort has been devoted to developing estimation models for energy 
consumption in electric vehicles [34–42]. Several studies established EV energy consumption 
estimation models at different granularity for the purpose of eco-routing applications [42], 
assessment of different aggregation level influence on energy consumption [36], and eco-
driving on urban arterial roads [35]. 

From the perspective of modeling methodology, the knowledge-driven (“white-box”) approach 
either considers the vehicle as a point-mass by applying Newton’s Laws (analytical model) or 
builds up a detailed physical process for each module in an electric vehicle [34, 38, 40]. This 
approach has the advantage of providing a direct link between vehicle or power train dynamics 
and the variables affecting energy consumption. However, the knowledge-driven models may 
be too generic without differentiating the powertrain type or overly complex in real-time 
implementation. For example, Wu et al. [40] used real-world measurements and established an 
instantaneous EV energy consumption model directly derived from the vehicle dynamics. All 
the parameters in their model are reduced to predetermined constants. In contrast, the data-
driven (“black-box”) approach applies statistical techniques [35, 39] or machine learning 
algorithms [37] to the dataset collected from a vehicle test bed or real-world driving. This 
approach may result in very accurate estimation results based on a customized dataset or a 
specific scenario. However, the applicability to another situation is questionable. In addition, 
the physical meanings of selected variables and interpretation of such models are not 
justifiable. Yao et al. [39] proposed a purely statistical model in which variables include a 
complete list of combinations of speed and acceleration up to the third order. The meaning of 
some variables is vague. Further, the results are validated only with data collected in an ideal 
environment without considering road grade effects. Table 1 lists some related work by other 
researchers on the EV energy consumption estimation. 
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Table 1. Summary of studies on EV energy consumption estimation. 

Authors Impact Factors Energy Estimation 
Model 

Granularity 

Yang et al. [34] speed, acceleration, 
road grade  

Physical/ analytical 
model 

Instantaneous 

Zhang et al. [35] speed, acceleration, 
state of charge 

Polynomial regression Instantaneous 

Baouche et al. [36] average speed VEHLIB2 consumption 
model 

Trip-based 

Alvarex et al. [37] statistic values of 
speed, acceleration 
and jerk 

Artificial neural 
network  

Instantaneous 

Chang N. and Hong J. 
[38] 

speed, acceleration, 
road grade, cargo 
weight 

Physical/ analytical 
model 

Instantaneous 

Yao et al. [39] speed, acceleration, 
Vehicle Specific Power 
(VSP) 

Polynomial regression Instantaneous 

Wu et al. [40] speed, acceleration, 
road grade 

Physical/ analytical 
model 

Instantaneous 

Felipe et al. [42] speed, acceleration, 
jerk and road grade 

Artificial neural 
network 

Trip-based 

Vehicle Movement Prediction 

Accurate and reliable prediction of vehicle speed trajectory is an important component in many 
Intelligent Transportation Systems (ITS) applications, particularly for safety and environmental 
related applications. Making such predictions is a challenging task, as the vehicle speed 
trajectory may be affected by various dynamic factors, e.g., signal status, maneuvers of 
surrounding vehicles, and perhaps interruption from pedestrians. In the literature, various 
approaches for vehicle speed prediction have been investigated and evaluated [43–51]. In 
general, the existing vehicle speed prediction strategies can be categorized into two major 
classes: model-based approaches and data-driven approaches. The model-based approaches 
predict the vehicle speed trajectory based on pre-defined model structures such as Constant 
Speed Model, Constant Acceleration Model, Constant Yaw Rate and Acceleration Model [43]. 

                                                      

2 A hybrid vehicle simulation tool: https://www.eco7.ifsttar.fr/en/the-institute/ame2/laboratories/eco7-
english/vehlib/ 

https://www.eco7.ifsttar.fr/en/the-institute/ame2/laboratories/eco7-english/vehlib/
https://www.eco7.ifsttar.fr/en/the-institute/ame2/laboratories/eco7-english/vehlib/
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However, the underlying dynamics of human cognition, decision-making, and execution of 
drivers and vehicle systems are extremely complex and these simplified models may not be 
applicable [44]. On the other hand, data-driven approaches have recently been well 
investigated since they show more flexibility and applicability in representing system dynamics. 
Good examples of effective data-driven approaches for vehicle speed trajectory prediction 
include Non-Parametric Regression, Gaussian Mixture Regression and Artificial Neural Networks 
[45– 48]. In a report by Houenou et al. [46], the defined maneuver recognition algorithm 
selected the best vehicle trajectory that would minimize a cost function by comparing the 
current maneuver to the pre-defined trajectory set on the highways. Considering the 
requirement for a large sample of vehicle trajectories and the complexity of maneuver 
recognition in urban areas, applying this algorithm real-world urban traffic is challenging. 
Gaussian Mixture Regression is another promising parametric method to approximate or 
predict vehicle trajectories by calculating a conditional probability density function that consists 
of a weighted linear combination of Gaussian component densities [47]. Artificial Neural 
Networks have been proven to be an effective method for accurately forecasting vehicle speed 
and position, due to their strong capability of capturing complex and nonlinear dynamics [48–
50]. A comparative study of major parametric and non-parametric approaches for vehicle speed 
prediction on highways indicates that Artificial Neural Networks outperform all the other 
methods in terms of both predictive accuracy and applicability [48]. Some approaches (i.e., 
TrackT [51] and TMicroscope [52]) have been proposed to enhance tracking of RFID systems to 
retrieve trajectory information. These approaches could provide real time trajectory 
information with high accuracy and be combined with advanced predictors to improve the 
overall performance. 

Deep Learning Approach and its Applications in Transportation 

This section briefly reviews some recent publications on the application of deep-learning 
techniques to the transportation area. 

Increasing transportation efficiency reliably and at a low cost becomes challenging as 
transportation infrastructure becomes more complex. Deterministic logic is often impractical 
because of the complexity of the challenges in modern transportation networks. Deep learning 
shows promise for solving transportation problems because of its ability to learn non-linear 
functions. Studies have shown that transportation modes can be predicted using Long Short 
Term Memory and Convolutional Neural Networks [53], [54]. Further studies have shown that 
traffic flow can be accurately predicted with deep learning [55], [56]. Deep learning also has 
applications to mitigating calibration challenges. One study used reinforcement learning to 
achieve adaptive ramp metering without calibration [57]. Moreover, deep learning can be used 
to predict vehicle speeds. Network wide traffic speed predictions had a high accuracy when 
images were used as training data [58]. Lastly, deep learning shows promise for enabling 
autonomous vehicles. Results from empirical evaluations showed how deep learning can be 
used to perform lane and vehicle detection at speeds required for real world scenarios [59].  
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A Hybrid Model for Electric Vehicle Energy Consumption 

Data Acquisition and Processing 

We developed our models for energy consumption rate estimation based on driving data 
collected from a test electric vehicle (2013 NISSAN LEAF) in real world traffic. 

Data Acquisition 

The field data were collected during two periods: 1) March–July 2013; and 2) July 2018. The test 
EV was equipped with two major data acquisition systems: the CONSULT III plus kit and GPS 
data logger (see Figure 1). These were used to access vehicle activities (e.g., instantaneous 
speed), energy related parameters (e.g., battery current and voltage), and real-time location 
information (i.e., latitude, longitude). 

  

Figure 1. Data collection equipment: (left) CONSULT III plus kit to collect test vehicle’s energy 
consumption and other vehicle activities data; (right) GPS data logger. 

More specifically, the CONSULT III plus kit, which is designated for professional diagnostics of all 
NISSAN models (including NISSAN LEAF), can retrieve high resolution (up to 100 Hz) data from 
the vehicle’s CAN bus, such as speed, current and voltage for each cell, A/C power, accessory 
power, and state of charge. On the other hand, the GPS data logger can report the latitude and 
longitude of the test EV in real-time. Such information can be synchronized with existing 
geographic information system (GIS) to acquire the network-wide index and grade information 
of the road link on which the vehicle is traveling.  

We selected four typical routes near Riverside, California (USA) for real-world data collection: 1) 
SR 91-Magnolia loop; 2) Riverside Plaza-Towngate loop; 3) Columbia-Alessandro loop; and 4) 
Palmyrita Avenue close to CE-CERT. Figure 2 presents the SR 91-Magnolia loop which covers a 
major freeway (SR 91) and arterial road (Magnolia Ave.), and a variety of traffic conditions and 
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road grades. In total, more than 100 hours of vehicle driving data under real-world conditions 
were collected. 

 

Figure 2. One of the field test loops consisting of SR-91 and Magnolia Ave., Riverside, 
California. 

Data Processing 

Before the application of the aforementioned field test data for model development, we first 
combined the dataset from the CONSULT III plus kit with that from the GPS data logger. This 
data fusion consists of two steps:  

1) Frequency realignment. The frequency of raw GPS data was realigned into a 1-Hz signal, 
which is consistent with the data resolution from the CONSULT III plus kit and suitable 
for energy consumption estimation; and 

2) Trip start time synchronization. Unlike the GPS data logger, the CONSULT III plus kit uses 
a relative time stamp (i.e., each run always starts from time “0”) instead of a global time 
clock (i.e., Coordinated Universal Time). To synchronize these two datasets, we applied 
a cross-correlation technique on vehicle speed that was common to both data sources. 
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Modeling Approach 

Power Flows at the Battery Terminal 

The energy consumption of the electric vehicle considered in this study is specified as an 
integration of output power of the vehicle at the battery terminal. The equations for electric 
power for propulsion and regenerative braking at the battery terminal are as follows. 

𝑃𝑏−𝑜𝑢𝑡 = 𝑣(𝑚𝑔(𝑓𝑐𝑜𝑠𝛼 + 𝑠𝑖𝑛𝛼) + 0.5𝜌𝐶𝐷𝐴𝑓𝑣2 + 𝑚𝛿𝑑𝑣/𝑑𝑡)/𝜂𝑡𝜂𝑚 (1) 

𝑃𝑏−𝑖𝑛 = 𝑘𝑣𝜂𝑡𝜂𝑚(𝑚𝑔(𝑓𝑐𝑜𝑠𝛼 + 𝑠𝑖𝑛𝛼) + 0.5𝜌𝐶𝐷𝐴𝑓𝑣2 + 𝑚𝛿𝑑𝑣/𝑑𝑡) (2) 

Here, 𝜂𝑡 stands for the transmission efficiency and 𝜂𝑚 represents motor drive efficiency. These 
two parameters are commonly approximated by a constant value. 𝑚 is the EV’s mass; 𝑓 is the 
rolling resistance coefficient; g is the gravitational constant; 𝜌 is the air density (kg/m3); 𝐶𝐷is the 
aerodynamic drag coefficient; 𝐴𝑓is the EV’s frontal area; 𝛿 is the coefficient related to the EV’s 

mass; 𝑣 is the vehicle’s speed (m/s); 𝛼 is the road grade (rad); 𝑘 (0 < 𝑘 < 1) is the 
regenerative braking factor, which indicates the percentage of the total braking energy that can 
be recovered by the electric motor. The regenerative braking factor is actually a complex and 
time-varying coefficient which will be discussed in detail in a later section. 

Thus, the total power flows at the battery terminal can be defined as: 

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑏−𝑜𝑢𝑡 + 𝑃𝑏−𝑖𝑛 (3) 

In the real-world test data, the accessory power and A/C power were also measured, which 
turned out to be non-trivial and was therefore taken into account in the power estimation for 
the battery terminal. 

Regenerative Braking Factor 

Regenerative braking power is one of the most distinct features of electric vehicles and plays an 
important role in improving drivetrain efficiency. Compared to conventional internal 
combustion engine (ICE) vehicles, electric vehicles with regenerative braking have an advantage 
in energy efficiency, especially under stop-and-go driving scenarios. As mentioned in the above 
section, the regenerative braking factor, k, indicates the percentage of braking energy 
recovered back to charge the battery pack, implying the vehicle’s recharging efficiency. The 
value of k is between 0 and 1 (in practice, k cannot reach 1 due to energy lost from battery 
internal resistance and cable resistance). Due to the complexity and time varying character of 
the regenerative braking factor k, it is essential to identify the factors that affect k in order to 
model electric vehicles’ regenerative braking energy. According to a literature review, two 
major approaches have been used to model regenerative braking effects: a piecewise linear 
function of the vehicle’s speed and a fuzzy logic model considering acceleration, jerk, and road 
grade as input variables (Figure 3). The first approach was derived based on the assumption 
that the regenerative braking factor can be represented by braking force, which is supposed to 
be linearly related to the vehicle’s speed (see Eq. (4) in [39]). Please note that the equation is an 
approximation within a certain speed range (between 0 and 38 m/s). The second approach 
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considers a more complex regenerative braking process with the measurement data available 
for many factors (e.g., speed, acceleration, road grade) as shown in Figure 3. 

𝑘 = {
0.5 × 𝑣/5 0 ≤  𝑣 < 5𝑚/𝑠

0.5 + 0.3 × (𝑣 − 5)/20  𝑣 ≥ 5𝑚/𝑠
 (4) 

acceleration

(ａ)

jerk

(ψ)

inclination

(α)

F I S

regeneration 

factor

(β)

 

Figure 3. Structure of the fuzzy logic model of regenerative braking factor based on Fuzzy 
inference system (FIS) (from Maiaa et al. [60]). 

Hybrid Model for EV Energy Consumption Rate Estimation 

In the proposed hybrid approach, the model variables are carefully selected based on the EV 
physical model instead of blindly exhausting a long list of variables and their combination. Then, 
a multi-linear regression (MLR) model is employed to calibrate the corresponding coefficients. 
The proposed approach excels in real-time performance but is more adaptive to different 
driving conditions without significantly compromising the model accuracy, when compared to a 
knowledge-based approach (e.g., [48]). The latter may require a large effort to measure the 
related parameters and calibrate the coefficients for the electric vehicle in a specific condition. 

Based on the battery power equations (Eq. (1)-(3)) and the characteristics of regenerative 
braking systems discussed above, two types of “hybrid” regression models are proposed for EV 
energy consumption rate estimation. The major difference of these two models lies in the 
complexity of modeling the regenerative braking effects. For simplicity, we assume the 
transmission efficiency 𝜂𝑡 and motor efficiency 𝜂𝑚 as constants. 

A Type I hybrid energy consumption model is formulated in Eq. (5), which simply considers the 
regenerative braking factor as a linear function of the vehicle’s speed, or 𝑘 ∝ 𝑣. Therefore,  

𝑃𝑒𝑠𝑡 = 𝑙0 + 𝑙1𝑣𝑐𝑜𝑠(𝛼) + 𝑙2𝑣𝑠𝑖𝑛(𝛼) + 𝑙3𝑣3 + 𝑙4𝑣𝑎 + 𝑙5𝑣2𝑐𝑜𝑠(𝛼) + 𝑙6𝑣2𝑠𝑖𝑛(𝛼) + 𝑙7𝑣4

+ 𝑙8𝑣2𝑎 
(5) 
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For comparison, we also applied the Type I hybrid energy consumption rate model to the 
subsets of data partitioned according to Eq. (4), i.e., 𝑣 < 5 𝑚/𝑠 and 𝑣 ≥ 5 𝑚/𝑠, and calibrated 
the coefficients, respectively. However, further investigation is needed to evaluate the impacts 
of the speed threshold. 

In the Type II model, we considered the regenerative braking factor to be related to not only 
the vehicle’s speed but also the other factors mentioned above, including acceleration, jerk, 
and road grade. Based on the fuzzy logic model provided by Maiaa et al. [60], we estimated the 
regeneration factor using our field driving data. Further dependency tests showed that jerk (ψ) 
may not be a significant indicator, so we did not include it in the model. The resulting Type II 
MLR model is shown in Eq. (6): 

𝑃𝑒𝑠𝑡 = 𝑙0 + 𝑙1𝑣𝑐𝑜𝑠(𝛼) + 𝑙2𝑣𝑠𝑖𝑛(𝛼) + 𝑙3𝑣3 + 𝑙4𝑣𝑎 + 𝑙5𝑣2𝑐𝑜𝑠(𝛼) + 𝑙6𝑣2𝑠𝑖𝑛(𝛼) + 𝑙7𝑣4 +
𝑙8𝑣2𝑎 + 𝑙9𝑣𝑎𝑐𝑜𝑠(𝛼) + 𝑙10𝑣𝑎𝑠𝑖𝑛(𝛼) + 𝑙11𝑣3𝑎 + 𝑙12𝑣𝑎2 + 𝑙13𝑣𝛼𝑐𝑜𝑠(𝛼) + 𝑙14𝑣𝛼𝑠𝑖𝑛(𝛼) +
𝑙15𝑣3𝛼 + 𝑙16𝑣𝑎 (6) 

Table 2 and Table 3 list the calibration parameters for the Type I and Type II hybrid energy 
consumption rate models. In our study, we chose the Type I model to balance model 
complexity (such as number of variables) with computational efficiency. 

Table 2. Parameter calibration results of the Type I hybrid energy consumption rate model. 

Variable Coefficient p-value 

Intercept -3.146  < 2 × 10−16 

𝑣𝑐𝑜𝑠(𝛼) -0.940 < 2 × 10−16 

𝑣𝑠𝑖𝑛(𝛼) -1.237 < 2 × 10−16 

𝑣3  - - 

𝑣𝑎 -1.521 < 2 × 10−16 

𝑣2𝑐𝑜𝑠(𝛼) 4.104 × 10−2 < 2 × 10−16 

𝑣2𝑠𝑖𝑛(𝛼) 3.289 × 10−2  5.03 × 10−11 

𝑣4  −4.427 × 10−5  < 2 × 10−16 

𝑣2𝑎 - - 

Adjusted 𝑅2 0.677  
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Table 3. Parameter calibration results of Type II hybrid energy consumption rate model. 

Variable Coefficient p-value 

Intercept -3.037 < 2 × 10−16  

𝑣𝑐𝑜𝑠(𝛼) -0.591 3.32 × 10−16  

𝑣𝑠𝑖𝑛(𝛼) - - 

𝑣3  −1.047 × 10−3 < 2 × 10−16  

𝑣𝑎 -1.403 < 2 × 10−16 

𝑣2𝑐𝑜𝑠(𝛼) 2.831 × 10−2 1.03 × 10−10 

𝑣2𝑠𝑖𝑛(𝛼) - - 

𝑣4  - - 

𝑣2𝑎 −7.980 × 10−2 1.60 × 10−5  

𝑣𝑎𝑐𝑜𝑠(𝛼) - - 

𝑣𝑎𝑠𝑖𝑛(𝛼) -1.490 1.13 × 10−5  

𝑣3𝑎 3.535 × 10−3 5.60 × 10−9  

𝑣𝑎2 -0.243 < 2 × 10−16  

𝑣𝛼𝑐𝑜𝑠(𝛼) -1.279 < 2 × 10−16  

𝑣𝛼𝑠𝑖𝑛(𝛼) - - 

𝑣3𝛼 6.484 × 10−4 < 2 × 10−16  

𝑣𝑎𝛼 0.998 4.79 × 10−4  

Adjusted 𝑅2 0.729  
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Machine Learning–based Vehicle Speed Forecasting 

In this study, we aimed to develop a direct time series forecasting model with a second-by-
second vehicle speed trajectory detected by onboard sensors (e.g., radar) as inputs. The 
historical speed horizon of the input and forecasting horizon of the output are both in three 
time steps (i.e., 3 seconds) for training and testing the speed forecasting models. We 
implement a Radial Basis Function Neural Network (RBF-NN) for vehicle speed forecasting and 
compare its performance with other well-known nonlinear regression models like Gaussian 
Processes (GP) and Multi-Layer Perceptron Neural Network (MLP-NN) for different driving 
scenarios. The general RBF-NN based vehicle speed predictor has a feed-forward neural 
network framework with one hidden layer in which the nodes have radial transfer function, as 
shown in Figure 4. The network input is a vector containing the vehicle’s historical speed 
trajectory of the preceding 3 seconds, and the output is a predicted speed trajectory within a 3-
second horizon.  

 

Figure 4. Structure of the radial basis function–based vehicle speed predictor. 

The implemented RBF-NN is a three-layer feed-forward network with K hidden nodes. A radial 
basis function needs to be pre-defined for each hidden node to activate neurons in the hidden 
layer. Each hidden node contains a nonlinear activation function. Here, we chose the Gaussian 
function as the activation function for the RBF-NN, formulated as: 

𝜑𝑗 (𝑥) = 𝑒𝑥𝑝 [−(𝑥̅ − 𝜇𝑗)
𝑇

∑ (𝑥̅ − 𝜇𝑗)−1
𝑗 ] (7) 

𝑦𝑘(𝑥) = ∑ 𝑤𝑘𝑗
𝑀
𝑗=1 𝜑𝑗 (𝑥) + 𝑏𝑘𝑗, (8) 
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where 𝜑𝑗  is the activated function of node 𝑗; 𝑥̅ is the input vector for node 𝑗; 𝑤𝑘𝑗  is the output 

weight and 𝑏𝑘𝑗 is the constant bias; and 𝜇𝑗  and ∑  𝑗 are the mean vector and covariance matrix 

of the 𝑗𝑡ℎ Gaussian function. The mean 𝜇𝑗 represents the center, and ∑  𝑗  indicates the shape of 

the activation function. Finally, the output of each node at the RBF-NN’s output layer is 
computed as a linear combination of the outputs of the hidden nodes.  

An advantage of an RBF-NN compared to a Gaussian Process and MLP-NN is the efficiency of 
training based on a two-stage procedure. The time complexity of training in a Gaussian Process 
for prediction increases exponentially with the sample size, which becomes quite an issue when 
applied to a large network in real time. An MLP-NN could have more than one hidden layer, 
uses an iterative technique, and works globally, while an RBF-NN has only one hidden layer, is 
based on a non-iterative technique, and acts as a local approximation. Besides, an RBF-NN is 
more robust to adversarial noise and easier to generalize than is an MLP-NN. In the first stage 
of RBF-NN training, the parameters of the basis function are set to model unconditional data 
density. The centers of our trained RBF network are determined by fitting a Gaussian mixture 
model with circular covariance, using the Expectation-Maximization (EM) algorithm. The second 
stage of training determines the weights between the hidden layer and the output layer by 
using the Moore-Penrose generalized pseudo-inverse, which overcomes many issues in 
traditional gradient algorithms such as stopping criterion, learning rate, number of epochs, and 
local minima. The structure of the RBF-NN was optimized by pruning the network based on 5-
fold cross validation in this study. We selected an RBF-NN for real-time vehicle speed 
forecasting in urban driving because of its shorter training time, forecasting accuracy, and 
generalizability. Figure 5 illustrated an example of forecasted speed trajectory using RBF-NN, 
where those short segments represent the short term (3 seconds) forecasting results. 

 

Figure 5. An example of speed trajectory forecasting using RBF-NN.  
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Deep Learning–based Eco-Approach and Departure 

System Architecture 

Figure 6 presents the system architecture of the proposed algorithm. As illustrated in the figure, 
the architecture is divided into two portions: an off-line process (upper portion) and an on-line 
process (lower portion). In the off-line process, vehicle dynamics (e.g., speed and acceleration) 
and powertrain operation (e.g., engine/motor speed, engine/motor torque, and gear ratio if 
any) from real-world testing are first logged via on-board diagnostics (OBD) systems. These data 
are then post-processed to characterize the specific powertrain model, which is used to build 
the components of a graph-based trajectory planning algorithm (GTPA) developed in our 
previous study [61]. This GPTA includes nodes (discretized states in the velocity-time-distance 
space), links (feasible transition from one state to another), and associated link costs (fuel 
consumption for the state transition at each time step). The Database from Simulation Runs 
module contains possible vehicle dynamics and SPaT values that are expected for the testing 
scenarios. The GTPA is called for the values in the database to find an associated optimal speed 
trajectory profile as the target vehicle approaches an intersection. Towards that end, a deep 
neural network model is trained using the same inputs to the GTPA as training features and the 
same computed paths used by the GTPA as target values. By parsing the optimal paths, the 
Deep Learning Trajectory Planning Algorithm (DLTPA) can learn to predict the velocity for the 
next time step. In other words, DLTPA is developed and trained to approximate the GTPA’s 
optimal performance. 

 

Figure 6. System architecture for deep learning–based EAD. 
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Once DLTPA is trained off-line, it will be adopted for on-line implementation. In this study, an 
Application Programming Interface (API) is developed for the DLTPA module in a microscopic 
traffic simulation environment, where vehicle and traffic states feed into DLTPA in real time and 
the prediction by DLTPA is used as the target velocity of the host vehicle for the next time step. 
The details on the creation of the training dataset for DLTPA and construction of the deep 
neural network are presented in the next section. 

DLTPA Description 

The DLTPA uses an MLP-NN. This type of neural network takes as input one or more 
parameters. It is trained on previous inputs and the corresponding expected outputs. After 
training, it predicts an output when given a new input. An MLP-NN contains a variable number 
of nodes. Each node performs an activation function on an input, such as rectified linear unit 
(ReLU), tangent hyperbolic, or linear. The input to the activation function is a weighted sum of 
all the input parameters to the node. The architecture of a node is shown in Figure 7. 

 

Figure 7. Architecture of an MLP node. 

An MLP-NN is made up of 3 types of layers of nodes. The first layer is called the input layer. It is 
where known parameters initially enter the MLP. In Figure 8, the nodes labeled 1, 2, and 3 
make up the input layer, and X1, X2, X3 are the inputs. Following the input layer is one or more 
hidden layers. The nodes labeled 4, 5 in Figure 8 make up a hidden layer. The hidden layer 
generally has a non-linear activation function in each node, such as ReLU. The last type of layer 
is the output layer, which follows the last hidden layer. The output layer formats the output to 
be consistent with the format of the expected predictions. In Figure 8, the output layer is the 
node labeled 6. 
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Each node in a layer is connected by an edge to one or more nodes in the next layer, with the 
exception of the output layer. A common architecture, and the one that we employed in this 
study, is to connect all nodes in a layer with every node in the next layer. This is commonly 
referred to as “densely connected,” as shown in Figure 8. 

Each edge has an associated weight. The edge weights are the weights used to scale each input 
to the node when computing the weighted sum. At initialization, the weights are generally 
random or predefined. During training, the edge weights are adjusted so that the MLP-NN gives 
better predictions. Training occurs by predicting on a training unit and adjusting the edge 
weights based on the error between the prediction and the expected value. 

 
Figure 8. Multilayer perceptron. 

The DLTPA uses an MLP-NN known as a regressor. Its architecture follows the architecture 
described above. Consequently, we choose to use the rectified linear unit (ReLU) for the hidden 
layer activation functions, whose mathematical formula is given by: 

𝑓(𝑥) = {
0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

 

Often a dropout layer is added. This is a simple method that deters the prediction model from 
memorizing the training data without learning a generalized function. The output layer 
characterizes the MLP. It is one node with activation f (x) = x. 

The created dataset is partitioned to determine a neural network architecture. The first 
partition is a validation training set constituting 60% of all the data. The next 20% is a 
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validation set. The last 20% is a final test set. Different numbers of hidden layers were run for 
300 iterations through the validation training data and compared. Based on this, we chose to 
use hidden layers with 1024 nodes. The accuracy after each iteration was tested against the 
validation set and plotted. The results for different neural network architectures are shown in 
Figure 9. One hidden layer converges quickly but shows little potential for gaining accuracy 
from increased data. Three hidden layers may create difficulty because they require more 
iterations through the data, which may cause over-fitting. We chose to use an MLP-NN with 2 
hidden layers. We used 250 iterations through the training data because the validation plots 
showed little improvement after 250 iterations. Our final architecture is provided here.  

Dense: nodes = 1024; activation = ReLU; Dropout: rate = 0.50 

Dense: nodes = 1024, activation = ReLU; Dropout: rate = 0.50 

Dense: nodes = 1, activation = linear 

 
Figure 9. Comparison for one, two, and three hidden layers.  
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Simulation Study 

Setup 

We used PTV Vissim (http://vision-traffic.ptvgroup.com/en-us/home/) as our microscopic 
traffic simulation tool to model the vehicle dynamic and movement on a road network. The 
simulated network is a 3-mile signalized corridor with 11 signalized intersections along 
University Ave in Riverside, CA. 

Computational Time Comparison 

The DLTPA was evaluated against the GTPA in terms of computational time in simulation by 
controlling one electric vehicle for 10 different simulation seeds. Different seeds have different 
times at which the controlled vehicle enters simulation. Consequently, this affects the signal 
phase and timing (SPaT) that the vehicle encounters in the simulation. The results are shown in 
Table 4. Since the DLTPA is executed at each timestep, the total computational time is 
amortized over the entire path. On the other hand, the computational time of the GTPA is not 
evenly distributed, based on our experience. A major portion of the computational time is 
consumed when generating a path. This advantage makes the DLTPA more applicable to real 
world scenarios. 

Table 4. Computational time comparison in simulation. 

Run GTPA (second) DLTPA (second) 

1 32 11 

2 53 11 

3 25 11 

4 62 11 

5 39 11 

6 74 11 

7 48 11 

8 105 11 

9 69 11 

10 80 11 

The computational time of the DLTPA is constant for an intersection despite the vehicle states 
and SPaT. This feature makes the DLTPA more attractive than the GTPA in real world 
implementation. Although there is one instance where the computation time is slightly off from 
the rest of the simulation runs, we attribute this small variation to other disturbances in the 
simulation runs. When we compare the results between the GTPA and DLTPA, we note that the 

http://vision-traffic.ptvgroup.com/en-us/home/
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mean absolute errors vary from 1.07 to 1.83 across different seeds. Figure 9 illustrates some 
example trajectory results from the GTPA and DLTPA. 

Energy Consumption Results 

A single electric vehicle was running along the simulated corridor in traffic for 10 different 
simulation runs (with different seeds) under different control strategies. For each run, the energy 
consumption using the VISSIM by-default control (baseline), DLTPA and GTPA were recorded in 
separate simulations. Results are provided in Table 5. Columns 2-4 show the energy used by 
each method in kilojoules/meter (kJ/meter). Columns 5-6 show the improvement in percentage 
of the DLTPA and GTPA compared to the baseline. In some simulation runs, the DLTPA actually 
performed better than the GTPA. We hypothesize that small prediction errors affect simulation 
events. For example, a vehicle might enter a queue before the controlled vehicle in the GTPA 
simulation but not in the DLTPA simulation because the controlled vehicle in the DLTPA 
simulation was moving slightly faster than the controlled vehicle in the GTPA simulation. On 
average, the DLTPA uses 0.006 kJ/meter more energy than the GTPA and provides 0.61% less 
improvement to the baseline energy consumption than the GTPA. Nevertheless, the DLTPA 
outperforms the baseline scenarios by 13.76%. Figure 10 gives an example of speed trajectories 
based on DLTPA vs. GTPA. 
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Figure 10. Example trajectories of GTPA vs. DLTPA. 
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Table 5. Comparative results of energy consumption. 

Run Absolute Energy Consumption (kJ/m) % Improvement 

Baseline DLTPA GTPA DLTPA GTPA 

1 0.650 0.569 0.613 12.46 5.69 

2 0.699 0.610 0.522 12.73 25.32 

3 0.668 0.596 0.594 10.78 11.08 

4 0.738 0.618 0.590 16.26 20.05 

5 0.677 0.577 0.619 14.77 8.57 

6 0.729 0.609 0.605 16.46 17.01 

7 0.680 0.600 0.620 11.76 8.82 

8 0.740 0.585 0.537 20.95 27.43 

9 0.638 0.591 0.639 7.37 -0.16 

10 0.725 0.623 0.581 14.07 19.86 

Avg. 0.694 0.598 0.592 13.76 14.37 

SD 0.037 0.018 0.037 3.69 8.95 
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Conclusion 

The proposed DLTPA can significantly reduce the computational time to constant complexity 
(O(1)). Further, it addresses the issue of inflexibility to rapidly changing traffic conditions by 
predicting only the velocity for the next timestep. We tested this innovative Eco-Approach and 
Departure (EAD) algorithm against the GTPA (which was also developed in our previous work) in 
a simulation environment. In summary, 

• This project developed an innovative deep learning–based Eco-Approach and Departure 
algorithm for electric vehicles with customized powertrain models. 

• The proposed DLTPA can significantly reduce the computational complexity of the 
trajectory planning algorithm, which is favorable for real-time implementation. 

• The proposed DLTPA can increase the flexibility of the trajectory planning algorithm in 
response to a rapidly changing environment. 

• Based on the preliminary simulation study in VISSIM, the DLTPA can provide a 13.76% 
improvement above the baseline. The results from the DLTPA consume only 0.006 
kJ/meter more energy per distance than the GTPA (which is considered to be an 
optimal solution in terms of energy efficiency) but significantly improve the 
computational efficiency by up to 90% (e.g., simulation run #8 in Table 4). 
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Data Management 

Products of Research  

In this project, we collected detailed data on vehicle dynamics (e.g., speed) and the energy 
storage system (such as instantaneous current and voltage from the battery pack), and GPS 
data (for the estimation of road grade) from the test electric vehicle traveling in real-world 
traffic. These data were used to develop a microscopic energy consumption model for an EV.  

Data Format and Content  

The data (after processing) were in .csv files. There are two major data sources as specified in 
the report: one is GPS data, including time stamp (UTC time), latitude, longitude, etc.; the other 
is CONSULT III+ kit, which monitors the vehicle dynamics (e.g., wheel speed), powertrain 
operation (e.g., motor speed), and energy flows (e.g., electric current, voltage). 

Data Access and Sharing  

The data are publicly available via the UC Riverside instance of Dash: 
https://dash.ucr.edu/stash/, which is in compliance with the USDOT Public Access Plan. The DOI 
for the dataset is https://doi.org/10.6086/D1FW9G. 

Reuse and Redistribution  

The data are restricted to research use only. If the data are used, our work should be properly 
cited: Wu, Guoyuan et al. (2019), Deep Learning–based Eco-driving System for Battery Electric 
Vehicles, UC Riverside Dash, Dataset, https://doi.org/10.6086/D1FW9G. 

https://dash.ucr.edu/stash/
https://ntl.bts.gov/public-access
https://doi.org/10.6086/D1FW9G
https://doi.org/10.6086/D1FW9G
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