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ABSTRACT 

Elucidating the genetic changes underlying the evolution of human traits remains an unfinished puzzle. Structural 

variants (SVs) account for more genetic differences than single-nucleotide polymorphisms between humans and our 

closest living relatives, chimpanzees, and are a hallmark of great ape evolution. The genomes of great apes are enriched 

in large interspersed segmental duplications (SDs), defined as duplications larger than 1 kbp with over 90% sequence 

identity, that sensitize the genome to further genomic rearrangements, including copy-number variation, via non-

allelic homologous recombination. Despite their relevance, the identification and characterization of these SVs has 

been hindered by short reads lengths as they lack enough sequence context to discover breakpoints and cannot 

unequivocally be mapped to highly identical duplicates. Long-read sequencing technologies overcome these 

limitations by providing reads thousands of bases long, but the availability of population cohorts remains limited.  

This thesis studies primate SVs and SDs characterized using diverse sequencing technologies and assesses their 

representation in reference genomes, variation across modern populations, their putative molecular impacts, and their 

roles in evolution and adaptation. We found novel SVs, including 88 deletions and 36 inversions, in two chimpanzee 

individuals sequenced with nanopore and optical mapping. Deletions and inversion breakpoints were depleted within 

topologically associated domains but enriched in differentially expressed genes between the two species. Focusing on 

human SDs, we identified eight Mbp of erroneously collapsed duplications in the human reference genome, impacting 

48 protein coding and ten medically relevant genes, that are corrected in the first complete sequence of a human 

genome, T2T-CHM13. Leveraging this new reference, we identified 417 genes embedded in SDs with over 98% 

sequence identity (SD-98) that are near copy-number (CN) fixed in modern humans (1000 Genomes Project; 1KGP), 

205 genes showing stratification between diverse modern populations (VST>95th percentile), and 22 protein-encoding 
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genes showing consistent Tajima’s D outlier values across all humans examined. Our approach highlighted potential 

relevant human gene duplications, which are priority candidates for functional studies. Finally, we provide a 

compendium of tools and practices that we recommend be adopted by computational biologists to increase 

reproducibility in the field. 
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CHAPTER 1. Introduction 

Elucidating the genetic changes underlying the evolution of human traits remains an unfinished puzzle. Genetic 

analyses have historically relied on single-nucleotide variants (SNVs) for the identification of species differences and 

selection signatures. Although complex genomic variation has long been recognized as a force underlying phenotypic 

diversity—e.g., transposable elements in maize (McClintock, 1931), and chromosomal inversions (Sturtevant, 1913) 

and duplications (Bridges, 1936) in Drosophila—as well as a key driver of primate evolution (Jeffrey A. Bailey & 

Eichler, 2006), methodological difficulties have limited the understanding of their functional and evolutionary impact. 

Scientists are now poised to explore this question at unprecedented resolution with the large-scale adoption of high-

throughput sequencing technologies (Goodwin et al., 2016). Together, the widespread availability of high-quality 

reference genomes and population-level whole-genome sequencing datasets have reignited interest in studying the 

role of complex genomic variation in human/primate traits. 

Broadly speaking, structural variants (SVs) are defined as complex genomic differences larger than 50 bp (Reviewed 

by Alkan, Coe, and Eichler 2011) (Figure 1.1). These include copy number variants (CNVs) that can change the 

dosage of a gene or genomic region and include deletions and duplications. Larger (>1 kbp) duplications with high 

sequence identity (>90%) are termed segmental duplications (SDs) or low-copy repeats (J. A. Bailey et al., 2001; 

Jeffrey A. Bailey et al., 2002). Other types of SVs include insertions, which can comprise novel sequence and mobile 

elements such as retrotransposons (for a comprehensive review see (Kazazian & Moran, 2017)), translocations, and 

inversions. 
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Figure 1.1. Examples of genomic structural variation. SVs exist as deletions and duplications (with the largest, 
most similar duplications termed segmental duplications, or SDs) that change the copy of a genomic segment (i.e., 
CNVs). Other types of SVs include insertions, translocations, inversions, as well as more complex events not pictured. 
Figure is adapted from (Alkan, Coe, et al., 2011) via “Genome Structural Variations” by BioRender.com (2022). 
Retrieved from https://app.biorender.com/biorender-templates. 

1.1 The origins of primate structural variation 

1.1.1 Hominid SDs and the “core” duplicon hypothesis 

Comparative genomic analyses of great apes’ species have shown their genomes to have been primarily shaped by 

SDs. The branch leading to African great apes (Figure 1.2), experienced a ~2.6-fold increase in duplication activity 

8–12 million years ago (mya), concomitant with a clocklike rate of deletions and a decreased rate of single nucleotide 

variants (SNVs), chromosomal rearrangements, and retrotransposition activity (Tomas Marques-Bonet et al., 2009; 

Sudmant et al., 2013). As a consequence, hominid genomes are enriched for SDs contained in large interspersed 

blocks, differing from other sequenced mammals—like mice, dogs, and cows—where SDs are primarily organized in 

tandem (Liu et al., 2009; Nicholas et al., 2009; She et al., 2008). In humans, SDs account for 7% (218 Mbp) of the 

genome, according to the sequence of the first complete reference genome (Vollger, Guitart, et al., 2022). 

 
Figure 1.2. Cladogram of Hominidae family. Divergence time estimates were obtained from Sudmant et al. 
(Sudmant et al. 2013). Mya: million years ago. 
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Hominid SDs are non-randomly distributed across the genome and organized in large blocks (>250 kbp) that display 

a complex structure of duplications-within-duplications arranged around sequence elements known as ‘core’ or ‘seed’ 

duplicons (Dennis & Eichler, 2016; Jiang et al., 2007; T. Marques-Bonet & Eichler, 2009). These regions represent 

the focal point from which duplications accrue, with younger events located farther away from the core. In the human 

genome, hierarchical clustering of 437 duplicated blocks identified 24 core duplicons of ~15 kbp in size, of which 

fourteen were confined to one chromosome and ten were mixed in non-homologous chromosomes, mostly within 

subtelomeric and pericentromeric regions (Jiang et al., 2007). Evidence suggests that core duplicons have been reused 

independently and recurrently in different primate lineages (Cantsilieris et al., 2020; Matthew E. Johnson et al., 2006). 

The core duplicons themselves are enriched for transcribed genes. Human core duplicon gene families exhibit 

signatures of positive selection (NBPF, RGPD, PMS2P, SPATA31, TRIM51, GOLGA8, Morpheus [NPIP], TBC1D3) 

(M. E. Johnson et al., 2001; Lorente-Galdos et al., 2013) and are among the most copy-number polymorphic (CNP) 

gene families in the human genome (e.g. SPATA31, Morpheus [NPIP], and LRRC37A) (Redon et al., 2006; Sharp et 

al., 2005). Since their original discovery, only three of these gene families have been functionally characterized 

(NBPF, TBC1D3, and SPATA31), leaving the function of most core duplicon genes unknown (Bekpen & Tautz, 2019). 

Different molecular mechanisms have been proposed as the origin of primate SDs. The enrichment of Alu short 

interspersed elements (SINE)—the most abundant interspersed repeats in the human genome—at the boundaries of 

interstitial (euchromatic) and pericentromeric SDs suggests Alu-mediated origins (Jeffrey A. Bailey & Eichler, 2006; 

Jeffrey A. Bailey et al., 2003). As such, it has been proposed that the primate-specific ‘burst’ of Alu retrotransposition 

activity that occurred 35–40 mya sensitized the ancestral primate genome to Alu-mediated recombination events, that 

later propelled duplication events via non-allelic homologous recombination (NAHR). In the case of the LCR16a core 

duplicon, which contains the rapidly-evolving primate-specific gene family Morpheus (NPIP), interchromosomal and 

intrachromosomal expansions have been linked to the hominid-specific retrotransposon SINE-R-VNTR-Alu (SVA) 

(Damert, 2022). It has been found, however, that the association with Alu elements significantly decreases for younger 

SDs and CNVs, implying a change in the molecular mechanisms underlying SD formation, with newer events driven 

by other repeat classes or different molecular mechanisms such as non-homologous end-joining (NHEJ) (Kim et al., 

2008). Recent evidence also suggests that the core duplicons might be subjected to genome instability through the 
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formation of non-B-form DNA structures (G-quadruplex) that remain highly active in the genomes of modern humans 

(Heft et al., 2020). 

1.1.2 Molecular mechanisms contributing to structural variation 

As large stretches of homologous sequences provide a substrate for recombination, SDs sensitize the genome to 

NAHR, resulting in genomic rearrangements such as unequal crossing-over and interlocus gene conversion (IGC), 

where a donor sequence overwrites an acceptor sequence (J. M. Chen et al., 2007). SDs, therefore, are often found in 

regions of genome instability, or ‘hotspots’, prone to recurrent genomic rearrangements, some of which have been 

associated with disease (Stankiewicz & Lupski, 2002, 2010). Core duplicons seem to be preferential sites for 

rearrangement hotspots (Dennis & Eichler, 2016). This suggests that human evolution has balanced the advantages 

conferred by duplication—a well-established driver of gene innovation (Ohno, 1970)—against genome instability and 

disease risk. 

The rate and products of NAHR are determined by the characteristics of the impacted loci, including the size of the 

paralog sequence, degree of identity, distance, and orientation. However, >200 bp of sequence homology is required 

for efficient homologous recombination (J. M. Chen et al., 2007). CNVs (deletions, duplications) and balanced 

rearrangements (inversions, translocations) can be produced depending on the orientation of the paralog sequence. For 

example, NAHR between interchromosomal SDs would lead to deletion/duplication if the paralog sequences are 

directly oriented and inversions if they are invertedly oriented (Stankiewicz & Lupski, 2002) (Figure 1.3). 

Collectively, these NAHR-dependent rearrangements are known as SD-mediated structural variation. 
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Figure 1.3. Products of meiotic NAHR. (A) Deletions/duplications mediated by directly oriented duplications in 
homologous chromosomes (left) or sister chromatids (right). (B) Inversions mediated by invertedly oriented 
duplications in homologous chromosomes (left) or intrachromatid (right). 

However, SD-mediated SVs constitute only a portion of human SVs, with NAHR contribution estimated to range 

from 14 to 28% (Kidd et al., 2010; Korbel et al., 2007; Lam et al., 2010). Alternative DNA-repair mechanisms 

associated with SV formation include non-homologous end-joining (NHEJ), shrinking and expansion of variable 

number tandem repeats (VNTR), and retrotransposition. From these, NHEJ has been pointed to as the major source 

(~50%) of human SVs (Kidd et al., 2010; Korbel et al., 2007; Lam et al., 2010; Mills et al., 2011), followed by 

retrotransposition activity (~30%), mostly from L1 elements (Korbel et al., 2007). 

SVs distribute non-randomly across the genome, clustering around ‘SV hotspots’, with most clusters containing 

variants originating from the same molecular mechanism (Ebert et al., 2021; Korbel et al., 2007; Mills et al., 2011; 

Sudmant, Rausch, et al., 2015). The location of SV clusters is, therefore, associated with the distribution of their source 

of origin, e.g., enrichment of VNTR near centromeric and pericentromeric regions and of NAHR near telomeres and 

SDs. Around 278 SV hotspots have been reported, preferentially located (~4-fold enrichment) near the 5 Mbp ends of 

chromosome arms (Ebert et al., 2021). 
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CNVs, in particular, have been shown to be enriched in SDs, suggesting that SD-based NAHR is a major contributor 

to CNV formation (Redon et al., 2006; Sharp et al., 2005). However, preferential mutational mechanisms differ among 

CNV types and sizes. Analyses of breakpoint signatures of 4,978 CNVs (>443 bp) showed that duplications are more 

likely to form from sequence-dependent mechanisms—such as NAHR, VNTR, and retrotransposition—than 

deletions. Although NAHR (13.5%) and VNTR (11.2%) contribute similarly to CNV formation, NAHR is primarily 

associated with CNVs in the largest decile and VNTR with CNVs in the smallest decile (Conrad et al., 2010). 

A subgroup of CNVs known as microdeletions and microduplications have been implicated in certain diseases, 

collectively termed “genomic disorders” (Carvalho & Lupski, 2016; Inoue & Lupski, 2002; Stankiewicz & Lupski, 

2002, 2010; Watson et al., 2014; Zhang et al., 2009). These CNVs are submicroscopic (not observable with common 

cytogenetic approaches) but usually large-scale (~0.1-1 Mbp), impacting multiple genes, and occur at hotspots of 

chromosomal rearrangements via NAHR (Inoue & Lupski, 2002). Genomic disorders range from Mendelian traits to 

contiguous gene syndromes. Several microdeletions and microduplications syndromes have been associated with 

autism, schizophrenia, and epilepsy (Dennis et al., 2017). Remarkable examples of disease-implicated hotspots include 

chromosomes 7q11.23 deletion (Williams-Beuren syndrome) and duplication (autism), 15q11–q13 deletion (Prader-

Willi and Angelman syndromes), and 1q21.1 microdeletion (intellectual disability, schizophrenia) and duplication 

(autism). 

1.2 Contribution of structural variation to hominid evolution and adaptation 

1.2.1 Structural variation landscape across hominid genomes 

The availability of high-coverage population-level short-read sequencing data provided by large-scale sequencing 

projects—such as the 1000 Genomes Project (1KGP) (Byrska-Bishop et al., 2022; Sudmant, Rausch, et al., 2015), the 

Human Genome Diversity Project (HGDP) (Almarri et al., 2020; Bergström et al., 2020), the Genome Aggregation 

Database (gnomAD) (Collins et al., 2020), and the UK BioBank (Halldorsson et al., 2022)—as well as the growing 

body of individuals sequenced with long reads of diverse backgrounds (Aganezov et al., 2022; Audano et al., 2019; 

Ebert et al., 2021), have allowed the comprehensive discovery of SVs in both human and primate genomes (Abel et 

al., 2020; Almarri et al., 2020; Audano et al., 2019; Byrska-Bishop et al., 2022; Collins et al., 2020; Ebert et al., 2021; 

Hehir-Kwa et al., 2016; Jakubosky et al., 2020; Sirén et al., 2021; Sudmant et al., 2013; Sudmant, Mallick, et al., 2015; 



 

 7 

Sudmant, Rausch, et al., 2015; Yan et al., 2021) (Table 1.1). These surveys ratified SVs as a major source of genomic 

diversity within primate lineages and across human populations. Collectively, around 9% of the human genome is 

affected by insertions, deletions, and inversions alone (~279 Mbp) (Ebert et al., 2021), while at least 12% of the human 

genome (Redon et al., 2006) and ~16% of the hominid genome (Sudmant et al., 2013) is impacted by CNVs. 

Individually, each diploid genome harbors ~18.4 Mbp (0.6%) of SVs, accounting for more than five times as many 

affected base pairs as SNVs (~0.1%) (Sudmant, Rausch, et al., 2015). Per generation, at least 4.1 kbp are associated 

with de novo SV events, a 90-fold increase with respect to de novo SNVs (Kloosterman et al., 2015). 

Table 1.1. Population cohorts of human structural variation obtained from whole-genome sequencing data. 

Reference Dataset  
SV Discovery SV Genotyping 

Cohort Population(s) Platform Cohort Population(s) Platform 
(Sudmant, Mallick, et 
al., 2015) 

- 236 125 populations IL - - - 

(Sudmant, Rausch, et 
al., 2015) 

1KGP 
(low-cov) 

2,504 AFR, EUR, EAS, 
SAS, AMR 

IL - - - 

(Hehir-Kwa et al., 
2016) 

GoNL 250 Dutch IL - - - 

(Chiang et al., 2017) GTEx 147 
AFR, EUR, 

American Indian, 
Asian 

IL - - - 

(Chaisson et al., 
2019) 

HGSVC 9 AFR, EAS, AMR  
IL, PB, 

ONT, BNG 
- - - 

(Audano et al., 2019) - 15 
AFR, EUR, EAS, 

SAS, AMR 
IL 440 

AFR, EUR, EAS, 
SAS, AMR 

Short reads 
(Illumina) 

(Jakubosky et al., 
2020) 

i2QTL 719 
AFR, EUR, EAS, 

SAS, AMR 
IL - - - 

(Almarri et al., 2020) HGDP 911 54 populations IL - - - 

(Collins et al., 2020) gnomAD 14,891 
AFR, EUR,  
EAS, AMR 

IL - - - 

(Abel et al., 2020) CCDG 17,795 AFR, EUR, AMR IL - - - 

(Ebert et al., 2021) - 32 AFR, EUR, EAS, 
SAS, AMR 

PB 3,202 AFR, EUR, EAS, 
SAS, AMR 

Short reads 
(Illumina) 

(Beyter et al., 2021) - 3,622 Icelandics ONT - - - 

(Yan et al., 2021) - - - - 2,504 
AFR, EUR, EAS, 

SAS, AMR 
Short reads 
(Illumina) 

(Sirén et al., 2021) - - - - 5,202 
AFR, EUR, EAS, 

SAS, AMR, MESA 
Short reads 
(Illumina) 

(Aganezov et al., 
2022) 

- 17 
AFR, EUR, EAS, 

SAS, AMR 
PB, ONT - - - 

(Byrska-Bishop et al., 
2022) 

1KGP 
(high-cov) 

3,202 
AFR, EUR, EAS, 

SAS, AMR 
IL - - - 

(Halldorsson et al., 
2022) 

UK 
BioBank 

150,119 
British Irish, 
AFR, SAS 

IL - - - 

1KGP: 1000 Genome Project. HGDP: Human Genome Diversity Project. gnomAD: Genome Aggregation Database. 
i2QTL: Integrated iPSC QTL. GoNL: Genome of the Netherlands Project. GTEx: Genotype-Tissue Expression 
Project. MESA: Multi-Ethnic Study of Atherosclerosis. AFR: African. EUR: European, EAS: East Asian. SAS: South 
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Asian. AMR: American. IL: Illumina short reads. PB: PacBio long-reads. ONT: Oxford Nanopore Technologies long 
reads. BNG: Bionano Genomics. 

Albeit differences in distribution and affected sequence, SVs and SNVs share population genetic properties and global 

distribution patterns. Frequency-wise, most variants are rare and those with higher allele frequencies are shared among 

the five human continental groups. All SV classes can broadly recapitulate SNV-derived ancestries (Sudmant, Rausch, 

et al., 2015), including CNVs (Jakobsson et al., 2008). In concordance with SNVs, individuals of African ancestry 

exhibit more heterozygous SVs than other populations (Sudmant, Rausch, et al., 2015). 

SVs and surrounding SNVs also display similar distributions of linkage disequilibrium (LD) (Hinds et al., 2006; Devin 

P. Locke et al., 2006; McCarroll et al., 2006), suggesting a shared evolutionary history. This has enabled appraising 

SVs via tagging SNVs (Beyter et al., 2021; Conrad et al., 2010; Hehir-Kwa et al., 2016; Marie Saitou et al., 2021; 

Yan et al., 2021). CNVs within duplicated-rich regions, however, show a weaker correlation with surrounding SNVs 

than those situated in less complex regions (Devin P. Locke et al., 2006; Sudmant, Mallick, et al., 2015), likely due to 

methodological difficulties in SNV detection within large duplications as well as haplotype-disruptive recurrence and 

interlocus gene conversion (Marie Saitou & Gokcumen, 2019b) (Figure 1.4).  

Multicopy CNVs (mCNVs), also known as multiallelic CNVs, are particularly challenging for LD analyses, as the 

duplicated segment might not exist at the same locus of origin. Whole-genome shotgun sequencing-based approaches 

estimate that 73% of CNVs (>1% allele frequency) are in medium to strong LD (r2 > 0.6) with nearby SNVs (Sudmant, 

Mallick, et al., 2015), while microarray-based approaches estimate that 40% of common mCNVs are in LD with 

nearby SNVs (Campbell et al., 2011). Similarly, NAHR-derived inversions also display a lack of LD with surrounding 

SNVs (Giner-Delgado et al., 2019). Considering that most genome-wide association studies and population genetics 

analyses depend on the underlying LD architecture of the genome, the lack of linkage information has hindered 

genotype–phenotype studies and selection scans (Marie Saitou & Gokcumen, 2019b). 
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Figure 1.4. Difficulties appraising haplotypes between SVs and neighboring SNVs. (A) Neighboring SNVs are 
difficult to detect when an SV is embedded in repeat-rich regions. (B, C) Haplotypes can be disrupted by (B) interlocus 
gene conversion (IGC) and (C) recurrent deletions (H) and duplication (H’). (D) Multicopy CNVs can be in the same 
locus (H) or several kilobases apart (H’). 

Despite methodological difficulties, the function and disease implication of some SVs have been inferred based on 

strong LD with surrounding disease-implicated SNVs or performing association tests with phenotype cohorts (Aguirre 

et al., 2019; Beyter et al., 2021). Linkage information, in particular, shows that SVs are 1.5 times more likely to be in 

strong LD with genome-wide association study (GWAS) hits than SNVs (Sudmant, Rausch, et al., 2015). Similarly, 

SVs are ~50 times more likely than SNVs to be the lead cause of eQTL signals, with large SVs having larger effect 

sizes. Estimates based on expression data from 613 individuals from the GTEx project predict that common SVs are 

causal of 2.66% of eQTLs, which represents a 10.5-fold enrichment compared to SNVs, considering their relative 

abundance in the genome (Scott et al., 2021). Per genome, SVs are predicted to account for 17.2% of strongly 

deleterious variants, with rare SVs being 841 times more likely to be deleterious than rare SNVs (Abel et al., 2020). 

Thus, although less abundant, SVs disproportionately impact function. 

1.2.2 Natural selection of human structural variation 

Over evolutionary timescales, SVs are subjected to stronger selective pressures than SNVs. The majority of SV 

hotspots develop in gene-poor regions, evolving under relaxed negative selection or neutrality (Lin & Gokcumen, 

2019). For example, it has been proposed that relaxation of negative selection allowed for extensive gain in copy 
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number of olfactory genes in the primate lineage, with negligible fitness implications for modern humans (Young et 

al., 2008). Conversely, functionally relevant sites—including coding regions, regulatory elements (enhancers, 

promoters), and topologically associated domains (TAD) boundaries—have been found to be both depleted in SVs 

and enriched in rare SVs (Beyter et al., 2021), a signature consistent with purifying selection. Among CNVs, deletions 

show stronger selective pressures than duplications, as they can severely impact the function by fully or partially 

ablating transcripts, regulatory elements, and TAD boundaries. Consequently, deletions are significantly depleted 

within functional elements in humans (Devin P. Locke et al., 2006; Mills et al., 2011) and other non-human primates 

(Fudenberg & Pollard, 2019; Soto et al., 2020). 

Nonetheless, several examples of adaptive SVs under positive or balancing selection have been described in the 

literature, mostly implicated in local adaptation to dietary changes, environmental changes (e.g., pigmentation, 

thermoregulation, xenobiotic), and resistance to infectious diseases (Edward J. Hollox et al., 2022; Marie Saitou & 

Gokcumen, 2019b) (Table 1.2). Positive selection of copy number gains in mCNVs has been associated with gene 

dosage effect (Handsaker et al., 2015). This is the case of the β-defensin genes, where copy number gains lead to 

greater protein expression on the mucosal surface and higher antimicrobial activity (E. J. Hollox et al., 2003). Other 

immune-related loci rich in common CNVs, such as the major histocompatibility complex, are thought to maintain 

their genetic diversity through the action of balancing and diversifying selection (Lin & Gokcumen, 2019). 

Some deletions have been maintained polymorphic by the action of balancing selection for thousands of years (Aqil 

et al., 2022), even before the divergence of modern humans and Neanderthals estimated ~800 kya (Gómez-Robles, 

2019). A well-known example of this phenomenon is a common 32 kbp deletion impacting genes LCE3B and LCE3C 

associated with psoriasis. This deletion emerged in the common ancestor with Neanderthals and was maintained 

through balancing selection, likely due to increased effectiveness of the acquired immunity system, albeit higher 

susceptibility to autoimmune disorders (Pajic et al., 2016). Interestingly, genes GSTM1 and UGT2B17 are 

polymorphic in humans and chimpanzees, suggesting inter-species balancing selection. However, further analyses 

revealed that GSTM1 deletion evolved recurrently in both lineages (M. Saitou, Satta, & Gokcumen, 2018; M. Saitou, 

Satta, Gokcumen, et al., 2018), while the evolutionary history of UGT2B17 remains unknown. 
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Table 1.2. Examples of large-scale SVs and whole-gene CNVs exhibiting signatures of natural selection in human 
populations. 

Gene/locus Region Variant Selection type Category Putative trait References 
GSTM1 1p13.3 Deletion Positive (East 

Asian) 
Metabolism Xenobiotic 

metabolism 
(M. Saitou, Satta, 
& Gokcumen, 
2018) 

Amylase 
(AMY1 / 
AMY2) 

1p21.1 mCNV Positive Diet Adaptation to high-
starch diet 

(Pajic et al., 
2019) 

LCEB, LCEC 1q21.3 Deletion Balancing Immune 
response / 
Pigmentation 

Psoriasis / Natural 
vaccination 

(Pajic et al., 
2016) 

UGT2B17 4q13.2 Deletion Balancing 
(European); 
Positive (East 
Asian) 

Metabolism Xenobiotic 
metabolism 

(Xue et al., 2008) 

Glycophorin 
(GYPA / GYPB 
/ GYPE) 

4q31.2 Complex 
duplication (GYPB-
GYPA gene fusion) 

Positive (East 
African) 

Immune 
response 

Resistance to 
malaria infection 

(Leffler et al., 
2017) 

TCAF1 / 
TCAF2 

7q35 Non-duplicated 
haplogroup 

Positive 
(Archaics) 

Diet / 
Thermoregulati
on 

Unknown (Hsieh et al., 
2021) 

ORM1 9132 “Runaway” 
duplication 

Positive 
(European) 

Immune 
response 

Unknown (Handsaker et al., 
2015) 

HERC2 15q13.1 Duplication Negative 
(European) 

Pigmentation Unknown (Marie Saitou & 
Gokcumen, 
2019a) 

BOLA2 16p11.2 mCNV Positive Diet Protection against 
iron deficiency 

(Giannuzzi et al., 
2019) 

α-Globin 
(HBA1/HBA2) 

16p13.3 Deletion Balancing 
(East African) 

Immune 
response 

Resistance to 
malaria infection 

(Williams et al., 
2005) 

HPR 16q22.2 "Runaway" 
duplication 

Positive 
(African) 

Immune 
response 

Resistance to 
trypanosomiasis 
infection 

(Handsaker et al., 
2015; Hardwick 
et al., 2014) 

KANSL1 17q21.31 Inversion, 
duplication 

Positive 
(European) 

Fecundity Increased fertility (Stefansson et al., 
2005) 

SIGLEC14 / 
SIGLEC5 

19q13.41 Deletion (gene 
fusion) 

Positive Immune 
response 

Reduced risk of 
chronic obstructive 
pulmonary disease 

(Angata et al., 
2013; Yamanaka 
et al., 2009) 

GSTT1 / 
GSTT1P1 

22q11.23 Deletion (gene 
fusion) 

Balancing 
(African) 

Diet Xenobiotic 
metabolism 

(Lin et al., 2015) 

APOBEC3B 22q13.1 Deletion Positive Immune 
response 

Unknown (Kidd et al., 
2007) 

 

An example of a positively selected inversion is the 17q21.31 900-kbp inversion polymorphism. The locus harbors 

two main distinct haplogroups, H1 (direct) and H2 (inverted), with little evidence of recombination for the last ~3 

million years (Stefansson et al., 2005). The H2 haplogroup, although rare in Africans and Asians, is prevalent among 

Europeans (~20%), indicative of positive selection thought to confer increased fertility in females (Stefansson et al., 
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2005). Both H1 and H2 have evolved independently and experienced complex rearrangements, with recurrent partial 

duplications of KANSL1 (Steinberg et al., 2012), a haploinsufficient gene identified as the main genetic cause of the 

17q21.31 microdeletion syndrome (also known as Koolen-De Vries syndrome) (Moreno-Igoa et al., 2015). 

SVs involved in local adaptation—the genetic changes experienced by a population to adapt to local environmental 

conditions (Rees et al., 2020)—are prime targets of positive selection. The identification of most adaptive SVs has 

relied on genome-wide scans of population stratification (Conrad et al., 2010; Redon et al., 2006; Marie Saitou et al., 

2021; Sudmant et al., 2010; Yan et al., 2021), as allele frequency differences between populations are robust to 

haplotype-disruptive recurrence and IGC. Stratified SNVs are frequently identified using the fixation index (FST). For 

mCNVs, the statistic VST (Redon et al., 2006) has been adapted from FST to account for multiple copy numbers. One 

of the most well-studied adaptive CNVs in humans is the amylase genes, involved in starch digestion in mammals. 

The copy number of the salivary amylase gene, AMY1, has been found to be positively correlated with dietary starch 

consumption in humans (Perry et al., 2007) and several starch-consuming mammals such as dogs (Pajic et al., 2019), 

evidencing positive selection. Although AMY1 copy number has a dosage effect on salivary amylase production but 

accounts for a small portion of the variability observed among individuals (Carpenter et al., 2017). Interestingly, some 

adaptive SVs in out-of-Africa populations have been introgressed from archaic genomes (Hsieh et al., 2019; Yan et 

al., 2021). Among Melanesians, for example, 19 positively selected CNVs at chromosomes 16p11.2 and 8p21.3 have 

been likely introgressed from Denisovans and Neanderthals, respectively (Hsieh et al., 2019). 

Some adaptive CNVs display a unique expansion pattern, where unusually high copy numbers are seen in one 

population, remaining low in the rest, a pattern termed ‘runaway duplications’ (Almarri et al., 2020; Handsaker et al., 

2015). This is the case of HPR, encoding the haptoglobin-related protein which confers defense against trypanosome 

infection, which shows a copy-number increase in African populations consistent with the geographic distribution of 

the infection (Almarri et al., 2020; Handsaker et al., 2015; Hardwick et al., 2014). Other identified runaway 

duplications include the expansion of ORM1 in Europeans (Handsaker et al., 2015), a private expansion downstream 

of TNFRSF1B in the Biaka group, an expansion upstream of the olfactory receptor OR7D2 in East Asians, and 

expansions in medically relevant genes HCAR2 in the Kalash group and SULT1A1 in Oceanians (Almarri et al., 2020). 
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1.2.3 Complex variation and the evolution of uniquely human traits 

While population-specific changes in allele frequency indicate adaptive variation, SVs found exclusively in humans 

are candidates for evolutionary relevant changes underlying uniquely human traits (Majesta O’Bleness et al., 2012). 

Gene loss caused by fixation of lineage-specific deletions has been proposed as a common and rapid local adaptation 

mechanism, often associated with immune response and pathogen resistance (Olson, 1999). Recent surveys of great 

ape genomes have identified 13.54 Mbp of human fixed deletions, containing 86 putative gene losses, 40 of which 

were human-specific, including known lost genes SIGLEC13 and CLECM4 (Sudmant et al., 2013). Conversely, 

human-specific segmental duplications (HSDs)—large duplication events (>1 kbp) that originated after the split 

between humans and chimpanzees from a common ancestor dated ~6 mya (Besenbacher et al., 2019)—and human-

specific expansions (HSEs)—great ape gene duplications that reached higher copy numbers uniquely in humans—

have also been pointed to as prime targets for the evolution of uniquely human traits. Direct comparisons of human 

and chimpanzee genomes show that HSDs are a major source of genetic differences between our species, impacting 

more than twice as many base pairs (~2.7%) than SNVs (~1.2%) (Z. Cheng et al., 2005). Thirty-three gene families 

have been identified within the largest HSDs regions (>20 kbp), several of which overlap known hotspots of genomic 

rearrangements associated with autism, schizophrenia, and epilepsy (Dennis et al., 2017). On average, HSDs and HSEs 

display higher sequence identity than most duplicated genes (97.0% and 98.7%), consistent with diverging time 

estimates between humans and chimpanzees (Sudmant et al., 2010). 

Several HSDs and HSEs genes have been associated with brain development or neurodevelopmental disorders. 

Ancestral paralogs GPRIN2 (L. T. Chen et al., 1999) and SRGAP2 (Guerrier et al., 2009) have been implicated in 

neurite outgrowth and branching. Human-specific paralogs SRGAP2C (Charrier et al., 2012; Dennis et al., 2012), 

ARHGAP11B (Florio et al., 2016), and human-specific expansions NOTCH2NL (Fiddes et al., 2018, 2019; Suzuki et 

al., 2018) and TBC1D3 (Ju et al., 2016) affect neurodevelopment in animal models and may have contributed to 

neocortex expansion in the human lineage (Table 1.3). Human-specific HYDIN2 gene emerged from an incomplete 

duplication of ancestral HYDIN, likely adopting a new promoter that increased its expression in neural tissue 

(Dougherty et al., 2017) and has been associated with micro and macrocephaly (Brunetti-Pierri et al., 2008). 
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Table 1.3. Human-specific duplicated and expanded genes with evidence of functional impact in human brain 
evolution. 

Gene Region Model Functional impact References (initial) 
SRGAP2C 1q21.1 Embryonic mouse 

cortex 
Neoteny during spine maturation (Charrier et al., 2012; 

Dennis et al., 2012) 
ARHGAP11B 15q13.3 Embryonic mouse 

cortex 
Basal progenitor amplification (Florio et al., 2015) 

NOTCH2NL 1q21.1 Embryonic mouse 
cortex 

Increase in neural progenitor 
proliferation and delayed 
neurogenesis 

(Fiddes et al., 2018; 
Florio et al., 2018; 
Suzuki et al., 2018) 

TBC1D3 17q12 Embryonic mouse 
cortex 

Expansion of basal progenitors 
and cortical folding 

(Ju et al., 2016) 

 

However, not all duplicated paralogs retain or acquire a function (known as neofunctionalization), but instead undergo 

subfunctionalization or pseudogenization. Most duplicated genes, after a brief period of functional redundancy and 

relaxed selection, will accrue deleterious mutations and go the road of pseudogenization (Lynch & Conery, 2000). 

Relocation of duplicated copies in divergent epigenetic contexts and expression patterns might save them from 

pseudogenization and foster neofunctionalization (Rodin et al., 2005). A comparison of cross-tissue expression data 

from 75 HSD genes between humans and chimpanzees found that human-specific paralogs broadly exhibit patterns 

consistent with both relaxed selection and neofunctionalization (Shew et al., 2021). 

Pseudogenes can cause disease by exchanging deleterious variants with functional paralogs via IGC. This is the case 

of SMN2, a nonfunctional HSD paralog of SMN1, which encodes the survival motor neuron (SMN) protein involved 

in the maintenance of motor neurons (Rochette et al., 2001). Unidirectional variant exchange via IGC causes SMN2 

to “overwrite” functional SMN1 leading to the most common form of spinal muscular atrophy (Larson et al., 2015). 

Conversely, IGC events can also “rescue” non-functional HSD paralogs from pseudogenization, which was the case 

of NOTCH2NL (Fiddes et al., 2018; Suzuki et al., 2018). 

These examples showcase that a subset of human-specific genes plays a relevant role in human neurodevelopment, 

evolution, and disease. However, the function and disease implication of most human duplicated genes remains to be 

assayed. 
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1.3 Challenges and opportunities in complex variation characterization 

1.3.1 Short-read sequencing technologies underperform in complex regions 

The study of complex variation has faced several methodological challenges caused by the complex architecture of 

primate SDs. Structural variants and duplicated regions have been historically difficult to assay using SRS 

technologies, the most widely available sequencing technology with thousands of whole-genome DNA samples 

sequenced in the public domain (Abel et al., 2020; Bergström et al., 2020; Byrska-Bishop et al., 2022; Karczewski et 

al., 2020). Short read length (~50-300 bp) poses challenges for (i) the assembly of large repeats and SDs, (ii) read 

mapping to repeat-rich regions, (iii) resolving SVs, and (iv) phasing haplotypes (Alkan, Sajjadian, et al., 2011; 

Chaisson, Wilson, et al., 2015). Since the emergence of SRS technologies, de novo assemblies have suffered from 

gaps preferentially in nearly identical SDs, satellite DNA, and other repeat-rich regions (Chaisson, Wilson, et al., 

2015; Treangen & Salzberg, 2011), in addition to AT- and GC-rich regions that suffer from low sequence coverage in 

sequencing by synthesis approaches (Goodwin et al., 2016). SDs, in particular, tend to be either collapsed (missing 

copies) or misassembled (distinct paralogs assembled as a unique locus) (Eichler, 2001). Errors in the representation 

of SDs in reference genomes give origin to false positive heterozygous calls that confound downstream genetic 

analyses and lead to departure from Hardy-Weinberg equilibrium (Aganezov et al., 2022) (Figure 1.5). 

 
Figure 1.5. False positive heterozygous calls originated from missing copies in the reference. Bars represent a 
sample’s short reads coming from the paralog present in the reference (dark blue) and the missing paralog (light blue).  

However, when SDs are represented correctly, they are consistently tricky to assay using SRS technologies, as 

ambiguous mapping of reads from duplicated sequences prevents identifying true variation. These regions have been 

termed unmappable, inaccessible, “dark” or “camouflaged” (Ebbert et al., 2019) (Figure 1.6). HSD genes are 

particularly challenging as ancestral genes and their human-specific duplicate counterparts share on average ~99% 
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sequence identity and most of them exhibit copy-number polymorphisms in modern humans (Dennis et al., 2017), 

being ignored in most genetic analyses (Hartasánchez et al., 2018; Havrilla et al., 2019). 

 
Figure 1.6. Differences in mappability between short and long reads in duplicated genes. Paralog-specific 
variants (PSVs) (vertical lines) enable discerning between paralogs and detecting polymorphic variation (yellow dots). 
Reads that do not carry PSVs (dashed lines) are unmappable in duplicated regions. SRS: short-read sequencing. LRS: 
long-read sequencing. 

SRS technologies have also shown unequal ascertainment of SVs depending on each type. Deletions are often easier 

to detect, although not if they are embedded in SDs. Duplications and multicopy CNVs can be detected using read-

depth signatures (Alkan, Coe, et al., 2011), but they can lack breakpoint resolution, location of the duplicated 

sequence, and paralog specificity (Figure 1.7). Non-reference unique insertions often go undetected in SRS samples 

(Almarri et al., 2020). Despite SRS challenges, to leverage the increasing amount of SRS databases, ‘ensemble’ 

algorithms, where a combination of tools is used to detect SVs (Ho et al., 2019), can discover thousands of SVs in 

large SRS databases (Abel et al., 2020; Almarri et al., 2020; Byrska-Bishop et al., 2022; Collins et al., 2020). 
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Figure 1.7. Short- and long-read SV discovery signals. R: Reference. S: Sample. SRS: short-read sequencing. LRS: 
long-read sequencing. Dashed line connects two pairs from the same short-read sequencing DNA fragment. Pink 
shapes represent long reads. 

1.3.2 Long-read sequencing overcomes the limitations of short reads 

In recent years, LRS technologies have overcome many of the limitations of SRS (Goodwin et al., 2016; Mantere et 

al., 2019; Sedlazeck, Lee, et al., 2018). Pacific Biosciences (PacBio) Single-Molecule Real-Time (SMRT) and Oxford 

Nanopore Technologies (ONT) can produce reads tens to hundreds of kilobases long, averaging ~10 kb. The first 

wave of LRS datasets enabled high-quality de novo assemblies of human individuals (M. Jain et al., 2018; Seo et al., 

2016; Shafin et al., 2020; Shi et al., 2016; Wenger et al., 2019) and other non-human primates (Gordon et al., 2016; 

Kronenberg et al., 2018; Mao et al., 2021; Warren et al., 2020). Local assembly of the haploid human cell line CHM1 

(Taillon-Miller et al., 1997) using bacterial artificial chromosome clones (CH17) has allowed the local reconstruction 

of misassembled regions of the human genome (Chaisson, Huddleston, et al., 2015; Huddleston et al., 2014; Vollger, 

Dishuck, et al., 2019; Vollger, Logsdon, et al., 2019). 
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A major achievement of LRS has been the completion of the first human genome sequence, T2T-CHM13 (Nurk et 

al., 2022). The new assembly finished the sequence of the missing 8% of the genome corresponding to repeat-rich 

regions including centromeres, telomeres, and the petite arms of the autosomal acrocentric chromosomes (13, 14, 15, 

21, and 22). Additionally, T2T-CHM13 fixed euchromatic gaps and misassemblies, incorporating 51 Mbp of SDs 

(Vollger, Guitart, et al., 2022) and resolving ~8 Mbp of collapsed duplications compared to the previous reference 

genome, GRCh38, including previously missing HSD genes GPRIN2B and DUSP22B (Aganezov et al., 2022). One 

genome, however, is not enough to represent the full genetic diversity of modern humans, leading to the ongoing 

Human Pangenome Reference Consortium (Wang et al., 2022), which will deliver 350 diploid telomere-to-telomere 

human genomes in the next decade. The Vertebrate Genome Project is also leveraging LRS technologies to build high-

quality reference genomes of over 66,000 extant vertebrate species (Rhie et al., 2021), enabling high-resolution 

comparative genomics. 

LRS technologies have dramatically increased SV discovery (Figure 1.7). A combination of long-read and -range 

sequencing technologies—including PacBio, ONT, Illumina, 10X Genomics linked reads, Bionano Genomics optical 

mapping, Strand-Seq, and Hi-C—identified 27,622 SVs ( ≥50 bp) per genome, representing a 7-fold increase in SV 

discovery respect to SRS (Chaisson et al., 2019), a similar finding was obtained by ONT reads alone (22,636 SVs per 

genome) (Beyter et al., 2021). LRS population-level cohorts, ranging from dozens (PacBio) to thousands of 

individuals (ONT), have identified >100,000 SVs in modern humans (Audano et al., 2019; Beyter et al., 2021; Ebert 

et al., 2021; Nurk et al., 2022), which have been genotyped in SRS datasets to assess their functional and evolutionary 

impact (Yan et al., 2021). In addition to direct mapping approaches, LRS technologies are enabling diploid assemblies 

that better represent heterozygous SVs, and theoretically are the most comprehensive approach for SV discovery 

(Mahmoud et al., 2019). 

Long reads have also shown improved mappability in “dark” regions of the human genome (Ebbert et al., 2019) 

(Figure 1.6). However, their original high-error rate (~10-15%) hindered their implementation in SNV and indel 

calling. Variant discovery using ONT MinION reads in a human individual (NA12878) yielded an overall accuracy 

of 91.40% (M. Jain et al., 2018). However, PacBio circular consensus sequencing (CCS) can yield high fidelity (HiFi) 

reads, averaging a base accuracy of 99.8% and variant calling precision and recall over 99.4% (Wenger et al., 2019), 

enabling routine discovery of SNVs and indels (insertions/deletions < 50 bp) in duplicated regions. 
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Together, the incoming influx of human and non-human primate genomes sequenced with LRS in combination with 

large-scale SRS datasets, are ushering in a new era in genomics, promising to fully unveil the functional and 

evolutionary impact of complex genomic variation in primate-specific traits and diseases. 

1.4 Goals of this dissertation 

The overall goal of this dissertation is to leverage both short- and long-read sequencing technologies to discover and 

characterize complex genomic variation in great apes—including SVs and SDs—and their evolutionary and functional 

impact. In chapter 2, I describe the identification of SVs in two new chimpanzee individuals, using a combination of 

two long-range technologies, Nanopore reads and Bionano optical mapping, integrated with Illumina short reads. After 

discovery, we assessed the functional impact of large-scale genomic variation in the gene sequence, gene expression, 

and genome organization using chromatin conformation capture (Hi-C). In chapter 3, I focus on my contribution to 

the Telomere-to-Telomere (T2T) Consortium, the international consortium that achieved the first ever complete 

sequence of a human genome. Here, we evaluated how a complete reference genome improves the analysis of genetic 

variation, including improvements in variant detection, and population and clinical genomics analyses. We 

systematically surveyed misrepresented duplicated sequences and showed how the new reference corrects duplication 

errors and removes erroneous variant calls that confound population and medical genetic analyses. In chapter 4, I 

describe the analysis of nearly-identical SDs using a complete human reference genome. Here, we identified genes 

within evolutionarily recent SDs, and analyzed their expression, copy number diversity, and population stratification, 

to identify priority candidates for functional studies. Finally, in chapter 5, I share our review of some of the main tools 

for computational biology research, suggesting a framework and a toolbox to conduct computational biology research, 

with the goal of promoting reproducibility and sustainability in computational biology research. 

  



 

 20 

CHAPTER 2. Identification of structural variation in chimpanzees 

using optical mapping and nanopore sequencing 

Chapter 2 is adapted with minimal modification from 

Soto DC*, Shew C*, Mastoras M, Schmidt JM, Sahasrabudhe R, Kaya G, et al. Identification of Structural Variation 

in Chimpanzees Using Optical Mapping and Nanopore Sequencing. Genes. 2020;11: 276. 

First authorship is shared between DCS and CS. DCS performed the structural variation identification, genotyping, 

filtering, comparison, and annotation of impacted genes. 

2.1 Abstract 

Recent efforts to comprehensively characterize great ape genetic diversity using short-read sequencing and single-

nucleotide variants have led to important discoveries related to selection within species, demographic history, and 

lineage-specific traits. Structural variants (SVs), including deletions and inversions, comprise a larger proportion of 

genetic differences between and within species, making them an important yet understudied source of trait divergence. 

Here, we used a combination of long-read and -range sequencing approaches to characterize the structural variant 

landscape of two additional Pan troglodytes verus individuals, one of whom carries 13% admixture from Pan 

troglodytes troglodytes. We performed optical mapping of both individuals followed by nanopore sequencing of one 

individual. Filtering for larger variants (>10 kbp) and combined with genotyping of SVs using short-read data from 

the Great Ape Genome Project, we identified 425 deletions and 59 inversions, of which 88 and 36, respectively, were 

novel. Compared with gene expression in humans, we found a significant enrichment of chimpanzee genes with 

differential expression in lymphoblastoid cell lines and induced pluripotent stem cells, both within deletions and near 

inversion breakpoints. We examined chromatin-conformation maps from human and chimpanzee using these same 

cell types and observed alterations in genomic interactions at SV breakpoints. Finally, we focused on 56 genes 

impacted by SVs in >90% of chimpanzees and absent in humans and gorillas, which may contribute to chimpanzee-

specific features. Sequencing a greater set of individuals from diverse subspecies will be critical to establish the 

complete landscape of genetic variation in chimpanzees. 
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2.2 Introduction 

Great apes have considerable phenotypic diversity despite being closely related species. For humans and chimpanzees, 

with only ~5 to 9 million years of independent evolution (Langergraber et al., 2012; Patterson, Richter, et al., 2006), 

significant effort has gone into understanding the underlying genetic and molecular differences contributing to species 

differences, often with the primary focus on human-unique features (Majesta O’Bleness et al., 2012). Direct 

comparison of protein-encoding genes has identified exciting candidates, but these only account for a minor proportion 

of species differences (A. Varki, 2005). Recent analysis of Illumina short-read sequencing has allowed identification 

and genotyping of single-nucleotide variants (SNVs) at the genome scale, which have been used to address questions 

related to the demographic history and genetic adaptations of each species, and lineage-specific traits (Prado-Martinez 

et al., 2013). Further, transcriptome and epigenome comparisons of immortalized cell lines and tissues have revealed 

many thousands of individual genes and putative cis-acting regulatory elements that contribute to species differences 

in gene regulation (Brawand et al., 2011; Eres et al., 2019; Gallego Romero et al., 2015; Khan et al., 2013; McLean 

et al., 2011; Pollen et al., 2019; Prescott et al., 2015; Zhou et al., 2014), though often with varied results and 

reproducibility across studies. 

Since the publication of the chimpanzee genome (Chimpanzee Sequencing and Analysis Consortium, 2005), 

comparison with the human reference genome showed that structural variants (SVs), or genomic rearrangements such 

as inversions and copy-number variants (deletions and duplications), comprise a greater proportion of genetic 

differences than SNVs (Rogers & Gibbs, 2014). Though important, SVs are difficult to discover and genotype using 

traditional short-read Sanger and Illumina data. As such, genome-wide analyses of SVs have leveraged alternative 

approaches, including fosmid-end mapping (Newman et al., 2005), array comparative genomic hybridization (CGH) 

(Gokcumen et al., 2013; D. P. Locke et al., 2003; G. M. Wilson et al., 2006), digital array CGH using whole-genome 

shotgun sequencing of Sanger (Tomas Marques-Bonet et al., 2009) and Illumina (Sudmant et al., 2013), and 

comparisons with improved genome assemblies (Catacchio et al., 2018; Feuk et al., 2005; Kronenberg et al., 2018; 

Kuderna et al., 2017). Most recently, the advent of long-read sequencing technologies, capable of completely 

traversing variant breakpoints, has significantly facilitated discovery of novel SVs (Mahmoud et al., 2019). To date, 

only one study has performed long-read sequencing of a chimpanzee; the most recent improvement to the chimpanzee 

reference genome (panTro6) used hybrid long-read (PacBio) and long-range sequencing approaches (Bionano 
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Genomics (BNG) and Hi-C) of one individual, Clint, a male representing the subspecies Pan troglodytes verus, 

significantly increasing the number of known SVs (Kronenberg et al., 2018). 

Recent comparisons of short- and long-read sequencing technologies using benchmark human genomic datasets 

revealed that multiple genomes (Audano et al., 2019) and combinatorial platforms (Chaisson et al., 2019) are required 

for comprehensive SV discovery; therefore, we performed long-range BNG optical mapping and Oxford Nanopore 

Technologies (ONT) long-read sequencing of additional chimpanzee individuals. These new datasets have allowed us 

to more comprehensively assess deletions and inversions in the chimpanzee genome. When compared with published 

whole-genome screens using orthogonal approaches, our approach validated existing variants and discovered many 

new variants. Knowing that SVs often alter gene functions and regulation (Spielmann et al., 2018), we characterized 

the association of our discovered SVs on differences in gene regulation and chromatin organization between human 

and chimpanzee, identifying a number of events that likely contribute to chimpanzee-specific differences. 

2.3 Results 

2.3.1 Large-Scale SV Discovery and Genotyping in Chimpanzee 

To date, one western chimpanzee individual (Clint) comprising the reference genome (panTro6) has been subject to 

hybrid long-read sequencing for genome assembly and SV discovery (Kronenberg et al., 2018). We sought to expand 

SV discovery via long-read sequencing to two additional chimpanzee individuals (AG18359 and S003641) for which 

renewable LCLs and functional genomic information, including RNA-Seq and ChIP-Seq data (Khan et al., 2013; 

McVicker et al., 2013; Zhou et al., 2014), are available. To begin, we performed Illumina short-read sequencing (~30× 

coverage) of both individuals to confirm ancestry via SNV detection followed by comparisons of population-specific 

genetic markers and PC analysis with chimpanzees from the GAGP (Prado-Martinez et al., 2013) (Figure S2.1). From 

this, we determined AG18359 to be a female western chimpanzee (Pan troglodytes verus) and S003641 to be a male 

western chimpanzee with some central chimpanzee ancestry (Pan troglodytes verus × Pan troglodytes troglodytes). 

Notably, ~13% of the ancestry of this individual is assigned to the central-chimpanzee population, similar to one 

individual (Donald) that was sequenced as part of the GAGP. 

To discover potentially novel chimpanzee SVs, we assayed AG18359 gDNA using ONT PromethION (29×) and BNG 

optical mapping (116×) (Table S2.1). To compare SV discovery of two individuals on the same platform, we also 
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subjected S003641 to BNG optical mapping (70×). As it is the most accurate and well-annotated primate assembly, 

we mapped our sequence data to the human reference genome (GRCh38). We excluded SDs and insertions from our 

analysis of SVs due to challenges in their discovery and validation (Alkan, Coe, et al., 2011). Focusing exclusively 

on deletions and inversions, we discovered 49,579 deletions and 560 inversions using ONT and 4,790 deletions, and 

280 inversions using BNG from AG18359. Similarly, we identified 5,407 deletions and 207 inversions using BNG 

from S003641. For comparative purposes, we also mapped the AG18359 ONT sequence data to the most recent 

chimpanzee reference genome (panTro6) and discovered fewer events (7,895 deletions and 142 inversions) suggesting 

that a significant proportion of SVs identified via mapping to the human reference represented species differences. 

As the primary goal of our study was to identify species differences, we moved forward with SVs identified using the 

human reference genome. We next compared SV discovery across our two platforms. Although ONT had higher 

sensitivity to discover smaller variants, down to 50 bp, there was a higher chance of detecting false positives and errors 

at this resolution (Figure S2.2A). To properly compare across technologies, we filtered for large SVs (≥10 kbp) and 

compared similarities by consolidating variants with more than 50% reciprocal overlap. We found a comparable 

number of deletions in our three call sets (586, 586, and 666 events in AG18359 ONT, AG18359 BNG, and S003641 

BNG, respectively) with 138 deletions found by all three call sets (Table S2.3, Figure S2.2B). Out of the 586 deletions 

found in the AG18359 ONT call set, 381 were uniquely discovered using this technology, while BNG contributed 

another 553 deletions, out of which 307 (55.5%) had support from both individuals. As such, deletion call sets from 

the same technology exhibited a greater overlap than comparing calls from different technologies of the same 

individual. We also found a comparable number of inversions across all three call sets (243, 269, and 207 variants in 

AG18359 ONT, AG18359 BNG, and S003641 BNG, respectively) (Figure S2.2B), of which 34 variants were shared 

among them all. Again, the most overlap for inversions was identified between different individuals assayed using the 

same BNG technology, representing 80 shared out of the total 274 unique variants. 

In order to narrow in on a higher-confidence set of SVs, we subsequently performed genotyping of this discovery set 

using short-read Illumina data from GAGP (>20-fold coverage) of all four chimpanzee subspecies (n = 25) (Table 

S2.2) using SVTyper (Chiang et al., 2015). We also compared our discovered SVs with previously-reported datasets 

from three recent whole-genome SV screens of chimpanzees (Catacchio et al., 2018; Kronenberg et al., 2018; Sudmant 

et al., 2013), each using diverse genomic methods for discovery (Table S2.5 and Table S2.6). From this, we identified 
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425 deletions and 59 inversions that had support from short-read genotyping and/or intersecting with a previously-

discovered SV (Table S2.7 and Table S2.8). In all, our discovery approach using ONT and BNG data achieved 88 

novel deletions and 36 novel inversions when compared with the most recent genome-assembly alignment (Catacchio 

et al., 2018; Kronenberg et al., 2018) and read-depth (Sudmant et al., 2013) approaches (Figure 2.1A and Figure 

2.1B). 

 
Figure 2.1. Genomic features of identified SVs. (A) Deletions (red), inversions (cyan), and large-scale cytogenetic 
inversions (yellow) are interspersed across all 24 human orthologous chromosomes, depicted as ideograms. (B) Novel 
variants in our dataset are defined as lacking 50% reciprocal overlap with previously reported variants in great apes. 
(C) Size distribution of deletions (red) and inversions (cyan). Median size is depicted as dashed lines. (D) Observed 
average distance of deletions (red line) and inversions (cyan line) to SDs, compared to randomly sampled regions 
across the genome of the same size of deletions (red distribution) and inversion (green distribution). We observed an 
enrichment of SV breakpoints residing near SDs (empirical p-value = 1 × 10−4). 

2.3.2 Genomic features of identified SVs 

Examining genomic features of our high-confidence set of chimpanzee SVs, we found that deletion sizes ranged 

between 10 kbp (our minimum threshold) up to ~526 kbp (31 kbp mean; 18.5 kbp median) (Figure 2.1C) and 

inversions ranged in size between 10 kbp and 78 Mbp (4.1 Mbp mean; 57.3 kbp median), including four of seven 

known chimpanzee pericentric inversions identified only with ONT (n = 2) or with both technologies (n = 2) (Goidts 

et al., 2005; H. Kehrer-Sawatzki et al., 2005; Hildegard Kehrer-Sawatzki, Sandig, et al., 2005; Hildegard Kehrer-
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Sawatzki, Szamalek, et al., 2005; Nickerson & Nelson, 1998; Shimada et al., 2005; Szamalek et al., 2006)–64]. The 

majority of novel inversions identified in our study tended to be smaller (57 kbp mean length), perhaps influenced by 

strict size cutoffs (>100 kbp) used in previous studies (Catacchio et al., 2018). The distribution of SVs across the 

human genome (Figure 2.1A and Figure S2.3) was relatively uniform for deletions, which were found on all 24 

chromosomes. The greatest number of events were identified in chromosome 2 (n = 34); however, when normalizing 

by the total number of bases, chromosomes 19 (0.34 deletions per Mbp) and 21 (0.32 deletions per Mbp) exhibited 

the highest number of deletions (Figure S2.3). Inversions, on the other hand, were found on 19 chromosomes, with 

chromosome 5 exhibiting the greatest number of variants (n = 8), and chromosomes 5, 7, and 12 displaying the greatest 

number of inversions per chromosome size (0.04 inversions per Mb). Further, we found that SV breakpoints of both 

deletions and inversions were non-randomly distributed across the human genome near SDs (Figure 2.1D, empirical 

p-value = 1 × 10−4), similar to previously reported results for distribution of SDs in primate genomes (Z. Cheng et al., 

2005; Dennis et al., 2017; Tomas Marques-Bonet et al., 2009; Sudmant et al., 2013). This observed clustering may be 

accounted for by SD-mediated deletions and inversions that can be created via non-allelic homologous recombination 

(Carvalho & Lupski, 2016). 

2.3.3 Genes impacted by SVs 

To evaluate the functional impact of our high-confidence set of SVs, we retrieved all annotated transcribed features 

within deletions (±2.5 kbp) and at inversion breakpoints (±50 kbp) (Tables S2.9 and S2.10). Deletions overlapped 

with 592 genes, out of which 162 were protein-encoding genes (Figure 2.2A). To further refine the impact of SVs 

and gene function, we focused on protein-encoding genes and used Ensembl Variant Effect Predictor (VEP) to predict 

functional impact. VEP annotated 80 protein-encoding genes as highly impacted by deletions (i.e., feature ablation or 

truncation), out of which 54 have been previously classified as loss of function (LoF) tolerant (pLI  ≤ 0.1) by the 

Exome Aggregation Consortium (Lek et al., 2016; Samocha et al., 2014) (Figure 2.2B). Also, three genes (ATXN2L, 

SH2B1, and IL27), which all reside within the same ~500 kbp “deletion” mapped to human chromosome 16p11.2, 

were classified as LoF intolerant (pLI ≥ 0.9). A search through the chimpanzee reference (panTro6) found ATXN21 

and SH2B1 residing on an uncharacterized chimpanzee chromosome Un_NW_019937196v1, suggesting that these 

genes have been translocated to a new genomic locus. This is likely the case for other genes with predicted high-

variant effect and LoF intolerance. Focusing on inversions, we found breakpoints overlapping with 342 transcribed 
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elements of which 64 genes were within 2.5 kbp of breakpoints, including 95 and 21 protein-encoding genes, 

respectively (Figure 2.2A). No highly impacted genes, as predicted by VEP, were found in this dataset. Using pLI 

scores, we identified 9 genes either modified or overlapped by inversions classified as loss-of-function intolerant in 

humans (Figure 2.2B). 

 
Figure 2.2. Description of genes overlapping identified SVs. (A) Categories of genes overlapping deletion regions 
±2.5 kbp and inversion breakpoints ±50 kbp as defined by ENSEMBL biotypes. (B) Number of protein-encoding 
genes classified as LoF tolerant (pLI ≤ 0.1), intolerant (pLI ≥ 0.9) and middle range (pLI > 0.1 and pLI < 0.9) affected 
by deletions regions ±2.5 kbp and inversion breakpoints ±50 kbp. Some affected genes lack LoF information (missing 
category). All genes impacted by deletions were classified by VEP as either highly impacted (feature ablation or 
truncation) or modified, while genes impacted by inversions were either modified or no effect was predicted (overlap 
only). Transcribed elements with no corresponding ENSEMBL transcript ID in humans were classified as having no 
orthology (blue). (C) Overrepresented GO terms in genes impacted by deletions and inversions as reported by DAVID 
(* q-value < 0.05; ** q-value < 0.001). Counts represent the number of genes annotated with each GO term. 

In total, we found a significant depletion of protein-encoding genes at deletion regions (162 genes within 2.5 kbp, 

empirical p-value = 0.001, Figure 2.3 and Figure S2.4A) as well as at inversion breakpoints (21 protein-encoding 

genes within 2.5 kbp, empirical p-value = 0.001, Figure 2.3 and Figure S2.4B). Notably, this depletion did not persist 

when considering all transcribed elements intersecting SVs. Taking a closer look at genes with clear orthologs between 

chimpanzee and humans, we identified significantly fewer orthologs of deletion-impacted genes vs. inversion-

impacted genes (67% vs. 89%, respectively; p-value = 1×10−5 Fisher’s exact test). The majority of deletion-impacted 

genes with no orthologs were predicted to have high-VEP effect (179 out of 195 genes), suggesting that deletion of 

these genes completely ablated them from the chimpanzee genome. 
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Finally, we explored functional annotations of genes impacted by SVs. We found 208 transcribed elements impacted 

by deletions with known GO annotations as reported by DAVID (Huang et al., 2009a, 2009b) (Figure 2.2C). 

Compared to the complete set of human GO annotations, this gene list displays an overrepresentation of genes 

associated with sensory perception of smell (GO:0050911, q-value = 8.7 × 10−11 and GO:0007608, q-value = 3.3 × 

10−2). We also found an overrepresentation of deletion-impacted genes involved in the G-protein coupled receptor 

signaling pathway (GO:0007186, q-value = 5 × 10−5). Notably, both ontologies are primarily driven by known copy-

number polymorphism that exists among olfactory-receptor genes (Nozawa et al., 2007). Inversions contained 140 

genes with known GO functional annotation exhibiting an overrepresentation of regulation of cell differentiation (GO: 

0045596, q-value = 1.2 × 10−4). 

2.3.4 SVs and Gene Regulation 

To understand if variants might affect gene regulation, we leveraged existing RNA-seq datasets generated from 

chimpanzee and human LCLs (Khan et al., 2013) and iPSCs (Pavlovic et al., 2018). From 55,461 human–chimpanzee 

orthologous transcribed features, we identified 6,565 and 8,946 genes in LCLs and iPSCs, respectively, as significantly 

DE between the two species (Table S2.11 and Table S2.12). Among genes for which human-chimpanzee orthology 

was assigned that directly intersected SVs (N = 397 in deletions ±2.5 kb; N = 61 for inversion breakpoints ±2.5 kb), 

roughly half were significantly DE (57/135 LCL and 60/129 iPSC tested genes in deletions; 25/37 LCL and 22/36 

iPSC tested genes in inversion breakpoints) (Table S2.9 and Table S2.10). We report a significant enrichment of DE 

genes from both cell types within (±2.5 kb; permutation test empirical p-value < 0.04) and near (±50 kb; p-value < 

0.01) deletions and near (±50 kbp; p-value < 0.002) inversion breakpoints. DE gene enrichment was only significant 

within (±2.5 kbp) inversion breakpoints in LCLs (Figure 2.3 and Figure S2.4). 
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Figure 2.3. Enrichment and depletion tests of SVs with genomic features. Both deletions and duplications were 
tested within 2.5 kbp (resolution of the SV calls) and 50 kbp. All annotated genes (GENCODE v27) and protein-
encoding genes were tested for depletion of SVs (top two rows) via permutation testing. Human TADs from the LCL 
GM12878 were tested for depletion of putatively disrupting SVs (i.e., SVs generating PDTs, third row). Human–
chimpanzee DE genes from LCLs and iPSCs were also tested for enrichment in SVs via permutation testing (fourth 
and fifth rows). Circles are sized proportionally to the negative log of the empirical p-values and colored according to 
the strength of enrichment or depletion, represented by the log ratio of observed (obs; number of features intersecting 
SVs) and expected (exp; mean number of features intersecting 1000 permuted coordinate sets) counts. 

Considering that gene regulation may be affected by changes in genome organization, we next assayed the impact of 

SVs on chromatin structure by intersecting with previously identified TADs from a deeply-sequenced human LCL 

(GM12878) (Rao et al., 2014) and found 45 and 17 TAD boundaries likely disrupted by deletions and inversions, 

respectively, in chimpanzees. Similar to what others have reported (Fudenberg & Pollard, 2019; Huynh & 

Hormozdiari, 2019), deletions were less likely than expected by chance to straddle TAD boundaries, thereby 

generating putatively disrupted TADs (PDTs) (permutation test empirical p--value < 0.01 within 2.5 kbp and 50 kbp 

of deletions; Figure 2.3 and Figure S2.4A). This is consistent with the hypothesis that regions maintaining chromatin 

structure are subject to negative selection. Not previously reported, we also found a significant depletion of PDTs 

intersecting inversions (p-value = 0.001 within 2.5 kbp and 50 kbp of inversions; Figure S2.4B). Within PDTs we 

identified 58 and 65 DE genes in LCLs and iPSCs, respectively. This suggests that disruption of genome organization 

may have contributed to interspecies changes in gene expression for a subset of genes. Example loci are highlighted 
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in Figure 2.4A, Figure S2.5, Figure S2.7, and Figure S2.8. Notably, chromatin structure was also apparently altered 

by variants near but not directly intersecting identified TAD boundaries (Figure 2.4B and Figure S2.6). 

 
Figure 2.4. Genome organization of human and chimpanzee across regions with identified SVs. The Hi-C 
genomic landscape of human (top) and chimpanzee (bottom) are depicted for iPSCs using Juicebox for (A) 
chromosome 2q12.2–q13 (chr2:106,095,001-109,905,000, GRCh38) and (B) chromosome 9q22.2–q22.32 
(chr9:90,200,001-94,010,000, GRCh38). Predicted TADs (yellow triangles) were compared between species, noting 
differences at SVs (dotted boxes) including deletions and inversions. SDs are depicted as colored bars, taken from the 
UCSC Genome Browser track. Genes showing significant DE in chimpanzee versus humans are colored as red (up in 
chimpanzee) or blue (down in chimpanzee). Genes not included in the DE analysis are in gray (Tables S2.11 and 
S2.12). 

To examine chromatin structure of PDTs, we generated orthologous Hi-C maps from human and chimpanzee LCLs 

and iPSCs (Eres et al., 2019) against the human reference (GRCh38) and directly compared differences in domain 

boundaries between species. Overall, domain calls were similar between species (MoC 0.75 and 0.79 for LCLs and 

iPSCs, respectively (Zufferey et al., 2018)). We examined chimpanzee PDTs and identified more chimpanzee-unique 

boundaries than genome-wide boundaries (30.5% (18/59) versus 24.9% (1424/5714)). Similarly, for iPSCs we found 

22.0% (13/59) of boundaries in PDTs were not shared with humans, compared to 14.9% genome-wide boundaries 

(868/5834). These numbers suggest that TAD-altering SVs may impact chromatin structure in chimpanzees. 
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Closer inspection of these regions revealed examples of altered gene expression coinciding with changes to three-

dimensional chromatin structure. For example, the breakpoints of an inversion mapping to human chromosome 

2q12.2-13 lie near altered domain boundaries and DE genes in iPSCs. Both UXS1 and SH3RF3 reside in altered 

domains and show increased contact frequency with chimpanzee-proximal inverted sequences that are over 1 Mbp 

away in the human genome (Figure 2.4A and Figure S2.5A). Similar gains of interactions are visible in the LCL Hi-

C data with UXS1 also DE, though in the opposite direction (Figure S2.5B). A smaller inversion mapping to human 

chromosome 9q22.31 appears to mediate a domain fusion in both iPSCs and LCLs (Figure 2.4B and Figure S2.6). In 

both cell types, the nearby (<8 kbp away) gene SPTLC1 and truncated processed pseudogene AL136097.2 are 

upregulated and downregulated, respectively, in chimpanzees compared with humans (Figure 2.4B and Figure S2.6). 

Other examples of domain-altering deletions and nearby DE genes are presented in Figure S2.7 and Figure S2.8. 

Altogether, these data provide evidence that SVs may drive DE patterns, either through disruption of the transcribed 

sequence itself or through altered cis-acting regulation, mediated by reorganization of physical interactions within 

chromatin. 

2.3.5 Genes Showing Signatures of Natural Selection 

Recent efforts to sequence diverse great ape genomes have led to identification of signatures of natural selection using 

SNV data that may help to explain features unique to chimpanzee species and subspecies (Cagan et al., 2016; de 

Manuel et al., 2016; Prado-Martinez et al., 2013; Schmidt et al., 2019). To understand if our identified SVs might 

impact the outcome of such studies or explain signatures of selection previously identified, we compared our map of 

SVs with a recent study of natural selection in multiple genomes of the four chimpanzee subspecies (Pan troglodytes 

verus, troglodytes, ellioti, and schweinfurthii) mapped to the human reference genome (Cagan et al., 2016). In this 

study, among several other tests, the Hudson–Kreitman–Aguade (HKA) test (Hudson et al., 1987) was used to identify 

the top 200 genes showing the strongest signatures of long-term balancing selection and positive selection in each 

subspecies. Intersecting this set of genes with our complete list of genes residing within or near deletions (Table S2.9), 

we determined that of the 592 genes putatively disrupted by a deletion, 54 show strong signatures of natural selection 

using the HKA test (32 for positive and 22 for balancing selection).  For inversions, of the 342 genes at or near 

inversion breakpoints, six show strong signatures of natural selection (five for positive, one for balancing) (Table 

S2.10). Of all the genes affected by SVs and with strong signatures of natural selection, nine have evidence of DE in 
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either LCLs or iPSCs, including two protein-encoding genes showing signatures of balancing selection: INPP4B, 

which carries a deletion upstream of the transcription-start site and is upregulated in chimpanzee LCLs, and HLA-F, 

which is completely deleted and is upregulated in chimpanzee LCLs and downregulated in iPSCs. The possibility that 

these deletions generated beneficial expression changes that became strongly affected by natural selection makes these 

genes interesting candidates for follow up. 

2.3.6 Genes Impacted by Chimpanzee-specific SVs 

To hone in on SVs unique and universal to chimpanzees that may contribute to species-specific features, we 

consolidated the complete dataset of our newly discovered SVs and those previously published (Catacchio et al., 2018; 

Kronenberg et al., 2018; Sudmant et al., 2013). Filtering for only those with positive genotypes in >90% of chimpanzee 

individuals genotyped but found in neither humans (n = 8) nor gorillas (n = 8), we identified 209 deletions and 18 

inversions. This set ranged in size from 10 kbp to 526 kbp for deletions and 12 kbp to 78 Mbp for inversions (including 

the four large-scale cytogenetic events). Again, due to the olfactory receptors at these loci, GO analysis shows that the 

genes contained within these SVs were overrepresented for the detection of chemical stimuli involved in sensory 

perception of smell (GO:0050911, q-value 4.1×10−2). Focusing on genes with a higher likelihood of being 

functionally impacted by SVs, we identified 56 protein-encoding genes with a high-impact VEP score (deletions) or 

within 2.5 kbp of a breakpoint (inversions) (Table 2.1). Of the 35 genes queried in our cross-species RNA-seq 

comparisons, 13 exhibited significant DE in chimpanzee versus human in LCLs and/or iPSCs, including APOL4, 

CAST, CLN3, EFCAB13, EIF3C, IL18R1, NPIPB8, NPIPB9, NUPR1, RABEP2, SGF29, SLC01B3, and SULT1A1. 

Additionally, six genes showed strong signatures of positive selection (APOBR, IL27, and TUFM at human 

chromosome 16p11.2 and OR10H1 and OR10H5 at human chromosome 19p13.12) or balancing selection (CLC at 

human chromosome 19q13.2). In all, this list of genes represents exciting candidates putatively implicated in 

chimpanzee-specific traits. 

Table 2.1. Protein-encoding genes impacted by chimpanzee-specific deletions and inversions. 

Gene ENSEMBL ID SV type Description 
APOBR ENSG00000184730 deletion Apolipoprotein B receptor 

APOL1 ENSG00000100342 deletion Apolipoprotein L1 

APOL4* ENSG00000100336 deletion Apolipoprotein L4 
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ATP2A1 ENSG00000196296 deletion Sarcoplasmic/endoplasmic reticulum calcium ATPase 1 

ATXN2L ENSG00000168488 deletion Ataxin 2 like 

CARD18 ENSG00000255501 deletion Caspase recruitment domain family member 18 

CAST* ENSG00000153113 inversion Calpastatin 

CD19 ENSG00000177455 deletion CD19 Molecule 

CEACAM21 ENSG00000007129 deletion CEA Cell Adhesion Molecule 21 

CFHR2 ENSG00000080910 deletion Complement Factor H Related 2 

CFHR4 ENSG00000134365 deletion Complement Factor H Related 4 

CLC ENSG00000105205 deletion Charcot-Leyden crystal Galectin 
CLN3* ENSG00000188603 deletion CLN3 Lysosomal/Endosomal Transmembrane Protein, Battenin 

CMPK1 ENSG00000162368 deletion Cytidine/Uridine Monophosphate Kinase 1 

CROCC ENSG00000058453 inversion Ciliary Rootlet Coiled-Coil, Rootletin 

CYP2C18 ENSG00000108242 deletion Cytochrome P450 Family 2 Subfamily C Member 18 

DEFB128 ENSG00000185982 deletion Defensin Beta 128 

EFCAB13* ENSG00000178852 deletion EF-Hand Calcium Binding Domain 13 

EIF3C* ENSG00000184110 deletion Eukaryotic Translation Initiation Factor 3 Subunit C 

IL18R1* ENSG00000115604 inversion Interleukin 18 Receptor 1 

IL1RL1 ENSG00000115602 inversion Interleukin 1 Receptor Like 1 

IL27 ENSG00000197272 deletion Interleukin 27 
IL36B ENSG00000136696 deletion Interleukin 36B 

IL37 ENSG00000125571 deletion Interleukin 37 

KRTAP19-6 ENSG00000186925 deletion Keratin Associated Protein 19-6 

KRTAP19-7 ENSG00000244362 deletion Keratin Associated Protein 19-7 

LCN10 ENSG00000187922 deletion Lipocalin 10 

LCN6 ENSG00000267206 deletion Lipocalin 6 

LGALS14 ENSG00000006659 deletion Galectin 14 

MERTK ENSG00000153208 deletion MER Proto-Oncogene, Tyrosine Kinase 

NPIPB8* ENSG00000255524 deletion Nuclear Pore Complex Interacting Protein Family Member B8 

NPIPB9* ENSG00000196993 deletion Nuclear Pore Complex Interacting Protein Family Member B9 

NUPR1* ENSG00000176046 deletion Nuclear Protein 1, Transcriptional Regulator 

OBP2A ENSG00000122136 deletion Odorant Binding Protein 2A 

OR10H1 ENSG00000186723 deletion Olfactory Receptor Family 10 Subfamily H Member 1 
OR10H5 ENSG00000172519 deletion Olfactory Receptor Family 10 Subfamily H Member 5 
OR2T33 ENSG00000177212 deletion Olfactory Receptor Family 2 Subfamily T Member 33 

OR6C2 ENSG00000179695 deletion Olfactory Receptor Family 6 Subfamily C Member 2 

OR6C3 ENSG00000205329 deletion Olfactory Receptor Family 6 Subfamily C Member 3 

OR6C65 ENSG00000205328 deletion Olfactory Receptor Family 6 Subfamily C Member 65 

OR6C70 ENSG00000184954 deletion Olfactory Receptor Family 6 Subfamily C Member 70 

OR6C75 ENSG00000187857 deletion Olfactory Receptor Family 6 Subfamily C Member 75 

OR6C76 ENSG00000185821 deletion Olfactory Receptor Family 6 Subfamily C Member 76 
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POU6F2 ENSG00000106536 deletion POU Class 6 Homeobox 2 

RABEP2* ENSG00000177548 deletion Rabaptin, RAB GTPase Binding Effector Protein 2 

RACK1 ENSG00000204628 inversion Receptor For Activated C Kinase 1 

SGF29* ENSG00000176476 deletion SAGA Complex Associated Factor 29 

SH2B1 ENSG00000178188 deletion SH2B Adaptor Protein 1 

SLC35G4 ENSG00000236396 deletion Solute Carrier Family 35 Member G4 

SLCO1B3* ENSG00000111700 inversion Solute Carrier Organic Anion Transporter Family Member 1B3 

SULT1A1* ENSG00000196502 deletion Sulfotransferase Family 1A Member 1 

SULT1A2 ENSG00000197165 deletion Sulfotransferase Family 1A Member 2 

TUFM ENSG00000178952 deletion Tumor Protein P53 
YAE1D1 ENSG00000241127 deletion YAE1 Maturation Factor Of ABCE1 

AC011604.2 ENSG00000257046 inversion Uncharacterized 

AL355987.1 ENSG00000204003 deletion Uncharacterized 

* Human and chimpanzee orthologs were tested and shown to be significant DE genes in either LCLs and/or iPSCs. 
Bold: Genes found to have strong signatures of positive or balancing selection using the HKA test (Cagan et al., 2016). 

 

2.4 Discussion 

Most extensive SV analyses using comparative genomic approaches have used a single genome from one chimpanzee 

individual of the subspecies Pan troglodytes verus (i.e., Clint) (Catacchio et al., 2018; Chimpanzee Sequencing and 

Analysis Consortium, 2005; Feuk et al., 2005; Kronenberg et al., 2018; Tomas Marques-Bonet et al., 2009; Newman 

et al., 2005). Here, we performed long-read sequencing of two additional individuals of the same subspecies, one of 

which carried admixture with Pan troglodytes troglodytes, using two orthogonal technologies: optical mapping and 

nanopore sequencing. To our knowledge, this represents the first nanopore sequence of a chimpanzee genome. From 

this, we discovered over 60,000 deletions and over 500 inversions (≥50 bp) when compared with the human reference 

(GRCh38), on the same scale as found in a recent comparison of the new chimpanzee assembly using a hybrid 

assembly approach (panTro6) (Kronenberg et al., 2018). As expected, ONT sequencing was capable of detecting 

significantly more SVs, down to 50 bp with higher resolution at breakpoints (Figure S2.2A), compared to our BNG 

datasets. Many of the bioinformatically-identified SVs were redundant within and across technologies, which required 

additional filtering. To determine a higher-confidence set of SVs, we limited our analysis to variants ≥10 kbp in size 

with short-read Illumina sequencing evidence of the variant using SVtyper, a genotyping approach. Though the 

genotyping step significantly increased our confidence in variant calls, it also reduced the number of variants we 
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identified (from 1,838 to 858 deletions and from 719 to 253 inversions), particularly for inversions, which are difficult 

to detect/genotype using short-read data. Additionally, our strict size cutoff limited our ability to discover transposable 

elements, which has been shown to represent a significant proportion of lineage divergence between chimpanzees and 

humans (Yohn et al., 2005). Furthermore, due to the uncertainty of the BNG breakpoints, most SVs discovered using 

only this approach were largely filtered from our subsequent analyses due to an inability to accurately genotype events. 

Nevertheless, our approach led to the discovery of 88 novel deletions and 36 novel inversions when compared to 

recent genome-wide scans. We note that we also excluded SDs and insertions from our analysis due to difficulties in 

discovery and subsequent validations using standard short-read genotyping approaches (Chander et al., 2019). As 

improved hybrid-based methods combining long- and short-read data are developed to more accurately identify SVs 

and their breakpoints, it will be a worthwhile endeavor to return to our dataset to discover additional SVs. 

Our results implicated chimpanzee SVs in potentially impacting gene regulation and chromatin organization. It has 

been established that TAD structures are evolutionarily conserved (Dixon et al., 2012; Rao et al., 2014), and recent 

work finds that deletions altering TAD boundaries in humans are under purifying selection (Fudenberg & Pollard, 

2019; Huynh & Hormozdiari, 2019). TAD structure is also conserved across apes, as evidenced by the incidence of 

gibbon–human synteny breaks at domain boundaries (Lazar et al., 2018). Similarly, we find a depletion of PDTs 

generated by deletions in chimpanzees, as well as an expected but previously unreported reduction of inversions 

altering TADs. Taken together, the paucity of SVs altering domain boundaries suggests such variants in chimpanzee 

experience strong negative selection, as observed in other species, perhaps due to conserved roles of TADs in 

modulating gene regulation. Despite the overall depletion of SVs at TAD boundaries, we did find an increased 

incidence of species-specific domain boundaries and significant enrichment of DE genes near SVs in the two cell 

types queried in this study, concordant with previous findings assessing the impact of deletions and duplications on 

differential gene expression in primate LCLs (Iskow et al., 2012). Our analyses are subject to some limitations. 

Domain calling is highly sensitive to input parameters, but the pairs of Hi-C maps were subject to the same analysis 

and highly correlated at a variety of resolutions tested (MoC>0.7 at 100 kbp, 50 kbp, 25 kbp, and 10 kbp for iPSCs; 

100 kbp and 50 kbp for LCLs) allowing for an assessment of genome-wide domain differences. Though the number 

of aligned reads were normalized to comparable levels, relative read depth is likely to vary across the genome due to 

differences in mappability. This is particularly likely at SV loci, where deletions and SDs generate discontinuities in 
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the Hi-C matrix. As such, these domain calls should be interpreted primarily as a means of identifying regions of 

putatively disrupted chromatin structure. 

Notably, many of the genes near SVs were not DE; however, it is plausible that these non-DE genes either remain 

connected to their regulatory elements or their associated elements are specific to cell types not assayed. Further, while 

it has been reported that topology-altering SVs can have little effect on gene expression (Ghavi-Helm et al., 2019), or 

that expression is not globally altered by loss of TADs (Rao et al., 2017), it could still be the case that expression-

altering SVs are frequently subject to negative selection. For instance, TAD- and expression-altering SVs reported in 

humans are typically de novo and pathogenic (Franke et al., 2016; Lupiáñez et al., 2015). Regardless, our findings are 

concordant with those of (Kronenberg et al., 2018), who reported an enrichment of human–chimpanzee cortical 

organoid DE genes near fixed human-specific SVs. While they find an enrichment for downregulated genes at 

insertions and deletions and upregulated genes at SDs, their analysis produced a much smaller set of DE genes (785 

across both cell types using single-cell RNA-seq) and a much larger set of variants (17,789). These findings are also 

in line with reports that SVs underlie many human expression quantitative trait loci (Chiang et al., 2017). However, 

considering the currently incomplete understanding of the relationship between gene regulation and three-dimensional 

chromatin structure, we emphasize that functional studies are necessary to causally implicate SVs in gene expression 

differences within or between species. 

In addition to using Illumina genotyping of our identified SVs to filter out putatively false positive variants, we also 

used this information to query SV differences across subspecies. In our high-confidence set of SVs, we identified one 

novel deletion in chimpanzees (human chromosome 6q11.1; chr6:60,639,753-60,662,981, GRCh38) from our BNG 

data of the western individual carrying substantial central ancestry (S003641) that was also found uniquely in central 

chimpanzees (n = 4). Considering the relatively low ancestry contribution of this individual assigned to the central-

chimpanzee population (~13%), this highlights the importance of sequencing more diverse individuals to identify 

additional subspecies-specific SVs to better survey the complete variant landscape. Using these same genotypes, we 

also focused on a set of genes universally impacted by SVs across all chimpanzees tested, but not detected in the other 

great apes studied (humans and gorillas), since these genes may putatively contribute to species-specific traits (Table 

2.1). One example, APOL4, encoding Apolipoprotein L4, was completely deleted in all chimpanzees tested (n = 25) 

and also shown to be downregulated in both LCLs and iPSCs in chimpanzees when compared with humans. This gene 
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is a member of a tandemly-duplicated family that has experienced a recent expansion in the primate lineage (Monajemi 

et al., 2002) and may play a role in lipid trafficking throughout the body. Human polymorphism at this locus has been 

shown to be associated with schizophrenia (Takahashi et al., 2008). Several identified genes also exhibited signatures 

of natural selection. One example region putatively under balancing selection includes two deletions impacting the 

primate-expanded galectin gene cluster, a family of proteins that specifically bind β-galactoside sugars and are 

important in modulating immune response through interactions with T cells (Balogh et al., 2019). Both deletions (10 

kbp and 35 kbp in size, respectively) are found homozygously in all chimpanzees tested (n = 25), and thus are likely 

not the target of balancing selection, but they completely ablated CLC (or LGALS10) and LGALS14, as well as the 

downstream region of LGALS13 (Figure S2.9). Two of these genes (LGALS13 and LGALS14), expressed exclusively 

in human placenta (Nandor Gabor Than et al., 2009), are important drivers of maternal adaptive immune response, 

with reductions in expression of either gene shown to be associated with an increased risk of preeclampsia (Nándor 

Gábor Than et al., 2014). Although the mechanisms are unclear, it is notable that other immune-related genes with 

connections to preeclampsia also exhibit signatures of balancing selection in humans (Andrés et al., 2010; Tan et al., 

2005; Wedenoja et al., 2019). It is possible that deletions impacting this gene cluster may contribute to pregnancy-

related outcomes in chimpanzees that could be subject to natural selective pressures. 

2.5 Methods 

2.5.1 Cell line Growth and DNA Extraction 

Chimpanzee AG18359 and S003641 lymphoblastoid cell lines (LCLs) were generously shared with us by Dr. Yoav 

Gilad at the University of Chicago. LCLs were grown in T75 flasks with RPMI 1640 medium with L-Glutamine 

supplemented with 15% fetal bovine serum (Thermo Fisher Scientific, Waltham, MA, USA) and Penicillin-

Streptomycin (100 U/ml, VWR, Radnor, PA, USA). For Illumina XTen sequencing, genomic DNA (gDNA) was 

isolated using DNeasy Blood and Tissue kit (Qiagen, Germantown, MD, USA) followed by RNase A treatment 

(Roche, Mannheim, Germany) and ethanol precipitation. For ONT PromethION sequencing, high molecular weight 

(HMW) gDNA was isolated from 5 × 107 cells following a modified Sambrook and Russell method as described 

previously (M. Jain et al., 2018; Kronenberg et al., 2018). The integrity of the HMW DNA was verified on a Pippin 

Pulse gel electrophoresis system (Sage Sciences, Beverly, MA). For the BNG assay, HMW gDNA was isolated from 

cells using the BNG Prep Blood and Cell Culture DNA Isolation Kit (BNG #80004). Briefly, 1.5 × 106 cells were 



 

 37 

resuspended in Cell Buffer and embedded in an agarose plug. The plug was treated with Proteinase K for 18 hours 

followed by RNase A digestion for one hour. After extensive washing, the plug was melted, agarose was digested, 

and drop dialysis was performed to clean the DNA. A Qubit dsDNA BR Assay kit (Thermo Fisher Scientific) was 

used to quantify the DNA. All sequence data generated as part of this project are available for download at the 

European Nucleotide Archive (accession number PRJEB36949).  

2.5.2 Determination of Chimpanzee Subspecies 

gDNA isolated from AG18359 and S003641 LCLs was sequenced at ~30x coverage with Illumina HiSeq XTen 

(Novogene, Sacramento, CA and the UC Davis Genome Center DNA and Expression Analysis Core, Davis, CA, 

respectively) and SNVs were identified following a previously published approach (de Manuel et al., 2016). Briefly, 

reads were mapped using BWA (v0.7.17) against the chimpanzee reference genome (CHIMP2.1.4) using BWA-MEM 

with default parameters. Picard (v2.18.23) MarkDuplicates was used to remove duplicates with the flag 

“REMOVE_DUPLICATES = true.” SNVs were called using FreeBayes (v1.2.0) with the following flags: “--standard-

filters --no-population-priors -p 2 --report-genotype-likelihood-max --prob-contamination 0.05.” We then filtered 

autosomal SNVs with QUAL ≥ 30 and intersected with data from de Manuel et al. callable genome regions, and finally 

merged with the 59 genomes from de Manuel et al. (de Manuel et al., 2016), using bcftools merge with the following 

flags: “--missing-to-ref --force-samples.” EIGENSOFT smartpca (Patterson, Price, et al., 2006) was used to define 

principal components (PCs) using the 59 Great Ape Genome Project (GAGP) chimpanzee genomes (de Manuel et al., 

2016) and the genomes from AG18359 and S003641 were projected onto these components. We estimated the 

variance explained by each of the first 20 PCs as the eigenvalue / sum (top 20 eigenvalues). To expedite the analysis, 

it was run on 50% of the genome-wide SNVs. Admixture analysis was performed with the software ADMIXTURE 

(Alexander et al., 2009) with a set the number of ancestral populations K = 4 corresponding to the four chimpanzee 

subspecies. 

2.5.3 ONT Promethion Library Preparation and Sequencing 

gDNA was sheared to an average size of 50 kbp using a Megaruptor instrument (Diagenode, Denville, NJ) and then 

verified on a Pippin Pulse gel. A sequencing library was prepared starting with 2 µg of sheared DNA using the ligation 

sequencing kit SQK-LSK109 (ONT, Oxford, UK) following the instructions of the manufacturer with the exception 
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of extended incubation times for DNA damage repair, end repair, ligation, and bead elutions. Thirty femtomoles of 

the final library were loaded on PromethION R9.4.1 flow cell (ONT, Oxford, UK) and the data were collected for 64 

hours. Basecalling was performed live on the compute module using MinKNOW v2.1 (Oxford Nanopore 

Technologies, Oxford, UK). Details of the dataset can be found in Table S2.1. 

2.5.4 BNG Saphyr Library Preparation and Sequencing 

AG18359 and S003641 were sequenced at the McDonnell Genome Institute at Washington University and the UC 

Davis Genome Center DNA and Expression Analysis Core, respectively. A total of 750 ng of HMW gDNA was 

labeled with DLE-1 enzyme, followed by proteinase digestion and a membrane clean-up step using the BNG Prep 

DLS DNA Labeling Kit (#80005). After overnight staining with an intercalating dye, the labeled DNA was loaded 

onto a Saphyr Chip G2.3 (BNG #20366) and run on the Saphyr system (BNG #60325) using the Saphyr Instrument 

Control Software (ICS, version 3.1) to maximize throughput of molecules. Raw images of DNA were converted into 

digital molecules files using Saphyr ICS version 3.1. Details of both datasets can be found in Table S2.1. 

2.5.5 Detection of SVs 

To detect SVs, ONT long-reads were mapped to the human (GRCh38, no alternative haplotypes) and the chimpanzee 

reference genome (panTro6) using minimap2 (v2.17-r941) and SVs were identified using Sniffles (v1.0.11) with “--

genotype” flag and default parameters. Large SVs were identified from BNG opticals maps using Bionano Solve 

(v3.5) (Hastie et al., 2017) de novo genome assembly and SV-discovery pipeline using human GRCh38 as the 

reference. The SV file in SMAP format was converted to VCF format using the smap_to_vcf_v2.py script contained 

in Solve software (v3.4.1). Only the variants with “PASS” filter were considered in the analysis and homozygous 

reference calls were removed. SV size selection and filtering were performed with the bcftools (v1.9) view using the 

filter “INFO/SVLEN ≥ 10000 || INFO/SVLEN < −10,000” for both ONT and BNG datasets. To compare overlap 

between the SVs discovered by each method, we obtained 50% reciprocal overlap between features using bedtools 

intersect (v2.29.0) with flags “−f 0.5 −F 0.5.” Deletions and inversions were retrieved from the SVTYPE tag and 

processed separately in downstream analyses. 
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2.5.6 Genotyping and Filtering of SVs 

Variants for each callset were genotyped independently using previously published Illumina data from 25 chimpanzees 

from all four subspecies, as well as eight gorillas and eight humans. SNV genotypes from non-human primates were 

retrieved from the GAGP (Prado-Martinez et al., 2013) and human SNV genotypes were obtained from the Simons 

Genome Diversity Project (Mallick et al., 2016) (Table S2.2). Reads were mapped to the human reference (GRCh38) 

using BWA MEM (0.7.17−r1188) (H. Li, 2013) and subsequently merged and sorted with samtools (v1.9) for each 

individual. Large inversions and deletions (>10 kbp) were genotyped with SVtyper (v.0.7.1) (Chiang et al., 2015). 

Genotype information was retrieved using bedtools query (v2.29.0). To assess whether a variant was novel to this 

study, calls were compared to previously reported deletions and inversions larger than 10 kbp found in any great ape 

or any variant discovered in chimpanzee (Catacchio et al., 2018; Kronenberg et al., 2018; Sudmant et al., 2013) using 

bedtools intersect (v2.29.0) with 50% reciprocal overlap. SVs that were either (1) genotyped in one chimpanzee 

individual (1/1 or 0/1) or (2) reported as discovered in chimpanzee in previous studies, were selected to generate a 

higher confidence set (filter 1). This dataset was further refined by collapsing calls within the dataset with 50% 

reciprocal overlap. All novel calls were visually inspected in Integrative Genome Browser for ONT calls (Robinson 

et al., 2011) and Bionano Access for BNG calls. Also, SVs present in ≥90% of the chimpanzee individuals (22 or 

more) as well as absent in outgroups (human and gorilla) were included in the likely chimpanzee-specific dataset 

(filter 2). In (Kronenberg et al., 2018), eight chimpanzee individuals were genotyped; as such, variants with evidence 

in seven or more individuals were also included in the chimpanzee-specific dataset. The distribution of high-

confidence calls across the human reference (GRCh38) was plotted using the R package Karyoplotter (Gel & Serra, 

2017). 

2.5.7 Annotation of Impacted Genes 

Genes impacted by SVs were obtained by intersecting Gencode v27 genomics features annotation file to deletion 

coordinates ±2.5 kbp and inversion breakpoints (considered as estimated breakpoints ±2.5 kbp and ±50 kbp) using 

bedtools intersect (v2.29.0). The impact of the SVs on the function of the gene was predicted using Ensembl Variant 

Effect Predictor (VEP) (McLaren et al., 2016) with the Gencode v27 GTF file. The probability of loss of function 

intolerance score (pLI) was obtained from the gene constraints scores table in the Exome Aggregation Consortium 

database (Karczewski et al., 2019). Gene ontology (GO) annotations and overrepresented terms were retrieved for 
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each gene using DAVID (Huang et al., 2009a, 2009b) and by selecting terms at a 5% false-discovery rate (FDR). 

Genes previously identified as showing signatures of positive and balancing selection in chimpanzees were retrieved 

from previously published data (Cagan et al., 2016) and intersected with the set of genes impacted by SVs. 

2.5.8 Differential Gene Expression 

We obtained previously-published RNA-seq data from chimpanzee and human LCLs (Khan et al., 2013) and induced 

pluripotent stem cells (iPSCs) (Pavlovic et al., 2018). Raw data were trimmed using TrimGalore (v0.6.0) with the 

following parameters: “-q 20 --phred33 --length 20”. Transcripts per million (TPM) values were estimated using 

Salmon (v0.14.1) (Patro et al., 2017) with the “--validateMappings” flag for all transcripts in GENCODE v27 and 

chimpanzee transcriptome published by (Kronenberg et al., 2018), which was based on a combination of orthologous 

genes identified via comparisons of human GENCODE v27 and novel transcripts identified through PacBio isoSeq of 

iPSCs. The R package tximport (Soneson et al., 2015) was used to estimate gene-level counts from TPM values using 

the setting ‘countsFromAbundance = "lengthScaledTPM"’ for 55,461 annotated genes with equivalent identifiers in 

the two transcriptomes. Differential expression analysis was conducted with limma-voom (Law et al., 2014; Ritchie 

et al., 2015). Genes with fewer than 1 count per million across all samples were filtered from the analysis, and a model 

accounting for species and sex was implemented. Differentially-expressed (DE) genes were called at a 5% FDR. 

2.5.9 Topologically Associated Domain (TAD) Analyses 

We retrieved published TAD predictions from an LCL of a human female (GM12878) originally called with 4.9 billion 

Illumina reads (Rao et al., 2014). Domain coordinates were transformed from GRCh37 to GRCh38 using liftOver 

(UCSC Genome Browser; 9,262/9,274 domains successfully converted). Boundaries were defined as the start and end 

coordinates of each domain expanded to 5 kbp (resolution size of the TAD-calling analysis). 

To directly compare domain boundaries between humans and chimpanzees, we generated DNase Hi-C libraries from 

three human (GM12878, GM20818, GM20543) and two chimpanzee (S007602, AG18359) LCLs as described by 

(Ramani et al., 2016). Raw data were processed using the Juicer pipeline (Durand et al., 2016) with the human 

reference GRCh38. Human alignments were downsampled to ~300 million reads to allow for equal comparison to 

chimpanzee, and Hi-C interaction matrices were generated with a (BWA) MAPQ filter of 30. Domains were called 

on Knight-Ruiz normalized contact matrices using TopDom (Shin et al., 2016) at 50 kbp resolution and the default 
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window size (w = 5). Similarity between domain sets was computed with the Measure of Concordance (MoC) as 

implemented previously (Zufferey et al., 2018) using chromosome 1. Domain calls were visualized with interaction 

maps (coverage normalized at 5 kbp resolution) using Juicebox (1.11.08). Across all chromosomes, boundaries unique 

to each species were considered to be the left and right coordinates of each domain, expanded to 50 kbp, when that 

region was not adjacent to (or overlapping) a boundary from the other species. This analysis was repeated using high-

depth raw Hi-C data from four human and four chimpanzee iPSCs with approximately 1 billion reads per sample 

(combined across individuals; also normalized by downsampling) (Eres et al., 2019). 

2.5.10 Permutation Analyses 

For each variant, the distance to the nearest segmental duplication (SD; duplicated region with >90% identity across 

>1 kbp, downloaded from UCSC Genome Browser GRCh38) was calculated using bedtools closest (v2.29.0). Regions 

of the same size (deletions ±2.5 kbp and inversions ±2.5 kbp) were randomly sampled from the human genome using 

bedtools shuffle (v2.29.0), and 5-kbp “breakpoints” were extracted from shuffled inversions. The distribution of the 

distance of these random regions to the nearest SD was plotted as density using the R package ggplot2. Permutation 

tests to assess the enrichment/depletion of genomic features (e.g., genes, boundaries) at SVs were similarly performed 

by shuffling the SV coordinates 1,000 times and counting the number of intersecting features with each set of 

coordinates. SVs were tested for enrichment of DE genes by generating 1,000 random samples of all genes tested in 

the expression analysis of equal size to the differential set. One-tailed empirical p-values were calculated as follows: 

p-value = (M + 1) / (N + 1), where M is the number of iterations yielding a number of features less than (depletion) 

or greater than (enriched) observed and N is the number of iterations. 
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CHAPTER 3. A complete reference genome improves analysis of 

human genetic variation 

Chapter 3 is adapted with minimal modification from 

Aganezov S*, Yan SM*, Soto DC*, Kirsche M*, Zarate S*, Avdeyev P, et al. A complete reference genome improves 

analysis of human genetic variation. Science. 2022;376: eabl3533. 

First authorship is shared between SA, SMY, DCS, MK, and SZ. DCS performed the genome-wide analysis of 

collapsed duplications (section 1) and medically relevant genes impacted by errors in the reference genome GRCh38 

(section 5). 

3.1 Abstract 

Compared to its predecessors, the Telomere-to-Telomere CHM13 genome adds nearly 200 Mbp of sequence, corrects 

thousands of structural errors, and unlocks the most complex regions of the human genome to clinical and functional 

study. Here we demonstrate how this reference universally improves read mapping and variant calling for 3,202 and 

17 globally diverse samples sequenced with short and long reads, respectively. We identify hundreds of thousands of 

variants per sample in previously unresolved regions, showcasing the promise of the T2T-CHM13 reference for 

evolutionary and biomedical discovery. Simultaneously, this reference eliminates tens of thousands of spurious 

variants per sample, including up to a 12-fold reduction of false positives in 269 medically relevant genes. The 

improvement in variant discovery coupled with population and functional genomic resources position T2T-CHM13 

to replace GRCh38 as the prevailing reference for human genetics. 

3.2 Introduction 

For the past twenty years, the human reference genome (GRCh38) has served as the bedrock of human genetics and 

genomics (International Human Genome Sequencing Consortium, 2004; Lander et al., 2001; Schneider et al., 2017). 

One of the central applications of the human reference genome, and of reference genomes in general, has been to serve 

as a substrate for clinical, comparative, and population genomic analyses. More than one million human genomes 

have been sequenced to study genetic diversity and clinical relationships, and nearly all of them have been analyzed 
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by aligning the sequencing reads from the donors to the reference genome, e.g. (Karczewski et al., 2020; Stephens et 

al., 2015; Sudmant, Rausch, et al., 2015). Even when donor genomes are assembled de novo, independent of any 

reference, the assembled sequences are almost always compared to a reference genome to characterize variation by 

leveraging deep catalogs of available annotations (Seo et al., 2016; Shafin et al., 2020). Consequently, human genetics 

and genomics benefit from the availability of a high-quality reference genome, ideally without gaps or errors that may 

obscure important variation and regulatory relationships. 

The current human reference genome, GRCh38, is used for countless applications, with rich resources available to 

visualize and annotate the sequence across cell types and disease states (ENCODE Project Consortium et al., 2020; 

GTEx Consortium, 2020; Navarro Gonzalez et al., 2021; Schneider et al., 2017; Taliun et al., 2021). However, despite 

decades of effort to construct and refine its sequence, the human reference genome still suffers from several major 

limitations that hinder comprehensive analysis. Most immediately, GRCh38 contains more than 100 million 

nucleotides that either remain entirely unresolved (currently represented as ‘N’ characters), such as the p-arms of the 

acrocentric chromosomes, or are substituted with artificial models, such as the centromeric satellite arrays (Miga et 

al., 2014). Furthermore, GRCh38 possesses 11.5 Mbp of unplaced and unlocalized sequences that are represented 

separately from the primary chromosomes (Church et al., 2015; Schneider et al., 2017). These sequences are difficult 

to study, and many genomic analyses exclude them to avoid identifying false variants and false regulatory relationships 

(Karczewski et al., 2020). Relatedly, artifacts such as an apparent imbalance between insertions and deletions (indels) 

have been attributed to systematic misassemblies in GRCh38 (Audano et al., 2019; Chaisson, Huddleston, et al., 2015; 

Chaisson et al., 2019). Overall, these errors and omissions in GRCh38 introduce biases in genomic analyses, 

particularly in centromeres, satellites, and other complex regions. 

 Another major concern regards the influence of the reference genome on the analysis of variation across large cohorts 

for population and clinical genomics. Several studies, such as the 1000 Genomes Project (1KGP) (The 1000 Genomes 

Project Consortium, 2015) and gnomAD (Karczewski et al., 2020), have provided information about the extent of 

genetic diversity within and between human populations. Many analyses of Mendelian and complex diseases use these 

catalogs of single nucleotide variants (SNVs), small indels, and structural variants (SVs) to rank and prioritize 

potential causal variants on the basis of allele frequencies (AFs) and other evidence (Gulko et al., 2015; Kircher et al., 

2014; Yandell et al., 2011). When evaluating these resources, the overall quality and representativeness of the human 
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reference genome are important, if often overlooked, factors. Any gaps or errors in the sequence could obscure 

variation and its contribution to human phenotypes and disease. In addition to omissions such as centromeric 

sequences or acrocentric chromosome arms, the current reference genome possesses other errors and biases, including 

within genes of known medical relevance (Miller et al., 2021; Wagner et al., 2021). Furthermore, GRCh38 was 

assembled from multiple donors with clone-based sequencing, which creates an excess of artificial haplotype 

structures that can subtly bias analyses (Green et al., 2010; Lander et al., 2001). Over the years, there have been 

attempts to replace certain rare alleles with more common alleles, but hundreds of thousands of artificial haplotypes 

and rare alleles remain to this day (Ballouz et al., 2019; Schneider et al., 2017; Zerbino et al., 2020). Increasing the 

continuity, quality, and representativeness of the reference genome is therefore crucial for improving genetic 

diagnosis, as well as for understanding the complex relationship between genetic and phenotypic variation. 

 The Telomere-to-Telomere (T2T) CHM13 genome addresses many of the limitations of the current reference (Nurk 

et al., 2022). Specifically, the T2T-CHM13v1.0 assembly adds nearly 200 Mbp of sequence and resolves errors present 

in GRCh38. Here we demonstrate the impact of the T2T-CHM13 reference on variant discovery and genotyping in a 

globally diverse cohort. This includes all 3,202 samples from the recently expanded 1KGP sequenced with short reads 

(Byrska-Bishop et al., 2022) along with 17 samples from diverse populations sequenced with long reads (Nurk et al., 

2022; Shafin et al., 2020; Zook et al., 2020). Our analysis reveals more than two million variants within previously 

unresolved regions of the genome, genome-wide improvements in structural variant discovery, and enhancement in 

variant calling accuracy across 622 medically relevant genes. In summary, our work demonstrates universal 

improvements in read mapping and variant calling, broadening the horizon for future genomic studies. 

3.3 Results 

3.3.1 Structural comparisons of GRCh38 and T2T-CHM13 

3.3.1.1 Introducing the T2T-CHM13 genome 

The T2T-CHM13 reference genome was primarily assembled from Pacific Biosciences (PacBio) High Fidelity (HiFi) 

reads augmented with Oxford Nanopore Technology (ONT) reads to close gaps and resolve complex repeats (Nurk et 

al., 2022). The resulting T2T-CHM13v1.0 assembly was subsequently validated and polished, with a consensus 

accuracy estimated to be between Phred Q67 and Q73 (McCartney et al., 2022; Nurk et al., 2022) and with only three 
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minor known structural defects detected (McCartney et al., 2022). The assembly is highly contiguous, with only five 

unresolved regions from the most highly repetitive ribosomal DNA (rDNA) arrays, representing only 9.9 Mbp of 

sequence out of >3.0 Gbp of fully resolved sequence. The version 1.0 assembly adds or revises 229 Mbp of sequence 

compared to GRCh38, defined as regions of the T2T-CHM13 assembly that do not linearly align to GRCh38 over a 1 

Mbp interval (i.e., are “non-syntenic”). Furthermore, 189 Mbp of sequence are not covered by any primary alignments 

from GRCh38 and are resolved in the T2T-CHM13 assembly. A summary diagram of the syntenic/non-syntenic 

regions and their associated annotations are presented for chromosomes 1 and 21 (Figure 3.1A), along with a detailed 

report for all chromosomes (Figures S3.1-3.4). Note that the subsequent T2T-CHM13v1.1 assembly (Nurk et al., 

2022) further resolves the rDNA regions using model sequences for some array elements, although for this study we 

analyze the v1.0 assembly, which does not contain these representations.  

The bulk of the non-syntenic sequence within T2T-CHM13 comprises centromeric satellites (190 Mbp) (Altemose et 

al., 2022) and copies of segmental duplications (218 Mbp) (Vollger, Guitart, et al., 2022). These sequences could 

prove challenging for variant analysis, especially for variants identified using short-read sequencing. However, 

compared to GRCh38, we report an overall increase in unique sequence, defined as k-length strings (k-mers) found 

only once in the genome (e.g., 14.9 Mbp of added unique sequence when considering 50-mers, 23.5 Mbp for 100-

mers, and 39.5 Mbp for 300-mers). These sequences delineate regions of confident mapping for short paired-end reads 

or longer reads, including in previously unrepresented portions of the genome (Figure 3.1B and Figure S3.5 and 

Figure S3.6). 

In highly repetitive regions, more than 106 Mbp of additional sequence was identified in T2T-CHM13 that requires 

reads of more than 300 bp to uniquely map compared to GRCh38. Concomitantly, T2T-CHM13 possesses fewer 

exactly duplicated sequences (≥5 kbp) shared across chromosomes (excluding sequence pairs within centromeres) 

than GRCh38 (Figure S3.7 and Figure S3.8). Specifically, GRCh38 possessed 28 large shared interchromosomal 

sequences, primarily consisting of pairs of sub-telomeric sequences, with an additional 42 pairs involving at least one 

unplaced contig. All of these identical sequence pairs, save one between two subtelomeres, are non-identical in T2T-

CHM13, as small but important differences between repetitive elements have now been resolved (Hoyt et al., 2022; 

Nurk et al., 2022). 
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Figure 3.1. Genomic comparisons of human assemblies GRCh38 and T2T-CHM13. (A) Overview of annotations 
available for GRCh38 and T2T-CHM13 Chromosomes 1 and 21 with colors indicated in legends, which are also used 
in B-D. Colors for mean minimum (min) unique k-mers are defined in the legend with indicated asterisk. Cytobands 
are pictured as gray bands with red bands representing centromeric regions within ideograms. Complete annotations 
of all chromosomes can be found in Figures S3.1-3.4. Local ancestry is denoted using 1KGP superpopulation 
abbreviations (AFR: African, AMR: Admixed American, EAS: East Asian, EUR: European, SAS: South Asian). (B) 
Summary of the number of bases and/or genes annotated by different features for the assemblies with colors indicated 
in the legends shown in A. Note, dbSNP liftover failures (pink) are not annotated in A. (C) Example of a clone 
boundary (red line) where GRCh38 possesses a combination of alleles that segregate in negative LD within the 1KGP 
sample (which we term as an “LD-discordant haplotype”). SNPs are depicted in columns, while phased 1KGP samples 
are depicted in rows. White indicates reference allele genotypes, while black indicates alternative allele genotypes. 
Superpopulation ancestry of each sample is indicated in the rightmost column with colors indicated in local ancestry 
legend shown in A. CEP104 splice isoforms (blue) are depicted at the bottom. (D) Tally of such LD-discordant 
haplotypes in a selection of 1KGP individuals, colored by population, as well as GRCh38 and T2T-CHM13. (E) 
Examples of variants that cannot be lifted over to T2T-CHM13 because of structural differences between the genomes. 
The position of the reference allele in GRCh38 is shown in red. 

3.3.1.2 T2T-CHM13 accurately represents the haplotype structure of human genomes 

The human reference genome serves as the standard to which other genomes are compared and is typically perceived 

as a haploid representation of an arbitrary genome from the population (Ballouz et al., 2019). In contrast with T2T-

CHM13, which derives from a single homozygous complete hydatidiform mole, the Human Genome Project 

constructed the current reference genome via the tiling of sequences obtained from bacterial artificial chromosomes 

(BACs) and other clones with lengths ranging from ~50–150 kbp (Green et al., 2010), which derived from multiple 
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donor individuals. GRCh38 and its predecessors thus comprise mosaics of many haplotypes, albeit with a single library 

(RP11) contributing the majority (Green et al., 2010). 

To further characterize this aspect of GRCh38 and its implications for population studies, we performed local ancestry 

inference for both GRCh38 and T2T-CHM13 through comparison to haplotypes from the 1KGP (Methods are 

available as supplementary materials) (Figure 3.1A and Figure S3.2 and Figure S3.9). Continental superpopulation-

level ancestry was inferred for 72.9% of GRCh38 clones based on majority votes of nearest-neighbor haplotypes. For 

the remaining 27.1% of clones, no single superpopulation achieved a majority of nearest neighbors, and ancestry thus 

remained ambiguous. This ambiguity occurs primarily for short clones with few informative SNPs (Figure S3.10), 

but also for some longer clones with potential admixed ancestry.  

In accordance with Green et al., we inferred that library RP11, which comprises 72.6% of the genome, is derived from 

an individual of admixed African-American ancestry, with 56.0% and 28.1% of its component clones assigned to 

African and European local ancestries, respectively. The second most abundant library, CTD (5.5% of the genome), 

consists of clones of predominantly (86.3%) East Asian local ancestries, while the remaining libraries are derived 

from individuals of predominantly European ancestries. In contrast, CHM13 exhibits European ancestries nearly 

genome-wide (Figure S3.11). In addition, GRCh38 and T2T-CHM13 harbor 26.7 Mbp and 51.0 Mbp, respectively, 

of putative Neanderthal-introgressed sequences that originated from ancient interbreeding between the two hominin 

groups approximately 60 thousand years ago(Green et al., 2010). The excess of introgressed sequence in CHM13, 

even when restricting to the genomic intervals of GRCh38 clones with confident ancestry assignments, is consistent 

with its greater proportion of non-African ancestry. 

We hypothesized that the mosaic nature of GRCh38 would generate abnormal haplotype structures at the boundaries 

of clones used for its construction, producing combinations of alleles that are rare or absent from the human 

population. Indeed, some previous patches of the reference genome sought to correct abnormal haplotype structures 

wherever noticed due to their impacts on genes of clinical importance (e.g., ABO and SLC39A4)(Schneider et al., 

2017). Such artificial haplotypes would mimic rare recombinant haplotypes private to any given sample, but at an 

abundance and genomic scale unrepresentative of any living human. To test this hypothesis, we identified pairs of 

common (minor allele frequency [MAF] > 10%) autosomal SNP alleles always observed on the same haplotype (i.e., 
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segregate in perfect [R2 = 1] linkage disequilibrium [LD]) in the 2,504 unrelated individuals of the 1KGP and queried 

the allelic states of these SNPs in both GRCh38 and T2T-CHM13 (Materials and Methods Are Available as 

Supplementary Materials).  

In accordance with our expectations, we identified numerous haplotype transitions in GRCh38 absent from the 1KGP 

samples, with 18,813 pairs of LD-discordant SNP alleles (i.e., in perfect negative LD) distributed in 1,390 narrow 

non-overlapping clusters (median length = 3,703 bp) throughout the genome (Figure 3.1C). Such rare haplotype 

transitions are comparatively scarce in T2T-CHM13, with only 209 pairs of common high-LD SNPs (50 non-

overlapping clusters) possessing allelic combinations absent from the 1KGP sample (Figure 3.1D). Using a leave-

one-out analysis, we confirmed that T2T-CHM13 possesses a similar number of LD-discordant haplotypes as phased 

“haploid” samples from 1KGP, whereas GRCh38 vastly exceeds this range (Figure 3.1E). By intersecting the 

GRCh38 results with the tiling path of BAC clones, we found that 88.9% (16,733 of 18,813) of discordant SNP pairs 

straddle the documented boundaries of adjacent clones (Figure S3.12). Of these, 45.9% (7,686 of 16,733) of the clone 

pairs derived from different BAC libraries, whereas the remainder likely largely reflects random sampling of distinct 

homologous chromosomes from the same donor individual. Thus, our analysis suggests that T2T-CHM13 accurately 

reflects haplotype patterns observed in contemporary human populations, whereas GRCh38 does not. 

3.3.1.3 T2T-CHM13 corrects genomic collapsed duplications and falsely-duplicated regions 

Genome assemblies often suffer from errors in complex genomic regions such as segmental duplications (SDs). In the 

case of GRCh38, targeted sequencing of BAC clones has been performed to fix many such loci (Chaisson, Huddleston, 

et al., 2015; Dennis et al., 2017; Huddleston et al., 2014; M. O’Bleness et al., 2014; Schneider et al., 2017; Steinberg 

et al., 2014), but problems persist. To systematically identify errors in GRCh38 that could produce spurious variant 

calls, we leveraged the fact that T2T-CHM13 is an effectively haploid cell line that should produce only homozygous 

variants when its sequence is aligned to GRCh38. Thus, any apparent heterozygous variant can be attributed to 

mutations accrued in the cell line, sequencing errors, or read mapping errors. In the last case, assembly errors or copy 

number polymorphism of SDs produce contiguous stretches of heterozygous variants (H. Cheng et al., 2021), which 

confound the accurate detection of paralog-specific variants (PSVs). Mapping PacBio HiFi reads from the CHM13 

cell line (Nurk et al., 2022) as well as Illumina-like simulated reads (150 bp) obtained from the T2T-CHM13 reference 

to GRCh38, we identified 368,574 heterozygous SNVs within the autosomes and Chromosome X, of which 56,413 
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(15.3%) were shared between datasets. This evidence shows that each technology is distinctively informative due to 

differences in mappability (Figure S3.13 and Table S3.1).  

To home in on variants deriving from collapsed duplications, we delineated ‘clusters’ of heterozygous calls (Methods 

are available as supplementary materials) and identified 908 putative problematic regions (541 supported by both 

technologies) comprising 20.8 Mbp (Figure 3.1 and Figure S3.13). Many of these loci intersected SD- (668/908; 

73.6%) and centromere-associated regions (542/908; 59.7%) (Altemose et al., 2022) as well as known GRCh38 issues 

(341/908; 37.55%). Variants flagged as excessively heterozygous in the population by gnomAD (Karczewski et al., 

2020) were significantly enriched in these regions (10,000 permutations, empirical p-value = 1x10-4), representing 

23.6% (87,005/368,574) of our discovered CHM13 heterozygous variants, suggesting that these spurious variants 

arise in genome screens and represent false positives (Figure 3.1A and Figure S3.1 and Figure S3.3). 

We next ‘lifted over’ (i.e., converted the coordinates of) 821 of these 908 putative problematic regions to the T2T-

CHM13 assembly and used human copy number estimates (n=268 individuals from the Simons Genome Diversity 

Project (SGDP)) (Mallick et al., 2016; Vollger, Guitart, et al., 2022) to conservatively identify 203 loci (8.04 Mbp) 

evidencing missing copies in GRCh38 (Figure S3.14). These regions impact 308 gene features, with 14 of the total 

48 protein-coding genes fully contained within a problematic region, indicating that complete gene homologs are 

hidden from GRCh38-based population analyses of variation. Examples include DUSP22, a gene involved in immune 

regulation(J.-P. Li et al., 2014), as well as KMT2C, a gene implicated in Kleefstra syndrome 2(OMIM Entry - # 617768 

- KLEEFSTRA SYNDROME 2; KLEFS2, n.d.) (Figure S3.15). Additionally, we identified 30 SNPs within problematic 

regions with known phenotype associations from the GWAS Catalog(Buniello et al., 2019). Finally, we evaluated the 

status of these regions in the T2T-CHM13 reference by following a similar approach to obtain 9,193 heterozygous 

variants clustered in 11 regions—none of which overlapped GRCh38 problematic regions (Table S3.2). As a result, 

we are now able to call variants in these 48 previously-inaccessible protein-coding genes. We did identify one putative 

collapsed duplication in T2T-CHM13, based on the presence of a heterozygous variant cluster and reduced copy 

number in T2T-CHM13, localized to an rDNA array corrected in the most recent version of T2T-CHM13v1.1 (Nurk 

et al., 2022).  
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Conversely, the T2T-CHM13 reference also corrects regions falsely portrayed as duplicated in GRCh38. Specifically, 

we identified 12 regions affecting 1.2 Mbp and 74 genes (including 22 protein-coding genes) with duplications private 

to GRCh38 and not found in T2T-CHM13 or the 268 genomes from SGDP (Mallick et al., 2016) (Figure S3.14 and 

Table S3.3). In contrast, only five regions affecting 160 kbp have duplications in T2T-CHM13 that are not in GRCh38 

or the SGDP, suggesting that genuine rare variation cannot explain the excess of private duplications in GRCh38. 

Indeed, upon inspecting the CHM13 data, we deemed that these five loci are true duplications with support from 

mapped HiFi reads (McCartney et al., 2022).  

The five largest duplications in GRCh38, affecting 15 protein-coding genes on the q-arm of Chromosome 21, involve 

BAC clones with sequence misplaced between gaps on the heterochromatic p-arm of the same chromosome. Based 

on admixture mapping, the Genome Reference Consortium (GRC)—an international team of researchers that has 

maintained and improved the reference genome and related resources since its initial publication—determined that 

these five clones were incorrectly localized to the acrocentric short arm and should not have been added to GRCh38 

(Materials and Methods Are Available as Supplementary Materials). Of the seven false duplications outside 

Chromosome 21, two occur in short contigs between gaps, two occur adjacent to a gap, two occur on unlocalized 

“random” contigs, and one occurs as a tandem duplication (Table S3.4). We provide an exhaustive list of falsely 

duplicated gene pairs corrected in T2T-CHM13 (Table S3.5). Thus, T2T-CHM13 authoritatively corrects many false 

duplications, improving variant calling for short- and long-read technologies, including in medically relevant genes. 

3.3.1.4 Liftover of clinically relevant and trait-associated variation from GRCh38 to T2T-CHM13 

In transitioning to a different reference genome, it is imperative to document the locations of known genetic variation 

of biological and clinical relevance respective to the updated coordinate system. To this end, we sought to lift over 

802,674 unique variants in the ClinVar database and 736,178,420 variants from the NCBI dbSNP database (including 

151,876 NHGRI-EBI GWAS Catalog variants) from the GRCh38 reference to the T2T-CHM13 reference. Liftover 

was successful for 800,942 (99.8%) ClinVar variants, 723,117,125 (98.2%) NCBI dbSNP variants, and 150,962 

(99.4%) GWAS Catalog SNPs (Table S3.6). We provide these lifted-over datasets as a resource for the scientific 

community within the UCSC Genome Browser and the NHGRI AnVIL, along with lists of all variants that failed 

liftover and the associated reasons (Figure 3.1A, Figure 3.1B, Figure S3.1, and Figure S3.4). Critically, this resource 

includes 138,319 of 138,927 (99.6%) ClinVar variants annotated as “pathogenic” or “likely pathogenic.” 
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Of the 1,732 ClinVar variants that failed to lift over, 1,186 overlap documented insertions or deletions that distinguish 

the GRCh38 and T2T-CHM13 assemblies. The remaining 546 variants (< 0.1% of all variants) lie within regions of 

poor alignment between the GRCh38 and T2T-CHM13 assemblies (Figure 3.1E). The modes of liftover failure for 

variants in dbSNP and the GWAS Catalog follow similar distributions (Table S3.6). In all, these annotated variants 

offer a resource to enable researchers to interpret genetic results using the T2T-CHM13 assembly. 

3.3.2 T2T-CHM13 improves analysis of global genetic diversity based on 3,202 short-read samples from 

the 1KGP dataset 

3.3.2.1 T2T-CHM13 improves mapping of 3,202 short-read samples from the 1KGP dataset 

To investigate how the T2T-CHM13 assembly impacts short-read variant calling, we realigned and reprocessed all 

3,202 samples from the 1KGP cohort (Byrska-Bishop et al., 2022) using the NHGRI AnVIL Platform (Schatz et al., 

2021) (Figure S3.16 and Figure S3.17). In this collection, each sample is sequenced to at least 30× coverage with 

paired-end Illumina sequencing, with samples from 26 diverse populations across five major continental 

superpopulations (Figure S3.18). Though most samples are unrelated, the expanded collection includes 602 complete 

trios that we use to estimate the rate of false variants below based on discordance with Mendelian expectations. We 

matched the analysis pipeline for GRCh38 (Byrska-Bishop et al., 2022) as closely as possible so that any major 

differences would be attributable to the reference genome rather than technical differences in the analysis software 

(Methods are available as supplementary materials).  

On average, BWA-MEM (H. Li, 2013) maps an additional 7.4 × 106 (0.97%) of properly paired reads map to T2T-

CHM13 compared to GRCh38 , even when considering the alternative (ALT) and decoy sequences used in the original 

analysis (Figure S3.19). Interestingly, even though more reads align to T2T-CHM13, the subsequent per-read 

mismatch rate is 20% to 25% lower across all continental populations. African samples continue to present the highest 

mismatch rate (Figure 3.2A), as the observed mismatch rate includes both genuine sequencing errors, which are 

largely consistent across all samples, and any true biological differences between the read and the reference genome, 

which vary substantially based on the ancestry of the sample. Relatedly, T2T-CHM13 improved other mapping 

characteristics, including reducing the number of mis-oriented read pairs (Figure 3.2A). Finally, by considering the 

alignment coverage across 500 bp bins across the respective genomes, we observed improvement in coverage 
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uniformity within every sample’s genome when using T2T-CHM13 rather than GRCh38. For example, within gene 

regions, we noted a 4-fold decrease in the standard deviation of the coverage (Figure 3.2A) and similar improvements 

in other types of genomic regions among all population groups (Figure S3.20). Overall, these improvements in error 

rates, mapping characteristics, and coverage uniformity demonstrate the superiority of T2T-CHM13 as a reference 

genome for short-read alignment across all populations. 
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Figure 3.2. Improvements to Short-Read Mapping and Variant Calling. (A) Summary of alignment characteristics 
aligning to CHM13 instead of GRCh38. (B) Boxplot of overall number of variants found in each person across 
superpopulations, with colors indicated in Figure 3.1A legend. (C) Boxplot of the number of heterozygous variants 
found in each person across superpopulations. (D) Boxplot of the number of homozygous variants found in each 
person across superpopulations. (E) Allele frequency distribution of each superpopulation relative to CHM13 and 
GRCh38. (F) Change in allele frequency distribution. (G) Number of variants with allele frequency equal to 100%, 
both within protein-coding genes and without. (H) Number of variants with allele frequency equal to 50%, both within 
putative collapsed duplications and without. (I) Violin plot of the number of low-quality variants found when aligning 
to GRCh38 and CHM13. (J) Violin plot of the number of Mendelian violations found when aligning to GRCh38 and 
CHM13. 

3.3.2.2 T2T-CHM13 improves variant calling across populations 

From these alignments, we next generated SNV and small indel variant calls with the GATK Haplotype Caller, which 

uses a joint genotyping approach to optimize accuracy across large populations (Poplin et al., 2018). Again, we 

matched the pipeline used in the prior 1KGP study, albeit with updated versions of some analysis tools, to minimize 

software discrepancies and attribute differences to changes in the reference genome. Across all samples, we identified 

126,591,489 high-quality (“PASS”) variants relative to T2T-CHM13 (per-sample mean: 4,717,525; median: 

4,419,802) compared to 125,484,020 variants relative to GRCh38 (per-sample mean: 5,101,897; median: 4,867,871), 

additionally noting a decrease in the number of called variants per individual genome (Figure 3.2B, Figure S3.21). 

We performed all subsequent analyses using these high-quality variants, as the PASS filter successfully removed 

spurious variants (Figure S3.22), particularly in complex regions (Figure S3.23). 

As with the improvement to the per-read mismatch rate, we attribute the reduction in the number of per-sample variant 

calls to improvements in the number of rare alleles, consensus errors, and structural errors in T2T-CHM13. This 

conclusion is supported by the observation that the number of heterozygous variants per sample is more similar 

(Figure 3.2C, Figure S3.24) across reference genomes in contrast to homozygous variants (Figure 3.2D, Figure 

S3.24). This discrepancy is especially pronounced in non-African samples, which have on average 200,000 to 300,000 

more homozygous variants relative to GRCh38 than T2T-CHM13, likely because ~70% of the GRCh38 sequence 

comes from an individual with African-American ancestry, and African populations are enriched for rare and private 

variants (The 1000 Genomes Project Consortium, 2015).  

Further investigating this relationship, we computed the AFs of variants from unrelated samples from each of the five 

continental superpopulations (Figure 3.2E). Though the distributions were nearly equivalent over most of the AF 

spectrum, we observed substantial differences for rare alleles (AF < 0.05), intermediate-frequency alleles, including 
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errors where nearly all individuals are heterozygous (AF ≈ 0.5), and fixed/nearly-fixed alleles (AF > 0.95). The most 

prominent difference in AF distributions affected fixed or nearly-fixed alleles in each assembly, for which all non-

African superpopulations showed an excess of ~150,000 variants in GRCh38, while the African superpopulation 

showed an excess of 2,364 variants in T2T-CHM13 (Figure 3.2F). This observation is driven by a decrease in the 

number of completely fixed variants (100% AF) relative to GRCh38 (Figure 3.2G). Such variants represent positions 

where the reference genome itself is the only sample observed to possess the corresponding allele. These alleles arise 

either because of genuine private variants in one of the GRCh38 donors, or from sequencing errors in the reference 

genome itself, and result in 100% of other individuals possessing two copies of the alternative allele. As a result, these 

‘variants’ will not be reported at all if the same reads are mapped to a different genome that does not have these private 

alleles. Interestingly, the number of such private ‘singleton’ variants in T2T-CHM13 lies squarely within the observed 

range of singleton counts among 1KGP samples, adjusting for the difference in ploidy (Figure S3.25). In addition to 

the lower rate of private variation compared to GRCh38, T2T-CHM13 possesses fewer ultra-rare variants, effectively 

reducing the number of ‘nearly fixed’ alleles in population data such as 1KGP. 

Finally, the reduction in AF ≈ 0.5 variants is largely explained by the corrections to collapsed SDs (Table S3.1), as 

these regions are highly enriched for heterozygous PSVs in nearly all individuals caused by the false pileup of reads 

from the duplicated regions to a single location (Figure 3.2H). Collectively, the decrease in variants with AF = 1 and 

AF ≈ 0.5 largely explains the decrease in the overall number of variants observed per sample and across the entire 

population for T2T-CHM13. 

Informed by these results, we considered the feasibility of calling variants using the T2T-CHM13 reference and then 

lifting over the results to GRCh38 for further analyses. Using a liftover tool to transform a variant call set for a single 

sample into a call set with respect to GRCh38 requires special handling to account for variants for which the two 

references have different alleles. Specifically, if one of the reference alleles is not present in the sample, it will be 

necessary to genotype the site against the T2T-CHM13 reference. Although this issue is less of a concern for large 

datasets like the 1KGP, even these large samples will contain a small number of variants that become invisible when 

switching reference genomes (Figure S3.26). In addition, differences in variant representation, especially in regions 

of low complexity, may cause lifted variant sets to differ from those called against the target reference. 
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3.3.2.3 Reduction of Mendelian discordant variants 

As further quality control for the variant calls, we performed a Mendelian concordance analysis using the 602 trios 

represented in the 1KGP cohort. We observed a statistically significant decrease in both the number of low-quality 

variants (median: 890,701 (GRCh38) vs. 682,609 (T2T-CHM13), p-value = 4.943 × 10-96, Wilcoxon signed-rank test) 

(Figure 3.2I) and the number of Mendelian-discordant variants (i.e., variants found in children but not their parents, 

or homozygous parental variants not observed in their children (median: 8,879 (GRCh38) vs. 7,484 (T2T-CHM13), 

p-value = 7.346 × 10-96, Wilcoxon signed-rank test) (Figure 3.2J) when aligned to T2T-CHM13 as compared to 

GRCh38. In addition to providing an estimate of the error rate for variant calls in this callset, this improvement has 

broad implications for clinical genetics analyses of de novo or somatic mutations, which have been implicated as 

causes of autism spectrum disorders (Iossifov et al., 2014) and many forms of cancer (Alexandrov et al., 2013). 

3.3.3 T2T-CHM13 improves structural variant analysis of 17 diverse long-read samples 

3.3.3.1 T2T-CHM13 improves mapping of 17 long-read samples  

Next, we investigated the effects of using T2T-CHM13 as a reference genome for alignment and large SV calling 

from both PacBio HiFi and ONT long reads. To this end, we aligned reads and called SVs in 17 samples of diverse 

ancestries from the Human Pangenome Reference Consortium (HPRC+) (Nurk et al., 2022) and the Genome in a 

Bottle Consortium (GIAB) (Zook et al., 2020), including two trios (Table S3.7). All of these samples had HiFi data 

available, and fourteen had also been sequenced with ONT (Figure 3.3A), with mean read lengths of 18.1 kbp and 

21.9 kbp and read N50 values of 18.3 kbp and 44.9 kbp, respectively (Figure S3.27). 
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Figure 3.3. Improvements to Long-Read Alignment and SV Calling in CHM13. (A) The coverage, ancestry, and 
sequencing platforms available for the 17 samples sequenced with long reads (headers: AFR: African, AMR: Admixed 
American, ASH: Ashkenazi, EAS: East Asian, SAS: South Asian; populations: ACB: African Caribbean in Barbados, 
ASH: Ashkenazi, CHS: Southern Han Chinese, CLM: Colombian in Medellin, Colombia, GWD: Gambian in Western 
Division, The Gambia, KHV: Kinh in Ho Chi Minh City, Vietnam, MSL: Mende in Sierra Leone, PJL: Punjabi in 
Lahore, Pakistan, PUR: Puerto Rican in Puerto Rico). (B) The genome-wide mapping error rate and the standard 
deviation of the coverage for CHM13 (orange) and GRCh38 (blue). The standard deviation was computed across each 
500bp bin of the genome. (C) The allele frequency of SVs derived from HiFi data in CHM13 and GRCh38 among the 
17-sample cohort. The red arrows indicate fixed (100% frequency) variants. (D) The balance of insertions (INS) vs. 
deletion (DEL) calls in the 17-sample cohort in CHM13 and GRCh38. Variants in CHM13 are stratified by whether 
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or not they intersect regions which are non-syntenic with GRCh38. (E) The SV calls in CHM13 for two trios: a trio 
of Ashkenazi ancestry (child HG002, and parents HG003 (46XY), and HG004 (46XX), and a trio of Han Chinese 
ancestry (child HG005, and parents HG006 (46XY) and HG007 (46XX)). The red arrows indicate child-only, or 
candidate de novo, variants (DEL: Deletion, DUP: Duplication, INS: Insertion, INV: Inversion, TRA: Translocation). 
(F) The density of SVs called from HiFi data in the 17-sample cohort across CHM13. (G) Alignments of HiFi reads 
in the HG002 trio to CHM13 showing a deletion spanning an exon of the transcript AC134980.2 viewed using the 
Integrative Genomic Viewer (IGV). Pink horizontal rectangles indicate reads aligned to the forward strand; blue 
horizontal rectangles indicate reads aligned to the reverse strand. Thin black lines indicate split-read alignments. Small 
vertical rectangles indicate SNVs (H) Alignments of HiFi reads in the HG002 trio to the same region of GRCh38 as 
shown in (g), showing much poorer mapping to GRCh38 than to CHM13, viewed using IGV with colors same as (G). 

In line with our short-read results, aligning long reads to T2T-CHM13 compared to GRCh38 did not substantially 

change the number of reads mapped with either Winnowmap (C. Jain et al., 2020) or minimap2 (H. Li, 2018) because 

most of the previously unresolved sequence in T2T-CHM13 represents additional copies of SDs or satellite repeats 

already partially represented in GRCh38 (Figure S3.28). However, aligning to T2T-CHM13 reduced the observed 

mismatch rate per mapped read by 5% to 40% across the four combinations of sequencing technologies and aligners 

because GRCh38 has more rare alleles. T2T-CHM13 also corrects structural errors in GRCh38 and is a complete 

assembly of the genome, which facilitates accurate alignment, similar to what we observed for short reads (Figure 

3.3B). Relatedly, we find that previously reported African-specific (Sherman et al., 2019) and Icelandic-specific 

(Beyter et al., 2021) sequences at least 1 kbp in length align with substantially greater identity and completeness to 

T2T-CHM13 compared to GRCh38 (Materials and Methods Are Available as Supplementary Materials) (Figure 

S3.29 and Figure S3.30). 

To study coverage uniformity, we next measured the average coverage across each 500-bp bin on a per-sample basis 

and computed the standard deviation of the coverage. Across all aligners and technologies, the median standard 

deviation of the per-bin coverage was reduced by more than a factor of three, indicating more stable mapping to T2T-

CHM13 (Figure 3.3B). This difference in coverage uniformity was pronounced in satellite repeats and other regions 

of GRCh38 that are non-syntenic with T2T-CHM13 (Figure S3.31 and Figure S3.32). This coverage uniformity will 

broadly improve variant calling and other long-read-based analyses. 

3.3.3.2 T2T-CHM13 improves SV imbalances on GRCh38 

We next used our optimized SV-calling pipeline, including Sniffles (Sedlazeck, Rescheneder, et al., 2018), Iris, and 

Jasmine (Kirsche et al., 2021), to call SVs in all 17 samples (Figure S3.33 and Figure S3.34) and consolidate them 

into a cohort-level callset in each reference from HiFi data. From these results, we observe a reduction from 5,147 to 
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2,260 SVs that are homozygous in all 17 individuals when calling variants relative to T2T-CHM13 instead of GRCh38 

(Figure 3.3C). Previous studies (Audano et al., 2019; Chaisson, Huddleston, et al., 2015) have noted the excess of 

such SV calls when using GRCh38 as a reference and attributed them to structural errors. Here we find that using a 

complete and accurate reference genome naturally reduces the number of such variants. In addition, the number of 

indels is more balanced when calling against T2T-CHM13, whereas GRCh38 exhibited a bias towards insertions 

caused by missing or incomplete sequence (Figure 3.3D), such as incorrectly collapsed tandem repeats (Chaisson, 

Huddleston, et al., 2015). With respect to T2T-CHM13, we observe a small bias towards deletions, which likely results 

from the challenges in calling insertions with mapping-based methods and in representing SVs within repeats, as this 

difference is especially prominent in highly repetitive regions such as centromeres and satellite repeats (Figure S3.35). 

The variants we observe relative to T2T-CHM13 are enriched in the centromeres and sub-telomeric sequences, likely 

because of a combination of repetitive sequence and greater recombination rates (Audano et al., 2019). We observe 

similar trends among SVs unique to single samples (Figure S3.36). 

We also observe similar improvements in the insertion/deletion balance for large SVs (>500 bp) detected by Bionano 

optical mapping data in HG002 against the T2T-CHM13 reference, with an increase in deletions (1,199 vs. 1,379) and 

a decrease in insertions (2,771 vs. 1,431) with GRCh38 and T2T-CHM13, respectively (Figure S3.37). Using the 

T2T-CHM13 reference for Bionano optical mapping also improves SV calling around gaps in GRCh38 that are closed 

in T2T-CHM13 (Figure S3.38), suggesting that T2T-CHM13 offers improved indel balance compared to GRCh38 

across multiple SV-calling methods. 

3.3.3.3 De novo SV analysis within trios 

To investigate the impacts of the T2T-CHM13 reference on our ability to accurately detect de novo variants, we called 

SVs in both of our trio datasets using a combination of HiFi and ONT data and identified SVs only present in the child 

of the trio and supported by both technologies—approximately 40 variants per trio (Figure 3.3E). Manual inspection 

revealed a few variants in each trio strongly supported with consistent coverage and alignment breakpoints, while the 

other candidates exhibited less reliable alignments as noted in previous reports (Kirsche et al., 2021). In HG002, we 

detected six strongly-supported candidate de novo SVs that had been previously reported (Kirsche et al., 2021; Zook 

et al., 2020). In HG005, we detected a 1,571 bp deletion at chr17:49401990 in T2T-CHM13 supported as a candidate 
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de novo SV relative to both T2T-CHM13 and GRCh38 (Figure S3.39). This demonstrates the ability of T2T-CHM13 

to be used as a reference genome for de novo SV analysis. 

3.3.3.4 T2T-CHM13 enables the discovery of additional SVs within previously unresolved sequences 

The improved accuracy and completeness of the T2T-CHM13 genome help resolve complex genomic regions. Within 

non-syntenic regions, we identified a total of 27,055 SVs (Figure 3.3D), the majority of which were deletions (15,998) 

and insertions (10,912). 22,362 of these SVs (82.7%: 8,903 insertions, 13,334 deletions) overlap previously 

unresolved sequences in T2T-CHM13, while the remaining SVs are now accessible because of the accuracy of the 

T2T-CHM13 reference. The AF and size distributions for these variants mirror the characteristics of the syntenic 

regions, with rare variants (Figure S3.40) and smaller (30–50 bp) indels (Figure S3.41) being the most abundant. 

However, we also note some non-syntenic regions with few or zero SVs identified. While many of these regions lie 

at the interiors of p-arms of acrocentric centromeres, which are gaps in T2T-CHM13v1.0 that have been resolved in 

later versions of the assembly, we also noticed depletions of SVs in a few other highly repetitive regions, such as the 

resolved human satellite array on Chromosome 9 (Figure 3.3F). We largely attribute the reduction in variant density 

to the low mappability of these complex and repetitive regions. Future improvements in read lengths and alignment 

algorithms are needed to further resolve such loci. 

Within syntenic regions, we also note improvements to alignment and variant calling accuracy, including the 

identification of variant calls not previously observed within homologous regions of GRCh38. For example, in T2T-

CHM13, we observe a deletion in all of the samples of the HG002 trio in an exon of the olfactory receptor gene 

AC134980.2 (Figure 3.3G), while the reads from those samples largely fail to align to the corresponding region of 

GRCh38 (Figure 3.3H). Meanwhile, reads from African samples (Figure S3.42) align to both references at this locus. 

The difference in alignment among different samples is likely due to the region being highly polymorphic for copy 

number variation; GRCh38 contains a reasonable representation of that region for the tested African samples, while 

the homologous region in T2T-CHM13 more closely resembles European samples (Figure S3.43). This highlights 

the need for T2T reference genomes for as many diverse individuals as possible to account for common haplotype 

diversity. 
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3.3.4 Variation within previously unresolved regions of the genome 

3.3.4.1 T2T-CHM13 enables variant calling in previously unresolved and corrected regions of the genome  

The T2T-CHM13 genome contains 229 Mbp of sequence that is non-syntenic to GRCh38, which intersects 207 

protein-coding genes (Figure 3.4A and Table 3.1). Within these regions, we report 3,692,439 PASS variants across 

all 1KGP samples from short reads (Figure 3.4B and Table 3.1). Comparing variants called in a subset of 14 HPRC+ 

samples with Illumina, HiFi, and ONT data, we found that 73–78% of the Illumina-discovered SNVs are concordant 

with variants identified with PacBio HiFi long-read data using the PEPPER-Margin-DeepVariant algorithm (51,306–

74,122 matching SNVs and genotypes per sample) (Shafin et al., 2021). Long reads discover over ten times more 

SNVs per sample than short reads in these regions, with 447,742–615,085 (41–43%) of SNVs matching between HiFi 

and ONT with PEPPER-Margin-DeepVariant. In non-syntenic regions, 97% of the SNVs called by HiFi fall in 

centromeric regions of CHM13, so we stratified concordance by type of satellite repeat within the centromere. We 

found that non-satellites in centric transition regions and monomeric satellites had higher concordance between HiFi 

and ONT, with >99% concordance in a few regions, but some as low as 50%. HSAT regions, which pose some of the 

greatest challenges for read mapping and harbor abundant structural variation, exhibit the lowest rates of concordance 

between the platforms. 

Table 3.1. Overview of non-syntenic and previously unresolved regions and their respective variant counts. 

  Nonsyntenic Previously unresolved 
Summary 
Total span (bp) (excluding Ns) 240,044,315 

(228,569,315) 
189,036,735 
(177,561,735) 

Unique span (100mers) 65,471,195 40,205,401 
Protein-coding genes 207 207 
Entire region 
1KGP SNVs + indels (within genes) 3,692,439 (138,829) 2,370,384 (52,567) 
Short-read SNVs per sample 65,931 to 101,161 35,506 to 56,489 
Long-read SNVs per sample 1,178,371 to 1,467,243 957,629 to 1,197,463 
Short-read SNVs confirmed by long reads 73 to 78% 64 to 69% 
Long-read SNVs identified in short reads 4 to 5% 3% 
SNVs concordant between long reads 41 to 43% 38 to 40% 
High-confidence regions (excluding coverage abnormalities) 
High-confidence region bases 13,683,528 2,987,935 
Short-read SNVs confirmed by long reads in high-confidence 
regions 

95 to 96% 84 to 88% 

Long-read SNVs identified in short reads in high-confidence 
regions 

60 to 63% 39 to 46% 

SNVs concordant between long reads in high-confidence 
regions 

91 to 95% 81 to 90% 
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Figure 3.4. Characterization of variants within regions of the genome resolved by T2T-CHM13. (A) Number of 
bases added in non-syntenic and previously unresolved regions by chromosome, along with how many variants for 
each respective region are mappable (have contiguous unique 100mers). (B) Number of variants in non-syntenic and 
previously unresolved regions by chromosome. (C) Distance from each previously-unresolved-only, non-syntenic-
only, or overlapping region to the closest Clinvar or GWAS Catalog variant. Insets are zoomed to 1 Mbp. (D) Scan 
for variants in non-syntenic (light blue and red) and previously unresolved (dark blue and red) regions that exhibit 
extreme patterns of allele frequency differentiation. Allele frequency outliers were identified for each of eight ancestry 
components, colored by the superpopulation membership of the corresponding 1KGP samples. Large values of the 
likelihood ratio statistic (LRS) denote variants for which AF differences in the corresponding ancestry component 
exceeds that of a null model based on genome-wide covariances in allele frequencies. (E, F) Population-specific allele 
frequencies of two highly differentiated variants in previously unresolved regions. 

We further define conservative high-confidence regions by excluding regions with abnormal coverage in any long-

read sample (i.e., coverage outside of 1.5× the interquartile range). This effectively excludes difficult-to-map regions 

with excessively repetitive alignments as well as copy number variable regions. After excluding abnormal coverage 

from non-syntenic regions, 14 Mbp remain, and SNVs from HiFi and ONT long reads are 91–95% concordant 

(21,835–28,237 variants). 95–96% (14,575–18,949) of short-read SNVs are found in HiFi long-read calls, though 37–
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40% of HiFi SNVs are still missing from the short-read calls due to poorer mappability of the short-reads (Table 

S3.8). While many non-syntenic regions will require further method development (e.g., pangenome references (Miga 

& Wang, 2021)) to achieve accurate variant calls, the concordance of long- and short-read calls for tens of thousands 

of variants highlights previously unresolved sequences that are immediately accessible to both technologies. 

As these broadly-defined non-syntenic regions include inversions and other structural changes between GRCh38 and 

T2T-CHM13 that do not necessarily alter many of the variants contained within, we also considered a narrower class 

of ‘previously unresolved’ sequences, representing segments of the T2T-CHM13 genome that do not align to GRCh38 

with Winnowmap (C. Jain et al., 2020). Within these previously unresolved sequences, which span a total of 189 Mbp 

(Figure 3.4A, Table 3.1, and Figure S3.44), we report a total of 2,370,384 PASS variants in 1KGP samples based on 

short reads, intersecting 207 protein-coding genes (Figure 3.4B, Table 3.1, and Figure S3.45). We note that this set 

of 207 genes is distinct from the 207 genes that intersected with the non-syntenic regions, and these two sets together 

comprise 329 unique genes. Because these previously unresolved sequences are enriched for highly repetitive 

sequences, concordance is slightly lower, such that 64–69% of the SNVs in each sample match variants found in 

PacBio HiFi long-read data from the same samples (24,371–36,501 matching SNVs and genotypes per sample), and 

339,783–473,074 (38–40%) of SNVs match between HiFi and ONT. When removing difficult-to-map and copy-

number-variable regions as above, 3 Mbp of high-confidence regions remain. Within high-confidence regions, 84–

88% of short-read SNVs in each sample match variants found in each sample’s PacBio HiFi long-read data (2,938–

3,811 matching SNVs and genotypes per sample), and 5,544–8,298 (81-90%) of SNVs match between HiFi and ONT 

(Table S3.8). While these previously unresolved regions are more challenging than non-syntenic regions, thousands 

of variants can still be called concordantly with short and long reads. 

We noted homology between GRCh38 collapsed duplications and many T2T-CHM13 non-syntenic and/or previously 

unresolved regions (137 regions comprising 6.8 Mbp), indicating that the T2T-CHM13 assembly corrects these 

sequences through the deconvolution of nearly identical repeats. Comparing total variants identified in the 1KGP 

dataset, we observed a significant decrease in variant densities of 41 protein-coding genes intersecting with GRCh38 

collapsed duplications in T2T-CHM13 (mean: 27 variants per kbp) compared with GRCh38 (mean: 46 variants per 

kbp; p-value = 6.906 x 10-8, Wilcoxon signed-rank test) (Figure S3.46). Besides differences in local ancestries 

between the references, these higher variant densities in GRCh38 in part represent PSVs or mis-assigned alleles from 
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missing paralogs (Hartasánchez et al., 2018). Conversely, 1KGP variants were significantly increased in 32 protein-

coding genes contained within GRCh38 false duplications using the T2T-CHM13 reference genome (mean values of 

48 variants per kbp in T2T-CHM13 vs. 12 variants per kbp in GRCh38; p-value = 4.657 x 10-10, Wilcoxon signed-

rank test). 

To assess whether these corrected complex regions in T2T-CHM13 accurately reveal variation, we evaluated the 

concordance of variants generated from short-read Illumina and PacBio HiFi sequencing datasets of two trios from 

the GIAB consortium and the Personal Genome Project (Ball et al., 2012) and observed similar recall for Illumina 

data in T2T-CHM13 (20.1–28.3%) and GRCh38 (21.5–25.4%), but with improved precision in the variants identified 

(98.1–99.7% in T2T-CHM13 vs. 64.3–67.3% in GRCh38) in a subset of the GRCh38 collapsed duplications (copy 

number < 10; ~910 kbp) (Table S3.9). Corrected false duplications (1.2 Mbp) exhibited 50-fold improved recall for 

Illumina data compared with HiFi in T2T-CHM13 (57.4–68.3%) vs. GRCh38 (1.1–1.8%), as well as improved 

precision in T2T-CHM13 (98.5–99.3%) vs. GRCh38 (76.5–95.8%) (Table S3.9). These improvements show that 

variants can be discovered and genotyped in regions corrected by the T2T-CHM13 assembly. 

4.3.4.2 Phenotypic associations and evolutionary signatures within non-syntenic T2T-CHM13 regions 

Sequences in the T2T-CHM13 assembly that are non-syntenic with GRCh38 offer opportunities for future genetic 

studies. Several such loci lie in close proximity to variation that has been implicated in complex phenotypes or disease, 

supporting their potential biomedical importance. These include 8 loci occurring within 10 kbp of GWAS hits and 19 

loci within 10 kbp of ClinVar pathogenic variants (Figure 3.4C). In addition, 113 of 22,474 GWAS hits (representing 

0.5% of all variants in the studies we tested) segregate in LD (R2 ≥ 0.5) with variants in non-syntenic regions, thereby 

expanding the catalog of potential causal variants for these GWAS phenotypes (Buniello et al., 2019) (Figure S3.47 

and Table S3.10). 

Using short-read-based genotypes generated from the 1KGP cohort, we also searched for variants within non-syntenic 

regions that exhibit large differences in AF between populations—a signature that can reflect historical positive 

selection or demographic forces within these previously inaccessible regions of the genome. To study these signatures, 

we applied Ohana (J. Y. Cheng et al., 2021), a method that models individuals as possessing ancestry from k 

components and tests for ancestry component-specific frequency outliers. Focusing on continental-scale patterns (k = 
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8; Figure S3.48), we identified 5,154 unique SNVs and indels across all ancestry components that exhibited strong 

deviation from genome-wide patterns of AF (99.9th percentile of distribution for each ancestry component; Figure 

3.4D). These included 814 variants overlapping with annotated genes and 195 variants that intersected annotated 

exons. 

We first focused on the 3,038 highly differentiated non-syntenic variants that lift over from T2T-CHM13 to GRCh38. 

These successful liftovers allowed us to make direct comparisons to selection results, generated with identical 

methods, using 1KGP Phase 3 data aligned to GRCh38 (Figure S3.49) (Methods are available as supplementary 

materials) (Yan et al., 2021). For 41.3% of the lifted over variants, we found GRCh38 variants within a 2 kbp window 

that possessed similar or higher likelihood ratio statistics for the same ancestry component, indicating that these loci 

were possible to identify in scans of GRCh38 (Figure S3.50). The remaining 58.7% of lifted over variants may 

represent regions of the genome where differences in the T2T-CHM13 and 1KGP Phase 3 variant calling or filtering 

procedures lead to discrepancies in AFs between these two datasets. They may also indicate regions whose more 

accurate representation in T2T-CHM13 improves variant calling enough to resolve previously unknown signatures of 

AF differentiation (Figure S3.51). We then investigated the 943 variants that could not be lifted over from T2T-

CHM13 to GRCh38 and were located in both previously unresolved sequences and regions deemed mappable from 

unique 100-mer analysis. Some of these variants overlap with genes, including several annotated with RNA transcripts 

in regions not present in the GRCh38 assembly (Figure 3.4D and Table S3.11). 

We highlight two loci that exhibit some of the strongest allele frequency differentiation observed across ancestry 

components. The first locus, located in a centromeric alpha satellite on Chromosome 16, contains variants that reach 

intermediate allele frequency in the ancestry component corresponding to the Peruvian in Lima, Peru (PEL) and other 

Admixed American populations of 1KGP (AFs: 0.49 in PEL; 0.20 in CLM [Colombian in Medellin, Colombia] and 

MXL [Mexican Ancestry in Los Angeles, California]; absent or nearly absent elsewhere; Figure 3.4E and Figure 

S3.52 and Figure S3.53). Variants at the second locus, located in a previously unresolved T2T-CHM13 sequence on 

the X chromosome that contains a multi-kbp imperfect AT tandem repeat, exhibit high AFs in the ancestry component 

corresponding to African populations of 1KGP and low AFs in other populations (AFs: 0.67 in African populations 

and 0.014 in European populations; Figure 3.4F and Figure S3.54 and Figure S3.55. The variant at this locus with 
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the strongest signature of frequency differentiation also lies within 10 kbp of two pseudogenes, MOB1AP2-201 (MOB 

kinase activator 1A pseudogene 2) and BX842568.1-201 (ferritin, heavy polypeptide-like 17 pseudogenes). 

We note that due to the repetitive nature of the sequences in which they reside, many of the loci that we highlight here 

remain challenging to genotype with short reads, and individual variant calls remain uncertain. Nevertheless, patterns 

of AF differentiation across populations are relatively robust to such challenges and can still serve as proxies for more 

complex SVs whose sequences cannot be resolved by short reads alone. The presence of population-specific signatures 

at these loci highlights the potential for T2T-CHM13 to reveal evolutionary signals in previously unresolved regions 

of the genome.  

3.3.5 Impact of T2T-CHM13 on clinical genomics  

3.3.5.1 Variants of potential clinical relevance in T2T-CHM13 

A deleterious variant in a reference genome can mislead the interpretation of a clinical variant identified in a patient 

because it may not be flagged as such using standard analysis tools. The GRCh38 reference genome is known to 

contain such variants that likely affect gene expression, protein structure, or protein function (Ballouz et al., 2019), 

though systematic efforts have sought to identify and remove these alleles (Schneider et al., 2017). To determine the 

existence and location of loss-of-function variants in T2T-CHM13, we aligned the assembly to GRCh38 using dipcall 

(H. Li et al., 2018) to identify and functionally annotate nucleotide differences (McLaren et al., 2016) (Figure 3.5A). 

This analysis identified 210 putative loss-of-function variants (defined as variants that affect protein-coding regions 

and predicted splice sites) impacting 189 genes, 31 of which are clinically relevant (Wagner et al., 2021). These results 

are in line with work showing that the average diploid human genome contains ~450 putative loss-of-function variants 

impacting ~200–300 genes when low-coverage Illumina sequencing is applied (before stringent filtering) (MacArthur 

et al., 2012). 

Of these 210 variants, 158 have been identified in at least one individual from 1KGP, with most variants relatively 

common in human populations (median AF of 0.47), suggesting that they are functionally tolerated. The remaining 

variants not found in 1KGP individuals comprise larger indels, which are more difficult to identify with 1KGP 

Illumina data, as well as alleles that are rare or unique to CHM13. We curated the ten variants impacting medically 

relevant genes and found seven that likely derived from duplicate paralogs: a 100-bp insertion also found in long reads 
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of HG002, a stop gain in a final exon in one gnomAD sample, and an insertion in a homopolymer in a variable-number 

tandem repeat in CEL, which may be an error in the assembly. Understanding that the T2T-CHM13 assembly 

represents a human genome harboring potentially functional or rare variants that in turn would affect the ability to call 

variants at those sites, we have made available the full list of putative loss-of-function variants to aid in the 

interpretation of sequencing results (Table S3.12). 

 
Figure 3.5. T2T-CHM13 Improves Clinical Genomics Variant Calling. (A) Numbers of potential loss-of-function 
mutations in the T2T-CHM13 reference. (B) The counts of medically-relevant genes impacted by genomic features 
and variation in GRCh38 (blue) and CHM13 (orange) are depicted as bar plots on logarithmic scale. Light blue 
indicates genes impacted in GRCh38 where homologous genes were not identified in T2T-CHM13 due to inability to 
lift over, with counts included in parentheses. (C) An example erroneous GRCh38 complex SV corrected in T2T-
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CHM13 impacting TNNT3 and LINC01150, displayed by sequence comparison using miropeats (Parsons, 1995) with 
homologous regions colored in green and blue, respectively. HG002 PacBio HiFi data is displayed showing read 
coverages and mappings from IGV, with allele fractions of variant sites colored (red=T; green=A; blue=C; black=G) 
within histograms of read depth (0–50). Snapshots of regions using IGV and UCSC Genome Browser representing 
(D) a collapsed duplication in GRCh38 corrected in T2T-CHM13 impacting KCNJ18 and (E) a false duplication in 
GRCh38 impacting most of KCNE1. SDs depicted on top are colored by sequence similarity to paralog (gray: 90–
98%; orange: >99%). Read mappings and variants from HG002 Illumina, PacBio HiFi, and ONT (mappings only), 
with homozygous (light blue) and heterozygous (dark blue) variants depicted as dashes. Colors within histograms of 
read depth (0–120) are the same as described in C. Copy-number estimates, displayed as colors indicated in legends, 
across k-merized versions of the GRCh38 and T2T-CHM13 references as well as representative examples of the SGDP 
individuals. (F) An example CDS region of KCNJ18 (highlighted as a red box in D), with amino acids colored in 
alternating shades of blue and potential start codons (methionines) labeled in green using the UCSC Genome Browser 
codon-coloring scheme. Alignments of KCNJ18 (blue), KCNJ12 (orange), and KCNJ17 (pink) along with allele counts 
of variants in each gene identified on GRCh38 and T2T-CHM13 are shown as bar plots (to approximate scale per 
variant), with examples 1–7 described in Table S3.14. (G) Schematic depicts a benchmark for 269 challenging 
medically relevant genes for HG002. The number of variant-calling errors from three sequencing technologies on each 
reference is plotted. 

3.3.5.2 T2T-CHM13 improves variant calling for medically relevant genes 

We sought to understand how the transition from GRCh38 to the T2T-CHM13 reference might impact variants 

identified in a previously compiled (Wagner et al., 2021) set of 4,964 medically relevant genes residing on human 

autosomes and Chromosome X (representing 4,924 genes in T2T-CHM13 via liftover; Table S3.13). Of these genes, 

28 map to previously unresolved and/or non-syntenic regions of T2T-CHM13. We found over twice as many 

medically relevant genes impacted by rare or erroneous structural alleles on GRCh38 (n=756 including 14 with no 

T2T-CHM13 liftover) compared to T2T-CHM13 (n=306) (Figure 3.5B), of which 622 genes appear corrected in T2T-

CHM13. This includes 116 genes falling in regions previously flagged as erroneous in GRCh38 by the GRC. The 

majority (82%) of impacted clinically relevant genes in GRCh38 overlap SVs that exist in all 13 HiFi-sequenced 

individuals, likely representing rare alleles or errors in the reference (see above), including 13 of the 14 genes with no 

T2T-CHM13 liftover. 

One example of a resolved gene structure involves TNNT3, which encodes Troponin T3, fast skeletal type, and is 

implicated in forms of arthrogryposis (Sung et al., 2003). When calling SVs with respect to GRCh38, TNNT3 was 

previously postulated to be impacted by a complex structural rearrangement in all individuals, consisting of a 24-kbp 

inversion and 22-kbp upstream deletion, which also ablates LINC01150 (Figure 3.5C). The GRC determined that a 

problem existed with the GRCh38 reference in this region (GRC issue HG-28). Analysis of this region in T2T-CHM13 

instead shows a complex rearrangement with the 22 kbp region upstream of TNNT3 inversely transposed in the T2T-

CHM13 assembly to the proximal side of the gene. Besides potentially affecting interpretations of gene regulation, 
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this structural correction of the reference places TNNT3 >20 kbp closer to its genetically-linked partner TNNI2 (Sheng 

& Jin, 2016). Other genes have VNTRs that are collapsed in GRCh38, such as one expanded by 17 kbp in most 

individuals in the medically relevant gene GPI. MUC3A was also flagged with a whole-gene amplification in all 

individuals, which we identified as residing within a falsely-collapsed SD in GRCh38, further evidencing that finding 

(Figure 3.1A). 

Seventeen medically relevant genes reside within erroneous duplicated and putative collapsed regions in GRCh38 

(Table S3.1 and Table S3.3), including KCNE1 (false duplication) and KCNJ18 (collapsed duplication) (Figure 3.5D 

and Figure 3.5E). For these genes, we show that a significant skew in total variant density occurs in GRCh38 (58 

variants per kbp for eight genes in collapsed duplications and 21 variants per kbp for seven genes in false duplications; 

p-values = 5.684 x 10-3 and 6.195 x 10-4, respectively, Mann-Whitney U test) versus the rest of the 4,909 medically-

relevant gene set (40 variants per kbp) that largely disappears in T2T-CHM13 (40 variants per kbp in collapsed 

duplications and 47 variants per kbp in false duplications versus 41 variants per kbp for the remaining gene set; p-

values = 0.8778 and 0.0219, respectively) (Figure S3.45). Examining KCNE1, we find that coverage is much lower 

than normal on GRCh38 for short and long reads and that most variants are missed because many reads incorrectly 

map to a likely false duplication (KCNE1B on the p-arm of chromosome 21). The kmer-based copy number of this 

region in all 266 SGDP genomes supports the T2T-CHM13 copy number, and that this region was not duplicated in 

GRCh37 (Wagner et al., 2021). As for KCNJ18, which resides within a GRCh38 collapsed duplication at chromosome 

17p11.2 (Ryan et al., 2010), we find increased coverage and variants within HG002 using short- and long-read 

sequences in GRCh38 relative to T2T-CHM13.  

To verify if the additional variants identified using GRCh38 are false heterozygous calls from PSVs derived from 

missing duplicate paralogs, we compared the distributions of minor-allele frequencies across the 49-kbp SD. We 

observed a shift in SNV proportions, with a relative decrease in intermediate-frequency alleles and a relative increase 

in rare alleles for KCNJ18 and KCNJ12 (another collapsed duplication residing distally at chromosome 17p11.2) in 

T2T-CHM13 compared with GRCh38 (p-value = 8.885 × 10-2 and 3.102 x 10-2, respectively; Mann-Whitney U test) 

(Figure S3.56). We matched the homologous positions of discovered alternative alleles in GRCh38 and T2T-CHM13 

across the three paralogs—including the previously missing paralog located in a centromere-associated region on 

chromosome 17p KCNJ17 denoted KCNJ18-1 in T2T-CHM13—and observed that even true variants (i.e., non-PSVs) 
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had discordant allele counts in KCNJ18 and KCNJ12 between the two references (Figure 3.5F, Table S3.14). 

Considering that rare variants of KCNJ18 contribute to muscle channelopathy-thyrotoxic periodic paralysis (Ryan et 

al., 2010) including nine “pathogenic” or “likely pathogenic” variants in ClinVar, increased sensitivity to discover 

variants in patients using T2T-CHM13 would have a significant clinical impact. In summary, the improved 

representation of this gene and other collapsed duplications in T2T-CHM13 not only eliminates false positives but 

also improves detection and genotyping of true variants. 

3.3.5.3 Clinical gene benchmark demonstrates T2T-CHM13 reduces errors across technologies 

Finally, to determine how the T2T-CHM13 genome improved the ability to assay variation broadly, we used a curated 

diploid assembly to develop a benchmark for 269 challenging medically-relevant genes in GIAB Ashkenazi son 

HG002 (Wagner et al., 2021), with comparable benchmark regions on GRCh38 and T2T-CHM13. We tested three 

short- and long-read variant callsets against this benchmark: Illumina-BWAMEM-GATK, HiFi-PEPPER-

DeepVariant, and ONT-PEPPER-DeepVariant. Counts of both false positives and false negatives substantially 

decrease for all three callsets when using T2T-CHM13 as a reference instead of GRCh38 (Figure 3.5G and Table 

S3.15). The number of false positives for HiFi decreases by a factor of 12 in these genes, primarily due to the addition 

of missing sequences similar to KMT2C (Figure S3.15) and removal of false duplications of CBS, CRYAA, H19, and 

KCNE1 (Figure 3.5G). As demonstrated above, T2T-CHM13 better represents these genes and others for a diverse 

set of individuals, so performance should be higher across diverse ancestries. Furthermore the number of true positives 

decreases by a much smaller fraction than the errors (~14%) due to a reduction of true homozygous variants caused 

by T2T-CHM13 possessing fewer ultra-rare and private alleles (Figure 3.2G). This benchmarking demonstrates 

concrete performance gains in specific medically relevant genes resulting from the highly accurate assembly of a 

single genome. 

3.4 Discussion 

Difficult regions of the human reference genome, ranging from collapsed duplications to missing sequences, have 

remained unresolved for decades. The assumptions that most genomic analyses make about the correctness of the 

reference genome have contributed to spurious clinical findings and mistaken disease associations (Gürünlüoğlu et 

al., 2020; Khalilipour et al., 2018; Lalrohlui et al., 2021; Munchel et al., 2015). Here, we identify variation in difficult-
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to-resolve regions and show that the T2T-CHM13 reference genome universally improves genomic analyses for all 

populations by correcting major structural defects and adding sequences that were absent from GRCh38. In particular, 

we show that the T2T-CHM13 assembly (1) revealed millions of additional variants and the existence of additional 

copies of medically relevant genes (e.g., KCNJ17) within the 240 Mbp and 189 Mbp of non-syntenic and previously 

unresolved sequence, respectively; (2) eliminated tens of thousands of spurious variants and incorrect genotypes per 

samples, including within medically relevant genes (e.g., KCNJ18) by expanding 203 loci (8.04 Mbp) that were 

collapsed in GRCh38; (3) improved genotyping by eliminating 12 loci (1.2 Mbp) that were duplicated in GRCh38; 

and (4) yielded more comprehensive SV calling genome-wide, with an improved insertion/deletion balance, by 

correcting collapsed tandem repeats. Overall, the T2T-CHM13 assembly reduced false positive and false negative 

SNVs from short and long reads by as much as 12-fold in challenging, medically relevant genes. The T2T-CHM13 

reference also accurately represents the haplotype structure of human genomes, eliminating 1,390 artificial 

recombinant haplotypes in GRCh38 that occurred as artifacts of BAC clone boundaries. These improvements will 

broadly enable future discoveries and refine analyses across all of human genetics and genomics. 

Given these advances, we advocate for a rapid transition to the T2T-CHM13 genome as a reference. While we 

appreciate that transitioning institutional databases, pipelines, and clinical knowledge from GRCh38 to T2T-CHM13 

will require substantial bioinformatics and clinical effort, we provide several resources to advance this goal. On a 

practical level, improvements to large genomic regions, such as entire p-arms of the acrocentric chromosomes, and 

the discovery of clinically relevant genes and disease-causing variants justify the labor and cost required to incorporate 

T2T-CHM13 into basic science and clinical genomic studies. On a technical level, T2T-CHM13 simplifies genome 

analysis and interpretation because it consists of 23 complete linear sequences and is free of “patch”, unplaced, or 

unlocalized sequences. Many of the corrections introduced by T2T-CHM13 were previously noted and addressed by 

the GRC as ‘fix patches’, but few studies use these existing resources. The reduced contig set of T2T-CHM13 also 

facilitates interpretation and is directly compatible with the most commonly used analysis tools. To promote this 

transition, we provide variant calls and several other annotations for the T2T-CHM13 genome within the UCSC 

Genome Browser and the NHGRI AnVIL as a resource for the human genomics and medical communities. 

Finally, our work underscores the need for additional T2T genomes. Most urgently, the CHM13 genome lacks a Y 

chromosome, so our analysis relied on the incomplete representation of Chromosome Y from GRCh38. A T2T 
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representation of the Y chromosome should further improve mapping and variant analysis, especially with respect to 

variants on the Y chromosome itself. Furthermore, many of the previously unresolved regions in T2T-CHM13 are 

present in all human genomes and enable variant calling with traditional methods from short and/or long reads. 

However, many previously unresolved regions identified in the T2T-CHM13 genome exhibit substantial variation 

within and between populations, including satellite DNA (Altemose et al., 2022) and SDs that are polymorphic in 

copy number and structure (Vollger, Guitart, et al., 2022). Relatedly, the T2T-CHM13 reference provides a basis for 

calling millions of variants that were previously hidden, but many of these variants are challenging to resolve 

accurately with current sequencing technologies and analysis algorithms. Robust variant calling in these regions will 

require many hundreds or thousands of diverse haplotype-resolved T2T assemblies to construct a pangenome 

reference, such as the effort now underway by the Human Pangenome Reference Consortium (Miga & Wang, 2021). 

These assemblies will then motivate further development of methods for discovering, representing, comparing, and 

interpreting complex variation, as well as benchmarks to evaluate their respective performances (Eizenga et al., 2020; 

Pritt et al., 2018). 

Through our detailed assessment of variant calling across global population samples, our study showcases T2T-

CHM13 as a preeminent reference for human genetics. The annotation resources provided herein will help facilitate 

this transition, expanding knowledge of human genetic diversity by revealing hidden functional variation. 

3.5 Methods Summary 

Haplotype structure: We examined the impact of the fact that GRCh38 comprises a mosaic of clones derived from 

multiple donor individuals on its haplotype structure. To this end, we searched for “LD-discordant” SNP pairs, defined 

as common (>10% minor allele frequency) SNPs that segregate in perfect LD (R2 = 1) in the 1KGP sample, but for 

which GRCh38 possesses a pair of alleles that are never observed together on a single phased haplotype among 1KGP 

samples (i.e., alleles in perfect negative LD). We then compared these results to the same analysis applied to each 

1KGP sample using a leave-one-out strategy.  

Duplication errors: We flagged putatively collapsed duplications as regions >5 kbp containing clusters of heterozygous 

variants identified from two CHM13 datasets (simulated Illumina-like reads from T2T-CHM13 reference v1.0 

including the GRCh38 Y chromosome and PacBio HiFi reads (Vollger, Logsdon, et al., 2019)) mapping against 
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GRCh38 and T2T-CHM13 references. False duplications were identified as regions, converted to T2T-CHM13 

coordinates, with median read-depth copy numbers (Vollger, Guitart, et al., 2022) lower in kmerized GRCh38 

compared to kmerized T2T-CHM13 and 88% of SGDP individuals. Alternatively, false duplications were identified 

as regions >3 kbp with copy numbers greater in kmerized GRCh38 compared to kmerized T2T-CHM13 and 99% of 

SGDP individuals using a genomewide sliding-window approach. 

 Liftover of resources from GRCh38 to T2T-CHM13: Using the GATK release 4.1.9 (Van der Auwera & O’Connor, 

2020) LiftoverVcf (Picard) tool, we lifted dbSNP build 154 (Sherry et al., 1999), the March 8, 2021 release of Clinvar 

(Landrum et al., 2018), and GWAS Catalog v1.0 (Buniello et al., 2019) from the GRCh38 assembly to the T2T-

CHM13 assembly. Initial liftover was done with default LiftoverVcf parameters. A secondary round of liftover was 

performed to recover variants with swapped reference and alternative alleles between GRCh38 and T2T-CHM13. We 

cataloged variants that failed to lift over because they overlap an indel that distinguishes T2T-CHM13 and GRCh38 

based on results from dipcall.  

Short-read variant calling: To evaluate short-read small-variant calling between GRCh38 and T2T-CHM13, we used 

the NHGRI AnVIL (Schatz et al., 2021) to align all 3,202 1KGP samples to CHM13 with BWA-MEM (H. Li, 2013) 

and performed variant calling with GATK HaplotypeCaller (Van der Auwera et al., 2013) using a workflow modeled 

on the one developed by the NYGC for 1KGP analysis performed on GRCh38 (Byrska-Bishop et al., 2022). As in the 

NYGC analysis, we recalibrated the variant calls with GATK VariantRecalibrator. We analyzed coverage statistics 

using samtools and allele frequency using bedtools. To identify Mendelian-discordant variants, we used GATK 

VariantEval.  

Long-read variant calling: To compare long-read mapping and large structural variant (SV) calling between T2T-

CHM13 and GRCh38, we aligned HiFi and ONT data from 17 samples of diverse ancestry to each reference with both 

Winnowmap (C. Jain et al., 2020) and minimap2 (H. Li, 2018) and called SVs with Sniffles (Sedlazeck, Rescheneder, 

et al., 2018). Variant calls were refined with Iris, and HiFi-derived calls from both aligners were merged with Jasmine 

(Kirsche et al., 2021); the resulting sets of 124,566 SVs in GRCh38 and 141,193 SVs in CHM13 to compute allele 

frequencies and other cohort-level statistics. In addition, we constructed trio-level callsets for two trios - the HG002 
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and HG005 trios from the Genome-in-a-Bottle Consortium - to compare Mendelian discordance rates between the two 

references.  

Concordance of variants analysis across sequencing type: To evaluate the variant calls in non-syntenic regions, we 

derived concordance between variant calls generated with HiFi, ONT, and Illumina reads. For each sample, we used 

bcftools to filter the non-PASS variants, indels, and non-autosomal variants from each callset. We then used hap.py 

(Krusche et al., 2019) to derive the precision, recall, and F1-score between each variant call set to determine how 

many variants are common between each pair of sets. 

 Allele frequency differentiation of non-syntenic variants: Using short-read-based variant calls within T2T-CHM13 

non-syntenic regions, we searched for variants with signatures of extreme allele frequency (AF) differentiation across 

human populations. We performed this analysis with Ohana (J. Y. Cheng et al., 2021), a method that infers admixture 

components for each sample and quantifies frequency variation among the components. For outlier non-syntenic 

variants with extreme patterns of AF differentiation, we used liftover to compare our results to previous results 

generated with 1KGP Phase 3 data aligned to GRCh38 (Yan et al., 2021). 

 T2T-CHM13 dipcall and VEP: VEP (McLaren et al., 2016) (version 102.0) was used to annotate variants generated 

by dipcall (H. Li et al., 2018) when aligning the T2T-CHM13 reference genome (chm13_v1.0_plus38Y.fa) to the 

GRCh38 reference genome (hg38.no_alt.fa). VCF files were annotated without the --filter_common and --canonical 

flags. CADD (Rentzsch et al., 2021) v1.6 and raw SpliceAI (Jaganathan et al., 2019) scores were added using both 

the CADD and SpliceAI plugins. Variants were filtered based on predicted HIGH functional impact. 

HG002 medically-relevant genes benchmark: To evaluate variant call accuracy when using T2T-CHM13 vs. GRCh38 

as a reference, we developed equivalent small variant benchmarks for GIAB sample HG002 in 269 challenging, 

medically relevant genes. Methods were adapted from a companion manuscript that describes a curated benchmark 

for these genes created by using variants generated by dipcall (H. Li et al., 2018) when aligning a trio-based hifiasm 

assembly to GRCh37 and GRCh38 (Wagner et al., 2021). 
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3.6 Selected Methods  

Complete methods are available as Supplementary Material in Aganezov et al. (Aganezov et al., 2022). 

3.6.1 Identification of collapsed duplications in GRCh38 

We simulated Illumina-like reads (400 million PE 150 bp reads) from T2T-CHM13 reference v1.0 including the 

GRCh38 Y chromosome using Mason (https://github.com/seqan/seqan/tree/master/apps/mason2) and aligned them to 

GRCh38 (no alt or decoy contigs) and T2T-CHM13 v1.0 including the GRCh38 Y chromosome using BWA-MEM 

(H. Li, 2013) (Fig. S3.13). Likewise, previously published CHM13 PacBio HiFi reads (~24X, SRA: SRX5633451) 

(Vollger, Logsdon, et al., 2019) were aligned to GRCh38 using minimap2 (H. Li, 2018) with the -ax map-pb setting. 

We called SNVs in both datasets with GATK v4.1.8.1 (Poplin et al., 2018) using minimum MAPQ 30, ploidy 2 and 

otherwise default parameters. Only PASS variants were used for downstream analyses. Heterozygous variants called 

by each platform were merged into one multi-sample VCF file with bcftools merge, and the number of heterozygous 

variants per kbp was calculated using bedtools coverage. For both references, we first defined problematic regions as 

regions ≥2 kbp with ≥2 heterozygous calls in the CHM13 sample. From this, we connected regions separated by ≤5 

kbp, and then filtered for regions ≥5 kbp in size. 

Focusing on GRCh38-derived problematic regions, we intersected them with previously published RepeatMasker and 

SD annotations obtained from UCSC Table Browser, as well as known GRC issues (Nurk et al., 2022) 

(ftp://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/). For each region, we determined association with 

SDs (Vollger, Guitart, et al., 2022), centromeres (Altemose et al., 2022), and non-syntenic and previously unresolved 

regions in T2T-CHM13 reference (Nurk et al., 2022), using combined lifted coordinates obtained from all minimap2 

hits and UCSC LiftOver (Hinrichs et al., 2006). 

Additionally, we obtained variants flagged with excess of heterozygosity by the gnomAD database (InbreedingCoeff 

in the FILTER field), defined as variants with an inbreeding coefficient < -0.3, but were not filtered due to low read 

depth, genotype quality, or minor-allele fraction (Karczewski et al., 2020). Empirical enrichment of variants with 

excessive heterozygosity within problematic regions was obtained by calculating the number of variants in 10,000 

randomly sampled regions of the genome using bedtools shuffle. The empirical p-value was calculated as 
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(M+1)/(N+1), where M is the number of iterations yielding a number of features greater than observed and N is the 

number of iterations. 

We identified each homologous GRCh38 problematic region in T2T-CHM13 using the following approach: (1) 

coordinates obtained by UCSC LiftOver using available chain (Nurk et al., 2022) if the size of the lifted region was 

within 80-120% of the original size, (2) Minimap2 longest hit if the size of the lifted region was within 80-120% of 

the original size, and closest hit when more than two options were available, and (3) manual selection and curation of 

remaining coordinates. To assess functional impact, these likely problematic regions were intersected with all gene 

features in Gencode v35, as well as a curated list of medically relevant genes (Wagner et al., 2021). 

Using available read-depth copy number estimates in T2T-CHM13 (Vollger, Guitart, et al., 2022), we obtained the 

overall copy number of the lifted regions as the median window copy number for a "k-merized" version of GRCh38 

and T2T-CHM13 references, as well as 268 individuals from the SGDP dataset (excluding sample LP6005442-

DNA_A08). Regions where copy number in GRCh38 was lower than T2T-CHM13 and also nearly all SGDP 

individuals (allowing for one individual with lower copy number) were considered putative collapsed duplications in 

the GRCh38 reference. Additionally, we intersected lifted coordinates with T2T-CHM13 SDs (Vollger, Guitart, et al., 

2022) and centromere annotations (Altemose et al., 2022). 

The same analysis was performed to identify putative collapsed duplications in T2T-CHM13, but without the need to 

liftover homologous coordinates. 

3.6.2 Identification of medically relevant genes with impacted variant discovery 

Reference artifacts and errors were intersected with a previously curated list of medically relevant genes (Wagner et 

al., 2021). GRCh38 coordinates for genes were lifted over using Picard v2.25.0’s LiftOverIntervalList tool to identify 

locations in T2T-CHM13v1.0. For SVs, we intersected gene coordinates after expanding breakpoints for each variant 

± 5 kbp. 

TNNT3 analysis: Genomic sequencing containing TNNT3 implicated with SVs in GRCh38 were extracted from each 

reference (chr11:1,892,362-1,946,566, GRCh38; chr11:1,978,257-2,034,355, T2T-CHM13v1.0) and homologous 

regions compared using miropeats -s 400(Parsons, 1995). 
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KCNJ18 analysis: SDs containing KCNJ18 were identified in GRCh38 (chr17:21,687,227-21,736,311; CDS: 

chr17:21,702,787-21,704,088) and T2T-CHM13v1.0 (chr17:21,636,382-21,685,461; CDS: chr17:21,651,942-

21,653,243) and paralogs pinpointed using the UCSC Genome Browser SD annotations(Jeffrey A. Bailey et al., 2002, 

2001; Numanagic et al., 2018). With KCNJ18, Genome coordinates of SDs containing KCNJ12 (GRCh38: 

chr17:21,399,778-21,450,415 (whole) and chr17:21,415,343-21,416,644 (CDS); T2T-CHM13v1.0: 

chr17:21,348,977-21,399,639 (whole) and chr17:21,364,558-21,365,859 (CDS)) and KCNJ17 (T2T-CHM13v1.0: 

chr17:22,634,421-22,683,415 (whole) and chr17:22,666,582-22,667,880 (CDS)) were used to extract 1KGP AFs from 

GRCh38-called and T2T-CHM13-called variants intersecting each locus. Histograms of the minor-allele frequencies 

were plotted and distributions compared using a Mann-Whitney U test (wilcox.test R function, with unpaired and two-

sided settings). Finally, direct comparison of AFs for variants falling within the CDS were compared using 1KGP 

datasets from the NYGC (GRCh38), produced here (described above for T2T-CHM13), and the liftover of T2T-

CHM13 to GRCh38 (described above). 

3.7 Acknowledgements 

We would like to thank M. Zody, B. Grüning, H. Li, S. Langley, C. Langley, G. Van der Auwera, V. Schneider, S. 

Salzberg, B. Langmead, A. Battle and several of their lab members for helpful discussions. Certain commercial 

equipment, instruments, or materials are identified to specify adequate experimental conditions or reported results. 

Such identification does not imply recommendation or endorsement by the National Institute of Standards and 

Technology, nor does it imply that the equipment, instruments, or materials identified are necessarily the best available 

for the purpose. This work utilized the computational resources of the NIH HPC Biowulf cluster (https://hpc.nih.gov) 

and the Maryland Advanced Research Computing Center (https://www.marcc.jhu.edu/). 

  



 

 77 

CHAPTER 4. Population diversity and selection of recent gene 

duplications detected using a complete human genome sequence 

Chapter 4 is an ongoing research project led by co-first authors Daniela C. Soto and Aarthi Sekar.  

DCS performed genome-wide analysis of nearly-identical duplicated genes, including identification, expression and 

ontology analysis, copy-number variation and copy-number stratification, and benchmarked SNV-calling 

performance of long-reads. 

4.1 Abstract 

Human-specific duplicated genes (HSDs) are strong candidates for neurodevelopmental traits and diseases unique to 

our species. Assessment of the recently published telomere-to-telomere (T2T) complete genome (T2T-CHM13) 

identified 417 genes embedded in recent segmental duplications (>98% sequence identity; SD-98) with near fixed 

copy-number (CN=2) in the 1000 Genomes Project (1KGP), with 347 having evidence of expression in the fetal 

neocortex. This list includes genes with known roles in neurodevelopment, such as ARHGAP11B, as well as a number 

of other uncharacterized genes. Comparing CN across 1KGP populations, we also identified 205 genes that show 

stratification (VST>95th percentile), including those with previous evidence (e.g., KANSL1) and interesting new 

candidates (e.g., NPY4R, previously implicated in body-mass index, and TPTE, a gene expressed exclusively in testis). 

Examining our ability to detect SNVs and indels across SD-98, we compared short- and long-read sequence data from 

eight individuals from the Human Pangenome Reference Consortium (HPRC+) and observed a recall of <0.1 resulting 

in a depletion of total variants identified from 1KGP across these regions (12 variant/kbp) versus the unduplicated 

genome (38 variant/kbp). Using 1KGP variants in accessible regions (representing ~10% of SD-98), we assessed 

signatures of natural selection by calculating Tajima’s D and identified 22 protein-encoding genes showing consistent 

outlier values, including the SPDYE3 and PMS2P1 locus, which are CN fixed. Our approach highlights potential 

evolutionarily relevant human gene duplications, which will become priority candidates for future functional studies. 



 

 78 

4.2 Introduction 

Significant phenotypic features distinguish modern humans from closely related great apes. Examples of anatomical, 

social, physiological, and behavioral traits that distinguish humans from their closest primate relatives include small 

canine teeth, reduced hair cover, elongated thumbs, language, bipedalism, and advanced tool usage (Carroll, 2003; 

Pääbo, 2014; Ajit Varki & Altheide, 2005). Perhaps one of the most well-studied innovations in modern humans 

relates to changes in neuroanatomy (e.g., expanded neocortex and greater complexity of neural connectome), which 

has led to the acquisition of novel cognitive features such as reading and language (Sousa et al., 2017). A number of 

genes have been implicated as contributing to such traits, with a remarkable proportion representing duplicated genes 

(Sudmant et al., 2013). Examples include SRGAP2 (Charrier et al., 2012; Dennis et al., 2012), NOTCH2NLC  (Fiddes 

et al., 2018; Florio et al., 2018; Suzuki et al., 2018),  ARHGAP11B (Florio et al., 2015, 2016; Namba et al., 2020), and 

TBC1D3 (Ju et al., 2016). This may be unsurprising considering segmental duplications (SDs; genomic regions >1 

kbp in length that share high sequence identity [>90%]) account for greater genetic divergence across species and 

diversity across humans compared with single-nucleotide variants (SNVs) (Sudmant et al., 2013) and are enriched for 

transcribed genes (Jeffrey A. Bailey et al., 2001). 

Duplications arising uniquely within the human lineage, or human-specific SDs (HSDs), are of particular interest since 

they can give rise to new genes with altered functions (Dennis & Eichler, 2016). Recent comparisons of great ape 

genomes have implicated over 200 HSD genes (Dennis et al., 2017; Sudmant et al., 2013, 2010), uncovering 

unexpected connections with neurodevelopment. Compared to other species-specific SDs, human duplicated genes 

are enriched for neurological functions (Sudmant et al., 2010) and tend to reside at genomic hotspots—or regions 

prone to recurrent deletions and duplications due to errors in meiosis—associated with neurodevelopmental disorders 

such as autism, epilepsy and intellectual disability (Dennis & Eichler, 2016). As such, HSD genes have high potential 

for contributing to neural features and disorders unique to humans.  

Despite the clear importance of SDs in human traits and disorders, they have remained largely ignored in genome-

wide screens due to difficulty in calling SNVs across nearly-identical paralogs (Amemiya et al., 2019; Cabanski et al., 

2013; Derrien et al., 2012; Ebbert et al., 2019; H. Lee & Schatz, 2012). This is highlighted in a recent assessment of 

the 1000 Genomes Project (1KGP; Phase 3) short-read sequence data that found ~45% of SDs in the most recent 
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human reference assembly (GRCh38) to be inaccessible using standard mappability and coverage filters (Zheng-

Bradley et al., 2017). As a result, almost a half of the SDs remain unexplored across millions of sequenced human 

genomes  that could contribute to missing genetic risk and heritability of traits/diseases. Faced with these limitations, 

most studies characterizing SDs focus on copy-number (CN) variation (Conrad et al., 2010; Redon et al., 2006; 

Sudmant et al., 2010) or GWAS-associated haplotypes in linkage disequilibrium (LD) with SD regions (Beyter et al., 

2021; Conrad et al., 2010; Hehir-Kwa et al., 2016; Marie Saitou et al., 2021; Yan et al., 2021; Zhao et al., 2017). 

More recently, the new gapless T2T-CHM13 genome has enabled a more complete picture of SDs (Nurk et al., 2022; 

Vollger, Guitart, et al., 2022), which are historically missing or incorrect in current references due to high sequence 

identities, by expanding by 238 Mbp of sequence that was previously missing from GRCh38, of which ~45 Mbp 

comprises non-satellite SDs. From this, studies have begun to delve into unique genomic features of SDs, including 

increased incidence of interlocus gene conversion across duplicate paralogs and an overall higher mutation rate 

compared with adjacent “unique” regions (Vollger, DeWitt, et al., 2022). In particular, the new assembly corrects >8 

Mbp of collapsed duplications (Aganezov et al., 2022), including 48 known protein-encoding genes, leading to 

missing copies of likely functional paralogs of GPRIN2 (Vollger, Guitart, et al., 2022) and DUSP22 (Aganezov et al., 

2022), both previously identified as HSDs (Dennis et al., 2017). Results of variant discovery comparisons between 

Illumina and HiFi across collapsed and expanded SD regions suggests that, although sensitivity is high for a subset of 

variants within these regions, we are still missing a majority of SNVs using short-read data. 

Here, using the new T2T-CHM13 genome, we assess if new genome-wide insights can be made with this complete 

genome. First, we show the extent by which SDs have been overlooked in human genetic analyses. We aimed to bridge 

this gap by using a combination of paralog-specific CN estimates and high-confidence short-read variants to identify 

signatures of selection in recent human gene duplications, shedding light on putative functional genes playing a role 

in human evolution. 

4.3 Results 

4.3.1 Identification of human gene duplications 

The recently published T2T-CHM13 genome represents a complete sequence of all autosomes and chromosome X 

(Nurk et al., 2022), resolving all previously-collapsed duplications and gap sequences (Aganezov et al., 2022; Vollger, 
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Guitart, et al., 2022). Nearly-identical SDs enriched for human-specific duplications—here defined as SDs with >98% 

of sequence identity (SD-98)—encompass 97.8 Mbp of autosomal sequence (Fig. S4.1A). These regions overlap with 

5,433 gene features (T2T-CHM13 gene IDs), including 885 protein-encoding genes and 1,157 unprocessed 

pseudogenes arising from duplication events (Table S4.1, Fig. S4.1B). Out of this, 4,746 (including 515 protein-

encoding genes and 1,069 unprocessed pseudogenes) were fully contained within a recent duplication (≥99% covered). 

We note that this approach more permissively permits inclusion of both human unique (Dennis et al., 2017; Sudmant 

et al., 2010) and recently expanded duplications that may also exist with paralogs in other great apes, and  previously 

characterized genes known to play a role in neurodevelopment (e.g., ARHGAP11B (Florio et al., 2015), SRGAP2C 

(Charrier et al., 2012; Dennis et al., 2012), and NOTCH2NL (Fiddes et al., 2018; Suzuki et al., 2018)), disease (e.g., 

SMN1 and SMN2 (Larson et al., 2015) and KANSL1 (Moreno-Igoa et al., 2015)), and adaptation (e.g., amylase genes 

(Perry et al., 2007)).  

To further examine the functions of SD-98 genes, we identified overrepresented gene ontology (GO) terms, finding a 

significant enrichment (FDR≤0.1) of genes associated with immune response (GO:0006955, GO:0002250, 

GO:0002377), Golgi organization (GO:0007030), protein degradation (GO:0006511, GO:0016579), and regulation 

of cell differentiation (GO:0045596) (Fig. S4.1C and Fig. S4.1D). Remapping expression data from human fetal brain 

(Fietz et al., 2012; Florio et al., 2015) and lymphoblastoid cell lines (LCLs) (Pickrell et al., 2010) to a T2T-CHM13 

transcriptome reference, we found evidence of expression (mean TPM ≥1) in ~45% (2,435/5,433) of SD-98 genes in 

at least one dataset, including 601 protein-encoding genes (Table S4.1). In particular, ~43% (2,358/5,433) and ~16% 

(872/5,433) of SD-98 genes were expressed in at least one brain dataset or LCLs, respectively. As expected, protein-

encoding genes are significantly overrepresented among expressed genes, with 601 out of 885 protein-encoding genes 

showing expression (hypergeometric test, p-value<1x10-4).  

Expression similarity among datasets was primarily driven by study rather than tissue or cell type (Fig. S4.2B). 

Nonetheless, we identified 486 (~9%) genes expressed in all examined tissues and cell populations, including LCL 

and brain samples (Fig. S4.2A). Conversely, 127 (~2%) SD-98 genes had evidence of expression in all brain tissues 

but not LCL, suggesting a specific role in brain development. In fact, this list is significantly enriched for genes 

associated with neurogenesis, including neuron differentiation (GO:0021953, GO:0021879, GO:0021889, 
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GO:0010769), projection (GO:0097485, GO:0050770, GO:0007411), migration (GO:0001764, GO:2001222) and 

generation (GO:0021872). 

4.3.2 Phenotype and disease associations of duplicated genes 

Due to difficulties mapping short reads to highly identical regions, associated variants and genes across SD-98 regions 

are depleted in existing genome-wide (GW) studies of phenotypes and diseases, including GWAS catalog (SD-98: 

0.29 variants/100kbp; GW: 1.5 variants/100 kbp), ClinVar (SD-98: 20.81 variants/100 kbp; GW: 9.95 variants/100 

kbp), and GTEx expression quantitative trait loci (eQTL) databases (SD-98: 398.7 variants/100 kbp; GW: 70.14 

variants/100 kbp) (Fig. S4.3A).  

Nevertheless, we sought to understand if any connections with disease and/or traits of recently duplicated genes existed 

in databases. SD-98 regions overlap 60 genes containing variants associated with a trait in genome-wide association 

studies (GWAS catalog v1.0) (Table S4.1). Using the probability of loss-of-function intolerance (pLI) (Lek et al., 

2016) and the loss-of-function observed/expected upper fraction (LOEUF) (Karczewski et al., 2020), we identified 78 

genes intolerant to loss-of-function overlapping with SD-98 regions (pLI ≥ 0.9 or LOEUF < 0.35, based on (Leblond 

et al., 2021)), with 69 flagged by both approaches (Table S4.1, Fig. S4.4). According to an operative list of genes 

implicated in neurodevelopmental disorders (NDD) (Leblond et al., 2021), 44 SD-98 genes are classified as high-

confidence NDD genes, including haploinsufficient genes KANSL1 and MEF2C. Most of these genes display a small 

overlap with SD-98 regions (mean gene overlap of ~10%), except for DDX11 which is fully duplicated (Table S4.1). 

In all, 486 protein-encoding genes had no phenotype association in the surveyed gene-disease databases, including 

survival of motor neuron genes SMN1 and SMN2 implicated in spinal muscular atrophy (Larson et al., 2015), 

suggesting underassessment of disease/trait association of recently duplicated genes. 

4.3.3 CN diversity of human duplicated genes  

We used a paralog-specific approach based on read depth at unique k-mers (Shen & Kidd, 2020) to characterize the 

CN diversity of recent duplicates in modern humans. We obtained CN estimates in 2,504 unrelated individuals from 

the 1KGP for SD-98 regions overlapping autosomal protein-encoding genes (n=917 regions) and unprocessed 

pseudogenes (n=1,177 regions), as functional duplicates are sometimes incorrectly annotated as pseudogenes (Fig 

S4.5, Table S4.1, Table S4.2). The most frequent CN exhibited was two (median average CN = 1.9), as expected 



 

 82 

from paralog-specific CN detection (Fig. S4.6A). While both protein-encoding genes and pseudogenes exhibited 

similar levels of CN variability (average sd = 4.7 and 4.6, respectively), we observed a better correlation between 

mean CN and standard deviation in protein-encoding genes (r2=0.31) than in pseudogenes (r2=0.05), mostly driven by 

high CN and highly-variable protein-encoding genes such as USP17L11 (Fig. S4.6B).  

Narrowing in on potentially functional genes, we identified 445 regions comprising 417 genes, including 252 protein-

encoding, that were CN fixed in modern humans (≥98% of individuals with CN = 2) (Fig. 4.1A). Of these fixed genes, 

346 (77.8%) exhibit expression in at least one brain tissue assayed (Table S4.1). This dataset is enriched for GO terms 

associated with GTPase activity (GO:0043547, GO:0090630), Golgi organization (Golgi organization), protein 

modification (GO:0016579, GO:0000413), and protein import to nucleus (GO:0006607) (Fig. S4.6C). Out of these, 

164 genes (43 protein-encoding) represented complete duplications (Fig. S4.6B), such as the NDD-associated gene 

DDX11 (CN=2 in 99.84% of 1KGP genomes). We noticed that only 49 out of 252 CN fixed protein-encoding genes 

were classified as loss-of-function intolerant by pLI or LOEUF scores. However, lack of CN variation at these loci 

suggests that some of these genes are functional in modern humans. 

Of these constrained genes, 317 also exist at CN=2 among four archaic genomes, one Denisova and three Neanderthal 

genomes (Fig. 4.1A). The list contains several genes identified as human-specific duplications dated before the 

divergence of Homo sapiens and Homo neanderthalis, such as paralogs GPR89B, PDZK1P, HYDIN2, CD8B2, and 

ARHGAP11B (Dennis et al., 2017), the latter implicated in the expansion of the human neocortex (Florio et al., 2015, 

2016; Namba et al., 2020). Of these, 261 are expressed in at least one brain tissue and 22 are known to be implicated 

in NDD, such as DDX11, DPP6, and KATNAL2 (Table S4.1). Conversely, we identified two adjacent genes in 

chromosome 10q11.22, AGAP4 and PARGP1, exhibiting near fixation in modern humans (CN = 2 in ≥90%) but 

seemingly absent from all archaic genomes surveyed. Interestingly, AGAP4 paralogs, AGAP5 and AGAP6, are CN 

fixed in both modern and archaic genomes. Additionally, we identified 242 genes that do not display CN losses in any 

individual, including haploinsufficient gene KANSL1. 

Considering SDs are enriched for CN polymorphism, we next sought to characterize population differences in modern 

human using the statistic VST (Redon et al., 2006) to identify pairwise population stratification in four continental 

superpopulations (European [EUR], East Asian [EAS], South Asian [SAS], and American [AMR]) with respect to 
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Africans (AFR). As population differences are less impacted by haplotype-disruptive recurrence, the genes displaying 

high VST values are candidates for adaptive CNVs. VST values exhibited different standard deviation per 

superpopulation, with AFR-EAS having the most dispersion (AFR-EUR sd=0.1; AFR-EAS sd=0.12; AFR-SAS 

sd=0.088; AFR-AMR sd=0.09) (Fig. 4.1B, Fig. S4.7). We identified a total of 224 SD-98 regions (205 genes) above 

the 95th percentile per pairwise comparison, including 66 protein-encoding and 139 pseudogenes (Fig. 4.1A).  

While CN differences between population-stratified regions were small (median CN difference across all stratified 

regions: 0.77), possibly related to smaller CNVs within genotyped regions, a subset of the stratified regions was 

affected by sizable CN differences that suggest extra or missing copies of the genotyped region in a population. Among 

these, the gene TPTE exhibits a significant copy-number decrease in Africans compared to all other superpopulations, 

suggesting either an African-specific deletion or an out-of-Africa duplication (Fig. 4.1B and Fig4.1C). Interestingly, 

the Peruvian population (PEL) lacks copy numbers lower than one at this locus. On the other hand, the CN distribution 

of protein-encoding gene TBC1D3I is compatible with an out-of-African copy-number lost, with a mean of two copies 

in African populations and one in all non-African populations, including three VST pairwise comparisons (AFR-EUR, 

AFR-SAS, AFR-EAS) within the 95th percentile (Fig. S4.8).  
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Figure 4.1. Selection signatures in human duplicated genes. (A) Counts of genes (ENSEMBL gene IDs) genotyped 
by gene biotype, CN fixation in modern humans or archaic genomes, and number of superpopulation displaying 
stratification (VST ≥ 95th percentile). (B) Distribution of VST values per chromosome for AFR-EUR and AFR-EAS 
pairwise comparison (other pairwise comparison in Fig. S4.7). Red line indicates the 95th percentile of VST 
distribution. (C) Copy-number distribution of TPTE gene across all populations assayed, colored by superpopulation. 
Coordinates correspond to the CN-genotyped region. (D) Distribution of Tajima’s D values in 25-kbp windows for 
the African superpopulation with colors highlighting regions as stated in the legend. (E) CN of SPDYE3 gene. 
Coordinates correspond to Tajima’s D window overlapping the gene. 

Surveying genes with known or putative evolutionary relevance, we observed a significant copy-number increase in 

the gene KANSL1 in Europeans in agreement with a previously identified inversion-duplication exhibiting signatures 

of positive selection in Europeans associated with increased fertility (Stefansson et al., 2005). Interestingly, South 

Asians populations exhibited a similar distribution than Europeans and were also stratified compared to Africans (Fig. 

S4.9). Analysis of the copy number of gene NOTCH2NLR shows that a significant proportion of individuals (~21%) 

lacks the gene (CN < 0.5), as described before (Fiddes et al., 2018). Nonetheless, we identified a significant copy-

number stratification in both Europeans and South Asians, where there is a higher proportion of copy-number two 

individuals than in African populations (Fig. S4.10). A human-specific paralog, NPY4R2, shows signatures of 

population stratification exclusively in East Asians, exhibiting a decrease in copy-number that suggests a partial copy-

number loss in the genotyped region (Fig. S4.11). Concomitantly, the ancestral paralog NPY4R, which is spanned by 

a CNV implicated in body-mass index (Shebanits et al., 2018), displays a slight increase in copy-number in East 

Asians (although not significant). 

4.3.4 SNV discovery and diversity across duplicated regions 

Despite improved representation of duplicated genes in T2T-CHM13, genomic assessment of these regions remains 

challenging using short-read Illumina data. Duplicated genes are significantly depleted for SNVs in the 1KGP (The 

1000 Genomes Project Consortium, 2015) using T2T-CHM13 (SD-98: 11.79 SNVs/kbp; GW: 37.49 SNVs/kbp) (Fig. 

S4.3B). The autosomal 2.4 Gbp in T2T-CHM13 accessible for accurate Illumina SNV calling (Aganezov et al., 

2022)—determined using  read depth, mapping quality, and base quality metrics—includes only 37.95% and 10.86% 

of SD and SD-98, respectively (Table 4.1). 
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Table 4.1: Autosomal regions accessible to short reads in T2T-CHM13 (v1.0). 

Region Total size (bp) Accessible (bp) Accessible (%) 
Non-accessible 

(bp) 
Non-accessible 

(%) 

Non-SD  2,550,809,796 2,439,661,620 95.643 111,148,176 4.36 

SD 179,849,378 68,258,070 37.953 111,591,308 62.05 

SD-98 97,797,568 10,623,540 10.863 87,174,028 89.14 

CenSat 198,056,319 15,285,809 7.718 182,770,510 92.28 

CenSat: centromeric satellites. Non-SD excludes SDs and CenSat regions.  

To evaluate our ability to detect variants within duplications, we compared SNVs discovered using Illumina short-

read and PacBio HiFi long-read data across eight 1KGP individuals included in the Human Pangenome Reference 

Consortium (HPRC+) (Aganezov et al., 2022; Wang et al., 2022). Overall, more variants were discovered in all 

genomic-region categories using HiFi compared with Illumina data (Table S4.4). While no differences in density 

(SNV sites within 1-kbp non-overlapping windows) existed between data types in non-duplicated and T2T-CHM13 

accessible regions (Aganezov et al., 2022), respectively, we observed reduced mean variant density from short-read 

(SD: 1; SD-98: 0) versus long-read data in duplicated regions (SD: 5; SD-98: 5) (Fig. S4.12). 

Using HiFi-discovered variants as truth, we next assessed variant accuracy and found that 99.5% of SNVs matched 

between technologies in non-SD, which decreased to 88.6% and 81.7 % in SD and SD-98, respectively. When 

considering only T2T-CHM13 short-read accessible regions, SNV precision increased in the three regions assayed to 

99.7%, 96.1%, and 94.2% for non-SD, SD, and SD-98 (Table S4.4, Fig. S4.13). On the other hand, sensitivity—

measured as the proportion of HiFi-discovered SNVs also detected using Illumina data—experienced a pronounced 

decrease of 24.5% in SD and 0.85% in SD-98 compared to 87.6% in Non-SD regions. When considering only T2T-

CHM13 short-read accessible regions, however, sensitivity improved to 91.7%, 72.5%, and 57.8%, respectively. 

Overall, these results indicate that existing variants identified across duplicated regions from Illumina data are 

generally accurate, particularly in defined accessible regions, but not comprehensive. 

Leveraging our ability to assay variation across SD accessible regions, we calculated Tajima’s D (Tajima, 1989) using 

T2T-CHM13 variant data for 2,504 unrelated individuals from the 1KGP representing five superpopulations 

(Aganezov et al., 2022) and compared the distribution of D statistics across 25-kbp windows intersecting accessible 
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regions (Fig. 4.1D). Recent studies have highlighted potential discrepancies of evolutionary constraints experienced 

between duplicated and non-duplicated genomic spaces (Hartasánchez et al., 2018). As such, we also conservatively 

identified outlier thresholds for each superpopulation considering only SD-98 windows instead of genome-wide (total 

windows in 95th percentile: 35 and 5th percentile: 27) (Table S4.5). GO analysis of the 15 protein-encoding genes 

with significantly low D values, indicative of putative directional selection, showed enrichment of genes involved in 

immunoglobulin complex and membrane related functions, while genes with significantly high D values, indicative 

of possible balancing selection, were enriched for transcription regulation processes. This higher-confident set of 

windows overlapped with 94 genes (22 protein encoding), including two genes in chromosome 7q22.1, SPDYE3 and 

PMS2P1, with significantly lower D values across all five superpopulations, signature of directional selection acting 

on this locus or recent population expansion. Interestingly, these genes were also CN fixed in modern humans and 

archaic genomes, except for the same two individuals that have extra copies of the locus (Table S4.1, Fig. 4.1E). We 

also identified seven additional fixed protein encoding genes displaying significantly low Tajima’s D values, including 

RHCE, TIMM23B, MRPL45, LRRC37A3, CDH12, POM121C, and CNTNAP3, as well as a readthrough transcript 

between TIMM23B and AGAP6 genes. While precision of SNV detection in Tajima’s D outliers regions was high 

(mean precision = 0.95), sensitivity was low (mean sensitivity = 0.61), indicating that to better characterize these 

duplicated loci, long-read sequencing variant detection is necessary. 

4.4 Discussion 

Most genetic analyses and selection scans using the human genome have systematically skipped SDs due to the 

difficulties in assaying these regions with short reads. As Illumina short-read sequencing has remained the most widely 

used sequencing platform, SDs are often excluded from genome-wide analyses. This includes the absence of 

population-level genomic variants within SDs, as well as their misrepresentation in human reference genomes. 

Recently, the new complete T2T-CHM13 genome fixed all the errors in SD space. Leveraging this new resource, we 

first examined evolutionarily recent SDs sharing 98% sequence identity with another homolog elsewhere in the 

genome. These duplications are enriched for human-specific expansions that likely occurred after divergence from a 

recent common ancestor of humans and chimpanzees around 6 mya. Unlike previous studies that focused on human-

specific duplications of previously single-copy genes (Dennis et al., 2017), this approach also incorporates expansions 

of already existing duplicate gene families. Notably, we do not differentiate between conserved ancestral and human-
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specific derived paralogs, which requires comparisons of synteny with primate orthologs that remains challenging 

without comparable T2T great ape genomes. While the function of most duplicated paralogs remains unknown, some 

remarkable examples show gene expansions, such as NOTCH2NL (Fiddes et al., 2018; Florio et al., 2018; Suzuki et 

al., 2018) and TBC1D3 (Ju et al., 2016), and gene duplications, such as SRGAP2C (Charrier et al., 2012; Dennis et 

al., 2012), and ARHGAP11 (Florio et al., 2015), to be implicated in the expansion of the neocortex during human 

evolution. Importantly, not all the duplicate gene families identified from our analysis are human specific. Despite 

their high sequence identity (>98%), some gene paralogs might appear “younger” due to the action of interlocus gene 

conversion, which leads to the concerted evolution of the duplicated paralogs. The full extent to which gene 

duplications are impacted by interlocus gene conversion remains underassayed, however, a lower bound indicates that 

it accounts for at least 2.7% of SNVs within SDs (Dumont, 2015). More recent estimates based on phased haplotypes 

propose that ~33.8% of SDs show evidence of interlocus gene conversion in at least one individual assayed (n=102) 

(Vollger, DeWitt, et al., 2022). Alternatively, some paralogs may remain similar, at least at the coding level, if they 

are functional and evolving under selective constraints, or due to random drift leading to incomplete lineage sorting. 

As SD are prone to CNVs via non-allelic homologous recombination, selection of duplicated genes act on the number 

of copies of a gene rather than single-nucleotide differences. Some emblematic cases of adaptive SVs have been 

reported in the human lineage, including a positive correlation between the copy number of salivary amylase gene 

AMY1 and starch-rich diets (Pajic et al., 2019), and the ‘runaway duplication’ of the HPR gene, which confers defense 

against trypanosome infection, whose CN correlates with the geographic distribution of infections (Almarri et al., 

2020; Handsaker et al., 2015; Hardwick et al., 2014). Assessment of CN of duplicated genes has been done previously 

at the gene family level by using read-depth of multimapping short reads (Dennis et al., 2017; Hsieh et al., 2021). This 

approach is robust as it does not depend on the correct assignment of short reads to their respective paralogs. To 

achieve paralog specificity, however, short reads need to be mapped to regions displaying nucleotide differences that 

distinguish each paralog unequivocally. This approach is computationally implemented as CN estimation using read-

depth at unique k-mers and is sensitive to the accuracy of the reference genome, as missing paralogs will result in 

inaccurate CN estimates. Previous studies have identified paralog-specific CNs in human reference GRCh37/hg19 

(Sudmant et al., 2010) and GRCh38/hg38 (Dennis et al., 2017; Shen & Kidd, 2020). Here we leveraged a published 

tool, QuicK-mer2 (Shen & Kidd, 2020), to obtain CN estimates in windows of 500 unique k-mers using a complete 
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human reference genome, T2T-CHM13. The resolution of the approach, however, depends on the number of unique 

k-mers at a certain locus, which are often scarce in the most recent duplications. 

As we were interested in larger duplication events rather than small structural variants, we genotyped the median CN 

of SD-98 regions overlapping genes. Only if a gene was fully covered by a SD-98 region, our approach captured the 

overall CN of the gene. Otherwise, we genotyped a smaller CNV within the gene. While the median is more resilient 

to outliers that other summary metrics, CN at certain loci remained noisy. In some genotyped regions, we noticed a 

shift in the CN distribution, averaging above or below the expected CN two for our diploid genomes. For VST analyses, 

however, we used the raw CNs, which allowed us to robustly detect differences between populations regardless of 

distribution shifts. As such, this approach yielded stratification signatures of both full copy-number gains and losses 

as well as smaller CN differences, which needed to be considered when analyzing putative signatures of population 

stratification. 

In agreement with previous findings (Aganezov et al., 2022), we found that small variants detected with short reads 

in duplicated regions are accurate when benchmarked against variants detected with high-fidelity long reads, but are 

not comprehensive enough to fully characterize the variation landscape of SDs. Nonetheless, we aimed to leverage 

the accuracy of identified variants to assess departure from neutrality in SD regions using the Tajima’s D statistic, 

which is sensitive to genotyping accuracy but less so to variant recall. To avoid confounding results associated with 

low variant recall, we used only short-read accessible regions and discarded windows with less than five SNVs for D 

calculations. Notably, to the best of our knowledge, this is one of the few attempts to recover high-quality short-read 

SNVs in SDs for a selection scan, as most of these regions are excluded upfront. To establish Tajima’s D outliers, we 

conservatively used an empirical distribution based on SD-98 windows, avoiding cross comparison between 

duplicated and unduplicated regions of the genome. Recent studies have highlighted duplication-specific molecular 

mechanisms that lead to differential mutational rate and impact their site frequency spectra (SFS). In particular, SDs 

are shown to have a higher mutational rate, partially explained by the action of IGC (Vollger, DeWitt, et al., 2022). 

Additionally, computational simulations of duplicated regions evolving under different rates of IGC have shown 

statistically significant differences in SFS-based tests between single-copy and duplicated genes, suggesting they 

should be characterized separately (Hartasánchez et al., 2018). 
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Our analyses of genetic databases and expression data narrow in on a subset of human duplicated genes with  the 

propensity to be functional and, as such, could be relevant for human evolution. We found almost half of genes within 

SD-98 regions showing expression in LCL and brain tissues. While promising, to more comprehensively catalog 

putative gene functions requires assaying additional cell lines and/or tissues. Another line of evidence highlighting 

putatively functional duplicated genes is CN fixation in modern humans. Our paralog-specific approach allowed us to 

investigate this question by analyzing the CN of ancestral andderived paralogs independentlyThis is relevant, as 

evolutionary theory suggests that after the duplication event the new paralog would often go the route of 

pseudogenization (Lynch & Conery, 2000), which translates into missing gene copies in non-disease cohorts and CN 

variation among modern humans. Nonetheless, in our CN analysis we purposely included unprocessed pseudogenes 

arising from duplication events in addition to protein-encoding, as pseudogenes annotations in the reference genome 

are often based on the acquisition of predicted loss-of-function mutations in the duplicated copy and not functional 

assessment. In fact, evidence suggests that truncated gene copies can have a relevant function in human evolution, as 

it is the case of SRGAP2C (Charrier et al., 2012; Dennis et al., 2012). Importantly, only a fifth of CN fixed genes were 

also classified as intolerant to loss-of-function mutations using the pLI and LOEUF scores. A likely scenario is that 

human duplicated genes are underassayed in these scores as they rely on accurate identification of SNPs and indels 

that induce a stop codon, frameshift, or splice-site disruption derived from short-read sequence data.  

To further explore functional human duplicated genes, we searched for selection signatures associated with CNVs 

using VST to detect significant CN population differences. As population stratification is less sensitive than other 

selection signatures to loss of linkage disequilibrium, it has been widely used to detect adaptive structural and CN 

variants, often impacted by haplotype-disruptive recurrence caused by NAHR (Marie Saitou & Gokcumen, 2019b). 

Thus, genes exhibiting outlier VST values are strong candidates for duplicated genes involved in local adaptation. 

Our approach highlighted several duplicated genes with interesting CN properties and selection signatures. The gene 

DDX11, which is fully encompassed within SD-98 space, is a known developmental gene associated with chromatin 

structure and DNA repair implicated in Warsaw breakage syndrome (Santos et al., 2021). Our CN analysis of DDX11 

showed that it is CN fixed in both modern and archaic humans. This is consistent with finding that loss of DDX11 

causes replication stress (Jegadesan & Branzei, 2021). CN estimates also showed that AGAP4 and a nearby transcribed 

unprocessed pseudogene, PARGP1, were nearly CN fixed in modern humans but absent in archaic genomes, 
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suggesting a Homo sapiens specific expansion of this gene family. PARGP1 has been identified as an enhancer RNA 

whose target gene is AGAP4, with the mRNA levels of both genes positively correlated (Ang et al., 2021). PARGP1 

has also been associated with prostate cancer, where low expression of PARGP1, and thus of AGAP4, have been linked 

to better survival rates. These findings are also consistent with a lack of CNVs at this locus, as gene dosage changes 

of these genes might play a role in disease. 

Population differences in CN showed that the gene TPTE exhibits significantly lower CN in all populations of African 

ancestry compared to those with out-of-Africa ancestry. TPTE, or transmembrane phosphatase with tensin homology 

(also known as PTEN2), is a membrane-associated phosphatase located on chromosome 21p11.2 (Guipponi et al., 

2000), which shares ~96% sequence identity with the protein-encoding gene TPTE2 on chromosome 13q12.11 (also 

known as TPIP) (Walker et al., 2001). Several pseudogenes of these genes exist on acrocentric chromosomes 13, 15, 

21, 22 and Y (Tapparel et al., 2003). Only one copy of protein-encoding Tpte exists in mice exhibiting conserved 

synteny with human TPTE2 on chromosome 13q14.2-q21 (Guipponi et al., 2001), implying this region represents the 

ancestral copy from which TPTE emerged through a duplication event. In our analysis, TPTE was fully encompassed 

by an SD sharing >99% sequence identity with the pseudogene TPTE2P4 on chromosome 13p11.2. Our CN estimates 

also showed that TPTE and TPTE2P4 are absent from all archaic genomes surveyed, and TPTE is seemingly absent 

from the chimpanzee reference genome (panTro6). Remarkably, this duplication does not seem to be frequent in any 

of the African populations assayed, suggesting a prominence of a homozygous deletion haplotype in Africa due to 

either an African-specific deletion or an out-of-Africa duplication. Although its function is unknown, TPTE is 

expressed exclusively in testis, more specifically, in secondary spermatocytes (Wu et al., 2001) and could contribute 

to fertility. 

The analysis of Tajima’s D estimator, although not comprehensive, highlighted regions showing signatures of 

balancing or directional selection. The locus encompassing genes SPDYE3 and PMS2P1 on chromosome 7q22.1 

showed significantly low D values across all humans queried. Low Tajima’s D values indicate an excess of rare 

variants in the locus, which can be due to several factors, including a purifying selection or a selective sweep. We also 

found the regions to be CN fixed, with only two individuals among the 1KGP cohort genotyped for extra copies for 

both genes SPDYE3 and PMS2P1. Together, D values and CN fixation are concordant with a functional region under 
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selective constraints. This and other loci highlighted in this study, will become priority candidates for long-read based 

population genetics analyses, functional studies, and disease associations. 

4.5 Methods 

4.5.1 Overall assessment of SD-98 regions 

SD regions were extracted from previously annotated SDs (Vollger, Guitart, et al., 2022) and subsequently merged 

using bedtools merge (Quinlan & Hall, 2010). SD-98 were defined as a subset of SD with ≥98% sequence identity to 

another locus in the T2T-CHM13 genome. Genome coordinates of unique (Non-SD) regions excluded SD as well as 

annotated centromeric satellites (Altemose et al., 2022), while keeping pericentromeric SDs. Gene coordinates were 

obtained from T2T-CHM13 CAT/Liftoff annotations (v4) (Nurk et al., 2022). Overlap between SD-98 regions and 

genes were obtained using bedtools intersect (Quinlan & Hall, 2010). Overall numbers of distinct gene features 

overlapping SD-98 were counted using the assigned T2T-CHM13 gene ID. 

4.5.2. Transcriptomics analysis 

RNA-seq data were obtained for the developing brain (Fietz et al., 2012; Florio et al., 2015) and LCLs (Pickrell et al., 

2010). Transcripts were quantified with Salmon v1.8.0 (Patro et al., 2017) with the flags “--validateMappings --

gcBias”, the T2T-CHM13 v2.0 CAT/Liftoff transcriptome, and the CHM13v2.0 assembly as decoy sequence. All 

identical transcripts were removed from the transcriptome prior to index construction. Transcripts per million (TPM) 

values were summed to the gene level using tximport (Soneson et al. 2015). 

4.5.3 Depletion analysis 

Databases of genetic analyses were obtained from GWAS Catalog v1.0 (mapped to GRCh38.p12) (Buniello et al., 

2019), ClinVar (rel. 20200310) (Landrum et al., 2018), and GTEx v8 single-tissue eQTL  (dbGaP Accession 

phs000424.v8.p2; mapped to GRCh38, excluding chromosome Y), as well as from biallelic-SNPs from 1KGP 

individuals mapped to T2T-CHM13 (v1.0) (Aganezov et al., 2022). Empirical distributions were generated by 

intersecting each dataset with randomly sampled regions of identical size to SD and SD-98 generated with bedtools 

shuffle -noOverlapping -maxTries 10000 -f 0.1. For depletion analyses in T2T-CHM13, centromeric satellites were 

also excluded using  the flag -excl. One-tailed empirical p-values were calculated as: p-value = (M + 1) / (N + 1), 
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where M is the number of iterations yielding a number of features less than (depletion) observed and N is the number 

of iterations. Empirical p-values were calculated using 10,000 permutations. 

4.5.4 Phenotype and disease associations 

Gene-disease associations were obtained from GWAS catalog v1.0 (Buniello et al., 2019) and gnomad.v2.1.1 

probability of loss of function intolerance scores (pLI) (Lek et al., 2016) and loss-of-function observed/expected upper 

fraction (LOEUF) (Karczewski et al., 2020), and intersect with SD-08 genes using gene symbols. High-confidence 

NDD-implicated genes were annotated with GeneTrek (https://genetrek.pasteur.fr/) (Leblond et al., 2021). 

4.5.5 Paralog-specific copy-number genotyping 

CN variant calls were obtained using QuicK-mer2 (Shen & Kidd, 2020). 1KGP 30× high-coverage Illumina reads in 

cram format (Byrska-Bishop et al., 2022) and four archaic genomes (including Altai Neanderthal [PRJEB1265] 

(Prüfer et al., 2014), Vindija Neanderthal [PRJEB21157] (Prüfer et al., 2017), Mezmaiskaya Neanderthal 

[PRJEB1757] (Prüfer et al., 2017, 2014), and Denisova [PRJEB3092] (Meyer et al., 2012)), were used as input for 

QuicK-mer2, using T2T-CHM13 (v1.0) as reference (Nurk et al., 2022). The resulting bed files containing CN 

estimates were converted into bed9 format using a custom python script for visualization in the UCSC genome 

browser. We genotyped CN in SD-98 regions overlapping protein-encoding and unprocessed pseudogenes (as defined 

in ENSEMBL biotypes) as the mean CN across the region of interest for each sample using a custom python script. 

Distinct gene features displaying CN fixation were counted using unique ENSEMBL gene IDs. CN-dotplots generated 

using the R package ggplot2 are available as an interactive Shiny web application in 

https://dcsoto.shinyapps.io/shinycn. 

4.5.6 Copy-number stratification 

CN differences between populations were calculated using the statistics VST (Redon et al., 2006), calculated as VST = 

(VT - VS) / VT, where VT is the total variance between two superpopulations var(pop1, pop2), and VS is the weighted 

mean of the variance within each superpopulation, calculated as VS = [ var(pop1) ⋅ npop1 + var(pop2) ⋅ npop2 ] / (npop1 + 

npop2).  VST calculations were implemented in a custom R script. Distinct gene features displaying CN stratification 

were counted using unique ENSEMBL gene IDs. 
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4.5.7 Illumina SNV discovery benchmarking 

Concordance between SNVs discovered with PacBio HiFi and Illumina sequencing were obtained for eight individuals 

of the 1KGP and HPRC+ datasets mapped to T2T-CHM13 (v1.0) (Aganezov et al., 2022), including individuals 

HG01109, HG01243, HG02055, HG02080, HG02145, HG02723, HG03098, and HG03492. Biallelic SNVs were 

selected using bcftools view (Danecek et al., 2021). Concordance between platforms, measured as precision and 

sensitivity, was obtained with rtg-tools vcfeval (Cleary et al., 2015) for autosomal Non-SDs, SDs, and SD-98 regions, 

using PacBio HiFi variants as a truth-set. Short-read accessible regions were obtained from  Aganezov et al. (Aganezov 

et al., 2022). 

4.5.8 Tajima’s D calculation 

Tajima’s D values were obtained within 25-kbp using the software vcftools. Windows with less than 5 SNVs were 

removed from the analysis. To define short-read sequencing accessible Tajima’s D values, 25-kbp windows were 

intersected with a previously published short-read combined accessibility mask. 

4.5.9 GO overrepresentation 

GO terms overrepresented in SD-98 genes were obtained using the R package clusterProfiler and the DAVID database 

(enrichDAVID function). Terms overrepresented in CN fixed genes were obtained using the ego function in R package 

clusterProfiler. 
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CHAPTER 5. Tools for (better) computational biology 

Chapter 5 is a shared co-first authorship between Daniela C. Soto and Dr. Benjamín Sánchez Barja. 

DCS wrote the abstract, introduction, section “personal research”, part of section “collaboration”, final words, and 

part of case studies, as well as designed figures. 

5.1 Abstract 

As biotechnological and biomedical research are increasingly fed by the insights arising from computation, the 

conversation about good practices in computational biology becomes more and more prominent. An increasing body 

of literature has addressed practices for shareable, reproducible, and sustainable computational research, from high-

level principles for data and software stewardship to deep dives into version control or software automation. However, 

implementing these practices relies on incorporating the right tools into our daily routines, considering the type, scope, 

and stage of the research project. Here we provide a compendium of relevant tools for computational biology research, 

emphasizing their time and place within a continuum that traverses personal, collaborative, and community practices. 

This compendium will serve as a starting point and guide to help navigate the ongoing influx of tools and how to best 

incorporate them into a computational biologist’s working routine, enabling reproducible biomedical and 

biotechnological research in the long term. 

5.2 Introduction 

Since Margaret Dayhoff pioneered the field of bioinformatics in the sixties, the application of computational tools in 

the field of biology has vastly grown in scope and impact. At present, biotechnological and biomedical research are 

routinely fed by the insights arising from novel computational approaches, machine learning algorithms, and 

mathematical models. The ever-increasing amount of biological data and the exponential growth in computing power 

will amplify this trend in the years to come. 

The use of computing to address biological questions encompasses a wide array of applications usually grouped under 

the terms “computational biology” and “bioinformatics.” Although distinct definitions have been delineated for each 

one (Huerta et al., 2000; Luscombe et al., 2001), here we will consider both under the umbrella term “computational 
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biology,” alluding to any application that involves the intersection of computing and biological data. As such, a 

computational biologist can be a data analyst, a data engineer, a statistician, a mathematical modeler, a software 

developer, and many other roles. In praxis, the modern computational biologist will be a “scientist of many hats,” 

taking on several of the duties listed above. But first and foremost, we will consider a computational biologist as a 

scientist whose ultimate goal is to answer a biological question or address a need in the life sciences by means of 

computation. 

Scientific computing requires following specific principles to enable shareable, reproducible, and sustainable outputs. 

Computing-heavy disciplines, such as software engineering and business analytics, have adopted protocols addressing 

the need for collaboration, visualization, project management, and strengthening of online communities. However, as 

a highly interdisciplinary and evolving field, computational biology has yet to acquire a set of universal “best 

practices.” Since most computational biologists come from diverse backgrounds and rely on self-study rather than 

formal education (Pinto et al., 2018), the absence of guidelines may lead many computational biologists astray, using 

methods that hinder reproducibility and collaboration, such as unreproducible computational workflows or closed-

source software, retarding biomedical and biotechnological research. 

In recent years, this “guidelines gap” has been addressed by the establishment of FAIR principles—Findability, 

Accessibility, Interoperability, and Reusability—in 2016 (Wilkinson et al., 2016). Originally developed for data 

stewardship, FAIR principles have been proposed as universal guidelines for all research-related outputs (G. Lee et 

al., 2021). However, translating these high-level principles into day-to-day practices requires additional nuances based 

on the type of research, the size and scope of the project, and the researcher’s experience. To address the need for 

FAIR scientific software, for example, the framework ADVerTS (availability of software, documenting software, 

version control, testing, and support) has been proposed as a set of “barely sufficient” practices (G. Lee et al., 2021). 

More broadly, reviews exist covering general topics for bench scientists new to computational biology—such as 

programming and project organization (Carey & Papin, 2018; Grüning et al., 2019; Loman & Watson, n.d.; G. Wilson 

et al., 2014, 2017)—to detailed descriptions for the more seasoned data scientist—such as workflow automation 

(Reiter et al., 2021), software library development (Yurkovich et al., 2017), software version control with the cloud 

service GitHub (Perez-Riverol et al., 2016), and interactive data science notebooks with Jupyter (Rule et al., 2018). 
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Although the above reviews are immensely helpful, an overview of tools for better computational biology is missing. 

Indeed, guiding principles and general advice are key to establishing a behavior roadmap but their implementation is 

enabled by incorporating the right tools into our daily working routine. Tool selection has many components, such as 

availability, suitability, and personal preference; although the latter is left to the reader, here we will shed light on the 

first two. We premise that good practices in computational biology lie within a continuum that traverses three levels: 

personal (you), collaboration (your group), and community (your field) (Figure 5.1). Each of these levels has a 

different set of requirements and challenges, as well as a specific set of tools that can be used to address them. Here, 

we compiled a curated list of these tools, emphasizing their time and place in a computational biology research project. 

Committed to practicality, we illustrated the utility of these tools in case studies covering a wide spectrum of research 

topics that computational biologists can use to model their own practices, modifying them to suit their own needs and 

preferences. 

 
Figure 5.1. Schematic of the three "levels" of computational biology. 
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5.3 Level 1: Personal Research 

The computational biology journey begins with you and the set of skills, tools, and practices that you have in place to 

conduct your research. Taking the time to optimally establish these building blocks will have high payoffs later when 

you find yourself going back to previous analyses. Consider that your most important collaborator is your future self, 

be it tomorrow or several years from now. We devised a framework involving four main sequential steps to kickstart 

any computational biology project (Table 5.1). 

Table 5.1. Steps involved in starting a computational biology project. 

Step Use case Common tools 
Choose your 
programming 
languages 

Interacting with a 
Unix/Linux HPC 

• Shell/Bash 

Data analysis • Python, R 
Scripts and programs • Interpreted: Python, R, Perl, MATLAB, Julia 

• Compiled: C/C++, Rust 
Workflows • Linux-based: Shell scripts, GNU Make 

• Workflow management systems: Snakemake (Python), Nextflow 
(Groovy) 
• Workflow specifications: CWL, WDL 

Choose your 
project structure 

Project structure • Templates: Cookiecutter Data Science, rr-init 
• Workflows: Snakemake workflow template 

Virtual environment 
managers 

• Language-specific: virtualenv (Python), renv (R) 
• Language agnostic: Conda 

Package managers • Language-specific: pip (Python), Bioconductor (R), R Studio package 
manager (R) 
• Language-agnostic: Conda 

Choose your 
working set-up 

Text editors • Desktop applications: Sublime, Visual Studio Code, Notepad++ 
• Command line: Vim, GNU Emacs 

IDEs • For Python: JupyterLab, JetBrains/PyCharm, Spyder 
• For R: R Studio 

Notebooks • Jupyter (Python, R), R Markdown (R) 
Choose good 
coding practices 

Coding style • Styling guides: PEP-8 (Python), Google (Python, R) 
• Automatic code formatting: Black (Python), Snakefmt (Snakemake) 

Literate programming • Markdown 
• R Markdown 

Version control • Version control system: Git 
• Code repositories: GitHub, GitLab, Bitbucket 
• Git GUIs: GitHub Desktop, GitKraken 

 

5.3.1 Choose your programming languages 

Different programming languages serve distinctive purposes and have unique idiosyncrasies. As such, choosing a 

programming language for a specific project depends on your research goals, personal preferences, and skill sets. 
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Additionally, communities usually favor the usage and training of some programming languages over others; utilizing 

such languages may facilitate integrating your work within the existing ecosystem. 

Interacting with high-performance computing (HPC) clusters has become a hallmark for the data-intensive discipline 

of computational biology. HPC infrastructures commonly use Unix/Linux distributions as their operating system. To 

interact with these platforms, a command-line interpreter known as the shell must be used. There are multiple versions 

of shells, with Bash (https://www.gnu.org/software/bash/) being one of the most widely adopted. In addition to 

providing an interface, the shell is also a scripting language that allows manipulating files and executing programs 

through shell scripts. Unix/Linux operating systems have other interesting perks, such as powerful, fast commands for 

searching and manipulating files (e.g., sed, grep, or join) as well as the language AWK, which can perform quick text 

processing and arithmetic operations. 

One of the most common tasks of any computational biologist is data analysis, which usually involves data cleaning, 

exploration, manipulation, and visualization. Currently, Python (https://www.python.org/) is the most widely used 

programming language for data analysis (Kaggle, 2021; Stack Overflow, 2021). Python is also a popular language 

among computational biologists, a trend that will likely continue as machine learning and deep learning are more 

widely adopted in biological research. Python usage has been facilitated by the availability of packages for biological 

data analysis accessible through package managers such as pip (https://pip.pypa.io/) or Conda (https://docs.conda.io/). 

Likewise, R (https://www.r-project.org/) is another prominent language in the field. Arguably, one of the main 

strengths of R is its wide array of tools for statistical analysis. Of particular interest is the Bioconductor repository 

(https://www.bioconductor.org/), where many gold-standard tools for biological data analysis have been published 

and can be installed using BiocManager. R usage in data science has deeply benefited from the Tidyverse packages 

(Wickham et al., 2019) and surrounding community, increasing the readability of the R syntax for both data 

manipulation via dplyr and visualization via ggplot2. 

Computational biologists often must code their own sets of instructions for processing data using scripts or tools. In 

computational biology, a script often refers to a lightweight single-file program written in an interpreted programming 

language and developed to perform a specific task. Scripts are quick to edit and can be run interactively but at the 

expense of computational performance. To automate instructions in HPC clusters, shell scripts are commonly used. 
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For other purposes, the most widely used scripting languages are Python and R, but Perl (https://www.perl.org/), 

MATLAB (https://www.mathworks.com/), and Julia (https://julialang.org/) are preferred by some researchers for 

bioinformatics, systems biology, and statistics, respectively. A computational biology tool, on the other hand, is a 

more complex program designed to tackle computationally intensive problems like developing new algorithms. 

Several tools devised for data-intensive biology have been written in compiled languages such as C/C++ 

(https://cplusplus.com/). In recent years, however, scientists have been turning to Rust (https://www.rust-lang.org/) 

due to its speed, memory safety, and active community (Perkel, 2020). When computational performance is less of a 

concern, Python and R are suitable alternatives for computational biology tool development. 

Biological data processing is rarely a one-step process. To go from raw data to useful insights, several steps need to 

be taken in a specific order, accompanied by a plethora of decisions regarding parameters. Computational biologists 

have addressed this need by embracing workflow management systems to automate data analysis pipelines. A pipeline 

can be a shell script where commands are written sequentially, using shell variables and scripting syntax when needed. 

Although effective, this approach provides little control over the workflow and lacks features to run isolated parts of 

the pipeline or track changes in input and output files. To overcome these limitations, a shell script can be upgraded 

using the GNU Make (https://www.gnu.org/software/make/) program, which was originally designed to automate 

compilation and installation of software but is flexible enough to build workflows. More sophisticated bioinformatics 

workflow managers have also been developed such as Snakemake (https://snakemake.github.io/) based on Python 

(Mölder et al., 2021) and Nextflow (https://www.nextflow.io/) based on Groovy (a programming language for the 

Java virtual machine) (Di Tommaso et al., 2017). These tools offer support for software reproducibility using 

environment managers and software containers, as well as allow for easy scaling of pipelines to both traditional HPC 

and modern cloud environments. Alternatively, there are available declarative standards to define workflows in a 

portable and human-readable manner such as the Common Workflow Language (CWL) 

(https://www.commonwl.org/) and Workflow Description Language (WDL, pronounced “widdle”) 

(https://openwdl.org/), used by the cloud computing platform AnVIL (https://anvilproject.org/) (Schatz et al., 2022). 

Although these are not executable, they can be run in CWL- or DWL-enabled engines such as Cromwell (Voss et al., 

2017). 
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5.3.2 Choose your project structure 

The next step after choosing your programming languages but before starting coding is to develop an organized project 

structure. The project design should be intentional and tailored to the present and future needs of your project—

remember to be kind to your future self! A computational biology project requires, at the very least, a folder structure 

that supports code, data, and documentation. Although tempting, cramming various file types into one unique folder 

is unsustainable. Instead, separate files into different folders and subfolders, if needed. To simplify this process, base 

your project structure on research templates available off-the-rack. For data science projects, the Python package 

Cookiecutter Data Science (https://drivendata.github.io/cookiecutter-data-science/) decreases the effort to minimal. 

Running the package prompts a questionnaire in the terminal where you can input the project name, authors, and other 

basic information. Then, the program generates a folder structure to store data—raw and processed—separate from 

notebooks and source code, as well as pre-made files for documentation such as a readme, a docs folder, and a license. 

Similarly, the Reproducible Research Project Initialization (rr-init) offers a template folder structure that can be 

modified by the user (https://github.com/Reproducible-Science-Curriculum/rr-init/). Although rr-init is slightly 

simpler, both follow an akin philosophy aimed at research correctness and reproducibility (Noble, 2009). For standard-

compliant snakemake-workflows, where each workflow is in a dedicated folder divided into subfolders 

(https://snakemake.readthedocs.io/en/stable/index.html), we advise following the Snakemake Workflow Template 

(https://github.com/snakemake-workflows/snakemake-workflow-template/). In all cases, the folder must be initialized 

as a git repo for version control. 

The software and dependencies needed to execute a tool or workflow are also part of the project structure itself. The 

intricacies of software installation and dependency management should not be underestimated. Fortunately, package 

and virtual environment managers significantly reduce this burden. A package manager is a system that automates the 

installation, upgrading, configuration, and removal of community-developed programs. A virtual environment 

manager is a tool that generates isolated environments where programs and dependencies are installed independently 

from other environments or the default operating system. Once a virtual environment is activated, a package manager 

can be used to install third-party programs. We believe that every computational biology project must start with its 

own virtual environment to boost reproducibility: environments save the project’s dependencies and can restore them 

at will so the code can be run on any other computer. There are multiple options for both package and virtual 
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environment management—some language-specific and some language-agnostic. If you are working with Python, 

you can initialize a Python environment using virtualenv (https://virtualenv.pypa.io/) (where different Python versions 

can be installed). Inside the environment, you can use the Python package manager pip (https://pip.pypa.io/) to import 

Python code from the Python Package Index (PyPI) repository, cloud-based repositories, or locally. For the R 

language, R-specific environments can be created using renv (https://rstudio.github.io/renv/), where packages can be 

installed from the Comprehensive R Archive Network (CRAN) and CRAN-like repositories using the install.packages 

function, or from the Bioconductor repository using BiocManager. Additionally, RStudio Package Manager 

(https://www.rstudio.com/products/package-manager/) offers package management for third-party code available in 

R and Python repositories, as well as locally. Conda—a language-agnostic alternative—supports program installation 

from the Anaconda repository (https://repo.anaconda.com/), which contains the channel Bioconda 

(https://bioconda.github.io/) specifically tailored to bioinformatics software. Python dependencies can also be 

installed via pip inside a Conda environment. Conda is particularly helpful when working with third-party code in 

various languages—a common predicament in computational biology. The Conda package and environment manager 

is included in both the Anaconda and Miniconda distributions. The latter is a minimal version of Anaconda, containing 

only Conda, Python, and a few useful packages. 

5.3.3 Choose your working set-up 

Before coding, a more practical question needs to be answered first: Where to code? The simplest tools available for 

this purpose are text editors. Since writing code is ultimately writing text, any tool where characters can be typed 

fulfills this purpose. However, coding can be streamlined by additional features—including syntax highlight, 

indentation, and auto-completion—available in code editors such as Sublime (https://www.sublimetext.com/), Visual 

Studio Code (https://code.visualstudio.com/), and Notepad++ (https://notepad-plus-plus.org/) (Windows only), and 

command-line text editors such as Vim (https://www.vim.org/) and Emacs (https://www.gnu.org/software/emacs/). 

These tools share the advantage of being language agnostic, which is handy for the polyglot computational biologist. 

In addition to text editors, integrated development environments (IDEs) are also popular options for coding. In their 

essence, IDEs are supercharged text editors comprising a code editor (with syntax highlight, indentation, and 

suggestions), a debugger, a folder structure, and a way to execute your code (a compiler or interpreter). Some IDEs 
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are not language-agnostic, often only allowing code in one language. The array of features also comes at a cost—IDEs 

typically use more memory. For Python, JupyterLab (https://jupyter.org/), Spyder (https://www.spyder-ide.org/), and 

PyCharm (https://www.jetbrains.com/pycharm/) are popular options, while for R, RStudio (https://www.rstudio.com/) 

is the gold standard. Notably, the differences between an IDE and a code editor are somewhat blurry, particularly 

when employing plugins with a code editor. 

In recent years, data science notebooks have acquired relevance in computational biology research. A notebook is an 

interactive application that combines live code (read-print-eval loop or REPL), narrative, equations, and 

visualizations, internally stored using a format called JavaScript Object Notation (JSON). Common notebooks use 

interpreted languages such as Python or R, and narrative usually uses Markdown—a lightweight markup language 

(https://www.markdownguide.org/). Data analysis greatly benefits from using notebooks instead of plain text editors 

or even IDEs. The combination of visuals and texts allows researchers to tell compelling stories about their data, and 

the interactivity of its code enables quick testing of different strategies. Jupyter (https://jupyter.org/) is a popular web-

based interactive notebook developed originally for Python coding but also accepts R and other programming 

languages upon installation of their kernels—the computing engine that executes the notebook’s live code under the 

hood. Jupyter notebook can also be executed in the cloud using platforms such as Google CoLaboratory (CoLab) 

(https://colab.research.google.com/) and Amazon WebServices, taking advantage of the current trend of cloud 

computing. In addition, RStudio allows the generation of R-based notebooks known as R Markdown 

(https://rmarkdown.rstudio.com/), which is especially well suited for generating data analysis reports. 

5.3.4 Choose good coding practices 

With the foundation in place, the next step is to start writing code. Coding, however, requires good practices to ensure 

correctness, sustainability, and reproducibility for you, your future self, your collaborators, and the whole community. 

First and foremost, you need to make sure your code works correctly. In computational biology, correctness implies 

biological and statistical soundness. Although both are topics beyond the scope of this manuscript, a useful approach 

to evaluate biological correctness is to design positive and negative controls in your program, analysis, or workflow. 

In scientific experimentation, a positive control is a control group that is expected to produce results; a negative control 

is expected to produce no results. The same approach can be applied to computation, using input data whose output is 



 

 104 

previously known. Biological soundness can also be tested by quickly assessing expected orders of magnitude in both 

intermediate and final files. These checks can be packaged in unit testing. 

In addition to correctly functioning code, code appearance, also known as coding style, is important. Code style 

includes a series of small, ubiquitous decisions regarding where and how to add comments; indentation and white-

space usage; variable, function, and class naming; and overall code organization. Although, as in writing, personality 

and preference differences dictate how you code, coding style rules facilitate collaboration with your future self and 

others. Indeed, as we sometimes have trouble reading our own handwriting, we can also struggle reading our own 

code if we disregard guidelines. At the very least, aim to follow internal consistency in writing code. Even better, 

consider following any of the multiple published coding-style guides such as those from software development teams. 

Google, for example, has guidelines for Python, R, Shell, C++, and HTML/CSS 

(https://github.com/google/styleguide/). Guidelines for Python are available as part of the Python Enhancement 

Proposal (PEP), known as PEP 8 (https://peps.python.org/pep-0008/). To facilitate compliance, tools called linters can 

be incorporated into most code editors and IDEs to flag stylistic errors in your code based on a given style guide. 

Furthermore, many editors and tools perform automatic code formatting (e.g., Black [https://black.readthedocs.io/] 

that formats Python code to be PEP 8 compliant), which can greatly facilitate stylistic coherence in a collaborative 

project. In the case of Snakemake files, stylistic errors can be flagged using the Snakemake’s linter functionality or 

with the tool Snakefmt (https://github.com/snakemake/snakefmt/), based on Black. 

On the matter of code styling, two topics merit additional attention: variable naming and comments. Variable names 

should be descriptive enough to convey information about the variable, function, or class content and use. The goal is 

to produce self-documented code that reads close to plain English. To do so, multi-word variable names should be 

used if necessary. In such cases, the most common conventions include Camel Case, where the second and subsequent 

words are capitalized (camelCase); Pascal Case, where all words are capitalized (PascalCase); and Snake Case, where 

words are separated by underscores (snake_case). Notably, these conventions can be used in the same coding style to 

differentiate variables, functions, and classes. For example, PEP-8 recommends Snake Case for functions and 

variables and Pascal Case for class names. As most modern code editors and IDEs provide autocompletion of variable, 

function, and class names, it is no longer a valid excuse to use cryptic one-character variable names (e.g., x, y, z) to 

save a few keystrokes. 
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In addition to mastering variable naming, code comments—explanatory human-readable statements not evaluated by 

the program—are necessary to enhance the code’s readability. No matter how beautiful and well-organized your code 

is, high-level code decisions will not be obvious unless stated. As a corollary, code explanations that can be deduced 

from the syntax itself should be omitted. Comments can span a single line or several lines, and can be found in three 

strategic parts: at the top of the program file (header comment), which describes what the code accomplishes and 

sometimes the code’s author/date; above every function (function header), which contains the purpose and behavior 

of the function; and in line, next to difficult code with behavior that is not obvious or warrants a remark. 

Code-styling rules also apply to data science notebooks. However, when writing notebooks, you must also engage in 

literate programming—a programming paradigm where the code is accompanied by a human-readable explanation of 

its logic and purpose. In other words, notebooks must tell a story about the analysis, connecting the dots between the 

code, the results, and the figures. Human-readable language is often written in Markdown when working in Jupyter, 

or R Markdown when working in R. Little has been written about good practices for literate programming, but our 

suggested good practices are to include the purpose and interpretation of results for each section of code. 

When working with a sizable codebase, we advise modular programming—the practice of subdividing a computer 

program into independent and interchangeable sub-programs, each one tackling a specific functionality. Modularity 

enhances code readability and reusability, as well as expedites testing and maintenance. In practice, modularity can 

be implemented at different levels, from using functions within a single-file program to separating functionalities into 

different files in a more complex tool. In Python, subdivisions are defined as follows: modules are a collection of 

functions and global variables, packages are a collection of modules, libraries are a collection of packages, and 

frameworks are a collection of libraries. Modules are files with .py extension, while packages are folders that contain 

several .py files, including one called _init_.py which can be empty or not and allows the Python interpreter to 

recognize a package. 

Finally, use version control. Version control entails tracking and managing changes in the code. A popular version-

control system is Git (https://git-scm.com/), which requires a folder to be initiated as a Git repository, after which 

changes to any of the files inside would be tracked. File modifications must be staged (using git add) and then 

committed (using git commit). The commit will serve as a screenshot of your project at that time and stage, which you 



 

 106 

can review or recover later (using git checkout). Additionally, version control allows you to try new functions in 

branches (using git branch and git checkout)—independent carbon copies of the main original branch (known as main) 

that you can optionally merge back to the original copy. Currently, there are multiple hosting services that provide 

online storage of Git repositories, such as GitHub (https://github.com/), GitLab (https://about.gitlab.com/), or 

Bitbucket (https://bitbucket.org/), that users can navigate using the web browser or via a graphic user interface (GUI) 

such as GitHub Desktop (https://desktop.github.com/) or GitKraken (https://www.gitkraken.com). These platforms 

allow for a Git repository to be stored online by creating a copy of the repository known as the remote, providing the 

additional benefit of backing up your code in the cloud. 

5.4 Level 2: Collaboration 

Collaboration is a key aspect of scientific research, but it is especially relevant in computational biology, where 

interdisciplinary knowledge is often needed. Although collaborators can have a wide range of involvement with your 

project, here we will consider individuals that share a direct relationship with you and your research. Each type of 

collaboration requires its own set of good practices. 

5.4.1 Share code 

Sharing code is one of the most common practices in software development, where large teams work together to 

develop complex functions and scripts. Although computational biology projects usually involve smaller teams, 

proper sharing code remains essential (Table 5.2). Git-based hosting services, such as GitHub, GitLab, and Bitbucket 

, allow sharing the remote with collaborators, which becomes the official version of the repository. The key advantage 

of using a remote is that there will be no direct interaction between different local copies of the repository, also known 

as clones; instead, each clone will interact with the remote exclusively, updating only if no conflicts between the two 

exist. This way, if a collaborator updates the remote repository, other collaborators will not be able to send their 

changes until they update their local copy. 
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Table 5.2. Tools for collaborative research. 

Goal Tools 
Share code • Hosting services: GitHub, GitLab, Bitbucket. 

• Git branching strategies: GitHub flow. 
• Tests: correctness (e.g. pytest, testthat), style (e.g. flake8), vulnerabilities (e.g. Safety ), 
coverage (e.g. codecov). 
• Continuous integration: tox, Travis CI, Circle CI, GitHub Actions. 
• Code reviews: Github, Crucible, Upsource. 

Share data • FAIR principles: FAIRshake. 
• Tidy data. 
• Data version control (DVC). 

Share data science 
notebooks 

• Static: GitHub, GitLab, NBviewer. 
• Interactive: Binder, Google CoLab. 
• Comparative: nbdime, ReviewNB. 

Share workflows • General hosting services: GitHub, GitLab, Bitbucket. 
• Dedicated workflow repositories: Snakemake Workflow Catalog, WorkflowHub. 

Share manuscripts • General-purpose word processors. 
• Online applications supporting Markup Languages: Overleaf (LaTeX), Manubot 
(Markdown + GitHub). 

 

To guarantee that different collaborators can work simultaneously in the same repository, it is best to implement a 

branching strategy in the repository. In a small team, the most common strategy is to have a single main branch and 

generate branches from it that each different developer can work on. Then, whenever the developer is ready, they can 

request to combine—or merge—the changes from their branch into the main branch. This occurs via a process known 

as pull request (PR). Once a PR has been opened, collaborators can review, approve, and subsequently merge it into 

the main branch, preserving the commit history. This branching strategy is sometimes referred to as GitHub Flow 

(https://docs.github.com/en/get-started/quickstart/github-flow/) and will suffice for most projects. 

Using Git hosting services for collaboration has many additional benefits. The commit history both shows what was 

done at each point in time but also specifies the collaborator who made the changes; this allows users to take 

responsibility for their changes so that if, for example, a bug was introduced, commands such as git blame can pinpoint 

the cause. To ensure bugs can be easily tracked, descriptive commit messages that follow a predefined standard (e.g. 

semantic commit messages [https://sparkbox.com/foundry/semantic_commit_messages/]) are recommended. Git 

hosting services can be accessed interactively online or from the terminal with tools such as GitHub CLI 

(https://cli.github.com/). Finally, Git hosting services also allow collaborators to open issues 

(https://docs.github.com/en/issues/tracking-your-work-with-issues/about-issues/) for listing pending tasks and/or 
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asking questions, acting as an open forum for development discussions, which has the advantage of remaining 

accessible for the future (as opposed to closed email discussions). 

Another important concept to consider when developing code with collaborators, is to develop tests, meaning scripts 

that will run to find errors in the code (Table 5.2). Tests can be executed at different levels, from the individual 

units/components to the system/software as a whole. Unit tests, in particular, are used to determine if specific 

modules/functions work as intended within the codebase so that if later the function grows in scope, its proper basic 

functioning is ensured. For instance, if a function was defined for adding numbers, a simple test would be to assess if 

the function outputs 13 when the inputs 6 and 7 are provided. Besides unit tests, computational biology projects can 

benefit from implementing integration tests to evaluate the correct interaction between different modules and smoke 

tests to indicate if any core functionality has been impacted. Test runners, such as pytest (https://docs.pytest.org/) for 

Python and testthat (https://testthat.r-lib.org/) for R, exist to facilitate incorporating tests to the codebase. It is good 

practice to develop tests at the same time you develop code, as adding tests a posteriori is significantly harder. It is an 

even better practice to test every single step of the code (from data loading to figure plotting), a concept known in 

software development as end-to-end testing. 

Going beyond testing correctness, flake8 (https://flake8.pycqa.org/) will test styling preferences (for complying with 

PEP8), Safety (https://pyup.io/safety/) will test for vulnerabilities among the software’s dependencies, and Codecov 

(https://about.codecov.io/) will test coverage, or the percentage of the codebase tested. As a rule of thumb for testing 

coverage, the more lines of code tested, the more reliable the software will be. Different types of tests can be funneled 

into a single testing pipeline—in a process known as continuous integration (CI)—that can be tuned to run locally 

whenever commits are made, or online whenever a pull request is opened and/or merged. When running locally, an 

environment manager/command-line tool, such as tox (https://tox.wiki/), can help to ensure all tests are executed under 

different Python versions. Different tools, such as Travis CI (https://www.travis-ci.com/) or Circle CI 

(https://circleci.com/), can be used to set up the CI cycle online. More recently, GitHub Actions 

(https://github.com/features/actions) was developed to run integrations directly from GitHub. 

Having tests is a great way to ensure that code fulfills a certain level of correctness and styling. However, it is no 

replacement for human assessment to determine if the code is correct, necessary, and useful. Therefore, peer code 
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review is essential whenever developing code in collaboration. While tools, such as Crucible 

(https://www.atlassian.com/software/crucible) and Upsource (https://www.jetbrains.com/upsource/), exist for making 

in-line reviews of each file, the most common approach is for you and/or others to directly review the code using the 

online review tools provided by various hosting services. In the case of GitHub, this not only allows the reviewer to 

open a comment in any line of the code, which creates a thread for the original author to reply but also to suggest 

changes that can be approved or dismissed. Reviewers can assess many features of the code, from functionality to 

documentation, while also following good practices, such as using constructive phrasing. We advise following 

Google’s code review guidelines (https://google.github.io/eng-practices/review/reviewer/). Broad advice on how to 

code review is outside of the scope of this review but presented in detail elsewhere (Hauer, 2018). 

5.4.2 Share data 

The practices of sharing data are similar to sharing code: we should store our datasets, and any changes to them, in a 

repository and ensure they comply with standards by testing their quality. However, since data has a more consistent 

structure than code, often existing in standard formats, we should consider additional criteria when sharing it with 

collaborators (and later with the community) (Table 5.2). The main set of guidelines that represent these criteria was 

outlined in what is known as the FAIR principles (Wilkinson et al., 2016): data should be Findable (easy to locate 

online); Accessible (easy to access once found); Interoperable (easy to integrate with other 

data/applications/workflows/etc); and Reusable (presented in a way that allows for others to use it for the same or 

different purposes). Tools like FAIRshake (https://fairshake.cloud/) can be used to determine if data fits FAIR criteria. 

For making data findable, research repositories such as Zenodo (https://zenodo.org/), Figshare (https://figshare.com/), 

Open Science Framework (OSF) (https://osf.io) allow you to assign a digital object identifier (DOI) to any group of 

files you upload, including data and/or code. Alternatively, regular code repositories like GitHub can be used instead, 

as you can employ commits and/or releases to identify specific versions of the data, in combination with extensions 

for Large File Storage (LFS), such as git LFS (https://git-lfs.github.com/), in the case of data files larger than 100 MB. 

GitHub can also integrate with Zenodo to automatically archive repositories and assign them a DOI. A final alternative 

is the Data Version Control (DVC) initiative (https://dvc.org/), which is especially useful when performing machine 

learning, as it can keep track of data, machine learning models, and even scoring metrics. 
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For making data accessible, we encourage you as much as possible to make your repositories open access. In cases in 

which you or your collaborators prefer some restrictions, you can create guest accounts to provide access to private 

repositories. For making data interoperable, distinctions between raw and clean data have been made (Noble, 2009), 

with raw data being the files that came out of the measuring device, and clean data representing the files that are ready 

to be used for any computational analysis. An important characteristic that clean data should have is to be tidy, which 

is reviewed in detail elsewhere (Wickham, 2014). Finally, for making data reusable, thorough documentation of the 

data is required, including experimental design, measurement units, and possible sources of error. 

5.4.3 Share data science notebooks 

Jupyter Notebooks have become a fundamental tool for data analysis, which can be shared with collaborators using 

either static or interactive options (Table 5.2). The former shares computational notebooks as rendered text, written 

internally in HTML. Static notebooks are a good option when you want to avoid any modifications and can work as 

an archive of past analyses, although interacting with its content is cumbersome—the file must be downloaded and 

run in a local Jupyter installation. Git-based code repositories, such as GitHub and GitLab, automatically render 

notebooks that can be later shared using the repository’s URL. To facilitate this process, Project Jupyter provides a 

web application called NBviewer (https://nbviewer.org/), where you can paste a Jupyter Notebook’s URL, publicly 

hosted on GitHub or elsewhere, and renders the file into a static HTML web page with a stable link. 

Interactive notebooks, on the other hand, not only render the file but also allow collaborators to fully interact with it, 

tinkering with parameters or trying new input data—no installation required. Binder Project (https://mybinder.org/) 

enables users to fully interact with any notebook within a publicly-hosted Git-based repository via a Jupyter Notebook 

interface, although changes will not be saved to the original file. The platform supports Python and R, among other 

languages, and additional packages required to run the analysis need to be specified in a configuration file within the 

repository. Similarly, Jupyter Notebooks can be run interactively using Google CoLab by anyone with a Google 

account. Notebooks can be updated locally, from any public GitHub repository, or from Google Drive. As an added 

bonus, Google CoLab notebooks can be edited by multiple developers in real-time. In both cases, the machines 

provided by these services are comparable to a modern laptop, hence these tools may not be suitable for computing-

intensive tasks. 
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Notebooks should be treated like any other piece of code: updates from different collaborators should be managed 

with version control in a platform such as GitHub. The problem, however, is that git and other version control systems 

use line-based differences that are not very well suited for the internal JSON representation of Jupyter notebooks. The 

extension nbdime (https://nbdime.readthedocs.io/) can be installed locally to enable content-aware diffing and 

merging. Additionally, NBreview (https://www.reviewnb.com/) can be integrated with GitHub to enable content-

aware diffing, displaying the old and new versions of a notebook in parallel to facilitate code review. 

5.4.4 Share computational workflows 

Computational biology projects often demand using multi-step analyses with dozens of third-party software and 

dependencies. Although these steps can be described in the documentation, complex workflows are better shared as 

stand-alone code that can be easily run with minimal file manipulation from collaborators. Doing so can safeguard the 

reproducibility and replicability of the analysis, leading to better science and fewer challenges downstream (Table 

5.2). 

The simplest way to share a pipeline is through a shell script that receives input files via the command line; however, 

shell scripts offer little control over the overall workflow and cannot re-run specific parts of the pipeline. To address 

these issues, pipelines are better shared using a workflow automation system. Theoretically, all of the instructions 

regarding the workflow could be written in the main pipeline file: the .smk file (or Snakefile) in Snakemake; the .nf 

file in Nextflow; the .cwl file in CWL; and the .wdl fuke in WDL. However, to ensure reproducibility, it is a good 

practice to share complete pipelines, meaning folder structures, additional files, and software specifications, as well 

as custom scripts developed for the analysis. These files can be shared using the same tools as code, namely GitHub 

or any other Git hosting service. Alternatively, they can be uploaded to specialized hosting services for workflows, 

like Snakemake Workflow Catalog (https://snakemake.github.io/snakemake-workflow-catalog) or WorkflowHub 

(https://workflowhub.eu/) (currently in beta). 

When sharing workflows, consider that sharing software version (known as dependency pinning) is necessary for your 

collaborators to reproduce your pipeline using their own computing setup. Conda environments, for example, can be 

easily created from an environment file (in YAML language), which can be exported from an existing environment. 

Notably, Snakemake and Nexflow can be configured to automatically build isolated environments for each rule or 
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step, enabling the running of different versions of a program within the same pipeline, which is especially helpful 

when requiring both Python 2 and 3, for example. 

5.4.5 Share scientific manuscripts 

Writing articles is the primary way we share our research with the scientific community at large. However, writing 

manuscripts collaboratively comes with its challenges when using classical word processing tools, often resulting in 

files with different names, jumping from one email inbox to another, and contradictory final versions. The tools we 

suggest will help to avoid these issues (Table 5.2). Besides the well-known word processors, that display text as it 

would appear as a printout (known as What-You-See-Is-What-You-Get, or WYSIWYG), text editors are a viable 

option to write manuscripts when combined with a markup language—a human-readable computer language that uses 

tags to delineate formatting elements in a document that will be later rendered. Since the formatting process is 

internally handled by the application, styling elements (e.g., headers, text formatting, and equations) are easily written 

in text, achieving greater consistency than word processors. Disciplines such as statistics and mathematics have 

historically used the markup language LaTeX for writing articles. This language has simple and specific syntax for 

mathematical constructs making it a popular choice for papers with many equations. To aid collaborative writing, 

platforms like Overleaf (https://www.overleaf.com) provide online LaTeX editors, supporting features like real-time 

editing. An emerging trend in collaborative writing uses the lightweight markup language Markdown within the 

GitHub infrastructure. The software Manubot (https://manubot.org) provides a set of functionalities to write scholarly 

articles within a GitHub repository, leveraging all the advantages of Git version control and the GitHub hosting 

platform, such as cloud storage, version control, issues and discussions (Himmelstein et al., 2019). Manubot, in 

particular, accepts citations using manuscript identifiers and automatically renders the article in PDF, HTML, and 

DOC formats. As a drawback, it requires technical expertise in Git and familiarity with GitHub; as an upside, its 

reliable infrastructure scales well to large and open collaborative projects. The document you are reading now was 

fully written using Manubot! 

5.5. Level 3: Community 

The third and final step of this journey is presenting your research to the community. Your main goal should be to 

share and maintain an open and reproducible project that can sustain community engagement over time. In this section, 
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we will distinguish three sub-goals to make your research: (1) accessible, (2) reproducible, and (3) sustainable. The 

latter is especially relevant when your research involves developing code that will be used by others in the future (e.g., 

a tool or workflow), but we believe that our recommendations are relevant to any computational biology project. 

5.5.1. Make your research accessible 

Making your research accessible includes ensuring that anyone can access your research long after your paper is 

published. It is extremely frustrating for any researcher to look for software or a set of scripts from a paper published 

a few years ago, only to find a “404 error” when accessing the source weblink. Equally frustrating is when authors 

offer code as “available upon reasonable request,” as this often leads to dead-ends and unavailable code. 

There are three main ways to publish accompanying code: the supplementary material of the manuscript, privately-

owned domains, or uploaded to public repositories. Publishing code as supplementary material has low accessibility 

for non-open access papers. Moreover, the code will remain completely static and cannot be updated with new features 

or to correct errors. Making code available via privately-owned domains lacks sustainability, as it requires 

maintenance of the domain. Therefore, in addition to providing the code as supplementary material and/or via private 

domains, we recommend uploading it to public repositories (such as GitHuB or GitLab) and archive with a DOI (using 

Zenodo or figshare), enabling open access and sustainability over time. 

When publishing your code in a public repository, two files are fundamental to include: A readme file and a license. 

A readme file (https://www.makeareadme.com/) introduces users to the code (Table 5.3) and should include a 

description of its main intended use, an overview of the installation, the most commonly-used commands, contact 

information of the developers, and acknowledgments, if appropriate. We recommend keeping the readme file short 

and written in a markup language such as Markdown or reStructuredText (https://docutils.sourceforge.io/rst.html) that 

will render automatically on the repository’s landing page, below the repository file structure. 
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Table 5.3. Tools for making your research accessible. 

Goal Tool options Additional remarks 
Publish your code • GitHub 

• GitLab 
• Bitbucket 

All three options allow you to host your repository online for 
free. Choose whichever is more common in your own field. 

Introduce your code • README file: First file that 
shows up in a repository. 

Provide a landing page to any repository with a short overview 
of the code (installation, usage, acknowledgments, etc). 

Share your code • Several licensing options. Indicate with a license file what restrictions apply when using 
your code. If you don’t include this, you will lose many users. 

Archive your code • GitHub Releases. 
• Archive with DOI: Zenodo, 
figshare, OSF 

Share progressive stable versions of your code as you develop 
it. Use semantic versioning for assigning standard identifiers 
to your releases. 

Publish a tool • PyPI: Python. 
• CRAN: R. 
• Bioconductor: R. 
• Bioconda: Language-agnostic. 

Produce a package easy to install and use. Especially useful if 
you think you could have a user base that will run the same 
analysis as you on other datasets and/or conditions. 

Publish an 
interactive web app 

• Dash: Python. 
• R-Shiny: R. 

Provide easy and interactive data exploration to your users. 
Especially useful if you have large datasets that can be 
explored in different ways. 

 

Adding a license to a repository is also a crucial step (Table 5.3). Licenses indicate how the code can be used: Is it 

free to use for any application? Can users modify the code as they please? Does it come with a warranty that it will 

work? Can it be used for profit? If no license information is provided, researchers might assume that the code is free 

to use but copyright law in fact prohibits use without explicit permission by the copyright holder 

(https://opensource.guide/legal/). Many options exist for licensing code (https://choosealicense.com/licenses/), from 

permissive licenses that allow any kind of use with few or no conditions, like the Unlicense and MIT licenses, to more 

restrictive licenses that enforce disclosing the source and requiring that any adaptation of the code uses the same 

license, like the GNU licenses. When deciding on a license, as a rule of thumb, consider that the more requirements 

you add, the fewer potential users you will have, but the more credit you will receive when users utilize your code for 

their own needs. Academic researchers must also consider what open-source licenses their university supports, as in 

many cases it will be the university that owns the copyrights. 

As a computational biologist, you will likely continue lines of work from scripts or software you have already 

published. For instance, you could improve the performance of a given function or add a new set of features entirely. 

Therefore, you should not only be interested in making your code accessible but also in having different versions 

available. Creating and archiving successive releases of your code (Table 5.3) allows the organization of different 
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versions of your code as you develop them. GitHub Releases is one way to maintain versions with minimal effort. 

Research repositories, such as Zenodo, figshare, or OSF, not only store your code, notebooks, and data, but also 

provide a DOI for each version allowing it to be included as a citation in a manuscript. This is especially useful when 

the publication is not available yet or the current version of the code differs widely from what was published. Research 

repositories can be combined with code repositories; for example, GitHub has a Zenodo integration that will trigger a 

new archived version every time a new version is released. Regardless of the solution, we recommend keeping logical 

order to the releases, using a standard such as semantic versioning (Preston-Werner, n.d.). 

In most cases, providing your code as an organized set of scripts and/or notebooks is sufficient for anyone to consult 

if they wish to reproduce and/or re-utilize it. However, if your code might be used routinely by other researchers, for 

instance for studying other organisms or other experimental conditions, consider packaging your code as a tool (Table 

5.3) and publishing through a software repository such as Bioconda, PyPI if written for Python, or CRAN and 

Bioconductor if written for R. These increase your possible user base, as published packages are searchable and can 

be installed locally with minimal effort. 

To increase the accessibility of results to users, an interactive web app or data dashboard can be developed (Table 

5.3). Such apps allow users to interact with data by displaying different sets of variables or changing parameter settings 

(e.g., the significance of a statistical test). Common options for this goal are Dash (https://plotly.com/dash) for Python, 

R, and Julia, and Shiny (https://shiny.rstudio.com/) for R. Both platforms can include interactive graphics generated 

with plotly data visualization libraries (https://plotly.com/). 

5.5.2. Make your research reproducible 

In addition to having accessible code/data, you also need to ensure anyone can execute your code and obtain the same 

results. This is especially relevant in computational biology where users will come from different backgrounds and 

experience. A cornerstone for reproducibility is documentation that explains how the code functions and how to 

practically achieve the same results. We have distinguished four levels of documentation (Procida, 2017): 

•       Tutorials: A group of lessons that teach the reader how to become a user of your code; 

•       How-to guides: A set of documents that clarify how to solve common problems/tasks; 
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•       Explanations: Discussions that clarify particular topics related to your code; 

•       References: Technical descriptions of your code’s variables/classes/functions. 

The extent of required documentation will depend on the number of expected users and, relatedly, can affect how 

many users you attract. If you foresee that your code has little usability outside of your own research, documenting 

each function using docstrings—a string specified before a module, function, class, or method to document its 

function—might be sufficient. However, if you aim for a broader user base, you might want to add a tutorial for 

beginners, how-to guides for frequently used routines, and explanations for clarifying the science behind your code, 

which can be re-used in a manuscript. To publish comprehensive documentation online, consider using (1) a standard 

documentation language such as reStructuredText or Markdown, and (2) a documentation platform such as 

Readthedocs (https://readthedocs.org/), Gitbook (https://www.gitbook.com/), Bookdown (https://bookdown.org/), or 

HackMD (https://hackmd.io) (Table 5.4). Alternatively, you can use a service like GitHub Pages 

(https://pages.github.com/) to host the documentation on a dedicated website. 

Another key aspect of reproducibility is software and dependencies installation. To facilitate this process, you can (1) 

provide configuration instructions, (2) share dependencies with a virtual environment manager, or (3) share a runtime 

environment as a container. When setting up software from instructions, it is necessary to ensure the user follows a 

series of sequential commands in a specific order. To automate this process, Linux systems provide the tool GNU 

Make. Virtual environment managers handle dependencies and facilitate software installation by building virtual 

environments from requirements files. To achieve repeatable environments, however, it is recommended to include 

the specific version of software and libraries, a practice known as dependency pinning. Tools such as pip-tools 

(https://github.com/jazzband/pip-tools) allow defining different Python environments for a single project depending 

on the type of user (e.g., end-user versus developer). 
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Table 5.4. Tools for making your research reproducible (tool names in bold). 

Goal Tool options Additional remarks 
Document your 
code 

• Readthedocs: Uses reStructuredText. 
• Gitbook: Uses Markdown. 
• Bookdown: Uses R Markdown. 
• HackMD: Uses Markdown. 
• Github Pages: Separate website. 

Comprehensive documentation: from tutorials 
and how-to guides all the way down to 
function documentation based on all compiled 
docstrings. 

Reproducible 
environments 

• Virtual environment managers: See 
Table 5.1 
• pip-tools: Administer several 
environments in a single project. 

As a recommendation, try having the minimum 
number of dependencies needed to reproduce 
your results. 

Reproducible 
software 

• Docker 
• Singularity 

Package your research as a container ready to 
run on any computer. 

Reproducible 
commands 

• Make Build a program by following a series of steps 
in a single Makefile. 

Reproducible 
workflows 

• Workflow management systems: See 
Table 5.1 

Run a pipeline of commands on NGS data in a 
reproducible way. 

Reproducible 
notebooks 

• Interactive notebooks: See Table 5.1 Make your notebooks interactive and 
reproducible. 

 

Beyond dependency trackers, we recommend ensuring your tool functions as expected across computing 

infrastructures, even between two different operating systems (e.g., Mac and Windows). This can be achieved via 

containerization, also known as lightweight virtualization (Table 5.4). Containers are standardized software that 

packages an entire runtime environment, meaning everything needed to run your tool: code, dependencies, system 

libraries and binaries, environmental variables, settings, etc. Instructions for deploying containers are stored in read-

only templates called images. Two free tools available for creating containers from images are Docker 

(https://www.docker.com) and Singularity (http://sylabs.io/). While Docker is the most popular framework for 

containerization (Stack Overflow, 2021), HPC clusters with shared file systems favor Singularity due to security 

issues. In most cases, this is not a problem, since Singularity is compatible with all Docker images. 

5.5.3. Make your research sustainable 

Now that your research can be accessed and reproduced by anyone, the final step is to sustain this over time—also 

known as code maintenance. This is especially relevant if you continue to develop tools by integrating new features 

requested by users, which can foster a strong community over time. However, even in the case in which your research 

is a self-contained project, it is important to ensure that the user community can contact you, in case bugs are 
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discovered or parts of your code malfunction due to dependency updates (part of the “software rot” phenomenon). In 

the following section, we review useful techniques for making your code/software/research sustainable over time. 

You can employ a variety of tools to communicate with users, depending on the size of your user base and the scope 

of questions received (Table 5.5). For smaller projects, a single-channel solution like Gitter (https://gitter.im/) offers 

a simple way for anyone in the community to ask questions and the developers to answer in threads. For larger projects, 

however, it could become unmanageable to have all discussions in the same channel, so a multiple-channel solution 

(i.e., forums), such as Google groups (https://groups.google.com/), is better suited. GitHub also allows issues to be 

opened, where collaborators or users can inform developers about bugs or ask questions. Additionally, GitHub recently 

introduced Discussions to maintain questions organized in different threads. 

Table 5.5. Tools for making your research sustainable (tool names in bold). 

Goal Tool options Additional remarks 
Tell users how to 
contact you 

• Specific/shorter questions: Gitter. 
• Larger issues / how-to’s: Google groups, 
GitHub Discussions. 

Provide ways for users to contact you for 
questions, requests, etc. Remember to 
visit them periodically! 

Track to-do’s in your 
research 

• Github Issues. Detail specific pending to-do’s in your 
research / allow others to request changes 
and/or highlight bugs. 

Encourage user 
contributions 

• Contribution guidelines: How to open issues / 
contribute code. 
• Github Wikis: More specific how-to guides. 

Provide as much information as you can 
to guide your users. You can also include 
administrator guidelines. 

Foster a respectful 
community 

• Smaller projects: Contributor Covenant.. 
• Larger projects: Citizen Code of Conduct. 

Essential when you would like 
researchers to contribute code. 

Branch your repo 
sustainably 

• Gitflow. Useful when several developers 
contribute code to the project. Allows 
users to get access to stable versions of 
your research in an ongoing project. 

Keep track of your 
issues 

• Kanban flowcharts: Github Projects, 
GitKraken Boards. 
• Scrum practices: Zenhub, Jira. 

Keep track of your pending tasks in 
different projects with Agile software 
development practices. Especially useful 
if your research is split in many different 
repositories, each with multiple 
features/fixes to do. 

Automate your repo • bump2version: Easier releasing. 
• Danger-CI: Easier reviewing. 

Do less, script more! 

 

Now that users know where to contact you, ensure you have developed contribution guidelines (Table 5.5), detailing 

how users should (1) open issues and (2) contribute with their own code changes via PRs. These guidelines are 

intended for new users/contributors, so should be written in the style of a how-to guide; however, they may also 

include additional instructions for the main developers or the administrator of the repository. Alternatively, the detailed 
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guidelines can be included in a supplemental wiki, which hosting services offer as part of the repository. Equally 

important is a code of conduct (Table 5.5), which includes expectations on how users should behave in the repository 

and consequences when someone does not comply, promoting a respectful community. Several code-of-conduct 

templates exist, such as the Contributor Covenant (https://www.contributor-covenant.org/) for smaller projects and 

the Citizen Code of Conduct (https://github.com/stumpsyn/policies) for larger projects. 

Finally, consistent development and maintenance of your software as it grows in scope and number of users will 

ensure the sustainability of your project. Tools that aid in this include: 

1.     Branching System: When many developers are involved in a project, more advanced branching methods, 

such as GitFlow (Driessen, 2010), ensure that users can access functional versions of your code while you 

work on it. (Table 5.5). Briefly, GitFlow includes two branches with an infinite lifetime: the main and the 

development (often named as devel). New branches will be based on the development branch, leaving the 

main one for stable versions of the code. Every time the development branch is merged into the main 

branch, a version release is created. 

2.     Project Management: Tools exist to track, organize, and prioritize user issues (Table 5.5), all based on 

Agile principles (https://agilemanifesto.org/). The simplest approach is implementing a Kanban board (as 

found in GitHub Projects or GitKraken Boards), where issues are organized in columns that clearly lay 

out the current state of a given task. For larger projects comprising multiple collaborators and/or 

repositories, a more structured approach, such as a Scrum framework (https://www.scrum.org/) (as 

implemented by Zenhub [https://www.zenhub.com/] and Jira [https://www.atlassian.com/software/jira]), 

allows you to prioritize issues by setting milestones and estimating difficulties. 

3.     Additional Automation: As your project develops, you will find that many aspects can be automated to 

improve efficiency. bump2version (https://github.com/c4urself/bump2version) ensures all sections of 

your code get updated with the new release. Danger-CI (http://danger.systems/ruby/) and git hooks 

(https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks) ensure contributors comply with certain 

standards in their pull requests. If you are no longer actively maintaining a project, you can use CI (e.g. 

GitHub Actions [https://github.com/features/actions]) to schedule regular tests to discover if your 

tool/code starts malfunctioning due to software rot and/or dependency issues. Finally, we advise against 
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implementing too many automation tools at the start of a project but adding them as needed. If you find 

yourself routinely performing a task, consider automating it. 

 

5.6 Case Studies 

We will now exemplify the effective use of the introduced tools by presenting three different computational biology 

projects from the literature (Figure 5.2). Note that our list of projects is not meant to be comprehensive, but rather is 

intended to be a short overview of how projects in computational biology benefit from robust tools and software 

development practices. Additionally, it will be evident that there is considerable redundancy in chosen tools across 

case studies. For instance, all projects include an environment manager such as Conda, and a version control system 

like Git. This redundancy is intentional as it highlights the ubiquity of some tools. 

 
Figure 5.2. Examples of computational biology projects. 

Case study 1: Genomic variant detection in a large cohort 

The availability and affordability of NGS allow for the routine assessment of dozens to thousands of genomes. 

Resequencing experiments enable the discovery and genotyping of genomic variation within large cohorts to answer 

key questions regarding population history and susceptibility to disease. For this example, let’s consider a project 

including whole-genome Illumina sequencing and variant identification in thousands of individuals such as Aganezov 

et al. (Aganezov et al., 2022). Herein, the challenge resides in applying a multi-step variant-calling pipeline to many 

samples in a reproducible manner. 
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In this project, the authors utilized the AnVIL cloud computing platform, which provides scalability and flexibility by 

running in a cloud environment and streamlines collaboration by allowing researchers to access the same tools and 

datasets from a centralized place. Importantly, tools like AnVIL allow the secure sharing of protected human datasets, 

which is paramount in human genomics studies. If you use AnVIL, then the pipeline must be written in WDL. 

Alternatively, a project of this nature can be written in Snakemake, employing Python to parse sample names and 

perform other data handling operations, and following the Snakemake workflow template for folder structure. A Conda 

environment can hold all necessary software since a wide array of software designed for genomic analyses is available 

via the Bioconda repository. Coding the workflow can be done in any text editor that offers easy integration with Git 

tracking and hosting, such as Visual Studio Code. For code styling, you can run Snakefmt to follow best practices. 

A project of this magnitude usually requires collaborators from other research groups. The pipelines and scripts can 

be shared using a GitHub repository. If privacy is a concern, the repository can be set as private and made public in 

later stages of the project. To write the manuscript, a general-purpose word processor would suffice. Considering that 

these types of data are a valuable resource for the community, FAIR principles for data sharing should be followed. 

In addition to uploading the raw data to a public repository like the European Nucleotide Archive (ENA) or the 

National Center for Biotechnology Information (NCBI), we encourage open sharing of your code and notebooks in a 

GitHub repository archived in Zenodo with a DOI. 

Case study 2: Single-cell (sc)RNA-seq data integration 

scRNA-seq is a rapidly evolving technology that has enabled the study of cell heterogeneity and developmental 

changes of a cell lineage, otherwise intractable with bulk RNA-seq. Current scRNA-seq experiments deliver the 

transcriptomic profiles of thousands to millions of cells (Svensson et al., 2018), making them a suitable target for 

machine- or deep-learning approaches. Among the many challenges imposed by this technology, integration of 

scRNA-seq datasets is key, especially in case-control studies where cell types should be functionally matched across 

datasets before evaluating differences across conditions. For this case study, we will consider the development of an 

unsupervised deep-learning method for data integration as described in Johansen and Quon (Johansen & Quon, 2019). 

This kind of project often uses a combination of Python, R, and shell scripting. Python can be used to write and train 

deep-learning models with TensorFlow (https://www.tensorflow.org/) or PyTorch (https://www.pytorch.org) libraries. 
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R enables straightforward data pre-processing with tools such as Seurat (https://satijalab.org/seurat/) (Hao et al., 2021). 

Shell scripting can process large-scale raw data files in HPC clusters. Additionally, we advise using Python’s reticulate 

library (https://rstudio.github.io/reticulate/) to incorporate Python tools into the existing R ecosystem. To set up your 

working directory, we recommend a structure like Cookiecutter Data Science, which includes separate folders for 

trained models and other components of a deep-learning project. To establish a software environment, Python virtual 

environments, such as virtualenv, work well with Tensorflow and PyTorch. Coding can be performed in any general-

purpose text editor, such as Visual Studio Code, where updates can be easily pushed/pulled to/from GitHub. As a good 

practice, maintain modular, properly commented code and name files with data stamps and model parameters to 

facilitate revisiting projects. Additionally, take advantage of tools such as TensorBoard 

(https://www.tensorflow.org/tensorboard/) to diagnose, visualize, and experiment with your models. 

When working with collaborators, code should be shared through a Git hosting service like GitHub. When multiple 

users need to edit the code in real-time, Google CoLab offers interactive coding and GPU access. In addition to the 

code repository, a Manubot can be created to write the manuscript collaboratively. To make your tool accessible to a 

larger community, publish it to a public GitHub and include a readme and an appropriate license file. Considering that 

most users in the field use R, you can go one step further and share your code as a Bioconductor package, making sure 

your method can be called directly in R and that interacts with standard data structures in the field. For better 

reproducibility, document your method including example tutorials in a platform like ReadTheDocs, and share the 

software environment needed to deploy the models as a Docker image. GitHub issues and Bioconductor forums (

https://support.bioconductor.org/) are suitable platforms to promptly reply to users’ questions, bug reports, and 

requests for code enhancements. 

Case study 3: Tool development for constraint-based modeling 

The last case study we will present is related to constraint-based modeling; a common approach used for simulating 

cellular metabolism. In this approach, the metabolic network of a given organism is inferred from its genome and/or 

literature and converted to a matrix that contains the reaction’s stoichiometry. Using a few simple assumptions, this 

matrix can be used to perform simulations under different experimental conditions to obtain additional insight into 

cellular physiology (Bordbar et al., 2014). Several tools have been developed for working with these types of models. 
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Here, we will consider cobrapy (Ebrahim et al., 2013), a community tool for reading/writing constrained-based models 

and performing basic simulation operations. 

A tool of this nature is especially useful if developed in Python, as it should ideally be presented as a package that can 

be easily installed with pip. The use of an IDE is ideal for this case, as it will provide additional features for testing 

changes in the tool. Practices that for other case studies were useful now become essential, like complying with coding 

style and using version control, as hundreds of people will likely read your code. Furthermore, the code should be (1) 

available via a hosting service such as GitHub, (2) tested with a continuous development tool such as GitHub Actions, 

(3) manually reviewed by collaborators to ensure correctness, (4) released following semantic versioning standards, 

and (5) documented with a companion documentation website, rich with tutorials and how-to guides. As a branching 

strategy, Gitflow is probably the best suited, as it allows all changes to existing code in a development branch and 

stable releases in the main branch. 

Finally, due to the large scope of this project, additional considerations must be made to maintain a healthy user base. 

Offer a place for users to raise questions, such as Gitter, Google groups, or GitHub Discussions, and make sure to 

reply to new questions often. Guidelines should also be provided for everything, including how to: open issues with 

example templates, contribute using pull-request templates, communicate within the community via a code of conduct, 

and perform other routine tasks with development guidelines and/or wikis. Addressing issues routinely and quickly is 

also essential in a project of this nature to avoid giving the impression of a stagnant project. Additional tools such as 

a Kanban flowchart with the help of GitHub Projects will help prioritize issues, or Jira or Zenhub if several repositories 

require joint coordination. 

5.7 Final words 

Good practices in computational biology have gained the spotlight among researchers thanks to several guiding 

principles published, as well as the increasing usage of Git-based repositories and workflow managers. This review 

adds to the existing literature by introducing a comprehensive list of good practices and associated tools that can be 

applied to any computational biology project, regardless of the specific subfield or the experience of the researcher. 
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We are aware that the many tools and practices introduced in this study and their ever-changing nature may seem 

overwhelming, especially for someone new to the field. To overcome this, we encourage you to implement only a few 

practices and tools first, starting from your personal research, and expanding your repertoire over time. More important 

than any specific tool is keeping a mindset of striving for reproducibility. We also note that our highlighted list of 

tools is not comprehensive, with many new tools being released. Updated reviews will be essential to help new 

computational biologists enter the field as well as to keep experienced computational biologists up to date with the 

latest trends. 

The consequences of not following good computational practices are often not seen immediately but become evident 

and detrimental to project progress over time. As with all scientific endeavors, computational biology heavily relies 

on previous knowledge; as such, the good practices we adopt serve as building blocks for the overall reproducibility 

of the field, propelling novel and exciting future discoveries. 
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CHAPTER 6. Summary and future directions 

6.1 Summary of the presented work 

The aim of this dissertation was to leverage diverse sequencing technologies, including short- (SRS) and long-read 

sequencing (LRS), to identify and characterize complex genomic variation—including segmental duplications (SDs) 

and structural variation (SVs)—in great apes’ genomes, focusing on humans and chimpanzees.  

In chapter 2, using nanopore LRS and optical mapping, we identified novel deletions and inversions in two non-

previously sequenced chimpanzee genomes, and assessed their impact on gene regulation and chromatin organization 

by integrating SVs with expression data and chromatin conformation capture. The approach highlighted the power of 

LRS to identify novel SVs, even with a small sample set. Second, it added to the body of literature that shows the 

significant impact that SVs have on gene regulation by altering chromatin structure. Our approach supported the 

hypothesis that topologically associated domains (TAD) boundaries are evolving under purifying selection which 

removes deletions and inversion breakpoints impacting domain boundaries.  

In chapter 3, we showed how the first ever complete sequence of a human genome, T2T-CHM13, improves the 

analysis of genetic variation by allowing accurate SNV and SV detection with SRS and LRS. This was achieved by 

(i) correcting previously erroneous gene sequences, (ii) removing of artificial haplotypes originated from assembling 

multiple individuals, and (iii) adding >200 Mbp of additional sequence previously missing from the reference genome. 

We comprehensively characterized collapsed duplications in GRCh38, i.e., regions of the genome with missing gene 

copies, and highlighted the impact of reference errors in variant detection within genes of biomedical significance. In 

all, we show how this genome allows for better functional, population, and biomedical genomic studies, and 

recommend T2T-CHM13 adoption by the scientific community. 

In chapter 4, we leveraged the new T2T-CHM13 reference to study nearly-identical SDs— here defined as SDs with 

sequence identity over 98% (SD-98)—some of which were erroneously represented in GRCh38. Genes within SD-98 

have been systematically excluded from genetic analyses due to the difficulties of mapping short reads to duplicated 

regions. Thus, the functions and evolutionary impact of most SD-98 genes remains unknown. While most population 

genetic scans skip SDs, we used copy-number (CN) at unique k-mers and high-quality SNVs, to obtain signatures of 
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selection in recent duplications. Our approach highlighted genes exhibiting (i) evidence of expression in LCL and 

human developing brain, (ii) CN fixation in modern human, (iii) CN population stratification, and (iv) putative 

evidence of balancing or directional selection as measured by the excess of rare SNVs, all of which are priority 

candidates for future functional studies and evolutionary analyses. 

Finally, in chapter 5, we summarized tools and practices we recommend for sustainable computational biology 

research. As biology becomes a data-intensive scientific discipline, ushered in by the availability of SRS and LRS 

datasets as well as the many -seqs and -omics, the routine acquisition of tools and techniques that enhance 

reproducibility at the personal, collaborative, and community levels will become increasingly necessary. We provided 

a compendium of tools used in software engineering and data science that will aid computational biologists to 

streamline their research. 

6.2 Future directions 

Although we identify novel SVs in chimpanzees using LRS approaches, our study highlighted the need for more LRS 

datasets of all four chimpanzee subspecies. While this study included the first LRS of an individual carrying admixture 

with central chimpanzee, the genetic diversity of this species remains understudied. Characterizing the full spectrum 

of genetic variation across all subspecies will aid conservation efforts and allow us to better understand the 

evolutionary history of our closest living relatives.  

The complete sequence of a human genome, T2T-CHM13, will enable a myriad of new biological insights, especially 

in previously missing sequences, including centromeres, telomeres, rDNA, and highly identical SDs. In this work, we 

achieved novel insights by characterizing SD-98 genes. However, our approach was not comprehensive due to the 

limitations of SRS. To fully characterize the variation landscape of these regions, LRS variant discovery is necessary. 

The Human Pangenome Reference Consortium is addressing this need by providing haplotype-resolved nearly 

complete assemblies of diverse humans, from which phased SNVs can be obtained. As LRS becomes more affordable, 

we anticipate more genomes at population scale to enable comprehensive population genetics scans. This will lead to 

the additional challenge of applying traditional population genetics tests to duplicated regions evolving under 

interlocus gene conversion. Further, improved methods to extract variation across duplications from LRS and 

assemblies, especially across copy number polymorphic regions, are required.  
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Figure S2.1. Chimpanzee subspecies identification. (A) and (B) PC analysis of chimpanzee genetic diversity. Both 
of the newly sequenced cell lines were projected onto PCs inferred from the 59 chimpanzees presented in de Manuel 
et al. (de Manuel et al., 2016). Both cell lines show closest affinity to western chimpanzees (Pan troglodytes verus). 
While AG18359 clusters tightly with the western subspecies, S003461 also shows affinity to the central/eastern clade, 
with PC3 indicating that, like Donald, this cell line was derived from a hybrid individual with central ancestry. Values 
in parentheses are the proportion of variance explained by each PC. (C) ADMIXTURE analyses, assuming four 
ancestral components (K = 4) confirms the hybrid origin of S003641. 
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Figure S2.2. Description of SV discovery set. (A) Length distribution (x-axis in bp) of raw SV calls discovered by 
ONT (green) and BNG (light blue) from AG18359, and BNG from S003641 (dark blue). (B) Venn diagram comparing 
large (≥10 kbp) deletions (left) and inversions (right) discovered for each individual and technology (not to scale). 
Two variants were considered the same if they have a 50% reciprocal overlap. 
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Figure S2.3. Histogram of identified SV events per chromosome. The number of high-confidence SV events 
discovered is depicted for (A) deletions and (B) inversions. The normalized number of events per Mbp for each 
chromosome is displayed in parentheses. 
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Figure S2.4. Enrichment/depletion of SV breakpoints for genomic features of interest as determined by 
permutation testing. Each plot compares the observed count of intersecting features (red vertical line) to a distribution 
of counts generated from 1000 permuted sets of coordinates (for testing depletion of SVs) or 1000 randomly selected 
genes from the background list of each DE analysis (for testing enrichment of DE genes in SVs) for (A) deletions and 
(B) inversions. 
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Figure S2.5. Genome organization of human chromosome 2q12.2-q13. The Hi-C genomic landscape of human 
(top) and chimpanzee (bottom) are depicted for iPSCs (A) and LCLs (B) using Juicebox at chr2:106,095,001-
109,905,000 (GRCh38). Predicted TADs (yellow triangles) were compared between species, noting differences at 
SVs (dotted rectangles) including deletions and inversions. SDs are depicted as colored bars, taken from the UCSC 
Genome Browser track. Genes showing significant DE in chimpanzee versus humans are colored as blue (down in 
chimpanzee) or red (up in chimpanzee). Genes not included in the DE analysis are gray. 
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Figure S2.6. Genome organization of human chromosome 9q22.2-q22.32. The Hi-C genomic landscape of human 
(top) and chimpanzee (bottom) are depicted for iPSCs (A) and LCLs (B) using Juicebox at chr9:90,200,001-
94,010,000 (GRCh38). Predicted TADs (yellow triangles) were compared between species, noting differences at SVs 
(dotted rectangles) including deletions and inversions. SDs are depicted as colored bars, taken from the UCSC Genome 
Browser track. Genes showing significant DE in chimpanzee versus humans are colored as blue (down in chimpanzee) 
or red (up in chimpanzee). Genes not included in the DE analysis are gray. 
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Figure S2.7. Genome organization of human chromosome 8p11.23-p11.21. The Hi-C genomic landscape of human 
(top) and chimpanzee (bottom) are depicted for iPSCs (A) and LCLs (B) using Juicebox at chr8:37,620,001-
41,430,000 (GRCh38). Predicted TADs (yellow triangles) were compared between species, noting differences at SVs 
(dotted rectangle) including deletions and inversions. SDs are depicted as colored bars, taken from the UCSC Genome 
Browser track. Genes showing significant DE in chimpanzee versus humans are colored as blue (down in chimpanzee) 
or red (up in chimpanzee). Genes not included in the DE analysis are gray. 
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Figure S2.8. Genome organization of human chromosome 19q13.2-q13.31. The Hi-C genomic landscape of human 
(top) and chimpanzee (bottom) are depicted for iPSCs (A) and LCLs (B) using Juicebox at chr19:39,685,001-
43,495,000 (GRCh38). Predicted TADs (yellow triangles) were compared between species, noting differences at SVs 
(dotted rectangles) including deletions (no inversions were identified as this locus). SDs are depicted as colored bars, 
taken from the UCSC Genome Browser track. Genes showing significant DE in chimpanzee versus humans are 
colored as blue (down in chimpanzee) or red (up in chimpanzee). Genes not included in the DE analysis are gray. 
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Figure S2.9. Chimpanzee-specific deletions of the galectin family of genes. Pictured is a UCSC Genome Browser 
snapshot of human chromosome 19p13.2. The locations of SDs (colored bars), deletions (black bars), and genes are 
indicated. For each subspecies of chimpanzee [Pan troglodytes (P.t.)], the -log-p-value for the HKA test of balancing 
selection is depicted as shades of gray in 15-kbp windows (darker shade indicates greater significance) as determined 
by Cagan et al. (Cagan et al., 2016) (human reference hg18). 
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Figure S3.1. Annotation of all chromosomes. Overview of annotations available for GRCh38 and CHM13 all 
chromosomes (chromosomes 1 and 21 shown in Figure 3.1A) with colors indicated in legend. Cytobands are pictured 
as gray bands with red bands representing centromeric regions within ideograms. 
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Figure S3.2. Local ancestry of all chromosomes. Overview of local ancestry as separated tracks for all chromosomes 
for GRCh38 and T2T-CHM13 with ancestries indicated in the legend (AFR: African, AMR: Admixed American, 
EAS: East Asian, EUR: European, SAS: South Asian). Cytobands are pictured as gray bands with red bands 
representing centromeric regions within ideograms. Brown regions within chromosomes indicate non-syntenic regions 
between GRCh38 and CHM13, and yellow regions indicate previously unresolved sequences. 
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Figure S3.3. Duplication errors of all chromosomes. Overview of duplications errors as separated tracks in GRCh38 
and T2T-CHM13 with categories indicated in the legend. Cytobands are pictured as gray bands with red bands 
representing centromeric regions within ideograms. Brown regions within chromosomes indicate non-syntenic regions 
between GRCh38 and CHM13, and yellow regions indicate previously unresolved sequences. 
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Figure S3.4. Liftover failures of all chromosomes. Overview of liftover failures for all chromosomes in GRCh38 
for GWAS (top) and ClinVar (bottom). Cytobands are pictured as gray bands with red bands representing centromeric 
regions within ideograms. Brown regions within chromosomes indicate non-syntenic regions between GRCh38 and 
T2T-CHM13. 
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Figure S3.5. Minimum unique k-mer chromosome score maps. Minimum unique k-mer scores (left-anchored) 
were averaged in 100 Kb bins and plotted along the length of each chromosome using the color gradient displayed 
on the right. Regions denoted in white indicate that no valid score exists, either because the k-mer sequence contains 
at least one N or the length of the k-mer would cause it to overlap a chromosome end. 
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Figure S3.6. Minimum unique k-mer chromosome histograms. Minimum unique k-mer scores (left-anchored) 
were calculated for each base position, sorted on a per-chromosome basis, and plotted using the color gradient 
displayed on the right. A black outline represents the reported length of each chromosome. Regions of white indicate 
invalid scores due to either overlapping sequence containing at least one N or overlapping the end of a chromosome. 
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Figure S3.7. Large exact match sequence pairs in GRCh38. For all minimum non-unique sequences greater than 
5 Kb (minimum unique k-mer length plus one), the pair of positions corresponding to each sequence were determined. 
Sequence sizes are denoted by both color and a colored barplot (middle ring) that ranges from 1 Kb to 100 Kb in log10 
scale. The inner ring denotes the relative length of each chromosome with the annotated centromeric region indicated 
in read. The outer ring shows the minimum unique k-mer score, binned at 100 Kb intervals and is shown with a range 
of 1 to 100 Kb in log10 scale. 
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Figure S3.8. Large exact match sequence pairs in CHM13. For all minimum non-unique sequences greater than 5 
Kb (minimum unique k-mer length plus one), the pair of positions corresponding to each sequence were determined. 
Sequence sizes are denoted by both color and a colored barplot (middle ring) that ranges from 1 Kb to 100 Kb in log10 
scale. The inner ring denotes the relative length of each chromosome with the annotated centromeric region indicated 
in read. The outer ring shows the minimum unique k-mer score, binned at 100 Kb intervals and is shown with a range 
of 1 to 100 Kb in log10 scale. 
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Figure S3.9. Local ancestry analysis of GRCh38 and CHM13. A. Proportion of the GRCh38 reference genome 
composed of clones from various libraries (RP11, CTD, etc.), each derived from DNA obtained from a distinct diploid 
donor, each indicated with a distinct color. B. Inferred local ancestry proportions for BAC libraries derived from 
different donor individuals that contributed to GRCh38. C. Total inferred local ancestry proportions for the GRCh38 
and CHM13 reference genome. For panels B and C, ancestry is indicated with colors corresponding to 1KGP 
superpopulations (AFR: African, AMR: Admixed American, EAS: East Asian, EUR: European, SAS: South Asian). 
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Figure S3.10. Ambiguity in ancestry inference for short GRCh38 clones with few markers. Number of SNPs (left 
panel) and length (right panel) of each GRCh38 clone for which ancestry was or was not inferred based on majority 
vote of nearest neighbor haplotypes in the phased 1KGP reference panel. 
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Figure S3.11. Local ancestry analysis of CHM13. Ideogram depicting RFMix-inferred local ancestry tracts for 
CHM13. Ancestry is divided by 1KGP superpopulation (AFR: African, AMR: Admixed American, EAS: East Asian, 
EUR: European, SAS: South Asian). Neanderthal-introgressed haplotypes, inferred with IBDmix, and regions masked 
by the 1KGP are superimposed. 
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Figure S3.12. LD-discordant SNP pairs frequently span clone boundaries. Depiction of four representative 
“islands” of LD-discordant SNP pairs, where for common SNPs in perfect LD (R2 = 1), GRCh38 possesses a 
combination of alleles that is never observed among the 1KGP samples. Linked SNP pairs are represented as dots 
connected by lines. Clone boundaries are represented as vertical lines. In all but one case (third row), SNP pairs 
straddle the annotated boundary of BAC clones. 
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Figure S3.13. Strategy used to detect CHM13 heterozygous variant clusters. (A) The workflow to identify 
CHM13 heterozygous false positive (FP) heterozygous (het) regions in GRCh38 (blue) and CHM13v1.0 + Y 
chromosome (orange) from Illumina simulated reads (from T2T-CHM13v1.0 + Y chromosome) and PacBio (PB) 
HiFi reads generated from the CHM13 cell line. Variant calling (in yellow) was performed the same between both 
references. Numbers of features (excluding those associated with chrY) are indicated after each step in colored text 
using the same scheme (blue: GRCh38, orange: CHM13v1.0). (B) The sequencing-platform source of the FP het 
regions are shown in a Venn diagram for GRCh38 and CHM13v1.0 (SimReads: Simulated Illumina reads, PacBio 
HiFi reads, or Both). 
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Figure S3.14. Strategy used to detect collapsed and false duplications in GRCh38. WSSD read-depth copy-
number estimates were obtained for ‘k-merized’ versions of GRCh38 and T2T-CHM13v1.0 references, and Illumina 
reads from 268 SGDP individuals in the CHM13 reference. To identify putative collapsed duplications, the median 
copy-number of k-merized GRCh38 was compared to population and k-merized CHM13v1.0 copy numbers for each 
CHM13 problematic heterozygous region identified in either GRCh38  (lifted coordinates) or CHM13v1.0. To identify 
false duplications, k-merized GRCh38 copy-number estimates (depicted as colored regions as described by the legend) 
were compared to population and k-merized CHM13v1.0 copy-numbers using 1-kbp windows genome-wide. 
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Figure S3.15. Examples of collapsed duplications impacting genes in GRCh38. UCSC Genome Browser snapshots 
of collapsed duplication in GRCh38 corrected in CHM13 impacting (A) DUSP22 and (B) KMT2C. For each loci, the 
position of the gene is depicted on a chromosomal ideogram. Segmental duplications (dups) are shown as bars colored 
by sequence similarity to paralog (gray: 90–98%; orange: >99%) and directionality versus paralog indicated as arrows 
(only for GRCh38). For both examples, CHM13 heterozygous variant clusters, CHM13 het variants, and gnomAD 
variants with the InbreedingCoeff flag are displayed for each reference. Gene models are depicted below variants, 
including coding (blue) and non-coding (green) isoforms. Read-depth copy-number estimates (with colors depicted in 
associated legends), displayed only for CHM13, are shown at the bottom for ‘k-merized’ versions of GRCh38 and 
T2T-CHM13v1.0 references, and Illumina reads from a diverse subset (n=34) of SGDP individuals. 
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Figure S3.16. 1KGP Alignment Pipeline. Overview of the workflow for aligning 1KGP samples to CHM13, as 
adapted from the NYGC's pipeline for variant calling 1KGP samples on GRCh38 data. Hexagons represent input files, 
ellipses represent analysis steps, rectangles represent output files, clouds represent large cloud analyses, and rounded 
rectangles represent intermediary files. Dotted arrows precede cloud computations, whereas hollow arrows precede 
output files. 
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Figure S3.17. 1KGP Variant Calling Pipeline. Overview for the workflow for performing variant calling and joint 
genotyping on 1KGP samples after alignment to CHM13, as adapted from the NYGC's pipeline for variant calling 
1KGP samples on GRCh38 data. Hexagons represent input files, ellipses represent analysis steps, rectangles represent 
output files, clouds represent large cloud analyses, and rounded rectangles represent intermediary files. Dotted arrows 
precede cloud computations, whereas hollow arrows precede final output files. 
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Figure S3.18. 1KGP Sample overview. (top) Total number of samples per population, including children in trios, 
grouped by superpopulation. (bottom) Violin plot of the total amount of raw sequencing coverage available per 
sample, assuming a 3.0Gbp genome size. Black vertical lines indicate the mean coverage per superpopulation (AFR: 
African, AMR: Admixed American, EAS: East Asian, EUR: European, SAS: South Asian). 
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Figure S3.19. Short-read mapping statistics generated using samtools stats with GRCh38 and CHM13 as 
alignment target references. Results are stratified by superpopulation codes as per 1KGP dataset. Distribution 
quartile values are shown as dashed lines inside violin plots. Results for GRCh38 are shown in blue, CHM13 in orange 
for each superpopulation (AFR: African, AMR: Admixed American, EAS: East Asian, EUR: European, SAS: South 
Asian). 
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Figure S3.20. Short-read coverage statistics. Distributions of per-sample (A) mean and (B) standard deviation 
values for read depth context-stratified 500bp-windowed intervals with alignment target references GRCh38 (blue) 
and CHM13 (orange) are grouped based on 1KGP superpopulation sample annotations (AFR: African, AMR: 
Admixed American, EAS: East Asian, EUR: European, SAS: South Asian). Distribution quartiles are shown as dashed 
lines. 
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Figure S3.21. Population-specific variant counts. Population-specific boxplots of the number of (top) all variants, 
(middle) heterozygous variants, and (bottom) homozygous variants per sample, as computed in Figure 2B. Colors 
highlight superpopulations (AFR: African, AMR: Admixed American, EAS: East Asian, EUR: European, SAS: South 
Asian) for each population (CHB:Han Chinese, JPT:Japanese, CHS:Southern Han Chinese, CDX:Dai Chinese, 
KHV:Kinh Vietnamese, CHD:Denver Chinese, CEU:CEPH, TSI:Tuscan, GBR:British, FIN:Finnish, IBS:Spanish, 
YRI:Yoruba, LWK:Luhya, GWD:Gambian, MSL:Mende, ESN:Esan, ASW:African-American SW, ACB:African-
Caribbean, MXL:Mexican-American, PUR:Puerto Rican, CLM:Colombian, PEL:Peruvian, GIH:Gujarati, 
PJL:Punjabi, BEB:Bengali, STU:Sri Lankan, ITU:Indian). 
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Figure S3.22. Effect of PASS filtering. The per-chromosome (top) and genome-wide (bottom) number of variants in 
the 1KGP samples (allele count > 0) with respect to GRCh38 and CHM13, before and after filtering by GATK's 
"PASS" annotation. 
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Figure S3.23. Complex regions affected by PASS filtering. The number of variants in chromosome 9 when aligned 
to CHM13 before filtering by the "PASS" annotation, with a complex human satellite region annotated in red. Most 
of these variants are filtered out with the "PASS" annotation. 
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Figure S3.24. PASS-filtered SNPs and indels in unrelated samples. The number of PASS-filtered SNPs (top) and 
indels (bottom) across all 1KGP samples (allele count > 0) when aligned to GRCh38 (blue) and CHM13 (orange). 
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Figure S3.25. Counts of singleton alleles in 1KGP samples and CHM13. Each point represents the count of 
singleton alleles from one of the 1KGP individuals along with CHM13. For visual clarity, 100 random samples were 
selected from each 1KGP superpopulation (AFR: African, AMR: Admixed American, EAS: East Asian, EUR: 
European, SAS: South Asian) and the y-axis was log-scaled using the same color scheme described in the local 
ancestry legend of Figure 3.1A. The singleton count for each 1KGP sample was divided by two in order to adjust for 
the fact that these samples are diploid while CHM13 is effectively haploid. 
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Figure S3.26. Effect of reference allele changes on SNV visibility in HG002. Many SNVs in the sample HG002 
are not visible as variants with respect to either T2T-CHM13 or GRCh38 due to changes in the reference base such a 
homozygous variant call (HNR) changes to homozygous reference (HR). Many heterozygous SNVs (hets) also change 
due to reference base changes but are visible as variants on both references. Reported SNV counts are only among 
those with positions that lift successfully between references. 
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Figure S3.27. Read length distributions. (A) The distribution of HiFi read lengths in 17 samples and ONT read 
lengths in 14 of those samples.  Points and error bars represent mean and standard deviation lengths in each sample. 
The mean of the per-sample mean lengths of HiFi reads is 18,130.2 bp. The mean of the per-sample mean lengths of 
ONT reads is 21,912.9 bp. (B) HiFi coverage in each sample as a function of minimum read length. (C) ONT coverage 
in each sample as a function of minimum read length. 
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Figure S3.28. Long-Read mapping statistics generated with samtools stats. 
A) The number of HiFi reads with 0 mapping quality across 17 samples in each reference. 
B) The number of ONT reads with 0 mapping quality across 14 samples in each reference. 
C) The number of HiFi reads with non-primary alignments across 17 samples in each reference. 
D) The number of ONT reads with non-primary alignments across 14 samples in each reference. 
E) The average error rate of HiFi reads across 17 samples in each reference. 
F) The average error rate of ONT reads across 14 samples in each reference. 
G) The number of HiFi reads mapped across 17 samples in each reference. 
H) The number of ONT reads mapped across 14 samples in each reference. 
mm2: minimap2; wm: winnowmap 
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Figure S3.29. The results of aligning 124,240 contigs which were assembled from Illumina reads from 910 
individuals of African descent that failed to align to GRCh38. (A) The proportion of each contig spanned by its 
longest alignment to GRCh38 and percent identity of those alignments. (B) The proportion of each contig spanned by 
its longest alignment to CHM13 and percent identity of those alignments. (C) The difference in alignment length and 
percent identity when aligning to CHM13 vs. GRCh38. (D) The number of contigs which meet different alignment 
length thresholds for each reference. (E) The distribution of proportion of contig length aligned to each reference. (F) 
The distribution of percent identity in alignments of the contigs to each reference. 
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Figure S3.30. The results of aligning 4,953 insertion sequences >= 1kbp (“contigs”) which were obtained by 
calling SVs in 3,622 Icelanders with respect to GRCh38. (A) The proportion of each contig spanned by its longest 
alignment to GRCh38 and percent identity of those alignments. (B) The proportion of each contig spanned by its 
longest alignment to CHM13 and percent identity of those alignments. (C) The difference in alignment length and 
percent identity when aligning to CHM13 vs. GRCh38. (D) The number of contigs which meet different alignment 
length thresholds for each reference. (E) The distribution of proportion of contig length aligned to each reference. (F) 
The distribution of percent identity in alignments of the contigs to each reference. 
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Figure S3.31. Long-read abnormal coverage statistics. The mean and standard deviation of coverage among 500bp 
bins in CHM13 and GRCh38 when using different combinations of aligners and sequencing technologies.  The overall 
counts are displayed, as well as bins which overlap satellite repeats, genes, non-syntenic regions with respect to the 
other reference, syntenic regions, and bins with abnormal levels of coverage. 
mm2: minimap2; wm: winnowmap. 
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Figure S3.32. Long-read abnormal coverage frequency. A histogram of the number of 500bp bins with different 
frequencies of abnormal coverage among the samples studied.  Here abnormal coverage is defined as outside the range 
[Median - 1.5 (Median - Q1), Median + 1.5 (Q3 - Median)] among all bins in the same reference. 
mm2: minimap2; wm: winnowmap. 
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Figure S3.33. Per-sample SV counts. The counts of HiFi-derived SV calls in each of the 17 samples studied 
(DEL:Deletion, DUP:Duplication, INS:Insertion, INV:Inversion, TRA:Translocation). Counts are post-merging, so 
include variants which were called with high-confidence in that sample, as well as variants which were called with 
low-confidence in that sample but which were merged with high-confidence calls in other samples. 
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Figure S3.35. CHM13 variants in repeats. The lengths and types of SVs in CHM13 overlapping various repeat 
classes called from HiFi data in our cohort of 17 samples. The annotations are (top left) LINE Repeats, (top middle) 
SINE Repeats, (top right) Satellite Repeats, (bottom left) Low complex Repeats, (bottom middle) Simple repeats, and 
(bottom right) Centromeres. Colors are the same as used in Figure S3.34. 
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Figure S3.34. Per-sample variant counts (length ≥ 50). The counts of HiFi-derived SV calls with length at least 50, 
plus translocations, in each of the 17 samples studied (DEL:Deletion, DUP:Duplication, INS:Insertion, INV:Inversion, 
TRA:Translocation). Counts are post-merging, so include variants which were called with high-confidence in that 
sample, as well as variants which were called with low-confidence in that sample, but which were merged with high-
confidence calls in other samples. 
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Figure S3.35. CHM13 variants in repeats. The lengths and types of SVs in CHM13 overlapping various repeat 
classes called from HiFi data in our cohort of 17 samples. The annotations are (top left) LINE Repeats, (top middle) 
SINE Repeats, (top right) Satellite Repeats, (bottom left) Low complex Repeats, (bottom middle) Simple repeats, and 
(bottom right) Centromeres. Colors are the same as used in Figure S3.34. 
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Figure S3.36. Singleton SV density across CHM13. The density of singletons SVs (i.e., present in only a single 
sample), across 1 Mbp bins of CHM13, represented as a grayscale heatmap across log2(number of variants). Color 
bands at the top highlight syntenic and non-syntenic regions of CHM13 compared to GRCh38. 
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Figure S3.37. SV counts from Bionano. Comparison of SV calls >500 bp in HG002 from Bionano on GRCh38 
(hg38) vs. T2T-CHM13, after filtering for quality and clustering equivalent calls. Balance of insertions and deletions 
is substantially improved. We also found a number of SVs uniquely called on T2T-CHM13 in non-syntenic regions, 
and in non-syntenic regions that are in segmental duplications but not in centromere-satellite regions. 
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Figure S3.38. Improved Bionano alignment in CHM13 by closing gaps in GRCh38. Two examples showing 
improved resolution of SV calls that were gaps on chr18 and chr13 in GRCh38 but are fully sequenced in CHM13. 
Lines connect sequence markers in HG002 maternal and paternal assemblies to in silico digested references GRCh38 
(hg38) or T2T-CHM13 (CHM13). Gaps in GRCh38 are identified by red bars. 
  



 

 219 

 

Figure S3.39. Potential de novo SV in HG005. IGV screenshots showing a putative de novo 1,571 bp deletion in 
HG005 at chr17:49,401,990 in CHM13. a.) The alignments of the reads of HG005 (child), HG006 (parent, 46XY), 
and HG007 (parent, 46XX) to CHM13 near the SV call, indicating the SV’s presence in HG005 and absence in the 
parents. b.) The alignments of the same reads to GRCh38. 
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Figure S3.40. Allele frequencies of SVs in non-syntenic regions. The allele frequency of structural variants 
overlapping non-syntenic regions in CHM13, called from HiFi data in our cohort of 17 samples (DEL:Deletion, 
INS:Insertion, Other: Duplication + Inversion + Translocation). 
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Figure S3.41. CHM13 variants across genomic contexts. The lengths and types of SVs in CHM13 overlapping 
genes, exons, regions syntenic to GRCh38, and regions non-syntenic to GRCh38 called from HiFi data in our cohort 
of 17 samples. Colors indicate the type of SV, using the same colors as in Figure S3.34. 
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Figure S3.42. Alignments to AC134980.2 among samples of African ancestry. IGV screenshots of alignments of 
three samples of African ancestry - HG02055, HG02723, and HG03098 respectively - to the region around an exon 
of AC134980.2 (shown in Figure 3.4G and Figure 3.4H) to a.) CHM13 and b.) GRCh38. 
  



 

 223 

 

Figure S3.43. Copy number variation in AC134980.2. Copy number variation of the region surrounding an exon of 
AC134980.2 (shown in Figure 3.3G and Figure 3.3H) among CHM13 and GRCh38, as well as samples from the 
Simons Diversity Panel. Color indicates copy number state using the same color palette as Figure 3.5. Different CAT 
gene colors are based on annotation type, including coding (blue), non-coding (green), and pseudogene (pink) 
isoforms. 
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Figure S3.44. Distribution of region size for non-syntenic and previously unresolved regions. (A) Distribution of 
region sizes for previously unresolved (top) and non-syntenic (bottom) regions as explored in Figure 4A-C. Sizes are 
shown in units of log10(bp). (B) Distribution of region sizes for non-overlapping previously unresolved (top) and non-
syntenic (middle) regions, and regions annotated as both previously unresolved and non-syntenic (bottom) as explored 
in Figure 4D. Sizes are shown in units of log10(bp). 
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Figure S3.45. Variant allele frequencies within non-syntenic and previously unresolved regions. SNV allele 
frequencies within non-syntenic (top) and previously unresolved (bottom) regions across the 1KGP samples for each 
of the five superpopulations (AFR: African, AMR: Admixed American, EAS: East Asian, EUR: European, SAS: 
South Asian). Note, the color scheme here is different than depicted in the Figure 3.1A local ancestry legend. Values 
are computed using unrelated (founder) samples as in Figure 3.2E although only variants within the autosomes are 
counted here. 
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Figure S3.46. Comparison of 1 KGP variant densities within protein-coding genes between GRCh38 and T2T-
CHM13. Variant densities are depicted as box plots across protein-coding genes in GRCh38 (blue) with successful 
lift over to T2T-CHM13 (orange) considering (A) all genes and (B) medically-relevant genes. Within these gene sets, 
variant densities were also determined for genes falling within GRCh38 collapsed duplications (dups) and false dups. 
Mean variant densities per reference genome is displayed in parentheses. p-values were calculated using a Wilcoxon 
signed-rank test with continuity correction. 
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Figure S3.47. An example of pairwise LD between a known GWAS hit and variants in a non-syntenic region of 
T2T-CHM13. SNP rs9268853 (blue) is associated with fulminant type 1 diabetes in East Asian populations and 
segregates in strong LD (R2 > 0.8) with 20 variants (orange) that were hidden to previous studies due to an insertion-
deletion polymorphism that distinguishes GRCh38 from CHM13. While this example does not reflect an error or 
omission in GRCh38, it highlights the potential phenotypic and clinical relevance of such previously unresolved SNPs. 
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Figure S3.48. Inferred genome-wide ancestry of 1KGP individuals, used to identify frequency-differentiated 
SNPs. Admixture proportions (k = 8) for all samples in the 1KGP dataset, inferred by Ohana. Vertical bars represent 
individual genomes and are grouped by population. Ohana models each individual as a combination of k ancestry 
components and then searches for SNPs with evidence of frequency differentiation on these component lineages 
(CHB:Han Chinese, JPT:Japanese, CHS:Southern Han Chinese, CDX:Dai Chinese, KHV:Kinh Vietnamese, 
CHD:Denver Chinese, CEU:CEPH, TSI:Tuscan, GBR:British, FIN:Finnish, IBS:Spanish, YRI:Yoruba, LWK:Luhya, 
GWD:Gambian, MSL:Mende, ESN:Esan, ASW:African-American SW, ACB:African-Caribbean, MXL:Mexican-
American, PUR:Puerto Rican, CLM:Colombian, PEL:Peruvian, GIH:Gujarati, PJL:Punjabi, BEB:Bengali, STU:Sri 
Lankan, ITU:Indian). 
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Figure S3.49. Comparing frequency-differentiated variants between T2T-CHM13 and GRCh38. Schematic for 
comparing likelihood ratio statistic (LRS) values between variants called on T2T-CHM13 and variants called from 
the 1KGP Phase 3 data aligned to GRCh38. The 5,154 most highly frequency-differentiated variants across ancestry 
components were lifted over from T2T-CHM13 to GRCh38. We selected all GRCh38 variants within a 2 kbp window 
of the lifted over position. We considered the LRS score of a GRCh38 variant comparable to that of the T2T-CHM13 
SNP if it was within 10 of the T2T-CHM13 LRS value or greater. 
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Figure S3.50. Example of a locus, overlapping the AHRR gene, with similar frequency differentiation results 
in T2T-CHM13 and GRCh38. Likelihood ratio statistics (LRS) for variants overlapping the AHRR gene on GRCh38 
(top plot) and T2T-CHM13 (bottom plot). T2T-CHM13 variants with outlier LRS values, indicating strong allele 
frequency differences between ancestry components, are colored by ancestry. In the top plot, colored points indicate 
T2T-CHM13 variants lifted over to GRCh38 and black points indicate variants called on GRCh38. In the bottom plot, 
black points indicate non-outlier T2T-CHM13 variants. 
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Figure S3.51. Example of a locus on chr22 with improved resolution in the T2T-CHM13 assembly. Likelihood 
ratio statistics (LRS) for variants in a region on chr22 of T2T-CHM13 (bottom plot) and GRCh38 (top plot), where it 
lifts over to chr20. T2T-CHM13 variants with outlier LRS values, indicating strong allele frequency differences 
between ancestry components, are colored by ancestry. In the top plot, colored points indicate T2T-CHM13 variants 
lifted over to GRCh38 and black points indicate variants called on GRCh38. In the bottom plot, black points indicate 
non-outlier T2T-CHM13 variants. 
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Figure S3.52. A frequency-differentiated, previously unresolved locus at chr16:37828623. Likelihood ratio 
statistics (LRS) for variants in a 2 Mbp window around chr16:37828623, a variant that reaches high allele frequencies 
in the Peruvian in Lima, Peru (PEL) population (ancestry component 4). T2T-CHM13 variants with outlier LRS 
values, indicating strong allele frequency differences between ancestry components, are colored by ancestry. Black 
points indicate non-outlier T2T-CHM13 variants. 
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Figure S3.53. Alignments to the region around chr16:37828623. Alignments to the region around an A -> T SNV 
(arrow) at chr16:37828623 on T2T-CHM13, for three homozygous reference (HG00096, HG00097, HG00099; 
European ancestry), heterozygous (HG01936, HG01937, HG01938; Peruvian in Lima, Peru [PEL] ancestry), and 
homozygous alternate (HG01925, HG01928, HG01935; PEL ancestry) individuals. 
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Figure S3.54. A frequency-differentiated, previously unresolved locus at chrX:36684515. Likelihood ratio 
statistics (LRS) for variants in a 2 Mbp window around chrX:36684515, a variant that reaches high allele frequencies 
in African populations (ancestry component 7). T2T-CHM13 variants with outlier LRS values, indicating strong allele 
frequency differences between ancestry components, are colored by ancestry. Black points indicate non-outlier T2T-
CHM13 variants. 
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Figure S3.55. Alignments to the region around chrX:36684515. Alignments to the region around a 1bp insertion 
(arrow, dashed line) at chrX:36684515 on T2T-CHM13, for three homozygous reference (HG00096, HG00097, 
HG00099; European ancestry), heterozygous (HG00263, HG00315, HG00614; European and East Asian ancestry), 
and homozygous alternate (HG00734, HG01052, HG01077; African ancestry) individuals. 
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Figure S3.56. Folded site-frequency spectrum for KCNJ18 paralogs in GRCh38 versus T2T-CHM13. Total 
counts and proportions are depicted for varied minor-allele frequencies (MAF) of variants discovered within entire 
SDs (A) and CDS (B) in GRCh38 (blue) and T2T-CHM13 (orange) from 1KGP datasets. Total numbers of bi-allelic 
SNVs detected at each locus is indicated beneath each gene header per reference genome. 
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Figure S4.1. Nearly-identical human gene duplications in a complete human genome. (A) Size of autosomal 
segmental duplications (SD), SD with over 98% sequence identity (SD-98), CenSat (centromeric satellites excluding 
pericentromeric SD), and unique regions, which exclude SD and CenSat (Non-SD). (B) Gene features overlapping 
autosomal SD-98 regions. Numbers in parenthesis indicate gene features fully-contained in a SD-98 region. (C) Gene 
ontology (GO) enriched terms (FDR>0.1). (D) Gene concept network (cnetplot) of enriched GO terms of genes 
overlapping SD-98. 
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Figure S4.2. Expression patterns of SD-98 genes in LCL and human fetal brain samples remapped to T2T-
CHM13 reference. (A) Expressed (TPM≥1) SD-98 genes shared between lymphoblastoid cell line (LCL), fetal brain 
tissues (inner subventricular zone [iSVZ], outer subventricular zone [OSVZ], ventricular zone [VZ], cortical plate 
[CP]), and fetal brain cell populations (apical radial glia [aRG]), basal radial glia [bRG], and neurons). (B) Principal 
component analysis of expressed and non-expressed SD-98 genes in LCL, fetal brain tissues, and fetal brain cell 
populations. 
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Figure S4.3. Variant depletion in SD and SD-98. (A) Depletion of variants in GWAS catalog, ClinVar, and GTEx 
eQTL databases and (B) depletion of biallelic SNVs in 1KGP (n=3,202) in T2T-CHM13 (v1.0). Vertical lines 
represent observed values and distributions correspond to the variants observed in 10,000 random permutations across 
the genome (excluding gaps and centromeric satellites), with empirical p-values within each plot. 
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Figure S4.4. pLI and LOEUF scores of SD-98 genes. (A) Relationship between pLI and LOEUF values for 565 SD-
98 genes with available scores. (B) Overlap loss of function intolerant genes as measured by pLI  (≥0.9) and LOEUF 
(≤0.35) scores. 
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Figure S4.5. Diagram of copy-number genotyping approach. Heatmap represents CN estimates from QuicK-mer2 
with values shown in legend. Each row represents a different individual. Red dashed lines indicate CN-genotyped SD-
98 regions (including both ancestral and derived paralogs) used for CN analyses. 
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Figure S4.6. Analysis of CN estimates of SD-98 genes. (A) Copy-number distribution of SD-98 regions genotyped 
by superpopulation. (B) Relationship between CN mean average and standard deviation per genotyped SD-98 region. 
Colors indicated protein-encoding genes or unprocessed pseudogenes as classified by ENSEMBL. Linear regression 
and R-squared coefficient are indicated per each gene biotype. (C) Gene ontology terms overrepresented in CN fixed 
SD-98 genes (CN = 2 in ≥98% of individuals). 
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Figure S4.7. Distribution of VST values. Pairwise comparisons between Africans (AFR) and Europeans (EUR), East 
Asians (EAS), and Americans (AMR) are shown. Red line indicates the 95th percentile per pairwise comparison. 
Gene name labels correspond to protein-encoding genes above the 95th percentile threshold. 
  



 

 244 

 
Figure S4.8. Copy-number dotplot of TBC1D3I gene. Copy-number estimates correspond to genotyped SD-98 
region overlapping TBC1D3I gene. 1KGP populations are colored by superpopulations as indicated in figure legend. 
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Figure S4.9. Copy-number dotplot of KANSL1 gene. Copy-number estimates correspond to genotyped SD-98 
region overlapping KANSL1 gene. 1KGP populations are colored by superpopulations as indicated in figure legend. 
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Figure S4.10. Copy-number dotplot of NOTCH2NLR gene. Copy-number estimates correspond to genotyped SD-
98 region overlapping NOTCH2NLR gene. 1KGP populations are colored by superpopulations as indicated in figure 
legend. 
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Figure S.4.11. Copy-number dotplot of NPY4R and NPY4R2 genes. Copy-number estimates correspond to 
genotyped SD-98 region overlapping NPY4R and NPY4R2 genes. 1KGP populations are colored by superpopulations 
as indicated in figure legend. 
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Figure S4.12. Comparison of short- and long-read SNV density in Non-SDs, SDs, and SD-98. Biallelic SNVs 
discovered with Illumina short-read sequencing (SRS) and PacBio HiFi long-read sequencing (LRS) in the same eight 
individuals were used. 
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Figure S4.13. Short- and long-read variants concordance. Variants discovered with Illumina short-reads were 
benchmarked against PacBio HiFi variants in terms of precision sensitivity for eight individuals indicated in the legend 
sequenced with both platforms. 
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Supplemental Tables 

Supplementary tables for chapters two, three and four are included as a zipped file. 

 


