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Automated syndrome diagnosis by three-dimensional
facial imaging

Benedikt Hallgrímsson, PhD 1, J. David Aponte, MSc1, David C. Katz, PhD1,
Jordan J. Bannister, BASc2, Sheri L. Riccardi, BSc3, Nick Mahasuwan, BSc4, Brenda L. McInnes, MSc5,

Tracey M. Ferrara, PhD3, Danika M. Lipman, BSc1, Amanda B. Neves, BHSc1,
Jared A. J. Spitzmacher, BSc1, Jacinda R. Larson, PhD1, Gary A. Bellus, MD, PhD6,16, Anh M. Pham, BSc7,

Elias Aboujaoude, MD, MA8, Timothy A. Benke, MD6, Kathryn C. Chatfield, MD6,
Shanlee M. Davis, MD6, Ellen R. Elias, MD6, Robert W. Enzenauer, MD9, Brooke M. French, MD10,

Laura L. Pickler, MD6, Joseph T. C. Shieh, MD, PhD11, Anne Slavotinek, MBBS, PhD11,
A. Robertson Harrop, MD, MSc12, A. Micheil Innes, MD5, Shawn E. McCandless, MD6,

Emily A. McCourt, MD6, Naomi J. L. Meeks, MD6, Nicole R. Tartaglia, MD6, Anne C.-H. Tsai, MD6,
J. Patrick H. Wyse, MD, PhD13, Jonathan A. Bernstein, MD, PhD14, Pedro A. Sanchez-Lara, MD, MSCE7,

Nils D. Forkert, PhD15, Francois P. Bernier, MD5, Richard A. Spritz, MD3 and
Ophir D. Klein, MD, PhD4,11

Purpose: Deep phenotyping is an emerging trend in precision
medicine for genetic disease. The shape of the face is affected in
30–40% of known genetic syndromes. Here, we determine whether
syndromes can be diagnosed from 3D images of human faces.

Methods: We analyzed variation in three-dimensional (3D) facial
images of 7057 subjects: 3327 with 396 different syndromes, 727 of
their relatives, and 3003 unrelated, unaffected subjects. We
developed and tested machine learning and parametric approaches
to automated syndrome diagnosis using 3D facial images.

Results: Unrelated, unaffected subjects were correctly classified
with 96% accuracy. Considering both syndromic and unrelated,
unaffected subjects together, balanced accuracy was 73% and mean
sensitivity 49%. Excluding unrelated, unaffected subjects substan-
tially improved both balanced accuracy (78.1%) and sensitivity
(56.9%) of syndrome diagnosis. The best predictors of classification

accuracy were phenotypic severity and facial distinctiveness of
syndromes. Surprisingly, unaffected relatives of syndromic subjects
were frequently classified as syndromic, often to the syndrome of
their affected relative.

Conclusion: Deep phenotyping by quantitative 3D facial imaging
has considerable potential to facilitate syndrome diagnosis.
Furthermore, 3D facial imaging of “unaffected” relatives may
identify unrecognized cases or may reveal novel examples of
semidominant inheritance.

Genetics inMedicine (2020) 22:1682–1693; https://doi.org/10.1038/s41436-
020-0845-y

Keywords: syndromes; facial imaging; deep phenotyping; diag-
nosis; morphometrics

INTRODUCTION
Of >7000 rare syndromes in humans, 30–40% involve
dysmorphic craniofacial features1 and such features often
contribute to initial clinical diagnoses. Diagnoses enable
affected individuals and their families to access resources,
prognoses, and available treatments. However, access to
medical genetics remains limited, especially outside of the
developed world. Increasingly, expert systems have been
deployed to assist syndrome diagnosis, including computer
databases2 and analytic software,3 as well as human expert4

and online services.5 In parallel, diagnosis has been greatly

facilitated by improvements to molecular diagnostic testing
and sequencing.6 Nevertheless, testing is expensive and access
remains limited outside high-income countries.7 Even with
sequencing, nearly 50% of all patients remain undiagnosed.8

For these reasons, as well as the emerging importance of
telemedicine, improvements in clinical decision support
systems via automated dysmorphology assessment are
beneficial.
Previous work has addressed the use of standard two-

dimensional (2D) facial images for syndrome diagnosis.1,5,9

However, three-dimensional (3D) facial images contain more
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shape information than corresponding 2D images. Further,
3D photogrammetry is not affected by focal depth, which can
produce significant distortion of apparent morphology in 2D
images.10 Decreasing cost of 3D cameras along with advances
in computing and image analysis11 have facilitated access
to 3D facial photogrammetry; indeed, consumer level,
smartphone-based 3D cameras are already nearly capable
of supporting clinical 3D morphometrics (Fig. S1). 3D
photogrammetry has been used as an approach to deep
phenotyping of individual genetic syndromes with facial
dysmorphology,12 and is widely used in plastic surgery,
dermatology, and orthodontics.13 However, 3D facial imaging
has not yet been developed as a tool for automated diagnosis
of dysmorphic syndromes.
We evaluated 3D facial photogrammetry as a novel expert

system for automated diagnosis of facial dysmorphic
syndromes. Under the auspices of the National Institute for
Dental and Craniofacial Research (NIDCR) FaceBase initia-
tive (https://www.facebase.org/), we assembled a “library”
that currently contains 3D facial images from over 5900
individuals with syndromes with facial dysmorphism, as well
as over 900 unaffected relatives. This library is available
through FaceBase. We evaluated facial shape in a data freeze
that includes 3D images from 3327 individuals with 396
different syndromes, and 727 unaffected relatives. For most
analyses, we also incorporated a sample of 3003 unrelated,
unaffected individuals. We quantified overall patterns of facial
shape variation in syndromic and unaffected subjects and
evaluated the accuracy of facial shape for classifying subjects
to syndromes. We found that 3D facial shape correlates of
syndromes account for a significant fraction of facial shape
variation. Most syndromes are classifiable from facial shape
with moderate-to-high accuracy, providing a rigorous quan-
titative framework for developing 3D facial photogrammetry
as an expert system for syndrome diagnosis.

MATERIALS AND METHODS
Study characteristics and demographics
From 2013 through 2019, we enrolled subjects at outpatient
clinics and patient group meetings in the United States,
Canada, and the United Kingdom (Table S1). Inclusion
criteria included diagnosis with a syndrome with known or
possible effects on facial morphology. When possible,
subjects’ relatives were enrolled. Subjects or their parents
consented according to institutional review board (IRB)
protocols of each center. The analysis is based on a data
freeze of 3327 subjects with 396 syndromes (File S1), 727 of
their apparently unaffected relatives, and 3003 unrelated,
unaffected individuals, including 2851 from the facial shape
genome-wide association study (GWAS) cohort of Shaffer
et al.14 plus 152 enrolled through this project. Of syndromic
subjects, 1555 had a molecular diagnosis and 1772 had only a
clinical diagnosis. Subjects ranged in age from newborn to
>80 years (Fig. 1a), with slightly more females than males
(Fig. 1b). Self-reported race was predominantly white (83.1%)

for the syndromic subjects (and almost exclusively so for
the unrelated, unaffected subjects) and ethnicity was 87.3%
non-Hispanic (Fig. 1b, Table S2), reflecting composition of
patient meetings and clinic site populations. All study subjects
or their parents provided written consent for sharing of
recognizable facial images and relevant clinical data with
qualified investigators approved by the National Institute of
Dental and Craniofacial Research (NIDCR) Data Access
Committee.

Collection and curation of metadata
We obtained age, height, weight, head circumference, and
relevant clinical data. Self-reported race and ethnicity
were defined according to National Institute of Health
(NIH) guidelines (NOT-OD-15–089). At patient meetings,
syndrome diagnoses were self-reported. Genetic test records
were obtained and reviewed when possible. At clinics,
diagnoses were determined by a medical geneticist and
molecular results were obtained when available. Provisional
clinical diagnoses were amended based on follow-up clinical
or test data.

3D facial imaging
We obtained 3D photogrammetric images of the face for all
subjects. For 436 subjects, we used a Creaform Gemini
camera. The remaining subjects were imaged with a
3dMDface camera system. Camera effects on classification
accuracy accounted for only 0.3% of variation in facial shape,
and classification results were identical with and without
correction for camera effect. Subjects were imaged seated in a
chair or a parent’s lap. Images were cropped to remove
potentially confounding artifacts.

3D facial morphometric phenotyping
Morphometric phenotyping utilized a variation of our
automated landmarking method.15 An average facial atlas
was registered nonlinearly to each facial scan. To create the
atlas, we selected a single scan from the unrelated, unaffected
subject image set that was then cropped and decimated to
~2500 points, which represents a compromise between
resolution and computational cost. The mesh was then
registered to ten random scans from the unrelated, unaffected
subject image set using the Optimal Step Non-Rigid Iterative
Closest Point (N-ICP) algorithm.16 We then registered this
average atlas to each scan using the same algorithm.
Since only a single atlas is landmarked, any number of

landmarks can be obtained up to the resolution of the scan.
However, increasing landmarks produces diminishing returns
as neighboring landmarks tend to be correlated. For example,
decomposition of our 2500 dense facial meshes produced
fewer than 300 nonzero eigenvalues. An additional statistical
issue arises when the number of coordinates (p) exceeds the
number of observations (n).17 To optimize the tradeoff
between the risk of overfitting and capturing relevant
variation, we used 65 3D landmarks (Fig. S2).
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Sample sizes by diagnosis (N>5)
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iv) Morphs by age
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facial shape differences between sexes (iii). Shape morphs showing average facial shape changes with age by sex (iv). (c) Sample composition by self-
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by syndrome for all syndromes with n > 5. The dotted red line shows the cut-off for inclusion in the classification analysis at n ≥ 10).
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Statistical analyses
We analyzed the landmark data with geometric morpho-
metrics in R.18 As described previously,19 we detected outliers
using the Procrustes distance to the mean and the within-
individual variance of the deviations from the average
position of each landmark, and optimized the outlier thresh-
old by running the classification analysis at different thresh-
olds. We used principal components analysis (PCA), linear
models implemented for landmark data,20,21 and canonical
variates analysis (CVA) in geomorph,22 Morpho,23 shapes,24

Evomorph,25 and various custom functions in R.26,27

To standardize facial shape by age and sex, we evaluated the
residuals of a linear model that included a three-term
polynomial age predictor and sex (Fig. 1c).21 The variation
attributable to these and other factors of interest were
quantified with Procrustes multivariate analysis of variance
(MANOVA), implemented in geomorph.22 To obtain
unbiased estimate of sums of squares, we iterated across all
combinations of the ordering of the terms in the model using
type 1 sums of squares. All classification analyses were based
on age and sex standardized data.
We used both the symmetric and asymmetric components

of facial shape variation.28 Though facial asymmetry is a feature
of some syndromes, the symmetrized data substantially out-
performed either the unsymmetrized or the combined sym-
metric and asymmetric components (Fig. S3).
We quantified shape distances using the Procrustes

distance. Integratedness was measured as the scaled variance
of eigenvalues.29 Phenotypic severity is the average shape
distance between the subjects with a syndrome and the mean
for unaffected, unrelated subjects. Phenotypic distinctiveness
is the shape distance between a syndrome and the nearest
other syndrome in the data set. Finally, covariance distance
measures the differences in the within-syndrome variances
and covariances of traits (landmarks).

Syndrome classification
To classify faces, we used both parametric (CVA) and
machine learning methods. We tested various machine
learning approaches, including deep neural networks,
random forests, partial least squares, k-nearest neighbors,
and high-dimensional regularized discriminant analysis
models (HDRDA). Of these, HDRDA performed best
(Fig. S4). HDRDA modifies linear discriminant analysis by
allowing the sample covariance matrix to influence the
within-class covariance matrix estimate with a pooling
parameter, simultaneously shrinking the within-class covar-
iance matrix toward the identity matrix with a regularization
parameter.30 This allows the number of features (p) to
exceed the number of individuals (n).31

We used a minimum syndrome sample size of 10 as a
compromise between per-syndrome sample sizes and max-
imizing the number of syndromes included. We used a
family level leave-one-out cross-validation (LOOCV). We
also employed a 20-fold cross-validation strategy for compar-
ison. However, k-fold cross-validation can underestimate

performance for small samples, particularly if variation within
syndromes is not normally distributed (File S2). This leads
to underestimated sensitivities for syndromes with small
n (Fig. S5). For syndromes with larger n, the two cross-
validation approaches perform similarly.
For each subject, classification returns a vector of posterior

probabilities for each class based on naïve priors. In this case,
the naïve prior is the proportion of subjects belonging to that
class. Thus, all subjects have an a priori 52.3% probability of
being diagnosed as unaffected because that class comprises
52.3% of the data set. We used the posterior probabilities to
obtain top-1, -3, and -10 classification results. Our analysis
reports sensitivity (the proportion of subjects correctly
classified), specificity (the proportion of subjects correctly
identified as not having that syndrome), and balanced
accuracy (the average of sensitivity and specificity).32

To analyze the classification of unaffected relatives, we
used the set of families with at least one syndromic subject
with a syndrome represented by n ≥ 10 and one unaffected
relative facial scan (n= 479). We then fit the HDRDA
model, iteratively leaving out the syndromic members of
each family. No relatives were used in the training data for
the model. The HDRDA model was trained on the full
classification sample that included both syndromic subjects
and unrelated, unaffected subjects.

RESULTS
Variation in facial shape
To quantify facial shape variation due to age, sex, and race, we
modeled facial shape variation in the total syndromic sample
and the unrelated, unaffected sample with polynomial
predictors for age, sex, and race (Table S3). Age accounted
for 14.4% of variance for syndromic subjects and 25.7% of
variance among unrelated, unaffected subjects (Fig. 1c).
The smaller variance attributable to age in syndromic subjects
reflects the higher overall variance in this group. Sex
accounted for less than 1% of variance for syndromic subjects
and 2% for unaffected subjects. Self-reported race accounted
for less than 2% of shape variance in both groups.
To quantify syndrome-related variation, we first standar-

dized facial shape by age and sex. We performed this
analysis for both the symmetric component of variation and
the unsymmetrized (full Procrustes) data. When only the
syndromic individuals were analyzed, syndrome diagnosis
accounted for 14–15% of the total variation in facial shape,
regardless of whether asymmetric facial variation was
considered, and nearly 19% of the total variance when
unrelated unaffected subjects were included (Table S4)
(MANOVA, p < 0.001). This shows that syndrome diagnosis
accounts for a considerable proportion of facial shape
variation.
To visualize syndrome-related facial shape variation, we

performed a PCA on the mean facial shape effects by
syndrome. PCs 1–8 captured 60% of the resulting variation
(Fig. 2). Syndromes that fall on extremes of the axes of
variation captured by these PCs are similar to the PC morphs
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Fig. 2 Principal components analysis (PCA) of the among-syndrome means. Each syndrome is represented by the average facial shape for that syndrome
after regressing shape on polynomial age and sex. (a) Plots show the facial shape changes associated with each PC, scaled to 5 times the standard deviation of PC
scores. (b) Heatmaps showing the regions of the face that vary most along each PC (red = larger, blue = smaller). (c) Vectormaps for syndromes that define the
extremes of the PCA for the syndromic means. These are similar but not identical to the heatmaps in (b) because a syndromic mean can differ from the grand
mean along multiple PCs. Both heatmaps and vectormaps are based on the distances between average meshes, registered in Procrustes space.
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(Fig. 2c). We also provide mean shapes and heatmaps by
syndrome (Fig. S6) as well as animations for these visualiza-
tions (Supplementary Videos 1–8). These results show the
wide extent and qualitative nature of the variation in facial
shape associated with syndrome diagnoses. As an adjunct to
this paper, we present an online tool for visualization of all
possible pairs of syndromes, including unaffecteds (https://
genopheno.ucalgary.ca/Syndrome_gestalts/).

Automated subject classification
We undertook a series of classification analyses based on the
age and sex standardized facial shape data. We first
considered the extent to which a common axis of difference
distinguishes syndromic from unaffected facial shape by
assigning syndromic subjects to a single class and using CVA
to discriminate that class from unrelated, unaffected subjects.
CVA correctly classified 2603 of 3003 (86.7%) unrelated,
unaffected subjects and 1972 of 2736 (72%) syndromic
subjects (Fig. 3a). Thus, even without regard to specific
syndrome, 80% of study subjects could be correctly classified
as either unaffected or syndromic based solely on facial shape.
To classify subjects to specific syndromes, we used

HDRDA as well as CVA with and without the unrelated,
unaffected group. When unaffected subjects were included,
96% were correctly classified as unaffected using HDRDA
while 48.8% of syndromic subjects were correctly diagnosed
to the correct syndrome (Fig. 3Bi). The overall classification
rate to the correct syndrome was 71.8% and the correct
diagnosis was listed among the top ten ranked diagnoses
for 87.2% of syndromic subjects (Table S5). There was
considerable variation in classification performance across
diagnoses (Fig. 3Bi).
Most syndromic subjects for whom the correct syndrome

was not the top choice were misclassified as unaffected,
whereas unaffected, unrelated subjects were rarely misclassi-
fied as having a syndrome (Table S6). Accordingly, specificity
for subjects correctly classified as not having a syndrome was
over 99% for all syndromes. While syndromic subjects were
occasionally classified to the wrong syndrome, no single
syndrome received many misdiagnoses. Accordingly, specifi-
city was only 67.3% for unaffected, unrelated subjects,
reflecting the tendency for misclassified syndromic subjects
to be classified as unrelated, unaffected.
As the number of subjects varied by group, it is useful to

quantify overall classification performance by balanced
accuracy, a metric that encompasses both true positive
rate and true negative rate information (sensitivity and
specificity).32 When the HDRDA analysis included unaffec-
teds, balanced accuracies ranged from a high of 95% for
Bohring–Opitz syndrome (BOS) to a low of 53% for
Ehlers–Danlos syndrome (Fig. 3Bii), a diagnostic category
with many subtypes that were not distinguished here. When
the HDRDA classification task excluded unaffecteds, the
overall correct classification rate declined to 57.2%. How-
ever, the classification rate for syndromic subjects rose to
57.2%, sensitivity improved to 56.9%, and balanced accuracy

to 78.1%. This is because “unaffected subject” was the most
common misdiagnosis for syndromic subjects when that
option was available. Balanced accuracies improved moder-
ately as well (Fig. 3Bii). The full set of classification
parameters are provided in Table S6.
CVA based classification performed less well, identifying

the correct syndrome only 30% of the time when unaffecteds
were included (Figure S7). HDRDA generally outperformed
CVA in syndrome diagnosis. The full set of HDRDA posterior
classification probabilities is shown in Figure S8.

Determinants of classification performance
To investigate determinants of classification, we examined the
role of biological factors such as age, sex, ethnicity, and race as
well as variational and sampling. Classification probability is
similar by sex but correlates positively with age (r= 0.75, p <
0.001). Classification probabilities varied with race, with
highest performance for Black/African American subjects
and lowest for Asian subjects (Fig. 4a). Ethnicity was not a
significant determinant.
We also examined the impact of variability, phenotypic

severity, phenotypic distinctiveness, and integratedness of
each syndrome, as well as diagnostic certainty for syndromic
subjects. For the HDRDA analyses, only phenotypic severity
and distinctiveness were associated with classification accu-
racy (p < 0.05) (Fig. 4b). For CVA, all factors except within-
syndrome variance were significant. Combining all factors
into a single model revealed that phenotypic distinctiveness
accounted for the greatest variation in classification accuracy
for both methods (Fig. 4c), while phenotypic severity was the
second most important factor. Phenotypic severity may not be
the major driver of classification performance because more
severe syndromes tend to be more variable (r= 0.66, p <
0.001), meaning some of the gain in accuracy from increased
severity is offset by increased variance.
Surprisingly, syndromes are not particularly likely to be

confused with their nearest neighbors in shape space
(Table S7). This suggests the number and composition of
the syndromes included in the classification is important.
Accordingly, we performed 250 parametric classification
permutations with cross-validation, varying the number of
syndromes from 2 to 50. In each permutation, the syndromes
were chosen at random. This simulation showed that
classification became less accurate as more syndromes were
considered (Fig. S9).
Sample size influenced classification accuracy for CVA but

not for HDRDA. Accordingly, differences in sensitivity between
CVA and HDRDA were largely due to variation in sample size
(Fig. 4c, d). Sensitivity for large-sample syndromes tended to be
higher for CVA whereas sensitivity for small-sample syndromes
was higher for HDRDA.
We also compared subjects with molecularly confirmed

diagnosis to those with definitive clinical diagnoses and
clinically suspected diagnoses. Molecularly confirmed subjects
had higher classification probabilities than those with
suspected diagnoses (Fig. 4Ei and ii), but classification
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b HDRDA classification results
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a CVA-based binary classification results

Fig. 3 Syndrome classification. (a) Sensitivities for a two-group classification, syndromic versus unrelated, unaffected: (i) overall sensitivity; (ii) sensitivity
for the syndromic subjects; (iii) sensitivity for unrelated, unaffected subjects. (b) Sensitivity and balanced accuracy (high-dimensional regularized discriminant
analysis [HDRDA]). Top-1, -3, and -10 sensitivity and balanced accuracy by syndrome for the full classification sample that included both syndromic subjects
and unrelated, unaffected subjects (i) and the syndrome-only classification sample (ii). Balanced classification accuracy by syndrome. Red lines depict grand
mean top-1, -3, and -10 sensitivities and balanced accuracies.
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Fig. 4 Determinants of sensitivity (high-dimensional regularized discriminant analysis [HDRDA] and canonical variates analysis [CVA]).
(a) Classification accuracies plotted against potential determinants of classification accuracy. (b) Variation in classification accuracy attributable to potential
determinants. (c) PC1 of classification determinants (accounting for 90% of variation) plotted against differences in performance between HDRDA and CVA.
(d) Residual of regression for syndrome sensitivities for the two methods plotted against the first PC for the determinants of classification accuracy.
(e) Classification probability as a function of diagnosis status. (f) By-syndrome sensitivity comparison for HDRDA and CVA classification.
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probabilities for clinical and molecular diagnoses were similar
(Fig. 4Eii–iii). Many individuals with suspected diagnoses had
very low posterior probability values. Possibly, some suspected
diagnoses were wrong and such individuals may have
syndromes not included in the training set, effectively making
them unclassifiable.
To determine the impact of classification method, we

compared syndrome classification sensitivities and individual
classification probabilities. HDRDA and CVA classification
probabilities correlate, though for most syndromes HDRDA
sensitivity was higher (r= 0.65, p < 0.001), suggesting rough
agreement between methods (Fig. 4f). Examination of
individual posterior probabilities showed that most indivi-
duals fall at either 0 or 1 for both methods (Fig. 4f). However,
whereas many individuals were classified correctly with
HDRDA but not with CVA, the opposite was rarely true.

Unaffected relatives of syndromic subjects are
disproportionately misclassified as syndromic
Finally, we evaluated the classification of unaffected relatives
of syndromic subjects. We classified each unaffected relative
as syndromic versus unaffected after training using HDRDA
on the full syndromic sample in which relatives were not
included. Our null hypothesis was that unaffected relatives of
syndromic subjects would classify as unaffected at the same
rate as unrelated, unaffected subjects.
Surprisingly, we found that relatives were significantly less

likely to classify as unaffected compared with subjects in the
unrelated, unaffected group (Chi-square [χ2] = 243.36, p <
2.2e-16). Relatives classified as unaffected only 77% of the
time, in contrast to 96.1% for the unrelated, unaffected
subjects (Fig. 5a). Even more intriguing were the patterns of
apparent misdiagnosis. While the frequency of misdiagnosis
varied by syndrome of the affected relative (Fig. 5b), HDRDA
often diagnosed an unaffected relative to the same syndrome
as their syndromic relative (Fig. 5b). This suggests that some
of putatively unaffected relatives might, in fact, be affected. To
investigate further, we considered whether unaffected relatives
of subjects with more severe syndromes were more likely to
differ from the grand mean. That turned out to be the case;
in 332 unaffected relatives of syndromic subjects from
31 syndromes, the shape distance of each relative from
the mean varied among syndromes (Fig. 5c, d) (Levene’s
test for Procrustes distance, df= 30, F= 4.5, p < 0.0001).
Furthermore, the extent of this shape effect in relatives was
positively correlated with the phenotypic severity of the
syndrome of their affected family member (linear model,
MS= 0.008, F= 53.7). These results suggest that some
unaffected relatives represent undiagnosed or incompletely
penetrant syndromic cases.

DISCUSSION
Human facial shape is highly polygenic,14,19 while most
syndromes involve mutations in single genes. To investigate
facial correlates of syndromes and facilitate development of
automated diagnostic systems, we assembled a large library

of 3D facial images of subjects with facial dysmorphism
syndromes, as well as unaffected relatives. Potential uses include
studies of within-syndrome heterogeneity, genotype–phenotype
correlations, and comparison with animal models.
We analyzed 3D images and metadata from a data freeze of

3327 subjects with 396 different syndromes, 727 of their
unaffected relatives, and 3003 unrelated, unaffected subjects.
We used machine learning (HDRDA) and parametric (CVA)
classification to evaluate the utility of 3D facial shape data for
syndrome differential diagnoses, focusing on 64 syndromes
with sample size n ≥ 10. Classification performance was
superior by HDRDA, driven by superior performance for
syndromes with small sample sizes. CVA is problematic for
syndromes when sample size is smaller than the statistical
degrees of freedom,18 whereas HDRDA is remarkably robust
to sample size. This is important for rare syndromes.
The most important determinant of classification perfor-

mance was distinctiveness of its facial phenotype—its
nonproximity in shape space to other syndromes. This was
more important than severity of the phenotype—the distance
to the facial shape of unrelated, unaffected individuals.
Phenotypically severe syndromes may be difficult to classify
if other syndromes have similar phenotypes. For example,
sensitivity for Treacher Collins syndrome is likely depressed
because Nager syndrome often presents similar facial
findings.33 As more syndromes are considered, classification
becomes less accurate because of the increased chance of
confusion among syndromes with similar effects. This
complicates comparisons of classification studies that likely
have different subject compositions.
Unexpectedly, within-syndrome variance—the range of

variation of facial shape among individuals with the same
syndrome—did not determine classification accuracy. This
may reflect counteracting effects of syndrome severity and
within-syndrome variance, as syndromes with more severe
facial shape effects tend to be more variable.
Importantly, subjects with clinical but not molecular

diagnoses were classified with accuracies similar to those with
molecular confirmation, providing an important validation of
the method. Subjects with merely suspected diagnoses, however,
were classified with much lower accuracy. This may reflect
incorrect clinical diagnoses of such individuals or atypical
manifestations of a syndrome. Alternatively, individuals with
suspected diagnoses may have a syndrome not included in the
training set, making them effectively “unclassifiable” within our
study. Further analysis will determine if classification probability
profiles are informative. It is possible that the correct syndromes
for such “unclassifiable” subjects have phenotypic features
similar to those of diagnoses that are assigned the highest
probabilities.
Strikingly, syndromic subjects’ unaffected relatives differed

in important respects from unaffected, unrelated subjects.
Relatives had greater tendency to depart from the mean facial
shape for unrelated, unaffected subjects and were also much
more likely to be misdiagnosed as syndromic, often to the
same syndrome as their affected relative. These findings
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suggest that some relatives thought to be “unaffected” may in
fact be exhibiting clinically mild manifestations of the same
syndrome (forme fruste). Alternatively, some relatives of
patients with recessive syndromes may manifest mild
heterozygote effects. Larger samples of “unaffected” relatives
per syndrome are needed to fully disentangle the causes of
this phenomenon.
Race and ethnicity account for only a small proportion of

facial shape variation, which is consistent with prior work.34

Nevertheless, our study overrepresents (83.1%) subjects who
self-identified as white compared with the US population
(76%), while subjects identifying as Black/African American,
Asian, or American Indian/Alaska Native are underrepre-
sented, as are Hispanic/Latino subjects to a lesser degree.
Investigating possible bias in syndrome classification due to
race and ethnicity is an important direction for future work.
Facial imaging for syndrome diagnosis also has implications
for privacy and ethics. The ability to infer medical informa-
tion from faces may contribute to growing end-of-privacy
fears and has potential psychological impacts that warrant
attention.35

There are several previous approaches to syndrome
classification from facial images, both 2D photographs of
faces9,36,37 and using 3D photogrammetry.38–40 Gurovich et al.
reported a sensitivity of 61% for classification of 2D images
using a deep learning convolutional neural network method.5

While this is higher than the 48% sensitivity achieved here,
direct comparison is difficult. Differences in syndrome
composition of the classification task as well as the
distribution of individuals across the included syndromes
can dramatically affect overall classification accuracy. It is also
likely that syndromes vary in how well they can be classified
from 2D photographs versus 3D facial scans, depending on
their specific phenotypic effects.
More important, 2D photographs and 3D facial scans

contain different intrinsic information. Three-dimensional
shape produces indirect variation (e.g., shadows) on a 2D
photograph, whereas shape is quantified directly from a
3D mesh. Though 2D photographs are easier to obtain, 3D
images are much less affected by camera angle, focal depth,
and lighting. Counterintuitively, 2D data images are more
complex than 3D meshes. The full dimensionality of color
images is high and variation in this space is complex and
nonlinear. This requires large data sets to train and utilize the
large, complex, nonlinear network architectures required. By
contrast, the distribution of 3D facial shapes is well
approximated by multivariate Gaussian distributions and
amenable to analysis with geometric morphometrics.
Given the differences between 2D- and 3D-based image

analysis and increasing affordability of 3D cameras, it is
important to explore and validate the potential of 3D imaging
for syndrome classification. We show that deep phenotype
analysis based on quantitative 3D facial imaging has great
potential to facilitate syndrome diagnosis. Furthermore, the
accuracy reported here can be improved by integrating other
phenotypic data (e.g., a diagnosis of achondroplasia would be

incompatible with normal height). For facial and other
phenomic data to become clinically useful in the clinic,
particularly to assist diagnoses by remote access, it will be
necessary to create large, standardized and well-curated data
sets of disease characteristics (human phenotype ontologies)
and to develop new analytic methods to mine them. To
facilitate such efforts, our 3D facial image library and
accompanying metadata are consented for data-sharing and
are available by application to FaceBase (www.facebase.org).
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