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Abstract 

Structural Determinants for Reversible β-lactamase Inhibition 

Kyle DeFrees 

 

Antibiotic resistance is one the largest health concerns of the modern era, 

threatening decades of progress in antibacterial research and development. β-lactams, 

the first line of defense against most Gram positive and negative pathogens, are 

increasingly ineffective in clinical settings, driven in large part by the proliferation of β-

lactamases, enzymes which degrade β-lactams. While these proteins have evolved 

over millions of years with hundreds of known variants, clinical selection has led to the 

proliferation of extended spectrum β-lactamases and carbapenems like CTX-M and 

KPC-2, respectively. Previous generation β-lactamase inhibitors such as clavulanic acid 

and sulbactam are ineffective against these enzymes, creating a pressing need for new 

inhibitor development. 

While the recent discovery and approval of covalent-reversible avibactam and 

vaborbactam have shown great promise in bridging this gap, further clinical selection 

will likely drive new enzymes and mutations resistant to these agents, such as the 

spread of metallo-lactamases, or mutations within the KPC-2 family. Given the paucity 

of information around non-covalent β-lactamase inhibition, we sought to further 

characterize the specific interactions of a potent, non-covalent CTX-M inhibitor, 

revealing the importance of amide-π stacking against the β3 backbone (Chapter 2). 

Building off of this work, we also discovered new non-covalent scaffolds for the 

inhibition of KPC-2 (Chapters 3 and 4). Our work revealed how the improved 
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hydrophobicity and conformational flexibility of carbapenemases such as KPC-2 can be 

exploited for building non-covalent affinity, supporting future efforts towards combating 

emerging resistance. These structure-guided efforts are also being supported by 

unbiased fragment screening (Chapter 5), which aims to bridge the inhibition gap 

between enzyme classes, with the overall goal of developing a non-covalent scaffold 

with broader β-lactamase activity. 
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Chapter 1 

β-lactamases and Non-covalent Inhibitor Discovery 
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β-lactams and β-lactamases: 

β-lactam antibiotics have been a staple in the modern antibacterial arsenal since 

penicillin’s mass production in 1940, treating otherwise incurable bacterial infections. β-

lactams target penicillin-binding proteins (PBPs), the enzyme class responsible for 

assembling peptidoglycan. Traditional “Class A” PBPs are two domain enzymes; the N-

terminal transglycosylase domain stitches together MurNAc and GlcNAc, whereas the 

C-terminal transpeptidase domain recognizes the D-Ala-D-Ala stem peptide and 

attaches it to a coupling partner (Figure 1-1).1 The nucleophilic residue of the coupling 

partner varies per organism, but is often the amine of glycine (typically from a 

pentaglycine linker), lysine, or a diaminopimelate (DAP) group.1 As PBPs are essential 

for bacterial growth and replication, isolated transglycosylase (Class B) and 

transpeptidase (Class C) domains also exist; these variants allow for precise 

localization and modification of the peptidoglycan to fit the organisms needs. 1 

 

 
Figure 1-1. Schematic of peptidoglycan formation. Adapted from reference 2. 
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β-lactam antibiotics target the transpeptidase domain of Class A and C PBPs; the 

lactam-acid motif mimics the D-Ala-D-Ala substrate, and upon nucleophilic attack, 

results in a stable acyl intermediate, thus inhibiting the enzyme (Figure 1-2). This 

process is not bactericidal alone, but peptidoglycan is constantly being remodeled to 

accommodate growth and reproduction, so inhibition eventually results in a 

peptidoglycan-deficient organism (L-form), which is susceptible to oxidative stress or 

osmotic shock in certain environments.3, 4  

 

 
Figure 1-2. β-lactams mimic native substrate D-Ala-D-Ala. 
 

Given the importance of the transpeptidase domain, bacteria have developed a 

number of mechanisms to overcome β-lactam antibiotics. The first, and perhaps most 

worrying, is modification of PBPs. Overproduction can often compensate for natively 

resistant organisms, but mutations yielding decreased affinity for β-lactams have also 

been observed.5-7 Some of these mutants are also capable of slowly hydrolyzing the 

stable acyl-PBP complex, resulting in deactivated antibiotic and unbound PBP.6, 7 

Further modifications of the donor and acceptor stem peptides have also been 

observed; these modifications vary by organism, and are often associated with 

increased resistance to β-lactams, presumably by promoting the production and use of 

PBPs that carry intrinsic resistance due to the aforementioned modifications.5-7 Aside 
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from PBP modification, bacteria also posses strong homeostatic control as a part of 

nutrient acquisition and xenobiotic repulsion; porin and importer loss can therefore 

provide total resistance, though modulation is often detrimental to overall fitness.8 Active 

repulsion via ATP-binding cassette (ABC) exporters typically provide moderate 

resistance; β-lactams only need to reach the periplasm in Gram negatives however, so 

exporter overexpression is best suited for organisms with intrinsically impermeable 

outer membranes.8 Given these limitations, the most common resistance mechanism 

across all organisms is β-lactamase expression, an enzyme class that deactivates β-

lactams. Like PBPs, these enzymes will recognize a lactam substrate and form an acyl 

intermediate, except β-lactamases have an activated tetrahedral intermediate that is 

primed for subsequent hydrolysis, thus destroying the antibiotic (Figure 1-3). β-

lactamase production is capable of providing complete resistance without any fitness 

detriment, and thus is the preferred resistance mechanism among most Gram positive 

and negative bacteria. 

 

 
Figure 1-3. β-lactamases deactivate β-lactams via hydrolysis. Hydrolysis occurs via 
ordered, nucleophilic water. 
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enzymes can be classified by structural homology into four distinct classes: A-D.9-11 

Class A β-lactamases are canonical serine hydrolases that evolved from PBPs with 

discreet structural modifications, such as the introduction of a loop to block stem peptide 

binding. Typical members include variants like CTX-M, KPC, TEM, and SHV; there are 

many known point mutants for these enzymes. Class B enzymes are di-Zn hydrolases, 

and are entirely structurally unrelated to PBPs and the other β-lactamase classes. While 

the evolutionary history for these enzymes remains murky, it is thought that many 

evolved from tRNAses, some of which already poses weak β-lactamase activity.12 

Typical members of this class include IMP, VIM, and NDM. Class C enzymes also 

evolved from PBPs, but have a mutated acid-binding motif, and are typically under 

chromosomal control (most β-lactamases are now on mobile plasmids, but originated as 

chromosomal proteins, such as the Class A KPC from Klebsiella). Typical members of 

this family include AmpC, CMY, and ACT. Class D enzymes are also related to PBPs, 

but these have an open stem-peptide binding channel and use a carboxylated lysine as 

a general base. This class is comprised of the OXA enzymes, which have many known 

point mutants. 

Given the importance of β-lactamases towards clinical resistance, significant effort 

has been made to inhibit these enzymes, and thus restore β-lactam activity. The first 

approved β-lactamase inhibitor is a β-lactam itself, clavulanic acid, which presents a 

secondary electrophile upon lactam scission. While limited in substrate scope (Figure 

1-4), this compound inhibited the clinically relevant β-lactamases of the time, SHV and 

TEM. Shortly thereafter another β-lactam based inhibitor was approved for use, 

sulbactam, which improved the spectrum of inhibition within Class A enzymes. While 
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these two inhibitors are still used in combination therapies today, the clinical expression 

of β-lactamases has expanded over the resulting decades, creating an antibiotic 

resistance crisis.11 Recent developments in the field, which occurred during the duration 

of this research, resulted in two additional β-lactamase inhibitors, avibactam and 

vaborbactam. Avibactam, approved in 2015, is a cyclic-N-sulfated urea (Figure 1-4) that 

acts as a covalent reversible inhibitor; this inhibitor type has an improved spectrum of 

inhibition, hitting almost all Class A and C enzymes, and some Class D enzymes. 

Vaborbactam, which is a cyclic boronic acid, was approved in 2017; this covalent 

molecule has a similar spectrum of inhibition to avibactam (Figure 1-4). 

 

 
Figure 1-4. All approved β-lactamase inhibitors are covalent substrates. Avibactam 
(2015) and vaborbactam (2017) have greatly improved inhibition profiles. 
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While these two classes have revolutionized clinical outcomes with their improved 

spectrum of inhibition, many future challenges remain. To start, neither scaffold has 

Class B activity, particularly against NDM or VIM enzymes, which are increasingly 

prevalent in clinical isolates. While a variant of vaborbactam might have useful activity 

against some Class B enzymes,13 all of the approved β-lactamase inhibitors are 

covalent, and primarily rely on Kinact for potent inhibition. Kiapp is modest, typically in the 

µM range,14, 15 and the covalent mechanisms employed are incompatible with Class B 

enzymes, as the nucleophile is an ordered, bridging water. Both compound classes also 

struggle with Class D inhibition, particularly with Kiapp – some OXA variants are 

completely resistant to both scaffolds.15, 16 Avibactam also has a scaffold-specific 

liability, as the N-sulfate required for activity is hydrolytically labile. Some β-lactamases 

such as KPC have been observed to catalyze this desulfation, inactivating avibactam.14, 

17 Importantly, this behavior has not been evolutionarily selected for, suggesting a 

potential mechanism for future avibactam-type resistance. Avibactam and vaborbactam 

are also covalent reversible, so they are susceptible to improved deacylation rates. 

Evolutionary selection has guided β-lactamases towards being “good enough,” but 

further pressure may result in more efficient enzymes that are better at hydrolyzing both 

β-lactam substrates and future covalent inhibitors. 

Taken together, there is an outstanding need for improved Ki across enzyme 

classes, but a lack of concerted knowledge about implementation. Many companies and 

researchers have tried to build non-covalent scaffolds over the preceding decades, but 

as evidenced by the approved inhibitors, were not successful. The challenges 

presented by β-lactamases are primarily two-fold: 1) the active site is particularly solvent 



 8 

exposed (Figure 1-5); substrate β-lactams are polar, and recognition is primarily via H-

bonds, and 2) broader spectrum enzymes (i.e. can hydrolyze a larger diversity of β-

lactams) are more conformationally dynamic, sometimes at the expense of key residues 

used for building non-covalent affinity.18, 19 While challenging to address, it is important 

to note that there is a high degree of structural conservation, with similar substrate 

envelopes across diverse enzymes. Notably, hydrolyzed substrates are weak non-

covalent inhibitors themselves, with Ki in the µM range for many enzymes (see Chapter 

3 for more discussion). Given the substrate homology, it therefore appears feasible to 

build non-covalent affinity across multiple distinct enzymes. To that end, this project 

aimed to better understand the molecular requirements for reversible inhibition, and to 

discover novel chemical matter with improved Ki against multiple enzyme classes. 

 

 
Figure 1-5. Apo CTX-M-9. Active site residues shown as sticks (PDB: 2P74). 
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Non-covalent Inhibitor Discovery: 

Our lab, in collaboration with Prof. Yu Chen at University of South Florida, previously 

sought to generate the first non-covalent inhibitors of a model Class A enzyme, CTX-M. 

CTX-M is an extended spectrum β-lactamase whose substrate scope includes 

penicillins and later generation cephalosporins, and as such, was a prime target for 

discovery due to a versatile substrate envelope and clinical significance. Inhibitor 

discovery for this enzyme first began as a Docking fragment screen,20 resulting in high 

mM fragments with similar chemotypes, such as a tetrazole, which binds the acid-

binding motif, as well as a fluoro-aryl, which appeared to pack against the β3 strand 

(Figure 1-6). These efforts were supported by crystallography, and through a series of 

SAR-by-purchase resulted in low mM fragments presenting both aryl and tetrazole 

motifs. Further structure-based optimization resulted in a 21 µM aryl-F compound, as 

well as a 1.3 µM benzimidazole. Combining the two motifs as a CF3-benzimidazole 

resulted in 1, a 90 nM inhibitor of CTX-M-9.21 

 

 
Figure 1-6. Fragment based lead discovery of compound 1. Ki calculated from a 
biochemical IC50 (nitrocefin substrate) using Ki = IC50/(1 + [S]/Km). 
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High-resolution crystallography of 1 with CTX-M-9 (0.89 Å) supported the previous 

analog structures (Figure 1-7); the tetrazole sits nicely in the Thr235/Ser237/Ser130 

acid-binding motif, and the amide carbonyl hydrogen bonds with Asn132 and Asn104. 

The CF3-benzimidazole packs against the β3 strand and hydrogen bonds with Asp240 – 

the H seems to be localized on the benzimidazole – whereas the CF3 anchors in the 

hydrophobic Pro167 sub pocket. Compound 1 also restored cefotaxime activity in CTX-

M expressing clinical isolates,22 representing the first utility of a potent, non-covalent 

inhibitor of a β-lactamase. Overall, this fragment based approach resulted in a > 10,000 

fold increase in affinity with only ~ 40 compounds synthesized, suggesting that this 

process could be expanded to other target enzymes in the future. 

 

 
Figure 1-7. Compound 1 in complex with CTX-M-9 at 0.89 Å. 2Fo-Fc (blue) and Fo-Fc 
(red) contoured to 1.5 σ and 2.5 σ, respectively (PDB: 4UA7). Black dashes denote 
hydrogen bonds. 
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Exploring Molecular Interactions with CTX-M: 

Given the labs previous success with compound 1, the focus of this project was to 

understand the nuances of CTX-M inhibition and apply it towards inhibition other β-

lactamases. The structure-based design process resulting in compound 1 incorporated 

a tetrazole to engage the acid-binding motif, and only tested three anionic isosteres in 

the aryl-CF3 progenitor series (Figure 1-8). We sought to explore whether the tetrazole 

was required for potent inhibition, and attempted replacement with non-anionic azoles, 

H-bond donor/acceptor groups, and acids. Surprisingly, none of these analogs were 

very active, and even the free acid, of which a tetrazole is a bioisostere, was nearly 

inactive. These results suggested that the charge and π character of the tetrazole was 

important; neither acid nor azole was sufficient alone. It was observed that the tetrazole 

forms a π stacking interaction with the amide of the β3 strand Gly236; this is actually 

one of two such stacking interactions by 1, as the benzimidazole also packs against the 

amide of the β3 strand Gly238 (Figure 1-9). These interactions appeared to be very 

important for the observed CTX-M affinity, and resulted in the probing of heteroarene 

amide-π interactions, as discussed more thoroughly in Chapter 2. 
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Figure 1-8. Most tetrazole replacements were entirely inactive. Ki calculated from a 
biochemical IC50 (nitrocefin substrate) using Ki = IC50/(1 + [S]/Km). 
 

 
Figure 1-9. Amide-π interactions of compound 1. Yellow dashed lines denote 
putative π-interactions; both were slightly offset and spaced by 3.3-3.5 Å. (PDB: 4UA7) 
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While the tetrazole was the best heterocycle tested in our amide-π study, the activity 

of 1 may also be bolstered by an observed low-barrier hydrogen bond (LBHB), which is 

a special type of short, strong hydrogen bond where the pKa of the donor and acceptor 

atoms are equal, resulting in a bond where the hydrogen is equally shared and more 

covalent in character.23 These bonds are much stronger than normal hydrogen bonds, 

with an estimated ΔH of formation of 15-20 kcal/mol.23 Compound 1 is important for the 

observed bond; the tetrazole hydrogen bonds to Ser130, which hydrogen bonds to 

Lys73, which has the observed LBHB with Ser70 (Figure 1-10).24 The aryl ring is also 

likely important, as the hydration state changes from the apo structure, with waters 1 

and 4 supporting H-bonding partner Ser70. Importantly, the observed hydrogen density 

is equidistant from both atoms, with a total bond length of 2.53 Å, in line with predicted 

LBHBs.23 While there is a fair amount of debate about the role of LBHBs in protein 

structure and function, recent NMR work supports our crystallographic observations, 

suggesting that it is a true LBHB. It therefore seems likely that the observed LBHB is 

stabilizing the bound form of 1. 
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Figure 1-10. The tetrazole of 1 stabilizes a low barrier hydrogen bond in CTX-M. 
(A) The tetrazole engages in a hydrogen-bonding network involving Lys73 and Ser70. 
(B) Apo (top) and 1 (bottom) bound CTX-M at 0.79 Å and 0.89 Å, respectively. 2Fo−Fc 
maps (blue) are contoured at 1.5 σ. The positive Fo−Fc peaks (red, 2 σ) indicate the 
positions of hydrogen atoms. Note the differences in hydration and the Lys73—Ser70 
LBHB. Adapted from reference 24. 
 

 

Translation to KPC-2 Inhibition: 

The previous work revealed the importance of the tetrazole and amide-π interactions 

towards potent, non-covalent CTX-M inhibition. When tested against other similar 

enzymes, like the Class A TEM-1 or SHV-2, compound 1 quickly lost activity (Table 1-

1). The previous acid analogs also showed a similar trend, with no detectable TEM-1 

activity, and a similar (though not as severe) drop in SHV-2 activity, with a noticeable 

penalty for tetrazole replacement. Surprisingly, the Class A carbapenemase KPC-2 

showed the least preference for acid-type, with no drop in activity on tetrazole 
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replacement. Curious, we were able to obtain a structure of the sulfonic acid analog 

bound to KPC-2 (Figure 1-11), which revealed an unexpected binding orientation – the 

sulfonic acid pointed into the acid binding motif, but the CF3-benzimidazole sat near the 

Tyr105 hydrophobic shelf. This positioning is clearly suboptimal, and mirrored additional 

KPC-2 structures obtained for other analogs within the original aryl series (not shown). 

 

Table 1-1. KPC-2 activity is unaffected by tetrazole replacement. 

 
Ki calculated from a biochemical IC50 (nitrocefin substrate) using Ki = IC50/(1 + [S]/Km). 
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Figure 1-11. Sulfonic acid analog of 1 in complex with KPC-2. Orange dashes 
denote hydrogen bonds. Note the suboptimal CF3-benzimidazole orientation. 
 

KPC-2 is of particular interest due to its ability to hydrolyze nearly all β-lactams, 

especially carbapenems, one the most efficacious β-lactam classes for serious Gram-

negative infections. Given the clinical significance, we wanted to transition CTX-M 

specific scaffold 1 into a potent KPC-2 inhibitor. Looking at the superimposition of KPC-

2 onto the CTX-M complex of 1 (Figure 1-12), there are several key enzyme 

differences. For one, while the acid-binding motif is still intact, there is a S237T 

mutation, and further down the β3 strand, a twist enforced by a structural disulfide. We 

hypothesized that steric occlusion caused by this twist gave the unfavorable binding 

pose observed for the sulfonic acid analog. At the “bottom” of the active site, we lose a 

hydrogen bond with the amide via a N104P mutation, but the hydrophobic sub-pocket is 

retained with P167L. Given these changes, we felt that it was possible to retain 

favorable interactions while avoiding steric clash with the β3 strand, so we synthesized 
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~ 80 analogs roughly falling into four categories (Figure 1-13): 1) aryl replacements, 

with an emphasis on smaller heterocycles near the amide linkage, 2) different aryl meta 

substitutions – a ring twist would putatively accommodate the β3 strand, 3) sulfonamide 

analogs, in order to provide sp3 flexibility and optimal Asn interactions, and 4) truncated 

fusions, to reduce total interactions near the β3 twist. Unfortunately, all of these analogs 

failed to significantly improve KPC-2 activity, and led us to believe that the aryl tetrazole 

scaffold was not well suited for inhibiting other β-lactamases. These observations 

directly lead to the scaffold discovery and optimization efforts of Chapters 3 and 4, 

which are focused primarily on KPC-2, as well as the fragment discovery efforts of 

Chapter 5, which aim to discover broad-spectrum scaffolds against diverse β-

lactamases. 

 

 
Figure 1-12. Compound 1 complex with CTX-M-9 superimposed onto an apo KPC-
2 structure. CTX-M (white and yellow, PDB code 4UA7); apo KPC-2 (green, PDB code 
5UL8). Apo KPC-2 structure has a bound sulfate in the acid-binding motif. 
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Figure 1-13. Synthesized analogs of the original aryl scaffold. ~ 80 total analogs 
were synthesized to improve KPC-2 activity; none were successful in improving Ki. 
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Chapter 2 

An Empirical Study of Amide–Heteroarene π-stacking Interactions Using 

Reversible Inhibitors of a Bacterial Serine Hydrolase 

 

Kyle DeFrees, M. Trent Kemp, Xochina ElHilali-Pollard, Xiujun Zhang, Ahmed 
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Abstract:  

Compared to aryl–aryl π-stacking interactions, the analogous stacking of 

heteroarenes on amide π systems is less well understood and vastly underutilized in 

structure-based drug design. Recent theoretical studies have delineated the important 

geometric coordinates of the interaction, some of which have been confirmed with 

synthetic model systems based on Rebek imides. Unfortunately, a broadly useful and 

tractable protein–ligand model system of this interaction has remained elusive. Here we 

employed a known inhibitor scaffold to study π-stacking of diverse heteroarene 

substituents on the amide face of Gly238 in the cephalosporinases CTX-M-14 and CTX-

M-27. Biochemical inhibition constants (Ki) and biophysical binding constants (Kd) were 

determined for nineteen new analogues against both enzymes, while multiple high-

resolution co-crystal structures revealed remarkably consistent placement of the probe 

heteroarene on Gly238. The data presented support the predicted importance of 

opposing dipoles in amide–heteroarene interactions and should be useful for evaluating 

other theoretical predictions concerning these interactions.  
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Introduction: 

Mining of large crystallographic data sets has revealed the importance of non-

canonical intermolecular interactions in protein structure and also in protein–ligand 

binding.1-4 One of these is the ability of protein backbone amides to participate in 

stacking interactions with their π surfaces. First noted in the stacking of aromatic side 

chains on backbone amides,1 the importance of the interaction in protein–ligand binding 

is becoming increasingly apparent. An important example is found in the S1 pocket of 

the serine protease factor Xa (fXa), which is lined by an amide backbone π surface that 

can engage heterocycles in the P1 side chain of fXa inhibitors.5, 6 In a recent 

computational study, Sherrill and co-workers concluded that the well-known affinity of 

chloroarene P1 moieties for the S1 pocket is better understood in terms of π stacking 

with the backbone amides than by a Cl–π interaction with Tyr228.  

Recent computational studies by Imai,7 Diederich,8 and Wheeler9 have sought to 

define the optimal geometries and distances for amide–heteroarene interaction, using 

formamide7 or N-methylacetamide8, 9 (NMAC) as a model amide (Figure 2-1). In 

general these studies have suggested a preference for offset stacking in which the 

dipole moments or local electric field of the amide and heteroarene are roughly opposed 

(i.e. α ∼ 180°, Figure 2-1). Wheeler showed, however, that intermolecular N–H3C 

interactions could override the preference for opposed dipoles in some cases. 

Wheeler’s model9 therefore introduces additional molecular descriptors to better capture 

these local effects and has most recently10 been extended to stacking on the π surface 

of Arg–Asp salt bridges.  
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Figure 2-1. Coordinate system employed in computational studies of amide–
heteroarene interactions. Dipole moment vectors for the pyridyl ring (red arrow) and 
amide (blue arrow) are shown, using the physics convention with arrowhead 
electropositive. 

 

Rebek introduced the use of cleft-like imides derived from Kemp’s triacid11 to model 

a variety of molecular phenomena, from the stacking and H-bonding of adenine bases 

to abiotic self-replicating systems.12, 13 Recently, Diederich14 described an elegant 

application of this platform to interrogate amide–heteroarene π-stacking interactions. 

This system comprises a Rebek imide host and cognate 2,6-di(isobutyramido)pyridine 

guest that associate in non-polar solvents with their respective para substituents held in 

close proximity for interaction (Figure 2-2). Using double-mutant analyses to isolate 

incremental Gibbs free energies (ΔΔG) for the interacting distal substituents, this study 

confirmed the favourable effects of N-methyl carboxamide stacking on several different 

heteroarenes and confirmed N–Me amides as preferred stacking partners compared to 

phenyl, ethyl, or thiomethyl groups.  

 
Figure 2-2. A Rebek imide host bound through complementary hydrogen bonding 
to its cognate guest, placing pendant substituents (blue) in close proximity. 
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Factor Xa and its known ligands (Figure 2-3) would appear to be excellent models 

to study amide–heteroarene interactions in a more pharmacologically relevant context. 

A strong cation–π interaction in the S4 pocket along with a Cl–π interaction in S1 places 

an oxazole ring ∼ 3.8 Å from the amide surface of Gln192, well placed for an amide–

heteroarene interaction. However, a liability of this scaffold is the fact that the 

heteroarene ring being probed also serves as a linker to the P1 side chain. As noted by 

Diederich,6 replacement of 2,4-oxazole with related heteroarenes such as isoxazole or 

2,5-oxazole significantly alters the angular relationship between the tricyclic core and 

the terminal chlorothiophene, an effect that is likely to overwhelm and confound any 

attempt to isolate and study the amide–heteroarene interaction within this system.  

 
Figure 2-3. Factor Xa inhibitor (left) and its interaction with Gln192 in the complex 
crystal structure (PDB: 2Y5G). 

 

A more recent study by the same group15 employed reversible-covalent inhibitors of 

the cysteine protease cathepsin L in which the terminus of the P3 side chain was 
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altered with diverse heteroarenes expected to interact with an amide π surface lining the 

S3 pocket. With a terminal heteroarene, this system avoids the problem of variable 

angles of departing bonds in different heteroarenes. However, study of the cathepsin 

inhibitors revealed a different complication – the targeted amides of Gly67 and Gly68 in 

the S3 pockets are arranged with opposite dipole orientations. Thus, while the expected 

preference of heteroarenes over simple arenes was confirmed, flexibility in the ligand’s 

P3 side chain allowed interaction with the amide π surface of either Gly67 or Gly68, 

rendering the effects of relative dipole–dipole angles impossible to discern.  

Here we propose the serine hydrolase CTX-M, an extended-spectrum β-lactamase, 

as an improved model system for study of amide–heteroarene π-stacking under 

physiological conditions. The utility of this system hinges on a non-covalent, reversible 

inhibitor scaffold previously described by our laboratories,16, 17 and exemplified by 1 

(Figure 2-4). Extensive crystallographic characterization of 1 and its congeners has 

revealed a highly conserved binding mode enforced by multiple polar and hydrophobic 

interactions in the active site of CTX-M enzymes. These interactions include H-bonding 

and stacking of the tetrazole ring with the β-3 strand, H-bonding with Asn132 and 

Asn104, and a hydrophobic interaction between the trifluoromethyl group and Pro167 

(ESI, Figure 2-11). Most relevant to the current study is Gly238 of the β-3 strand, which 

presents a π surface ideally positioned for stacking with probe heterocycles (i.e., R) in 

analogues such as 2–20 (Figure 2-4). 
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Figure 2-4. Known CTX-M inhibitor 1 and new analogues 2–20 described herein. 

 

Herein we describe the synthesis of 2–20 and the determination of Ki and Kd values 

for all analogues against CTX-M-14 and CTX-M-27. High-resolution complex crystal 

structures of select analogues confirmed the expected binding mode, which places the 

heteroarene substituent ∼ 3.7–3.9 Å from Gly238. The activity and binding data are 

interpreted in terms of suggested8, 9 ‘rules-of-thumb’ governing the interaction. We find 

these rules to be useful for predicting affinities in congeneric series, but caution that 

more rigorous computational analysis will be required to understand the subtleties of 

this interaction.  

 

Results and Discussion: 

The heteroarenes employed in analogues 2–20 were selected to encompass the 

majority of ring systems examined in earlier computational studies, and included 

regioisomeric pyridine, pyrimidine, furan, and thiophene analogues, as well as nitrogen 

heterocycles of increasing N-atom count (Figure 2-5). The phenyl analogue 2 was 

prepared as a control and comparator. The synthesis of 2–20 involved the late-stage 

coupling of the relevant benzoic acid intermediates with commercial 3-(1H-tetrazol-5-

yl)aniline using HATU. Benzoic acids for 2–13 and 15 were synthesized via Suzuki 
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(trifluoromethyl) benzoate or 3-bromo-5-(trifluoromethyl)benzoic acid, followed by 

cleavage of the t-butyl ester (when required). Benzoic acid intermediates for the 

preparation of analogues 14 and 16 were prepared via Ullman/Goldberg coupling, while 

compound 17 was obtained by reaction of tert-butyl 3-bromo-5-(trifluoro- 

methyl)benzoate with imidazole in the presence of CuI and Pd(OAc)2.18 Benzoic acid 

intermediates used for the preparation of compounds 18–20 were obtained via 

cycloaddition or cyclization reactions of the corresponding azide, amine, or nitrile, 

respectively. All final analogues were purified by HPLC before evaluation. Full synthetic 

details and characterization of all analogues are provided in the ESI. 

 
Figure 2-5. Structure of CTX-M inhibitors 2–20 bearing diverse heteroaryl 
substituents R. Blue spheres denote atom of attachment. Red arrows depict direction 
and magnitude of calculated dipole moments of corresponding methyl-substituted 
heteroarenes using B3LYP/6-31G** with PBF solvation (10.64ε). 
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solved in complex with both CTX-M-14 and CTX-M-27. These CTX-M isoforms differ 

only by the presence of Asp (CTX-M-14) or Gly (CTX-M-27) at position 240 of the β-3 

strand, directly adjacent to the site of amide–heteroarene interaction with Gly238 (there 

is no residue 239 in the CTX-M sequence due to numbering conventions in Class A β-

lactamases). Ligands 3, 14, and 20 were solved in complex with CTX-M-14 to 

resolutions of 1.4 Å, 1.4 Å, and 1.25 Å, respectively. These structures revealed a highly 

conserved binding orientation that is exactly analogous to that of 1, with the pendant 

heteroarene involved in an apparent stacking interaction with Gly238, as posited 

(Figure 2-6 and ESI Figure 2-12). In all three structures, the side chain of Asp240 

swings away from the terminal heteroarene ring towards solvent to accommodate the 

stacking interaction.  
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Figure 2-6. Complex structures of analogues 3 (PDB: 6OOK; top), 14 (PDB: 6OOJ; 
middle) and 20 (PDB: 6OOF; bottom) bound to CTX-M-14 at 1.4 Å, 1.4 Å, and 1.25 
Å resolution. Unbiased Fo–Fc densities are shown at 3σ. Stacking distances are 
indicated, as measured from centroid of the heteroarene to the amide nitrogen atom. 

 

It is notable that compound 20 binds in the canonical fashion when one considers 

that an unfavourable charge–charge interaction might have been expected between the 

tetrazol-5-yl ring and Asp240. Consistent with this, analogue 20 was both the weakest 

inhibitor of CTX-M-14, and the most potent inhibitor of CTX-M-27, Gly240 replacing 
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Asp240 in the latter enzyme, thereby removing the putative charge–charge interaction 

(Table 2-1). Thus, a likely unfavourable interaction with Gly240 in CTX-M-14 is 

insufficient to produce a distinct binding mode for 20, thus suggesting that the remaining 

analogues in the series bind similarly.  

High resolution (1.5 Å and 1.25 Å) structures were also solved of compounds 14 and 

20 in complex with CTX-M-27 and revealed the expected binding mode and 

engagement of Gly238 (Figure 2-7). Amide–heteroarene stacking distances in the five 

new complex structures were measured from the centre of electron density of the 

heteroarene ring to the midpoint of the amide nitrogen atom and varied between 3.7–3.9 

Å, values that are consistent with those expected for an amide–heteroarene π-stacking 

interaction.  
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Figure 2-7. Complex structures of analogues 14 (PDB: 6OOH; top) and 20 (PDB: 
6OOE; bottom) bound to CTX-M-27 at 1.5 Å and 1.25 Å. Unbiased Fo–Fc densities 
are shown at 3σ. Stacking distances are indicated, as measured from centroid of the 
heteroarene to the amide nitrogen atom.  

 

Compounds 2–20 were tested in 11-point dose response, in technical triplicate, for 

inhibition of both CTX-M-14 and CTX-M-27 using a nitrocefin substrate assay (Table 2-

1). The inhibition curves for all replicates are provided as ESI and speak to the precision 

of the measured Ki values. Consistent with the movement of Asp240 noted in the X-ray 

structures, analogues 2–20 returned Ki values that were ca. 5–10-fold weaker for CTX-

M-14 than for CTX-M-27, the latter requiring no analogous movement of residue 240 to 

accommodate ligand binding (Figure 2-6 and 2-7). Similar isoform potency shifts 

across the analogue series provides additional evidence for a conserved binding mode.  
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Table 2-1. Ki and Kd values for heterocycles 2–20 with CTX-M-14 and CTX-M-27.  

 
a Mean ± SEM of three replicates. Calculated from IC50 using Ki = IC50/(1 + [S]/Km). Km 
values were measured for each replicate. b Mean ± SEM of four replicates. SPR 
generated Kd values were measured at binding equilibrium. c Mean ± SEM of two 
replicates. SPR generated Kd values were measured at binding equilibrium. d Calculated 
from ΔΔG = −RTln(Ki,N/Ki,2) at 298 K, where N represents the compound to which 
reference compound 2 is being compared. Positive values indicate improved affinity. e 
Same as d, except Kd values were used relative to compound 2. Positive values 
indicate improved affinity. f Not determined due to solubility limits. g Mean ± SEM of four 
replicates.  

 

Compared to phenyl congener 2, the heteroarene-bearing compounds 3–20 exhibited 

Ki values that were improved by ∼ 3–6-fold (analogue 20 being an exception, for the 

reasons noted above). This was the expected result, and is consistent with the 

predictions of the computational studies that enhanced dipole–dipole and local 

electrostatic interaction favour heteroarenes as stacking partners over simple arenes. 

The magnitude of the potency shift was modest but statistically significant given the high 

precision of the Ki determinations. The compressed range of Ki values would be 

consistent with the expected weak nature of the amide–heteroarene interaction, and 

might further imply relatively small differences in desolvation energies across the 

congeneric series. If correct, this would be notable, given that previous model systems 
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have exploited more hydrophobic binding pockets, in part to mitigate confounding 

desolvation effects.  

To probe the binding affinities of 2–20 for CTX-M, we determined Kd values against 

both proteins by surface plasmon resonance (SPR) spectroscopy, employing the same 

avi-tagged proteins used for the Ki determinations. Standard error in the mean values 

(SEM) revealed the high precision of the Kd determinations, similar to the Ki data. We 

found the Kd values in absolute terms to be remarkably close to the biochemical Ki 

values for the majority of analogues, whereas some compounds like 3, 6, 7, 9 and 10 

showed modest ∼2–3-fold differences between Kd and Ki. In fact, only compound 20 

exhibited Kd values that were more than 3-fold different from Ki against both proteins. 

Limited solubility of phenyl comparator 2 did not allow a Kd determination vs. CTX-M-14, 

while the Kd value of 2 vs. CTX-M-27 was ∼ 4-fold weaker than the respective Ki. 

Overall, the biochemical and biophysical evaluation of 2–20 vs. CTX-M-14 and CTX-M-

27 provided a robust data set for analyses of amide–heteroarene interactions. We used 

the CTX-M-27 Ki and Kd values to calculate ΔΔGKi and ΔΔGKd values for analogues 3–

20 in reference to comparator 2 (Table 2-1).  

Taken together, the earlier computational studies of Diederich and Wheeler predict 

that stronger amide–heteroarene π-stacking interactions should be expected when one 

or more of the following conditions are met: 

(1) An antiparallel orientation of amide and heteroarene dipole moment vectors.  

(2) A greater magnitude of the dipole moment(s). 

(3) The heteroarene is more electron-deficient. 

(4) Heteroarene ring nitrogens can participate in N⋯H–C interactions with the 
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proximal amide function. 

We considered whether these simple ‘rules-of-thumb’, as might be applied by a 

practiced medicinal chemist, could be used to predict rank-order differences in the 

measured Ki and Kd values for 2–20. In performing this analysis, we assume that 

differences in ΔΔG values arise from the relative strength of the corresponding amide–

heteroarene interaction, and ignore differences in desolvation penalties between 

analogues (though admittedly these may be important in certain cases). To eliminate 

the confounding effects of Asp240 and its interaction with the various heteroarenes, we 

limit the analysis to the data generated for CTX-M-27. 

In computational studies of amide–heteroarene stacking the dipole interaction angle 

α (Figure 2-1) is varied systematically so as to identify the optimal value. In the present 

case, the binding mode of 2–20 in CTX-M places strict geometric constraints on the 

orientation of Gly238 and the interacting heteroarene, producing relative sub-optimal α 

values in many cases. Unsurprisingly then, calculated dipole magnitude alone was a 

poor predictor of experimental ΔΔGKi and ΔΔGKd values (Figure 2-8). Discerning the 

effects of α on ΔΔG instead requires consideration of computed dipole magnitude and 

direction in the context of the established crystallographic binding mode. 



 36 

 
Figure 2-8. Computed dipole moments (µ) vs. (A) ΔΔGKi and (B) ΔΔGKd for 2–20. 
Dipole moments calculated from the corresponding methyl derivatives using B3LYP/6-
31G** with PBF solvation (10.64ε).  

 

First, we considered regioisomeric series of pyridine (3–5) and pyrimidine (5–8) 

congeners, which are presented below in their predicted orientation relative to amide 

Gly238 when bound in CTX-M (Figure 2-9 and 2-10). Among these six analogues, the 

2-pyridyl (3) and 2-pyrimidyl (6) heteroarenes are arranged with opposed dipole 

moments relative to the Gly238 amide, while 4–5 and 7–8 have less favourable dipole–

dipole orientations. In fact, the expected α values for 3 and 6 when bound to CTX-M are 

quite close to the optimal values of 105° (for 3) and 176° (for 6) reported by Wheeler for 

these heteroarenes in isolation.9 It is therefore significant that compounds 3 and 6 
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3–8 were more compressed and while the same rank-order trend holds for pyrimidines 

6–8, the Ki values of 3–5 are very similar or within experimental error. Nevertheless, it 

was striking that rank-order binding affinities (Kd) of analogues 3–8 could be correctly 

predicted solely on the basis of the amide–heteroarene interaction. 

 

 
Figure 2-9. Relative orientation of Gly238 and heteroarene substituent R in 
analogues 3–5. Calculated dipole moments are shown in red; amide dipole in blue as 
reported by Diederich.15 

 

 
Figure 2-10. Relative orientation of Gly238 and heteroarene substituent R for 
analogues 6–8. 
 

The predicted8 beneficial effect of additional ring nitrogen atoms was also reflected 

in the superior Kd values of pyrimidines 6–8 as compared to their corresponding 

pyridine regioisomers 3–5. The 3–5-fold differences in Kd across the two series are 

admittedly modest and one might be wary of overinterpreting these differences. On the 

other hand, a medicinal chemist applying a qualitative dipole–dipole analysis 

prospectively would have judged correctly which analogues to prioritize for synthesis 
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and evaluation, and so such rules-of-thumb appear useful as applied to a rigid ligand 

scaffold and well behaved ligand–protein binding interaction such as that explored here.  

In contrast to 6–8, the regioisomeric forms of the thiophene (9–10) and furan (11–

12) analogues exhibited practically identical Ki and Kd values (Table 2-1). This finding is 

consistent with the similar magnitude and direction of dipole moments for these 

regioisomers (Figure 2-5). Also the Ki and Kd values of 11–12 were superior to 9–10 

across all four data sets, consistent with a stronger amide-stacking interaction for the 

more electron-deficient furans as compared to thiophenes. The data for the remaining 

heterocyclic analogues 13–20 were not interpretable in terms of the rules of thumb 

applied. The presence of N–H donors in many of these analogues (13, 15, and 17) likely 

make polar interactions and desolvation penalties more significant, and these effects 

may overwhelm the more subtle contributions of dipole–dipole and local electrostatic 

interactions. A more rigorous analysis involving computed descriptions of local 

electrostatics and surface polarizability will likely be required to understand and make 

accurate predictions across a broader range of heterocycle–amide interactions present 

in 13–20. The exceptional binding affinity of tetrazole analogue 20 is however consistent 

with the predictions of Wheeler9 regarding tetrazole–amide interaction.  

Finally, it is worth noting that analogues bearing axially unsymmetrical heteroarenes 

will have two distinct rotameric states capable of stacking on Gly238. The present 

crystal structures of 3 and 14 are of insufficient resolution to identify a preferred 

rotamer, but such analysis may be possible in the future, given that sub-Å resolution 

structures of 1 have been solved in which unambiguous heteroatom assignments are 

possible (ESI, Figure 2-11).19 The identification of a preferred rotameric state in this 
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way would enable a more refined understanding of how α values and other factors 

impact binding affinity in this model system.  

 

Conclusions: 

Herein we present a new model system to study amide–heteroarene π-stacking in a 

pharmacologically relevant context. The bacterial hydrolase CTX-M-27 and inhibitor 

scaffold represented by 2–20 offer several advantages over previously employed model 

systems. These include: (1) a reversible and non-covalent ligand scaffold into which 

diverse heteroarenes can be incorporated in a terminal position, (2) a highly predictable 

and conserved binding mode that places the probe heterocycle unambiguously in 

contact with Gly238, and (3) a protein system that is highly amenable to X-ray 

crystallographic studies at high and ultra-high resolutions. The activity and binding data 

described herein appear to significantly report on the relative strength of amide–

heteroarene stacking interactions between analogues, providing the first example where 

easily applied rules-of-thumb were used successfully to explain experimental binding 

affinity data, at least for congeneric series of analogues. In closing, we note that 

computational studies of the heteroarene-amide interaction present in this new model 

system should be facilitated by the geometric constraints imposed by the binding mode 

of 2–20 in CTX-M. It is our hope that a combination of theoretical and empirical study of 

this model system will produce new insights into the factors governing this 

intermolecular interaction.  
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Experimental: 

Synthesis and characterization 

The syntheses and characterization of new compounds 2–20 are described in the 

ESI. All compounds tested were judged to be of >95% purity as assessed by a Waters 

Micromass ZQ 4000 equipped with Waters 2795 Separation Module, Waters 2996 

Photodiode Array Detector (254 nm), and Waters 2424 ELS detector. Separations were 

carried out with an XBridge BEH C18, 3.5 µm, 4.6 × 20 mm column, at ambient 

temperature (unregulated) using a mobile phase of water–methanol containing a 

constant 0.05% formic acid.  

 

Protein expression and purification 

All enzymes from this study were expressed using the BL21 (DE3) cell line. Cells 

were grown on LB agar plates supplemented with 50 µg mL-1 kanamycin from cell 

stocks stored at −80 °C. Single colonies were used to inoculate 50 mL of LB broth with 

50 mg mL-1 kanamycin and grown at 37 °C overnight. From the overnight culture, 10 mL 

of cells were used to inoculate 1 L of 2 × YT broth for untagged and avitagged CTX-M-

14 and CTX-M-27. The cells were grown at 37 °C until an OD600 of 0.5 to 0.8 was 

reached at 600 nm. Overexpression of protein was induced with the addition of 0.5 mM 

isopropyl β-D-1-thiogalactopyranoside (IPTG) at 20 °C for 24 hours, and the cells were 

harvested with centrifugation at 5000 RPM for 15 minutes at 4 °C. 

For the untagged CTX-M-14 and CTX-M-27 cell pellets were resuspended in 50 mM 

MES pH 8.0 with 2 mM EDTA, while AviTag CTX-M-14 and CTX-M-27 were 

resuspended in 20 mM Tris pH 8.0, 300 mM NaCl, 10% glycerol with 10 mM imidazole. 

Cells were lysed with sonication and cellular components separated via 
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ultracentrifugation at 45000 RPM for 1 hour. Untagged enzymes were loaded onto a CM 

sepharose column and eluted with an increasing NaCl gradient. The AviTag CTX-M was 

loaded onto a HisTrap affinity column and eluted with an increasing imidazole gradient. 

All enzymes were additionally purified using a size exclusion HiLoad 16/60 Superdex 75 

column. Final protein purity was evaluated with SDS-Page to be at or greater than 95%.  

 

β-lactamase inhibition assays 

The hydrolytic activity of CTX-M-14 and CTX-M-27 was determined using the β-

lactamase substrate nitrocefin in a reaction buffer containing 100 mM Tris pH 7.0, 20 

mM NaCl, 0.02% Triton X-100, and 5% DMSO. Nitrocefin hydrolysis was monitored via 

absorbance (486 nm) using a FlexStation 3 microplate reader at 37 °C. The nitrocefin 

concentration was 50 µM for all inhibition assays. Compounds were tested for IC50 in 

11-point dose response up to 2.5 mM and 500 µM for CTX-M-14 and CTX-M-27, 

respectively (as solubility allowed). The protein was added last to initiate the reaction; 

the final protein concentration was 0.1 nM for both enzymes. All compounds were 

tested as technical triplicates with three independent replicates. IC50 values were 

converted to Ki using Ki = IC50/(1 + [S]/Km). The Km of nitrocefin was measured for each 

replicate: 50–64 µM for CTX-M-14, and 14–22 µM for CTX-M-27 (data in ESI). 

Nitrocefin was purchased from Sigma-Aldrich.  

 

SPR binding assays 

Compound Kd values were measured on a Biacore 4000 at 25 °C. Avi-CTX-M-14 

and Avi-CTX-M-27 were immobilized on a Series S CM5 chip with EDC/NHS coupled 
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Neutravidin using 10 mM HEPES pH 7.5, 150 mM NaCl, 0.05% Tween 20, and 250 µM 

TCEP-HCl. Protein immobilization levels varied between 3340–6166 RU and 4104–

6634 RU for CTX-M-14 and CTX-M-27, respectively. Running buffer consisted of 10 

mM HEPES pH 7.5, 150 mM NaCl, 0.05% Tween 20, 250 µM TCEP-HCl, and 5% 

DMSO. Compounds were flowed for 90 s on and 120 s off, with a 50% DMSO needle 

wash between injections. Compounds were tested in 10-point dose response with two 

internal blanks up to 500 µM and 50 µM for CTX-M-14 and CTX-M-27, respectively (as 

solubility allowed). Sensogram data was reference subtracted, solvent corrected, and 

blank subtracted; Kd values were measured at equilibrium binding between 65–85 s. All 

compounds were tested in quadruplicate for CTX-M-14 and in duplicate for CTX-M-27. 

Representative sensograms and Kd fits can be viewed in the ESI.  

 

Crystallization and structure determination 

All enzyme crystals were grown using the hanging drop approach, where both CTX-

M-14 and CTX-M-27 protein stocks used were at 20 mg mL-1. Equal parts well solution 

of 1 M potassium phosphate pH 7.9 were mixed with protein and incubated at 20 °C. 

Complex structures were generated by soaking 5–10 mM ligand concentrations with 

protein crystals for 6–12 hours in 1 M potassium phosphate pH 7.9 or 1.44 M sodium 

citrate prior to cryoprotecting with 30% (wt/vol) sucrose supplemented crystal mother 

liquor. Crystal diffraction data sets were collected at the beamlines 22-ID, 22-BM, and 

19-BM at Argonne National Lab Advanced Photon Source (APS). The data sets were 

indexed, integrated and scaled using the program HKL2000. Initial models were 

obtained via molecular replacement with the program Phaser in the Phenix suite. 

Refinement was carried out using phenix.refine, and ligand restraint files were 
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generated with the program elBOW. The mFo-DFc and 2mFo-DFc maps were generated 

with the program phenix.mtz2map program for all structures. PDB codes for deposited 

structures are provided below.  

CTX-M-14 with compound 3: 6OOK  

CTX-M-14 with compound 14: 6OOJ  

CTX-M-27 with compound 14: 6OOH  

CTX-M-14 with compound 20: 6OOF  

CTX-M-27 with compound 20: 6OOE  

 

Dipole calculations 

Dipole moments were calculated with Jaguar in Maestro using the corresponding 

methyl derivatives, as done by Diederich in previous studies. Structures were first 

optimized using B3LYP/ 6-31G**, then dipoles were calculated using B3LYP/6-31G** 

with PBF solvation (10.64ε). This dielectric was chosen as a surrogate for the local 

binding environment in CTX-M, which is moderately solvent exposed. Dipoles were also 

calculated for water (80.37ε) and CHCl3 (4.806ε), which had little effect on the 

magnitude and no effect on the relative rank order of dipole strength (ESI, Figure 2-12). 

Model type also held no effect; M06-2X/6-31G** and B3LYP-D3/6-31G** with PBF 

solvation (10.64ε) was the same as B3LYP/6-31G**, and gas phase B3LYP/6-31G** 

was the same as LMP2/6-31G** (ESI, Figure 2-12). These results suggest that the 

reported dipole magnitude and rank order are accurate.  
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Electronic Supporting Information 

Supplementary Figures 

 
Figure 2-11. Compound 1 in complex with CTX-M-14 at 0.89Å. 2Fo-Fc (blue): 1.5 σ; 
Fo-Fc (red): 2.5 σ (H-omit). Compound previously reported in references 16 and 17 in 
the main text; PDB: 4UA7. 
 

 

Figure 2-12. Comparison of calculated dipoles between solvents and models. A) 
B3LYP/6-31G**, PBF: DCE (10.65 ε) vs. PBF: H2O (blue, 80.37 ε) and PBF: CHCl3 (red, 
4.806 ε). B) B3LYP/6-31G**, PBF: DCE vs. M06-2X/6-31G**, PBF: DCE (blue) and 
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B3LYP-D3/6-31G**, PBF: DCE (red). C) B3LYP/6-31G**, gas phase vs. LMP2/6-31G**, 
gas phase. 
 

 
Figure 2-13. Front (A) and top (B) view of compound 14 with CTX-M-14. C) 
Superimposed top view of 3, 14, and 20 with CTX-M-14. 
 

Biochemical Data 

Each curve is a replicate generated from a technical triplicate. Compounds were 

tested up to 2.5 mM or 500 uM for CTX-M-14 and CTX-M-27, respectively (as solubility 

allowed). 
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Km Measurements: 
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CTX-M-27 Biochemical Data: 
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SPR Data 

Compounds were tested in 10-point dose response with two internal blanks up to 

500 uM and 50 µM for CTX-M-14 and CTX-M-27, respectively (as solubility allowed). All 

compounds were tested in quadruplicate for CTX-M-14 and in duplicate for CTX-M-27. 

Kd was measured at equilibrium binding between 65-85s. 

 

Representative sensograms for CTX-M-14: 
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Representative sensograms for CTX-M-27: 
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Crystallographic Data 

Table 2-2. X-ray data collection and refinement statistics. 

 
 
 
Dipole Calculations 

Dipoles were calculated with a methyl at the point of attachment; structures were 

optimized with B3LYP/6-31G** prior to dipole calculation. 
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B3LYP/6-31G**; PBF: DCE (10.65 ε) 

 

 
B3LYP/6-31G**; PBF: H2O (80.37 ε) 

 

 
B3LYP/6-31G**; PBF: CHCl3 (4.806 ε) 

 

 

Compound Gas Phase Energy Solution Phase Energy Solvation Energy       
(kcal/mol)

HOMO LUMO QM Dipole 
(D)

QM Dipole X 
(D)

QM Dipole Y 
(D)

QM Dipole Z 
(D)

2 -271.578488 -271.58247 -2.499131 -0.240232 -0.002133 0.463176 -0.285068 -0.36506 0
3 -287.616296 -287.624158 -4.932937 -0.25393 -0.026293 2.651741 2.623243 -0.387716 0
4 -287.613682 -287.621816 -5.104312 -0.253439 -0.024655 3.309159 1.229136 3.072419 0
5 -287.614708 -287.623465 -5.495336 -0.262352 -0.024947 3.727299 -1.913623 -3.198563 0
6 -303.655234 -303.666316 -6.954164 -0.257676 -0.04309 2.377625 1.099734 2.108005 0
7 -303.655009 -303.666395 -7.145241 -0.262914 -0.043459 3.493428 1.07138 3.325084 0
8 -303.651512 -303.662934 -7.167572 -0.262527 -0.045594 3.844931 -1.995047 3.286835 0
9 -592.330722 -592.335014 -2.693378 -0.227616 -0.010871 1.034642 0.665349 -0.792335 -0.000768
10 -592.329452 -592.333807 -2.732275 -0.230464 -0.012426 1.363993 -0.104598 -1.359976 0.000603
11 -269.353086 -269.357967 -3.062408 -0.217858 0.016877 0.763495 0.425025 -0.634254 0.00001
12 -269.347484 -269.352356 -3.057625 -0.221196 0.014465 1.244542 -0.097378 -1.240726 0.000847
13 -249.495923 -249.504932 -5.653324 -0.20191 0.04379 2.321089 -0.426593 2.28155 0.001166
14 -265.522355 -265.532677 -6.4773 -0.244642 0.015965 3.266098 1.68403 -2.798471 -0.000869
15 -265.529696 -265.542853 -8.256297 -0.246401 0.017209 2.701276 2.409078 1.22198 0.000098
16 -265.535403 -265.549161 -8.632925 -0.228099 0.025706 5.520107 -1.256347 -5.375237 0.000983
17 -265.548463 -265.563967 -9.728804 -0.221107 0.031191 5.083593 -4.764769 1.771959 0.007474
18 -281.544963 -281.560477 -9.735667 -0.264789 -0.01048 6.360991 2.105532 -6.002412 0.000069
19 -297.573052 -297.591624 -11.654125 -0.304945 -0.026451 7.815559 0.845976 7.769638 0
20 -297.583578 -297.6046 -13.191199 -0.300764 -0.023761 7.766349 7.333139 2.557586 0

Compound Gas Phase Energy Solution Phase Energy Solvation Energy       
(kcal/mol)

HOMO LUMO QM Dipole 
(D)

QM Dipole X 
(D)

QM Dipole Y 
(D)

QM Dipole Z 
(D)

2 -271.578452 -271.581714 -2.046934 -0.239484 -0.00143 0.44862 -0.278004 -0.3521 0
3 -287.616222 -287.622584 -3.991815 -0.253299 -0.025335 2.414631 2.385242 -0.375586 0
4 -287.613617 -287.620324 -4.208525 -0.252981 -0.023801 3.133705 1.137203 2.920082 0
5 -287.614634 -287.621834 -4.518118 -0.261632 -0.023975 3.516843 -1.807647 -3.016719 0
6 -303.655093 -303.664322 -5.791053 -0.255578 -0.042322 2.231569 1.033354 1.977898 0
7 -303.654888 -303.66437 -5.949808 -0.260599 -0.042648 3.289413 0.981849 3.13946 0
8 -303.651395 -303.66086 -5.939002 -0.260244 -0.044793 3.621407 -1.879782 3.095321 0
9 -592.330647 -592.334221 -2.242323 -0.226654 -0.009866 0.963784 0.588012 -0.763624 -0.000018
10 -592.329344 -592.33299 -2.288027 -0.229424 -0.011389 1.291218 -0.092571 -1.287895 -0.000954
11 -269.353019 -269.357124 -2.575602 -0.217087 0.017587 0.715456 0.400727 -0.592702 -0.000246
12 -269.34739 -269.352191 -3.01288 -0.220349 0.014368 1.218788 -0.088761 -1.215551 0.000546
13 -249.495807 -249.503211 -4.646594 -0.200576 0.044627 2.186178 -0.391365 2.150862 0.001224
14 -265.522241 -265.530827 -5.387862 -0.24328 0.017347 3.06943 1.536605 -2.657112 -0.000978
15 -265.529418 -265.540434 -6.912604 -0.244663 0.018496 2.559449 2.267994 1.186162 0.000329
16 -265.535249 -265.546636 -7.145288 -0.226629 0.026859 5.250173 -1.205787 -5.109833 0.000633
17 -265.548258 -265.560962 -7.971984 -0.219736 0.031883 4.76464 -4.462819 1.668834 0.005931
18 -281.544782 -281.557569 -8.023798 -0.263267 -0.008382 6.019743 -1.947741 5.695929 0
19 -297.572866 -297.588371 -9.729789 -0.301057 -0.024633 7.474376 0.847945 7.426122 0
20 -297.5832 -297.600634 -10.939654 -0.299287 -0.022213 7.383831 6.948783 2.497072 0

Compound Gas Phase Energy Solution Phase Energy Solvation Energy       
(kcal/mol)

HOMO LUMO QM Dipole 
(D)

QM Dipole X 
(D)

QM Dipole Y 
(D)

QM Dipole Z 
(D)

2 -271.578452 -271.578534 -0.051712 -0.240829 -0.002739 0.48856 -0.300036 -0.385577 0
3 -287.616222 -287.621639 -3.399163 -0.255681 -0.028817 2.842759 2.809459 -0.43384 0
4 -287.613617 -287.619234 -3.524996 -0.254987 -0.027062 3.534241 1.29068 3.290138 0
5 -287.614634 -287.620832 -3.889164 -0.264011 -0.027126 3.974551 -2.03931 -3.41149 0
6 -303.655093 -303.663985 -5.579627 -0.264041 -0.047122 2.44517 1.136897 2.164791 0
7 -303.654888 -303.6647 -6.156897 -0.269557 -0.047199 3.755247 1.174285 3.566922 0
8 -303.651395 -303.661228 -6.170466 -0.268779 -0.049059 4.092602 -2.135383 3.491351 0
9 -592.330647 -592.331157 -0.320023 -0.228298 -0.011627 1.044568 0.645105 -0.82156 0.000932
10 -592.329344 -592.329858 -0.322362 -0.231187 -0.013194 1.379518 -0.09718 -1.376091 0.000775
11 -269.353019 -269.352458 0.352449 -0.218771 0.015738 0.802421 0.467163 -0.65241 -0.000225
12 -269.34739 -269.346688 0.440413 -0.222276 0.013178 1.296883 -0.091947 -1.293619 0.000312
13 -249.495807 -249.501927 -3.840296 -0.20204 0.043967 2.403203 -0.434937 2.363516 0.002206
14 -265.522241 -265.53082 -5.383658 -0.247448 0.012345 3.484909 1.927776 -2.903146 -0.003404
15 -265.529418 -265.541846 -7.798577 -0.248477 0.014121 2.880142 2.612758 1.211904 -0.001133
16 -265.535249 -265.547646 -7.779101 -0.230055 0.023664 5.787087 -1.285639 -5.642474 -0.0005
17 -265.548258 -265.563499 -9.564275 -0.222501 0.02984 5.398173 -5.038694 1.936953 0.006607
18 -281.544782 -281.559717 -9.371439 -0.270039 -0.016725 6.79725 -2.322442 6.388182 0
19 -297.572866 -297.591159 -11.479392 -0.314829 -0.033862 8.279873 0.906028 8.230153 0
20 -297.5832 -297.606237 -14.455879 -0.306172 -0.02977 8.366223 7.912965 2.716371 0
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M06-2X/6-31G**; PBF: DCE (10.65 ε) 

 
 

B3LYP-D3/6-31G**; PBF: DCE (10.65 ε) 

 

 
B3LYP/6-31G**; gas phase 

 

 

Compound Gas Phase Energy Solution Phase Energy Solvation Energy       
(kcal/mol)

HOMO LUMO QM Dipole 
(D)

QM Dipole X 
(D)

QM Dipole Y 
(D)

QM Dipole Z 
(D)

2 -271.442768 -271.447608 -3.036903 -0.292104 0.032375 0.432983 -0.270257 -0.338284 0
3 -287.479704 -287.488451 -5.488838 -0.305341 0.010172 2.693945 2.669744 -0.36029 0
4 -287.477151 -287.486049 -5.58377 -0.304821 0.01217 3.325684 1.266235 3.075195 0
5 -287.478142 -287.487715 -6.007428 -0.314898 0.01127 3.731682 -1.914788 -3.202973 0
6 -303.518445 -303.53042 -7.514676 -0.323877 -0.004964 2.452971 1.138653 2.17268 0
7 -303.518217 -303.530406 -7.648937 -0.328906 -0.005923 3.513279 1.11233 3.332544 0
8 -303.514755 -303.52687 -7.602285 -0.326966 -0.00753 3.852266 -1.998159 3.293526 0
9 -592.199498 -592.204572 -3.184479 -0.279741 0.025431 1.006035 0.654288 -0.764208 -0.000739
10 -592.198112 -592.203298 -3.254658 -0.282648 0.024006 1.307978 -0.098133 -1.304291 0.000691
11 -269.231198 -269.236944 -3.605648 -0.269791 0.058325 0.764255 0.447519 -0.619527 -0.000053
12 -269.2255 -269.23125 -3.607936 -0.273627 0.056013 1.236591 -0.08754 -1.233488 0.000887
13 -249.377746 -249.387944 -6.399138 -0.253976 0.085194 2.3648 -0.424663 2.326358 0.001263
14 -265.402102 -265.413447 -7.119553 -0.298399 0.059076 3.327758 1.717168 -2.850492 -0.000942
15 -265.408965 -265.423429 -9.076523 -0.300771 0.05996 2.770402 2.474451 1.245879 0.000179
16 -265.41715 -265.432012 -9.326421 -0.281143 0.069265 5.606389 -1.283138 -5.457578 0.000982
17 -265.430052 -265.44682 -10.521879 -0.273885 0.074125 5.149403 -4.821765 1.807453 0.007536
18 -281.422654 -281.438995 -10.25389 -0.318599 0.03554 6.463688 -2.120071 6.106108 0
19 -297.449575 -297.468754 -12.035135 -0.370799 0.022432 7.914928 0.869632 7.867009 0
20 -297.459801 -297.481551 -13.648337 -0.357342 0.025114 7.833508 7.413467 2.530681 0

Compound Gas Phase Energy Solution Phase Energy Solvation Energy       
(kcal/mol)

HOMO LUMO QM Dipole 
(D)

QM Dipole X 
(D)

QM Dipole Y 
(D)

QM Dipole Z 
(D)

2 -271.586283 -271.590317 -2.531579 -0.240484 -0.002368 0.460872 -0.28335 -0.363478 0
3 -287.623258 -287.631235 -5.005546 -0.254 -0.026448 2.653929 2.625399 -0.3881 0
4 -287.620856 -287.629059 -5.147537 -0.253428 -0.024674 3.301769 1.224918 3.066147 0
5 -287.621888 -287.630728 -5.547271 -0.262344 -0.024969 3.720652 -1.909846 -3.193077 0
6 -303.661245 -303.672505 -7.065548 -0.258114 -0.043193 2.378039 1.099844 2.108415 0
7 -303.661277 -303.672723 -7.182538 -0.262396 -0.043493 3.47384 1.062114 3.307488 0
8 -303.657945 -303.669523 -7.26515 -0.262922 -0.045637 3.845258 -1.995072 3.287202 0
9 -592.336615 -592.34097 -2.732324 -0.227609 -0.010826 1.009217 0.638246 -0.781768 -0.000738
10 -592.335265 -592.339726 -2.799249 -0.230406 -0.012386 1.364935 -0.105954 -1.360816 0.000601
11 -269.358227 -269.363164 -3.097821 -0.217786 0.016959 0.750408 0.414392 -0.625612 -0.000029
12 -269.352698 -269.357654 -3.109574 -0.221117 0.01455 1.227594 -0.098625 -1.223626 0.000815
13 -249.50171 -249.51078 -5.69162 -0.201869 0.043741 2.279418 -0.414338 2.241443 0.001174
14 -265.527471 -265.537828 -6.499675 -0.244664 0.016147 3.249848 1.667978 -2.78915 -0.00086
15 -265.534464 -265.547799 -8.367494 -0.246286 0.017235 2.65305 2.361626 1.208883 0.000157
16 -265.540644 -265.554512 -8.702104 -0.228082 0.02573 5.498556 -1.254802 -5.353465 0.000953
17 -265.553358 -265.568995 -9.812129 -0.221088 0.031158 5.05346 -4.737936 1.757659 0.007338
18 -281.549329 -281.565063 -9.872712 -0.264785 -0.010604 6.364264 -2.109336 6.004544 0
19 -297.576723 -297.595385 -11.71033 -0.304661 -0.026359 7.787776 0.847453 7.74153 0
20 -297.586912 -297.608356 -13.456348 -0.300768 -0.023764 7.777045 7.344791 2.556654 0

Compound Gas Phase Energy Solution Phase Energy Solvation Energy       
(kcal/mol)

HOMO LUMO QM Dipole 
(D)

QM Dipole X 
(D)

QM Dipole Y 
(D)

QM Dipole Z 
(D)

2 -271.578452 -271.590317 -2.531579 -0.235541 0.002387 0.350155 -0.216006 -0.27559 0
3 -287.616222 -287.631235 -5.005546 -0.247809 -0.020994 1.803148 1.779325 -0.292143 0
4 -287.613617 -287.629059 -5.147537 -0.248305 -0.01909 2.369615 0.837358 2.216733 0
5 -287.614634 -287.630728 -5.547271 -0.249441 -0.019466 2.678329 -1.376729 -2.297404 0
6 -303.655093 -303.672505 -7.065548 -0.24486 -0.038586 1.636696 0.765002 1.446909 0
7 -303.654888 -303.672723 -7.182538 -0.249001 -0.038582 2.516365 0.699957 2.417055 0
8 -303.651395 -303.669523 -7.26515 -0.248332 -0.040486 2.78933 -1.449873 2.382904 0
9 -592.330647 -592.34097 -2.732324 -0.222568 -0.005639 0.74899 0.421677 -0.619011 -0.000133
10 -592.329344 -592.339726 -2.799249 -0.225458 -0.00733 0.970368 -0.084307 -0.966698 -0.000455
11 -269.353019 -269.363164 -3.097821 -0.213146 0.021886 0.566741 0.305094 -0.477612 -0.000307
12 -269.34739 -269.357654 -3.109574 -0.217191 0.018931 0.94826 -0.079153 -0.944951 0.000181
13 -249.495807 -249.51078 -5.69162 -0.195236 0.04802 1.744903 -0.29823 1.719228 0.001119
14 -265.522241 -265.537828 -6.499675 -0.236191 0.023951 2.379334 1.07995 -2.120126 -0.000401
15 -265.529418 -265.547799 -8.367494 -0.236305 0.023972 1.942908 1.694168 0.951151 0.000847
16 -265.535249 -265.554512 -8.702104 -0.220244 0.031237 4.134794 -0.965472 -4.020495 0.00027
17 -265.548258 -265.568995 -9.812129 -0.214502 0.034837 3.62858 -3.40388 1.257053 0.0031
18 -281.544782 -281.565063 -9.872712 -0.256426 -0.000158 4.703161 -1.40877 4.487214 0
19 -297.572866 -297.595385 -11.71033 -0.282679 -0.01712 5.932309 0.747572 5.885017 0
20 -297.5832 -297.608356 -13.456348 -0.283974 -0.015807 5.78498 5.413476 2.039676 0
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LMP2/6-31G**; gas phase 

 

 

Synthetic Procedures 

General Procedures: Reactions were magnetically stirred. Air and/or moisture 

sensitive reactions were carried out under an argon atmosphere in oven-dried 

glassware using anhydrous solvents from commercial suppliers. Air and/or moisture 

sensitive reagents were transferred via syringe or cannula and were introduced into 

reaction vessels through rubber septa. All anhydrous solvents used were purchased 

from Sigma-Aldrich and used without further purification. Solvents to be employed in 

flash column chromatography and reaction work-up procedures were purchased from 

either Sigma-Aldrich or Fisher Scientific. All other reagents were obtained commercially 

and used without further purification, unless otherwise stated. Reactions were 

monitored using LCMS and thin layer chromatography (TLC) performed on 0.25-mm 

EMD pre-coated glass-backed silica gel 60 F-254 plates. Compounds were visualized 

under UV light or through staining with permanganate, bromocresol green, or magic, 

when appropriate. Reaction products and chromatography fractions were concentrated 

Compound Gas Phase Energy Solution Phase Energy Solvation Energy       
(kcal/mol)

HOMO LUMO QM Dipole 
(D)

QM Dipole X 
(D)

QM Dipole Y 
(D)

QM Dipole Z 
(D)

2 -270.660593 -271.590317 -2.531579 -0.316801 0.143843 0.460872 -0.28335 -0.363478 0
3 -286.67968 -287.631235 -5.005546 -0.331147 0.122068 2.653929 2.625399 -0.3881 0
4 -286.678839 -287.629059 -5.147537 -0.330547 0.125119 3.301769 1.224918 3.066147 0
5 -286.679482 -287.630728 -5.547271 -0.340129 0.124353 3.720652 -1.909846 -3.193077 0
6 -302.704589 -303.672505 -7.065548 -0.360591 0.108706 2.378039 1.099844 2.108415 0
7 -302.702124 -303.672723 -7.182538 -0.366447 0.107929 3.47384 1.062114 3.307488 0
8 -302.70012 -303.669523 -7.26515 -0.35725 0.1059 3.845258 -1.995072 3.287202 0
9 -591.120704 -592.34097 -2.732324 -0.311406 0.132776 1.009217 0.638246 -0.781768 -0.000738
10 -591.119356 -592.339726 -2.799249 -0.315113 0.129543 1.364935 -0.105954 -1.360816 0.000601
11 -268.511014 -269.363164 -3.097821 -0.301147 0.170253 0.750408 0.414392 -0.625612 -0.000029
12 -268.505703 -269.357654 -3.109574 -0.30605 0.166146 1.227594 -0.098625 -1.223626 0.000815
13 -248.684136 -249.51078 -5.69162 -0.281473 0.195672 2.279418 -0.414338 2.241443 0.001174
14 -264.696015 -265.537828 -6.499675 -0.332034 0.173594 3.249848 1.667978 -2.78915 -0.00086
15 -264.702661 -265.547799 -8.367494 -0.333524 0.172465 2.65305 2.361626 1.208883 0.000157
16 -264.708941 -265.554512 -8.702104 -0.308957 0.183902 5.498556 -1.254802 -5.353465 0.000953
17 -264.721616 -265.568995 -9.812129 -0.303034 0.187446 5.05346 -4.737936 1.757659 0.007338
18 -280.703001 -281.565063 -9.872712 -0.350306 0.152408 6.364264 -2.109336 6.004544 0
19 -296.715009 -297.595385 -11.71033 -0.40561 0.14152 7.787776 0.847453 7.74153 0
20 -296.724616 -297.608356 -13.456348 -0.39568 0.142856 7.777045 7.344791 2.556654 0
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by rotary evaporation at 30-35 °C at 20 Torr, then Hi-Vac at 0.5 Torr overnight, unless 

otherwise indicated. 

 

Instrumentation: NMR spectra were recorded on a Bruker AvanceIII HD 400 MHz 

spectrometer (with 5 mm BBFO Z-gradient Smart Probe) calibrated to CH(D)Cl3 as an 

internal reference (7.26 and 77.00 ppm for 1H and 13C NMR spectra, respectively). Data 

for 1H NMR spectra are reported in terms of chemical shift (δ, ppm), multiplicity, 

coupling constant (Hz), and integration. Data for 13C NMR spectra are reported in terms 

of chemical shift (δ, ppm), with multiplicity and coupling constants in the case of C–F 

coupling. The following abbreviations are used to denote the multiplicities: s = singlet; d 

= doublet; dd = doublet of doublets; dt = doublet of triplets; dq = doublet of quartets; ddd 

= doublet of doublet of doublets; t = triplet; td = triplet of doublets; tt = triplet of triplets; q 

= quartet; qd = quartet of doublets; quin = quintet; sex = sextet; m = multiplet. LCMS 

and compound purity were determined using a Waters Micromass ZQ 4000, equipped 

with a Waters 2795 Separation Module, Waters 2996 Photodiode Array Detector, and a 

Waters 2424 ELSD. Separations were carried out with an XBridge BEH C18, 5µm, 4.6 x 

20 mm column, at ambient temperature (unregulated), using a mobile phase of water-

methanol containing a constant 0.1% formic acid. HPLC was performed on a Waters 

2535 Separation Module with a Waters 2998 Photodiode Array Detector. Separations 

were carried out with an XBridge BEH C18, 5µm, 19 x 50 mm column, at ambient 

temperature (unregulated), using a mobile phase of water-methanol containing a 

constant 0.05% formic acid. Column chromatography was carried out using a Biotage 

SP1 flash chromatography system with silica gel cartridges from Silicycle. 
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General Procedure A: A 20 mL vial is charged with the appropriate carboxylic acid (1.0 

equiv.), commercially available 3-(1H-tetrazol-5-yl)aniline (1.1 equiv.), DMF, N,N-

diisopropylethylamine (2.1 equiv.), and HATU (1.1 equiv.). The reaction mixture is 

stirred for 18h or until judged complete by LCMS. The crude reaction mixture is directly 

purified by reverse phase HPLC (water/MeOH/0.05% formic acid) to afford the desired 

product. 

 

General Procedure B: A 20 mL vial is charged with the appropriate carboxylic acid (1.0 

equiv.), DMF, and N,N-diisopropylethylamine (1.0 equiv.). HATU (1.05 equiv.) is then 

added, and the reaction mixture is allowed to stir for 20 minutes. Commercially available 

3-(1H-tetrazol-5-yl)aniline (1.1 equiv.) and N,N-diisopropylethylamine (1.1 equiv.) are 

subsequently added, and the reaction is stirred at room temperature for 24 h or until 

judged complete by LCMS. The crude reaction mixture is directly purified by reverse 

phase HPLC (water/MeOH/0.05% formic acid) to afford the desired product. 

 

General Procedure C: A 20 mL vial is charged with the appropriate t-butyl ester (1.0 

equiv.), fitted with a septa, and purged with Ar. The vial is then charged with dry 4M HCl 

in dioxanes (4 mL), and the reaction is stirred at room temperature for 18-72h or until 

judged complete by LCMS. The reaction mixture is then concentrated and dried under 

hivac overnight, affording the desired semi-crude product. 
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General Procedure D: A 3 mL vial with cap is purged with Ar and charged with the 

appropriate halide (1.0 equiv), bis(pinacoloto)diboron (1.1 equiv.), potassium acetate 

(2.0 equiv.), 1,1'-bis(diphenylphosphino)ferrocene-palladium(II)dichloride 

dichloromethane complex (0.02 equiv.), and dry tetrahydrofuran (1 mL). The reaction 

mixture is purged with Ar, sealed, and heated at 80 °C for 18h. The reaction mixture is 

then cooled to rt and charged with a solution of potassium carbonate (2.0 equiv.) in 

water (620 uL), the second halide (1.2 equiv.), and 1,1'-

bis(diphenylphosphino)ferrocene-palladium(II)dichloride dichloromethane complex (0.02 

equiv.). The reaction mixture is purged with Ar, sealed, and vigorously stirred at 80 °C 

for 18h. The crude reaction mixture is then transferred to a sep funnel with ~ 75 mL 

EtOAc and ~10 mL water. ~ 50 mL sat. NaHCO3 is added, the layers separated, and 

the organic layer further washed with ~ 40 mL water and brine. The organic layer is 

dried over MgSO4, concentrated, and purified on a silica column with EtOAc:hexanes to 

afford the desired product. 

 

General Procedure E: S1 (1 equiv.) and an aqueous K2CO3 solution (1M, 1.25 equiv.) 

were added to 0.5 mL of 1,4 dioxane. Argon was bubbled through the resulting solution 

to remove oxygen before the boronic acid (1.2 equiv.) and 1,1'-

bis(diphenylphosphino)ferrocene-palladium(II)dichloride dichloromethane complex (0.05 

equiv.) were added. The reaction was then warmed to 80 °C and stirred until complete 

by LCMS (18–24h). The reaction mixture was allowed to cool to r.t., diluted with MeOH, 

and filtered through celite. The filtrate was concentrated and purified as noted. 
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General Procedure F: Aryl t-butyl ester (1 equiv.) was suspended in 1:1 TFA/CH2Cl2 

and stirred until complete by either TLC or LCMS (3-18 h). Solvent was removed in 

vacuo and the resulting crude acid was used without further purification. The newly 

generated acid (1.0 equiv.), triethylamine (3.0 equiv.), and 3-(1H-tetrazol-5-yl)aniline 

(1.2 equiv.) were suspended in 0.5 mL DMF and placed under argon. HATU (1.5 equiv.) 

was added and the reaction was stirred until complete by LCMS (18-24h). The reaction 

was then diluted with DMF and purified by reverse phase HPLC (water/MeOH/0.05% 

formic acid) to afford the desired product. 

 

 
 
tert-butyl 3-bromo-5-(trifluoromethyl)benzoate (S1). Commercially available 3-

bromo-5-trifluoromethylbenzoic acid (5.000 g, 18.6 mmol, 1.0 equiv) was dissolved in 

dry dichloromethane (50 ml). N,N-dimethylformamide (400 ul, 5.2 mmol, 0.3 equiv) was 

added; oxalyl chloride (2.000 ml, 23.3 mmol, 1.3 equiv.) was subsequently added 

dropwise. The reaction mixture was allowed to stir at rt for 4h. The solvent was then 

removed under reduced pressure, and the residue was azeotroped with toluene twice. 

The remaining residue was diluted with dry tetrahydrofuran (65 mL) and cooled to 0 °C. 

Lithium tert-butoxide (2.976 g, 37.2 mmol, 2.0 equiv) was added in bulk to the reaction 

mixture; the reaction mixture was allowed to slowly warm to rt over 18h. ~ 100 mL water 

was then added, and the reaction mixture was extracted with 2 x 100 mL EtOAc. The 

organics were washed with ~ 50 mL 0.1 N HCl, water, and brine, then dried over 

MgSO4. Purified on a silica column with 0-5% EtOAc:hexanes. S1 (4.589, 76%) 

CF3
O

O

Br
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obtained as a colorless, crystalline solid. 1H NMR (400 MHz, CDCl3) δ = 8.30 (s, 1H), 

8.18 (s, 1H), 7.93 (s, 1H), 1.63 (s, 9H); 13C NMR (100 MHz, CDCl3) δ = 163.01, 135.72, 

134.67, 132.49 (q, J = 33.5 Hz), 132.00 (q, J = 3.7 Hz), 125.02 (q, J = 3.7 Hz), 122.71, 

122.83 (q, J = 272.9 Hz), 82.78, 28.08; 19F NMR (376 MHz, CDCl3) δ = -62.89 (s, 3F); 

did not ionize by ESI. 

 

 
 
tert-butyl 5-(trifluoromethyl)-[1,1'-biphenyl]-3-carboxylate (S2). S1 was reacted with 

commercially available phenylboronic acid according to general procedure E. Crude 

product was filtered through a silica gel plug; the plug was washed with hexanes and 

the product eluted with ethyl acetate. S2 (46 mg, 65%) obtained as a colorless liquid. 1H 

NMR (400 MHz, CDCl3) δ = 8.42 (s, 1H), 8.24, (s, 1H), 8.01 (s, 1H), 7.64 - 7.67 (m, 2H), 

7.50 - 7.54 (m, 2H), 7.43 - 7.47 (m, 1 H), 1.67 (s, 9H); did not ionize by ESI. 

 

 
 

N-(3-(1H-tetrazol-5-yl)phenyl)-5-(trifluoromethyl)-[1,1'-biphenyl]-3-carboxamide (2). 

S2 (46.0 mg, 0.173 mmol, 1.0 equiv) was reacted according to general procedure F. 2 

(28.8 mg, 50% over two steps) was obtained as a white solid. 1H NMR (400 MHz, 

acetone-d6) δ = 10.16 (br s, 1H), 8.69 (s, 1H), 8.61 (s, 1H), 8.35 (s, 1H), 8.19 (s, 1H), 

8.07 (br d, J = 8.04 Hz, 1H), 7.93 (br d, J = 7.67 Hz, 1H), 7.86 (br d, J = 7.43 Hz, 2H), 

CF3
O

O
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H
N

O
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N
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7.54 - 7.65 (m, 3H), 7.46 - 7.53 (m, 1H); 13C NMR (100 MHz, acetone-d6) δ = 164.22, 

156.83, 142.57, 139.97, 138.60, 136.75, 131.07 (q, J = 32.28 Hz), 129.79, 129.69, 

129.19, 128.59, 127.29, 126.21 - 126.47 (m), 125.84, 123.18 - 123.40 (m), 122.60, 

118.78; 19F NMR (376 MHz, acetone-d6) δ = -63.03 (s, 3F); HRMS (ESI) calculated for 

C21H13F3N5O [M - H]- m/z 408.1078, found 408.1070. 

 

 
 

tert-butyl 3-(pyridin-2-yl)-5-(trifluoromethyl)benzoate (S3). S1 (65.0 mg, 0.20 mmol, 

1 equiv) was reacted with commercially available 2-bromopyridine according to general 

procedure D, except 5 mol% catalyst was used. Instead of a workup, the reaction 

mixture was allowed to cool to room temperature, diluted with MeOH, and filtered 

through celite. The filtrate was concentrated and purified via silica gel with 

EtOAc:hexanes. S3 (18.0 mg, 26%) obtained as a clear liquid. 1H NMR (400 MHz, 

CDCl3) δ = 8.72 - 8.80 (m, 2H), 8.50 - 8.55 (m, 1H), 8.29 (s, 1H), 7.83 - 7.89 (m, 2H), 

7.31 - 7.38 (m, 1H), 1.66 (s, 9H); LRMS (ESI) calculated for C17H17F3NO2 [M + H]+ m/z 

324.11, found 324.02. 

 

 
 

N-(3-(1H-tetrazol-5-yl)phenyl)-3-(pyridin-2-yl)-5-(trifluoromethyl)benzamide (3). S3 

(18.0 mg, 0.056 mmol, 1.0 equiv) was reacted according to general procedure F. 3 
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(16.4 mg, 78% over two steps) obtained as a white solid. 1H NMR (400 MHz, acetone-

d6) δ = 10.31 (br s, 1H), 9.05 (s, 1H), 8.77 (dd, J = 4.75, 0.73 Hz, 1H), 8.75 (s, 1H), 8.71 

(s, 1H), 8.44 (s, 1H), 8.26 (d, J = 7.91 Hz, 1H), 8.17 (br d, J = 8.16 Hz, 1H), 7.95 - 8.01 

(m, 2H), 7.57 (t, J = 7.97 Hz, 1H), 7.46 (ddd, J = 7.52, 4.78, 0.73 Hz, 1H); 13C NMR (100 

MHz, acetone-d6) δ = 164.09, 154.21, 149.91, 140.80, 139.95, 137.42, 136.69, 130.93 

(d, J = 32.28 Hz), 129.62, 129.10, 126.11 (br d, J = 3.67 Hz), 124.78 (br d, J = 3.67 Hz), 

123.59, 122.52, 122.07, 120.87, 118.94; 19F NMR (376 MHz, acetone-d6) δ = -63.12 (s, 

3F); HRMS (ESI) calculated for C20H12F3N6O [M - H]- m/z 409.1030, found 409.1022. 

 

 
 

tert-butyl 3-(pyridin-3-yl)-5-(trifluoromethyl)benzoate (S4). S1 was reacted with 

commercially available pyridin-3-ylboronic acid according to general procedure E. Crude 

product was purified via silica gel with EtOAc:hexanes. S4 (26 mg, 40%) obtained as a 

colorless liquid. 1H NMR (400 MHz, CDCl3) δ = 8.89 - 8.94 (m, 1H), 8.70 (br d, J = 4.14 

Hz, 1H), 8.40 (s, 1H), 8.28 (s, 1H), 7.99 (s, 1H), 7.93 - 7.97 (m, 1H), 7.46 (dd, J = 7.91, 

4.87 Hz, 1H), 1.66 (s, 9H); 13C NMR (100 MHz, CDCl3) δ = 164.03, 149.56, 148.20, 

139.04, 134.60, 133.86, 131.86 (q, J = 30.08 Hz), 131.26, 127.35 - 127.54 (m), 125.62 - 

125.95 (m), 123.82, 82.49, 28.14; 19F NMR (376 MHz, CDCl3) δ = -62.68 (s, 3F); LRMS 

(ESI) calculated for C17H17F3NO2 [M + H]+ m/z 324.11, found 324.02. 
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N-(3-(1H-tetrazol-5-yl)phenyl)-3-(pyridin-3-yl)-5-(trifluoromethyl)benzamide (4). S4 

(34 mg, 0.105 mmol, 1.0 equiv) was reacted according to general procedure F. 4 (25 

mg, 58% over two steps) obtained as a white solid. 1H NMR (400 MHz, pyridine-d5) δ = 

11.72 (s, 1H), 9.27 (br s, 1H), 9.07 - 9.22 (m, 3H), 9.04 (br s, 1H), 8.76 (br d, J = 4.75 

Hz, 1H), 8.70 (s, 2H), 8.64 (s, 1H), 8.21 (br dd, J = 6.15, 1.03 Hz, 2H), 8.12 (s, 1H), 7.85 

(br dd, J = 7.85, 1.28 Hz, 1H), 7.33 (br dd, J = 7.85, 4.81 Hz, 1H); 13C NMR (100 MHz, 

pyridine-d5) δ = 165.24, 149.76, 148.58, 140.59, 139.35, 137.59, 134.48, 134.16, 

131.07 (d, J = 32.28 Hz), 130.48, 129.99, 127.61, 126.56 (br d, J = 3.67 Hz), 124.48 (br 

d, J = 4.40 Hz), 123.82, 123.13, 122.85, 119.87; 19F NMR (376 MHz, pyridine-d5) δ = -

62.03 (s, 3F); HRMS (ESI) calculated for C20H12F3N6O [M - H]- m/z 409.1030, found 

409.1023. 

 

 
 

tert-butyl 3-(pyridin-4-yl)-5-(trifluoromethyl)benzoate (S5). S1 was reacted with 

commercially available pyridin-4-ylboronic acid according to general procedure E. Crude 

product was purified via HPLC using water/MeOH/0.05% formic acid. S5 (34 mg, 54%) 

obtained as a white powder. 1H NMR (400 MHz, CDCl3) δ = 8.79 (br s, 2H), 8.45 (s, 

1H), 8.31 (s, 1H), 8.04 (s, 1H), 7.59 (br s, 2H), 1.66 (s, 9H); 13C NMR (100 MHz, CDCl3) 
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δ = 163.90, 150.61, 146.09, 139.42, 133.95, 131.92 (d, J = 33.01 Hz), 131.15, 127.35 

(br d, J = 3.67 Hz), 126.61 (q, J = 3.67 Hz), 82.60, 28.14; 19F NMR (376 MHz, CDCl3) δ 

= -62.70 (s, 3F); LRMS (ESI) calculated for C17H17F3NO2 [M + H]+ m/z 324.11, found 

324.09. 

 

 
 

N-(3-(1H-tetrazol-5-yl)phenyl)-3-(pyridin-4-yl)-5-(trifluoromethyl)benzamide (5). S5 

(19.4 mg, 0.060 mmol, 1.0 equiv) was reacted according to general procedure F. 5 (19 

mg, 77% over two steps) obtained as a white solid. 1H NMR (400 MHz, pyridine-d5) δ = 

11.74 (s, 1H), 9.26 (br d, J = 1.46 Hz, 1H), 8.77 - 8.83 (m, 2H), 8.70 (s, 3H), 8.66 (s, 

1H), 8.17 - 8.23 (m, 2H), 8.15 (s, 1H), 7.56 - 7.61 (m, 1H), 7.46 - 7.52 (m, 2H); 13C NMR 

(100 MHz, pyridine-d5) δ = 165.10, 150.80, 145.43, 140.57, 139.53, 137.64, 131.12 (d, J 

= 33.01 Hz), 130.42, 130.03, 127.47, 126.53 (br d, J = 3.67 Hz), 125.17 - 125.70 (m), 

123.16, 121.69, 119.87; 19F NMR (376 MHz, pyridine-d5) δ = -62.07 (s, 3F); HRMS 

(ESI) calculated for C20H12F3N6O [M - H]- m/z 409.1030, found 409.1023. 

 

 
 

tert-butyl 3-(pyrimidin-2-yl)-5-(trifluoromethyl)benzoate (S6). S1 (100 mg, 0.308 

mmol, 1.0 equiv) was reacted with commercially available 2-bromopyrimidine according 
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to general procedure D. S6 (75.2 mg, 75%) obtained as a white solid. 1H NMR (400 

MHz, CDCl3) δ = 9.23 (br s, 1H), 8.90 (br s, 1H), 8.86 (d, J = 4.9 Hz, 2H), 8.35 (s, 1H), 

7.28 (t, J = 4.9 Hz, 1H), 1.69 - 1.63 (m, 9H); 13C NMR (100 MHz, CDCl3) δ = 164.23, 

162.64, 157.44, 138.87, 133.48, 132.12, 131.33 (q, J = 33.0 Hz), 128.58 (q, J = 3.7 Hz), 

128.13 (q, J = 4.2 Hz), 123.77 (q, J = 272.9 Hz), 120.03, 82.17, 28.14; 19F NMR (376 

MHz, CDCl3) δ = -62.66 (s, 3F); LRMS (ESI) calculated for C16H16F3N2O2 [M + H]+ m/z 

325.11, found 324.94. 

 

 
 

3-(pyrimidin-2-yl)-5-(trifluoromethyl)benzoic acid (S7). S6 (75.2 mg, 0.232 mmol, 1.0 

equiv) was reacted according to general procedure C (24h). Semi-crude S7 (65.6 mg, 

106%) obtained as a white solid. 1H NMR (400 MHz, CD3OD, drops CDCl3) δ = 9.20 (br 

s, 1H), 8.90 (d, J = 4.9 Hz, 2H), 8.83 (br s, 1H), 8.34 (br s, 1H), 7.46 (t, J = 5.0 Hz, 1H); 

13C NMR (100 MHz, CD3OD, drops CDCl3) δ = 166.42, 161.55, 157.62, 138.31, 132.48, 

132.26, 131.21 (q, J = 33.0 Hz), 128.38 (q, J = 3.7 Hz), 128.11 (q, J = 3.7 Hz), 120.49, 

123.67 (q, J = 272.2 Hz); 19F NMR (376 MHz, CD3OD, drops CDCl3) δ = -63.99 (s, 3F); 

LRMS (ESI) calculated for C12H6F3N2O2 [M - H]- m/z 267.05, found  267.06. 
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N-(3-(1H-tetrazol-5-yl)phenyl)-3-(pyrimidin-2-yl)-5-(trifluoromethyl)benzamide (6). 

S7 (65.6 mg, 0.245 mmol, 1.0 equiv) was reacted with 3-(1H-tetrazol-5-yl)aniline in 3 

mL DMF according to general procedure B. 6 (65.4 mg, 65%) obtained as a white solid. 

1H NMR (400 MHz, CD3OD, drops CDCl3) δ = 9.18 (br s, 1H), 8.84 (d, J = 4.9 Hz, 2H), 

8.83 (br s, 1H), 8.35 (t, J = 1.7 Hz, 1H), 8.32 (br s, 1H), 7.91 (br dd, J = 1.2, 8.3 Hz, 1H), 

7.74 (br d, J = 7.8 Hz, 1H), 7.50 (t, J = 7.9 Hz, 1H), 7.36 (t, J = 4.9 Hz, 1H); 13C NMR 

(100 MHz, CD3OD, drops CDCl3) δ = 166.65, 163.18, 158.59, 157.50, 140.31, 139.95, 

137.21, 132.38 (q, J = 30.1 Hz), 131.34, 130.75, 128.59 (d, J = 3.7 Hz), 127.37 (q, J = 

3.7 Hz), 126.03, 124.49, 124.01, 124.72 (q, J = 272.2 Hz), 121.38, 120.32; 19F NMR 

(376 MHz, CD3OD, drops CDCl3) δ = -63.57 (s, 3F); HRMS (ESI) calculated for 

C19H11F3N7O [M - H]- m/z 410.0983, found 410.0974. 

 

 
 

tert-butyl 3-(pyrimidin-4-yl)-5-(trifluoromethyl)benzoate (S8). S1 (100 mg, 0.308 

mmol, 1.0 equiv) was reacted with commercially available 4-chloropyrimidine 

hydrochloride according to general procedure D, except potassium carbonate (136 mg, 

0.984 mmol, 3.2 equiv) and water (992 ul) were used in the second step. S8 (84.5 mg, 

85%) obtained as a white solid. 1H NMR (400 MHz, CDCl3) δ = 9.31 (br d, J = 1.4 Hz, 
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1H), 8.84 (d, J = 5.4 Hz, 1H), 8.80 (br s, 1H), 8.57 (br s, 1H), 8.33 (br s, 1H), 7.81 (dd, J 

= 1.5, 5.4 Hz, 1H), 1.63 (s, 9H); 13C NMR (100 MHz, CDCl3) δ = 163.71, 161.41, 

159.24, 158.03, 137.67, 133.77, 131.82 (q, J = 33.0 Hz), 130.86, 128.32 (q, J = 3.9 Hz), 

127.56 (q, J = 3.7 Hz), 123.43 (q, J = 272.9 Hz), 117.03, 82.53, 28.03; 19F NMR (376 

MHz, CDCl3) δ = -62.78 (s, 3F); LRMS (ESI) calculated for C16H16F3N2O2 [M + H]+ m/z 

325.11, found 325.01. 

 

 
 

3-(pyrimidin-4-yl)-5-(trifluoromethyl)benzoic acid hydrochloride (S9). S8 (84.5 mg, 

0.261 mmol, 1.0 equiv) was reacted according to general procedure C (24h). Semi-

crude S9 (80.8 mg, 102%) obtained as a white solid. 1H NMR (400 MHz, CD3OD) δ = 

9.60 (br s, 1H), 9.20 (d, J = 6.1 Hz, 1H), 9.16 (br s, 1H), 8.86 (br s, 1H), 8.67 (dd, J = 

1.0, 6.1 Hz, 1H), 8.50 (br s, 1H); 13C NMR (100 MHz, CD3OD) δ = 166.81, 165.56, 

153.72, 152.18, 136.13, 133.41, 132.52, 131.91 (q, J = 33.0 Hz), 129.89 (q, J = 4.2 Hz), 

128.70 (q, J = 3.9 Hz), 123.43 (q, J = 272.2 Hz), 118.72; 19F NMR (376 MHz, CD3OD) δ 

= -64.35 (s, 3F); LRMS (ESI) calculated for C12H6F3N2O2 [M - H]- m/z 267.05, found 

267.06. 
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N-(3-(1H-tetrazol-5-yl)phenyl)-3-(pyrimidin-4-yl)-5-(trifluoromethyl)benzamide (7). 

S9 (80.8 mg, 0.265 mmol, 1.0 equiv) was reacted with 3-(1H-tetrazol-5-yl)aniline in 3 

mL DMF according to general procedure B, except 2 equiv N,N-diisopropylethylamine 

(93 uL) was used in the first step. 7 (68.8 mg, 63%) obtained as a white solid. 1H NMR 

(400 MHz, DMSO-d6) δ = 10.84 (s, 1H), 9.36 (d, J = 1.0 Hz, 1H), 9.07 (br s, 1H), 9.00 

(d, J = 5.4 Hz, 1H), 8.73 (s, 1H), 8.58 (s, 1H), 8.50 (s, 1H), 8.37 (dd, J = 1.2, 5.4 Hz, 

1H), 8.03 (dd, J = 1.1, 8.2 Hz, 1H), 7.80 (d, J = 7.8 Hz, 1H), 7.63 (t, J = 8.0 Hz, 1H); 13C 

NMR (100 MHz, DMSO-d6) δ = 163.76, 160.33, 158.90, 158.70, 155.77, 139.63, 

137.60, 136.49, 130.21, 129.90, 130.22 (q, J = 33.0 Hz), 126.70 (br q, J = 3.7 Hz), 

126.40 (br q, J = 3.7 Hz), 124.93, 122.96, 122.48, 123.72 (q, J = 272.9 Hz), 118.91, 

117.95; 19F NMR (376 MHz, DMSO-d6) δ = -61.16 (s, 3F); HRMS (ESI) calculated for 

C19H11F3N7O [M - H]- m/z 410.0983, found 410.0975. 

 

 
 

tert-butyl 3-(pyrimidin-5-yl)-5-(trifluoromethyl)benzoate (S10). S1 (100 mg, 0.308 

mmol, 1.0 equiv) was reacted with commercially available 5-bromopyrimidine according 

to general procedure D. S10 (74.3 mg, 75%) obtained as a white solid. 1H NMR (400 

MHz, CDCl3) δ = 9.26 (s, 1H), 9.00 (s, 2H), 8.37 (br s, 1H), 8.30 (br s, 1H), 7.96 (br s, 
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1H), 1.61 (s, 9H); 13C NMR (100 MHz, CDCl3) δ = 163.55, 158.37, 154.96, 135.53, 

134.21, 132.40, 132.16 (q, J = 33.0 Hz), 131.06, 127.18 (q, J = 3.7 Hz), 126.53 (q, J = 

4.2 Hz), 123.32 (q, J = 272.9 Hz), 82.67, 28.02; 19F NMR (376 MHz, CDCl3) δ = -62.77 

(s, 3F); LRMS (ESI) calculated for C16H16F3N2O2 [M + H]+ m/z 325.11, found 325.09. 

 

 
 

3-(pyrimidin-5-yl)-5-(trifluoromethyl)benzoic acid hydrochloride (S11). S10 (74.3 

mg, 0.229 mmol, 1.0 equiv) was reacted according to general procedure C (48h). Semi-

crude S11 (70.1 mg, 100%) obtained as a white solid. 1H NMR (400 MHz, CD3OD, 

drops CDCl3) δ = 9.36 (s, 1H), 9.28 (s, 2H), 8.56 (s, 1H), 8.19 (s, 1H), 7.98 (s, 1H); 19F 

NMR (376 MHz, CD3OD, drops CDCl3) δ = -63.56 (s, 3F); LRMS (ESI) calculated for 

C12H6F3N2O2 [M - H]- m/z 267.05, found 266.99. 

 

 
 

N-(3-(1H-tetrazol-5-yl)phenyl)-3-(pyrimidin-5-yl)-5-(trifluoromethyl)benzamide (8). 

S11 (70.1 mg, 0.230 mmol, 1.0 equiv) was reacted with 3-(1H-tetrazol-5-yl)aniline in 2.5 

mL DMF according to general procedure B, except 2 eq N,N-diisopropylethylamine 

(80.2 uL) was used in the first step. 8 (16.5 mg, 17%) obtained as a white solid. 1H NMR 

(400 MHz, CD3OD/CD3CN/CDCl3) δ = 10.60 (s, 1H), 10.55 (br s, 2H), 9.91 (br s, 1H), 
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9.88 - 9.84 (m, 1H), 9.75 (br s, 1H), 9.61 (br s, 1H), 9.29 (br d, J = 8.3 Hz, 1H), 9.17 (br 

d, J = 7.8 Hz, 1H), 8.99 - 8.92 (m, 1H); 13C NMR (100 MHz, CD3OD/CD3CN/CDCl3) δ = 

166.15, 159.15, 157.98, 156.69, 140.71, 138.28, 137.25, 133.85, 133.01 (q, J = 33.0 

Hz), 131.22, 128.23 (br q, J = 3.7 Hz), 126.86, 126.21 (br q, J = 4.4 Hz), 124.51, 

124.33, 120.54; 19F NMR (376 MHz, CD3OD/CD3CN/CDCl3) δ = -62.05 (s, 3F); HRMS 

(ESI) calculated for C19H11F3N7O [M - H]- m/z 410.0983, found 410.0976.  

 

 
 

tert-butyl 3-(thiophen-2-yl)-5-(trifluoromethyl)benzoate (S12). A 3 mL vial with cap 

was purged with Ar and charged with S1 (100 mg, 0.308 mmol, 1.0 equiv), thiophene-2-

boronic acid (98 mg, 0.769 mmol, 2.5 equiv), cesium carbonate (251 mg, 0.769 mmol, 

2.5 equiv), tetrakis(triphenylphosphine)palladium(0) (21 mg, 0.018 mmol, 0.06 equiv), 

and dry 1,2-dimethoxyethane (2.5 mL). The reaction mixture was purged again, sealed, 

and heated at 80 °C for 18h. The crude reaction mixture was transferred to a sep funnel 

with ~ 75 mL EtOAc and ~ 5 mL water. ~ 50 mL sat. NaHCO3 was added, the layers 

separated, and the organic layer washed with ~ 50 mL water and brine. The EtOAc was 

dried over MgSO4 and concentrated. Purified on a silica column with 0-15% 

EtOAc:hexanes. S12 (70.7 mg, 70%) obtained as a glassy solid. 1H NMR (400 MHz, 

CDCl3) δ = 8.39 (br s, 1H), 8.13 (br s, 1H), 7.97 (br s, 1H), 7.43 (dd, J = 1.0, 3.7 Hz, 

1H), 7.38 (dd, J = 1.2, 5.1 Hz, 1H), 7.13 (dd, J = 3.7, 5.1 Hz, 1H), 1.66 (s, 9H); 13C NMR 

(100 MHz, CDCl3) δ = 164.09, 141.67, 135.55, 133.55, 131.51 (q, J = 33.0 Hz), 129.71, 

128.33, 126.35, 125.88 (q, J = 3.7 Hz), 124.68, 124.71 (q, J = 3.7 Hz), 123.61 (q, J = 
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272.9 Hz), 82.23, 28.08; 19F NMR (376 MHz, CDCl3) δ = -62.77 (s, 3F); did not ionize by 

ESI. 

 

 
 

3-(thiophen-2-yl)-5-(trifluoromethyl)benzoic acid (S13). S12 (70.7 mg, 0.215 mmol, 

1.0 equiv) was reacted according to general procedure C (48h). Semi-crude S13 (59.6 

mg, 102%) obtained as a white solid. 1H NMR (400 MHz, CD3OD) δ = 8.36 (s, 1H), 8.09 

(s, 1H), 7.99 (br s, 1H), 7.48 (dd, J = 1.2, 3.7 Hz, 1H), 7.45 (dd, J = 1.0, 5.1 Hz, 1H), 

7.10 (dd, J = 3.7, 5.1 Hz, 1H); 13C NMR (100 MHz, CD3OD) δ = 166.29, 140.95, 135.90, 

132.61, 131.32 (q, J = 33.0 Hz), 129.42, 128.23, 126.35, 125.29 (q, J = 3.7 Hz), 124.82, 

124.23 (q, J = 3.7 Hz), 123.66 (q, J = 271.7 Hz); 19F NMR (376 MHz, CD3OD) δ = -

64.35 (s, 3F); LRMS (ESI) calculated for C12H6F3O2S [M - H]- m/z 271.01, found 270.93. 

 

 
 

N-(3-(1H-tetrazol-5-yl)phenyl)-3-(thiophen-2-yl)-5-(trifluoromethyl)benzamide (9). 

S13 (59.6 mg, 0.219 mmol, 1.0 equiv) was reacted with 3-(1H-tetrazol-5-yl)aniline in 2.5 

mL DMF according to general procedure B. 9 (60.9 mg, 67%) obtained as a white solid. 

1H NMR (400 MHz, DMSO-d6) δ = 10.77 (s, 1H), 8.57 (t, J = 1.7 Hz, 1H), 8.50 (s, 1H), 

8.24 (s, 1H), 8.18 (s, 1H), 8.01 (dd, J = 1.2, 8.3 Hz, 1H), 7.83 (dd, J = 1.0, 3.7 Hz, 1H), 

7.80 (d, J = 7.8 Hz, 1H), 7.71 (dd, J = 1.1, 5.0 Hz, 1H), 7.61 (t, J = 7.9 Hz, 1H), 7.23 (dd, 
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J = 3.7, 4.9 Hz, 1H); 13C NMR (100 MHz, DMSO-d6) δ = 163.83, 156.04, 140.62, 

139.56, 136.45, 135.31, 130.25 (d, J = 32.3 Hz), 129.73, 128.81, 128.34, 127.60, 

126.11, 125.34, 124.40 (br d, J = 4.4 Hz), 122.95 (d, J = 4.4 Hz), 122.78, 122.40, 

123.69 (d, J = 272.9 Hz), 118.91; 19F NMR (376 MHz, DMSO-d6) δ = -61.16 (s, 3F); 

HRMS (ESI) calculated for C19H11F3N5OS [M - H]- m/z 414.0642, found 414.0634. 

 

 
 

tert-butyl 3-(thiophen-3-yl)-5-(trifluoromethyl)benzoate (S14). A 3 mL vial with cap 

was purged with Ar and charged with S1 (100 mg, 0.308 mmol, 1.0 equiv), thiophene-3-

boronic acid (98 mg, 0.769 mmol, 2.5 equiv), cesium carbonate (251 mg, 0.769 mmol, 

2.5 equiv), tetrakis(triphenylphosphine)palladium(0) (21 mg, 0.018 mmol, 0.06 equiv), 

and dry 1,2-dimethoxyethane (2.5 mL). The reaction mixture was purged again, sealed, 

and heated at 80 °C for 18h. The crude reaction mixture was transferred to a sep funnel 

with ~ 75 mL EtOAc and ~ 5 mL water. ~ 50 mL sat. NaHCO3 was added, the layers 

separated, and the organic layer washed with ~ 50 mL water and brine. The EtOAc was 

dried over MgSO4 and concentrated under reduced pressure. Purified on a silica 

column with 0-15% EtOAc:hexanes. S14 (90.1 mg, 89%) obtained as a glassy solid. 1H 

NMR (400 MHz, CDCl3) δ = 8.39 (br s, 1H), 8.16 (br s, 1H), 7.98 (br s, 1H), 7.59 (dd, J = 

1.8, 2.6 Hz, 1H), 7.45 (d, J = 1.2 Hz, 1H), 7.44 (s, 1H), 1.66 (s, 9H); 13C NMR (100 MHz, 

CDCl3) δ = 164.28, 139.96, 136.83, 133.40, 131.36 (q, J = 32.5 Hz), 130.35, 127.03, 

126.55 (q, J = 3.7 Hz), 125.96, 124.56 (q, J = 3.7 Hz), 123.73 (q, J = 272.9 Hz), 122.02, 

82.11, 28.09; 19F NMR (376 MHz, CDCl3) δ = -62.67 (s, 3F); did not ionize by ESI. 
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3-(thiophen-3-yl)-5-(trifluoromethyl)benzoic acid (S15). S14 (90.1 mg, 0.274 mmol, 

1.0 equiv) was reacted according to general procedure C (48h). Semi-crude S15 (79.3 

mg, 106%) obtained as a white solid. 1H NMR (400 MHz, CD3OD) δ = 8.41 (t, J = 1.3 

Hz, 1H), 8.12 - 8.10 (m, 1H), 8.05 - 8.02 (m, 1H), 7.74 (dd, J = 1.5, 2.9 Hz, 1H), 7.50 - 

7.48 (m, 1H), 7.46 - 7.43 (m, 1H); 13C NMR (100 MHz, CD3OD) δ = 168.34, 141.13, 

138.91, 134.07, 132.87 (q, J = 33.0 Hz), 131.90, 128.59, 127.96 (q, J = 3.7 Hz), 127.14, 

125.78 (q, J = 4.2 Hz), 123.89, 125.54 (q, J = 271.7 Hz); 19F NMR (376 MHz, CD3OD) δ 

= -64.16 (s, 3F); LRMS (ESI) calculated for C12H6F3O2S [M - H]- m/z 271.01, found 

270.93. 

 

 
 

N-(3-(1H-tetrazol-5-yl)phenyl)-3-(thiophen-3-yl)-5-(trifluoromethyl)benzamide (10). 

S15 (79.3 mg, 0.291 mmol, 1.0 equiv) was reacted with 3-(1H-tetrazol-5-yl)aniline in 2.5 

mL DMF according to general procedure B. 10 (97.3 mg, 80%) obtained as a white 

solid. 1H NMR (400 MHz, DMSO-d6) δ = 10.74 (s, 1H), 8.61 (s, 1H), 8.58 (t, J = 1.7 Hz, 

1H), 8.28 (s, 1H), 8.23 (dd, J = 1.3, 2.8 Hz, 1H), 8.21 (s, 1H), 8.04 - 8.00 (m, 1H), 7.83 - 

7.78 (m, 2H), 7.76 - 7.72 (m, 1H), 7.62 (t, J = 8.0 Hz, 1H); 13C NMR (100 MHz, DMSO-

d6) δ = 164.16, 155.92, 139.64, 139.15, 136.56, 136.23, 130.10 (q, J = 31.5 Hz), 

CF3
HO

O

S

CF3

H
N

O

NN
N
N
H

S



 84 

129.77, 129.00, 127.73, 126.33, 125.36 (d, J = 3.2 Hz), 125.10, 123.49, 122.85, 122.71 

(d, J = 3.7 Hz), 123.86 (d, J = 272.9 Hz), 122.37, 118.88; 19F NMR (376 MHz, DMSO-

d6) δ = -60.21 (s, 3F); HRMS (ESI) calculated for C19H11F3N5OS [M - H]- m/z 414.0642, 

found 414.0635. 

 

 
 

tert-butyl 3-(furan-2-yl)-5-(trifluoromethyl)benzoate (S16). S1 was reacted with 

commercially available furan-2-ylboronic acid according to general procedure E. Crude 

product was filtered through a silica gel plug; the plug was washed with hexanes and 

the product was eluted with CH2Cl2. S16 (31 mg, 50%) obtained as a colorless liquid. 1H 

NMR (400 MHz, CDCl3) δ = 8.41 - 8.46 (m, 1H), 8.29 (s, 1H), 8.02 (s, 1H), 7.65 (dd, J = 

5.66, 3.35 Hz, 1H), 7.48 (dd, J = 5.78, 3.23 Hz, 1H), 1.67 (s, 9H); did not ionize by ESI. 

 

 
 

N-(3-(1H-tetrazol-5-yl)phenyl)-3-(furan-2-yl)-5-(trifluoromethyl)benzamide (11). S16 

(28.3 mg, 0.091 mmol, 1.0 equiv) was reacted according to general procedure F. 11 (21 

mg, 58% over two steps) obtained as a white solid. 1H NMR (400 MHz, pyridine-d5) δ = 

11.71 (br s, 1H), 10.56 (br s, 2H), 9.24 (br s, 1H), 8.35 (br s, 1H), 8.08 - 8.21 (m, 3H), 

7.66 (br s, 1H), 6.96 (br d, J = 1.83 Hz, 1H), 6.54 (br s, 1H); 13C NMR (100 MHz, 

pyridine-d5) δ = 166.77, 153.04, 145.23, 142.14, 138.84, 133.62, 132.38 (br d, J = 31.54 
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Hz), 131.53, 128.61, 128.12, 124.25, 121.40, 113.94, 109.59; 19F NMR (376 MHz, 

pyridine-d5) δ = -62.3 (s, 3F); HRMS (ESI) calculated for C19H11F3N5O2 [M - H]- m/z 

398.0870, found  398.0865. 

 

 
 

tert-butyl 3-(furan-3-yl)-5-(trifluoromethyl)benzoate (S17). S1 was reacted with 

commercially available furan-3-ylboronic acid according to general procedure E. Crude 

product was purified via silica gel with hexanes:CH2Cl2. S17 (50.3 mg, 77%) obtained 

as a colorless liquid. 1H NMR (400 MHz, CDCl3) δ = 8.27 - 8.29 (m, 1H), 8.12 (s, 1H), 

7.86 (d, J = 0.85 Hz, 2H), 7.54 (t, J = 1.70 Hz, 1H), 6.78 (dd, J = 1.70, 0.73 Hz, 1H), 

1.65 (s, 9H); 13C NMR (100 MHz, CDCl3) δ = 164.31, 144.28, 139.47, 133.73, 133.43, 

131.42 (q, J = 32.52 Hz), 129.78, 125.73 - 126.14 (m), 124.79, 124.49 (q, J = 3.67 Hz), 

108.56, 82.19, 28.11; 19F NMR (376 MHz, CDCl3) δ = -62.79 (s, 3F); did not ionize by 

ESI. 

 

 
 

N-(3-(1H-tetrazol-5-yl)phenyl)-3-(furan-3-yl)-5-(trifluoromethyl)benzamide (12). S17 

(30.5 mg, 0.098 mmol, 1.0 equiv) was reacted according to general procedure F. 12 (39 

mg, 50% over two steps) obtained as a white solid. 1H NMR (400 MHz, pyridine-d5) δ = 

11.82 - 12.21 (m, 2H), 11.65 - 11.75 (m, 1H), 9.22 - 9.33 (m, 1H), 8.59 - 8.69 (m, 1H), 
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8.37 - 8.46 (m, 1H), 8.10 - 8.32 (m, 4H), 7.70 - 7.80 (m, 1H), 7.15 - 7.35 (m, 2H), 6.92 - 

7.03 (m, 1H); 13C NMR (100 MHz, pyridine-d5) δ = 165.47, 144.69, 140.66, 137.37, 

134.23, 131.04, 130.72, 130.02, 129.17, 128.91, 128.42, 127.11, 125.54 (br d, J = 3.67 

Hz), 125.13 (br d, J = 3.67 Hz), 124.93, 119.86, 108.79; 19F NMR (376 MHz, pyridine-

d5) δ = -62.17 (s, 3F); HRMS (ESI) calculated for C19H11F3N5O2 [M - H]- m/z 398.0870, 

found 398.0863. 

 

 
 

3-(trifluoromethyl)-5-(1-(triisopropylsilyl)-1H-pyrrol-3-yl)benzoic acid (S18). 

Commercially available 3-bromo-5-(trifluoromethyl)benzoic acid (54 mg, 0.20 mmol, 1 

equiv) was reacted with commercially available (1-(triisopropylsilyl)-1H-pyrrol-3-

yl)boronic acid according to general procedure E. Crude product was loaded onto a plug 

of C18-silica; the plug was washed with water and the product eluted with MeOH. Crude 

S18 was used without further purification. LRMS (ESI) calculated for C21H27F3NO2Si [M 

- H]- m/z 410.18, found 410.2. 

 

 
 

N-(3-(1H-tetrazol-5-yl)phenyl)-3-(1H-pyrrol-3-yl)-5-(trifluoromethyl)benzamide (13). 

Crude S18 was taken up in 1.0 mL of a 1M tetrabutylammonium fluoride solution in 
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THF. The reaction was stirred until complete by TLC (ca. 2 hr), then concentrated. The 

resulting crude 3-(1H-pyrrol-3-yl)-5-(trifluoromethyl)benzoic acid was reacted according 

to general procedure F. 13 (12 mg, 15% over three steps) obtained as a white solid. 1H 

NMR (400 MHz, pyridine-d5) δ = 12.17 - 12.39 (m, 1H), 11.57 - 11.72 (m, 1H), 9.23 (br 

s, 1H), 8.14 - 8.42 (m, 5H), 6.75 - 6.91 (m, 2H); 19F NMR (376 MHz, pyridine-d5) δ = -

62.11 (s, 3F); HRMS (ESI) calculated for C19H12F3N6O [M - H]- m/z 397.1030, found 

397.1023. 

 

 
 

3-(1H-pyrazol-1-yl)-5-(trifluoromethyl)benzoic acid (S19). Commercially available 3-

bromo-5-(trifluoromethyl)benzoic acid (54 mg, 0.20 mmol, 1 equiv), K2CO3 (155 mg, 1.1 

mmol, 5.6 equiv), and N,N-dimethylglycine hydrochloride (45 mg, 0.3 mmol, 1.6 equiv) 

were suspended in 0.5 mL of dry DMSO. Argon was bubbled through the resulting 

solution to remove oxygen before copper(I) iodide (30 mg, 0.2 mmol, 0.8 equiv) and 

pyrazole (18 mg, 0.3 mmol, 1.3 equiv) were added to the reaction mixture. The reaction 

was then warmed to 100 °C and stirred for 18h. The reaction mixture was allowed to 

cool to room temperature, diluted with MeOH, and filtered through celite. Crude S19 

was used without further purification. LRMS (ESI) calculated for C11H6F3N2O2 [M - H]- 

m/z 255.05, found 254.97. 

 

CF3
HO

O

N
N



 88 

 
 

N-(3-(1H-tetrazol-5-yl)phenyl)-3-(1H-pyrazol-1-yl)-5-(trifluoromethyl)benzamide 

(14). Crude S19 was reacted according to general procedure F. 14 (17 mg, 21% over 

two steps) obtained as a white solid. 1H NMR (400 MHz, pyridine-d5) δ = 11.76 (br d, J = 

13.15 Hz, 1H), 9.23 (br d, J = 12.90 Hz, 1H), 8.91 (br d, J = 13.27 Hz, 1H), 8.50 - 8.57 

(m, 1H), 8.27 - 8.45 (m, 3H), 8.09 - 8.24 (m, 3H), 7.91 (br d, J = 13.76 Hz, 1H), 6.57 (br 

d, J = 12.66 Hz, 1H); 13C NMR (100 MHz, pyridine-d5) δ = 164.87, 142.05, 140.95, 

140.51, 138.19, 131.34 (d, J = 33.01 Hz), 130.00, 127.86, 127.38, 123.20, 121.84 - 

122.04 (m), 121.49, 119.91, 117.97 (d, J = 2.93 Hz), 108.81; 19F NMR (376 MHz, 

pyridine-d5) δ = -62.33 (s, 3F); HRMS (ESI) calculated for C18H11F3N7O [M - H]- m/z 

398.0983, found 398.0976. 

 

 
 

3-(1H-pyrazol-3-yl)-5-(trifluoromethyl)benzoic acid (S20). Commercially available 3-

bromo-5-(trifluoromethyl)benzoic acid (54 mg, 0.20 mmol, 1 equiv) was reacted with 

commercially available (1H-pyrazol-3-yl)boronic acid according to general procedure E. 

Crude product was loaded onto a plug of C18-silica; the plug was washed with water 

and the product eluted with MeOH. Crude S20 was used without further purification. 

LRMS (ESI) calculated for C11H6F3N2O2 [M - H]- m/z 255.05, found 254.97. 

CF3

H
N

O

N

NN
N
N
H

N

CF3
HO

O

HN
N



 89 

 

 
 

N-(3-(1H-tetrazol-5-yl)phenyl)-3-(1H-pyrazol-5-yl)-5-(trifluoromethyl)benzamide 

(15). Crude S20 was reacted according to general procedure F. 15 (1.4 mg, 1.8% over 

two steps) obtained as a white solid. 1H NMR (400 MHz, acetone-d6) δ = 8.63 (br d, J = 

15.22 Hz, 2H), 8.33 (br s, 2H), 8.18 (s, 2H), 8.07 - 8.12 (m, 1H), 7.94 (br d, J = 7.79 Hz, 

1H), 7.58 (t, J = 7.97 Hz, 1H); 19F NMR (376 MHz, acetone-d6) δ = -63.14 (s, 3F); 

HRMS (ESI) calculated for C18H11F3N7O [M - H]- m/z 398.0983, found 398.0977. 

 

 
 

tert-butyl 3-(1H-imidazol-1-yl)-5-(trifluoromethyl)benzoate (S21). A 3 mL vial with 

cap was purged with Ar and charged with S1 (100 mg, 0.308 mmol, 1.0 equiv), 

imidazole (27 mg, 0.400 mmol, 1.3 equiv), potassium carbonate (238 mg, 1.72 mmol, 

5.6 equiv), copper(I) iodide (47 mg, 0.246 mmol, 0.8 equiv), and N,N-dimethylglycine 

hydrochloride (69 mg, 0.492 mmol, 1.6 equiv). The vial was purged with Ar; dry dimethyl 

sulfoxide (1.5 ml) was then added, and the vial was sealed and heated at 120 °C for 

18h. The crude reaction mixture was transferred to a sep funnel with ~ 75 mL EtOAc 

and ~10 mL water. ~ 50 mL sat. NaHCO3 was added, the layers separated, and the 

organic layer washed with ~ 40 mL water and brine. The organic layer was dried over 

MgSO4 and concentrated under reduced pressure. Purified on a silica column with 0-
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60% EtOAc:hexanes. S21 (34.7 mg, 36%) obtained as a white solid. 1H NMR (400 

MHz, CDCl3) δ = 8.20 (s, 1H), 8.19 (br d, J = 1.9 Hz, 1H), 7.94 (s, 1H), 7.79 (br s, 1H), 

7.36 (t, J = 1.3 Hz, 1H), 7.26 (br s, 1H), 1.63 (s, 9H); 13C NMR (100 MHz, CDCl3) δ = 

163.08, 137.94, 135.47, 135.02, 132.70 (q, J = 33.5 Hz), 131.30, 125.16, 124.85 (q, J = 

3.7 Hz), 121.51 (q, J = 3.7 Hz), 122.97 (q, J = 272.9 Hz), 117.97, 83.02, 28.02; 19F NMR 

(376 MHz, CDCl3) δ = -62.84 (s, 3F); LRMS (ESI) calculated for C15H16F3N2O2 [M + H]+ 

m/z 313.11, found 313.01. 

 

 
 

3-(1H-imidazol-1-yl)-5-(trifluoromethyl)benzoic acid hydrochloride (S22). S21 (34.7 

mg, 0.111 mmol, 1.0 equiv) was reacted according to general procedure C (24h). Semi-

crude S22 (33.8 mg, 104%) obtained as a white solid. 1H NMR (400 MHz, CD3OD) δ = 

9.70 (s, 1H), 8.62 (s, 1H), 8.46 (s, 1H), 8.41 (s, 1H), 8.25 (s, 1H), 7.84 (br s, 1H); 13C 

NMR (100 MHz, CD3OD) δ = 164.90, 136.16, 135.26, 134.52, 132.63 (q, J = 34.2 Hz), 

127.16 (q, J = 3.7 Hz), 127.04, 123.63 (q, J = 3.7 Hz), 122.98 (d, J = 272.2 Hz), 121.59, 

120.90; 19F NMR (376 MHz, CD3OD) δ = -64.15 (s, 3F); LRMS (ESI) calculated for 

C11H6F3N2O2 [M - H]- m/z 255.05, found 255.06. 
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N-(3-(1H-tetrazol-5-yl)phenyl)-3-(1H-imidazol-1-yl)-5-(trifluoromethyl)benzamide 

(16). S22 (33.8 mg, 0.115 mmol, 1.0 equiv) was reacted with 3-(1H-tetrazol-5-yl)aniline 

in 2 mL DMF according to general procedure B, except 2 eq N,N-diisopropylethylamine 

(40 uL) was used in the first step. 16 (30.2 mg, 66%) obtained as a white solid. 1H NMR 

(400 MHz, DMSO-d6) δ = 10.77 (s, 1H), 8.55 (s, 3H), 8.32 (s, 1H), 8.26 (s, 1H), 8.03 (s, 

1H), 8.00 (dd, J = 1.2, 8.3 Hz, 1H), 7.80 (d, J = 7.8 Hz, 1H), 7.61 (t, J = 7.9 Hz, 1H), 

7.20 (s, 1H); 13C NMR (100 MHz, DMSO-d6) δ = 163.91, 156.70, 139.94, 138.21, 

137.84, 136.59 (br s), 131.36 (d, J = 32.3 Hz), 130.83, 130.31, 126.17, 123.83, 123.03, 

122.96, 122.93 - 122.78 (m), 123.91 (d, J = 272.9 Hz), 120.46 - 120.30 (m), 119.25, 

118.77; 19F NMR (376 MHz, DMSO-d6) δ = -61.02 (s, 3F); HRMS (ESI) calculated for 

C18H11F3N7O [M - H]- m/z 398.0983, found 398.0976. 

 

 
 

3-(1H-imidazol-2-yl)-5-(trifluoromethyl)benzoic acid (S23). A 3 mL vial with 

cap/septa was purged with Ar and charged with imidazole (22 mg, 0.323 mmol, 1.0 

equiv), palladium(II) acetate (4 mg, 0.016 mmol, 0.05 equiv), copper(I) iodide (123 mg, 

0.646 mmol, 2.0 equiv), and S1 (210 mg, 0.646 mmol, 2.0 equiv). The vial was purged 

with Ar and charged with 1.62 mL degassed DMF (Ar bubbling for 30 min). The vial was 
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sealed and heated at 140 °C for 48h. After cooling to rt, the reaction mixture was filtered 

through a nylon 0.2 um syringe filter and purified by reverse phase HPLC 

(water/MeOH/0.05% formic acid) to afford the desired product. S23 (15.9 mg, 19%) 

obtained as a light blue solid. 1H NMR (400 MHz, CD3OD, drops CDCl3) δ = 8.80 (br s, 

1H), 8.40 (br s, 1H), 8.27 (br s, 1H), 7.33 (br s, 2H); 19F NMR (376 MHz, CD3OD, drops 

CDCl3) δ = -64.29 (s, 3F); LRMS (ESI) calculated for C11H6F3N2O2 [M - H]- m/z 255.05, 

found 255.11. 

 

 
 

N-(3-(1H-tetrazol-5-yl)phenyl)-3-(1H-imidazol-2-yl)-5-(trifluoromethyl)benzamide 

(17). S23 (15.9 mg, 0.062 mmol, 1.0 equiv) was reacted with 3-(1H-tetrazol-5-yl)aniline 

in 2.5 mL DMF according to general procedure A, except 3 eq N,N-

diisopropylethylamine (32 uL) was used. 17 (14.1 mg, 57%) obtained as a white solid. 

1H NMR (400 MHz, DMSO-d6) δ = 10.73 (br s, 1H), 8.85 (br s, 1H), 8.48 (br s, 2H), 8.29 

(s, 1H), 7.92 (br d, J = 7.8 Hz, 1H), 7.82 (br s, 1H), 7.48 (br s, 1H), 7.27 (br s, 2H); 19F 

NMR (376 MHz, DMSO-d6) δ = -61.20 (s, 3F); HRMS (ESI) calculated for C18H11F3N7O 

[M - H]- m/z 398.0983, found 398.0979. 
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tert-butyl 3-azido-5-(trifluoromethyl)benzoate (S24). A 3 mL vial with cap was purged 

with Ar and charged with S1 (125 mg, 0.384 mmol, 1.0 equiv), sodium azide (50 mg, 

0.769 mmol, 2.0 equiv), copper(I) iodide (7.3 mg, 0.038 mmol, 0.1 equiv), sodium 

ascorbate (3.8 mg, 0.019 mmol, 0.05 equiv), and N,N'-dimethyethylenediamine (6.2 ul, 

0.058 mmol, 0.15 equiv). Ethanol (1.28 ml) and water (550 ul) were then added; the vial 

was purged with Ar, sealed, and heated at 80 °C for 3h. The crude reaction mixture was 

then transferred to a sep funnel with ~ 75 mL EtOAc and ~ 30 mL water. The aqueous 

layer was basified by the addition of ~ 20 mL sat. NaHCO3; the layers were separated, 

and the organic layer was further extracted with ~ 50 mL water and brine. The organic 

layer was dried over MgSO4 and concentrated to an oil. Purified on a silica column with 

0-10% EtOAc:hexanes. Product containing fractions were combined and carefully 

rotovapped. (Note: Product is moderately volatile) S24 (93.7 mg, 85%) obtained as a 

light yellow oil. 1H NMR (400 MHz, CDCl3) δ = 7.98 (s, 1H), 7.83 (br s, 1H), 7.38 (br s, 

1H), 1.62 (s, 9H); 13C NMR (100 MHz, CDCl3) δ = 163.44, 141.48, 134.72, 132.49 (q, J 

= 33.5 Hz), 122.83, 122.47 (q, J = 4.2 Hz), 119.51 (q, J = 3.7 Hz), 123.15 (q, J = 272.9 

Hz), 82.62, 28.04; 19F NMR (376 MHz, CDCl3) δ = -63.00 (s, 3F); did not ionize by ESI. 
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tert-butyl 3-(trifluoromethyl)-5-(4-(trimethylsilyl)-1H-1,2,3-triazol-1-yl)benzoate 

(S25). A 3 mL vial was charged with S24 (93.7 mg, 0.326 mmol, 1.0 equiv), 

ethynyltrimethylsilane (1.153 mL, 8.16 mmol, 25.0 equiv), copper(I) Iodide (186 mg, 

0.979 mmol, 3.0 equiv), and N,N-diisopropylethylamine (511 ul, 2.94 mmol, 9.0 equiv). 

1.76 mL dry THF was then added, and the vial was sealed and heated at 80 °C 

overnight. The crude reaction mixture was filtered, and the filtrand was washed with ~ 

50 mL cold THF. The filtrate was concentrated under reduced pressure, affording crude 

S25 (168.4 mg, 134%) as a light brown solid. LRMS (ESI) calculated for 

C17H22F3N3O2Si [M + H]+ m/z 386.14, found 386.01. 

 

 
 

3-(1H-1,2,3-triazol-1-yl)-5-(trifluoromethyl)benzoic acid (S26). Crude S25 (168.4 mg) 

was reacted according to general procedure C (32h), except after the t-butyl was 

removed by LCMS, 4 mL water was added, and the reaction mixture was heated at 40 

°C for an additional 16h. The reaction mixture was then transferred to a sep funnel with 

~ 75 mL EtOAc and ~ 30 mL water. The aqueous layer was basified by the addition of ~ 

30 mL sat. NaHCO3; the layers were separated, and the aqueous layer was acidified to 

pH 1 with concentrated HCl. The aqueous layer was further extracted with 3 x 50 mL 
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EtOAc. The new organic layers were combined, dried over MgSO4, and concentrated. 

Semi-crude S26 (36.8 mg, 44% over two steps) obtained as a white solid. 1H NMR (400 

MHz, CD3OD, drops CDCl3) δ = 8.73 (s, 1H), 8.70 (s, 1H), 8.42 (s, 1H), 8.33 (s, 1H), 

7.93 (s, 1H); 13C NMR (100 MHz, CD3OD, drops CDCl3) δ = 166.89, 139.35, 137.41, 

133.91 (q, J = 33.7 Hz), 127.38 (q, J = 3.7 Hz), 125.87, 124.68, 124.19, 122.31 (q, J = 

3.7 Hz), 124.69 (q, J = 272.2 Hz); 19F NMR (376 MHz, CD3OD, drops CDCl3) δ = -64.16 

(s, 3F); LRMS (ESI) calculated for C10H5F3N3O2 [M - H]- m/z 256.04, found 256.05. 

 

 
 

N-(3-(1H-tetrazol-5-yl)phenyl)-3-(1H-1,2,3-triazol-1-yl)-5-(trifluoromethyl)benzamide 

(18). S26 (36.8 mg, 0.143 mmol, 1.0 equiv) was reacted with 3-(1H-tetrazol-5-yl)aniline 

in 2.5 mL DMF according to general procedure B. 18 (28.0 mg, 49%) obtained as a 

white solid. 1H NMR (400 MHz, DMSO-d6, drops EtOAc) δ = 10.85 (s, 1H), 9.12 (s, 1H), 

8.88 (s, 1H), 8.53 (s, 2H), 8.45 (s, 1H), 8.08 (s, 1H), 7.97 (br d, J = 7.5 Hz, 1H), 7.81 (br 

s, 1H), 7.56 (br t, J = 6.6 Hz, 1H); 13C NMR (100 MHz, DMSO-d6, drops EtOAc) δ = 

163.03, 156.04, 139.26, 137.48, 137.39, 134.92, 130.81 (q, J = 33.8 Hz), 129.55, 

127.54 (br), 124.10 (br d, J = 2.9 Hz), 123.92, 123.28, 122.42 (br d, J = 2.9 Hz), 123.34 

(d, J = 272.9 Hz), 121.76, 119.63 (br d, J = 2.2 Hz), 118.71 (br); 19F NMR (376 MHz, 

DMSO-d6, drops EtOAc) δ = -61.14 (s, 3F); HRMS (ESI) calculated for C17H10F3N8O [M 

- H]- m/z 399.0935, found 399.0928. 
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tert-butyl 3-amino-5-(trifluoromethyl)benzoate (S27). S1 (250 mg, 0.769 mmol, 1.0 

equiv), copper(I) iodide (29 mg, 0.154 mmol, 0.2 equiv), potassium carbonate (319 mg, 

2.31 mmol, 3.0 equiv), and trans-4-hydroxy-L-proline (40 mg, 0.308 mmol, 0.4 equiv) 

were added to a teflon screw capped vial. dimethyl sulfoxide (3 mL) and 30.0% 

ammonium hydroxide (1.500 ml, 13.5 mmol, 17.6 equiv) were added, and the reaction 

mixture was sealed and heated at 70 °C for 18h (Note: The solution began to degass 

upon addition of NH4OH – seal the vessel quickly). The reaction mixture was transferred 

to a sep funnel with ~ 75 mL water and ~ 40 mL EtOAc. The layers were separated, and 

the aqueous layer was further extracted with 2 x 40 mL EtOAc. The organic layers were 

combined, dried over MgSO4, and concentrated to give colorless oil. Purified on a silica 

column with 0-15% EtOAc:hexanes. S27 (46.5 mg, 23%) obtained as a colorless oil. 1H 

NMR (400 MHz, CDCl3) δ = 7.58 (s, 1H), 7.44 (s, 1H), 7.02 (s, 1H), 1.59 (s, 9H); 13C 

NMR (100 MHz, CDCl3) δ = 164.68, 146.90, 133.83, 131.69 (q, J = 32.3 Hz), 123.78 (q, 

J = 272.2 Hz), 118.53, 115.87 (q, J = 4.4 Hz), 114.68 (q, J = 4.2 Hz), 81.69, 28.07; 19F 

NMR (376 MHz, CDCl3) δ = -62.97 (s, 3F); LRMS (ESI) calculated for C12H15F3NO2 [M + 

H]+ m/z 262.10, found 261.97. 
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tert-butyl 3-(1H-tetrazol-1-yl)-5-(trifluoromethyl)benzoate (S28). A 3 mL vial was 

charged with S27 (46.5 mg, 0.178 mmol, 1.0 equiv). The vial was backfilled with Ar and 

charged with triethyl orthoformate (148 ul, 0.890 mmol, 5.0 equiv), sodium azide (58 

mg, 0.890 mmol, 5.0 equiv), and glacial acetic acid (1 mL). The reaction mixture was 

sealed and heated at 100 °C for 3h, then transferred to a sep funnel with ~ 75 mL water 

and ~ 40 mL EtOAc. The layers were separated, and the aqueous layer was further 

extracted with 2 x 40 mL EtOAc. The organic layers were combined, dried over MgSO4, 

and concentrated to give colorless oil. Purified on silica gel with 0-15% EtOAc:hexanes. 

S28 (33.4 mg, 60%) obtained as a white solid. 1H NMR (400 MHz, CDCl3) δ = 9.22 (s, 

1H), 8.49 (br s, 1H), 8.37 (s, 1H), 8.23 (s, 1H), 1.64 (s, 9H); 13C NMR (100 MHz, CDCl3) 

δ = 162.49, 140.57, 135.48, 134.38, 133.21 (q, J = 34.0 Hz), 127.35 (q, J = 3.7 Hz), 

124.74, 121.66 (q, J = 3.7 Hz), 122.66 (q, J = 273.4 Hz), 83.61, 28.01; 19F NMR (376 

MHz, CDCl3) δ = -62.92 (s, 3F); LRMS (ESI) calculated for C13H14F3N4O2 [M + H]+ m/z 

315.10, found 315.06. 

 

 
 

3-(1H-tetrazol-1-yl)-5-(trifluoromethyl)benzoic acid (S29). S28 (33.4 mg, 0.106 

mmol, 1.0 equiv) was reacted according to general procedure C (48h). Semi-crude S29 
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(30.0 mg, 109%) obtained as an off-white solid. 1H NMR (400 MHz, CD3OD) δ = 9.98 (s, 

1H), 8.74 (s, 1H), 8.48 (s, 1H), 8.40 (s, 1H); 13C NMR (100 MHz, CD3OD) δ = 166.54, 

143.46, 136.67, 135.85, 133.96 (q, J = 34.2 Hz), 128.10 (q, J = 3.7 Hz), 126.66, 123.14 

(q, J = 3.2 Hz), 124.59 (q, J = 272.2 Hz); 19F NMR (376 MHz, CD3OD) δ = -64.39 (s, 

3F); LRMS (ESI) calculated for C9H4F3N4O2 [M - H]- m/z 257.04, found  257.04. 

 

 
 
N-(3-(1H-tetrazol-5-yl)phenyl)-3-(1H-tetrazol-1-yl)-5-(trifluoromethyl)benzamide 

(19). S29 (30.0 mg, 0.116 mmol, 1.0 equiv) was reacted with 3-(1H-tetrazol-5-yl)aniline 

in 2 mL DMF according to general procedure B. 21 (22.1 mg, 47%) obtained as a white 

solid. 1H NMR (400 MHz, CD3OD, drops CD3CN) δ = 9.52 (s, 1H), 8.53 (s, 1H), 8.34 (s, 

1H), 8.29 (s, 1H), 8.23 (s, 1H), 7.75 (dd, J = 1.2, 8.0 Hz, 1H), 7.65 (d, J = 7.8 Hz, 1H), 

7.43 (t, J = 8.0 Hz, 1H); 13C NMR (100 MHz, CD3OD, drops CD3CN) δ = 164.82, 157.96, 

143.39, 140.43, 139.27, 136.29, 133.36 (q, J = 33.7 Hz), 131.17, 127.04, 126.57 (q, J = 

3.4 Hz), 125.43, 124.35, 124.24, 124.52 (d, J = 272.2 Hz), 122.40 (q, J = 3.7 Hz), 

120.32; 19F NMR (CD3OD, drops CD3CN) δ = -62.20 (s, 3F); HRMS (ESI) calculated for 

C16H9F3N9O [M - H]- m/z 400.0888, found 400.0881. 
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3-(1H-tetrazol-5-yl)-5-(trifluoromethyl)benzoic acid (S30). A 15 mL sealed tube was 

backfilled with argon and charged with commercially available 3-cyano-5-

(trifluoromethyl)benzoic acid (100 mg, 0.465 mmol, 1.0 equiv), sodium azide (91 mg, 

1.40 mmol, 3.0 equiv), and ammonium chloride (81 mg, 1.63 mmol, 3.5 equiv). 4 mL 

DMF was then used to wash the walls/seal area; the tube was flushed with Ar, sealed, 

and stirred at 100 °C for 18h. The crude reaction mixture was transferred to a sep 

funnel with ~ 75 mL H2O and EtOAc, and the aqueous layer was adjusted to pH 1 with 

conc. HCl. The layers were separated, and the aqueous layer was further extracted with 

2 x 30 mL EtOAc. The organics were combined, dried over MgSO4, and concentrated, 

giving brown oil. Dried on hivac overnight. The remaining residue was rotovaped with 2 

x 10 mL portions of toluene and dried under hivac again, yielding semi-crude S30 

(129.7 mg, 108%) as a brown solid. 1H NMR (400 MHz, CD3OD) δ = 8.80 (s, 1H), 8.46 

(s, 1H), 8.30 (s, 1H); 13C NMR (100 MHz, CD3OD) δ = 167.01, 158.00, 134.66, 133.11 

(q, J = 33.0 Hz), 132.41, 129.29 (br d, J = 3.7 Hz), 128.49 (br d, J = 3.7 Hz), 128.33, 

124.83 (q, J = 272.2 Hz); 19F NMR (376 MHz, CD3OD) δ = -64.41 (s, 3F); LRMS (ESI) 

calculated for C9H4F3N4O2 [M - H]- m/z 257.04, found 257.04. 
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N-(3-(1H-tetrazol-5-yl)phenyl)-3-(1H-tetrazol-5-yl)-5-(trifluoromethyl)benzamide 

(20). S30 (130 mg, 0.502 mmol, 1.0 equiv) was reacted with 3-(1H-tetrazol-5-yl)aniline 

in 3 mL DMF according to general procedure A. 22 (122.7 mg, 61%) obtained as a light 

tan solid. 1H NMR (400 MHz, CD3OD) δ = 8.82 (s, 1H), 8.45 (br s, 1H), 8.44 (t, J = 1.8 

Hz, 1H), 8.35 (s, 1H), 7.82 (dt, J = 8.2, 1.0 Hz, 1H), 7.72 - 7.67 (m, 1H), 7.48 (t, J = 7.9 

Hz, 1H); 13C NMR (100 MHz, CD3OD) δ = 166.17, 158.70, 157.72, 140.86, 138.41, 

133.14 (q, J = 33.0 Hz), 131.12, 131.01, 128.91, 127.75 - 127.47 (m), 126.25, 124.87, 

124.34, 125.02 (d, J = 272.2 Hz), 120.71; 19F NMR (376 MHz, CD3OD) δ = -64.25 (s, 

3F); HRMS (ESI) calculated for C16H9F3N9O [M - H]- m/z 400.0888, found 400.0882. 
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HRMS Spectra 
Compound 2: 

 
 
Compound 3: 
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Compound 4: 

 
 
Compound 5: 
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Compound 6: 

 
 
Compound 7: 
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Compound 8: 

 
 
Compound 9: 
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Compound 10: 

 
 
Compound 11: 

 
 



 106 

Compound 12: 

 
 
Compound 13: 
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Compound 14: 

 
 
Compound 15: 
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Compound 16: 

 
 
Compound 17: 
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Compound 18: 

 
 
Compound 19: 
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Compound 20: 
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Chapter 3 

Active-Site Druggability of Carbapenemases and  

Broad-Spectrum Inhibitor Discovery 

 

*Nicholas J. Torelli, *Afroza Akhtar, *Kyle DeFrees, Priyadarshini Jaishankar, Orville A. 

Pemberton, Xiujun Zhang, Cody Johnson, Adam R. Renslo, and Yu Chen 

*Denotes equal contribution 
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Abstract: 

Serine and metallo-carbapenemases are a serious health concern due to their 

capability to hydrolyze nearly all β-lactam antibiotics. However, the molecular basis for 

their unique broad-spectrum substrate profile is poorly understood, particularly for 

serine carbapenemases, such as KPC-2. Using substrates and newly identified small 

molecules, we compared the ligand binding properties of KPC-2 with 

the noncarbapenemase CTX-M-14, both of which are Class A β- lactamases with highly 

similar active sites. Notably, compared to CTX-M-14, KPC-2 was more potently inhibited 

by hydrolyzed β-lactam products (product inhibition), as well as by a series of novel 

tetrazole-based inhibitors selected from molecular docking against CTX-M-14. Together 

with complex crystal structures, these data suggest that the KPC-2 active site has an 

enhanced ability to form favorable interactions with substrates and small molecule 

ligands due to its increased hydrophobicity and flexibility. Such properties are even 

more pronounced in metallo-carbapenemases, such as NDM-1, which was also 

inhibited by some of the novel tetrazole compounds, including one displaying 

comparable low µM affinities against both KPC-2 and NDM-1. Our results suggest that 

carbapenemase activity confers an evolutionary advantage on producers via a broad β-

lactam substrate scope but also a mechanistic Achilles’ heel that can be exploited for 

new inhibitor discovery. The complex structures demonstrate, for the first time, how 

noncovalent inhibitors can be engineered to simultaneously target both serine and 

metallo-carbapenemases. Despite the relatively modest activity of the current 

compounds, these studies also demonstrate that hydrolyzed products and tetrazole-
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based chemotypes can provide valuable starting points for broad-spectrum inhibitor 

discovery against carbapenemases. 
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Introduction: 

β-lactam compounds, such as penicillins, are the most widely used antibiotics due to 

their effective inhibition of transpeptidases during bacterial cell wall synthesis.1-3 β-

lactamases catalyze β-lactam hydrolysis and are the primary mediators of bacterial 

resistance to these antibiotics in Gram negative bacteria.4, 5 There are four β-lactamase 

families; classes A, C, and D use a catalytic serine to form an acyl-enzyme complex 

during catalysis, whereas Class B are metalloenzymes that rely on Zn(II) ions to 

mediate the hydrolysis reaction without a covalent intermediate.6, 7 

Although extended-spectrum β-lactam antibiotics (e.g., ceftazidime) and 

carbapenems (e.g., imipenem) initially resisted hydrolysis by β-lactamases, new β-

lactamase activity has evolved against these antibiotics.8-10 Most notably, the past 

decade has seen the rise of carbapenemases able to deactivate carbapenems, often 

regarded as antibiotics of a last resort.11-15 Even more alarming is that many of these 

enzymes also function as extended-spectrum β-lactamases (ESBLs) and hydrolyze 

nearly all other β-lactam antibiotics. Among them, KPC-216-19 (Class A) and NDM-120, 21 

(Class B) enzymes cause the most serious health concerns.  

Despite the biomedical importance of KPC-2, the molecular basis of its 

carbapenemase activity is not well understood, particularly with regard to its ability to 

bind to a wide range of β-lactam substrates. The KPC-2 active site is highly similar to 

other Class A enzymes, such as CTX-M-14, a common ESBL that lacks 

carbapenemase activity.22-24 We have recently determined two complex structures of 

KPC-2 bound by hydrolyzed β-lactam products, the first such complexes obtained with a 

wild-type (WT) serine β-lactamase.23 Previous studies have suggested that the newly 
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generated carboxylate group in the product may cause unfavorable steric and 

electrostatic interactions in the active site, leading to the release of the product.25 The 

KPC-2 product complexes illustrate the differences between KPC-2 and 

noncarbapenemases, such as CTX-M-14, including a more open and hydrophobic 

active site in KPC-2. Such features are also observed in NDM-1, which harbors a 

relatively flat substrate binding pocket with a large number of hydrophobic residues.26, 27 

In this study, we investigate how these unique binding site features manifest 

themselves in carbapenemases’ interactions with small molecules, especially how these 

properties may translate into their broad substrate profile and the prospects for inhibitor 

discovery. Although the use of a β-lactamase inhibitor in conjunction with a β-lactam 

antibiotic is a well-established strategy to counter resistance, including the recent 

success of broad spectrum cyclic boronate compounds,28-31 developing cross-class β-

lactamase inhibitors active against both serine and metallo-carbapenemases remains 

extremely challenging because of their fundamentally different catalytic mechanisms 

and three-dimensional structures.28, 32, 33 Our results, particularly crystal structures of 

novel compounds bound noncovalently by KPC-2 and NDM-1, provide valuable insights 

for drug discovery efforts against these clinically important enzymes. 

 

Results and Discussion: 

Product inhibition of noncarbapenemase vs carbapenemase 

Our recent determination of two KPC-2 product complex crystal structures, together 

with previous NDM-1 product complexes,26, 34, 35 suggest that hydrolyzed β-lactam 

products can potentially serve as inhibitors of carbapenemases. In comparison, 
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previous attempts to obtain product complexes with other WT serine β-lactamase 

crystals were unsuccessful, partially for reasons described above. To quantify the 

difference in interactions with the product, we tested two hydrolyzed products, penicillin 

1 (penicillin G) and cephalosporin 2 (cephalothin), against the noncarbapenemase CTX- 

M-14, as well as the carbapenemases KPC-2 and NDM-1 (Table 3-1). Interestingly, 

both products inhibited KPC-2 much more potently than CTX-M-14, despite the highly 

similar active sites of the two Class A β-lactamases. Hydrolyzed penicillin G did not 

show any inhibition of CTX-M-14 at the highest concentration tested in our assays (10 

mM), although previous studies showed that hydrolyzed penicillins inhibited other 

narrow-spectrum β-lactamases with a Ki ∼ 40 mM.36 In comparison, the hydrolyzed 

penicillin G was found to be a high-µM inhibitor of both KPC-2 and NDM-1. Even more 

impressively, hydrolyzed cephalothin inhibited KPC-2 and NDM-1 with apparent Ki 

values of 1.96 and 63.5 µM, respectively, while showing only mM affinity for CTX-M-14. 

These results demonstrate that the hydrolyzed β-lactams studied interact more 

favorably with carbapenemases as compared to otherwise similar noncarbapenemases.  

 

Table 3-1. Inhibition by Hydrolyzed β-Lactam Products  
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Binding of novel small molecule ligands by CTX-M-14 and KPC-2 

We have previously used a structure-based fragment-screening approach to identify 

the first nM non-covalent serine β-lactamase inhibitors using a tetrazole-based scaffold, 

targeting CTX-M.37, 38 We found that the tetrazole ring displays high shape and 

electrostatic complementarity with an active site pocket that binds to the substrate 

C3(4)-carboxylate group in CTX-M. On the basis of the conservation of this site in Class 

A β-lactamases, we hypothesized that tetrazole-bearing compounds may inhibit KPC-2 

as well. We virtually screened a series of tetrazole-containing fragments and lead-sized 

compounds against CTX-M-14, followed by biochemical evaluation against CTX-M-14, 

KPC-2, and NDM-1. Among the active inhibitors identified, every one demonstrated 

enhanced activity against KPC-2 compared to CTX-M-14, by approximately 5-fold or 

more (Table 3-2).  
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Table 3-2. Inhibition by Tetrazole-Based Compoundsa 

 
a All compounds were obtained from commercial sources, except 7s* and 8*, which 
were synthesized. Compounds 8 and 8* are racemates. 
 

To illustrate the structural basis of this difference, we determined the crystal 

structures of two compounds in complex with CTX-M-14 and KPC-2, which, for the first 

time, demonstrated that the tetrazole moiety can indeed bind to the C3(4)-carboxylate 

binding site in other Class A β- lactamases besides CTX-M (Figure 3-1). Compound 3 

showed a nearly identical binding mode for both proteins (Figure 3-1A, B). The 

tetrazole moiety is nestled in a conserved subpocket consisting of three polar residues 

 

 Structure CTX-M14 
(µM) 

KPC-2 
(µM) 

NDM-1 
(µM) 

3 

 

4200 ± 300 386 ± 33 No     
inhibition 

4 

 

No     
inhibition 123 ± 37 No     

inhibition 

5 

 

1780 ± 320 288 ± 27 No     
inhibition 

6 
 

2540 ± 410 195 ± 44 No     
inhibition 

7 

 

1850 ± 640 239 ± 23 56 ± 8 

7s* 

 

637 ± 123 44 ± 6 62 ± 9 

8 

 

No      
inhibition 231 ± 6 376 ± 22 

8* 

 

No     
inhibition 315 ± 19 290 ± 13 
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and a Gly. It stacks on top of the relatively flat peptide backbone surrounding Gly236 

and forms three hydrogen bonds with Ser130, Thr235, and Ser/Thr237 in CTX-M-

14/KPC-2. Compound 3 also establishes a hydrogen bond with Asn132 in both proteins. 

However, the distal dichlorobenzene ring engages in more nonpolar interactions with 

Pro104, Trp105, and Leu167 in KPC-2, in comparison to Asn104 and Tyr105 in CTX-M-

14.  

 

 
Figure 3-1. Complex crystal structure of compounds 3 and 6 with CTX-M-14 and 
KPC-2. (A) Compound 3 with CTX-M-14. (B) Compound 3 with KPC-2. (C) Compound 6 
with CTX-M-14. (D) Compound 6 with KPC-2. The simulated annealing composite Fo−Fc 
omit map (gray) are contoured at 2.5 σ and 2 σ for the CTX-M-14 (1.4 Å resolutions) 
and KPC-2 structures (1.7−2.2 Å resolutions), respectively. Black-dashed lines depict 
hydrogen bonds. 



 120 

 

Compound 6 adopted slightly different poses in the two Class A β-lactamases 

(Figure 3-1C, D). In CTX-M-14, the tricyclic ring system flips up to interact with Ser237 

and the protein backbone between Ser237 and Gly238 at the end of the β3 strand; in 

KPC-2, it stacks on top of Trp105 while forming additional nonpolar interactions with 

Leu167. The more extensive nonpolar interactions of both 3 and 6 in KPC-2 explain the 

approximately 10 fold higher binding affinity. 

 

Dual inhibition of serine and metallo-carbapenemases 

The majority of the newly identified tetrazole compounds did not inhibit NDM-1. This 

result is unsurprising, considering that Class A and B β-lactamases have drastically 

different catalytic mechanisms and three-dimensional structures, and that the 

compounds were originally selected for CTX-M-14. However, two compounds, 7 and 8, 

were active against both KPC-2 and NDM-1, despite exhibiting little to no activity 

against CTX-M-14 (Table 3-2). In particular, compound 7 showed Ki values of 239 µM 

for KPC-2 and 56 µM for NDM-1. Unexpectedly, the X-ray complex crystal structures of 

7 clearly revealed the bound ligand to be a regioisomer of the purported structure (7s) 

provided by the commercial compound supplier (Figure 3-2). In KPC-2, the tetrazole 

moiety binds in the same pocket as the other complex structures. The carbonyl group is 

positioned in the oxyanion hole, formed by the backbone groups of Ser70 and Thr237, 

and establishes a hydrogen bond with Thr237N. The two benzene rings have nonpolar 

contacts with Pro104, Leu167, and Asn170. In NDM-1, the tetrazole group forms 

hydrogen bonds with Lys211Nζ and Asn220N and also interacts with one of the zinc 
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ions. This is the same subpocket bound by the substrate C3(4)-carboxylate group in 

previous NDM-1 product complex structures.26, 34, 35 Meanwhile, the amide linker points 

its oxygen toward the zinc ion, with a distance of 2.5 Å, suggesting weak interactions. In 

addition, the distal ring system forms extensive nonpolar interactions with Leu65, 

Met67, Val73, and Trp93. 

 

 
Figure 3-2. Complex crystal structure of compound 7 with KPC-2 (A) and NDM-1 
(B). The simulated annealing composite Fo−Fc omit map (gray) contoured at 2.0 σ for 
KPC-2 (1.86 Å resolution) and 2.5 σ for NDM-1 (1.15 Å resolution). Black-dashed lines 
depict hydrogen bonds or coordination with metal ions. 
 

We subsequently synthesized compound 7s, and the regioisomeric form purported 

to comprise the original commercial sample. Compared with 7, analog 7s displayed 

similar activity for NDM-1 but better affinity for KPC-2, resulting in comparable Ki’s for 

both proteins (44 and 62 µM for KPC-2 and NDM-1, respectively) and similar ligand 

efficiency values (0.24 and 0.23 kcal/mol per heavy atom (relative binding free 

energy/HA)). The crystal structure of 7s with KPC-2 clearly shows that the amide 

carbonyl group is positioned outside the oxyanion hole, different from 7 (ESI, Figure 3-
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4). The densities for the two benzene rings are significantly weaker, likely due to 

potential alternative conformations. Overall, one of the rings is oriented downward to 

interact with Pro104, Trp105, and Leu167; whereas the other one points upward to form 

contacts with the Thr237 side chain. It appears that the aryl rings of both 7 and 7s can 

establish a large number of nonpolar interactions with the protein, yet 7s is 5-fold more 

potent than 7. We hypothesize this could be due to the displacement of the structural 

water in the oxyanion hole by 7, which can be energetically costly due to the three 

favorable hydrogen bond interactions the water forms with Ser70 and Thr237. In 

comparison, compound 7 establishes only one hydrogen bond with Thr237N through its 

carbonyl oxygen, while slightly displacing the carbonyl group of Thr237 due to some 

unfavorable interactions involving the bridging five-membered ring (Figure 3-2). 

Compound 8 also showed comparable activities for both serine and metallo-β-

lactamases (Table 3-2). To further probe the shared binding hot spots of serine and 

metallo-carbapenemases, we synthesized a small series of compound 8 analogs, 

including deconstructed fragments (10, 13, and 14) that may serve as a better starting 

point for future lead optimization (Table 3-3). The results further demonstrate that he 

amido-tetrazole scaffold could provide a novel chemotype active against two structurally 

different, yet functionally related enzymes. As expected, the majority of these 

compounds did not display better activities than compound 8. Interestingly, compound 

13 exhibited higher activity against NDM-1 than 8, even though it lacks one of the aryl 

side chains. This observation suggests that the backbone of 8 is suboptimal in its ability 

to enable both aryl groups to interact with protein. In addition, some of the new analogs, 
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particularly 11−13, are less potent against KPC-2 than NDM-1, underscoring the 

structural differences between these two enzymes.  

 

Table 3-3. Inhibition by Analogs of Compound 8a  

 
a Compounds 9, 11, and 12 are racemates.  
 

Complex crystal structures were determined for 9, a close analog of 8, with KPC-2 

and NDM-1, showing how this inhibitor is accommodated in the active sites of the two 

proteins (Figure 3-3). Although 9 was synthesized as a racemate, the R stereoisomer 

appears to fit the electron density the best in both KPC-2 and NDM-1. Despite the 

significant structural difference between these enzymes, side chains in 9 are seen to 

 
 Structure CTX-M-14 

(µM) 
KPC-2 
(µM) 

NDM-1 
(µM) 

9 

 

No      
inhibition 479 ± 41 477 ± 40 

10 
 

No      
inhibition 1070 ± 160 2140  ± 70 

11 

 

No      
inhibition 1570 ± 70 203.5 ± 29 

12 

 

No      
inhibition 2000 ± 50 310 ± 19 

13 
 

No      
inhibition 

No      
inhibition 91.5 ± 3.53 

14 
 

No      
inhibition 2370 ± 650 353 ± 3.53 
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interact favorably with residues of both proteins. The amido-tetrazole moiety is 

anchored similarly to that of compound 7 in both KPC-2 and NDM-1, although the amide 

linker is placed outside the oxyanion hole of KPC-2, resembling compound 7s. The 

electron densities for the side chains are relatively weak. There appears to be 

alternative conformations due to the rotation of the amide linker, although it is not 

possible to model them accurately at the current resolutions. Overall the α-phenyl side 

chain forms nonpolar contacts with Leu167/Asn170 in KPC-2 and Leu65/Trp93 in NDM-

1. The aniline side chain establishes less contact with both proteins; it is within van der 

Waals contact distance with selected atoms of Thr237/Gly239 of KPC-2, and 

Val73/Asn220 of NDM-1. We have also determined several other crystal structures, 

including 8 (ESI, Figure 3-5), 10, 12, and 13. The amido-tetrazole groups of these 

structures adopted similar binding modes to 9, but the densities for the side chains were 

also relatively weak for most of these compounds, again suggesting that the aryl rings 

cannot form optimal protein contacts when displayed from this scaffold backbone. 

 

 
Figure 3-3. Complex crystal structure of compound 9 with KPC-2 and NDM-1. (A) 
KPC-2, (B) NDM-1. The simulated annealing composite Fo−Fc omit map (gray) 
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contoured at 2.5 σ (1.42 Å resolution) for KPC-2 and 2σ (1.65 Å resolution) for NDM-1. 
Black dashed lines depict hydrogen bonds or coordination with metal ions. 
 

Active site druggability in carbapenemase function and inhibition  

Carbapenemases, such as KPC-2 and NDM- 1, can hydrolyze nearly all β-lactam 

compounds. Our results, particularly those comparing KPC-2 and CTX-M-14, suggest 

that carbapenemases’ broad substrate spectrum correlates with their active sites’ 

enhanced druggability, i.e., ability to interact favorably with small molecules. The active 

sites of CTX-M-14 and KPC-2 are similar, with nearly identical main chain 

configurations, except at the end of the β3 strand (G238/D240 in CTX-M-14 and 

C238/G239/V240 in KPC-2; note, that residue 239 is missing in CTX-M-14 due to 

numbering conventions) caused by the Cys69-Cys238 disulfide bond in KPC-2. The 

most significant side chain differences between the active sites of CTX-M-14 and KPC-2 

include N104P, Y105W, and P167L substitutions. These substitutions increase the 

hydrophobicity of the active site, while also making the binding pocket slightly more 

open, particularly surrounding Pro104 in KPC-2. Similarly, in NDM-1, there are a large 

number of hydrophobic residues, and the active site is relatively flat compared with 

serine β-lactamases.26, 27 In addition, in previous structures, Trp105 has demonstrated 

considerable side chain flexibility in KPC-2 compared with the equivalent Tyr105 of 

CTX-M-14, possibly allowing KPC-2 to adapt to different ligands.23 This plasticity is even 

more evident in NDM-1 with the movement of the Met67-Phe70 loop.21, 26, 34, 35 The 

increased hydrophobicity, flexibility, and openness of the active sites enables the 

carbapenemases to accommodate a wide range of β-lactams potentially also with 

enhanced binding affinities. Whereas this broad-spectrum substrate profile confers 
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evolutionary advantage in bacterial resistance, the enhanced active site druggability 

makes carbapenemases susceptible to novel inhibitor binding, exposing a key 

weakness of these enzymes. 

Tetrazole-based inhibitors have previously been identified against either serine38, 39 

or metallo-β-lactamases,40, 41 highlighting the utility of the tetrazole moiety as an anchor 

for inhibitor binding in these enzymes. In particular, the placement of the tetrazole 

moiety in our NDM-1 complex structures, determined at pH 3.85, is nearly identical to 

that in a previous complex structure of a different tetrazole inhibitor and the Bacteroides 

fragilis metallo-β-lactamase (PDB, 1A8T),36 determined at pH 6.6. These observations 

suggest that the low pH used for our NDM-1 complex crystals did not affect the binding 

of the titratable tetrazole group to the protein, most likely because the pKa of the 

tetrazole group is perturbed by the interactions with the positively charged Zn ions and 

Lys211. Furthermore, to our knowledge, these inhibitors represent the first tetrazole-

based dual-activity compounds active against both serine and metallo-β-lactamases. 

They are also the only cross-class inhibitors showing the same mode of action against 

these enzymes. Previous inhibitors, including the cyclobutanone analogs of β-lactam 

antibiotics,42, 43 cyclic boronates,31, 44 alkylboronates,45 and the recently discovered 

bisphosphonate compounds,46 appear to serve as noncovalent inhibitors for the metallo 

enzymes but deactivate serine β-lactamases mostly through a covalent mechanism. In 

addition, despite the success of cyclic boronate inhibitors, cross-class inhibitor 

development has remained challenging, with most inhibitor discovery efforts focusing on 

either serine47−55 or metallo β-lactamases.56−64 
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Our biochemical and structural data demonstrate the functional similarities between 

these two groups of enzymes, and indicate that other tetrazole-based compounds can 

potentially be developed as high affinity dual-activity inhibitors. Admittedly, the 

potencies of the unoptimized compounds described herein are relatively modest and 

are not presented as drug leads per se. Nevertheless, specific analogs, such as 7s, 

exhibit reasonable ligand efficiency values (∼ 0.24 kcal/mol per HA) against both KPC-2 

and NDM-1, and thus represent useful starting points for cross-class inhibitor discovery. 

Moreover, the complex crystal structures presented herein demonstrate how an amido-

tetrazole can occupy the substrate C3(4)-carboxylate binding subsite in both KPC-2 and 

NDM-1 and furthermore reveal additional binding hot spots in the active site. This 

structural information should be broadly useful to studies of lead discovery and 

optimization for these important drug targets. 

The inhibition of KPC-2 and NDM-1 by hydrolyzed β-lactam products, especially 

hydrolyzed cephalosporins, suggests the possibility of using these scaffolds in 

designing carbapenemase inhibitors. Our recent structure of CTX-M-14 with a penilloate 

product, where the newly generated carboxylate group is eliminated through a 

decarboxylation process, also demonstrates the broad potential of these compounds as 

β-lactamase inhibitors, similar to previous studies on Bacillus cereus β-lactamase.36,65 

Inhibition by a product fragment of tazobactam was observed for GES-2 Class A 

carbapenemase as well, although its distinct structure and binding mode represents a 

special case.66 Interestingly, hydrolyzed piperacillin products have also been shown to 

inhibit Pseudomonas aeruginosa PBP3, a member of the penicillin-binding protein 

(PBP) family, highlighting the potential value of β-lactam products in novel antibiotic 
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discovery, and the active site features shared between PBPs and serine β-

lactamases.67  

 

Conclusion: 

The biochemical and structural data in this study have illustrated unique ligand 

binding properties of carbapenemases that can be exploited in novel antibiotic 

development. Increased druggability may be characteristic of the active site not only for 

carbapenemases but also for other enzymes with broad-spectrum substrate profiles. In 

addition to hydrolyzed β-lactam products, the amido-tetrazole scaffold described here 

provides new chemotypes for further inhibitor discovery, targeting both serine and 

metallo-carbapenemases, in efforts to counter antibiotic resistance, particularly in 

bacteria coproducing both of these enzymes. 

 

Material and Methods: 

Construct design 

CTX-M-14 and KPC-2 were cloned as previously described.23, 37 The NDM-1 gene 

sequence (residues 42−270) was cloned into the pET-GST expression vector with an N-

terminal 6X His-tag and thrombin cleavage site. The NDM-1 construct was transformed 

into NEB 5-alpha competent E. coli and plated onto an LB agar plate containing 50 

µg/mL kanamycin. Single colonies were grown overnight at 37 °C in LB media 

containing 50 µg/mL kanamycin. A mini-prep kit was used to isolate plasmid DNA, and 

the nucleotide sequence of the NDM-1 construct was verified. 
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Protein expression and purification 

BL21(DE3) competent E. coli cells were transformed and used for protein 

expression for CTX-M-14, KPC-2, and NDM-1. CTX-M-14 and KPC-2 were expressed 

and purified as previously described.23, 37 For NDM-1, BL21(DE3) cells were inoculated 

into 50 mL of LB media containing 50 µg/mL of kanamycin and grown overnight at 37 

°C. For large scale production, 1 L of 2xYT media containing 50 µg/mL of kanamycin 

was inoculated with 10 mL of the overnight starter culture and grown at 37 °C with 

shaking until the OD600 reached 0.6−0.8. To initiate protein expression, isopropyl β-D-

1-thiogalactopyranoside (IPTG) was added to 0.5 mM, and protein expression was 

continued at 20 °C for 22 h. The cell pellet was prepared by centrifugation at 4000g for 

20 min at 4 °C. The cell pellet was resuspended in 35 mL of buffer A (20 mM HEPES 

pH 8.0, 500 mM NaCl, 10% (v/v) glycerol, 20 mM imidazole, 50 µM ZnSO4) with a 

protease inhibitor cocktail tablet (Roche). Cells were lysed through sonication, and the 

cell lysate was centrifuged at 45000 rpm for 1 h. The supernatant was filtered and 

loaded onto a His-trap nickel affinity column (GE healthcare Life Sciences, USA) 

previously equilibrated with buffer A. After the sample was loaded, the column was 

washed with five column volumes of the same buffer, and a linear gradient of increasing 

imidazole was used to elute the protein. Fractions containing NDM-1, based on SDS-

PAGE, were pooled, and exchanged with buffer containing 20 mM Tris-HCl pH 8.0, 150 

mM NaCl, 10% (v/v) glycerol. The 6X His-tag was cleaved at 20 °C using thrombin at an 

1:100 ratio (thrombin:NDM-1). After overnight cleavage, samples were again run 

through a His-trap nickel affinity column, and the flow through containing untagged 

NDM-1 was collected. The samples were then concentrated and prepared for a final gel 
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filtration column run. Before loading the sample, a Superdex 75 16/60 gel filtration 

column (GE healthcare Life Sciences, USA) was equilibrated with 20 mM HEPES pH 

8.0, 100 mM NaCl, and 100 µM ZnSO4. The concentration of the protein was measured 

through absorbance at 280 nm using an extinction coefficient of 27 960 M−1 cm−1. SDS-

PAGE analysis indicated that the protein was more than 95% pure. Protein fractions 

were pooled together and concentrated to 20 mg/mL. Protein samples were aliquoted, 

flash frozen with liquid nitrogen, and stored at −80 °C. 

 

Virtual screening 

A database of commercially available tetrazole-containing compounds was 

downloaded from ZINC68 and docked to the active site of an in-house structure of CTX-

M-14 using DOCK 3.669,70 and procedures described previously.38 The 1000 top 

ranking compounds were manually examined. Those showing the best complementarity 

with the protein and chemical diversity were selected and purchased.  

 

Hydrolyzed products 

Hydrolyzed penicillin G (1) was purchased from Sigma-Aldrich. Hydrolyzed 

cephalothin (2) was prepared as follows. Commercially available cephalothin (37.1 mg, 

0.094 mmol, 1.0 equiv.) was dissolved in water (47 uL) in a 1.5 mL epi tube, followed by 

dropwise addition of an aqueous 1 M sodium hydroxide solution (94 uL, 0.094 mmol, 

1.0 equiv.). The tube was lightly vortexed for 2 min, allowed to sit for 15 min, and then 

cooled to 0 °C with an ice bucket. A cooled 1 M solution of HCl (188 uL, 0.188, 2.0 

equiv.) was then added dropwise, and the resulting precipitate was filtered and washed 
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with 2 mL of 1 M HCl and 2 mL of cold water. The resulting tan powder was dried under 

hivac, affording 2 (8.5 mg, 26%) as a light tan solid. LCMS of the solid indicated a 

single, broad peak. LRMS (ESI) (m/z): [M + H]+ calculated for C14H15N2O5S2, 355.04; 

found, 355.03. 

 

Novel inhibitors 

Commercially available tetrazole compounds were purchased and purified before 

testing, except for 5 and 6, due to the low quantity. Compound synthesis is described in 

the ESI.  

 

β-lactamase inhibition assays 

The hydrolytic activity of CTX-M-14 and KPC-2 was determined using the β- 

lactamase substrate nitrocefin in a reaction buffer containing 100 mM Tris pH 7.0 and 

0.01% (v/v) Triton X-100. Nitrocefin hydrolysis was monitored using a Biotek Synergy 

Mx monochromator-based multimode microplate reader at a 486 nm wavelength. For 

CTX-M-14 and KPC-2 inhibition assays, the nitrocefin concentration used was 40 and 

10 µM, respectively. The Km of nitrocefin for CTX-M-14 is 22 µM, and for KPC-2, it is 10 

µM. For NDM-1, nitrocefin was used as a substrate in a reaction buffer consisting of 50 

mM HEPES pH 7.2, 50 µM ZnSO4, 0.01% (v/v) Triton X-100, and 1 µg/mL bovine serum 

albumin (BSA). The Km of nitrocefin for NDM- 1 is 3 µM, and the nitrocefin 

concentration used in the reaction was 10 µM. Compounds were used for IC50 

measurements up to 10 mM based on their solubility in DMSO. The final protein 

concentration used in the reaction for CTX-M-14, KPC-2, and NDM-1 was 0.3, 1, and 2 
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nM, respectively. The protein was added last to initiate the reaction. The experiments 

were performed in triplicates, and the results were averaged. 

 

Crystallization and structure determination 

CTX-M-14 was crystallized as previously described.37 Briefly; a 10 mg/ mL solution 

of CTX-M-14 was used to grow crystals in 1.0 M potassium phosphate dibasic pH 8.3. 

CTX-M-14 complex crystals were prepared via being soaked in 1.44 M sodium citrate 

and 5−10 mM inhibitors for 1−24 h based on crystal stability. KPC-2 was crystallized as 

previously described.23 Briefly, 10−20 mg/mL of KPC-2 was used to grow crystals in 2 M 

(NH4)2SO4 and 5% (v/v) ethanol. KPC-2 complex crystals were prepared via being 

soaked in 1.44 M sodium citrate and 10 mM inhibitors for 40 min. A 10 mg/mL solution 

of NDM-1 was used to grow crystals in 0.05 M potassium phosphate monobasic, 0.01 M 

calcium chloride, and 25% (w/v) PEG8000. Complex NDM-1 crystals were prepared via 

being soaked in 0.05 M sodium acetate pH 3.85, 25% (w/v) PEG8000, and 10 mM 

inhibitors. Diffraction data were collected at the beamlines 22-ID-D and 23-ID-D of the 

Advanced Photon Source (APS), Argonne National Laboratory (ANL), and beamline 

8.3.1 at the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory 

(LBNL). Data indexing, integration, and scaling were performed using HKL-2000,71 

iMOSFLM,72 and SCALA73 of the CCP4 suite.74 Phasing was performed using molecular 

replacement (PDB accession code, 1YLT for CTX-M-14; 3C5A for KPC-2; and 4TZF for 

NDM-1) with the program phaser75 of the PHENIX suite.76 Structure refinement was 

performed using phenix.refine77 of the PHENIX suite, and model building was performed 

using WinCoot.78 The eLBOW program79 of the PHENIX suite was used to generate 
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ligand restraints. The quality of the model was assessed by MolProbity.80 The 

composite omit map program81 of the PHENIX suite was used to generate composite 

simulated annealing mFo−DFc omit maps. Protein structure figures were generated 

using PyMOL (Schrödinger, LLC). 

 

Associated Content: 

Supporting information 

The electronic supporting information is provided at the end of this chapter. 

 

Accession codes 

The atomic coordinates and structure factors have been deposited in the Protein 

Data Bank (PDB) under accession codes: 6M7I (KPC-2, compound 3), 6MNP (KPC-2, 

compound 6), 6MLL (KPC-2, compound 7), 6MEY (KPC- 2, compound 9), 6MD8 (CTX-

M-14, compound 3), 6MIA (CTX-M-14, compound 6), 6MDU (NDM-1, compound 7), and 

6EFJ (NDM-1, compound 9). 
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Electronic Supporting Information: 

Crystallographic Data 

Table 3-4. Crystallographic data collection and refinement statistics.  
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* Data was collected from a single crystal for each structure. Values in parenthesis are 
for the highest-resolution shell. 
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Supplementary Figures 

 
Figure 3-4. Complex crystal structure of compound 7s with KPC-2. The simulated 
annealing composite Fo – Fc omit map (gray) contoured at 1.5 σ for compound 7s with 
KPC-2. Black dashed lines depict hydrogen bonds. 
 
 

 
Figure 3-5. Complex crystal structure of compound 8 with KPC-2 and NDM-1. The 
simulated annealing composite Fo –Fc omit map (gray) contoured at 2.0 σ for both KPC-
2 (A) and NDM-1 (B). Black dashed lines depict hydrogen bonds or coordination with 
metal ions.  
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Synthetic Procedures 

General Procedures: Reactions were magnetically stirred unless otherwise indicated. 

Air and/or moisture sensitive reactions were carried out under an argon atmosphere in 

oven-dried glassware using anhydrous solvents from commercial suppliers. Air and/or 

moisture sensitive reagents were transferred via syringe or cannula and were 

introduced into reaction vessels through rubber septa. All anhydrous solvents used 

were purchased from Sigma-Aldrich and used without further purification. Solvents to be 

employed in flash column chromatography and reaction work-up procedures were 

purchased from either Sigma-Aldrich or Fisher Scientific. All other reagents were 

obtained commercially and used without further purification, unless otherwise stated. 

Reactions were monitored using LCMS and thin layer chromatography (TLC) performed 

on 0.25-mm EMD pre-coated glass-backed silica gel 60 F-254 plates. Compounds were 

visualized under UV light or through staining with permanganate. Reaction product 

solutions and chromatography fractions were concentrated by rotary evaporation at 30 

°C at 20 Torr, then Hi-Vac at 0.5 Torr overnight, unless otherwise indicated. 

 

Instrumentation: NMR spectra were recorded on a Bruker AvanceIII HD 400 MHz 

spectrometer (with 5 mm BBFO Z-gradient Smart Probe) calibrated to CH(D)Cl3 as an 

internal reference (7.26 and 77.00 ppm for 1H and 13C NMR spectra, respectively). Data 

for 1H NMR spectra are reported in terms of chemical shift (δ, ppm), multiplicity, 

coupling constant (Hz), and integration. Data for 13C NMR spectra are reported in terms 

of chemical shift (δ, ppm). The following abbreviations are used to denote the 

multiplicities: s = singlet; d = doublet; dd = doublet of doublets; dt = doublet of triplets; 
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dq = doublet of quartets; ddd = doublet of doublet of doublets; t = triplet; td = triplet of 

doublets; tt = triplet of triplets; q = quartet; qd = quartet of doublets; quin = quintet; sex = 

sextet; m = multiplet. LCMS and compound purity were determined using a Waters 

Micromass ZQ 4000, equipped with a Waters 2795 Separation Module, Waters 2996 

Photodiode Array Detector, and a Waters 2424 ELSD. Separations were carried out 

with an XBridge BEH C18, 5µm, 4.6 x 20 mm column, at ambient temperature 

(unregulated) using a mobile phase of water-methanol containing a constant 0.1% 

formic acid. HPLC was performed on a Waters 2535 Separation Module with a Waters 

2998 Photodiode Array Detector. Separations were carried out with an XBridge BEH 

C18, 5µm, 19 x 50 mm column, at ambient temperature (unregulated) using a mobile 

phase of water-methanol containing a constant 0.05% formic acid. 

  

General Procedure A: A vial is charged with the appropriate carboxylic acid (1.0 

equiv), DMF, and N,N′-diisopropylethylamine (1.0 equiv). HATU (1.05 equiv) is then 

added, and the reaction mixture is allowed to stir for 10 minutes. 5-aminotetrazole 

monohydrate (1.1 equiv) and N,N′-diisopropylethylamine (1.1 equiv) are subsequently 

added, and the reaction is stirred at room temperature for 24 h or until judged complete 

by LCMS. The crude reaction mixture is directly purified by reverse phase HPLC 

(water/MeOH/0.05% formic acid) to afford the desired product. 

 

General Procedure B: An oven-dried flask is charged with the appropriate carboxylic 

acid (1.0 equiv), CH2Cl2 (305 equiv), and DMF (20 drops). Oxalyl chloride (1.1 equiv) is 

subsequently added dropwise, and the reaction is stirred at room temperature for 3 h. 
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Separately, 5-aminotetrazole monohydrate (2.0 equiv) is suspended in CH2Cl2 (305 

equiv) and N,N′-diisopropylethylamine (3.0 equiv) in an oven-dried flask. The 

aforementioned oxalyl chloride solution is then added dropwise to this solution, followed 

by a 2.0 mL CH2Cl2 rinse of the parent flask. The reaction suspension is stirred at room 

temperature for 24 h or until judged complete by LCMS. The reaction mixture is 

concentrated under reduced pressure, taken up in DMF, and purified by reverse phase 

HPLC (water/MeOH/0.05% formic acid) to afford the desired product. 

 

 
 
1,3-Diphenyl-N-(1H-tetrazol-5-yl)-1H-pyrazole-5-carboxamide (7s*). Commercially 

available 2,5-diphenyl-2H-pyrazole-3-carboxylic acid (50 mg, 0.189 mmol, 1.0 equiv) 

was reacted with 5-aminotetrazole monohydrate in DMF (1.0 mL) according to general 

procedure A to afford 7s* (25.0 mg, 40%) as a white solid. 1H NMR (400 MHz, DMSO-

d6) δ = 12.27 (br s, 1H), 7.72 - 7.11 (m, 11H); 13C NMR (100 MHz, DMSO-d6) δ = 

160.45, 145.25, 145.17, 139.57, 129.70, 129.47, 129.31, 129.21, 129.17, 126.08, 

109.26; LRMS (ESI) calculated for C17H14N7O [M + H]+ m/z 332.11, found 332.08. 

 

 
 
2-Phenyl-2-(phenylthio)-N-(1H-tetrazol-5-yl)acetamide (8*). Commercially available 

2-phenyl-2-(phenylsulfanyl)acetic acid (100 mg, 0.409 mmol, 1.0 equiv) was reacted 
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with 5-aminotetrazole monohydrate according to general procedure B to afford 8* (70 

mg, 55%) as a white solid. 1H NMR (400 MHz, DMSO-d6) δ = 8.20 (s, 0.2H), 7.56 (br d, 

J = 6.8 Hz, 2H), 7.47 - 7.19 (m, 8H), 5.50 (s, 1H); 13C NMR (100 MHz, DMSO-d6) δ = 

168.61, 151.34, 136.35, 134.18, 131.19, 129.69, 129.17, 128.86, 128.01, 55.58; LRMS 

(ESI) calculated for C15H14N5OS [M + H]+ m/z 312.08, found 312.02. 

 

 
 
2-Phenyl-2-(phenylamino)-N-(1H-tetrazol-5-yl)acetamide (9). Commercially available 

anilino(phenyl)acetic acid (50 mg, 0.220 mmol, 1.0 eq) was reacted with 5-

aminotetrazole monohydrate in DMF (2.5 mL) according to general procedure A to 

afford 9 (12.6 mg, 20%) as a white solid. 1H NMR (400 MHz, CD3OD) δ = 7.59 (br s, 

2H), 7.49 - 7.28 (m, 3H), 7.13 (br t, J = 7.3 Hz, 2H), 6.82 - 6.63 (m, 3H), 5.22 (br s, 1H); 

13C NMR (100 MHz, CD3OD) δ = 171.73, 161.72, 146.78, 137.62, 128.73, 128.56, 

128.18, 127.39, 118.00, 113.44, 62.46; LRMS (ESI) calculated for C15H15N6O [M + H]+ 

m/z 295.12, found 294.88. 

 

 
 
2-(Phenylamino)-N-(1H-tetrazol-5-yl)acetamide (10). Commercially available phenyl 

glycine (50 mg, 0.331 mmol, 1.0 equiv) was reacted with 5-aminotetrazole monohydrate 

in DMF (2.5 mL) according to general procedure A to afford 10 (7.1 mg, 10%). 1H NMR 

(400 MHz, CD3OD, drops DMSO-d6) δ = 8.27 (s, 0.2H), 7.18 (br t, J = 7.5 Hz, 2H), 6.76 
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- 6.65 (m, 3H), 4.06 (s, 2H); LRMS (ESI) calculated for C9H11N6O [M + H]+ m/z 219.09, 

found 218.97. 

 

 
 
2-Phenyl-2-(phenylsulfinyl)acetic acid (S1). Commercially available 2-phenyl-2-

(phenylsulfanyl)acetic acid (150 mg, 0.614 mmol, 1.0 equiv) was dissolved in MeOH 

(4.0 mL) in a glass vial. A solution of potassium monopersulfate (217 mg, 1.3 mmol, 2.1 

equiv) in H2O (1.0 mL) was then added dropwise, followed by a H2O (0.5 mL) rinse of 

the vessel. The reaction suspension was stirred at room temperature for 2 h, and then 

concentrated under reduced pressure. The residue was suspended with ~ 3 mL cold 

water, filtered, washed with cold H2O and hexanes, and dried under vacuum overnight. 

Semi-crude S1 (155.2 mg) was used without further purification. LRMS (ESI) calculated 

for C14H13O3S [M + H]+ m/z 261.05, found 260.87. 

 

 
 
2-Phenyl-2-(phenylsulfinyl)-N-(1H-tetrazol-5-yl)acetamide (11). S1 (97 mg, 0.374 

mmol, 1.0 equiv) was reacted with 5-aminotetrazole monohydrate in DMF (2.5 mL) 

according to general procedure A to afford 11 (8.5 mg, 7%) as a white solid. Note: 

While the diastereomers are separable by HPLC, they interconvert on a day’s 

timescale; the diastereomeric mixture was tested in the biochemical assay. 1H NMR 
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(400 MHz, CD3OD, drops DMSO-d6)) δ = 8.45 (br s, 1H), 7.79 - 7.67 (m, 0.5H), 7.66 - 

7.05 (m, 9.5H), 5.06 (br s, 0.5H), 4.99 (br s, 0.5H); LRMS (ESI) calculated for 

C15H14N5O2S [M + H]+ m/z 328.08, found 327.83. 

 

 
 
2-Phenyl-2-(phenylsulfonyl)acetic acid (S2). Commercially available 2-phenyl-2-

(phenylsulfanyl)acetic acid (150 mg, 0.614 mmol, 1.0 equiv) was dissolved in MeOH 

(5.0 mL) in a glass vial. A solution of potassium monopersulfate (867 mg, 5.16 mmol, 

8.4 equiv) in H2O (4.0 mL) was then added dropwise at room temperature. The reaction 

suspension was stirred for 72 h, and then concentrated under reduced pressure. The 

slurry was suspended with ~ 10 mL cold water, filtered, washed with 3 x 10 mL cold 

H2O and 10 mL hexanes, and dried under vacuum overnight. Semi-crude S2 (146.1 mg) 

was used without further purification. Note: This intermediate was prone to 

spontaneous decarboxylation while in solution; appeared to be bench stable when dry. 

1H NMR (400 MHz, CD3OD) δ = 7.72 - 7.64 (m, 3H), 7.54 - 7.47 (m, 2H), 7.43 - 7.36 (m, 

3H), 7.34 - 7.28 (m, 2H), 5.39 (s, 1H); 13C NMR (100 MHz, CD3OD) δ = 166.28, 137.06, 

133.91, 130.21, 129.37, 129.15, 128.65, 128.43, 128.07, 74.39. 
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2-Phenyl-2-(phenylsulfonyl)-N-(1H-tetrazol-5-yl)acetamide (12). S2 (30 mg, 0.109 

mmol, 1.0 equiv) was reacted with 5-aminotetrazole monohydrate according to general 

procedure B, but with 5 mL CH2Cl2 (718 equiv) in each vessel. 12 (19.4 mg, 52%) 

obtained as a white solid. 1H NMR (400 MHz, CD3OD) δ = 8.33 (s, 0.4H), 7.71 - 7.64 

(m, 3H), 7.54 - 7.45 (m, 4H), 7.39 (t, J = 7.3 Hz, 1H), 7.35 - 7.27 (m, 2H); 13C NMR (100 

MHz, CD3OD) δ = 162.63, 154.56, 136.78, 134.10, 130.29, 129.44, 129.31, 128.54, 

128.39, 128.08, 100.00; LRMS (ESI) calculated for C15H14N5O3S [M + H]+ m/z 344.07, 

found 343.86. 

 

 
 
2-(Phenylthio)-N-(1H-tetrazol-5-yl)acetamide (13). Commercially available 2-

(phenylthio)acetic acid (100 mg, 0.499 mmol, 1.0 eq) was reacted with 5-aminotetrazole 

monohydrate in DMF (2.5 mL) according to general procedure A to afford 13 (18.0 mg, 

13%). 1H NMR (400 MHz, DMSO-d6) δ = 8.16 (s, 0.3H), 7.41 (d, J = 7.5 Hz, 2H), 7.33 

(br t, J = 7.5 Hz, 2H), 7.21 (t, J = 7.3 Hz, 1H), 3.95 (s, 2H); 13C NMR (100 MHz, DMSO-

d6) δ = 167.69, 163.61, 135.92, 129.53, 128.69, 126.65, 36.82; LRMS (ESI) calculated 

for C9H10N5OS [M + H]+ m/z 236.05, found 235.82. 
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2-(Phenylsulfonyl)-N-(1H-tetrazol-5-yl)acetamide (14). Commercially available 2-

(phenylsulfonyl)acetic acid (40 mg, 0.200 mmol, 1.0 equiv) was reacted with 5-

aminotetrazole monohydrate according to general procedure B, but with 5 mL CH2Cl2 

(390 equiv) in each vessel. 14 (12.2 mg, 23%) obtained as a white solid. 1H NMR (400 

MHz, DMSO-d6) δ = 8.15 (s, 0.5H), 7.92 (d, J = 7.5 Hz, 2H), 7.76 (t, J = 7.3 Hz, 1H), 

7.66 (t, J = 7.7 Hz, 2H), 4.58 (s, 2H); 13C NMR (100 MHz, DMSO-d6) δ = 163.59, 

160.11, 139.71, 134.57, 129.75, 128.53, 61.37; LRMS (ESI) calculated for C9H10N5O3S 

[M + H]+ m/z 268.04, found 267.78. 
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Chapter 4 

Targeting the Conserved Hydrophobic Shelf for Carbapenemase KPC-2 

 

Kyle DeFrees, Afroza Akhtar, Xiujun Zhang, Derek Nichols, Erica Cambeis,  

Yu Chen, and Adam R. Renslo 
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Identification of New Inhibitor Chemotypes: 

We have previously used structure-based fragment screening to identify the first nM 

non-covalent serine β-lactamase inhibitors, resulting in compound 1, an 85 nM inhibitor 

of CTX-M.1 We found that the tetrazole of 1 displays high shape and electrostatic 

complementarity with the active site pocket that binds to the β-lactam C3(4)-carboxylate 

group. Given this sites conservation across Class A β-lactamases, we hypothesized that 

permutations of the tetrazole scaffold may be well suited to inhibit the carbapenemase 

KPC-2. As seen in the superimposition of KPC-2 with the CTX-M complex of 1 (Figure 

4-1), KPC-2 harbors several important structural differences. While the C3(4)-

carboxylate binding site is well conserved with a S237T mutation, G238C and a 

structural disulfide results in a twisted β3 strand, putting G239 in direct steric clash with 

the benzimidazole of 1. While the hydrophobic sub pocket near the CF3 is conserved 

with P167L, a key hydrogen bond to the amide is lost with a N104P mutation. Notably, 

the Tyr105 hydrophobic shelf, which remains untargeted by the original scaffold, is 

maintained as Trp105 in KPC-2. Based off of these similarities, we hypothesized that 

analogs targeting this conserved shelf may be able to inhibit both CTX-M and KPC-2. 
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Figure 4-1. Compound 1 complex with CTX-M-9 superimposed onto an apo KPC-2 
structure. CTX-M: white and yellow, PDB code 4UA7; KPC-2: green, PDB code 5UL8. 
 

In order to better meet the steric requirements of the twisted β3 strand, we 

synthesized a panel of indane-type analogs with a simple aryl component (Table 4-1). 

Using a nitrocefin biochemical assay, we found that 3-fluoro-aryl syn diastereomer 2 

displayed modest CTX-M activity, but no detectable KPC-2 activity. Gratifyingly, syn 

CF3 analog 3 improved CTX-M activity 5-fold, in line with the original SAR for CTX-M, 

and displayed detectable KPC-2 activity. As expected, anti diastereomer 4 displayed no 

observable activity for either enzyme. Crystallography with the more soluble 2 revealed 

the expected binding mode with CTX-M (Figure 4-2A); the indane is well positioned 

over the Tyr105 surface, with the aryl-amide portion binding in the same orientation as 

the original scaffold. Surprisingly, soaks of 2 with KPC-2 revealed an suboptimal binding 

orientation with the unexpected enantiomer of the syn diastereomer (Figure 4-2B); 
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instead of binding down the pocket, the indane scaffold sat over the Trp105 shelf and 

out into solvent. While this result could be attributed to the weak affinity of 2 towards 

KPC-2, we thought steric clash with G239 was driving the suboptimal binding mode, 

and sought to allow more aryl flexibility by synthesizing the sp3 sulfonamides 5 and 6. 

Syn 5 did not improve KPC-2 activity over amide 3, and anti 6 retained similar activity to 

5, suggesting that the indane scaffold was binding in an unproductive manner across all 

analogs. 

 

Table 4-1. Biochemical activities of indanes 2-6.a 

 
a Relative stereochemistry indicated as the syn or anti diastereomers. b Calculated from 
IC50 using Ki = IC50/(1 + [S]/Km). Km values were measured the day of the experiment. 
IC50 values were fit from a technical triplicate with a SE < 1.1 µM. c Compound also 
displayed partial inhibition, see ESI for curves. 
 

   CTX-M-14 
Ki

b (μM) 
KPC-2   
Ki

b (μM) 

2 

 

176 > 800 

3 

 

37 386 

4 

 

> 1500 > 800 

5 

 

> 1500 ~ 270c 
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Figure 4-2. Crystal structures reveal binding mode of indane 2 to CTX-M-9 and 
KPC-2. (A) CTX-M-9. (B) KPC-2. Water molecules are shown as red hashes. Yellow 
dashes represent putative hydrogen bonds. 
 

Given these results, it appeared larger changes were required for optimal KPC-2 

inhibition. We hypothesized that pulling the amide in by one atom, to form an indoline, 

would help alleviate potential steric clashes with the β3 twist. Docking of indoline 7 

appeared to give putative binding modes where the indoline stacked against the G239 

twist (ESI, Figure 4-6), so analogs 7 and 8 were synthesized. These analogs showed 

no detectable CTX-M activity, and like the indane, had minimal differences between 

A

B
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amide 7 and sulfonamide 8 (Table 4-2). Crystallography of 7 with KPC-2 revealed a 

similar binding mode to 2 (Figure 4-3A); the aryl-CF3 stacked over Trp105 and out of 

the active site. When compared to the indane bound CTX-M (Figure 4-2A), the 

tetrazole of 7 appeared to bind at a slight angle, which may be a result of the preferred 

threonine conformation in KPC-2. With this angle in mind, we also docked amide-

spaced tetrazole 9 (Figure 4-3B), which packed nicely against the β3 twist, with 

additional H-bonding to Asp132 and hydrophobic interactions with Leu167. Biochemical 

testing of 9 and sulfonamide 10 revealed similar inhibition patterns however, with no 

detectable CTX-M activity, and no major differences in KPC-2 activity (Table 4-2). 

Docking with the more flexible tetrahydroisoquinoline 11 was uninspiring (ESI, Figure 4-

6), and while amide 11 and sulfonamide 12 showed the best KPC-2 activity, the lack of 

difference between the sp2 amide and sp3 sulfonamide suggested unproductive binding 

modes. 
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Table 4-2. Biochemical activities of analogs 7-12.a 

 
a All compounds are racemates. b Calculated from IC50 using Ki = IC50/(1 + [S]/Km). Km 
values were measured the day of the experiment. IC50 values were fit from a technical 
triplicate with a SE < 1.1 µM. c Compound also displayed partial inhibition, see ESI for 
curves. 
 

   CTX-M-14    
Ki

b (μM) 
KPC-2           
Ki

b (μM) 

7 

 

> 1500 912 

8 

 

> 1500 530b 

9 

 

> 1500 710 

10 

 

~ 1500 ~ 350 
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1300 348 
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> 1500 249 
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Figure 4-3. Crystal structure of indoline 7 with KPC-2; docking pose of indoline 9 
with KPC-2. (A) Compound 7 bound to KPC-2. (B) Selected docking pose of compound 
9 with KPC-2. Water molecules are shown as red dashes. Yellow dashed lines 
represent putative hydrogen bonds. 
 

Attempts to gain structural insight into these analogs were unsuccessful, but the 

putative docking pose of 9 suggested an opportunity to build interactions towards the 

conserved hydrophobic shelf, so a few α-modified amido-tetrazole indolines were 

synthesized (Table 4-3). While smaller modifications like methyl 13 or phenyl 14 were 

not expected to fully reach the shelf, benzyl 15 began to pick up moderate KPC-2 

A

B
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activity. Surprisingly, NHBoc 16, which was originally intended as a synthetic 

intermediate for further derivatization, showed the best activity with a 51 µM Ki against 

KPC-2, while amine 17 had no detectable activity. While our hypothesis was based on 

the putative pose of 9, we were able to get a structure of 16 in complex with KPC-2, 

which revealed an unexpected binding mode (Figure 4-4). Instead of stacking over the 

Trp105 hydrophobic shelf, the NHBoc bound down the channel, pointing a carbonyl 

towards the oxyanion hole with a hydrogen bond to ordered water, and the tert-butyl 

packed over Leu167. The aryl-CF3 surprisingly displaced the Trp105 shelf, packing over 

Pro107 and forcing the Trp into an alternate conformation where it engaged in a 

hydrophobic and π-offset interaction with the indoline core. 

 

Table 4-3. Biochemical activities of analogs 13-17.a 

 

 
 

CTX-M-14    
Ki

b (μM) 
KPC-2           
Ki

b (μM) 

9 H > 1500 710 

13 Me > 850 ~ 750 

14 Ph > 1500 634 

15 Bn > 1500 166 

16 NHBoc > 750 51 

17 NH2 > 1500 > 800 
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a All compounds are racemates. b Calculated from IC50 using Ki = IC50/(1 + [S]/Km). Km 
values were measured the day of the experiment. IC50 values were fit from a technical 
triplicate with a SE < 1.1 µM. 
 

 
Figure 4-4. Crystal structure reveals the binding mode of indoline 16 to KPC-2. 
Top and side views. Water molecules are shown as red hashes. Yellow dashed lines 
represent putative hydrogen bonds. 
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Exploring KPC-2 Specific Interactions: 

Given the activity and binding mode of 16, we sought to further probe the role of the 

NHBoc by making a small series of derivatives (Table 4-4). Changing from the tightly 

packed t-butyl of 16 to the more open benzyl of 18 resulted in a 3-fold reduction in 

activity. Surprisingly, changing from a t-butyl carbamate to the t-butyl-urea of 19 or 

benzyl-urea of 20 was not well tolerated, and building further down the channel with 

cumyl 21 or gemdimethyl pyrazole 22 were not sufficient to compensate for the 

disfavored urea. The analogous carbamates of 21 and 22 could not be synthesized due 

to synthetic instability, with the carbamate preferring to engage in elimination. Changing 

to the butyric amide 23 was better tolerated with a 3-fold loss in activity, which was 

similar to the t-butyl sulfamate 24. Given the bias towards carbamates, a few 

oxazolidinones were also synthesized to see if conformational restriction would offer 

any additional benefit. Unfortunately, gem-dimethyl oxazolidinone 25 was not tolerated, 

and phenyl analog 26 had a 4-fold reduction in activity, with analogs 27 and 28 showing 

no detectable activity. These results suggest that the carbamate is uniquely suited for 

binding at the G239 twist; modification disturbs the t-butyl anchoring on Leu167, which 

in turn destabilizes the Trp105 stack. 
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Table 4-4. Biochemical activities of indoline analogs 18-28.a 

 
a All compounds are racemates at the indoline stereocenter. b Calculated from IC50 
using Ki = IC50/(1 + [S]/Km). Km values were measured the day of the experiment. IC50 
values were fit from a technical triplicate with a SE < 1.1 µM. 
 

Since initial attempts to replace or modify the t-butyl carbamate were not successful, 

we instead sought to explore the aryl-CF3 and indoline core. Complete replacements via 

hydrophobic amino acid and amino acid-like amido-tetrazoles 29-34 were not tolerated 

(Table 4-5), and modification to the analogous tetrahydroisoquinolines 35 and 36 were 

also not tolerated, suggesting that the indoline core has important specific interactions. 

A series of truncations were devised to look at the contributions of individual 

components (Table 4-6). Notably, removing the sp2 amide of 16 to give benzylic 37 

 
 

CTX-M-14    
Ki
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Ki
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Ki
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16 
 

> 750 51 23 
 

> 300 136 
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> 1500 174 24 
 

> 450 161 

19 
 

> 600 > 400 25 

 

> 600 > 400 
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> 600 > 400 26 
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> 600 > 400 27 
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accounts for a > 10 fold decrease in activity (tested to solubility limits). Removing the 

CF3 (38) accounts for a 4-fold decrease in activity, where introducing a pyridine (39) or 

pyrimidine (40), which should improve rotation around the amide, resulted in a further 3-

fold loss in activity (12-fold from parent). Analogs with a 2-thiophene (41) or 2-pyrrole 

(42) were equivalent to the phenyl 38, along with benzyl carbamate 43. Further 

truncations to the acetyl (44) or amine (45) gave a 12-fold loss in activity, roughly 

equivalent to the pyridine or pyrimidine analogs. Taken together, these results suggest 

that significant interaction energy is coming from the stabilization of the sp2 amide 

interacting with the offset Trp105 shelf (Figure 4-4), with the aryl-CF3 serving as a 

hydrophobic “lever arm” to stabilize the overall bound complex. 
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Table 4-5. Biochemical activities of analogs 29-36.a 

 
a All compounds are racemates (as applicable). b Calculated from IC50 using Ki = IC50/(1 
+ [S]/Km). Km values were measured the day of the experiment. IC50 values were fit from 
a technical triplicate with a SE < 1.1 µM. 
 

 

 

 
 

CTX-M-14    
Ki

b (μM) 
KPC-2           
Ki

b (μM) 

29 
 

> 1500 > 800 

30 
 

> 1500 > 800 

31 
 

> 1500 > 800 

32 
 

> 1500 > 800 

33 
 

> 750 > 400 

34 

 

> 1500 > 800 
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> 1500 713 
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> 1500 > 800 
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Table 4-6. Biochemical activities of analogs 37-45.a 

 
a All compounds are racemates. b Calculated from IC50 using Ki = IC50/(1 + [S]/Km). Km 
values were measured the day of the experiment. IC50 values were fit from a technical 
triplicate with a SE < 1.1 µM. 
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> 750 51 
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> 1500 > 500 

38 

 

> 1500 200 
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> 1500 600 
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> 1500 180 

42 
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> 1500 626 

45  > 750 ~ 600 

 

N

NHBoc

NH

O
NN

N N
H

N

O
CF3

N
CF3

N

O

N
N

O

N
N

N
O

N

O
S

N

O
H
N

N O

O

N

O

NH



 174 

While Trp105 displacement onto Pro104 has been observed in various KPC-2 

crystal structures, the binding mode observed for 16 is extremely KPC-2 specific; such 

conformers are not observed in CTX-M since Tyr105 cannot displace onto Asp104. 

Additionally, the ligand efficiency for the aryl-CF3 indoline core is quite poor, so small 

amino acid-like compounds were synthesized to recapitulate Tyr105 interactions, while 

also providing improved side chain flexibility (Table 4-7). Tryptophan derivative 46 had 

no detectable KPC-2 activity, but hydroxybenzoxazole 47 was equivalent to the 

previous indoline truncations. Introducing a hydrogen bond donor in 

hydroxybenzimidazole 48  gave a Ki equivalent to the des-CF3 analog 38. Moving from 

hydroxybenzimidazole to oxindole 49 gave further improvement (124 μM), with 49 being 

only 2.5-fold worse than parent indoline 16. The smaller hydroxypyridine 50 had no 

detectable activity, whereas quinolone 51 and directly linked quinolone 52 had fringe 

activity. Given these results, it seems the carbonyl and hydrogen bond donating abilities 

of 48 and 49 are both preferred over either interaction alone (46 and 47). This smaller 

scaffold, though still relatively weak, has improved ligand efficiency over indoline 16, 

and represents a tractable starting point for further inhibitor discovery. 
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Table 4-7. Biochemical activities of analogs 46-52.a 

 
a All compounds are racemates. b Calculated from IC50 using Ki = IC50/(1 + [S]/Km). Km 
values were measured the day of the experiment. IC50 values were fit from a technical 
triplicate with a SE < 1.1 µM. 
 

Prospects for Broad-Spectrum Inhibitor Discovery: 

While the pursuit of KPC-2 activity resulted in the loss of detectable CTX-M activity, 

both starting indane 2 and indoline 16 occupy similar envelope space (Figure 4-5), with 

the primary point of envelope divergence being the displacement of the hydrophobic 

 
 

CTX-M-14    
Ki

b (μM) 
KPC-2           
Ki

b (μM) 

46 

 

> 1500 > 800 
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> 1500 ~ 650 

48 

 

> 1500 236 
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> 1500 124 
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> 1500 > 800 
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> 1500 ~ 600 

52 
 

> 1500 ~ 700 
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shelf in KPC-2. The more flexible oxindole 49 should better accommodate the rigid shelf 

requirements of CTX-M, but likely shows no detectable CTX-M activity due to the 

suboptimal t-butyl carbamate. Our previous work with aryl scaffold 1 showed the 

importance of the aryl-CF3 and the benzimidazole packing interactions against the β3 

strand; further derivatization of the flexible carbamate in line with original SAR should 

allow for improved CTX-M activity. Furthermore, the small panel of heterocycles tested 

in Table 4-7 was by no means exhaustive; depending on the binding mode of 49 with 

KPC-2, additional interactions may be gained through further heterocycle optimization. 

 

 
Figure 4-5. Compound 2 complex with CTX-M-9 superimposed onto the 
compound 16 complex with KPC-2. CTX-M-9: teal and green; KPC-2: yellow and 
white. 
 

Though structurally divergent from the Class A CTX-M and KPC-2, we also tested 

our compounds against the metallo-β-lactamase NDM-1 (ESI, Tables 4-8 and 4-9). The 

larger indoline analogs in Table 4-4 showed no detectable NDM-1 inhibition, at times 
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even showing paradoxical activation. While the size and shape of these molecules were 

likely to preclude binding, previous work by our labs has highlighted the potential for 

amido-tetrazoles to act as inhibitors of NDM-1,2 primarily through hydrophobicity and 

chelation-driven interactions. The smaller amino acid-like analogs in Table 4-5 and 

Table 4-7 showed some traces of activity, but the NDM-1 active site seems to prefer 

aryl hydrophobicity to aliphatic or polar interactions. While cross-class inhibition appears 

tenable, further work on the amido-tetrazole scaffold would be required for improved 

NDM-1 inhibition. 

We also tested our compounds against the distinct Class D serine-β-lactamase 

OXA-48 (ESI, Table 4-10). OXA-48 has a number of key differences from KPC-2 (ESI, 

Figure 4-7); the acid-binding motif loses a Thr for a Phe, and the resulting β3 strand, 

though twisted, is very different from the Gly238 orientation in KPC-2. Perhaps most 

importantly, the hydrophobic shelf is also perturbed, with an Ile stacking over the 

targeted Trp. Unsurprisingly, none of our compounds showed detectable activity against 

OXA-48. It should be noted that many of the currently approved BLIs, such as 

avibactam, struggle with Kiapp against OXA enzymes;3, 4 building activity against this 

enzyme class would require significant work, as the SAR around non-covalent affinity is 

largely unknown. 

 

Conclusion: 

The biochemical and structural data herein have illustrated how the unique ligand 

binding properties of KPC-2 can be exploited to build non-covalent affinity, and how 

such data could be used to link potent, non-covalent ESBL scaffolds to carbapenemase 
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activity. The amido-tetrazole scaffolds described here provide further chemotypes for 

new inhibitor discovery, laying the groundwork for future work targeting both serine and 

metallo-carbapenemases. The discovery of such multi-mode inhibitors is an important 

area in the fight against future antibiotic resistance. 

 

Materials and Methods: 

Synthesis and Characterization 

The syntheses and characterization of new compounds 2–52 are described in the 

ESI. All compounds tested were judged to be of > 95% purity as assessed by NMR and 

a Waters Micromass ZQ 4000 equipped with Waters 2795 Separation Module, Waters 

2996 Photodiode Array Detector (254 nm), and Waters 2424 ELS detector. Separations 

were carried out with an XBridge BEH C18, 3.5 µm, 4.6 × 20 mm column, at ambient 

temperature (unregulated) using a mobile phase of water–methanol containing a 

constant 0.05% formic acid. 

 

β-lactamase Inhibition Assays 

The hydrolytic activity of CTX-M-14 and KPC-2 was determined using the β-

lactamase substrate nitrocefin in a reaction buffer containing 100 mM Tris pH 7.0, 20 

mM NaCl, 0.02% Triton X-100, and 5% DMSO; NDM-1 used a reaction buffer 

containing 100 mM HEPES pH 7.5, 150 mM NaCl, 50 µM ZnCl2, 0.01% Triton X-100, 

and 5% DMSO; OXA-48 used a reaction buffer containing 100 mM Tris-H2SO4 pH 7.0, 

50 mM NaHCO3, 0.01% Triton X-100, and 5% DMSO. Nitrocefin hydrolysis was 

monitored via absorbance (486 nm) using a FlexStation 3 microplate reader at 37 °C. 
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The nitrocefin concentration was 50 µM for all inhibition assays. Compounds were 

tested for IC50 in an 11-point dose response up to 2.5 mM as solubility allowed. For 

CTX-M-14 the protein was added last to initiate the reaction; the final protein 

concentration was 0.1 nM. For KPC-2, NDM-1, and OXA-48 the protein was added to 

compound and allowed to incubate for 30 m at 37 °C before addition of nitrocefin; the 

final protein concentration was 0.3 nM, 3 nM, and 0.1 nM, respectively. All compounds 

were tested as technical triplicates. IC50 values were converted to Ki using Ki = IC50/(1 + 

[S]/Km). The Km of nitrocefin was measured each day of testing: 40 - 107 µM for CTX-M-

14, 8 - 27 µM for KPC-2, 4 – 6 µM for NDM-1, and 185 – 214 µM for OXA-48. All data is 

presented in the ESI. Nitrocefin was purchased from Sigma-Aldrich. 
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Electronic Supporting Information: 

Supplementary Figures 

 
Figure 4-6. Selected docking poses of compounds 7 (A) and 11 (B) with KPC-2. 
Putative hydrogen bonds denoted by yellow dashes. Both enantiomers were docked. 
 

 

 
Figure 4-7. Compound 16 complex with KPC-2 superimposed onto a structure of 
apo OXA-48. With (A) and without (B) 16. KPC-2: yellow and green; OXA-48: white 
(PDB code 4S2P). Red hashes denote water. 
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Supplementary Tables 

Table 4-8. NDM-1 activities of indoline analogs 16, 18-28.a 

 
a All compounds are racemates at the indoline stereocenter. b Calculated from IC50 
using Ki = IC50/(1 + [S]/Km). Km values were measured the day of the experiment. IC50 
values were fit from a technical triplicate. c Displayed paradoxical activation – see 
curves below. 
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> 250c 
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Table 4-9. NDM-1 activities of amido-tetrazole analogs 29-34, 44, and 46-52.a 

 
a All compounds are racemates (when applicable). b Calculated from IC50 using Ki = 
IC50/(1 + [S]/Km). Km values were measured the day of the experiment. IC50 values were 
fit from a technical triplicate. c Displayed paradoxical activation – see curves below. 
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Table 4-10. OXA-48 activities of various amido-tetrazole analogs.a 

 
a All compounds are racemates (when applicable). b Calculated from IC50 using Ki = 
IC50/(1 + [S]/Km). Km values were measured the day of the experiment. IC50 values were 
fit from a technical triplicate. 
 

 
 

OXA-48    
Ki

b (μM)   OXA-48    
Ki

b (μM) 

16 
 

> 850 20 
 

~ 1100 

18 
 

> 1000 21 
 

> 850 

 
 

OXA-48    
Ki

b (μM)   OXA-48    
Ki

b (μM) 

29 
 

> 2000 46 

 

> 2000 

30 
 

> 2000 47 

 

> 2000 

31 
 

> 2000 48 

 

> 2000 

32 
 

> 2000 49 

 

> 2000 

33 
 

> 2000 50 

 

> 2000 

34 
 

> 2000 51 

 

> 2000 

44 

 
> 2000 52 

 
> 2000 

	

N
O

CF3

R

NH

O
NN

N N
H

HN O

O
HN N

H

O

HN O

O

HN N
H

O

H
N

O

O

N
H

O
NN

N
N
H

HN

O

N

O

HN

N

O

N

O

N

O

N

O

N
O

H
NO



 185 

Biochemical Data 

Each curve is generated from a technical triplicate. Top compound concentrations 

ranged from 500 µM to 2.5 mM, as solubility allowed. 

 

Km Measurements – CTX-M-14: 

 

 
 
Km Measurements – KPC-2: 
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Km Measurements – NDM-1: 

 
 
Km Measurements – OXA-48: 
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KPC-2 Biochemical Data: 
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NDM-1 Biochemical Data: 
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OXA-48 Biochemical Data: 
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Synthetic Procedures 

General Procedures: Reactions were magnetically stirred. Air and/or moisture 

sensitive reactions were carried out under an argon atmosphere in oven-dried 

glassware using anhydrous solvents from commercial suppliers. Air and/or moisture 

sensitive reagents were transferred via syringe or cannula and were introduced into 

reaction vessels through rubber septa. All anhydrous solvents used were purchased 

from Sigma-Aldrich and used without further purification. Solvents to be employed in 

flash column chromatography and reaction work-up procedures were purchased from 

either Sigma-Aldrich or Fisher Scientific. All other reagents were obtained commercially 

and used without further purification, unless otherwise stated. Reactions were 

monitored using LCMS and thin layer chromatography (TLC) performed on 0.25-mm 

EMD pre-coated glass-backed silica gel 60 F-254 plates. Compounds were visualized 

under UV light or through staining with permanganate, ninhydrin, bromocresol green, or 

magic, when appropriate. Reaction products and chromatography fractions were 
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concentrated by rotary evaporation at 25-35 °C at 20 Torr, then hivac at 0.5 Torr 

overnight, unless otherwise indicated. 

 

Instrumentation: NMR spectra were recorded on a Bruker AvanceIII HD 400 MHz 

spectrometer (with 5 mm BBFO Z-gradient Smart Probe) calibrated to CH(D)Cl3 as an 

internal reference (7.26 and 77.00 ppm for 1H and 13C NMR spectra, respectively). Data 

for 1H NMR spectra are reported in terms of chemical shift (δ, ppm), multiplicity, 

coupling constant (Hz), and integration. Data for 13C NMR spectra are reported in terms 

of chemical shift (δ, ppm), with multiplicity and coupling constants in the case of C–F 

coupling. The following abbreviations are used to denote the multiplicities: s = singlet; d 

= doublet; dd = doublet of doublets; dt = doublet of triplets; dq = doublet of quartets; ddd 

= doublet of doublet of doublets; t = triplet; td = triplet of doublets; tt = triplet of triplets; q 

= quartet; qd = quartet of doublets; quin = quintet; sex = sextet; m = multiplet. LCMS 

and compound purity were determined using a Waters Micromass ZQ 4000, equipped 

with a Waters 2795 Separation Module, Waters 2996 Photodiode Array Detector, and a 

Waters 2424 ELSD. Separations were carried out with an XBridge BEH C18, 5µm, 4.6 x 

20 mm column, at ambient temperature (unregulated), using a mobile phase of water-

methanol containing a constant 0.1% formic acid. HPLC was performed on a Waters 

2535 Separation Module with a Waters 2998 Photodiode Array Detector. Separations 

were carried out with an XBridge BEH C18, 5µm, 19 x 50 mm column, at ambient 

temperature (unregulated), using a mobile phase of water-methanol containing a 

constant 0.05% formic acid. Column chromatography was carried out using a Biotage 

SP1 flash chromatography system with silica gel cartridges from Silicycle. 
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General Procedure A: A round bottom is charged with the appropriate amine (1.0 

equiv.), solvent, and N,N-diisopropylethylamine (3.1 equiv.). The acyl- or sulfonyl 

chloride (1.1 equiv.) is then added dropwise, and the reaction mixture is stirred for 14h 

or until judged complete by LCMS. The crude reaction mixture is then transferred to a 

sep funnel with ~ 75 mL EtOAc and ~ 10 mL water. ~ 50 mL sat. NaHCO3 is added, the 

layers separated, and the organic layer further washed with ~ 40 mL water and brine. 

The organic layer is dried over MgSO4, concentrated, and purified on a silica column 

with EtOAc:hexanes to afford the desired product. 

  

General Procedure B: The appropriate methyl ester (1.0 equiv.) is suspended or 

dissolved in methanol, after which a 1M aqueous solution of lithium hydroxide is slowly 

added dropwise. The reaction mixture is stirred for 14h or until judged complete by 

LCMS; additional lithium hydroxide is added portion-wise as necessary. Once complete, 

the reaction mixture is transferred to a sep funnel with water, the aqueous pH adjusted 

to 1 with conc. HCl, and the aqueous layer extracted with three portions of EtOAc. The 

organics are combined, dried over MgSO4, and concentrated under reduced pressure. 

Semi-crude product is taken forward as-is. 

 

General Procedure C: An oven-dried flask is charged with the appropriate carboxylic 

acid (1.0 equiv.), dichloromethane, and DMF (drops). Oxalyl chloride (1.1 equiv.) is 

subsequently added dropwise, and the reaction is stirred at room temperature for 3 h. 

Separately, 5-aminotetrazole monohydrate (2.0 equiv) is suspended in dichloromethane 
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and N,N′-diisopropylethylamine (3.0 equiv.) in an oven-dried flask. The aforementioned 

oxalyl chloride solution is then added dropwise to this solution, followed by a 

dichloromethane rinse of the parent flask. The reaction suspension is stirred at room 

temperature for 24 h or until judged complete by LCMS, then concentrated under 

reduced pressure, taken up in DMF, and purified by reverse phase HPLC 

(water/MeOH/0.05% formic acid) to afford the desired product. 

  

General Procedure D: A 20 mL vial is charged with the appropriate carboxylic acid (1.0 

equiv.), DMF, and N,N-diisopropylethylamine (1.0 equiv.). HATU (1.05 equiv) is then 

added, and the reaction mixture is allowed to stir for 10m-1h. Commercially available 

amine (1.1 equiv.) and N,N-diisopropylethylamine (1.1 equiv.) are subsequently added, 

and the reaction is stirred at room temperature for 18h or until judged complete by 

LCMS. The crude reaction mixture is directly purified by reverse phase HPLC 

(water/MeOH/0.05% formic acid) to afford the desired product. 

 

General Procedure E: A 20 mL vial is charged with the appropriate Boc protected 

amine (1.0 equiv.), fitted with a septa, and purged with Ar. The vial is then charged with 

dry 4M HCl in dioxanes, and the reaction is stirred at room temperature for 18-72h or 

until judged complete by LCMS. The reaction mixture is then concentrated and dried 

under hivac overnight, affording the desired semi-crude product as the HCl salt. 

 

General Procedure F: A dried round bottom is charged with the appropriate methyl 

ester (1.0 equiv.) and dry tetrahydrofuran. After cooling to -78 °C, 1M LHMDS in 
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tetrahydrofuran is added dropwise (1.0 equiv). Separately, 2,4,6-triisopropylbenzene 

sulfonyl azide (1.3 equiv.) is dissolved in dry tetrahydrofuran, then cooled to -78 °C. 

After 45m-1h of enolization, the azide solution is cannulated over at -78 °C. Once 

addition is complete, the reaction is allowed to stir for 2 minutes, at which point glacial 

acetic acid is added (4.6 equiv.) – the reaction mixture is then immediately warmed to 

r.t. and allowed to stir overnight. The crude reaction mixture is then transferred to a sep. 

funnel with EtOAc and washed with sat. NaHCO3 and brine. The organic layer is dried 

over MgSO4, concentrated, and purified on a silica column with EtOAc:hexanes to 

afford the desired product. 

 

General Procedure G: A 3-mL vial is charged with amine (1.0 equiv.), dry 

dichloromethane (1.5 mL), and N,N-diisopropylethylamine (1.0 equiv.). The reaction vial 

is cooled to 0 °C and 4-nitrophenylchloroformate (1.1 equiv.) is added (Note: works best 

as bulk-solid addition); stirred at 0 °C for 30m. A solution of partner amine (1.1 equiv.) in 

dry dichloromethane (1 mL) is then added to the reaction, followed by N,N-

diisopropylethylamine (1.2 equiv.). The reaction is allowed to slowly warm to r.t. 

overnight, after which it is transferred to a sep. funnel with ~ 75 mL dichloromethane 

and washed with 3 x 50 mL 1M Na2CO3 (or until yellow coloration ceases). The organic 

layer is washed with an additional 40 mL 0.1N HCl and brine, dried over MgSO4, 

concentrated, and purified on a silica column with EtOAc:hexanes to afford the desired 

product. 
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General Procedure H: A 20 mL vial is charged with the appropriate carboxylic acid (1.0 

equiv), DMF, commercially available 5-aminotetrazole monohydrate (1.1 equiv), and 

N,N-diisopropylethylamine (2.1 equiv). HATU (1.1 equiv) is then added, and the reaction 

mixture is stirred for 18h or until judged complete by LCMS. The crude reaction mixture 

is directly purified by reverse phase HPLC (water/MeOH/0.05% formic acid) to afford 

the desired product. 

 

 
 

methyl 3-(hydroxyimino)-2,3-dihydro-1H-indene-1-carboxylate (S1). Commercially 

available 3-oxo-1-indancarboxylic acid (5.000 g, 28.4 mmol, 1.0 equiv.) was dissolved in 

dry methanol (50 mL). Sulfuric acid (62 uL, 1.1 mmol, 0.04 equiv.) was then added, and 

the reaction mixture was refluxed at 100 °C for 13h. The crude reaction mixture was 

then concentrated to dryness and transferred to a sep funnel with ~ 75 mL EtOAc. The 

organic layer was washed with ~ 50 mL sat. NaHCO3, water, and brine; the combined 

aqueous layers were washed with an additional ~ 50 mL EtOAc. The organics were 

combined, dried over MgSO4, and concentrated to dryness, yielding a yellow-orange oil. 

The oil was dissolved in ethanol (40 mL); hydroxylamine hydrochloride (2.367 g, 34.1 

mmol, 1.2 equiv.) and sodium acetate (4.657 g, 56.8 mmol, 2.0 equiv.) were 

subsequently added, followed by water (40 mL) and ethanol (40 mL) (rinsed walls). 

Stirred for 4h. The reaction mixture was concentrated to remove the ethanol and 

transferred to a sep funnel with ~ 150 mL EtOAc. The organic layer was washed with 2 

x 50 mL water and 50 mL brine; dried over MgSO4 and concentrated to dryness. S1 

O

O
N
OH
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(5.56 g, 96%) obtained as fluffy tan solid. 1H NMR (400 MHz, CDCl3) δ = 8.88 (br s, 1H), 

7.71 (d, J = 7.1 Hz, 1H), 7.58 - 7.52 (m, 1H), 7.44 - 7.33 (m, 2H), 4.23 (dd, J = 3.9, 8.8 

Hz, 1H), 3.78 (s, 3H), 3.44 (dd, J = 4.1, 19.0 Hz, 1H), 3.27 - 3.18 (m, 1H); 13C NMR (100 

MHz, CDCl3) δ = 172.72, 161.49, 144.62, 135.75, 130.74, 128.53, 125.77, 121.70, 

52.52, 46.17, 29.65; LRMS (ESI) calculated for C11H12NO3 [M + H]+ m/z 206.08, found 

206.03.  

 

 
 

methyl 3-amino-2,3-dihydro-1H-indene-1-carboxylate acetate (S2). S1 (5.547 g, 

27.0 mmol, 1.0 equiv.) was dissolved in 200 mL 20% acetic acid in ethanol (slow to 

dissolve). The mixture was hydrogenated for 42h using an “H-Cube” flow hydrogenator 

with a 10% Pd/C cartridge; 1 mL/min, 30 bar H2, 45 °C, loop configuration. The reaction 

mixture was then concentrated to dryness and dried under hivac for 3d. Crude acetate 

S2 (9.780 g, 144%) obtained as a thick, colorless oil (Note: free base is unstable; will 

spontaneously polymerize at 0 °C). 1H NMR (400 MHz, CD3OD) δ = 7.59 - 7.47 (m, 2H), 

7.44 - 7.38 (m, 2H), 4.77 (dd, J = 5.1, 7.8 Hz, 1H), 4.20 (dd, J = 5.6, 8.0 Hz, 1H), 3.80 

(s, 3H), 2.80 (td, J = 8.0, 14.1 Hz, 1H), 2.46 - 2.38 (m, 1H), 1.93 (s, 3H); 13C NMR (100 

MHz, CD3OD) δ = 178.74, 175.54, 142.58, 140.69, 131.12, 129.97, 126.62, 126.13, 

55.76, 53.28, 49.44, 35.27, 23.19; LRMS (ESI) calculated for C11H14NO2 [M + H]+ m/z 

192.10, found 192.07. 

 

O

O
NH2

AcOH
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methyl (syn)-3-(3-fluorobenzamido)-2,3-dihydro-1H-indene-1-carboxylate (S3). 

Crude S2 (500 mg, 1.64 mmol, 1.0 equiv.) was suspended in dry dichloromethane (10 

mL). 3-fluorobenzoyl chloride (300 uL, 2.46 mmol, 1.5 equiv.), N,N-

diisopropylethylamine (630 uL, 3.61 mmol, 2.2 equiv.), and N,N-dimethylaminopyridine 

(1 flake) were then added, and the reaction was stirred for 14h. The crude reaction 

mixture was transferred to a sep funnel with additional dichloromethane and washed 

with ~ 50 mL NH4Cl, sat. NaHCO3, and brine. The organic layer was dried over MgSO4, 

concentrated under reduced pressure, and purified on a silica column with 20% 

EtOAc:hexanes. Syn and anti diastereomers were separable; syn S3 obtained as a tan 

solid (170 mg, 33%). 1H NMR (400 MHz, CDCl3) δ = 7.55 - 7.49 (m, 2H), 7.46 - 7.30 (m, 

5H), 7.21 (ddt, J = 1.1, 2.6, 8.3 Hz, 1H), 6.33 (br d, J = 8.4 Hz, 1H), 5.89 (q, J = 7.7 Hz, 

1H), 4.22 (dd, J = 3.8, 8.6 Hz, 1H), 3.73 (s, 3H), 3.05 (ddd, J = 4.0, 7.8, 13.6 Hz, 1H), 

2.21 (ddd, J = 6.4, 8.7, 13.7 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ = 173.39, 165.88, 

162.75 (d, J = 248.0 Hz), 143.04, 140.33, 136.57 (d, J = 6.9 Hz), 130.26 (d, J = 7.6 Hz), 

128.73, 128.56, 125.36, 124.54, 122.35 (d, J = 3.1 Hz), 118.62 (d, J = 21.4 Hz), 114.43 

(d, J = 22.9 Hz), 54.57, 52.32, 48.34, 37.30. 

 

 
 

(syn)-3-(3-fluorobenzamido)-2,3-dihydro-1H-indene-1-carboxamide (S4). Syn S3 

(72 mg, 0.23 mmol, 1.0 equiv.) was taken in 3:2:1 tetrahydrofuran:methanol:water (2 

O

O

H
N

FO

O

H2N

H
N

FO
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mL). Solid lithium hydroxide was added (21 mg, 0.89 mmol, 4.0 equiv.), and the reaction 

was stirred for 1.5h. The solvent was then removed under reduced pressure, diluted 

with water, transferred to a sep funnel, and washed with 2 x ~ 50 mL EtOAc. The 

aqueous layer was adjusted to pH 1 and extracted with 3 x ~ 50 mL EtOAc; the 

extraction was dried over MgSO4 and concentrated to give a white solid. The 

intermediate acid was taken up in acetone (2 mL); di-tert-butyl dicarbonate (65.3 mg, 

0.299 mmol, 1.3 equiv.), pyridine (3 uL, 0.38 mmol, 1.65 equiv.), and ammonium 

bicarbonate (23.6 mg, 0.299 mmol, 1.3 equiv.) were then added. The reaction was 

stirred for 12h at which point it was poured into 5% HCl and extracted with 3 x ~ 50 mL 

EtOAc. Dried over MgSO4 and concentrated, yielding semi-crude syn S4 as a white 

solid (28 mg, 41%). 1H NMR (400 MHz, CDCl3) δ = 7.59 - 7.40 (m, 4H), 7.39 - 7.23 (m, 

3H), 7.21 - 7.07 (m, 1H), 5.74 (dt, J = 2.3, 8.3 Hz, 1H), 4.13 - 4.08 (m, 1H), 2.71 (td, J = 

8.1, 14.2 Hz, 1H), 2.33 (td, J = 2.6, 14.1 Hz, 1H). 

 

 
 

N-((syn)-3-cyano-2,3-dihydro-1H-inden-1-yl)-3-fluorobenzamide (S5). Syn S4 (45 

mg, 0.15 mmol, 1.0 equiv.) was taken up in 1,4-dioxane (600 uL) and pyridine (24 uL, 

0.30 mmol, 2.0 equiv.); trifluoroacetic anhydride (23 uL, 0.166 mmol, 1.1 equiv.) was 

then added dropwise. The reaction mixture was stirred for 4h, after which it was diluted 

with ~ 30 mL dichloromethane and washed with 2 x ~ 30 mL water. Dried over Na2SO4 

and concentrated under reduced pressure; purified on a silica column with 20% 

EtOAc:hexanes. Syn S5 obtained as a white solid (28 mg, 67%). 1H NMR (400 MHz, 

CDCl3) δ = 7.58 - 7.47 (m, 3H), 7.45 - 7.37 (m, 4H), 7.23 (dt, J = 1.6, 8.3 Hz, 1H), 6.66 - 

H
N

FO

N
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6.60 (m, 1H), 5.71 (q, J = 7.8 Hz, 1H), 4.15 - 4.07 (m, 1H), 3.13 (td, J = 7.7, 13.0 Hz, 

1H), 2.28 (td, J = 8.1, 13.2 Hz, 1H). 

 

 
 

N-((syn)-3-(1H-tetrazol-5-yl)-2,3-dihydro-1H-inden-1-yl)-3-fluorobenzamide (2). A 

vial was charged with syn S5 (28 mg, 0.1 mmol, 1.0 equiv.), sodium azide (13 mg, 0.2 

mmol, 2.0 equiv.), zinc bromide (11.3 mg, 0.05 mmol, 0.5 equiv.), isopropanol (150 uL), 

and water (300 uL). The vial was sealed and heated at 80 °C for 16h. The crude 

reaction mixture was transferred to a sep funnel with excess water, acidified with 3N 

HCl, and extracted with 3 x ~ 30 mL EtOAc. The combined organics were dried over 

MgSO4 and concentrated; purified by reverse phase HPLC (water/MeOH/0.05% formic 

acid) to afford syn 2 (28 mg, 87%) as a white solid. 1H NMR (400 MHz, CD3OD) δ = 

7.75 - 7.70 (m, 1H), 7.66 - 7.61 (m, 1H), 7.54 - 7.47 (m, 1H), 7.42 - 7.38 (m, 1H), 7.36 - 

7.25 (m, 3H), 7.12 (d, J = 7.3 Hz, 1H), 5.79 (t, J = 7.8 Hz, 1H), 4.81 (br d, J = 2.6 Hz, 

1H), 3.16 - 3.07 (m, 1H), 2.45 - 2.36 (m, 1H); LRMS (ESI) calculated for C17H13FN5 [M - 

H]- m/z 322.11, found 322.05. 

 

 
 

methyl 3-(3-(trifluoromethyl)benzamido)-2,3-dihydro-1H-indene-1-carboxylate 

(S6). S2 (1.051 g, 4.18 mmol, 1.0 equiv.) was reacted with commercially available 3-

(trifluoromethyl)benzoyl chloride in dry tetrahydrofuran (40 mL) and acetonitrile (20 mL) 

according to general procedure A. S6 (715.6 mg, 47%) obtained as a white solid (nearly 

H
N

F

NN
N
N
H

O

O

O

H
N

CF3O
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all anti-diastereomer). 1H NMR (400 MHz, CDCl3) δ = 8.15 (s, 1H), 7.99 (d, J = 8.0 Hz, 

1H), 7.74 (br dd, J = 0.7, 7.8 Hz, 2H), 7.62 - 7.53 (m, 2H), 7.44 - 7.39 (m, 1H), 7.34 - 

7.28 (m, 2H), 5.80 (dt, J = 1.9, 8.4 Hz, 1H), 4.14 (dd, J = 2.1, 8.2 Hz, 1H), 3.79 (s, 3H), 

2.74 (td, J = 8.0, 14.1 Hz, 1H), 2.38 (td, J = 2.1, 14.1 Hz, 1H); 13C NMR (100 MHz, 

CDCl3) δ = 175.79, 164.54, 143.79, 140.29, 135.21, 131.06 (q, J = 32.3 Hz), 130.01, 

129.06, 128.90, 128.79, 127.91 (q, J = 3.7 Hz), 125.85, 124.87, 124.34 (q, J = 3.9 Hz), 

123.75 (d, J = 272.2 Hz), 53.67, 52.71, 48.81, 35.79; 19F NMR (376 MHz, CDCl3) δ = -

62.77 (s, 3F); LRMS (ESI) calculated for C19H16F3NNaO3 [M + Na]+ m/z 386.10, found 

385.91. 

 

 
 

3-(3-(trifluoromethyl)benzamido)-2,3-dihydro-1H-indene-1-carboxylic acid (S7). S6 

(698.1 mg, 1.92 mmol, 1.0 equiv.) was reacted in methanol (25 mL) with 1M lithium 

hydroxide (15 mL, 15 mmol, 7.81 equiv.) according to general procedure B. Semi-crude 

S7 (667.9 mg, 100%) obtained as a white solid (mixture of diastereomers). LRMS (ESI) 

calculated for C18H13F3NO3 [M - H]- m/z 348.09, found 348.01. 

 

 
 

3-(3-(trifluoromethyl)benzamido)-2,3-dihydro-1H-indene-1-carboxamide (S8). 

Semi-crude S7 (200.0 mg, 0.573 mmol, 1.0 equiv.) was taken up in DMF (5 mL) and 

N,N-diisopropylethylamine (100 uL, 0.573 mmol, 1.0 equiv.). HATU (283 mg, 0.744 

mmol, 1.3 equiv.) was then added; after 10m ammonium chloride (153 mg, 2.86 mmol, 
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5.0 equiv) was added, followed by N,N-diisopropylethylamine (600 uL, 3.44 mmol, 6.0 

equiv.). After stirring for 14h, the reaction mixture was transferred to a sep funnel with ~ 

125 mL EtOAc; the organic layer was washed with ~ 3 x 50 mL brine, dried over 

MgSO4, and concentrated under reduced pressure. Purified on a silica column with 50-

100% EtOAc:hexanes. Wet S8 (262.4 mg, 132%, wet with EtOAc) obtained as a white 

semi-solid (mixture of diastereomers). 1H NMR (400 MHz, CD3OD) δ = 8.18 (s, 1H), 

8.13 - 8.07 (m, 1H), 7.82 (d, J = 7.8 Hz, 1H), 7.68 - 7.62 (m, 1H), 7.42 - 7.34 (m, 2H), 

7.32 - 7.24 (m, 2H), 5.94 (t, J = 7.4 Hz, 0.5H), 5.68 (dd, J = 5.4, 7.8 Hz, 0.5H), 4.20 (dd, 

J = 3.7, 8.5 Hz, 0.5H), 4.06 (dd, J = 5.5, 7.9 Hz, 0.5H), 2.87 - 2.69 (m, 1H), 2.34 - 2.22 

(m, 1H); 13C NMR (100 MHz, CD3OD) δ = 179.19, 167.28, 145.15, 145.11, 143.35, 

143.14, 136.78, 136.61, 132.32 - 132.12 (m), 131.99 - 131.78 (m), 130.79, 130.68, 

129.66, 129.49, 129.42 - 129.18 (m), 125.77 (t, J = 1.8 Hz), 125.57, 125.53 - 125.32 

(m), 125.46 (q, J = 271.4 Hz), 125.44 (q, J = 271.4 Hz), 56.17, 55.29, 50.66, 50.55, 

38.99, 38.22; 19F NMR (376 MHz, CD3OD) δ = -64.10 (s, 3F), -64.13 (s, 1F); LRMS 

(ESI) calculated for C18H16F3N2O2 [M + H]+ m/z 349.12, found 350.06. 

 

 
 

N-(3-cyano-2,3-dihydro-1H-inden-1-yl)-3-(trifluoromethyl)benzamide (S9). Wet S7 

(262.4 mg, 0.753 mmol, 1.0 equiv.) was suspended with dry 1,4-dioxane (10 mL); 

pyridine (182 uL, 2.26 mmol, 3.0 equiv.) was then added, followed by dropwise addition 

of trifluoroacetic anhydride (314 ul, 2.26 mmol, 3.0 equiv.). After stirring for 14h, the 

crude reaction mixture was transferred to a sep funnel with ~ 120 mL EtOAc and ~ 20 

mL water. The organic layer was washed with 0.1 N HCl, water, and brine. Dried over 
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MgSO4, concentrated, and purified on a silica column with EtOAc:hexanes. S9 obtained 

as a white solid (169.0 mg, 68%) (mixture of diastereomers). 1H NMR (400 MHz, 

DMSO-d6) δ = 9.21 (d, J = 8.3 Hz, 0.6H), 9.13 (d, J = 7.8 Hz, 0.4H), 8.31 - 8.17 (m, 2H), 

7.97 - 7.88 (m, 1H), 7.80 - 7.69 (m, 1H), 7.53 - 7.29 (m, 4H), 5.75 - 5.61 (m, 1H), 4.71 

(dd, J = 5.6, 8.5 Hz, 0.4H), 4.52 (dd, J = 8.4, 9.4 Hz, 0.6H), 3.00 (td, J = 7.8, 12.2 Hz, 

0.6H), 2.74 (ddd, J = 5.6, 7.8, 13.4 Hz, 0.4H), 2.54 - 2.44 (m, 0.4H), 2.28 (td, J = 9.8, 

12.2 Hz, 0.6H); 13C NMR (100 MHz, DMSO-d6) δ = 164.79, 164.65, 143.12, 142.96, 

137.73, 137.19, 134.89, 134.84, 131.63, 129.71, 129.66, 128.69 (dd, J = 16.1, 38.9 Hz), 

128.14 - 127.86 (m), 125.19, 124.48, 124.37, 123.98 (q, J = 272.0 Hz), 125.50 - 122.48 

(m), 121.43, 121.20, 53.11, 52.71, 37.45, 37.11, 32.11, 31.22; 19F NMR (376 MHz, 

DMSO-d6) δ = -61.11 (s, 1.9F), -61.13 (s, 3F); LRMS (ESI) calculated for C18H14F3N2O 

[M + H]+ m/z 331.11, found 330.99. 

 

 
 

N-((syn)-3-(1H-tetrazol-5-yl)-2,3-dihydro-1H-inden-1-yl)-3-

(trifluoromethyl)benzamide (3), N-((anti)-3-(1H-tetrazol-5-yl)-2,3-dihydro-1H-inden-

1-yl)-3-(trifluoromethyl)benzamide (4). A sealed tube was charged with S9 (153.6 mg, 

0.465 mmol, 1.0 equiv.), sodium azide (90.7 mg, 1.40 mmol, 3.0 equiv.), ammonium 

chloride (79.6 mg, 1.49 mmol, 3.2 equiv.), and DMF (9 mL). The tube was sealed and 

heated at 120 °C behind a blast shield for 14h. The crude reaction mixture was directly 

purified by reverse phase HPLC (water/MeOH/0.05% formic acid) to afford syn 3 (43.1 

mg, 25%) and anti 4 (77.3 mg, 45%) as white solids. 3: 1H NMR (400 MHz, CD3OD, 

drops CDCl3) δ = 8.15 (s, 1H), 8.05 (br d, J = 7.8 Hz, 1H), 7.74 (br d, J = 7.5 Hz, 1H), 
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7.61 - 7.54 (m, 1H), 7.47 - 7.40 (m, 1H), 7.33 - 7.23 (m, 2H), 7.16 (br d, J = 6.6 Hz, 1H), 

5.87 (br dd, J = 5.4, 7.3 Hz, 1H), 5.06 (br t, J = 7.2 Hz, 1H), 2.88 - 2.78 (m, 1H), 2.63 

(ddd, J = 5.1, 8.3, 13.6 Hz, 1H); 13C NMR (100 MHz, CD3OD, drops CDCl3) δ = 167.58, 

164.36, 143.29, 142.49, 135.53, 131.34, 129.68, 129.42, 129.02, 128.63 (br d, J = 2.9 

Hz), 125.58, 125.31, 125.01 (br s), 124.38 (q, J = 271.4 Hz), 54.76, 39.64, 39.23; 19F 

NMR (376 MHz, CD3OD, drops CDCl3) δ = -63.26 (s, 3F); LRMS (ESI) calculated for 

C18H13F3N5O [M - H]- m/z 372.11, found 372.02. 4: 1H NMR (400 MHz, CD3OD, drops 

CDCl3) δ = 8.22 (s, 1H), 8.13 (br d, J = 7.8 Hz, 1H), 7.76 (br d, J = 7.5 Hz, 1H), 7.61 (br 

t, J = 7.8 Hz, 1H), 7.41 (br d, J = 7.3 Hz, 1H), 7.31 - 7.19 (m, 2H), 7.06 (br d, J = 7.1 Hz, 

1H), 5.82 (br t, J = 6.9 Hz, 1H), 4.78 (br t, J = 7.4 Hz, 1H), 3.11 (td, J = 7.8, 13.4 Hz, 

1H), 2.40 (td, J = 6.8, 13.3 Hz, 1H); 13C NMR (100 MHz, CD3OD, drops CDCl3) δ = 

166.56, 160.44, 142.75, 141.51, 134.91, 130.94 (q, J = 32.3 Hz), 130.53, 129.20, 

128.57, 128.31, 128.20 - 127.92 (m), 124.58, 124.54 - 124.40 (m), 124.36, 123.81 (q, J 

= 272.2 Hz), 53.66, 39.00, 38.27; 19F NMR (376 MHz, CD3OD, drops CDCl3) δ = -63.35 

(s, 3F); LRMS (ESI) calculated for C18H13F3N5O [M - H]- m/z 372.11, found 372.02. 

 

 
 

methyl 3-((3-(trifluoromethyl)phenyl)sulfonamido)-2,3-dihydro-1H-indene-1-

carboxylate (S10). S2 (1.027 g, 4.09 mmol, 1.0 equiv.) was reacted with commercially 

available 3-(trifluoromethyl)benzenesulfonyl chloride in dry tetrahydrofuran (40 mL) and 

acetonitrile (20 mL) according to general procedure A. S10 (502.8 mg, 31%) obtained 

as a white solid (mixture of diastereomers). 1H NMR (400 MHz, CDCl3) δ = 8.25 - 8.09 

(m, 2H), 8.02 (d, J = 8.0 Hz, 0.5H), 7.90 - 7.82 (m, 1H), 7.70 (td, J = 7.6, 15.5 Hz, 1H), 
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7.63 - 7.57 (m, 0.5H), 7.44 (s, 0.3H), 7.40 (s, 0.3H), 7.37 - 7.31 (m, 1H), 7.30 - 7.20 (m, 

2H), 7.18 - 7.13 (m, 0.5H), 5.12 (t, J = 7.2 Hz, 0.5H), 4.97 (s, 0.3H), 4.94 (s, 0.3H), 4.96 

- 4.92 (m, 0.5H), 4.09 (dd, J = 3.4, 8.5 Hz, 0.5H), 3.94 (dd, J = 3.2, 7.8 Hz, 0.5H), 3.73 

(s, 1.5H), 3.67 (s, 1.5H), 2.67 (ddd, J = 3.5, 7.5, 13.5 Hz, 0.5H), 2.42 (td, J = 7.9, 14.1 

Hz, 0.5H), 2.07 - 1.96 (m, 1H); 13C NMR (100 MHz, CDCl3) δ = 174.91, 173.22, 146.69, 

146.03, 142.90, 142.54, 141.72, 139.90, 130.26, 130.18, 129.99, 129.89, 129.51, 

129.30, 129.07, 128.90, 128.70, 128.50, 127.98, 127.94, 125.48, 125.22, 124.79, 

124.54, 124.18 - 124.03 (m), 123.20, 123.16, 58.02, 57.72, 52.64, 52.28, 48.22, 47.89, 

37.61, 35.92; 19F NMR (376 MHz, CDCl3) δ = -62.79 (s, 1.5F), -62.81 (s, 1.5F); LRMS 

(ESI) calculated for C18H15F3NO4S [M - H]- m/z 398.07, found 397.99. 

 

 
 

3-((3-(trifluoromethyl)phenyl)sulfonamido)-2,3-dihydro-1H-indene-1-carboxylic 

acid (S11). S10 (484.7 mg, 1.21 mmol, 1.0 equiv.) was reacted in methanol (15 mL) 

with 1M lithium hydroxide (10 mL, 10 mmol, 8.24 equiv.) according to general procedure 

B. Semi-crude S11 (473.5 mg, 101%) obtained as a white solid (mixture of 

diastereomers). LRMS (ESI) calculated for C17H13F3NO4S [M - H]- m/z 384.05, found 

384.10. 

 

 
 

3-((3-(trifluoromethyl)phenyl)sulfonamido)-2,3-dihydro-1H-indene-1-carboxamide 

(S12). Semi-crude S11 (214.5 mg, 0.557 mmol, 1.0 equiv.) was taken up in DMF (5 mL) 
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and N,N-diisopropylethylamine (97 uL, 0.557 mmol, 1.0 equiv.). HATU (275 mg, 0.724 

mmol, 1.3 equiv.) was then added; after 10m ammonium chloride (149 mg, 2.78 mmol, 

5.0 equiv) was added, followed by N,N-diisopropylethylamine (582 uL, 3.34 mmol, 6.0 

equiv.). After stirring for 14h, the reaction mixture was transferred to a sep funnel with ~ 

125 mL EtOAc; the organic layer was washed with ~ 3 x 50 mL brine, dried over 

MgSO4, and concentrated under reduced pressure. Purified on a silica column with 

30% EtOAc:hexanes. S12 (130.4 mg, 61%) obtained as a yellow semi-solid (mixture of 

diastereomers). 1H NMR (400 MHz, CD3OD) δ = 8.28 - 8.23 (m, 2H), 8.02 (br d, J = 7.5 

Hz, 1H), 7.90 - 7.83 (m, 1H), 7.37 - 7.21 (m, 3H), 7.21 - 7.18 (m, 0.5H), 7.12 (d, J = 7.5 

Hz, 0.5H), 5.19 (t, J = 7.2 Hz, 0.5H), 4.93 (t, J = 7.1 Hz, 0.5H), 4.07 (dd, J = 3.5, 8.4 Hz, 

0.5H), 3.88 (t, J = 7.4 Hz, 0.5H), 2.48 (ddd, J = 3.7, 7.8, 13.1 Hz, 0.5H), 2.39 (td, J = 

7.7, 13.0 Hz, 0.5H), 2.07 - 1.96 (m, 0.5H), 1.96 - 1.87 (m, 0.5H); 13C NMR (100 MHz, 

CD3OD) δ = 178.90, 178.44, 145.00, 144.97, 144.19, 143.99, 142.77, 142.43, 132.72 

(q, J = 33.0 Hz), 131.80 (d, J = 2.9 Hz), 130.32 (t, J = 3.3 Hz), 129.71 (d, J = 2.2 Hz), 

129.18, 129.05, 125.76, 125.66 (d, J = 3.7 Hz), 125.38, 124.89 (q, J = 4.2 Hz), 125.02 

(q, J = 273.0 Hz), 59.53, 58.95, 50.22, 49.89, 39.32, 38.28; 19F NMR (376 MHz, 

CD3OD) δ = -64.24 (s, 3F), -64.25 (s, 3F); LRMS (ESI) calculated for C17H16F3N2O3S [M 

+ H]+ m/z 385.08, found 385.01. 

 

 
 

N-(3-cyano-2,3-dihydro-1H-inden-1-yl)-3-(trifluoromethyl)benzamide (S13). S12 

(130.4 mg, 0.339 mmol, 1.0 equiv.) was suspended with dry 1,4-dioxane (8 mL); 

pyridine (82 uL, 1.02 mmol, 3.0 equiv.) was then added, followed by dropwise addition 
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of trifluoroacetic anhydride (141 ul, 1.02 mmol, 3.0 equiv.). After stirring for 14h, the 

crude reaction mixture was transferred to a sep funnel with ~ 120 mL EtOAc and ~ 20 

mL water. The organic layer was washed with ~ 50 mL 0.1 N HCl, water, and brine. 

Dried over MgSO4, concentrated, and purified on a silica column with EtOAc:hexanes. 

S13 (92.7 mg, 75%) obtained as an off-white solid (mixture of diastereomers). 1H NMR 

(400 MHz, DMSO-d6) δ = 8.64 (d, J = 8.5 Hz, 0.5H), 8.55 (d, J = 8.3 Hz, 0.5H), 8.25 - 

8.17 (m, 1.5H), 8.15 - 8.06 (m, 1.5H), 7.95 - 7.87 (m, 1H), 7.45 - 7.32 (m, 2.5H), 7.32 - 

7.26 (m, 0.5H), 7.16 - 7.11 (m, 0.5H), 7.03 (d, J = 7.5 Hz, 0.5H), 4.98 (dt, J = 5.5, 7.9 

Hz, 0.5H), 4.91 - 4.82 (m, 0.5H), 4.55 (dd, J = 5.8, 8.5 Hz, 0.5H), 4.30 (dd, J = 8.3, 9.3 

Hz, 0.5H), 2.58 - 2.51 (m, 0.5H), 2.41 (ddd, J = 5.8, 7.5, 13.4 Hz, 0.5H), 2.15 (ddd, J = 

5.1, 8.4, 13.5 Hz, 0.5H), 1.87 (td, J = 9.6, 12.0 Hz, 0.5H); 13C NMR (100 MHz, DMSO-

d6) δ = 143.37, 142.21, 142.18, 137.67, 137.10, 131.63, 131.55, 131.00, 130.47 (d, J = 

35.9 Hz), 130.05 - 129.75 (m), 129.67, 129.32, 129.29, 129.10, 125.42, 125.08, 124.73, 

124.51, 123.65 - 123.40 (m), 123.93 (q, J = 272.9 Hz), 121.52, 121.29, 57.14, 56.75, 

38.67, 37.94, 32.25, 31.52; 19F NMR (376 MHz, DMSO-d6) δ = -61.38 (s, 3F), -61.41 (s, 

3F); LRMS (ESI) calculated for C17H12F3N2O2S [M - H]- m/z 365.06, found 365.03. 

 

 
 

N-((syn)-3-(1H-tetrazol-5-yl)-2,3-dihydro-1H-inden-1-yl)-3-

(trifluoromethyl)benzenesulfonamide (5), N-((anti)-3-(1H-tetrazol-5-yl)-2,3-dihydro-

1H-inden-1-yl)-3-(trifluoromethyl)benzenesulfonamide (6). A sealed tube was 

charged with S13 (72.0 mg, 0.197 mmol, 1.0 equiv.), sodium azide (38.3 mg, 0.590 

mmol, 3.0 equiv.), ammonium chloride (33.6 mg, 0.629 mmol, 3.2 equiv.), and DMF (5 
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mL). The tube was sealed and heated at 120 °C behind a blast shield for 14h. The 

crude reaction mixture was directly purified by reverse phase HPLC 

(water/MeOH/0.05% formic acid) to afford syn 5 (20.3 mg, 25%) and anti 6 (30.4 mg, 

38%) as white solids. 5: 1H NMR (400 MHz, CD3OD) δ = 8.25 - 8.17 (m, 2H), 7.96 (d, J 

= 7.8 Hz, 1H), 7.84 - 7.78 (m, 1H), 7.25 - 7.14 (m, 2H), 7.11 - 7.03 (m, 2H), 5.17 (dd, J = 

5.4, 7.1 Hz, 1H), 4.91 - 4.86 (m, 1H), 2.56 (ddd, J = 6.1, 7.2, 13.2 Hz, 1H), 2.34 (ddd, J 

= 5.1, 8.3, 13.4 Hz, 1H); 13C NMR (100 MHz, CD3OD) δ = 167.08, 143.50, 142.37, 

141.84, 131.23 (q, J = 33.8 Hz), 130.31, 130.25, 128.77 (d, J = 3.7 Hz), 128.59, 127.73, 

124.59, 124.45, 123.52 - 123.29 (m), 123.53 (d, J = 272.2 Hz), 57.52, 39.87, 38.45; 19F 

NMR (376 MHz, CD3OD) δ = -64.28 (s, 3F); LRMS (ESI) calculated for C17H13F3N5O2S 

[M - H]- m/z 408.07, found 408.04. 6: 1H NMR (400 MHz, CD3OD) δ = 8.24 - 8.18 (m, 

2H), 7.92 (br d, J = 7.8 Hz, 1H), 7.81 - 7.73 (m, 1H), 7.24 - 7.13 (m, 3H), 6.93 (br d, J = 

6.8 Hz, 1H), 4.97 (t, J = 8.0 Hz, 1H), 4.58 (br t, J = 8.5 Hz, 1H), 2.65 (td, J = 7.3, 12.7 

Hz, 1H), 2.01 (td, J = 9.4, 12.4 Hz, 1H); 13C NMR (100 MHz, CD3OD) δ = 163.15, 

143.49, 142.07, 141.01, 131.26 (d, J = 33.0 Hz), 130.32, 128.88 (q, J = 3.7 Hz), 128.24, 

127.64, 123.99, 123.89, 123.42 (q, J = 3.7 Hz), 123.51 (d, J = 272.2 Hz), 57.01, 40.37, 

37.66; 19F NMR (376 MHz, CD3OD) δ = -64.28 (s, 3F); LRMS (ESI) calculated for 

C17H13F3N5O2S [M - H]- m/z 408.07, found 408.04. 

 

 
 

1-(3-(trifluoromethyl)benzoyl)indoline-3-carboxylic acid (S14). Commercially 

available indoline-3-carboxylic acid (100 mg, 0.613 mmol, 1.0 equiv.) was suspended 
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with dry dichloromethane (15 mL). N,N-diisopropylethylamine (267 uL, 1.53 mmol, 2.5 

equiv.) was then added, and the resulting solution was cooled to 0 °C. 3-

(trifluoromethyl)benzoyl chloride (111 ul, 0.735 mmol, 1.2 equiv.) was then added 

dropwise at 0 °C. The reaction mixture was allowed to warm to r.t. overnight. The 

solvent was then removed under reduced pressure and the reaction mixture redissolved 

in DMF; directly purified by reverse phase HPLC (water/MeOH/0.05% formic acid) to 

afford S14 (129.7 mg, 63%) as a white solid. 1H NMR (400 MHz, CD3OD) δ = 8.11 (br s, 

1H), 7.87 (br s, 1H), 7.80 (br d, J = 7.5 Hz, 2H), 7.69 - 7.61 (m, 1H), 7.45 (d, J = 7.5 Hz, 

1H), 7.22 (br s, 1H), 7.07 (br s, 1H), 4.33 (br s, 1H), 4.21 - 4.04 (m, 2H); 13C NMR (100 

MHz, CD3OD) δ = 174.46 (br s), 169.27 (br s), 143.60 - 143.03 (m), 139.01 (br s), 

132.29 (q, J = 33.0 Hz), 131.94 (br s), 130.95, 129.66 (br s), 128.34 (br s), 126.58 (br s), 

126.08 (br s), 125.29 (br s), 125.34 (q, J = 272.2 Hz), 119.03, 54.45 (br s), 46.84 (br s); 

19F NMR (376 MHz, CD3OD) δ = -64.08 (s, 3F); LRMS (ESI) calculated for C17H11F3NO3 

[M - H]- m/z 334.07, found 334.03. 

 

 
 

1-(3-(trifluoromethyl)benzoyl)indoline-3-carboxamide (S15). S14 (129.7 mg, 0.387 

mmol, 1.0 equiv.) was dissolved with dry acetone (3.5 mL); ammonium bicarbonate (40 

mg, 0.503, 1.3 equiv.), pyridine (4 uL, 0.05 mmol, 0.13 equiv.), and di-tert-butyl 

dicarbonate (110 mg, 0.503 mmol, 1.3 equiv.) were then added. The reaction was 

stirred for 14h, at which point the acetone was removed under reduced pressure. The 

resulting residue was transferred to a sep funnel with ~ 75 mL EtOAc; washed with 
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dilute citric acid, water, and brine. Dried over MgSO4, concentrated, and purified on a 

silica column with 0-4% dichloromethane:MeOH. S15 (90.9 mg, 70%) obtained as a 

white solid. 1H NMR (400 MHz, CDCl3, drops CD3OD) δ = 8.12 (br s, 1H), 7.82 (br s, 

1H), 7.73 (br d, J = 5.1 Hz, 2H), 7.63 - 7.54 (m, 1H), 7.31 (br d, J = 7.3 Hz, 1H), 7.25 (br 

s, 1H), 7.07 (br s, 1H), 4.35 (br s, 1H), 4.09 (br s, 1H), 3.73 (br s, 1H); 13C NMR (100 

MHz, CDCl3, drops CD3OD) δ = 174.22 (br s), 167.81 (br s), 142.40 (br s), 137.32 (br s), 

131.44 (q, J = 33.7 Hz), 130.64 (br s), 129.64, 129.05 (br s), 127.52 (br s), 125.49 - 

124.01 (m), 53.95 (br s), 46.78 (br s); 19F NMR (376 MHz, CDCl3, drops CD3OD) δ = -

59.08 (s, 3F); LRMS (ESI) calculated for C17H14F3N2O2 [M + H]+ m/z 335.10, found 

335.01.  

 

 
 

1-(3-(trifluoromethyl)benzoyl)indoline-3-carbonitrile (S16). S15 (90.9 mg, 0.272 

mmol, 1.0 equiv.) was dissolved with dry 1,4-dioxane (7 mL); pyridine (66 uL, 0.816 

mmol, 3.0 equiv.) was then added, and the reaction mixture was cooled to 0 °C. 

trifluoroacetic anhydride (114 uL, 0.816 mmol, 3.0 equiv.) was then added dropwise, 

and the reaction mixture was allowed to slowly warm to r.t. After stirring for 14h, the 

crude reaction mixture was transferred to a sep funnel with ~ 120 mL EtOAc and ~ 20 

mL water. The organic layer was washed with ~ 50 mL 0.1 N HCl, water, and brine. 

Dried over MgSO4, concentrated, and purified on a silica column with EtOAc:hexanes. 

S16 (87.3 mg, 102%, wet with EtOAc) obtained as a white solid. 1H NMR (400 MHz, 

CD3OD, drops CDCl3) δ = 7.88 - 7.77 (m, 4H), 7.71 - 7.64 (m, 1H), 7.44 (d, J = 7.5 Hz, 
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1H), 7.28 (br s, 1H), 7.21 - 7.14 (m, 1H), 4.60 (dd, J = 7.4, 9.1 Hz, 1H), 4.42 (br t, J = 

10.0 Hz, 1H), 4.31 - 4.22 (m, 1H); 13C NMR (100 MHz, CD3OD, drops CDCl3) δ = 

168.19, 142.23 (br s), 137.22 (br s), 131.96 (q, J = 32.8 Hz), 131.25 (br s), 130.34, 

130.25, 128.32 (br s), 127.54 (br s), 126.06 (br s), 125.63 (br s), 124.87 (br s), 124.33 

(q, J = 273.0 Hz), 119.28, 54.63 - 54.00 (m), 31.35 (br s); 19F NMR (376 MHz, CD3OD, 

drops CDCl3) δ = -63.62 (s, 3F); LRMS (ESI) calculated for C17H10F3N2O [M - H]- m/z 

315.08, found 314.96. 

 

 
 

(3-(1H-tetrazol-5-yl)indolin-1-yl)(3-(trifluoromethyl)phenyl)methanone (7). A sealed 

tube was charged with S16 (89.3 mg, 0.282 mmol, 1.0 equiv.), sodium azide (55 mg, 

0.847 mmol, 3.0 equiv.), ammonium chloride (48 mg, 0.904 mmol, 3.2 equiv.), and DMF 

(4 mL). The tube was sealed and heated at 140 °C behind a blast shield for 14h. The 

crude reaction mixture was directly purified by reverse phase HPLC 

(water/MeOH/0.05% formic acid) to afford 7 (56.5 mg, 56%) as a white solid. 1H NMR 

(400 MHz, DMSO-d6) δ = 8.15 (br s, 1H), 8.04 - 7.95 (m, 2H), 7.92 (br d, J = 7.8 Hz, 

1H), 7.81 - 7.73 (m, 1H), 7.29 (br s, 2H), 7.11 (br s, 1H), 5.12 (br dd, J = 6.8, 9.3 Hz, 

1H), 4.57 - 4.48 (m, 1H), 4.37 (br dd, J = 6.7, 10.3 Hz, 1H); 13C NMR (100 MHz, DMSO-

d6) δ = 166.45, 157.59, 142.00 (br s), 137.56 (br s), 131.68 (br s), 131.15 (br s), 129.90, 

129.40 (q, J = 32.0 Hz), 128.42, 127.00 (br s), 125.37 - 125.09 (m), 124.54 (br s), 

123.91 (br s), 123.86 (q, J = 272.4 Hz), 117.11 (br s), 55.09 - 54.49 (m), 36.25 - 35.49 

N
O

CF3

NN
N
N
H



 217 

(m); 19F NMR (376 MHz, DMSO-d6) δ = -61.18 (s, 3F); LRMS (ESI) calculated for 

C17H11F3N5O [M - H]- m/z 358.09, found 358.12. 

 

 
 

methyl indoline-3-carboxylate sulfate (S17). Commercially available indoline-3-

carboxylic acid (100 mg, 0.613 mmol, 1.0 equiv.) was dissolved in dry methanol (25 

mL). Sulfuric acid (37 uL, 0.674 mmol, 1.1 equiv.) was then added, and the reaction 

mixture was refluxed for 18h. The solvent was then removed under reduced pressure, 

and the residue dried under hivac overnight. Wet S17 (208.5 mg, 124%) obtained as a 

thick, brown oil. (Note: the free base is not stable; will spontaneously oxidize) 1H NMR 

(400 MHz, CD3OD) δ = 7.65 - 7.61 (m, 1H), 7.55 - 7.48 (m, 3H), 4.60 (dd, J = 5.2, 8.9 

Hz, 1H), 4.25 - 4.19 (m, 1H), 4.07 (dd, J = 8.8, 12.2 Hz, 1H), 3.61 (s, 3H); 13C NMR (100 

MHz, CD3OD) δ = 171.85, 137.11, 134.44, 131.53, 131.11, 127.67, 120.94, 55.30, 

53.56, 48.08; LRMS (ESI) calculated for C10H12NO2 [M + H]+ m/z 178.09, found 177.94. 

 

 
 

methyl 1-((3-(trifluoromethyl)phenyl)sulfonyl)indoline-3-carboxylate (S18). S17 

(208.5 mg, 0.757 mmol, 1.0 equiv.) was reacted with commercially available 3-

(trifluoromethyl)benzene sulfonyl chloride (1.5 equiv.) in dry DMF (5 mL) according to 

general procedure A, except 5.0 equiv. of N,N-diisopropylethylamine was used. S18 

(108.0 mg, 37%) obtained as a tan oil. 1H NMR (400 MHz, CDCl3) δ = 8.07 (s, 1H), 8.00 
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(d, J = 8.0 Hz, 1H), 7.81 (dd, J = 0.7, 8.5 Hz, 1H), 7.68 - 7.57 (m, 2H), 7.35 - 7.26 (m, 

2H), 7.05 (dt, J = 1.1, 7.6 Hz, 1H), 4.40 (dd, J = 5.8, 11.2 Hz, 1H), 4.20 - 4.12 (m, 1H), 

4.07 - 4.01 (m, 1H), 3.63 (s, 3H); 13C NMR (100 MHz, CDCl3) δ = 170.59, 140.97, 

137.97, 131.56 (q, J = 33.7 Hz), 130.38 (d, J = 1.5 Hz), 129.99 - 129.70 (m), 129.33, 

128.60, 125.89, 124.45 - 124.27 (m), 125.72 (d, J = 273.0 Hz), 121.65, 114.90, 52.55, 

51.71, 44.90; 19F NMR (376 MHz, CDCl3) δ = -62.94 (s, 3F); LRMS (ESI) calculated for 

C17H14F3NNaO4S [M + Na]+ m/z 408.05, found 408.04. 

 

 
 

1-((3-(trifluoromethyl)phenyl)sulfonyl)indoline-3-carboxylic acid (S19). S18 (108.0 

mg, 0.280 mmol, 1.0 equiv.) was reacted in methanol (4 mL) with 1M lithium hydroxide 

(3 mL, 3 mmol, 10.7 equiv.) according to general procedure B. Semi-crude S19 (101.2 

mg, 97%) obtained as a tan powder. 1H NMR (400 MHz, CD3OD, drops CDCl3) δ = 8.03 

- 7.96 (m, 2H), 7.84 (d, J = 7.8 Hz, 1H), 7.68 - 7.57 (m, 2H), 7.36 (d, J = 7.5 Hz, 1H), 

7.27 (t, J = 7.7 Hz, 1H), 7.04 (dt, J = 1.0, 7.5 Hz, 1H), 4.36 (dd, J = 5.8, 11.2 Hz, 1H), 

4.16 - 4.08 (m, 1H), 4.04 - 3.97 (m, 1H); 13C NMR (100 MHz, CD3OD, drops CDCl3) δ = 

173.20, 141.90, 138.75, 132.36 (q, J = 33.7 Hz), 131.52, 131.11, 130.91 (q, J = 3.2 Hz), 

130.59, 129.90, 126.92, 125.38, 125.10 (q, J = 3.9 Hz), 124.14 (q, J = 272.2 Hz), 

115.74, 52.93, 45.94; 19F NMR (376 MHz, CD3OD, drops CDCl3) δ = -63.89 (s, 3F); 

LRMS (ESI) calculated for C16H11F3NO4S [M - H]- m/z 370.04, found 370.04. 
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1-((3-(trifluoromethyl)phenyl)sulfonyl)indoline-3-carboxamide (S20). Semi-crude 

S19 (101.2 mg, 0.273 mmol, 1.0 equiv.) was dissolved with dry acetone (3.5 mL); 

ammonium bicarbonate (28 mg, 0.354, 1.3 equiv.), pyridine (4 uL, 0.05 mmol, 0.18 

equiv.), and di-tert-butyl dicarbonate (77 mg, 0.354 mmol, 1.3 equiv.) were then added. 

The reaction was stirred for 14h, at which point the acetone was removed under 

reduced pressure. The resulting residue was transferred to a sep funnel with ~ 75 mL 

EtOAc; washed with dilute citric acid, water, and brine. Dried over MgSO4, 

concentrated, and run on a silica column with 0-5% dichloromethane:MeOH. Attempts 

to fully clean up the product were unsuccessful; crude S20 (49.3 mg, est. 80% purity) 

obtained as an off-white solid. LRMS (ESI) calculated for C16H14F3N2O3S [M + H]+ m/z 

371.07, found 370.95. 

 

 
 

1-((3-(trifluoromethyl)phenyl)sulfonyl)indoline-3-carbonitrile (S21). Crude S20 (101 

mg, 0.272 mmol, 1.0 equiv.) was suspended with dry 1,4-dioxane (8 mL); pyridine (66 

uL, 0.817 mmol, 3.0 equiv.) was then added, followed by dropwise addition of 

trifluoroacetic anhydride (114 uL, 0.817 mmol, 3.0 equiv.). After stirring for 14h, the 

crude reaction mixture was transferred to a sep funnel with ~ 120 mL EtOAc and ~ 20 

mL water. The organic layer was washed with ~ 50 mL 0.1 N HCl, water, and brine. 

Dried over MgSO4, concentrated, and purified on a silica column with 0-25% 
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EtOAc:hexanes. S21 (37.0 mg, 39% over two steps) obtained as a white solid. 1H NMR 

(400 MHz, CD3OD) δ = 8.07 (d, J = 8.0 Hz, 1H), 8.00 (s, 1H), 7.97 - 7.93 (m, 1H), 7.76 - 

7.68 (m, 2H), 7.45 - 7.39 (m, 1H), 7.35 (d, J = 7.8 Hz, 1H), 7.18 (dt, J = 1.0, 7.5 Hz, 1H), 

4.40 - 4.35 (m, 1H), 4.35 - 4.28 (m, 1H), 4.23 - 4.16 (m, 1H); 13C NMR (100 MHz, 

CD3OD) δ = 142.31, 138.84, 132.73 (q, J = 33.8 Hz), 132.00, 131.91, 131.65 (q, J = 3.4 

Hz), 131.22, 128.71, 126.72, 126.66, 125.15 (q, J = 3.9 Hz), 124.51 (q, J = 272.2 Hz), 

119.42, 117.38, 54.37, 31.55; 19F NMR (376 MHz, CD3OD) δ = -64.51 (s, 3F); LRMS 

(ESI) calculated for C16H10F3N2O2S [M - H]+ m/z 351.04, found 350.29.  

 

 
 

3-(1H-tetrazol-5-yl)-1-((3-(trifluoromethyl)phenyl)sulfonyl)indoline (8). A sealed 

tube was charged with S21 (37.0 mg, 0.105 mmol, 1.0 equiv.), sodium azide (20.5 mg, 

0.315 mmol, 3.0 equiv.), ammonium chloride (18 mg, 0.336 mmol, 3.2 equiv.), and DMF 

(4 mL). The tube was sealed and heated at 120 °C behind a blast shield for 14h. The 

crude reaction mixture was directly purified by reverse phase HPLC 

(water/MeOH/0.05% formic acid) to afford 8 (25.1 mg, 61%) as a white solid. 1H NMR 

(400 MHz, DMSO-d6) δ = 8.16 (br d, J = 7.8 Hz, 1H), 8.08 (br d, J = 8.0 Hz, 1H), 8.04 (s, 

1H), 7.82 (t, J = 7.8 Hz, 1H), 7.59 (d, J = 8.0 Hz, 1H), 7.34 (t, J = 7.7 Hz, 1H), 7.20 (br d, 

J = 7.3 Hz, 1H), 7.11 - 7.04 (m, 1H), 4.96 (br dd, J = 6.8, 9.3 Hz, 1H), 4.52 (t, J = 10.3 

Hz, 1H), 4.34 (dd, J = 6.6, 11.0 Hz, 1H); 13C NMR (100 MHz, DMSO-d6) δ = 161.69, 

140.45, 136.99, 131.41 - 131.09 (m), 130.90, 130.75 (d, J = 2.9 Hz), 130.08 (d, J = 33.0 

Hz), 129.22, 125.94, 124.68, 123.65 (d, J = 3.7 Hz), 123.15 (d, J = 272.9 Hz), 114.46, 
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54.22, 35.30; 19F NMR (376 MHz, DMSO-d6) δ = -61.50 (s, 3F); LRMS (ESI) calculated 

for C16H11F3N5O2S [M - H]- m/z 394.06, found 393.83. 

 

 
 

N-(1H-tetrazol-5-yl)-1-(3-(trifluoromethyl)benzoyl)indoline-3-carboxamide (9). S14 

(342.3 mg, 1.02 mmol, 1.0 equiv.) was reacted with 5-aminotetrazole monohydrate in 50 

mL dichloromethane according to general procedure C. 9 (91.2 mg, 22%) obtained as a 

white solid. Note: Unstable long-term at r.t. or in solution; store cold. 1H NMR (400 MHz, 

DMSO-d6) δ = 12.13 (br s, 1H), 8.34 - 7.66 (br m, 5H), 7.61 - 6.98 (br m, 3H), 4.68 - 

4.12 (br m, 3H); 13C NMR (100 MHz, DMSO-d6) δ = 170.40, 166.83, 163.62, 152.17 (br 

s), 142.82 (br s), 138.21, 131.55 (br s), 130.44 (br s), 129.85 (br d, J = 35.2 Hz), 128.98 

(br s), 127.46 (br s), 125.71 (br s), 125.53 (br s), 124.83 (br s), 124.25 (br s), 117.76 (br 

s), 53.45 (br s), 46.49 (br s); 19F NMR (376 MHz, DMSO-d6) δ = -61.16 (s, 3F); LRMS 

(ESI) calculated for C18H12F3N6O2 [M - H]- m/z 401.10, found 400.99. 

 

 
 

N-(1H-tetrazol-5-yl)-1-((3-(trifluoromethyl)phenyl)sulfonyl)indoline-3-carboxamide 

(10). Semi-crude S19 (130 mg, 0.350 mmol, 1.0 equiv.) was reacted with 5-

aminotetrazole monohydrate in 3.5 mL DMF according to general procedure D (20m 

activation). 10 (20.8 mg, 14%) obtained as a white solid. Note: Unstable long-term at r.t. 

or in solution; store cold. 1H NMR (400 MHz, DMSO-d6) δ = 12.48 - 11.87 (br s, 1H), 
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8.19 (br d, J = 7.8 Hz, 1H), 8.10 (br d, J = 7.5 Hz, 1H), 8.04 (s, 1H), 7.86 (br t, J = 7.8 

Hz, 1H), 7.54 (br d, J = 8.0 Hz, 1H), 7.38 - 7.27 (m, 2H), 7.10 - 7.02 (m, 1H), 4.40 - 4.27 

(m, 2H), 4.27 - 4.17 (m, 1H); 13C NMR (100 MHz, DMSO-d6) δ = 169.20, 163.04, 

140.72, 137.04, 131.34, 131.19, 130.71 (br d, J = 3.6 Hz), 130.14 (d, J = 5.3 Hz), 

129.13, 125.57, 124.26, 123.74 - 123.38 (m), 123.17 (d, J = 273.1 Hz), 113.98, 52.22, 

45.40; 19F NMR (376 MHz, DMSO-d6) δ = -61.46 (s, 3F); LRMS (ESI) calculated for 

C17H12F3N6O3S [M - H]- m/z 437.06, found 437.12. 

 

 
 

methyl 1,2,3,4-tetrahydroisoquinoline-4-carboxylate sulfate (S22). Commercially 

available 1,2,3,4-tetrahydroisoquinoline-4-carboxylic acid (200 mg, 1.13 mmol, 1.0 

equiv.) was dissolved in dry methanol (25 mL). Sulfuric acid (69 uL, 1.24 mmol, 1.1 

equiv.) was then added, and the reaction mixture was refluxed for 18h. The solvent was 

then removed under reduced pressure, and the residue dried under hivac overnight. 

Wet S22 (429.5 mg, 132%) obtained as a thick, tan oil. 1H NMR (400 MHz, CD3OD) δ = 

7.48 - 7.42 (m, 1H), 7.33 - 7.27 (m, 2H), 7.26 - 7.20 (m, 1H), 4.39 (s, 2H), 4.20 (t, J = 

4.4 Hz, 1H), 3.88 (dd, J = 3.7, 13.1 Hz, 1H), 3.72 (s, 3H), 3.53 (dd, J = 5.2, 13.0 Hz, 

1H); 13C NMR (100 MHz, CD3OD) δ = 173.23, 130.51, 129.46, 129.34, 129.31, 129.16, 

128.03, 55.09, 45.29, 43.88, 41.33; LRMS (ESI) calculated for C11H14NO2 [M + H]+ m/z 

192.10, found 191.91. 
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methyl 2-(3-(trifluoromethyl)benzoyl)-1,2,3,4-tetrahydroisoquinoline-4-carboxylate 

(S23). S22 (215.2 mg, 0.744 mmol, 1.1 equiv.) was reacted with commercially available 

3-(trifluoromethyl)benzoyl chloride in dry DMF (5 mL) according to general procedure A, 

with slight modification: prior to base addition, the reaction vessel was cooled to 0 °C; 

5.0 equiv of N,N-diisopropylethylamine was used, and allowed to stir at 0 °C for 5m; 

after acyl chloride addition, the reaction mixture was allowed to slowly warm to r.t. S23 

(188.9 mg, 77%) obtained as a colorless oil. Note: Diastereomers from the 

atropisomers of the secondary amide observable by NMR. 1H NMR (400 MHz, CDCl3) δ 

= 7.73 - 7.65 (m, 2H), 7.61 (br d, J = 6.8 Hz, 1H), 7.57 - 7.50 (m, 1H), 7.22 (br s, 3H), 

6.94 (br s, 1H), 5.13 (br s, 1H), 4.62 (br s, 2H), 4.10 (br s, 1H), 3.96 (br s, 1H), 3.84 - 

3.54 (m, 3H); 13C NMR (100 MHz, CDCl3) δ = 171.83 (br s), 169.27 (br s), 136.53 (br s), 

132.27 (br s), 130.74 (q, J = 33.0 Hz), 130.21, 128.91 (d, J = 2.2 Hz), 127.71 (br s), 

126.80 (br s), 126.32 (br s), 123.90 (q, J = 3.9 Hz), 123.51 (q, J = 272.9 Hz), 52.14, 

49.26 (br s), 46.18 (br s), 44.20 (br s), 42.31 (br s); 19F NMR (376 MHz, CDCl3) δ = -

62.71 (s, 3F); LRMS (ESI) calculated for C19H17F3NO3 [M + H]+ m/z 364.12, found 

363.96.  

 

 
 

2-(3-(trifluoromethyl)benzoyl)-1,2,3,4-tetrahydroisoquinoline-4-carboxylic acid 

(S24). S23 (98.5 mg, 0.271 mmol, 1.0 equiv.) was reacted in methanol (4 mL) with 1M 
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lithium hydroxide (4 mL, 4 mmol, 14.8 equiv.) according to general procedure B, except 

the reaction was cooled to 0 °C prior to hydroxide addition, and allowed to slowly warm 

to r.t. Semi-crude S24 (89.6 mg, 95%) obtained as a colorless oil. Note: Diastereomers 

from the atropisomers of the secondary amide observable by NMR.  1H NMR (400 MHz, 

CD3OD, CDCl3) δ = 7.84 - 7.60 (m, 4H), 7.34 - 7.18 (m, 3H), 6.98 (br s, 1H), 5.19 (br d, 

J = 17.3 Hz, 0.4H), 4.92 (br s, 0.6H), 4.76 (br d, J = 9.7 Hz, 0.4H), 4.58 (br s, 0.6H), 

4.13 (br s, 0.4H), 3.98 (br s, 0.4H), 3.80 (br s, 0.6H), 3.76 - 3.56 (m, 0.6H); 13C NMR 

(100 MHz, CD3OD, CDCl3) δ = 173.00, 172.53, 169.79 (br s), 165.90, 135.88 (br s), 

132.04, 131.43, 130.76 (br d, J = 30.8 Hz), 129.89 - 129.25 (m), 128.56 - 127.95 (m), 

126.65, 125.91 - 125.25 (m), 125.15 (br d, J = 3.7 Hz), 123.23 - 122.59 (m), 123.01 (d, J 

= 273.0 Hz), 48.46 (br s), 45.68 (br s), 43.44, 41.51 (br s); 19F NMR (376 MHz, CD3OD, 

CDCl3) δ = -63.98 (br s, 3F), -64.04 (br s, 1.7F); LRMS (ESI) calculated for C18H13F3NO3 

[M - H]- m/z 348.09, found 348.23.  

 

 
 

N-(1H-tetrazol-5-yl)-2-(3-(trifluoromethyl)benzoyl)-1,2,3,4-tetrahydroisoquinoline-4-

carboxamide (11). Semi-crude S24 (89.6 mg, 0.257 mmol, 1.0 equiv.) was reacted with 

5-aminotetrazole monohydrate (1.5 equiv.) in 4 mL DMF according to general procedure 

D (10m activation), except 3.0 equiv. N,N-diisopropylethylamine was added initially, with 

no second addition. 11 (29.0 mg, 27%) obtained as a white solid. Note: Diastereomers 

from the atropisomers of the secondary amide observable by NMR. 1H NMR (400 MHz, 

DMF-d7) δ = 7.83 (br s, 4H), 7.67 - 7.06 (br m, 4H), 5.22 (br s, 1H), 4.77 (br s, 1H), 4.59 
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- 4.33 (br m, 1H), 4.15 (br s, 1H), 3.97 (br s, 1H); 19F NMR (376 MHz, DMF-d7) δ = -

62.96 (s, 3F), -63.04 (s, 3F); LRMS (ESI) calculated for C19H14F3N6O2 [M - H]- m/z 

415.11, found 415.26. 

 

 
 

methyl 2-(3-(trifluoromethyl)benzoyl)-1,2,3,4-tetrahydroisoquinoline-4-carboxylate 

(S25). S22 (212.4 mg, 0.734 mmol, 1.1 equiv.) was reacted with commercially available 

3-(trifluoromethyl)benzenesulfonyl chloride in dry DMF (5 mL) according to general 

procedure A, with slight modification: prior to base addition, the reaction vessel was 

cooled to 0 °C; 5.0 equiv of N,N-diisopropylethylamine was added and allowed to stir at 

0 °C for 5m; after acyl chloride addition, the reaction mixture was allowed to slowly 

warm to r.t. S25 (206.6 mg, 78%) obtained as a colorless oil. 1H NMR (400 MHz, CDCl3) 

δ = 8.09 (s, 1H), 8.03 (d, J = 8.0 Hz, 1H), 7.84 (d, J = 7.8 Hz, 1H), 7.72 - 7.65 (m, 1H), 

7.24 - 7.15 (m, 3H), 7.09 - 7.04 (m, 1H), 4.41 (d, J = 15.1 Hz, 1H), 4.23 (d, J = 15.1 Hz, 

1H), 3.97 (dd, J = 5.2, 12.1 Hz, 1H), 3.92 - 3.88 (m, 1H), 3.69 (s, 3H), 3.41 (dd, J = 4.6, 

11.9 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ = 171.45, 137.92, 131.58 (q, J = 33.7 Hz), 

131.15, 130.71, 129.95, 129.90, 129.47 (q, J = 3.4 Hz), 129.22, 127.57, 127.01, 126.33, 

124.35 (q, J = 4.2 Hz), 123.00 (q, J = 273.0 Hz), 52.30, 47.13, 45.42, 44.24; 19F NMR 

(376 MHz, CDCl3) δ = -62.75 (s, 3F); LRMS (ESI) calculated for C18H17F3NO4S [M + H]+ 

m/z 400.08, found 399.98. 
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2-((3-(trifluoromethyl)phenyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline-4-carboxylic 

acid (S26). S25 (108.5 mg, 0.272 mmol, 1.0 equiv.) was reacted in methanol (4 mL) 

with 1M lithium hydroxide (4 mL, 4 mmol, 14.7 equiv.) according to general procedure 

B, except the reaction was cooled to 0 °C prior to hydroxide addition, and allowed to 

slowly warm to r.t. Semi-crude S26 (91.2 mg, 87%) obtained as a white solid. 1H NMR 

(400 MHz, CD3OD, CDCl3) δ = 8.10 - 8.05 (m, 2H), 7.91 (d, J = 7.8 Hz, 1H), 7.80 - 7.72 

(m, 1H), 7.25 - 7.14 (m, 3H), 7.11 - 7.06 (m, 1H), 4.41 (d, J = 15.3 Hz, 1H), 4.16 (d, J = 

15.3 Hz, 1H), 4.00 (dd, J = 5.0, 12.1 Hz, 1H), 3.86 (t, J = 4.9 Hz, 1H), 3.37 (dd, J = 4.9, 

12.2 Hz, 1H); 13C NMR (100 MHz, CD3OD, CDCl3) δ = 174.94, 139.27, 132.76, 132.83 

(q, J = 33.0 Hz), 132.35, 131.90, 131.69, 130.96 (q, J = 3.4 Hz), 130.74, 128.68, 

128.18, 127.58, 125.56 (q, J = 4.2 Hz), 124.65 (q, J = 272.2 Hz), 48.64, 47.15, 45.62; 

19F NMR (376 MHz, CD3OD, CDCl3) δ = -63.81 (s, 3F); LRMS (ESI) calculated for 

C17H13F3NO4S [M - H]- m/z 384.05, found 384.02. 

 

 
 

N-(1H-tetrazol-5-yl)-2-((3-(trifluoromethyl)phenyl)sulfonyl)-1,2,3,4-

tetrahydroisoquinoline-4-carboxamide (12). Semi-crude S26 (91.2 mg, 0.237 mmol, 

1.0 equiv.) was reacted with 5-aminotetrazole monohydrate (1.5 equiv.) in 4 mL DMF 

according to general procedure D (10m activation), except 3.0 equiv. N,N-
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diisopropylethylamine was added initially, with no second addition. 12 (16.3 mg, 15%) 

obtained as a white solid. 1H NMR (400 MHz, DMF-d7) δ = 8.52 - 7.69 (m, 4H), 7.28 (br 

s, 4H), 4.78 - 4.19 (m, 3H), 4.11 (br s, 1H), 3.64 (br s, 1H); 19F NMR (376 MHz, DMF-

d7) δ = -62.64 (s, 3F); LRMS (ESI) calculated for C18H14F3N6O3S [M - H]- m/z 451.08, 

found 450.90. 

 

 
 

1-(tert-butyl) 3-methyl indoline-1,3-dicarboxylate (S27). Commercially available 

methyl indole-3-carboxylate (6.500 g, 37.1 mmol, 1.0 equiv.) and sodium hydride (60% 

in mineral oil) (2.226 g, 55.7 mmol, 1.5 equiv.) were placed in a 200 mL round bottom 

flask and cooled to 0 °C with an ice bath. Dry tetrahydrofuran (55 mL) was slowly added 

under Ar with stirring. After 30 minutes of cooling, di-tert-butyl dicarbonate (12.147 g, 

55.7 mmol, 1.5 equiv.) was added in two portions at 0 °C, solidifying the solution. 

Additional dry tetrahydrofuran (100 mL) was subsequently added; stirred at r.t for 1.5h, 

then heated to 65 °C for 14h. The reaction mixture was quenched with a slow addition 

of ~ 20 mL sat. NH4Cl -- the crude reaction slurry was transferred to a sep. funnel with ~ 

500 mL ether, and the organic layer was washed with 3 x 500 mL water. The ether layer 

was dried over MgSO4, filtered, and concentrated; dried under hivac overnight. The 

resulting tan powder was dissolved in methanol (750 mL) and EtOAc (250 mL) and 

hydrogenated for 14d using an “H-Cube” flow hydrogenator with a 10% Pd/C cartridge; 

1 mL/min, 60 bar H2, 50 °C, loop configuration. (Note: During this period the cartridge 

was replaced three times. Slurry hydrogenation sans EtOAc is likely a better option.) 
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After completion of the hydrogenation, the system was purged with methanol and the 

combined mixture concentrated under reduced pressure. Purified directly on a silica 

column with 0-3% dichloromethane:methanol. S27 (7.590 g, 74%) obtained as colorless 

oil. (Note: will slowly oxidize back to indole, store cold) 1H NMR (400 MHz, CDCl3) δ = 

7.89 (br s, 1H), 7.36 (d, J = 7.5 Hz, 1H), 7.24 (t, J = 7.8 Hz, 1H), 6.97 (t, J = 7.4 Hz, 1H), 

4.39 (br dd, J = 5.8, 11.0 Hz, 1H), 4.26 - 4.19 (m, 1H), 4.19 - 4.06 (m, 1H), 3.79 (s, 3H), 

1.58 (br s, 9H); 13C NMR (100 MHz, CDCl3) δ = 171.90, 152.06 (br), 142.00 (br), 

128.95, 127.44 (br), 125.08 (br), 122.25, 114.92, 80.93 (br), 52.57, 49.77, 44.70 (br), 

28.40; LRMS (ESI) calculated for C15H19NNaO4 [M + Na]+ m/z 300.12, found 299.98. 

 

 
 

1-(tert-butyl) 3-methyl indoline-1,3-dicarboxylate (S28). S27 (202.7 mg, 0.731 mmol, 

1.0 equiv.) was dissolved in dry tetrahydrofuran (15 mL) and cooled to -78 °C. n-butyl 

lithium (434 ul, 0.694 mmol, 0.95 equiv.) (1.6M in hexanes) was then added dropwise to 

the solution -- stirred for 60 min at -78 °C. Separately, iodomethane was passed over a 

plug of activated alumina under Ar; iodomethane (137 ul, 2.19 mmol, 3.0 equiv.) was 

then added dropwise at -78 °C. Allowed to slowly warm to r.t. over 14h. Quenched with 

2 mL sat NH4Cl and transferred to a sep. funnel; diluted with sat. NH4Cl and extracted 

with 3 x ~ 30mL EtOAc. Organics were combined, washed with ~ 50 mL sat. NaHCO3 

and brine, dried over MgSO4, and concentrated. Purified on a silica column with 0-5% 

EtOAc:hexanes. S28 (65.1 mg, 31%) obtained as a light tan oil. Note: Atropisomers of 

the secondary carbamate observable by NMR; caused extensive peak broadening.  1H 
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NMR (400 MHz, CDCl3) δ = 7.87 (br s, 0.6H), 7.50 (br s, 0.4H), 7.31 (d, J = 7.5 Hz, 1H), 

7.23 (t, J = 7.7 Hz, 1H), 6.98 (t, J = 7.5 Hz, 1H), 4.58 (br d, J = 11.4 Hz, 1H), 3.72 (br s, 

4H), 1.60 (s, 3H), 1.58 (br s, 9H); 13C NMR (100 MHz, CDCl3) δ = 174.34, 152.11 (br), 

141.96 (br), 134.07 (br), 128.83, 123.95 (br), 122.38, 114.77, 80.86 (br), 57.91 (br), 

52.65, 49.74 (br s), 28.38, 25.58 (br); LRMS (ESI) calculated for C16H21NNaO4 [M + 

Na]+ m/z 314.14, found 313.94. 

 

 
 

methyl 3-methylindoline-3-carboxylate hydrochloride (S29). S28 (65.1 mg, 0.223 

mmol, 1.0 equiv.) was reacted with 4M HCl in dioxanes (4 mL) according to general 

procedure E (20h). Semi-crude S29 (62.4 mg, 123%) obtained as a colorless semi-

solid. 1H NMR (400 MHz, CD3OD) δ = 7.65 - 7.60 (m, 1H), 7.60 - 7.52 (m, 3H), 4.47 (d, 

J = 11.9 Hz, 1H), 3.74 (s, 3H), 3.68 (d, J = 5.1 Hz, 1H), 1.74 (s, 3H); 13C NMR (100 

MHz, CD3OD) δ = 174.12, 139.70, 136.99, 131.88, 131.39, 126.67, 120.93, 56.13, 

53.98, 53.84, 23.41; LRMS (ESI) calculated for C11H14NO2 [M + H]+ m/z 192.10, found 

191.89. 

 

 
 

methyl 3-methyl-1-(3-(trifluoromethyl)benzoyl)indoline-3-carboxylate (S30). Semi-

crude S29 (62.4 mg, 0.274 mmol, 1.0 equiv.) was reacted with commercially available 

3-(trifluoromethyl)benzoyl chloride in dry dichloromethane (5 mL) according to general 

NH
O

O
HCl

N
O

O

O

CF3



 230 

procedure A, with slight modification: prior to base addition, the reaction vessel was 

cooled to 0 °C; 2.5 equiv. of N,N-diisopropylethylamine was used, and allowed to stir at 

0 °C for 5m; after acyl chloride addition, the reaction mixture was allowed to slowly 

warm to r.t. S30 (70.3 mg, 71%) obtained as a colorless oil. 1H NMR (400 MHz, CDCl3) 

δ = 8.19 (br s, 1H), 7.87 (s, 1H), 7.82 - 7.73 (m, 2H), 7.65 - 7.58 (m, 1H), 7.40 (d, J = 

7.8 Hz, 1H), 7.27 (br s, 1H), 7.12 (br s, 1H), 4.70 (br d, J = 9.7 Hz, 1H), 3.76 (br s, 1H), 

3.72 (s, 3H), 1.62 (s, 3H); 13C NMR (100 MHz, CDCl3) δ = 173.59, 167.09, 141.49 (br s), 

137.25 (br s), 134.69 (br s), 131.19 (q, J = 33.0 Hz), 130.47 (br s), 129.27, 128.85 (br d, 

J = 2.9 Hz), 127.14 (br s), 124.87 - 124.56 (m), 124.45 - 123.81 (m), 123.59 (q, J = 

272.4 Hz), 117.77 (br s), 60.44 (br s), 52.82, 50.53 (br s), 24.05; LRMS (ESI) calculated 

for C19H17F3NO3 [M + H]+ m/z 364.12, found 363.84. 

 

 
 

3-methyl-1-(3-(trifluoromethyl)benzoyl)indoline-3-carboxylic acid (S31). S30 (67.0 

mg, 0.193 mmol, 1.0 equiv.) was reacted in methanol (5 mL) with 1M lithium hydroxide 

(5 mL, 5 mmol, 26 equiv.) according to general procedure B, except the reaction was 

cooled to 0 °C prior to hydroxide addition, and allowed to slowly warm to r.t. Semi-crude 

S31 (67.0 mg, 99%) obtained as a white solid. 1H NMR (400 MHz, CD3OD) δ = 8.15 (br 

s, 1H), 8.01 - 7.83 (m, 3H), 7.78 - 7.70 (m, 1H), 7.49 (br d, J = 7.5 Hz, 1H), 7.29 (br s, 

1H), 7.16 (br s, 1H), 4.67 (br s, 1H), 3.82 (br d, J = 9.0 Hz, 1H), 1.59 (br s, 3H); LRMS 

(ESI) calculated for C18H13F3NO3 [M - H]- m/z 348.09, found 347.96. 
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3-methyl-N-(1H-tetrazol-5-yl)-1-(3-(trifluoromethyl)benzoyl)indoline-3-carboxamide 

(13). Semi-crude S31 (67.0 mg, 0.192 mmol, 1.0 equiv.) was reacted with 5-

aminotetrazole monohydrate (1.1 equiv.) in 4 mL DMF according to general procedure 

D (10m activation). 13 (25.6 mg, 32%) obtained as a white solid. 1H NMR (400 MHz, 

CD3OD) δ = 8.14 (br s, 1H), 8.00 - 7.82 (m, 3H), 7.76 - 7.68 (m, 1H), 7.54 (br d, J = 6.8 

Hz, 1H), 7.31 (br s, 1H), 7.18 (br s, 1H), 4.72 (br d, J = 8.3 Hz, 1H), 3.97 (br d, J = 10.0 

Hz, 1H), 1.73 (br s, 3H); LRMS (ESI) calculated for C19H14F3N6O2 [M - H]- m/z 415.11, 

found 415.04. 

 

 
 

methyl indoline-3-carboxylate hydrochloride (S32). S27 (782.4 mg, 2.82 mmol, 1.0 

equiv.) was reacted with 4M HCl in dioxanes (10 mL) according to general procedure E 

(20h). Semi-crude S32 (595.6 mg, 99%) obtained as a light pink foam. Note: Unstable; 

will spontaneously oxidize. Store cold. 1H NMR (400 MHz, CD3OD) δ = 7.66 - 7.60 (m, 

1H), 7.56 - 7.45 (m, 3H), 4.60 (dd, J = 5.1, 8.8 Hz, 1H), 4.21 (dd, J = 5.4, 12.2 Hz, 1H), 

4.06 (dd, J = 8.8, 12.2 Hz, 1H), 3.76 (s, 3H); 13C NMR (100 MHz, CD3OD) δ = 171.80, 

137.08, 134.46, 131.51, 131.12, 127.71, 121.00, 53.65, 48.11; LRMS (ESI) calculated 

for C10H12NO2 [M + H]+ m/z 178.09, found 177.94. 
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methyl 1-(3-(trifluoromethyl)benzoyl)indoline-3-carboxylate (S33). Semi-crude S32 

(595.6 mg, 2.79 mmol, 1.0 equiv.) was reacted with commercially available 3-

(trifluoromethyl)benzoyl chloride in dry dichloromethane (25 mL) according to general 

procedure A, with slight modification: prior to base addition, the reaction vessel was 

cooled to 0 °C; 2.5 equiv. of N,N-diisopropylethylamine was used, and allowed to stir at 

0 °C for 5m; after acyl chloride addition, the reaction mixture was allowed to slowly 

warm to r.t. S33 (889.5 mg, 91%) obtained as a colorless oil. 1H NMR (400 MHz, CDCl3) 

δ = 8.18 (br s, 1H), 7.84 (s, 1H), 7.73 (br dd, J = 8.3, 11.2 Hz, 2H), 7.60 - 7.52 (m, 1H), 

7.40 (d, J = 7.8 Hz, 1H), 7.20 (br s, 1H), 7.06 (br d, J = 6.3 Hz, 1H), 4.45 (br s, 1H), 4.23 

- 4.15 (m, 1H), 4.08 (br s, 1H), 3.71 (s, 3H); 13C NMR (100 MHz, CDCl3) δ = 170.99, 

166.89 (br s), 141.84 (br s), 137.13 (br s), 130.87 (q, J = 33.0 Hz), 130.25 (br s), 129.11, 

128.63 (br s), 126.89 (br s), 125.14 (br s), 124.37 (br s), 123.97 (br s), 123.45 (q, J = 

272.9 Hz), 117.35 (br s), 60.05, 52.39, 45.02 (br s); 19F NMR (376 MHz, CDCl3) δ = -

62.78 (s, 3F); LRMS (ESI) calculated for C18H14F3NNaO3 [M + Na]+ m/z 372.08, found 

371.94.  

 

 
 

methyl 3-phenyl-1-(3-(trifluoromethyl)benzoyl)indoline-3-carboxylate (S34). S33 

(213.8 mg, 0.612 mmol, 1.0 equiv.) was dissolved in dry tetrahydrofuran (10 mL) and 
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cooled to -78 °C. LHMDS (581 uL, 0.581 mmol, 0.95 equiv.) (1M in tetrahydrofuran) was 

then added dropwise to the solution -- stirred at -78 °C. Separately, diphenyliodonium 

trifluoromethanesulfonate (316 mg, 0.734 mmol, 1.2 equiv.) was suspended in dry 

dichloromethane (6 mL) and cooled to -78 °C. After 90 minutes of enolization, the 

suspension was cannulated over at -78 °C and the reaction was allowed to slowly warm 

to r.t. over 16h. Quenched with 2 mL sat NH4Cl and transferred to a sep. funnel; diluted 

with sat. NH4Cl and extracted with 3 x ~ 30 mL EtOAc. Organics were combined, 

washed with ~ 50 mL sat. NaHCO3 and brine, dried over MgSO4, and concentrated. 

Purified on a silica column with 0-15% EtOAc:hexanes. S34 (26.7 mg, 10%) obtained as 

a waxy white solid. 1H NMR (400 MHz, CDCl3) δ = 8.26 (br s, 1H), 7.81 (s, 1H), 7.77 - 

7.71 (m, 2H), 7.57 (dd, J = 7.9, 17.9 Hz, 2H), 7.37 - 7.29 (m, 4H), 7.21 (br t, J = 7.1 Hz, 

1H), 7.11 (br d, J = 6.6 Hz, 2H), 5.03 (br d, J = 11.2 Hz, 1H), 3.98 (br s, 1H), 3.77 (s, 

3H); 13C NMR (100 MHz, CDCl3) δ = 172.22, 167.10, 142.74 (br s), 141.07, 137.13 (br 

s), 131.21 (q, J = 33.0 Hz, 1C), 130.43 (br s), 129.44 (br s), 129.22, 128.95, 127.87, 

127.18 (br s), 126.51, 124.80 (br s), 124.37 (br s), 123.58 (q, J = 274.1 Hz), 117.69 (br 

s), 62.19 (br s), 60.36 (br s), 53.13; 19F NMR (376 MHz, CDCl3) δ = -62.78 (s, 3F); 

LRMS (ESI) calculated for C24H19F3NO3 [M + H]+ m/z 426.13, found 425.97. 

 

 
 

3-phenyl-1-(3-(trifluoromethyl)benzoyl)indoline-3-carboxylic acid (S35). S34 (26.7 

mg, 0.063 mmol, 1.0 equiv.) was reacted in methanol (4 mL) with 1M lithium hydroxide 

(3 mL, 3 mmol, 48 equiv.) according to general procedure B. Semi-crude S35 (25.3 mg, 
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98%) obtained as a white solid. 1H NMR (400 MHz, CD3OD) δ = 8.18 (br s, 1H), 7.82 (br 

d, J = 5.6 Hz, 2H), 7.78 (br d, J = 7.8 Hz, 1H), 7.71 - 7.63 (m, 1H), 7.57 (dd, J = 0.7, 7.8 

Hz, 1H), 7.37 - 7.20 (m, 5H), 7.16 (br d, J = 7.1 Hz, 2H), 4.99 - 4.91 (m, 1H), 4.03 - 3.93 

(m, 1H); 13C NMR (100 MHz, CD3OD) δ = 173.30, 167.58, 142.40 (br s), 141.32, 137.20 

(br s), 132.88, 130.82 (br q, J = 32.7 Hz), 130.48 (br s), 129.46, 129.25, 128.76 (br s), 

128.51, 128.11, 127.41, 127.01 (br s), 126.42, 126.37, 124.94 - 124.60 (m), 123.83 (br 

d, J = 5.1 Hz), 123.78 (q, J = 271.7 Hz), 117.51 (br s), 62.28 (br s), 60.45 (br s); 19F 

NMR (376 MHz, CD3OD) δ = -64.23 (s, 3F); LRMS (ESI) calculated for C23H17F3NO3 [M 

+ H]+ m/z 412.12, found 411.99. 

 

 
 

3-phenyl-N-(1H-tetrazol-5-yl)-1-(3-(trifluoromethyl)benzoyl)indoline-3-carboxamide 

(14). Semi-crude S35 (25.3 mg, 0.062 mmol, 1.0 equiv.) was reacted with 5-

aminotetrazole monohydrate (1.1 equiv.) in 3 mL DMF according to general procedure 

D (10m activation). 14 (6.9 mg, 24%) obtained as a white solid. 1H NMR (400 MHz, 

CD3OD) δ = 7.96 - 7.85 (m, 3H), 7.81 (br d, J = 7.5 Hz, 1H), 7.76 - 7.68 (m, 1H), 7.56 - 

7.16 (m, 8H), 5.12 (br d, J = 9.5 Hz, 1H), 4.08 (br d, J = 10.2 Hz, 1H); 19F NMR (376 

MHz, CD3OD) δ = -64.25 (br s, 3F); LRMS (ESI) calculated for C24H16F3N6O2 [M - H]- 

m/z 477.13, found 477.05. 
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methyl 3-benzyl-1-(3-(trifluoromethyl)benzoyl)indoline-3-carboxylate (S36). S33 

(49.1 mg, 0.141 mmol, 1.0 equiv.) was dissolved in dry tetrahydrofuran (3.3 mL) and 

cooled to -78 °C. LHMDS (134 uL, 0.134 mmol, 0.95 equiv.) (1M in tetrahydrofuran) was 

then added dropwise to the solution -- stirred at -78 °C for 45m. Benzyl bromide (20 uL, 

0.169 mmol, 1.2 equiv.) was then added dropwise, and the reaction was allowed to 

slowly warm to r.t. over 16h. Quenched with 2 mL sat NH4Cl and transferred to a sep. 

funnel; diluted with sat. NH4Cl and extracted with 3 x ~ 30 mL EtOAc. Organics were 

combined, washed with ~ 50 mL sat. NaHCO3 and brine, dried over MgSO4, and 

concentrated. Purified on a silica column with 0-20% EtOAc:hexanes. S36 (60.0 mg, 

97%) obtained as a colorless oil. 1H NMR (400 MHz, CDCl3) δ = 8.47 - 7.84 (m, 1H), 

7.73 (br d, J = 7.3 Hz, 1H), 7.66 - 7.48 (m, 4H), 7.26 - 7.09 (m, 5H), 6.84 (br s, 2H), 4.51 

(br d, J = 4.6 Hz, 1H), 3.96 (br s, 1H), 3.81 (s, 3H), 3.35 (br d, J = 13.6 Hz, 1H), 3.18 (br 

d, J = 12.7 Hz, 1H); 19F NMR (376 MHz, CDCl3) δ = -62.70 (s, 3F); LRMS (ESI) 

calculated for C25H21F3NO3 [M + H]+ m/z 440.15, found 440.11. 
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3-benzyl-1-(3-(trifluoromethyl)benzoyl)indoline-3-carboxylic acid (S37). S36 (60.0 

mg, 0.137 mmol, 1.0 equiv.) was reacted in methanol (6 mL) with 1M lithium hydroxide 

(5 mL, 5 mmol, 37 equiv.) according to general procedure B. Semi-crude S37 (64.6 mg, 

111%) obtained as a white solid. 1H NMR (400 MHz, CD3OD, drops CDCl3) δ = 8.01 (br 

s, 1H), 7.84 - 7.75 (m, 1H), 7.74 - 7.50 (m, 3H), 7.46 - 7.04 (m, 6H), 6.86 (br s, 2H), 4.56 

- 4.37 (m, 1H), 3.90 (br s, 1H), 3.36 (d, J = 13.4 Hz, 1H), 3.14 (br s, 1H); 19F NMR (376 

MHz, CD3OD, drops CDCl3) δ = -64.04 (br s, 3F); LRMS (ESI) calculated for 

C24H17F3NO3 [M - H]- m/z 424.12, found 424.15. 

 

 
 

3-benzyl-N-(1H-tetrazol-5-yl)-1-(3-(trifluoromethyl)benzoyl)indoline-3-carboxamide 

(15). Semi-crude S37 (64.6 mg, 0.152 mmol, 1.0 equiv.) was reacted with 5-

aminotetrazole monohydrate (1.1 equiv.) in 3 mL DMF according to general procedure 

D (10m activation). 15 (18.6 mg, 25%) obtained as a white solid. 1H NMR (400 MHz, 

DMSO-d6) δ = 7.99 (br s, 1H), 7.90 (br d, J = 7.3 Hz, 1H), 7.85 - 7.66 (m, 3H), 7.35 (br 

s, 1H), 7.30 - 7.00 (m, 5H), 6.91 (br s, 2H), 4.41 (br d, J = 9.5 Hz, 1H), 4.21 (br s, 1H), 

3.66 (br d, J = 13.6 Hz, 1H), 3.27 - 3.13 (m, 1H); 13C NMR (100 MHz, DMSO-d6) δ = 

170.71 (br s), 165.81 (br s), 152.19 (br s), 142.28 (br s), 137.50 (br s), 135.90 (br s), 
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133.53 (br s), 130.90 (br s), 129.86, 129.50 (br s), 129.24 (d, J = 31.8 Hz), 128.93 - 

128.55 (m), 128.00, 126.84 (br s), 125.73 - 125.28 (m), 124.64 - 124.11 (m), 123.76 - 

123.48 (m), 123.84 (d, J = 272.4 Hz), 116.89 (br s), 56.91 (br s), 56.28 (br s), 41.72; 19F 

NMR (376 MHz, DMSO-d6) δ = -61.18 (s, 3F); LRMS (ESI) calculated for C25H18F3N6O2 

[M - H]- m/z 491.15, found 491.15.  

 

 
 

methyl 3-azido-1-(3-(trifluoromethyl)benzoyl)indoline-3-carboxylate (S38). S33 

(255.6 mg, 0.732 mmol, 1.0 equiv.) was reacted in 15 mL tetrahydrofuran according to 

general procedure F. S38 (210.4 mg, 74%) obtained as a white solid. 1H NMR (400 

MHz, CDCl3) δ = 8.22 (br s, 1H), 7.88 (s, 1H), 7.78 (br dd, J = 3.7, 6.8 Hz, 2H), 7.65 - 

7.59 (m, 1H), 7.50 (d, J = 7.5 Hz, 1H), 7.43 (br s, 1H), 7.20 (br t, J = 7.2 Hz, 1H), 4.67 

(d, J = 12.2 Hz, 1H), 3.97 (br s, 1H), 3.90 (s, 3H); 13C NMR (100 MHz, CDCl3) δ = 

168.86, 167.01, 142.30 (br s), 136.50, 131.41 (br s), 131.32 (q, J = 33.0 Hz), 130.47 (br 

s), 129.36, 127.53 (br d, J = 2.9 Hz), 124.73 (br s), 124.35 (br s), 123.93 (br s), 123.47 

(q, J = 272.9 Hz), 117.84 (br s), 69.68 (br s), 59.16 (br s), 53.71; 19F NMR (376 MHz, 

CDCl3) δ = -62.79 (s, 3F); LRMS (ESI) calculated for C18H14F3N4O3 [M + H]+ m/z 

391.10, found 390.81. 
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methyl 3-((tert-butoxycarbonyl)amino)-1-(3-(trifluoromethyl)benzoyl)indoline-3-

carboxylate (S39). A round bottom flask was charged with S38 (150.8 mg, 0.386 mmol, 

1.0 equiv.) and dry methanol (3.5 mL), then cooled to 0 °C. Anhydrous tin(II) chloride 

(147 mg, 0.773 mmol, 2.0 equiv.) was then added; stirred at 0 °C for 5m, then r.t. for 2h. 

The methanol was then removed under reduced pressure. 1,4-dioxane (3 mL) was then 

added, followed by di-tert-butyl dicarbonate (126 mg, 0.580 mmol, 1.5 equiv.) in 700 uL 

1,4-dioxane. Finally, a slurry of sodium bicarbonate (130 mg, 1.55 mmol, 4.0 equiv.) in 

water (700 uL) was added, and the resulting slurry was allowed to stir for 22h. The 

reaction mixture was then transferred to a sep. funnel with excess EtOAc and water and 

adjusted to pH 1 with 2N NaHSO4. The layers were separated, and the aqueous layer 

was further extracted with ~ 50 mL EtOAc. The organic layers were combined, washed 

with sat. NaHCO3, dried over MgSO4, and concentrated under reduced pressure. 

Purified on a silica column with 15% EtOAc:hexanes. S39 (157.0 mg, 88%) obtained as 

a colorless oil. 1H NMR (400 MHz, CDCl3) δ = 8.24 (br s, 1H), 7.84 (br s, 1H), 7.75 (br t, 

J = 6.5 Hz, 2H), 7.63 - 7.54 (m, 1H), 7.36 (d, J = 7.5 Hz, 1H), 7.27 (br s, 1H), 7.10 (br t, 

J = 6.7 Hz, 1H), 4.91 (br d, J = 11.2 Hz, 1H), 4.09 (br s, 1H), 3.75 (s, 3H), 1.39 (br s, 

9H); 13C NMR (100 MHz, CDCl3) δ = 171.02, 167.31 (br s), 154.72 (br s), 142.51 (br s), 

136.96, 131.32, 130.83 (d, J = 33.0 Hz), 130.76 (br s), 130.28 (br s), 129.45 (br s), 

127.18 (br d, J = 2.9 Hz), 125.09 - 124.66 (m), 124.20 (br s), 123.35 (br s), 123.51 (q, J 

= 272.2 Hz), 117.86 (br s), 80.89 (br s), 64.55 (br s), 60.64 (br s), 53.25, 28.00 (br s); 
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19F NMR (376 MHz, CDCl3) δ = -62.83 (s, 3F); LRMS (ESI) calculated for C23H24F3N2O5 

[M + H]+ m/z 465.16, found 465.04.  

 

 
 

3-((tert-butoxycarbonyl)amino)-1-(3-(trifluoromethyl)benzoyl)indoline-3-carboxylic 

acid (S40). S39 (157.0 mg, 0.338 mmol, 1.0 equiv.) was reacted in methanol (7 mL) 

with 1M lithium hydroxide (700 uL, 0.700 mmol, 2.1 equiv.) according to general 

procedure B, except the reaction was cooled to 0 °C prior to hydroxide addition, and 

allowed to slowly warm to r.t. for 3h. Semi-crude S40 (134.6 mg, 88%) obtained as a 

white solid. 1H NMR (400 MHz, CD3OD, drops CDCl3) δ = 8.20 (br s, 1H), 7.85 (br s, 

1H), 7.80 (br s, 2H), 7.72 - 7.62 (m, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.38 (br s, 1H), 7.16 

(br s, 1H), 4.88 (br s, 1H), 4.10 (br s, 1H), 1.40 (br s, 9H); 13C NMR (100 MHz, CD3OD, 

drops CDCl3) δ = 173.34 (br s), 169.04 (br s), 156.90 (br s), 143.33 (br s), 138.24 (br s), 

132.24 (br d, J = 33.0 Hz), 131.39, 130.66, 128.31 (br s), 126.75 - 125.88 (m), 125.12 

(br s), 124.78 (q, J = 271.9 Hz), 119.10 (br s), 82.70 (br s), 65.61 (br s), 62.31 (br s), 

28.86 (br s); 19F NMR (376 MHz, CD3OD, drops CDCl3) δ = -63.58 (s, 3F); LRMS (ESI) 

calculated for C22H20F3N2O5 [M - H]- m/z 449.13, found 449.08.  
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tert-butyl (3-((1H-tetrazol-5-yl)carbamoyl)-1-(3-(trifluoromethyl)benzoyl)indolin-3-

yl)carbamate (16). Semi-crude S40 (68.0 mg, 0.151 mmol, 1.0 equiv.) was reacted with 

5-aminotetrazole monohydrate (1.1 equiv.) in 4 mL DMF according to general procedure 

D (10m activation). 16 (36.0 mg, 46%) obtained as a white solid. 1H NMR (400 MHz, 

CD3OD, drops CDCl3) δ = 8.20 (br s, 1H), 7.92 (br s, 2H), 7.84 (br d, J = 7.8 Hz, 1H), 

7.75 - 7.67 (m, 1H), 7.62 (d, J = 7.5 Hz, 1H), 7.39 (br s, 1H), 7.18 (br s, 1H), 5.16 (br s, 

1H), 4.06 (br d, J = 9.7 Hz, 1H), 1.37 (br s, 9H); 19F NMR (376 MHz, CD3OD, drops 

CDCl3) δ = -63.82 (s, 3F); LRMS (ESI) calculated for C23H21F3N7O4 [M - H]- m/z 516.16, 

found 516.27. 

 

 
 

3-amino-N-(1H-tetrazol-5-yl)-1-(3-(trifluoromethyl)benzoyl)indoline-3-carboxamide 

formate (17). 16 (22.0 mg, 0.043 mmol, 1.0 equiv.) was reacted with 4M HCl in 

dioxanes (4 mL) according to general procedure E (42h), except the resulting residue 

was taken up in DMF and purified by reverse phase HPLC (water/MeOH/0.05% formic 

acid) to afford 17 (19.0 mg, 96%) as a white solid. 1H NMR (400 MHz, DMSO-d6) δ = 

8.27 (br s, 1H), 8.01 - 7.89 (m, 3H), 7.86 - 7.77 (m, 1H), 7.58 (br s, 1H), 7.43 (d, J = 7.8 

Hz, 1H), 7.23 (br s, 1H), 4.74 (d, J = 13.1 Hz, 1H), 4.17 (br s, 1H); 19F NMR (376 MHz, 
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DMSO-d6) δ = -61.26 (s, 3F); LRMS (ESI) calculated for C18H15F3N7O2 [M + H]+ m/z 

418.12, found 417.77. 

 

 
 

methyl 3-amino-1-(3-(trifluoromethyl)benzoyl)indoline-3-carboxylate (S41). S38 

(946.9 mg, 2.43 mmol, 1.0 equiv.) was suspended in dry methanol (44 mL) and cooled 

to 0 °C. Anhydrous tin(II) chloride (920 mg, 4.85 mmol, 2.0 equiv.) was then added, and 

the reaction was stirred at 0 °C for 10m, then allowed to warm to r.t. for an additional 3h. 

The methanol was removed under reduced pressure; the resulting foam was transferred 

to a sep. funnel with ~ 75 mL EtOAc and partitioned with ~ 75 mL sat. NaHCO3. The 

aqueous layer was further extracted with 2 x 50 mL EtOAc; the organics were 

combined, dried over MgSO4, and concentrated to give semi-crude S41 (913.5 mg, 

103%) as a light yellow oil. LRMS (ESI) calculated for C18H16F3N2O3 [M + H]+ m/z 

365.11, found 364.95. 

 

 
 

methyl 3-(((benzyloxy)carbonyl)amino)-1-(3-(trifluoromethyl)benzoyl)indoline-3-

carboxylate (S42). Semi-crude S41 (295.4 mg, 0.811 mmol, 1.0 equiv.) was reacted 

with commercially available benzyl chloroformate in dry dichloromethane (7.5 mL) 

according to general procedure A, with slight modification: prior to base addition, the 
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reaction vessel was cooled to 0 °C; 2.5 equiv. of N,N-diisopropylethylamine was used, 

and allowed to stir at 0 °C for 5m; after chloroformate addition, the reaction mixture was 

allowed to slowly warm to r.t. S42 (314.0 mg, 78%) obtained as a colorless oil. 1H NMR 

(400 MHz, CDCl3) δ = 8.27 (br s, 1H), 7.87 (br s, 1H), 7.77 (br d, J = 7.8 Hz, 2H), 7.66 - 

7.55 (m, 1H), 7.39 - 7.29 (m, 7H), 7.14 (br t, J = 6.7 Hz, 1H), 5.15 - 5.02 (m, 2H), 4.93 

(br d, J = 11.9 Hz, 1H), 4.21 (br s, 1H), 3.77 (s, 3H); 13C NMR (100 MHz, CDCl3) δ = 

171.10, 167.28 (br s), 155.07, 142.66 (br s), 136.89, 135.68, 131.29 (d, J = 32.3 Hz), 

131.30 - 130.59 (m), 130.34 (br s), 129.32, 128.52, 128.35, 128.11, 127.33 (br d, J = 3.7 

Hz), 124.97 (br d, J = 3.7 Hz), 124.35 (br s), 123.20 (br s), 123.56 (d, J = 272.0 Hz), 

116.27 (br s), 67.31, 64.77 (br s), 60.36 (br s), 53.57; 19F NMR (376 MHz, CDCl3) δ = -

62.76 (s, 3F). 

 

 
 

3-(((benzyloxy)carbonyl)amino)-1-(3-(trifluoromethyl)benzoyl)indoline-3-

carboxylic acid (S43). S42 (37.4 mg, 0.075 mmol, 1.0 equiv.) was reacted in methanol 

(3 mL) with 1M lithium hydroxide (3 mL, 3 mmol, 40 equiv.) according to general 

procedure B. Semi-crude S43 (33.1 mg, 91%) obtained as a white solid. LRMS (ESI) 

calculated for C25H18F3N2O5 [M - H]- m/z 483.12, found 483.05. 
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benzyl (3-((1H-tetrazol-5-yl)carbamoyl)-1-(3-(trifluoromethyl)benzoyl)indolin-3-

yl)carbamate (18). Semi-crude S43 (33.1 mg, 0.068 mmol, 1.0 equiv.) was reacted with 

5-aminotetrazole monohydrate (1.1 equiv.) in 2 mL DMF according to general procedure 

D (10m activation). 18 (8.7 mg, 23%) obtained as a white solid. 1H NMR (400 MHz, 

DMSO-d6) δ = 8.13 (br s, 1H), 8.06 - 7.87 (m, 3H), 7.79 (br d, J = 6.8 Hz, 2H), 7.31 (br 

s, 6H), 7.16 (br s, 1H), 5.04 (br s, 2H), 4.90 (br d, J = 6.6 Hz, 1H), 4.11 (br d, J = 10.7 

Hz, 1H); 13C NMR (100 MHz, DMSO-d6) δ = 168.26, 166.36 (br s), 156.82 (br s), 155.50 

(br s), 142.09 (br s), 137.65, 136.46 (br s), 131.05 (br s), 129.87 (br s), 129.40 (br d, J = 

32.2 Hz), 128.29, 127.76, 127.52 (br s), 127.01 (br s), 125.56 - 125.08 (m), 124.29 (br 

s), 123.88 (br s), 123.85 (d, J = 272.5 Hz), 117.04 (br s), 65.84 (br s), 60.41 (br s); 19F 

NMR (376 MHz, DMSO-d6) δ = -61.13 (br s, 3F); LRMS (ESI) calculated for 

C26H19F3N7O4 [M - H]- m/z 550.15, found 550.39. 

 

 
 

2-methyl-N-(2-nitrobenzyl)propan-2-amine (S44). A 20 mL vial was charged with 2-

nitrobenzaldehyde (108 mg, 0.714 mmol, 1.0 equiv.), fitted with a septa, and purged 

with Ar. tert-butylamine (75 uL, 0.714 mmol, 1.0 equiv.) was then added, followed by dry 

methanol (3 mL). The vial was foiled; stirred overnight. Sodium borohydride (30 mg, 

0.785 mmol, 1.1 equiv.) was then added in one portion. After 2h of stirring, the reaction 
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mixture was quenched with ~ 30 mL water and transferred to a sep. funnel with 

additional water, then extracted with 3 x 40 mL DCM. The organic layers were 

combined, dried over MgSO4, and concentrated. Purified on a silica column with 0-

100% EtOAc:hexanes. S44 (136.3 mg, 92%) obtained as a yellow oil. Note: Fairly 

photo stable, but avoid direct sunlight. 1H NMR (400 MHz, CDCl3) δ = 7.88 (dd, J = 1.1, 

8.2 Hz, 1H), 7.65 (d, J = 7.5 Hz, 1H), 7.55 (dt, J = 1.2, 7.5 Hz, 1H), 7.40 - 7.32 (m, 1H), 

3.93 (s, 2H), 1.16 (s, 9H); 13C NMR (100 MHz, CDCl3) δ = 149.22, 136.63, 133.09, 

131.65, 127.60, 124.35, 50.79, 44.13, 28.95; LRMS (ESI) calculated for C11H17N2O2 [M 

+ H]+ m/z 209.13, found 209.06. 

 

 
 

methyl 3-(3-(tert-butyl)-3-(2-nitrobenzyl)ureido)-1-(3-

(trifluoromethyl)benzoyl)indoline-3-carboxylate (S45). Semi-crude S41 (53.1 mg, 

0.146 mmol, 1.0 equiv.) was reacted with partner amine S44 (1.1 equiv.) according to 

general procedure G. The reaction vessel was foiled. S45 (83.6 mg, 96%) obtained as a 

white solid. 1H NMR (400 MHz, CDCl3) δ = 8.11 (d, J = 8.3 Hz, 1H), 8.19 (br s, 1H), 7.84 

- 7.77 (m, 3H), 7.77 - 7.71 (m, 2H), 7.63 - 7.56 (m, 1H), 7.54 - 7.48 (m, 1H), 7.29 (br s, 

1H), 6.99 - 6.88 (m, 2H), 5.06 - 4.94 (m, 3H), 4.76 (d, J = 19.7 Hz, 1H), 3.75 (s, 3H), 

1.40 (s, 9H); 13C NMR (100 MHz, CDCl3) δ = 171.05, 167.43 (br s), 158.09, 147.18, 

142.72 (br s), 137.01, 134.84, 134.14, 131.20 (q, J = 32.9 Hz), 130.74 (br s), 130.26 (br 
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s), 129.57 - 129.35 (m), 129.30, 128.43, 127.95, 127.20 (br d, J = 2.9 Hz), 125.73, 

125.07 - 124.63 (m), 124.25 (br d, J = 3.9 Hz), 122.57 (br s), 123.56 (q, J = 272.6 Hz), 

118.33 (br s), 65.28 (br s), 61.46 (br s), 57.17, 53.15, 46.87, 28.80; 19F NMR (376 MHz, 

CDCl3) δ = -62.75 (s, 3F); LRMS (ESI) calculated for C30H30F3N4O6 [M + H]+ m/z 

599.21, found 599.16. 

 

 
 

3-(3-(tert-butyl)-3-(2-nitrobenzyl)ureido)-1-(3-(trifluoromethyl)benzoyl)indoline-3-

carboxylic acid (S46). S45 (83.6 mg, 0.140 mmol, 1.0 equiv.) was reacted in methanol 

(5 mL) with 1M lithium hydroxide (196 uL, 0.196 mmol, 1.4 equiv.) according to general 

procedure B, except a second addition of 1M lithium hydroxide (75 uL) was required. 

The reaction vessel was foiled. Semi-crude S46 (70.5 mg, 86%) obtained as a white 

solid. LRMS (ESI) calculated for C29H26F3N4O6 [M - H]- m/z 583.18, found 583.20. 

 

 
 

3-(3-(tert-butyl)-3-(2-nitrobenzyl)ureido)-N-(1H-tetrazol-5-yl)-1-(3-

(trifluoromethyl)benzoyl)indoline-3-carboxamide (S47). Semi-crude S46 (70.5 mg, 
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0.121 mmol, 1.0 equiv.) was reacted with 5-aminotetrazole monohydrate (1.1 equiv.) in 

3.5 mL DMF according to general procedure D (1h activation; 48h), except the product 

was unstable to purification/concentration. Crude S47 (13.0 mg, 17%) obtained as a 

white solid (~ 70% pure). LRMS (ESI) calculated for C30H27F3N9O5 [M - H]- m/z 650.21, 

found 650.33. 

 

 
 

3-(3-(tert-butyl)ureido)-N-(1H-tetrazol-5-yl)-1-(3-(trifluoromethyl)benzoyl)indoline-

3-carboxamide (19). Crude S47 (13.0 mg, 0.020 mmol, 1.0 equiv.) was taken up in 

methanol (2.5 mL) and irradiated with 365 nm hv (TLC lamp, 4 watt) for 90m. The 

reaction mixture was concentrated and purified by reverse phase HPLC 

(water/MeOH/0.05% formic acid) to afford 19 (3.3 mg, 4% over 3 steps) as a white solid. 

1H NMR (400 MHz, DMSO-d6) δ = 12.10 (br s, 1H), 8.13 (br s, 1H), 8.06 - 7.91 (m, 3H), 

7.87 - 7.77 (m, 2H), 7.44 (br s, 1H), 7.22 (br t, J = 6.8 Hz, 1H), 6.93 (s, 1H), 6.52 (s, 

0.5H), 6.13 (s, 1H), 4.97 - 4.83 (m, 1H), 4.14 (br dd, J = 3.4, 5.6 Hz, 1H), 1.17 (s, 9H); 

19F NMR (376 MHz, DMSO-d6) δ = -61.17 (s, 3F); LRMS (ESI) calculated for 

C23H22F3N8O3 [M - H]- m/z 515.18, found 515.24. 

 

 
 

N-benzyl-1-(4-methoxyphenyl)methanamine (S48). A 20 mL vial was charged with 4-

anisaldehyde (111 uL, 0.916 mmol, 1.0 equiv.), fitted with a septa, and purged with Ar. 
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Benzylamine (100 uL, 0.916 mmol, 1.0 equiv.) was then added, followed by dry 

methanol (3 mL); stirred overnight. Sodium borohydride (38.1 mg, 1.01 mmol, 1.1 

equiv.) was then added in one portion. After 2h of stirring, the reaction mixture was 

quenched with ~ 30 mL water and transferred to a sep. funnel with additional water, 

then extracted with 3 x 40 mL DCM. The organic layers were combined, dried over 

MgSO4, and concentrated. Purified on a silica column with 0-55% EtOAc:hexanes. S48 

(183.9 mg, 88%) obtained as a yellow oil. 1H NMR (400 MHz, CDCl3) δ = 7.43 - 7.37 (m, 

4H), 7.35 - 7.30 (m, 3H), 6.96 - 6.95 (m, 1H), 6.94 - 6.92 (m, 1H), 3.86 (s, 2H), 3.84 (s, 

3H), 3.81 (s, 2H); 13C NMR (100 MHz, CDCl3) δ = 158.46, 140.13, 132.17, 129.17, 

128.21, 127.99, 126.75, 113.60, 55.02, 52.83, 52.33; LRMS (ESI) calculated for 

C15H18NO [M + H]+ m/z 228.14, found 228.02. 

 

 
 

methyl 3-(3-benzyl-3-(4-methoxybenzyl)ureido)-1-(3-

(trifluoromethyl)benzoyl)indoline-3-carboxylate (S49). Semi-crude S41 (72.8 mg, 

0.200 mmol, 1.0 equiv.) was reacted with partner amine S48 (1.1 equiv.) according to 

general procedure G. S49 (108.0 mg, 88%) obtained as a white solid. 1H NMR (400 

MHz, CDCl3) δ = 8.22 (br s, 1H), 7.85 (s, 1H), 7.76 (br d, J = 7.1 Hz, 2H), 7.63 - 7.56 (m, 

1H), 7.38 - 7.28 (m, 4H), 7.21 (br d, J = 6.8 Hz, 2H), 7.13 (d, J = 8.5 Hz, 2H), 7.00 (br t, 

J = 7.4 Hz, 1H), 6.90 - 6.83 (m, 3H), 5.28 (s, 1H), 5.07 (br d, J = 11.9 Hz, 1H), 4.44 (br 

s, 2H), 4.40 (br s, 2H), 3.80 (s, 3H), 3.74 (s, 3H); 13C NMR (100 MHz, CDCl3) δ = 

170.69, 167.41 (br s), 159.16, 157.47, 142.57 (br s), 137.04, 136.86 (br s), 131.13 (q, J 
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= 33.0 Hz), 130.65 (br s), 130.20 (br s), 129.52 (br s), 129.26, 128.73, 128.63 (br s), 

127.65, 127.25 (br s), 127.17 - 127.02 (m), 124.69 (br s), 124.16 (br d, J = 2.2 Hz), 

122.84 (br s), 123.55 (q, J = 272.2 Hz), 118.14 (br s), 114.10, 65.05 (br s), 61.33 (br s), 

55.15, 53.03, 50.35, 50.00; 19F NMR (376 MHz, CDCl3) δ = -62.68 (s, 3F); LRMS (ESI) 

calculated for C34H31F3N3O5 [M + H]+ m/z 618.22, found 618.10. 

 

 
 

3-(3-benzyl-3-(4-methoxybenzyl)ureido)-1-(3-(trifluoromethyl)benzoyl)indoline-3-

carboxylic acid (S50). S49 (108.0 mg, 0.175 mmol, 1.0 equiv.) was reacted in 

methanol (5.5 mL) with 1M lithium hydroxide (245 uL, 0.245 mmol, 1.4 equiv.) according 

to general procedure B, except a second addition of 1M lithium hydroxide (50 uL) was 

required. Semi-crude S50 (99.5 mg, 94%) obtained as a white solid. LRMS (ESI) 

calculated for C33H27F3N3O5 [M - H]- m/z 602.19, found 602.13. 

 

 
 

3-(3-benzyl-3-(4-methoxybenzyl)ureido)-N-(1H-tetrazol-5-yl)-1-(3-

(trifluoromethyl)benzoyl)indoline-3-carboxamide (S51). Semi-crude S50 (99.5 mg, 

0.165 mmol, 1.0 equiv.) was reacted with 5-aminotetrazole monohydrate (1.1 equiv.) in 

2.5 mL DMF according to general procedure D (1h activation). S51 (52.3 mg, 45% over 

2 steps) obtained as a white solid. 1H NMR (400 MHz, DMSO-d6) δ = 12.33 (br s, 1H), 
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8.13 (br s, 1H), 8.09 - 7.88 (m, 4H), 7.89 - 7.74 (m, 2H), 7.44 (br s, 1H), 7.33 - 7.00 (m, 

8H), 6.82 (br s, 2H), 5.07 (br s, 1H), 4.77 (br s, 2H), 4.10 (br d, J = 9.0 Hz, 1H), 3.95 (br 

s, 2H), 3.71 (br s, 3H); 19F NMR (376 MHz, DMSO-d6) δ = -61.13 (br s, 3F); LRMS (ESI) 

calculated for C34H28F3N8O4 [M - H]- m/z 669.22, found 670.11. 

 

 
 

3-(3-benzylureido)-N-(1H-tetrazol-5-yl)-1-(3-(trifluoromethyl)benzoyl)indoline-3-

carboxamide (20). S51 (44.9 mg, 0.067 mmol, 1.0 equiv.) was suspended in 

acetonitrile (2.4 mL) and water (600 uL). Ammonium cerium(IV) nitrate (165 mg, 0.301 

mmol, 4.5 equiv.) was then added in 0.5 equiv. portions over 3h. The crude reaction 

mixture was transferred to a sep. funnel with EtOAc and water; the layers were 

separated, and the aqueous layer was further extracted with 3 x 50 mL EtOAc. The 

organics were combined, dried over MgSO4, and concentrated. Purified by reverse 

phase HPLC (water/MeOH/0.05% formic acid) to afford 20 (10.7 mg, 29%) as a white 

solid. 1H NMR (400 MHz, DMSO-d6) δ = 12.25 (br s, 1H), 8.15 (br s, 1H), 8.01 (br s, 

2H), 7.95 (br d, J = 7.8 Hz, 1H), 7.88 (br d, J = 7.8 Hz, 1H), 7.84 - 7.77 (m, 1H), 7.53 - 

7.39 (m, 1H), 7.32 - 7.18 (m, 6H), 6.75 (t, J = 5.8 Hz, 0.5H), 4.94 (br d, J = 9.5 Hz, 1H), 

4.28 - 4.13 (m, 2H), 4.09 (d, J = 11.2 Hz, 1H); 13C NMR (100 MHz, DMSO-d6) δ = 

170.69, 166.31, 157.25, 157.20, 150.16 (br s), 142.02 (br s), 139.93, 137.37, 131.06, 

130.45 (br s), 130.33 - 130.09 (m), 130.00, 129.48 (d, J = 32.0 Hz), 128.19, 127.34 - 

127.12 (m), 126.84, 126.66, 124.89 - 124.65 (m), 124.61 - 124.42 (m), 123.81 (br d, J = 

3.3 Hz), 123.83 (q, J = 272.0 Hz), 117.68 (br s), 65.32 (br s), 61.41 (br s), 42.79; 19F 
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NMR (376 MHz, DMSO-d6) δ = -61.11 (s, 3F); LRMS (ESI) calculated for C26H20F3N8O3 

[M - H]- m/z 549.16, found 549.14. 

 

 
 

N-(2-nitrobenzyl)-2-phenylpropan-2-amine (S52). A 20 mL vial was charged with 2-

nitrobenzaldehyde (105 mg, 0.695 mmol, 1.0 equiv.), fitted with a septa, and purged 

with Ar. cumylamine (100 uL, 0.695 mmol, 1.0 equiv.) was then added, followed by dry 

methanol (3 mL). The vial was foiled; stirred overnight. Sodium borohydride (29 mg, 

0.765 mmol, 1.1 equiv.) was then added in one portion. After 2h of stirring, the reaction 

mixture was quenched with ~ 30 mL water and transferred to a sep. funnel with 

additional water, then extracted with 3 x 40 mL DCM. The organic layers were 

combined, dried over MgSO4, and concentrated. Purified on a silica column with 0-25% 

EtOAc:hexanes. S52 (150.0 mg, 80%) obtained as a yellow oil. Note: Fairly photo-

stable, but avoid direct sunlight. 1H NMR (400 MHz, CDCl3) δ = 7.93 - 7.88 (m, 1H), 

7.62 - 7.53 (m, 4H), 7.42 - 7.36 (m, 3H), 7.30 - 7.24 (m, 1H), 3.72 (s, 2H), 1.57 (s, 6H); 

13C NMR (100 MHz, CDCl3) δ = 149.20, 147.30, 136.53, 133.15, 131.67, 128.22, 

127.65, 126.41, 125.91, 124.39, 56.29, 44.71, 29.61; LRMS (ESI) calculated for 

C16H19N2O2 [M + H]+ m/z 271.14, found 271.04. 
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methyl 3-(3-(2-nitrobenzyl)-3-(2-phenylpropan-2-yl)ureido)-1-(3-

(trifluoromethyl)benzoyl)indoline-3-carboxylate (S53). Semi-crude S41 (80.2 mg, 

0.220 mmol, 1.0 equiv.) was reacted with partner amine S52 (1.1 equiv.) according to 

general procedure G. The reaction vessel was foiled. S53 (126.0 mg, 87%) obtained as 

a white solid. 1H NMR (400 MHz, CDCl3) δ = 8.16 (br s, 1H), 7.98 (dd, J = 1.1, 8.2 Hz, 

1H), 7.80 (s, 1H), 7.75 - 7.64 (m, 4H), 7.59 - 7.52 (m, 1H), 7.46 - 7.34 (m, 6H), 7.28 (br 

s, 1H), 6.92 (br t, J = 7.3 Hz, 1H), 6.31 (d, J = 7.5 Hz, 1H), 5.31 - 5.21 (m, 1H), 5.18 (s, 

1H), 5.14 - 5.06 (m, 1H), 4.93 (br d, J = 11.7 Hz, 1H), 3.66 (s, 3H), 1.66 (s, 3H), 1.50 (s, 

3H); 13C NMR (100 MHz, CDCl3) δ = 170.48, 167.26 (br s), 158.19, 147.49, 146.34, 

142.25 (br s), 137.01, 135.83, 133.32, 131.06 (q, J = 32.8 Hz), 130.70 - 130.40 (m), 

130.13 (br s), 129.41, 129.23, 128.96, 127.92, 127.50, 127.18 - 126.95 (m), 125.22, 

124.72, 124.46 (br s), 124.19 - 123.92 (m), 122.56 (br s), 123.51 (q, J = 272.6 Hz), 

118.08 (br s), 65.07 (br s), 61.68 (br s), 61.06, 52.85, 45.16, 30.89, 26.52 (br s); 19F 

NMR (376 MHz, CDCl3) δ = -62.74 (s, 3F); LRMS (ESI) calculated for C35H32F3N4O6 [M 

+ H]+ m/z 661.23, found 661.13. 
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3-(3-(2-nitrobenzyl)-3-(2-phenylpropan-2-yl)ureido)-1-(3-

(trifluoromethyl)benzoyl)indoline-3-carboxylic acid (S54). S53 (126.0 mg, 0.191 

mmol, 1.0 equiv.) was reacted in methanol (6 mL) with 1M lithium hydroxide (267 uL, 

0.267 mmol, 1.4 equiv.) according to general procedure B, except a second addition of 

1M lithium hydroxide (50 uL) was required. The reaction vessel was foiled. Semi-crude 

S54 (124.2 mg, 101%) obtained as a white solid. LRMS (ESI) calculated for 

C34H28F3N4O6 [M - H]- m/z 645.20, found 645.09. 

 

 
 

3-(3-(2-nitrobenzyl)-3-(2-phenylpropan-2-yl)ureido)-N-(1H-tetrazol-5-yl)-1-(3-

(trifluoromethyl)benzoyl)indoline-3-carboxamide (S55). Semi-crude S54 (124.2 mg, 

0.192 mmol, 1.0 equiv.) was reacted with 5-aminotetrazole monohydrate (1.1 equiv.) in 

3 mL DMF according to general procedure D (1h activation), except the product was 

unstable to purification/concentration. Crude S55 (31.2 mg, 23%) obtained as a white 
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solid (~ 56% pure). LRMS (ESI) calculated for C35H29F3N9O5 [M - H]- m/z 712.22, found 

712.31. 

 

 
 

3-(3-(2-phenylpropan-2-yl)ureido)-N-(1H-tetrazol-5-yl)-1-(3-

(trifluoromethyl)benzoyl)indoline-3-carboxamide (21). Crude S55 (31.2 mg, 0.044 

mmol, 1.0 equiv.) was taken up in methanol (3 mL) and irradiated with 365 nm hv (TLC 

lamp, 4 watt) for 3h. The reaction mixture was concentrated and purified by reverse 

phase HPLC (water/MeOH/0.05% formic acid) to afford 21 (7.5 mg, 7% over 3 steps) as 

a white solid. 1H NMR (400 MHz, DMSO-d6) δ = 12.27 (br s, 1H), 8.15 (br s, 1H), 7.99 

(br s, 2H), 7.92 (br t, J = 7.2 Hz, 2H), 7.81 - 7.74 (m, 1H), 7.46 (br s, 1H), 7.31 (br d, J = 

7.5 Hz, 2H), 7.28 - 7.21 (m, 1H), 7.19 - 7.11 (m, 2H), 7.10 - 7.04 (m, 1H), 6.74 (d, J = 

1.5 Hz, 0.6H), 4.88 - 4.78 (m, 1H), 3.99 (d, J = 11.2 Hz, 1H), 1.48 (br s, 6H); 13C NMR 

(100 MHz, DMSO-d6) δ = 171.20, 166.80 (br s), 156.60, 156.56, 150.42 (br s), 148.56, 

142.48 (br s), 137.85, 131.48, 130.96 (br s), 130.79 - 130.54 (m), 130.44, 129.94 (br d, 

J = 32.3 Hz), 128.21, 127.79 - 127.49 (m), 126.12, 125.25 (br s), 124.87 (br s), 124.38 - 

124.05 (m), 124.28 (d, J = 272.9 Hz), 118.10 (br s), 65.49 (br s), 61.98 (br s), 55.14, 

30.57 (br s), 30.46; 19F NMR (376 MHz, DMSO-d6) δ = -61.15 (s, 3F); LRMS (ESI) 

calculated for C28H24F3N8O3 [M - H]- m/z 577.19, found 577.27.  
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2-(1H-pyrazol-5-yl)propan-2-ol (S56). A round bottom was charged with 

tetrahydrofuran (5 mL) and methylmagnesium bromide (1.427 mL, 4.28 mmol, 3.0 

equiv.) (3.0M in diethyl ether), then cooled to 0 °C. Ethyl 2H-pyrazole-3-carboxylate 

(200 mg, 1.43 mmol, 1.0 equiv.) was then added, followed by a 1.5 mL tetrahydrofuran 

rinse. After the addition was complete, the vessel was immediately warmed to r.t. and 

allowed to stir for 3h. The reaction mixture was quenched with 0.1N HCl until bubbling 

ceased, and transferred to a sep. funnel with EtOAc and brine. The aqueous pH was 

adjusted to 6 with 12M HCl; extracted with 3 x 50 mL 20% isopropanol:chloroform. The 

organics were combined, dried over MgSO4, and concentrated to give S56 (161.8 mg, 

90%) as a white solid. 1H NMR (400 MHz, CDCl3, CD3OD) δ = 7.35 (br d, J = 7.8 Hz, 

1H), 6.07 (br d, J = 7.8 Hz, 1H), 1.51 (s, 3H), 1.48 (d, J = 1.2 Hz, 3H); 13C NMR (100 

MHz, CDCl3, CD3OD) δ = 154.83, 134.32, 100.91, 68.56, 30.20; LRMS (ESI) calculated 

for C6H11N2O [M + H]+ m/z 127.09, found 127.27. 

 

 
 

N-(2-nitrobenzyl)-2-(1H-pyrazol-5-yl)propan-2-amine (S57). A flask was charged with 

S56 (161.8 mg, 1.28 mmol, 1.0 equiv.), sodium azide (183 mg, 2.82 mmol, 2.2 equiv.), 

and dry dichloromethane (3 mL), then cooled to 0 °C. A solution of trifluoroacetic acid 

(491 uL, 6.41 mmol, 5.0 equiv.) in dichloromethane (1 mL) was then added; the reaction 

mixture was allowed to warm to r.t. overnight. The reaction was then pushed to 
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completion by the addition of 4.4 equiv. sodium azide and 25 equiv. trifluoroacetic acid 

over 3d (r.t.), and heating at 40 °C for 5h (behind a blast shield). After complete SM 

consumption by LCMS, the crude reaction mixture was transferred to a sep. funnel with 

dichloromethane and sat. NaHCO3. The layers were separated, and the aqueous layer 

was further extracted with 3 x 50 mL 20% isopropanol:chloroform. The organics were 

combined, dried over MgSO4, and concentrated; dried under hivac for 5m. The resulting 

oil was taken up in dry methanol (13 mL) and cooled to 0 °C. Anhydrous tin(II) chloride 

(486 mg, 2.67 mmol, 2.0 equiv.) was then added, and after 10m the reaction was 

immediately warmed to r.t. and stirred for 14h. The methanol was then removed under 

reduced pressure, and the residue transferred to a sep. funnel with 20% 

isopropanol:chloroform. 1M NaHCO3 was added, the layers separated, and the 

aqueous layer further extracted with 3 x 50 mL 20% isopropanol:chloroform. The 

combined organic layers were dried over MgSO4 and concentrated to dryness in a 20 

mL vial. The vial was purged with Ar, foiled, and charged with 2-nitrobenzaldehyde (426 

mg, 2.82 mmol, 2.20 equiv.) and dry tetrahydrofuran (12 mL). After stirring for 12h, 

sodium borohydride (107 mg, 2.82 mmol, 2.20 equiv.) was added, and the reaction was 

stirred for an additional 12h. The crude reaction mixture was transferred to a sep. funnel 

with EtOAc and sat. NaHCO3; the layers were separated, and the aqueous layer was 

further extracted with 2 x 50 mL EtOAc. The organics were combined, dried over 

MgSO4, and concentrated; the resulting residue was purified on a silica column with 40-

100% EtOAc:hexanes to yield S57 (24.7 mg, 7%) as a yellow film. 1H NMR (400 MHz, 

CDCl3) δ = 7.90 - 7.86 (m, 1H), 7.55 - 7.46 (m, 3H), 7.37 (ddd, J = 2.2, 6.4, 8.2 Hz, 1H), 

6.21 (d, J = 1.9 Hz, 1H), 3.77 (s, 2H), 1.55 (s, 6H); 13C NMR (100 MHz, CDCl3) δ = 
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152.99 (br), 149.16, 135.81, 135.23 (br), 133.25, 131.82, 127.90, 124.47, 102.62, 53.23, 

44.96, 28.52; LRMS (ESI) calculated for C13H17N4O2 [M + H]+ m/z 261.13, found 261.10. 

 

 
 

N-(2-nitrobenzyl)-2-(1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazol-3-yl)propan-2-

amine (S58). A 20 mL vial was charged with S57 (24.7 mg, 0.095 mmol, 1.0 equiv.), 

N,N-diisopropylethylamine (33 uL, 0.190 mmol, 2.0 equiv.), and dry dichloromethane 

(1.5 mL); 2-(trimethylsilyl)ethoxymethyl chloride (17 uL, 0.095 mmol, 1.0 equiv.) was 

then added dropwise. The reaction vial was foiled as stirred for 14h, at which point 

additional 2-(trimethylsilyl)ethoxymethyl chloride (8 uL) and dichloromethane (500 uL) 

were added. After an additional 5h, the reaction mixture was directly loaded onto a silica 

column and purified with 0-50% EtOAc:hexanes. S58 (28.2 mg, 76%) was obtained as a 

yellow oil. 1H NMR (400 MHz, CDCl3) δ = 7.86 (dd, J = 1.2, 8.0 Hz, 1H), 7.64 - 7.59 (m, 

1H), 7.53 (dt, J = 1.3, 7.5 Hz, 1H), 7.49 (d, J = 2.4 Hz, 1H), 7.38 - 7.32 (m, 1H), 6.29 (d, 

J = 2.4 Hz, 1H), 5.39 (s, 2H), 3.79 (s, 2H), 3.56 (dd, J = 7.7, 8.6 Hz, 2H), 1.52 (s, 6H), 

0.92 - 0.87 (m, 2H), -0.05 (s, 9H); 13C NMR (100 MHz, CDCl3) δ = 159.15, 149.20, 

136.65, 132.99, 131.57, 130.22, 127.52, 124.31, 104.13, 79.87, 66.37, 53.68, 44.79, 

28.34, 17.64, -1.53; LRMS (ESI) calculated for C19H31N4O3Si [M + H]+ m/z 391.22, 

found 391.15. 
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methyl 3-(3-(2-nitrobenzyl)-3-(2-(1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazol-3-

yl)propan-2-yl)ureido)-1-(3-(trifluoromethyl)benzoyl)indoline-3-carboxylate (S59). 

Semi-crude S41 (27.6 mg, 0.076 mmol, 1.0 equiv.) was reacted with partner amine S58 

(0.95 equiv.) according to general procedure G. The reaction vessel was foiled. S59 

(47.2 mg, 80%) obtained as a white solid. 1H NMR (400 MHz, CDCl3) δ = 8.23 (br s, 

1H), 8.03 - 7.99 (m, 1H), 7.81 (s, 1H), 7.73 (d, J = 7.8 Hz, 2H), 7.64 - 7.52 (m, 4H), 7.39 

(dt, J = 2.1, 7.4 Hz, 1H), 7.40 (br s, 1H), 7.24 - 7.19 (m, 1H), 7.19 - 7.13 (m, 1H), 6.39 

(s, 1H), 6.23 (d, J = 2.2 Hz, 1H), 5.12 - 5.06 (m, 3H), 4.98 (d, J = 11.0 Hz, 1H), 4.94 (br 

d, J = 11.9 Hz, 1H), 3.71 (s, 3H), 3.42 (dd, J = 7.5, 8.5 Hz, 2H), 1.76 (s, 3H), 1.58 (s, 

3H), 0.82 (dt, J = 1.8, 8.1 Hz, 2H), -0.05 (s, 9H); 13C NMR (100 MHz, CDCl3) δ = 

170.58, 167.45 (br s), 158.39, 157.82, 147.32, 142.57 (br s), 137.01, 136.38, 133.31, 

131.83, 131.23 (d, J = 33.0 Hz), 130.85 - 130.53 (m), 130.31 - 130.10 (m), 129.69, 

129.33, 128.79, 127.41, 127.23 (br d, J = 3.3 Hz), 124.82, 124.70 (br s), 124.35 - 

124.06 (m), 123.44 (br s), 123.58 (d, J = 272.5 Hz), 118.45 (br s), 104.40, 79.79, 66.66, 

65.09 (br s), 61.68 (br s), 56.66, 53.08, 45.45, 28.13, 27.21 (br s), 17.49, -1.53; 19F 

NMR (376 MHz, CDCl3) δ = -62.73 (s, 3F); LRMS (ESI) calculated for C38H44F3N6O7Si 

[M + H]+ m/z 781.30, found 781.28. 
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3-(3-(2-nitrobenzyl)-3-(2-(1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazol-3-

yl)propan-2-yl)ureido)-1-(3-(trifluoromethyl)benzoyl)indoline-3-carboxylic acid 

(S60). S59 (47.2 mg, 0.060 mmol, 1.0 equiv.) was reacted in methanol (2.5 mL) with 1M 

lithium hydroxide (85 uL, 0.085 mmol, 1.4 equiv.) according to general procedure B 

(48h), except a second addition of 1M lithium hydroxide (20 uL) was required for 

completion. The reaction vessel was foiled. Semi-crude S60 (45.1 mg, 97%) obtained 

as a brown oil. LRMS (ESI) calculated for C37H40F3N6O7Si [M - H]- m/z 765.29, found 

765.39. 

 

 
 

3-(3-(2-nitrobenzyl)-3-(2-(1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazol-3-

yl)propan-2-yl)ureido)-N-(1H-tetrazol-5-yl)-1-(3-(trifluoromethyl)benzoyl)indoline-3-

carboxamide (S61). Semi-crude S60 (45.1 mg, 0.059 mmol, 1.0 equiv.) was reacted 

with 5-aminotetrazole monohydrate (1.1 equiv.) in 2.5 mL DMF according to general 

procedure D (1h activation), except the product was unstable to 
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purification/concentration. Crude S61 (15.3 mg, 31%) obtained as a white solid (~ 26% 

pure). LRMS (ESI) calculated for C38H41F3N11O6Si [M - H]- m/z 832.30, found 832.54. 

 

 
 

3-(3-(2-(1H-pyrazol-3-yl)propan-2-yl)ureido)-N-(1H-tetrazol-5-yl)-1-(3-

(trifluoromethyl)benzoyl)indoline-3-carboxamide (22). Crude S61 (15.3 mg, 0.018 

mmol, 1.0 equiv.) was taken up in methanol (5 mL) and irradiated with 365 nm hv (TLC 

lamp, 4 watt) for 2h. The methanol was then removed under reduced pressure; the 

residue was dissolved in dry tetrahydrofuran (3 mL). Tetrabutylammonium fluoride (3 

mL, 3.0 mmol, 163 equiv.) (1M solution in tetrahydrofuran) was then added, and the 

reaction was heated at 40 °C for 26h. The crude reaction mixture was transferred to a 

sep. funnel with EtOAc and water, and the aqueous layer was adjusted to pH 2.5 with 

0.1N HCl. The layers were separated, and the aqueous layer was further extracted with 

2 x 50 mL EtOAc. The organics were combined, dried over MgSO4, and concentrated. 

The resulting residue was purified by reverse phase HPLC (water/MeOH/0.05% formic 

acid) to afford 22 (1.6 mg, 5% over 3 steps) as a white solid. 1H NMR (400 MHz, 

DMSO-d6) δ = 12.70 (br s, 1H), 12.23 (br s, 1H), 8.21 (br s, 1H), 8.05 - 7.91 (m, 3H), 

7.87 - 7.74 (m, 2H), 7.44 (br s, 2H), 7.34 (br s, 1H), 7.28 - 7.16 (m, 1H), 6.60 (s, 1H), 

6.52 (s, 0.5H), 6.11 (s, 1H), 5.01 - 4.74 (m, 1H), 4.01 (d, J = 11.2 Hz, 1H), 1.51 (br s, 

3H), 1.50 (br s, 3H); 19F NMR (376 MHz, DMSO-d6) δ = -61.14 (br s, 3F); LRMS (ESI) 

calculated for C25H22F3N10O3 [M - H]- m/z 567.18, found 567.16. 
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methyl 3-(3,3-dimethylbutanamido)-1-(3-(trifluoromethyl)benzoyl)indoline-3-

carboxylate (S62). Semi-crude S41 (41.9 mg, 0.115 mmol, 1.0 equiv.) was reacted with 

commercially available 3,3-dimethylbutyryl chloride in dry dichloromethane (2 mL) 

according to general procedure A, with slight modification: prior to base addition, the 

reaction vessel was cooled to 0 °C; 2.2 equiv. of N,N-diisopropylethylamine was used; 

after acyl chloride addition, the reaction mixture was allowed to slowly warm to r.t. S62 

(32.1 mg, 60%) obtained as a white solid. 1H NMR (400 MHz, CDCl3) δ = 8.22 (br s, 

1H), 7.83 (s, 1H), 7.79 - 7.71 (m, 2H), 7.64 - 7.56 (m, 1H), 7.39 (d, J = 7.5 Hz, 1H), 7.40 

(br s, 1H), 7.16 (br t, J = 7.4 Hz, 1H), 6.26 (s, 1H), 5.04 (d, J = 11.9 Hz, 1H), 4.04 (br d, 

J = 9.3 Hz, 1H), 3.77 (s, 3H), 2.04 (s, 2H), 1.01 (s, 9H); 13C NMR (100 MHz, CDCl3) δ = 

171.74, 169.74, 167.49 (br s), 142.76, 136.85, 131.06 (br s), 131.34 (q, J = 33.0 Hz), 

130.22 (br s), 129.36, 127.53 - 127.14 (m), 125.22 - 124.95 (m), 124.41 - 124.06 (m), 

123.42 (br s), 123.54 (q, J = 272.6 Hz), 118.50 (br s), 64.27 (br s), 60.51 (br s), 53.30, 

49.35, 31.14, 29.59; 19F NMR (376 MHz, CDCl3) δ = -62.81 (s, 3F); LRMS (ESI) 

calculated for C24H26F3N2O4 [M + H]+ m/z 463.18, found 463.03. 
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3-(3,3-dimethylbutanamido)-1-(3-(trifluoromethyl)benzoyl)indoline-3-carboxylic 

acid (S63). S62 (32.1 mg, 0.069 mmol, 1.0 equiv.) was reacted in methanol (3 mL) with 

1M lithium hydroxide (416 uL, 0.416 mmol, 6.0 equiv.) according to general procedure 

B. Semi-crude S63 (32.0 mg, 103%) obtained as a white solid. 1H NMR (400 MHz, 

CDCl3, CD3OD) δ = 8.11 (br s, 1H), 7.73 (br s, 1H), 7.67 (br d, J = 7.5 Hz, 2H), 7.56 - 

7.49 (m, 1H), 7.38 (br d, J = 7.3 Hz, 1H), 7.29 (br s, 1H), 7.06 (br s, 1H), 4.89 (br d, J = 

11.9 Hz, 1H), 3.92 (br s, 1H), 1.95 (br s, 2H), 0.88 (s, 9H); 13C NMR (100 MHz, CDCl3, 

CD3OD) δ = 172.62, 171.13, 167.65 (br s), 142.25 (br s), 136.67 (br s), 131.05 (q, J = 

33.3 Hz), 130.50 - 130.23 (m), 130.21 - 129.95 (m), 129.24, 127.32 - 126.99 (m), 

125.22 - 124.80 (m), 123.88 (br s), 123.36 (q, J = 272.5 Hz), 117.97 (br s), 63.95 (br s), 

60.41 (br s), 48.70 (br s), 30.87, 29.28; 19F NMR (376 MHz, CHLOROFORM-d) δ = -

59.14 (s, 3F); LRMS (ESI) calculated for C23H22F3N2O4 [M - H]- m/z 447.15, found 

447.22. 

 

 
 

3-(3,3-dimethylbutanamido)-N-(1H-tetrazol-5-yl)-1-(3-

(trifluoromethyl)benzoyl)indoline-3-carboxamide (23). Semi-crude S63 (32.0 mg, 

0.071 mmol, 1.0 equiv.) was reacted with 5-aminotetrazole monohydrate (1.1 equiv.) in 
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1.5 mL DMF according to general procedure D (20m activation). 23 (5.2 mg, 14% over 2 

steps) obtained as a white solid. 1H NMR (400 MHz, DMSO-d6) δ = 10.69 (br s, 1H), 

8.82 (br s, 1H), 8.39 (br s, 1H), 8.13 (br s, 1H), 8.05 - 7.96 (m, 1H), 7.96 - 7.90 (m, 2H), 

7.83 - 7.72 (m, 2H), 7.41 (br s, 1H), 7.24 - 7.09 (m, 1H), 5.00 (br d, J = 11.4 Hz, 1H), 

4.02 - 3.92 (m, 1H), 2.12 (br d, J = 13.4 Hz, 1H), 1.97 - 1.90 (m, 1H), 0.85 (s, 9H); 19F 

NMR (376 MHz, DMSO-d6) δ = -61.23 (s, 3F); LRMS (ESI) calculated for C24H23F3N7O3 

[M - H]- m/z 514.18, found 514.33. 

 

 
 

methyl 3-((N-(tert-butyl)-N-(2-nitrobenzyl)sulfamoyl)amino)-1-(3-

(trifluoromethyl)benzoyl)indoline-3-carboxylate (S64). Semi-crude S41 (50.2 mg, 

0.138 mmol, 1.0 equiv.) was reacted with partner amine S44 (1.1 equiv.) according to 

general procedure G, except sulfuryl chloride (1.1 equiv.) was used instead of p-

nitrophenyl chloroformate. The reaction vessel was foiled. S64 (17.9 mg, 21%) obtained 

as a light yellow oil. 1H NMR (400 MHz, CDCl3) δ = 8.24 (br s, 1H), 8.04 (dd, J = 1.2, 8.3 

Hz, 1H), 7.88 - 7.81 (m, 2H), 7.76 (br d, J = 7.8 Hz, 2H), 7.66 - 7.56 (m, 2H), 7.45 - 7.31 

(m, 3H), 7.19 - 7.10 (m, 1H), 5.06 (br s, 1H), 4.90 - 4.71 (m, 3H), 4.50 (br d, J = 10.5 Hz, 

1H), 3.78 (s, 3H), 1.42 (s, 9H); 13C NMR (100 MHz, CDCl3) δ = 169.96, 167.40 (br s), 

147.15, 142.47, 136.75, 135.72, 133.66, 131.25 (br s), 131.32 (d, J = 32.7 Hz), 130.31 

(br s), 129.32, 129.12, 127.75, 127.56 - 127.29 (m), 125.13 - 124.93 (m), 124.87, 
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124.45 (br s), 124.25 - 123.92 (m), 123.55 (d, J = 272.3 Hz), 118.19 (br s), 67.36 (br s), 

60.65, 59.11 (br s), 53.79, 47.77, 29.54; 19F NMR (376 MHz, CDCl3) δ = -62.82 (s, 3F); 

LRMS (ESI) calculated for C29H29F3N4NaO7S [M + H]+ m/z 657.16, found 657.18. 

 

 
 

3-((N-(tert-butyl)-N-(2-nitrobenzyl)sulfamoyl)amino)-1-(3-

(trifluoromethyl)benzoyl)indoline-3-carboxylic acid (S65). S64 (17.9 mg, 0.028 

mmol, 1.0 equiv.) was reacted in methanol (2 mL) with 1M lithium hydroxide (40 uL, 

0.040 mmol, 1.4 equiv.) according to general procedure B, except a second addition of 

1M lithium hydroxide (15 uL) was required. The reaction vessel was foiled. Semi-crude 

S65 (18.8 mg, 107%) obtained as a brown oil. LRMS (ESI) calculated for 

C28H28F3N4O7S [M + H]+ m/z 621.16, found 621.14. 

 

 
 

3-((N-(tert-butyl)-N-(2-nitrobenzyl)sulfamoyl)amino)-N-(1H-tetrazol-5-yl)-1-(3-

(trifluoromethyl)benzoyl)indoline-3-carboxamide (S66). Semi-crude S65 (17.5 mg, 

0.028 mmol, 1.0 equiv.) was reacted with 5-aminotetrazole monohydrate (1.1 equiv.) in 
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2 mL DMF according to general procedure D (1h activation; 72h), except the product 

was unstable to purification/concentration. Crude S66 (3.7 mg, 19%) obtained as a 

white solid (~ 80% pure). LRMS (ESI) calculated for C29H28F3N9NaO6S [M + Na]+ m/z 

710.17, found 710.18. 

 

 
 

3-((N-(tert-butyl)sulfamoyl)amino)-N-(1H-tetrazol-5-yl)-1-(3-

(trifluoromethyl)benzoyl)indoline-3-carboxamide (24). Crude S66 (3.7 mg, 0.005 

mmol, 1.0 equiv.) was taken up in methanol (3 mL) and irradiated with 365 nm hv (TLC 

lamp, 4 watt) for 3h. The reaction mixture was concentrated and purified by reverse 

phase HPLC (water/MeOH/0.05% formic acid) to afford 24 (1.1 mg, 7% over 3 steps) as 

a white solid. 1H NMR (400 MHz, DMSO-d6) δ = 12.01 (br s, 1H), 8.02 - 7.93 (m, 3H), 

8.06 (br s, 1H), 7.85 - 7.76 (m, 2H), 7.43 (br s, 1H), 7.19 (br s, 1H), 6.88 (br s, 1H), 6.52 

(s, 1H), 4.77 (br d, J = 11.2 Hz, 1H), 4.59 (br d, J = 11.2 Hz, 1H), 1.13 (s, 9H); 19F NMR 

(376 MHz, DMSO-d6) δ = -61.14 (br s, 3F); LRMS (ESI) calculated for C22H22F3N8O4S 

[M - H]- m/z 551.14, found 551.19. 

 
 
 
 
 

N
N
H

O

O

CF3

HN S
HN

O
O

NN
N
N
H



 265 

 
 

ethyl 3-((2-hydroxy-2-methylpropyl)amino)-1-(3-(trifluoromethyl)benzoyl)indoline-

3-carboxylate (S67). Semi-crude S41 (53.8 mg, 0.148 mmol, 1.05 equiv.) was 

dissolved in absolute ethanol (2 mL); isobutylene oxide (12.5 uL, 0.141 mmol, 1.0 

equiv.) was then added, followed by N,N-diisopropylethylamine (25.8 uL, 0.148 mmol, 

1.05 equiv.). The reaction vial was sealed and heated at 80 °C overnight. The reaction 

was pushed to completion by adding 3 equiv. isobutylene oxide every day for an 

additional 5d (80 °C). The crude reaction mixture was transferred to a sep funnel with ~ 

75 mL EtOAc and partitioned with ~ 75 mL sat. NaHCO3. The aqueous layer was 

washed with an additional 2 x 50 mL EtOAc; the organics were combined, dried over 

MgSO4, and concentrated. Purified on a silica column with 0-50% EtOAc:hexanes. S67 

(50.1 mg, 79%) obtained as a colorless oil. Note: Atropisomers of the secondary amide 

observable by NMR; split peaks reported by integration values in 1H. 1H NMR (400 

MHz, CDCl3) δ = 8.24 (br s, 1H), 7.90 - 7.83 (m, 1H), 7.77 (br d, J = 7.5 Hz, 2H), 7.66 - 

7.58 (m, 1H), 7.44 - 7.24 (m, 2H), 7.13 (br s, 1H), 4.69 (d, J = 11.2 Hz, 0.2H), 4.59 (br d, 

J = 10.0 Hz, 0.8H), 4.28 - 4.17 (m, 2H), 3.97 (br s, 0.8H), 3.12 (d, J = 13.4 Hz, 0.2H), 

2.47 - 2.26 (m, 2H), 1.59 (s, 0.6H), 1.48 (s, 0.6H), 1.26 (t, J = 7.1 Hz, 3H), 1.14 (s, 

4.8H); 13C NMR (100 MHz, CDCl3) δ = 171.54, 169.92, 167.32 (br s), 167.04, 142.45 (br 

s), 141.74, 137.14 (br s), 131.75 (br s), 131.27 (q, J = 33.0 Hz), 130.48 - 130.20 (m), 

130.17 - 129.80 (m), 129.35, 129.28, 127.53 - 127.35 (m), 127.32 - 127.09 (m), 124.85 - 

124.43 (m), 124.39 - 124.01 (m), 123.99 - 123.34 (m), 123.55 (q, J = 272.2 Hz), 118.19 
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(br s), 83.69, 69.28, 68.64 (br s), 62.26, 58.07 (br s), 54.33, 27.20, 27.07, 26.67, 26.46, 

14.00; 19F NMR (376 MHz, CDCl3) δ = -62.75 (s, 0.9F), -62.79 (s, 3F); LRMS (ESI) 

calculated for C23H26F3N2O4 [M + H]+ m/z 451.18, found 451.21. 

 

 
 

ethyl 3-(5,5-dimethyl-2-oxooxazolidin-3-yl)-1-(3-(trifluoromethyl)benzoyl)indoline-

3-carboxylate (S68). S67 (50.1 mg, 0.111 mmol, 1.0 equiv.) was dissolved in dry 

dichloromethane (4.44 mL). N,N-diisopropylethylamine (39 uL, 0.222 mmol, 2.0 equiv.), 

1,1’-carbonyldiimidazole (19 mg, 0.117 mmol, 1.05 equiv.), and 4-

dimethylaminopyridine (14 mg, 0.111 mmol, 1.0 equiv.) were then added, and the 

reaction vial was firmly sealed and heated at 50 °C overnight. The reaction was pushed 

to completion by adding 1.05 equiv. 1,1’-carbonyldiimidazole every day for an additional 

4d (70 °C). The crude reaction mixture was transferred to a sep. funnel with ~ 80 mL 

dichloromethane; the organic layer was washed with ~ 50 mL sat. NaHCO3, 0.1N HCl, 

and brine. Dried over MgSO4, concentrated, and purified on a silica column with 0-40% 

EtOAc:hexanes. S68 (36.9 mg, 70%) obtained as a colorless oil. 1H NMR (400 MHz, 

CDCl3) δ = 8.19 (br s, 1H), 7.86 (s, 1H), 7.77 (d, J = 8.0 Hz, 2H), 7.66 - 7.58 (m, 1H), 

7.51 - 7.41 (m, 1H), 7.38 (d, J = 7.1 Hz, 1H), 7.21 - 7.15 (m, 1H), 5.01 (d, J = 12.2 Hz, 

1H), 4.35 (br d, J = 11.0 Hz, 1H), 4.30 (q, J = 7.1 Hz, 2H), 3.45 (d, J = 8.3 Hz, 1H), 2.86 

(d, J = 8.0 Hz, 1H), 1.48 (s, 3H), 1.35 (s, 3H), 1.31 (t, J = 7.1 Hz, 3H); 13C NMR (100 

MHz, CDCl3) δ = 168.90, 167.39, 157.02, 143.22, 136.48, 131.33, 131.43 (q, J = 33.0 
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Hz), 130.23, 129.41, 127.63 (d, J = 3.7 Hz), 127.28, 125.04, 124.70, 124.42 (q, J = 4.2 

Hz,), 123.49 (br q, J = 272.2 Hz), 118.55 (br s), 79.11, 66.92 (br s), 62.86, 59.52 (br s), 

56.35, 27.13, 26.65, 14.01; 19F NMR (376 MHz, CDCl3) δ = -62.81 (s, 3F); LRMS (ESI) 

calculated for C24H24F3N2O5 [M + H]+ m/z 477.16, found 477.12. 

 

 
 

3-(5,5-dimethyl-2-oxooxazolidin-3-yl)-1-(3-(trifluoromethyl)benzoyl)indoline-3-

carboxylic acid (S69). S68 (36.9 mg, 0.077 mmol, 1.0 equiv.) was reacted in methanol 

(3 mL) with 1M lithium hydroxide (93 uL, 0.093 mmol, 1.2 equiv.) according to general 

procedure B, except three additions of 1M lithium hydroxide (155 uL, 0.155 mmol, 2.0 

equiv.) were required (2d). The resulting residue was purified on a silica column with 0-

15% dichloromethane:methanol. Semi-crude S69 (17.0 mg, 49%) obtained as a white 

solid. LRMS (ESI) calculated for C22H18F3N2O5 [M - H]- m/z 447.12, found 447.21. 

 

 
 

3-(5,5-dimethyl-2-oxooxazolidin-3-yl)-N-(1H-tetrazol-5-yl)-1-(3-

(trifluoromethyl)benzoyl)indoline-3-carboxamide (25). Semi-crude S69 (17.0 mg, 

0.038 mmol, 1.0 equiv.) was reacted with 5-aminotetrazole monohydrate (1.1 equiv.) in 

1 mL DMF according to general procedure D (20m activation). 25 (10.4 mg, 53%) 
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obtained as a white solid. 1H NMR (400 MHz, CD3OD, drops CDCl3) δ = 8.18 - 7.91 (m, 

3H), 7.88 (br d, J = 8.0 Hz, 1H), 7.79 - 7.71 (m, 1H), 7.57 (br d, J = 7.5 Hz, 1H), 7.46 (br 

s, 1H), 7.25 (br t, J = 7.3 Hz, 1H), 5.03 (br d, J = 12.2 Hz, 1H), 4.37 (br d, J = 11.7 Hz, 

1H), 3.57 (br d, J = 8.5 Hz, 1H), 3.10 (br d, J = 8.5 Hz, 1H), 1.57 (s, 3H), 1.40 (s, 3H); 

19F NMR (376 MHz, CD3OD, drops CDCl3) δ = -64.16 (s, 3F); LRMS (ESI) calculated for 

C23H19F3N7O4 [M - H]- m/z 514.15, found 514.33.  

 

 
 

ethyl 3-(((R)-2-hydroxy-2-phenylethyl)amino)-1-(3-

(trifluoromethyl)benzoyl)indoline-3-carboxylate (S70). Semi-crude S41 (53.3 mg, 

0.146 mmol, 1.0 equiv.) was dissolved in absolute ethanol (2 mL); (R)-styrene oxide (17 

uL, 0.146 mmol, 1.0 equiv.) was then added, followed by N,N-diisopropylethylamine (27 

uL, 0.154 mmol, 1.05 equiv.). The reaction vial was sealed and heated at 80 °C 

overnight. The reaction was pushed to completion by adding 5.0 equiv. (R)-styrene 

oxide over 7d (80 °C). The crude reaction mixture was transferred to a sep funnel with ~ 

75 mL EtOAc and partitioned with ~ 75 mL sat. NaHCO3. The aqueous layer was 

washed with an additional 2 x 50 mL EtOAc; the organics were combined, dried over 

MgSO4, and concentrated. Purified on a silica column with 0-50% EtOAc:hexanes. S70 

(45.5 mg, 62%) (mixture of diastereomers) obtained as an orange oil. Note: 

Diastereomers combined with the atropisomers of the secondary amide resulted in a 

multitude of split peaks. 1H NMR (400 MHz, CDCl3) δ = 8.25 (br s, 0.5H), 7.86 (br s, 
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0.5H), 7.82 - 7.74 (m, 1H), 7.73 - 7.59 (m, 1H), 7.48 - 7.40 (m, 1H), 7.40 - 7.25 (m, 7H), 

7.23 - 7.04 (m, 2H), 4.79 (dd, J = 3.4, 8.3 Hz, 0.5H), 4.73 - 4.52 (m, 1H), 4.31 - 4.18 (m, 

1H), 4.17 - 3.93 (m, 1H), 3.77 - 3.70 (m, 0.5H), 3.70 - 3.55 (m, 1H), 3.53 - 3.43 (m, 

0.5H), 2.87 - 2.67 (m, 1H), 2.68 - 2.43 (m, 1H), 1.31 - 1.15 (m, 3H); 13C NMR (100 MHz, 

CDCl3) δ = 171.45 (br s), 167.27 (br s), 167.03 (br s), 141.98 (br s), 141.70, 141.64, 

140.94, 140.90, 140.56, 131.40 (br s), 131.01 (br s), 130.76 (br s), 130.56 - 130.21 (m), 

130.20 - 129.82 (m), 129.63, 129.36, 128.97 - 128.75 (m), 128.63, 128.62, 128.44, 

128.42, 127.85, 127.95 - 127.75 (m), 127.26 (br s), 126.84, 125.99, 125.71, 125.65, 

124.79 (br s), 124.22 (br s), 123.55 (q, J = 272.9 Hz), 118.04 (br s), 74.57, 72.75, 72.54, 

68.02, 67.09, 62.47, 62.37, 62.33, 62.28, 59.41 (br s), 58.31 (br s), 51.49, 51.38, 13.98, 

13.79; 19F NMR (376 MHz, CDCl3) δ = -62.62 (br s, 1F), -62.68 (br s, 1F), -62.75 (br s, 

3F); LRMS (ESI) calculated for C27H26F3N2O4 [M + H]+ m/z 499.18, found 499.08. 

 

 
 

ethyl 3-((R)-2-oxo-5-phenyloxazolidin-3-yl)-1-(3-(trifluoromethyl)benzoyl)indoline-

3-carboxylate (S71). S70 (45.5 mg, 0.091 mmol, 1.0 equiv.) was dissolved in dry 

dichloromethane (3.5 mL). N,N-diisopropylethylamine (32 uL, 0.183 mmol, 2.0 equiv.), 

1,1’-carbonyldiimidazole (16 mg, 0.096 mmol, 1.05 equiv.), and 4-

dimethylaminopyridine (11 mg, 0.091 mmol, 1.0 equiv.) were then added, and the 

reaction vial was firmly sealed and heated at 70 °C overnight. Additional 1,1’-

carbonyldiimidazole (7.4 mg, 0.046 mmol, 0.5 equiv.) was then added; heated at 70 °C 
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for two days. 1.0 equiv. 4-dimethylaminopyridine was then added every day for an 

additional 3d (80 °C). The crude reaction mixture was transferred to a sep. funnel with ~ 

80 mL dichloromethane; the organic layer was washed with ~ 50 mL sat. NaHCO3, 0.5M 

KHSO4, and brine. Dried over MgSO4, concentrated, and purified on a silica column with 

0-40% EtOAc:hexanes. S71 (18.7 mg, 39%) (mixture of diastereomers) obtained as a 

colorless oil. 1H NMR (400 MHz, CDCl3) δ = 8.28 (br s, 0.6H), 7.92 (s, 0.4H), 7.84 - 7.76 

(m, 2H), 7.72 - 7.59 (m, 2H), 7.51 - 7.33 (m, 5H), 7.32 - 7.10 (m, 3H), 5.57 (dd, J = 5.8, 

8.5 Hz, 0.6H), 5.39 (dd, J = 8.2, 9.4 Hz, 0.4H), 5.03 (dd, J = 2.6, 12.3 Hz, 0.9H), 4.90 (d, 

J = 12.2 Hz, 0.1H), 4.55 - 4.47 (m, 0.5H), 4.41 - 4.23 (m, 2.5H), 4.02 (t, J = 8.5 Hz, 

0.6H), 3.80 - 3.75 (m, 0.1H), 3.70 (dd, J = 8.5, 9.5 Hz, 0.4H), 3.66 - 3.61 (m, 0.1H), 3.41 

(t, J = 8.2 Hz, 0.4H), 3.05 (dd, J = 5.8, 8.5 Hz, 0.6H), 1.41 - 1.23 (m, 3H); 13C NMR (100 

MHz, CDCl3) δ = 169.02, 168.50, 167.42, 167.32, 157.59, 157.19, 143.38 (br s), 143.04 

(br s), 137.90, 137.20, 136.49, 136.43, 131.66, 131.49 (br s), 131.42 (br s), 131.32, 

130.35, 130.17 (br s), 129.44, 129.39, 129.26, 129.10, 128.98, 128.93, 128.68, 127.83 - 

127.57 (m), 127.18, 126.72, 126.12, 125.16, 125.05 (br s), 124.98 - 124.80 (m), 124.75 

- 124.55 (m), 124.48 - 124.25 (m), 123.54 (d, J = 272.4 Hz), 123.51 (d, J = 272.3 Hz), 

118.54 (br s), 76.47, 75.41, 67.16 (br s), 63.07, 63.02, 59.65 (br s), 59.05 (br s), 53.00, 

51.54, 14.14, 14.07; 19F NMR (376 MHz, CDCl3) δ = -62.77 (br s, 3F), -62.78 (s, 2.5F); 

LRMS (ESI) calculated for C28H24F3N2O5 [M + H]+ m/z 525.16, found 525.08. 
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3-((R)-2-oxo-5-phenyloxazolidin-3-yl)-1-(3-(trifluoromethyl)benzoyl)indoline-3-

carboxylic acid (S72). S71 (18.7 mg, 0.036 mmol, 1.0 equiv.) was reacted in methanol 

(3 mL) with 1M lithium hydroxide (43 uL, 0.043 mmol, 1.2 equiv.) according to general 

procedure B, except three additions of 1M lithium hydroxide (71 uL, 0.071 mmol, 2.0 

equiv.) were required (2d). The resulting residue was purified on a silica column with 0-

10% dichloromethane:methanol with 0.1% formic acid. Semi-crude S72 (7.6 mg, 43%) 

(mixture of diastereomers) obtained as a white solid. LRMS (ESI) calculated for 

C26H18F3N2O5 [M - H]- m/z 495.12, found 495.02. 

 

 
 

3-((R)-2-oxo-5-phenyloxazolidin-3-yl)-N-(1H-tetrazol-5-yl)-1-(3-

(trifluoromethyl)benzoyl)indoline-3-carboxamide (26). Semi-crude S72 (7.6 mg, 

0.015 mmol, 1.0 equiv.) was reacted with 5-aminotetrazole monohydrate (1.1 equiv.) in 

1 mL DMF according to general procedure D (20m activation). 26 (2.3 mg, 27%) 

(mixture of diastereomers) obtained as a white solid. 1H NMR (400 MHz, CD3OD) δ = 

7.98 - 7.88 (m, 3H), 7.76 (t, J = 7.7 Hz, 1H), 7.66 (d, J = 7.8 Hz, 1H), 7.52 - 7.34 (m, 

7H), 7.32 - 7.20 (m, 2H), 5.79 (t, J = 8.6 Hz, 1H), 5.12 (br d, J = 11.9 Hz, 1H), 4.33 (br d, 

J = 11.7 Hz, 1H), 4.07 (t, J = 8.3 Hz, 1H); 19F NMR (376 MHz, CD3OD) δ = -64.19 (s, 
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1F), -64.22 (s, 3F); LRMS (ESI) calculated for C27H21F3N7O4 [M + H]+ m/z 564.16, found 

564.12. 

 

 
 

ethyl 3-(((S)-3-(benzyloxy)-2-hydroxypropyl)amino)-1-(3-

(trifluoromethyl)benzoyl)indoline-3-carboxylate (S73). Semi-crude S41 (156.8 mg, 

0.430 mmol, 1.0 equiv.) was dissolved in absolute ethanol (6 mL); benzyl (s)-(+)-glycidyl 

ether (66 uL, 0.430 mmol, 1.0 equiv.) was then added, followed by N,N-

diisopropylethylamine (79 uL, 0.452 mmol, 1.05 equiv.). The reaction vial was sealed 

and heated at 80 °C overnight. The reaction was pushed to completion by adding 2.0 

equiv. benzyl (s)-(+)-glycidyl ether over 3d (80 °C). The crude reaction mixture was 

transferred to a sep funnel with ~ 75 mL EtOAc and partitioned with ~ 75 mL sat. 

NaHCO3. The aqueous layer was washed with an additional 2 x 50 mL EtOAc; the 

organics were combined, dried over MgSO4, and concentrated. Purified on a silica 

column with 0-50% EtOAc:hexanes. S73 (143.8 mg, 62%) (mixture of diastereomers) 

obtained as a light yellow oil. Note: Diastereomers combined with the atropisomers of 

the secondary amide resulted in a multitude of split peaks. 1H NMR (400 MHz, CDCl3) δ 

= 8.26 (br s, 1H), 7.91 - 7.83 (m, 1H), 7.76 (m, 2H), 7.63 - 7.50 (m, 1H), 7.42 - 7.25 (m, 

6.5H), 7.24 - 7.19 (m, 0.5H), 7.12 (br s, 1H), 4.69 - 4.54 (m, 1H), 4.50 (s, 1.6H), 4.42 (br 

d, J = 1.5 Hz, 0.4H), 4.27 - 4.16 (m, 2H), 3.98 (br s, 1H), 3.87 - 3.77 (m, 1H), 3.52 - 3.31 

(m, 2H), 2.65 - 2.41 (m, 2H), 1.30 - 1.21 (m, 3H); 13C NMR (100 MHz, CDCl3) δ = 
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171.38, 171.32, 170.02, 169.84, 167.09 (br s), 142.30 (br s), 137.70, 137.46, 137.16, 

137.08 (br s), 131.09 (q, J = 33.0 Hz), 130.28 (br s), 129.83 (br s), 129.23, 128.42, 

128.34, 128.28, 127.92, 127.71, 127.69, 127.63, 127.58, 127.56, 127.55, 127.29 - 

126.94 (m), 124.60 (br s), 124.30 - 123.58 (m), 123.49 (q, J = 272.4 Hz), 123.44 (d, J = 

272.9 Hz), 118.00 (br s), 73.83, 73.68, 73.28, 73.25, 72.45, 72.34, 69.71, 69.64, 69.24, 

69.21, 68.43 (br s), 62.09, 62.06, 57.98 (br s), 46.41, 46.17, 13.88, 13.86; 19F NMR (376 

MHz, CDCl3) δ = -62.67 (br s, 0.7F), -62.71 (s, 3F), -62.74 (br s, 0.3F); LRMS (ESI) 

calculated for C29H30F3N2O5 [M + H]+ m/z 543.21, found 543.09. 

 

 
 

ethyl 3-((S)-5-((benzyloxy)methyl)-2-oxooxazolidin-3-yl)-1-(3-

(trifluoromethyl)benzoyl)indoline-3-carboxylate (S74). S73 (143.8 mg, 0.265 mmol, 

1.0 equiv.) was dissolved in dry dichloromethane (10.5 mL). N,N-diisopropylethylamine 

(92 uL, 0.530 mmol, 2.0 equiv.), 1,1’-carbonyldiimidazole (45 mg, 0.278 mmol, 1.05 

equiv.), and 4-dimethylaminopyridine (32 mg, 0.265 mmol, 1.0 equiv.) were then added, 

and the reaction vial was firmly sealed and heated at 70 °C overnight. Additional 1,1’-

carbonyldiimidazole (21.5 mg, 0.133 mmol, 0.5 equiv.) was then added; heated at 70 °C 

for 4d. 1.0 equiv. 4-dimethylaminopyridine was then added every day for an additional 

2d (80 °C). The crude reaction mixture was transferred to a sep. funnel with ~ 80 mL 

dichloromethane; the organic layer was washed with ~ 50 mL sat. NaHCO3, 0.5M 

KHSO4, and brine. Dried over MgSO4, concentrated, and purified on a silica column with 
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0-30% EtOAc:hexanes. S74 (110.9 mg, 74%) (mixture of diastereomers) obtained as a 

colorless oil. 1H NMR (400 MHz, CDCl3) δ = 8.25 (br s, 0.5H), 7.88 (s, 0.5H), 7.82 - 7.71 

(m, 2H), 7.67 - 7.57 (m, 1H), 7.56 - 7.50 (m, 0.6H), 7.43 (br d, J = 7.5 Hz, 1.4H), 7.39 - 

7.24 (m, 5H), 7.22 - 7.13 (m, 2H), 4.98 (dd, J = 10.1, 12.1 Hz, 1H), 4.67 (qd, J = 4.2, 8.7 

Hz, 0.5H), 4.62 - 4.54 (m, 1.5H), 4.53 - 4.43 (m, 1H), 4.39 (br d, J = 11.4 Hz, 0.5H), 4.33 

- 4.21 (m, 2.5H), 3.73 (t, J = 8.6 Hz, 0.5H), 3.70 - 3.59 (m, 1.5H), 3.56 (dd, J = 4.1, 10.7 

Hz, 0.5H), 3.45 (dd, J = 3.8, 10.6 Hz, 0.5H), 3.16 - 3.03 (m, 1H), 1.31 - 1.20 (m, 3H); 13C 

NMR (100 MHz, CDCl3) δ = 168.73, 168.59, 167.22 (br s), 157.17, 157.06, 143.16 (br 

s), 137.32, 137.03, 136.50, 136.40, 131.29 (br d, J = 3.7 Hz), 131.28 (q, J = 33.0 Hz), 

131.23 (q, J = 33.0 Hz), 130.25 (br s), 130.12 (br s), 129.28, 129.25, 128.42, 128.37, 

127.88, 127.85, 127.67, 127.55 (br s), 127.51, 127.40 (br s), 127.36 (br s), 127.03 (br 

s), 125.08 (br s), 124.61 (br ), 124.49 (br s), 124.45 (br s), 124.31 (br s), 124.27 (br s), 

123.46 (d, J = 272.9 Hz), 123.44 (d, J = 272.9 Hz), 118.39 (br s), 73.54, 73.47, 73.39, 

72.88, 69.67, 69.45, 66.96 (br s), 62.79, 59.33 (br s), 58.94 (br s), 46.68, 45.94, 13.91; 

19F NMR (376 MHz, CHLOROFORM-d) δ = -62.73 (s, 2.8F), -62.74 (br s, 3F); LRMS 

(ESI) calculated for C30H28F3N2O6 [M + H]+ m/z 569.19, found 569.09. 

 

 
 

3-((S)-5-((benzyloxy)methyl)-2-oxooxazolidin-3-yl)-1-(3-

(trifluoromethyl)benzoyl)indoline-3-carboxylic acid (S75). S74 (49.5 mg, 0.087 

mmol, 1.0 equiv.) was reacted in methanol (3.5 mL) with 1M lithium hydroxide (218 uL, 
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0.218 mmol, 2.5 equiv.) according to general procedure B. The resulting residue was 

purified on a silica column with 0-15% dichloromethane:methanol. Semi-crude S75 

(25.2 mg, 54%) (mixture of diastereomers) obtained as a white solid. LRMS (ESI) 

calculated for C28H22F3N2O6 [M - H]- m/z 539.14, found 539.29. 

 

 
 

3-((S)-5-((benzyloxy)methyl)-2-oxooxazolidin-3-yl)-N-(1H-tetrazol-5-yl)-1-(3-

(trifluoromethyl)benzoyl)indoline-3-carboxamide (28). Semi-crude S75 (25.2 mg, 

0.047 mmol, 1.0 equiv.) was reacted with 5-aminotetrazole monohydrate (1.1 equiv.) in 

2 mL DMF according to general procedure D (20m activation). 28 (21.6 mg, 76%) 

(mixture of diastereomers)  obtained as a white solid. 1H NMR (400 MHz, CD3OD, drops 

CDCl3) δ = 8.24 (br s, 0.5H), 7.97 - 7.88 (m, 1H), 7.87 - 7.79 (m, 2H), 7.73 - 7.68 (m, 

1H), 7.66 - 7.56 (m, 1.5H), 7.52 - 7.40 (m, 1.3H), 7.40 - 7.18 (m, 5.7H), 5.05 (br dd, J = 

11.9, 17.8 Hz, 1H), 4.79 - 4.71 (m, 1H), 4.56 - 4.41 (m, 2H), 4.17 (br d, J = 11.4 Hz, 

0.6H), 3.85 (t, J = 8.6 Hz, 0.6H), 3.79 - 3.66 (m, 2H), 3.58 - 3.51 (m, 1H), 3.51 - 3.36 (m, 

0.6H), 3.26 (dd, J = 7.1, 8.0 Hz, 0.7H); 13C NMR (100 MHz, CD3OD, drops CDCl3) δ = 

169.78, 169.48, 169.04 (br s), 160.08, 159.58, 151.63 (br s), 151.45 (br s), 144.26 (br 

s), 144.09 (br s), 139.24, 139.21 (br s), 138.79, 138.44, 138.18 (br s), 138.05, 132.54 

(br s), 132.50 (br s), 132.21 (br s), 132.17, 131.84 (br s), 131.71 (br s), 130.85 (br s), 

130.82 (br s), 129.63, 129.58, 129.46, 129.37, 129.33, 129.24, 129.04, 128.83 (br s), 

128.82 (br s), 128.79, 128.68 (br s), 126.57 (br s), 126.47 - 126.22 (m), 125.53 - 125.18 
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(m), 123.69 (br s), 123.65, 119.49 (br s), 75.87, 75.48, 74.69, 74.50, 73.48, 73.11, 

71.66, 70.87, 62.25, 61.59, 59.16 (br s), 58.84 (br s), 46.67, 46.29; 19F NMR (376 MHz, 

CD3OD, drops CDCl3) δ = -63.89 (br s, 0.5F), -63.91 (br s, 0.5F), -63.94 (s, 3F), -63.98 

(s, 1.6F); LRMS (ESI) calculated for C29H23F3N7O5 [M - H]- m/z 606.17, found 606.31. 

 

 
 

3-((S)-5-(hydroxymethyl)-2-oxooxazolidin-3-yl)-N-(1H-tetrazol-5-yl)-1-(3-

(trifluoromethyl)benzoyl)indoline-3-carboxamide (27). 28 (18.3 mg, 0.030 mmol, 1.0 

equiv.) was dissolved in ethanol (10 mL) and hydrogenated for 3h using an “H-Cube” 

flow hydrogenator with a 10% Pd/C cartridge; 1 mL/min, 10 bar H2, 25 °C, loop 

configuration. The reaction mixture was concentrated and purified by reverse phase 

HPLC (water/MeOH/0.05% formic acid) to afford 27 (7.2 mg, 46%) (mixture of 

diastereomers) as a white solid. Note: Diastereomers combined with the atropisomers 

of the secondary amide resulted in a multitude of split peaks. 1H NMR (400 MHz, 

CD3OD, drops CDCl3) δ = 8.23 (br s, 1H), 8.03 - 7.92 (m, 2H), 7.91 - 7.84 (m, 1H), 7.78 

- 7.69 (m, 1H), 7.61 (m, 0.5H), 7.55 - 7.40 (m, 1.5H), 7.26 (b q, J = 7.1 Hz, 1H), 5.14 - 

5.03 (m, 0.4H), 4.95 - 4.87 (m, 1H), 4.81 - 4.68 (m, 0.8H), 4.56 (d, J = 12.7 Hz, 0.25H), 

4.51 (br d, J = 12.4 Hz, 0.25H), 4.44 (br d, J = 11.4 Hz, 0.05H), 4.26 (br d, J = 11.7 Hz, 

0.3H), 4.22 (br dd, J = 2.1, 5.7 Hz, 0.1H), 3.98 - 3.84 (m, 0.4H), 3.81 (dd, J = 2.4, 12.7 

Hz, 0.3H), 3.75 (t, J = 8.5 Hz, 0.4H), 3.72 - 3.39 (m, 2.5H), 3.23 (t, J = 7.7 Hz, 0.3H); 13C 

NMR (100 MHz, CD3OD, drops CDCl3) δ = 170.24, 169.59 (br s), 160.60, 160.22, 
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154.80 (br s), 152.08 (br s), 145.58 (br s), 144.64 (br s), 138.77 (br s), 138.69 (br s), 

133.05 - 132.90 (m), 132.90 - 132.76 (m), 132.62 - 132.38 (m), 132.28 - 132.08 (m), 

131.26, 131.23, 131.16 (br s), 130.20, 129.59, 129.31 - 129.05 (m), 129.03 - 128.85 

(m), 127.37 - 127.07 (m), 126.78 - 126.55 (m), 125.98 - 125.73 (m), 125.72 - 125.52 

(m), 125.53 (q, J = 271.9 Hz), 119.77 (br s), 77.64, 77.09, 73.09 (br s), 71.19, 70.64, 

69.46, 65.66, 64.79, 64.49, 63.03, 61.88, 59.11 (br s), 47.12, 46.09, 45.99; 19F NMR 

(376 MHz, CD3OD, drops CDCl3) δ = -64.15 (s, 3F), -64.19 (s, 2.2F); LRMS (ESI) 

calculated for C22H17F3N7O5 [M - H]- m/z 516.12, found 516.07. 

 

 
 

tert-butyl (1-((1H-tetrazol-5-yl)carbamoyl)cyclopropyl)carbamate (29). 

Commercially available 1-((tert-Butoxycarbonyl)amino)cyclopropanecarboxylic acid (100 

mg, 0.497 mmol, 1.0 equiv.) was reacted with 5-aminotetrazole monohydrate (1.5 

equiv.) in 4 mL DMF according to general procedure D (10m activation), except 3.0 

equiv. N,N-diisopropylethylamine was added initially, with no second addition. 29 (106.5 

mg, 80%) obtained as a white solid. Note: Atropisomers resulted in some split peaks. 

1H NMR (400 MHz, DMSO-d6) δ = 11.88 (br s, 0.2H), 11.73 (br s, 0.8H), 7.41 (br s, 

0.8H), 7.11 (br s, 0.2H), 1.54 - 1.23 (m, 11H), 1.10 (br s, 2H); 13C NMR (100 MHz, 

DMSO-d6) δ = 172.45, 155.84 (br), 150.20 (br), 78.67, 35.40 (br), 28.21, 17.87; LRMS 

(ESI) calculated for C10H15N6O3 [M - H]- m/z 267.12, found 267.10. 
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tert-butyl (1-((1H-tetrazol-5-yl)carbamoyl)cyclobutyl)carbamate (30). Commercially 

available boc-1-amino-1-cyclobutanecarboxylic acid (100 mg, 0.465 mmol, 1.0 equiv.) 

was reacted with 5-aminotetrazole monohydrate (1.5 equiv.) in 4 mL DMF according to 

general procedure D (10m activation), except 3.0 equiv. N,N-diisopropylethylamine was 

added initially, with no second addition. 30 (101.1 mg, 77%) obtained as a white solid. 

Note: Atropisomers gave many split peaks in 1H and 13C. 1H NMR (400 MHz, DMSO-

d6) δ = 11.71 (br s, 0.3H), 11.59 (br s, 0.7H), 7.46 (br s, 0.7H), 7.10 (br s, 0.3H), 2.62 - 

2.46 (m, 2H), 2.12 (q, J = 9.3 Hz, 2H), 1.88 (br s, 1H), 1.81 - 1.67 (m, 1H), 1.33 (br s, 

6H), 1.18 (br s, 3H); 13C NMR (100 MHz, DMSO-d6) δ = 173.37 (br), 173.01, 154.57, 

153.53 (br), 150.35 (br), 78.77, 58.69 (br), 30.92 (br), 30.32, 28.16 (br), 14.65, 14.32 

(br); LRMS (ESI) calculated for C11H17N6O3 [M - H]- m/z 281.14, found 281.06. 

 

 
 

tert-butyl (1-((1H-tetrazol-5-yl)carbamoyl)cyclopentyl)carbamate (31). Commercially 

available 1-N-Boc-Aminocyclopentanecarboxylic acid (100 mg, 0.436 mmol, 1.0 equiv.) 

was reacted with 5-aminotetrazole monohydrate (1.5 equiv.) in 4 mL DMF according to 

general procedure D (10m activation), except 3.0 equiv. N,N-diisopropylethylamine was 

added initially, with no second addition. 31 (99.2 mg, 77%) obtained as a white solid. 

Note: Atropisomers resulted in some split peaks. 1H NMR (400 MHz, DMSO-d6) δ = 

11.83 (br s, 0.3H), 11.69 (br s, 0.7H), 7.08 (br s, 0.7H), 6.79 (br s, 0.3H), 2.20 - 2.04 (m, 
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2H), 1.86 (br s, 2H), 1.75 - 1.51 (m, 4H), 1.32 (br s, 9H); 13C NMR (100 MHz, DMSO-d6) 

δ = 173.95 (br), 154.93 (br), 150.34 (br), 78.61 (br), 66.47 (br), 35.91 (br), 28.14 (br), 

23.91; LRMS (ESI) calculated for C12H19N6O3 [M - H]- m/z 295.15, found 295.10.  

 

 
 

tert-butyl (2-((1H-tetrazol-5-yl)amino)-2-oxo-1-phenylethyl)carbamate (32). 

Commercially available tert-butoxycarbonylamino-phenyl-acetic acid (100 mg, 0.398 

mmol, 1.0 equiv.) was reacted with 5-aminotetrazole monohydrate (1.5 equiv.) in 4 mL 

DMF according to general procedure D (10m activation), except 3.0 equiv. N,N-

diisopropylethylamine was added initially, with no second addition. 32 (50.3 mg, 40%) 

obtained as a white solid. Note: Slight atropisomerism observed by 1H NMR. 1H NMR 

(400 MHz, DMSO-d6) δ = 12.34 (br s, 1H), 7.78 (br d, J = 7.3 Hz, 0.85H), 7.49 (br d, J = 

7.1 Hz, 2.15H), 7.42 - 7.22 (m, 3H), 5.41 (br d, J = 7.3 Hz, 0.85H), 5.27 (br s, 0.15H), 

1.39 (s, 7.6H), 1.30 (br s, 1.4H); 13C NMR (100 MHz, DMSO-d6) δ = 170.08, 155.25, 

149.53 (br), 136.13, 128.54, 128.30, 127.90, 78.67, 58.13, 28.17; LRMS (ESI) 

calculated for C14H17N6O3 [M - H]- m/z 317.14, found 317.16. 

 

 
 

tert-butyl (1-((1H-tetrazol-5-yl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate (33). 

Commercially available boc-DL-Phe-OH (100 mg, 0.377 mmol, 1.0 equiv.) was reacted 

with 5-aminotetrazole monohydrate (1.5 equiv.) in 4 mL DMF according to general 
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procedure D (10m activation), except 3.0 equiv. N,N-diisopropylethylamine was added 

initially, with no second addition. 33 (33.3 mg, 27%) obtained as a white solid. Note: 

Slight atropisomerism observed by 1H NMR. 1H NMR (400 MHz, DMSO-d6) δ = 12.27 

(br s, 1H), 7.42 - 7.24 (m, 5H), 7.24 - 7.15 (m, 1H), 6.96 (br s, 0.2H), 4.41 (br s, 1H), 

3.10 - 2.93 (m, 1H), 2.91 - 2.74 (m, 1H), 1.31 (s, 7.6H), 1.20 (br s, 1.4H); 13C NMR (100 

MHz, DMSO-d6) δ = 171.73, 155.46, 149.53 (br), 137.52, 129.27, 128.11, 126.46, 

78.36, 56.20, 36.58, 28.12; LRMS (ESI) calculated for C15H19N6O3 [M - H]- m/z 331.15, 

found 331.14. 

 

 
 

tert-butyl (2-((1H-tetrazol-5-yl)carbamoyl)-2,3-dihydro-1H-inden-2-yl)carbamate 

(34). Commercially available boc-2-aminoindane-2-carboxylic acid (100 mg, 0.361 

mmol, 1.0 equiv.) was reacted with 5-aminotetrazole monohydrate (1.5 equiv.) in 3 mL 

DMF according to general procedure D (10m activation), except 3.0 equiv. N,N-

diisopropylethylamine was added initially, with no second addition. 34 (84.6 mg, 68%) 

obtained as a white solid. 1H NMR (400 MHz, DMSO-d6) δ = 12.14 (br s, 0.25H), 12.00 

(br s, 0.75H), 7.50 (br s, 0.7H), 7.25 - 7.18 (m, 2H), 7.18 - 7.12 (m, 2H), 3.60 (br d, J = 

16.6 Hz, 2H), 3.22 (br d, J = 16.6 Hz, 2H), 1.35 (br s, 9H); 13C NMR (100 MHz, DMSO-

d6) δ = 173.45 (br), 155.45 (br), 150.80, 140.42, 127.08, 124.89, 79.29 (br), 66.87 (br), 

42.78 (br), 28.55 (br); LRMS (ESI) calculated for C16H19N6O3 [M - H]- m/z 343.15, found 

343.16. 
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methyl 4-azido-2-(3-(trifluoromethyl)benzoyl)-1,2,3,4-tetrahydroisoquinoline-4-

carboxylate (S76). S23 (87.1 mg, 0.240 mmol, 1.0 equiv.) was reacted in 8 mL 

tetrahydrofuran according to general procedure F. S76 (90.8 mg, 94%) obtained as a 

colorless oil. Note: Atropisomerism observed by NMR. 1H NMR (400 MHz, CDCl3) δ = 

7.93 - 7.68 (m, 3H), 7.67 - 7.53 (m, 1.5H), 7.48 - 7.20 (m, 3.5H), 5.54 (br s, 0.5H), 4.55 

(br s, 2H), 3.95 (br s, 1H), 3.80 (br s, 3H), 3.70 (br s, 0.5H); 13C NMR (100 MHz, CDCl3) 

δ = 170.07 (br s), 169.71 (br s), 135.74, 132.42 (br s), 131.14 (br s), 130.99 - 130.64 

(m), 130.49 (br s), 130.31, 130.30, 129.80 (br s), 129.09, 129.01, 128.99, 127.83 (br s), 

127.75 - 127.20 (m), 127.01 (br s), 126.86 - 126.57 (m), 126.57 - 125.99 (m), 124.79 - 

124.18 (m), 124.03, 124.00, 123.59 (q, J = 272.7 Hz), 123.55 (q, J = 272.4 Hz), 66.59 

(br s), 53.36, 50.84 (br s), 44.12 (br s); 19F NMR (376 MHz, CDCl3) δ = -62.75 (s, 3F); 

LRMS (ESI) calculated for C19H16F3N4O3 [M + H]+ m/z 405.12, found 405.07. 

 

 
 

methyl 4-((tert-butoxycarbonyl)amino)-2-(3-(trifluoromethyl)benzoyl)-1,2,3,4-

tetrahydroisoquinoline-4-carboxylate (S77). A round bottom flask was charged with 

S76 (90.8 mg, 0.225 mmol, 1.0 equiv.) and dry methanol (4 mL), then cooled to 0 °C. 

Anhydrous tin(II) chloride (85.2 mg, 0.449 mmol, 2.0 equiv.) was then added; stirred at 0 

°C for 5m, then r.t. for 3.5h. The methanol was then removed under reduced pressure. 
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1,4-dioxane (3 mL) was then added, followed by di-tert-butyl dicarbonate (74 mg, 0.337 

mmol, 1.5 equiv.) in 500 uL 1,4-dioxane. Finally, a slurry of sodium bicarbonate (75 mg, 

0.898 mmol, 4.0 equiv.) in water (1 mL) was added, and the resulting slurry was allowed 

to stir for 22h. 2.0 equiv. di-tert-butyl dicarbonate and 1 mL water were then added; 

stirred for 24h. Additional 2.0 equiv. di-tert-butyl dicarbonate and 1 mL water were 

added; stirred for 32h. The reaction mixture was then transferred to a sep. funnel with 

excess EtOAc and water and adjusted to pH 1 with 2N NaHSO4. The layers were 

separated, and the aqueous layer was further extracted with ~ 50 mL EtOAc. The 

organic layers were combined, washed with sat. NaHCO3, dried over MgSO4, and 

concentrated under reduced pressure. Purified on a silica column with 15-30% 

EtOAc:hexanes. S77 (70.6 mg, 66%) obtained as a colorless oil. Note: Atropisomerism 

observed by NMR. 1H NMR (400 MHz, CDCl3) δ = 7.80 - 7.64 (m, 2H), 7.64 - 7.48 (m, 

2H), 7.41 (br d, J = 6.8 Hz, 1H), 7.37 - 7.18 (m, 2.6H), 6.97 (br s, 0.4H), 5.27 (br s, 

0.5H), 5.15 (br s, 0.6H), 5.01 (br s, 0.4H), 4.84 - 4.53 (m, 2H), 4.41 (br s, 0.5H), 3.70 (s, 

3H), 1.32 (br s, 7.5H), 1.06 (br s, 1.5H); 13C NMR (100 MHz, CDCl3) δ = 170.86 (br s), 

169.89 (br s), 154.08 (br s), 153.39 (br s), 136.44 - 135.89 (m), 133.59 (br s), 131.78 (br 

s), 131.15 (br s), 130.85 (br s), 130.73 - 129.80 (m), 129.37 - 128.70 (m), 128.64 - 

128.11 (m), 127.70 (br s), 127.36 - 126.82 (m), 126.58 (br s), 126.04 (br s), 124.86 - 

124.33 (m), 124.25 - 123.67 (m), 123.60 (q, J = 272.2 Hz), 80.29 (br s), 59.86 (br s), 

53.48 (br s), 52.99 (br s), 49.61 (br s), 45.27 (br s), 44.32 (br s), 28.08 (br s); 19F NMR 

(376 MHz, CDCl3) δ = -62.71 (br s, 3F), -62.82 (br s, 1.6F); LRMS (ESI) calculated for 

C24H26F3N2O5 [M + H]+ m/z 479.18, found 479.10. 
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4-((tert-butoxycarbonyl)amino)-2-(3-(trifluoromethyl)benzoyl)-1,2,3,4-

tetrahydroisoquinoline-4-carboxylic acid (S78). S77 (70.6 mg, 0.148 mmol, 1.0 

equiv.) was reacted in methanol (3.5 mL) with 1M lithium hydroxide (370 uL, 0.370 

mmol, 2.5 equiv.) according to general procedure B, except the reaction was cooled to 0 

°C prior to hydroxide addition, and allowed to slowly warm to r.t.; three additions of 1M 

lithium hydroxide (370 uL, 0.370 mmol, 2.5 equiv.) were added over the following 8h. 

Semi-crude S78 (64.7 mg, 94%) obtained as a colorless oil. LRMS (ESI) calculated for 

C23H22F3N2O5 [M - H]- m/z 463.15, found 463.14. 

 

 
 

tert-butyl (4-((1H-tetrazol-5-yl)carbamoyl)-2-(3-(trifluoromethyl)benzoyl)-1,2,3,4-

tetrahydroisoquinolin-4-yl)carbamate (35). Semi-crude S78 (64.7 mg, 0.139 mmol, 

1.0 equiv.) was reacted with 5-aminotetrazole monohydrate (1.1 equiv.) in 3.5 mL DMF 

according to general procedure D (10m activation). 35 (30.0 mg, 41%) obtained as a 

white solid. Note: Atropisomerism observed by NMR. 1H NMR (400 MHz, DMSO-d6) δ = 

12.30 (br s, 0.25H), 12.18 (br s, 0.25H), 12.02 (br s, 0.25H), 7.94 - 7.45 (m, 5.5H), 7.38 

(br s, 1.5H), 7.33 - 7.22 (m, 1.5H), 7.12 (br s, 0.5H), 5.15 - 5.01 (m, 0.25H), 4.98 - 4.43 

(m, 2.25H), 4.34 (br d, J = 12.4 Hz, 1H), 4.25 - 4.09 (m, 0.25H), 3.86 - 3.70 (m, 0.25H), 

1.51 - 1.20 (m, 7H), 0.85 (br s, 2H); 13C NMR (100 MHz, DMSO-d6) δ = 170.30 (br s), 
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168.79 (br s), 155.30 (br s), 150.44 (br s), 137.34 (br s), 134.22, 132.55 - 131.03 (m), 

130.24 - 129.64 (m), 129.43, 128.94 (br s), 127.91 - 127.47 (m), 127.44 - 127.01 (m), 

126.88 - 126.49 (m), 124.59 - 124.20 (m), 124.38 (d, J = 272.2 Hz), 80.17 (br s), 79.42 

(br s), 61.14 (br s), 50.15 (br s), 49.41 (br s), 44.94 (br s), 28.54 (br s), 27.64 (br s); 19F 

NMR (376 MHz, DMSO-d6) δ = -61.17 (br s, 1.5F), -61.24 (br s, 3F); LRMS (ESI) 

calculated for C24H23F3N7O4 [M - H]- m/z 530.18, found 530.17. 

 

 
 

methyl 4-azido-2-((3-(trifluoromethyl)phenyl)sulfonyl)-1,2,3,4-

tetrahydroisoquinoline-4-carboxylate (S79). S25 (96.3 mg, 0.241 mmol, 1.0 equiv.) 

was reacted in 8 mL tetrahydrofuran according to general procedure F. S79 (105.0 mg, 

99%) obtained as a colorless oil. 1H NMR (400 MHz, CDCl3) δ = 8.16 (s, 1H), 8.13 - 

8.04 (m, 1H), 7.88 (d, J = 7.8 Hz, 1H), 7.73 (t, J = 7.9 Hz, 1H), 7.41 - 7.33 (m, 1H), 7.33 

- 7.27 (m, 2H), 7.24 - 7.18 (m, 1H), 4.67 (d, J = 15.6 Hz, 1H), 4.23 (d, J = 15.3 Hz, 1H), 

3.97 (dd, J = 1.2, 12.7 Hz, 1H), 3.82 (s, 3H), 3.70 (d, J = 15.8 Hz, 1H); 13C NMR (100 

MHz, CDCl3) δ = 169.43, 138.37, 131.43, 131.79 (q, J = 33.5 Hz), 130.71 (br s), 130.07, 

129.96, 129.72 (q, J = 3.7 Hz), 129.61, 129.36, 129.26, 127.80, 127.65, 127.09, 127.01 

(d, J = 1.5 Hz), 126.41, 124.47 (q, J = 3.9 Hz), 123.02 (q, J = 272.9 Hz), 66.45, 53.44, 

50.31, 46.98; 19F NMR (376 MHz, CDCl3) δ = -62.79 (s, 3F); LRMS (ESI) calculated for 

C18H15F3N4NaO4S [M + Na]+ m/z 463.07, found 462.99. 
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methyl 4-((tert-butoxycarbonyl)amino)-2-((3-(trifluoromethyl)phenyl)sulfonyl)-

1,2,3,4-tetrahydroisoquinoline-4-carboxylate (S80). A round bottom flask was 

charged with S79 (105.0 mg, 0.238 mmol, 1.0 equiv.) and dry methanol (4.4 mL), then 

cooled to 0 °C. Anhydrous tin(II) chloride (90.4 mg, 0.477 mmol, 2.0 equiv.) was added; 

stirred at 0 °C for 5m, then r.t. for 4.5h. The methanol was then removed under reduced 

pressure. 1,4-dioxane (3.2 mL) was added, followed by di-tert-butyl dicarbonate (78 mg, 

0.358 mmol, 1.5 equiv.) in 500 uL 1,4-dioxane. Finally, a slurry of sodium bicarbonate 

(80 mg, 0.954 mmol, 4.0 equiv.) in water (1 mL) was added, and the resulting slurry was 

allowed to stir for 14h. 2.0 equiv. di-tert-butyl dicarbonate and 1 mL water were then 

added; stirred for 24h. Additional 2.0 equiv. di-tert-butyl dicarbonate and 1 mL water 

were added; stirred for 28h. The reaction mixture was then transferred to a sep. funnel 

with excess EtOAc and water and adjusted to pH 1 with 2N NaHSO4. The layers were 

separated, and the aqueous layer was further extracted with ~ 50 mL EtOAc. The 

organic layers were combined, washed with sat. NaHCO3, dried over MgSO4, and 

concentrated under reduced pressure. Purified on a silica column with 10-25% 

EtOAc:hexanes. S80 (84.5 mg, 69%) obtained as a colorless oil. 1H NMR (400 MHz, 

CDCl3) δ = 8.11 (s, 1H), 8.06 (br d, J = 7.8 Hz, 1H), 7.87 (d, J = 7.8 Hz, 1H), 7.75 - 7.69 

(m, 1H), 7.53 (br d, J = 7.5 Hz, 1H), 7.33 - 7.23 (m, 2H), 7.13 (dd, J = 0.7, 7.3 Hz, 1H), 

4.61 (br d, J = 14.9 Hz, 1H), 4.51 (br d, J = 12.7 Hz, 1H), 4.10 (br d, J = 14.3 Hz, 1H), 

3.77 (s, 3H), 3.53 (br d, J = 12.7 Hz, 1H), 1.45 (s, 9H); 13C NMR (100 MHz, CDCl3) δ = 

170.70, 153.87, 138.60, 132.32, 131.89 (q, J = 33.8 Hz), 131.63, 130.66, 130.09, 
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129.53 (q, J = 3.7 Hz), 129.03, 127.99, 126.98, 126.80, 124.29 (q, J = 3.9 Hz), 123.11 

(q, J = 273.6 Hz), 80.53, 59.85, 53.03, 48.19, 47.60, 28.18; 19F NMR (376 MHz, CDCl3) 

δ = -62.73 (s, 3F); LRMS (ESI) calculated for C23H26F3N2O6S [M + H]+ m/z 515.15, 

found 515.05.  

 

 
 

4-((tert-butoxycarbonyl)amino)-2-((3-(trifluoromethyl)phenyl)sulfonyl)-1,2,3,4-

tetrahydroisoquinoline-4-carboxylic acid (S81). S80 (84.5 mg, 0.164 mmol, 1.0 

equiv.) was reacted in 1,4-dioxane (3 mL) with 1M lithium hydroxide (3 mL, 3.0 mmol, 

18.3 equiv.) according to general procedure B. Semi-crude S81 (88.2 mg, 107%) 

obtained as a white solid. LRMS (ESI) calculated for C22H22F3N2O6S [M - H]- m/z 

499.12, found 499.09. 

 

 
 

tert-butyl (4-((1H-tetrazol-5-yl)carbamoyl)-2-((3-(trifluoromethyl)phenyl)sulfonyl)-

1,2,3,4-tetrahydroisoquinolin-4-yl)carbamate (36). Semi-crude S81 (88.2 mg, 0.176 

mmol, 1.0 equiv.) was reacted with 5-aminotetrazole monohydrate (1.1 equiv.) in 4.4 mL 

DMF according to general procedure D (10m activation). 36 (26.6 mg, 27%) obtained as 

a white solid. 1H NMR (400 MHz, DMSO-d6) δ = 12.01 (br s, 1H), 8.14 (d, J = 7.3 Hz, 

2H), 8.04 (s, 1H), 7.97 - 7.89 (m, 1H), 7.69 (br s, 1H), 7.44 (br d, J = 7.1 Hz, 1H), 7.36 - 

7.22 (m, 3H), 6.54 (br s, 0.1H), 4.44 (br d, J = 15.3 Hz, 1H), 4.23 (br d, J = 15.3 Hz, 1H), 
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4.09 (br d, J = 11.9 Hz, 1H), 3.84 (br d, J = 12.2 Hz, 1H), 1.40 (br s, 9H); 13C NMR (100 

MHz, DMSO-d6) δ = 169.89, 155.11 (br s), 150.81, 137.68, 133.12, 132.92, 131.90 (br 

d, J = 3.8 Hz), 130.70 (br d, J = 4.5 Hz), 130.64 (br d, J = 32.9 Hz), 128.90, 127.81, 

127.66, 127.05, 124.11 (d, J = 4.0 Hz), 123.81 (d, J = 273.0 Hz), 79.48, 61.61, 48.21 (br 

s), 48.02, 28.64 (br s); 19F NMR (376 MHz, DMSO-d6) δ = -61.33 (br s, 3F); LRMS (ESI) 

calculated for C23H23F3N7O5S [M - H]- m/z 566.14, found 566.21.  

 

 
 

1-benzyl 3-methyl indoline-1,3-dicarboxylate (S82). Semi-crude S32 (149.8 mg, 

0.701 mmol, 1.0 equiv.) was reacted with commercially available benzyl chloroformate 

in dry dichloromethane (6.2 mL) according to general procedure A, with slight 

modification: prior to base addition, the reaction vessel was cooled to 0 °C; 2.5 equiv. of 

N,N-diisopropylethylamine was used, and allowed to stir at 0 °C for 5m; after acyl 

chloride addition, the reaction mixture was allowed to slowly warm to r.t. S82 (178.3 mg, 

82%) obtained as a colorless oil. 1H NMR (400 MHz, CDCl3) δ = 7.96 (br s, 1H), 7.51 - 

7.33 (m, 6H), 7.32 - 7.19 (m, 1H), 7.02 (br t, J = 7.3 Hz, 1H), 5.40 - 5.21 (m, 2H), 4.51 

(dd, J = 5.0, 10.6 Hz, 1H), 4.28 - 4.13 (m, 2H), 3.78 (s, 3H); 13C NMR (100 MHz, CDCl3) 

δ = 171.49, 152.31 (br), 142.16 (br), 136.06 (br), 128.95, 128.45, 128.09, 127.91 (br), 

127.41 (br), 124.98 (br), 122.66, 114.91 (br), 66.97 (br), 52.47, 49.44 (br), 44.72 (br); 

LRMS (ESI) calculated for C18H17NNaO4 [M + Na]+ m/z 334.11, found 333.97. 
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1-benzyl 3-methyl 3-azidoindoline-1,3-dicarboxylate (S83). S82 (178.3 mg, 0.573 

mmol, 1.0 equiv.) was reacted in 12 mL tetrahydrofuran according to general procedure 

F. S83 (103.3 mg, 51%) obtained as a colorless oil. 1H NMR (400 MHz, CDCl3) δ = 8.05 

(br s, 1H), 7.53 - 7.33 (m, 7H), 7.11 (br t, J = 7.4 Hz, 1H), 5.30 (br s, 2H), 4.60 (d, J = 

12.4 Hz, 1H), 4.09 (br d, J = 11.7 Hz, 1H), 3.89 (s, 3H); 13C NMR (100 MHz, CDCl3) δ = 

169.17, 152.02 (br), 142.57 (br), 135.67 (br), 131.59, 128.57, 128.34, 128.13 (br), 

126.06 (br), 123.84 (br), 122.97, 115.70, 69.64 (br), 67.45 (br), 56.78 (br), 53.57; LRMS 

(ESI) calculated for C18H16N4NaO4 [M + Na]+ m/z 375.10, found 375.00. 

 

 
 

methyl 4-((tert-butoxycarbonyl)amino)-2-((3-(trifluoromethyl)phenyl)sulfonyl)-

1,2,3,4-tetrahydroisoquinoline-4-carboxylate (S84). A round bottom flask was 

charged with S83 (103.3 mg, 0.293 mmol, 1.0 equiv.) and dry methanol (6 mL), then 

cooled to 0 °C. Anhydrous tin(II) chloride (111 mg, 0.586 mmol, 2.0 equiv.) was added; 

stirred at 0 °C for 5m, then r.t. for 4 h. The methanol was then removed under reduced 

pressure. 1,4-dioxane (5.5 mL) was added, followed by di-tert-butyl dicarbonate (96 mg, 

0.440 mmol, 1.5 equiv.) in 700 uL 1,4-dioxane. Finally, a slurry of sodium bicarbonate 

(99 mg, 1.17 mmol, 4.0 equiv.) in water (1.4 mL) was added, and the resulting slurry 

was allowed to stir for 14h. The reaction mixture was then transferred to a sep. funnel 
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with excess EtOAc and water and adjusted to pH 1 with 1M KHSO4. The layers were 

separated, and the aqueous layer was further extracted with ~ 50 mL EtOAc. The 

organic layers were combined, washed with sat. NaHCO3, dried over MgSO4, and 

concentrated under reduced pressure. Purified on a silica column with 0-15% 

EtOAc:hexanes. S84 (88.9 mg, 71%) obtained as a colorless oil. 1H NMR (400 MHz, 

CDCl3) δ = 7.96 (br d, J = 6.6 Hz, 1H), 7.48 - 7.28 (m, 7H), 7.01 (br t, J = 7.4 Hz, 1H), 

5.28 (br s, 2H), 4.95 (br d, J = 10.7 Hz, 1H), 4.22 (br d, J = 10.2 Hz, 1H), 3.76 (s, 3H), 

1.45 (br s, 9H); 13C NMR (100 MHz, CDCl3) δ = 170.74 (br), 154.76 (br), 152.39 (br), 

142.81 (br), 135.95 (br), 130.98 (br), 128.52, 128.19 (br), 128.07 (br), 123.25 (br), 

123.03 (br), 115.48 (br), 80.70 (br), 67.16 (br), 64.28 (br), 58.26 (br), 53.23; LRMS (ESI) 

calculated for C23H26N2NaO6 [M + Na]+ m/z 449.17, found 449.00. 

 

 
 

methyl 3-((tert-butoxycarbonyl)amino)indoline-3-carboxylate (S85). S84 (810.9 mg, 

1.90 mmol, 1.0 equiv.) was dissolved in methanol (100 mL) and hydrogenated for 6h 

using an “H-Cube” flow hydrogenator with a 10% Pd/C cartridge; 2 mL/min, 1 atm H2, 

40 °C, loop configuration. The reaction mixture was concentrated and transferred to a 

sep. funnel with ~ 75 mL EtOAc and partitioned with ~ 75 mL sat. NaHCO3. The organic 

layer was separated, and the aqueous layer was further extracted with 2 x 50 mL 

EtOAc. The organic layers were combined, dried over MgSO4, and concentrated. S85 

(548.4 mg, 99%) obtained as a waxy white solid; used without further purification. LRMS 

(ESI) calculated for C15H21N2O4 [M + H]+ m/z 293.15, found 293.03. 
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methyl 3-((tert-butoxycarbonyl)amino)-1-(3-(trifluoromethyl)benzyl)indoline-3-

carboxylate (S86). In a 20 mL vial, S85 (40.0 mg, 0.137 mmol, 1.0 equiv.) was reacted 

with commercially available 3-(trifluoromethyl)benzyl bromide in dry dichloromethane (2 

mL) according to general procedure A, with slight modification: prior to base addition, 

the reaction vessel was cooled to 0 °C; 2.0 equiv. of N,N-diisopropylethylamine was 

used; after halide addition, the reaction mixture was allowed to slowly warm to r.t. 

overnight. Since reaction progress was slow, the vial was firmly sealed and heated at 80 

°C for 48h. S86 (38.8 mg, 63%) obtained as a colorless oil. 1H NMR (400 MHz, CDCl3) 

δ = 7.63 (s, 1H), 7.58 - 7.52 (m, 2H), 7.51 - 7.43 (m, 1H), 7.26 (dd, J = 1.0, 7.8 Hz, 1H), 

7.20 (dt, J = 1.2, 7.8 Hz, 1H), 6.75 - 6.68 (m, 1H), 6.51 (br d, J = 7.8 Hz, 1H), 4.52 - 4.38 

(m, 2H), 4.34 (d, J = 10.5 Hz, 1H), 3.79 (s, 3H), 3.66 (br d, J = 10.2 Hz, 1H), 1.43 (br s, 

9H); 13C NMR (100 MHz, CDCl3) δ = 171.19 (br s), 154.86 (br s), 151.43 (br s), 138.87, 

130.98, 130.71 (br s), 130.96 (br q, J = 32.3 Hz), 129.08, 126.21, 124.27 - 123.97 (m), 

123.83, 124.08 (q, J = 272.2 Hz), 117.92, 107.42, 80.42 (br s), 65.09 (br s), 62.52 (br s), 

52.96, 51.65, 28.17; 19F NMR (376 MHz, CDCl3) δ = -62.56 (s, 3F); LRMS (ESI) 

calculated for C23H26F3N2O4 [M + H]+ m/z 451.18, found 451.06. 
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3-((tert-butoxycarbonyl)amino)-1-(3-(trifluoromethyl)benzyl)indoline-3-carboxylic 

acid (S87). S86 (38.8 mg, 0.086 mmol, 1.0 equiv.) was reacted in methanol (3.5 mL) 

with 1M lithium hydroxide (172 uL, 0.172 mmol, 2.0 equiv.) according to general 

procedure B, except the reaction was cooled to 0 °C prior to hydroxide addition, and 

allowed to slowly warm to r.t. overnight. Since conversion was slow, an additional 2.0 

equiv. 1M lithium hydroxide and methanol (500 uL) were added; stirred at 35 °C for 22h. 

An additional aliquot of 2.0 equiv. 1M lithium hydroxide was subsequently added; 

heated at 50 °C for 23h. Semi-crude S87 (38.8 mg, 103%) obtained as a white solid. 

LRMS (ESI) calculated for C22H22F3N2O4 [M - H]- m/z 435.15, found 435.17. 

 

 
 

tert-butyl (3-((1H-tetrazol-5-yl)carbamoyl)-1-(3-(trifluoromethyl)benzyl)indolin-3-

yl)carbamate (37). Semi-crude S87 (38.8 mg, 0.089 mmol, 1.0 equiv.) was reacted with 

5-aminotetrazole monohydrate (1.1 equiv.) in 3 mL DMF according to general procedure 

D (20m activation, 48h). 37 (20.1 mg, 45%) obtained as a tan solid. Note: 

Atropisomerism observed by NMR. 1H NMR (400 MHz, DMSO-d6) δ = 12.29 (br s, 

0.3H), 12.15 (br s, 0.7H), 7.82 (br s, 1H), 7.74 (s, 1H), 7.72 - 7.42 (m, 4H), 7.19 - 7.10 

(m, 1H), 6.73 - 6.58 (m, 2H), 4.65 - 4.53 (m, 1H), 4.52 - 4.33 (m, 2H), 3.41 - 3.35 (m, 

1H), 1.36 (br s, 6H), 1.21 (br s, 3H); 13C NMR (100 MHz, DMSO-d6) δ = 170.34, 155.25, 
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151.18, 150.30 (br s), 139.65, 131.67 (br s), 130.43, 129.53, 129.21 (q, J = 31.5 Hz), 

125.54 (br s), 125.30, 124.24 (q, J = 3.9 Hz), 123.96 - 123.77 (m), 124.28 (q, J = 272.4 

Hz), 117.25, 107.40, 79.23 (br s), 65.96, 62.18 (br s), 50.81, 28.04 (br s); 19F NMR (376 

MHz, DMSO-d6) δ = -60.96 (s, 3F); LRMS (ESI) calculated for C23H23F3N7O3 [M - H]- 

m/z 502.18, found 502.09. 

 

 
 

methyl 1-benzoyl-3-((tert-butoxycarbonyl)amino)indoline-3-carboxylate (S88). S85 

(40.0 mg, 0.137 mmol, 1.0 equiv.) was reacted with commercially available benzoyl 

chloride in dry dichloromethane (2 mL) according to general procedure A, with slight 

modification: prior to base addition, the reaction vessel was cooled to 0 °C; 2.0 equiv. of 

N,N-diisopropylethylamine was used; after acyl chloride addition, the reaction mixture 

was allowed to slowly warm to r.t. S88 (50.1 mg, 92%) obtained as a colorless oil. 1H 

NMR (400 MHz, CDCl3) δ = 8.19 (br s, 1H), 7.61 - 7.53 (m, 2H), 7.52 - 7.41 (m, 3H), 

7.39 - 7.21 (m, 2H), 7.08 (br t, J = 6.8 Hz, 1H), 5.46 (br s, 1H), 4.97 (br d, J = 11.4 Hz, 

1H), 4.18 (br s, 1H), 3.76 (s, 3H), 1.40 (br s, 9H); 13C NMR (100 MHz, CDCl3) δ = 

170.58 (br), 169.03 (br), 154.66 (br), 142.94 (br), 136.18, 130.71 (br), 130.58, 129.43 

(br), 128.61, 127.11, 124.40 (br), 123.25 (br), 118.17 (br s), 80.81 (br), 64.52 (br), 60.73 

(br), 53.25, 28.09 (br); LRMS (ESI) calculated for C22H25N2O5 [M + H]+ m/z 397.18, 

found 397.03. 
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1-benzoyl-3-((tert-butoxycarbonyl)amino)indoline-3-carboxylic acid (S89). S88 

(50.1 mg, 0.126 mmol, 1.0 equiv.) was reacted in methanol (3 mL) with 1M lithium 

hydroxide (379 uL, 0.379 mmol, 3.0 equiv.) according to general procedure B, except 

the reaction was cooled to 0 °C prior to hydroxide addition, and allowed to slowly warm 

to r.t. Semi-crude S89 (50.1 mg, 104%) obtained as a white solid. LRMS (ESI) 

calculated for C21H21N2O5 [M - H]- m/z 381.15, found 381.23. 

 

 
 

tert-butyl (3-((1H-tetrazol-5-yl)carbamoyl)-1-benzoylindolin-3-yl)carbamate (38). 

Semi-crude S89 (50.1 mg, 0.131 mmol, 1.0 equiv.) was reacted with 5-aminotetrazole 

monohydrate (1.1 equiv.) in 3 mL DMF according to general procedure D (20m 

activation, 48h). 38 (26.6 mg, 45%) obtained as a white solid. Note: Atropisomerism 

observed by NMR. 1H NMR (400 MHz, DMSO-d6) δ = 12.47 (br s, 0.3H), 12.32 (br s, 

0.7H), 8.25 (br s, 1H), 8.08 (br s, 1H), 7.83 (br d, J = 6.8 Hz, 1H), 7.65 (br s, 2H), 7.61 - 

7.48 (m, 3H), 7.37 (br s, 1H), 7.15 (br s, 1H), 4.90 (br d, J = 10.5 Hz, 1H), 4.15 - 3.95 

(m, 1H), 1.36 (br s, 6H), 1.15 (br s, 3H); 13C NMR (100 MHz, DMSO-d6) δ = 170.10 (br), 

167.86 (br), 155.50, 150.03 (br), 142.21 (br), 136.39 (br), 130.60, 130.14 (br), 129.46 

(br), 128.63 (br), 127.10, 125.53 (br), 124.17 (br), 117.06 (br), 79.69 (br), 65.61 (br), 
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60.66 (br), 28.05 (br); LRMS (ESI) calculated for C22H22N7O4 [M - H]- m/z 448.17, found 

448.06. 

 

 
 

methyl 3-((tert-butoxycarbonyl)amino)-1-picolinoylindoline-3-carboxylate (S90). 

S85 (40.0 mg, 0.137 mmol, 1.0 equiv.) was reacted with commercially available 

pyridine-2-carbonyl chloride hydrochloride in dry dichloromethane (2 mL) according to 

general procedure A, with slight modification: prior to base addition, the reaction vessel 

was cooled to 0 °C; 3.0 equiv. of N,N-diisopropylethylamine was used; after acyl 

chloride addition, the reaction mixture was allowed to slowly warm to r.t. S90 (42.8 mg, 

79%) obtained as a colorless oil. 1H NMR (400 MHz, CDCl3) δ = 8.64 (d, J = 4.9 Hz, 

1H), 8.35 (br d, J = 6.6 Hz, 1H), 7.89 (br s, 1H), 7.88 - 7.80 (m, 1H), 7.47 - 7.32 (m, 3H), 

7.13 (br t, J = 7.4 Hz, 1H), 5.42 (br s, 1H), 5.21 (br d, J = 11.4 Hz, 1H), 4.57 (br d, J = 

11.9 Hz, 1H), 3.74 (s, 3H), 1.41 (br s, 9H); 13C NMR (100 MHz, CDCl3) δ = 170.66 (br), 

166.11 (br), 154.78 (br), 153.58, 148.28 (br), 143.50 (br), 137.04, 130.84 (br), 129.25 

(br), 125.29, 124.72, 124.22 (br), 123.14 (br), 118.56 (br), 80.71 (br), 64.97 (br), 60.93 

(br), 53.21, 28.11 (br); LRMS (ESI) calculated for C21H24N3O5 [M + H]+ m/z 398.17, 

found 398.09. 
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3-((tert-butoxycarbonyl)amino)-1-picolinoylindoline-3-carboxylic acid (S91). S90 

(42.8 mg, 0.108 mmol, 1.0 equiv.) was reacted in methanol (3.5 mL) with 1M lithium 

hydroxide (323 uL, 0.323 mmol, 3.0 equiv.) according to general procedure B, except 

the reaction was cooled to 0 °C prior to hydroxide addition, and allowed to slowly warm 

to r.t. Semi-crude S91 (41.3 mg, 100%) obtained as a white solid. LRMS (ESI) 

calculated for C20H20N3O5 [M - H]- m/z 382.14, found 382.44. 

 

 
 

tert-butyl (3-((1H-tetrazol-5-yl)carbamoyl)-1-picolinoylindolin-3-yl)carbamate (39). 

Semi-crude S91 (41.3 mg, 0.108 mmol, 1.0 equiv.) was reacted with 5-aminotetrazole 

monohydrate (1.1 equiv.) in 3 mL DMF according to general procedure D (20m 

activation, 48h). 39 (23.3 mg, 48%) obtained as a white solid. Note: Slight 

atropisomerism observed by NMR. 1H NMR (400 MHz, DMSO-d6) δ = 12.31 (br s, 1H), 

8.70 (br d, J = 4.4 Hz, 1H), 8.29 - 8.12 (m, 2H), 8.05 (dt, J = 1.6, 7.7 Hz, 1H), 7.95 - 7.75 

(m, 2H), 7.61 (dd, J = 5.1, 7.1 Hz, 1H), 7.44 (br t, J = 7.7 Hz, 1H), 7.19 (br t, J = 7.4 Hz, 

1H), 5.11 (br d, J = 11.7 Hz, 1H), 4.22 (br d, J = 10.5 Hz, 1H), 1.36 (br s, 6H), 1.18 (br s, 

3H); 13C NMR (100 MHz, DMSO-d6) δ = 170.11 (br), 165.41 (br), 155.45 (br), 153.34, 

150.28 (br), 148.35 (br), 142.51, 137.78, 130.32 (br), 129.34 (br), 125.87, 125.47 (br), 
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124.54 (br), 123.96 (br), 117.26, 79.66 (br), 65.78 (br), 60.56 (br), 28.03 (br); LRMS 

(ESI) calculated for C21H21N8O4 [M - H]- m/z 449.17, found 449.05. 

 

 
 

methyl 3-((tert-butoxycarbonyl)amino)-1-(pyrimidine-2-carbonyl)indoline-3-

carboxylate (S92). Pyrimidine-2-carboxylic acid (17 mg, 0.137 mmol, 1.0 equiv.) was 

reacted with S85 (40.0 mg, 0.137 mmol, 1.0 equiv.) in 2 mL DMF according to general 

procedure D (10m activation), except the resulting mixture was transferred to a sep. 

funnel with ~ 75 mL EtOAc. The organic layer was washed with ~ 50 mL sat. NaHCO3, 

water, and 0.1N HCl; dried over MgSO4 and concentrated. Purified on a silica column 

with 0-40% EtOAc:hexanes. S92 (29.7 mg, 55%) obtained as a colorless oil. 1H NMR 

(400 MHz, CDCl3) δ = 8.88 (d, J = 4.9 Hz, 2H), 8.41 (br d, J = 8.3 Hz, 1H), 7.47 - 7.34 

(m, 3H), 7.19 - 7.11 (m, 1H), 5.36 (br s, 1H), 5.10 (br d, J = 11.9 Hz, 1H), 4.34 (br d, J = 

12.2 Hz, 1H), 3.75 (s, 3H), 1.40 (br s, 9H); 13C NMR (100 MHz, CDCl3) δ = 170.36 (br), 

163.31 (br), 161.12, 157.43, 154.79 (br), 142.88, 131.11 (br), 129.06 (br), 125.07, 

123.18 (br), 121.79, 118.58 (br), 80.83 (br), 64.85 (br), 59.96 (br), 53.28 (br), 28.11 (br); 

LRMS (ESI) calculated for C20H23N4O5 [M + H]+ m/z 399.17, found 399.01. 

 

 
 

3-((tert-butoxycarbonyl)amino)-1-(pyrimidine-2-carbonyl)indoline-3-carboxylic 

acid (S93). S92 (29.7 mg, 0.075 mmol, 1.0 equiv.) was reacted in methanol (3 mL) with 
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1M lithium hydroxide (224 uL, 0.224 mmol, 3.0 equiv.) according to general procedure 

B, except the reaction was cooled to 0 °C prior to hydroxide addition, and allowed to 

slowly warm to r.t. Semi-crude S93 (25.1 mg, 88%) obtained as a white solid. LRMS 

(ESI) calculated for C19H19N4O5 [M - H]- m/z 383.14, found 383.35. 

 

 
 

tert-butyl (3-((1H-tetrazol-5-yl)carbamoyl)-1-(pyrimidine-2-carbonyl)indolin-3-

yl)carbamate (40). Semi-crude S93 (25.1 mg, 0.065 mmol, 1.0 equiv.) was reacted with 

5-aminotetrazole monohydrate (1.1 equiv.) in 2 mL DMF according to general procedure 

D (20m activation). 40 (16.2 mg, 55%) obtained as a white solid. Note: Slight 

atropisomerism observed by NMR. 1H NMR (400 MHz, DMSO-d6) δ = 12.36 (br s, 1H), 

9.03 (d, J = 4.9 Hz, 2H), 8.25 (br s, 1H), 8.20 (d, J = 8.0 Hz, 1H), 7.85 (br d, J = 7.5 Hz, 

1H), 7.72 (t, J = 4.9 Hz, 1H), 7.51 - 7.42 (m, 1H), 7.22 (t, J = 7.5 Hz, 1H), 4.90 (br d, J = 

11.0 Hz, 1H), 3.95 (br d, J = 11.4 Hz, 1H), 1.35 (br s, 6H), 1.12 (br s, 3H); 13C NMR 

(100 MHz, DMSO-d6) δ = 169.99 (br), 162.89, 160.75, 157.97, 155.55 (br), 150.21 (br), 

141.71, 130.62, 129.09 (br), 125.56 (br), 124.94, 122.65, 116.91, 79.75 (br), 65.74 (br), 

59.55 (br), 27.98 (br); LRMS (ESI) calculated for C20H20N9O4 [M - H]- m/z 450.16, found 

450.11. 
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methyl 3-((tert-butoxycarbonyl)amino)-1-(thiophene-2-carbonyl)indoline-3-

carboxylate (S94). S85 (40.0 mg, 0.137 mmol, 1.0 equiv.) was reacted with 

commercially available 2-thiophenecarbonyl chloride in dry dichloromethane (2 mL) 

according to general procedure A, with slight modification: prior to base addition, the 

reaction vessel was cooled to 0 °C; 2.0 equiv. of N,N-diisopropylethylamine was used; 

after acyl chloride addition, the reaction mixture was allowed to slowly warm to r.t. S94 

(53.0 mg, 96%) obtained as a colorless oil. 1H NMR (400 MHz, CDCl3) δ = 8.20 (br d, J 

= 7.1 Hz, 1H), 7.64 (d, J = 3.4 Hz, 1H), 7.57 (br d, J = 4.9 Hz, 1H), 7.42 - 7.31 (m, 2H), 

7.16 - 7.05 (m, 2H), 5.45 (br s, 1H), 5.30 (br d, J = 11.2 Hz, 1H), 4.52 (br d, J = 11.4 Hz, 

1H), 3.78 (s, 3H), 1.43 (br s, 9H); 13C NMR (100 MHz, CDCl3) δ = 170.53 (br), 161.47 

(br), 154.81 (br), 143.40, 138.80 (br), 130.96, 130.77, 130.28 (br), 128.81 (br), 127.49 

(br), 124.60, 123.13, 118.50 (br), 80.94 (br), 65.02 (br), 60.64 (br), 53.36, 28.13; LRMS 

(ESI) calculated for C20H23N2O5S [M + H]+ m/z 403.13, found 403.03. 

 

 
 

3-((tert-butoxycarbonyl)amino)-1-(thiophene-2-carbonyl)indoline-3-carboxylic acid 

(S95). S94 (53.0 mg, 0.132 mmol, 1.0 equiv.) was reacted in methanol (3 mL) with 1M 

lithium hydroxide (395 uL, 0.395 mmol, 3.0 equiv.) according to general procedure B, 

except the reaction was cooled to 0 °C prior to hydroxide addition, and allowed to slowly 
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warm to r.t. Semi-crude S95 (52.5 mg, 103%) obtained as a white solid. LRMS (ESI) 

calculated for C19H19N2O5S [M - H]- m/z 387.10, found 387.08. 

 

 
 

tert-butyl (3-((1H-tetrazol-5-yl)carbamoyl)-1-(thiophene-2-carbonyl)indolin-3-

yl)carbamate (41). Semi-crude S95 (52.5 mg, 0.135 mmol, 1.0 equiv.) was reacted with 

5-aminotetrazole monohydrate (1.1 equiv.) in 3 mL DMF according to general procedure 

D (20m activation, 48h). 41 (24.4 mg, 40%) obtained as a white solid. Note: Slight 

atropisomerism observed by NMR. 1H NMR (400 MHz, DMSO-d6) δ = 12.52 (br s, 

0.4H), 12.36 (br s, 0.6H), 8.31 (br s, 1H), 8.01 (br d, J = 7.3 Hz, 1H), 7.92 (d, J = 4.9 Hz, 

1H), 7.88 - 7.75 (m, 2H), 7.39 (t, J = 7.4 Hz, 1H), 7.30 - 7.23 (m, 1H), 7.21 - 7.12 (m, 

1H), 5.28 (br d, J = 10.5 Hz, 1H), 4.40 (br d, J = 10.2 Hz, 1H), 1.39 (br s, 6H), 1.25 (br s, 

3H); 13C NMR (100 MHz, DMSO-d6) δ = 172.04, 160.73 (br), 155.53 (br), 150.16 (br), 

142.48, 138.64, 131.64 (br), 130.57 (br), 130.21 (br), 129.35 (br), 127.92, 125.52 (br), 

124.35 (br), 117.42, 79.67 (br), 65.95 (br), 60.75 (br), 28.09 (br); LRMS (ESI) calculated 

for C20H20N7O4S [M - H]- m/z 454.13, found 454.06. 

 

 
 

methyl 3-((tert-butoxycarbonyl)amino)-1-(1H-pyrrole-2-carbonyl)indoline-3-

carboxylate (S96). Pyrrole-2-carboxylic acid (15.2 mg, 0.137 mmol, 1.0 equiv.) was 

reacted with S85 (40.0 mg, 0.137 mmol, 1.0 equiv.) in 2 mL DMF according to general 
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procedure D (10m activation). After 24h, the reaction was heated at 80 °C; 1.0 equiv. 

acid and 1.0 equiv HATU were added every day for 4d. The resulting mixture was 

transferred to a sep. funnel with ~ 75 mL EtOAc. The organic layer was washed with ~ 

50 mL sat. NaHCO3, water, and 0.1N HCl; dried over MgSO4 and concentrated. Purified 

on a silica column with 0-50% EtOAc:hexanes. S96 (11.1 mg, 21%) obtained as a 

colorless oil. 1H NMR (400 MHz, CDCl3) δ = 8.33 (d, J = 7.8 Hz, 1H), 7.43 - 7.35 (m, 

2H), 7.09 (dt, J = 1.0, 7.5 Hz, 1H), 7.05 (br s, 1H), 6.86 (br s, 1H), 6.35 (br d, J = 2.9 Hz, 

1H), 5.63 (br s, 0.2H), 5.43 (br s, 0.8H), 5.32 (br d, J = 10.7 Hz, 1H), 4.60 (br d, J = 11.2 

Hz, 1H), 3.79 (s, 3H), 1.45 (br s, 9H); LRMS (ESI) calculated for C20H24N3O5 [M + H]+ 

m/z 386.17, found 386.09. 

 

 
 

3-((tert-butoxycarbonyl)amino)-1-(1H-pyrrole-2-carbonyl)indoline-3-carboxylic 

acid (S97). S96 (11.1 mg, 0.029 mmol, 1.0 equiv.) was reacted in methanol (3 mL) with 

1M lithium hydroxide (58 uL, 0.058 mmol, 2.0 equiv.) according to general procedure B, 

except the reaction was cooled to 0 °C prior to hydroxide addition, and allowed to slowly 

warm to r.t. After 18h, additional 1M lithium hydroxide (2.0 equiv) and methanol (500 uL) 

were added; allowed to stir for 30h. Semi-crude S96 (10.7 mg, 100%) obtained as a 

white solid. LRMS (ESI) calculated for C19H20N3O5 [M - H]- m/z 370.14, found 370.14. 
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tert-butyl (3-((1H-tetrazol-5-yl)carbamoyl)-1-(1H-pyrrole-2-carbonyl)indolin-3-

yl)carbamate (42). Semi-crude S97 (10.7 mg, 0.029 mmol, 1.0 equiv.) was reacted with 

5-aminotetrazole monohydrate (1.1 equiv.) in 2 mL DMF according to general procedure 

D (20m activation, 48h). 42 (2.7 mg, 21%) obtained as a tan solid. 1H NMR (400 MHz, 

CD3OD, CDCl3) δ = 8.19 (br d, J = 8.0 Hz, 1H), 7.58 (br d, J = 7.5 Hz, 1H), 7.37 (br t, J 

= 7.8 Hz, 1H), 7.11 (br t, J = 7.4 Hz, 1H), 7.06 (br s, 1H), 6.84 (br s, 1H), 6.33 - 6.29 (m, 

1H), 5.56 (br d, J = 11.2 Hz, 1H), 4.39 (br d, J = 11.2 Hz, 1H), 3.70 - 3.66 (m, 1H), 3.58 - 

3.54 (m, 1H), 1.43 (br s, 9H); LRMS (ESI) calculated for C20H21N8O4 [M - H]- m/z 

437.17, found 436.92. 

 

 
 

1-((benzyloxy)carbonyl)-3-((tert-butoxycarbonyl)amino)indoline-3-carboxylic acid 

(S98). S84 (88.9 mg, 0.208 mmol, 1.0 equiv.) was reacted in methanol (4 mL) with 1M 

lithium hydroxide (625 uL, 0.625 mmol, 3.0 equiv.) according to general procedure B, 

except the reaction was cooled to 0 °C prior to hydroxide addition, and allowed to slowly 

warm to r.t. Semi-crude S98 (89.3 mg, 104%) obtained as a colorless oil. LRMS (ESI) 

calculated for C22H23N2O6 [M - H]- m/z 411.16, found 411.16. 
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benzyl 3-((1H-tetrazol-5-yl)carbamoyl)-3-((tert-butoxycarbonyl)amino)indoline-1-

carboxylate (43). Semi-crude S98 (89.3 mg, 0.217 mmol, 1.0 equiv.) was reacted with 

5-aminotetrazole monohydrate (1.1 equiv.) in 4 mL DMF according to general procedure 

D (10m activation). 43 (53.0 mg, 51%) obtained as a white solid. Note: Extreme peak 

broadening in the 1H NMR; presumably atropisomerism. 1H NMR (400 MHz, CD3OD, 

drops CDCl3) δ = 7.89 (br s, 1H), 7.58 - 7.17 (m, 7H), 6.95 (br s, 1H), 5.25 (br s, 3H), 

4.12 - 3.87 (m, 2H), 1.26 (br s, 9H); 13C NMR (100 MHz, CD3OD, drops CDCl3) δ = 

170.11, 155.08 (br), 152.41 (br), 150.16, 142.18 (br), 135.42 (br), 131.07, 128.30 (br), 

128.07 (br), 127.83 (br), 126.74 (br), 123.58 (br), 123.11 (br), 115.29 (br), 80.98, 67.20 

(br), 65.12 (br), 57.74, 27.64; LRMS (ESI) calculated for C23H24N7O5 [M - H]- m/z 

478.18, found 478.19. 

 

 
 

methyl 1-acetylindoline-3-carboxylate (S99). Semi-crude S32 (145.0 mg, 0.679 

mmol, 1.0 equiv.) was reacted with commercially available acetyl chloride in dry 

dichloromethane (6 mL) according to general procedure A, with slight modification: prior 

to base addition, the reaction vessel was cooled to 0 °C; 2.5 equiv. of N,N-

diisopropylethylamine was used, and allowed to stir at 0 °C for 5m; after acyl chloride 

addition, the reaction mixture was allowed to slowly warm to r.t. S99 (119.2 mg, 80%) 
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obtained as a colorless oil. 1H NMR (400 MHz, CDCl3) δ = 8.19 (d, J = 8.0 Hz, 1H), 7.37 

(br d, J = 7.3 Hz, 1H), 7.23 (t, J = 7.7 Hz, 1H), 7.01 (t, J = 7.4 Hz, 1H), 4.46 (dd, J = 5.6, 

10.5 Hz, 1H), 4.25 (br dd, J = 5.5, 9.9 Hz, 1H), 4.14 - 4.07 (m, 1H), 3.76 (s, 3H), 2.41 (br 

s, 0.3H), 2.22 (s, 2.6H); 13C NMR (100 MHz, CDCl3) δ = 171.29, 168.34, 142.40, 

128.90, 127.62, 124.82, 123.53, 116.90, 52.58, 50.57, 45.05, 24.02; LRMS (ESI) 

calculated for C12H14NO3 [M + H]+ m/z 220.10, found 219.91. 

 

 
 

methyl 1-acetyl-3-azidoindoline-3-carboxylate (S100). S99 (119.2 mg, 0.554 mmol, 

1.0 equiv.) was reacted in 11.3 mL tetrahydrofuran according to general procedure F. 

S100 (77.7 mg, 55%) obtained as a colorless oil. 1H NMR (400 MHz, CDCl3) δ = 8.29 

(d, J = 8.3 Hz, 1H), 7.48 - 7.39 (m, 2H), 7.12 (dt, J = 1.0, 7.5 Hz, 1H), 4.64 (d, J = 11.4 

Hz, 1H), 3.95 (d, J = 11.4 Hz, 1H), 3.89 (s, 3H), 2.46 (br s, 0.4H), 2.25 (s, 2.6H); 13C 

NMR (100 MHz, CDCl3) δ = 169.01, 168.27, 142.79, 131.65, 126.12, 123.80, 123.58, 

117.69, 69.87, 57.80, 53.67, 24.00; LRMS (ESI) calculated for C12H13N4O3 [M + H]+ m/z 

261.10, found 261.06. 

 

 
 

methyl 1-acetyl-3-((tert-butoxycarbonyl)amino)indoline-3-carboxylate (S101). A 

round bottom flask was charged with S100 (77.7 mg, 0.299 mmol, 1.0 equiv.) and dry 

methanol (6 mL), then cooled to 0 °C. Anhydrous tin(II) chloride (113 mg, 0.597 mmol, 
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2.0 equiv.) was added; stirred at 0 °C for 5m, then r.t. for 4 h. The methanol was then 

removed under reduced pressure. 1,4-dioxane (5.5 mL) was added, followed by di-tert-

butyl dicarbonate (97 mg, 0.448 mmol, 1.5 equiv.) in 700 uL 1,4-dioxane. Finally, a 

slurry of sodium bicarbonate (100 mg, 1.19 mmol, 4.0 equiv.) in water (1.4 mL) was 

added, and the resulting slurry was allowed to stir for 18h. The reaction mixture was 

then transferred to a sep. funnel with excess EtOAc and water and adjusted to pH 1 

with 1M KHSO4. The layers were separated, and the aqueous layer was further 

extracted with ~ 50 mL EtOAc. The organic layers were combined, washed with sat. 

NaHCO3, dried over MgSO4, and concentrated under reduced pressure. Purified on a 

silica column with 0-45% EtOAc:hexanes. S101 (70.7 mg, 71%) obtained as a colorless 

oil. 1H NMR (400 MHz, CDCl3) δ = 8.21 (d, J = 8.3 Hz, 1H), 7.36 - 7.29 (m, 2H), 7.03 (t, 

J = 7.5 Hz, 1H), 5.57 (s, 1H), 4.97 (br d, J = 11.2 Hz, 1H), 4.14 (br d, J = 11.4 Hz, 1H), 

3.76 (s, 3H), 2.21 (s, 3H), 1.44 (br s, 9H); 13C NMR (100 MHz, CDCl3) δ = 170.56 (br), 

168.66 (br), 154.96 (br), 142.92, 130.98, 128.07 (br), 123.89, 123.16, 117.50, 80.86 

(br), 64.56 (br), 59.42 (br), 53.26, 28.13, 24.09; LRMS (ESI) calculated for C17H23N2O5 

[M + H]+ m/z 335.16, found 335.04. 

 

 
 

1-acetyl-3-((tert-butoxycarbonyl)amino)indoline-3-carboxylic acid (S102). S101 

(70.7 mg, 0.211 mmol, 1.0 equiv.) was reacted in methanol (4 mL) with 1M lithium 

hydroxide (634 uL, 0.634 mmol, 3.0 equiv.) according to general procedure B, except 

the reaction was cooled to 0 °C prior to hydroxide addition, and allowed to slowly warm 
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to r.t. Semi-crude S102 (65.2 mg, 96%) obtained as a white solid. LRMS (ESI) 

calculated for C16H19N2O5 [M - H]- m/z 319.13, found 319.16. 

 

 
 

tert-butyl (3-((1H-tetrazol-5-yl)carbamoyl)-1-acetylindolin-3-yl)carbamate (44). 

Semi-crude S102 (65.2 mg, 0.204 mmol, 1.0 equiv.) was reacted with 5-aminotetrazole 

monohydrate (1.1 equiv.) in 4 mL DMF according to general procedure D (10m 

activation). 44 (58.3 mg, 74%) obtained as a white solid. Note: Slight atropisomerism 

observed by NMR. 1H NMR (400 MHz, DMSO-d6) δ = 12.49 (br s, 0.3H), 12.35 (br s, 

0.7H), 8.19 (br s, 1H), 8.09 (br d, J = 7.8 Hz, 1H), 7.77 (br s, 1H), 7.33 (br t, J = 6.9 Hz, 

1H), 7.08 (br s, 1H), 5.01 (br d, J = 10.7 Hz, 1H), 4.06 (br d, J = 11.2 Hz, 1H), 2.24 (br s, 

3H), 1.40 (br s, 6H), 1.29 (br s, 3H); 13C NMR (100 MHz, DMSO-d6) δ = 170.28 (br), 

168.35, 155.49 (br), 150.22 (br), 142.46, 130.36 (br), 128.41 (br), 125.42 (br), 123.43 

(br), 116.17, 79.64 (br), 65.52 (br), 58.94 (br), 28.13 (br), 24.09 (br); LRMS (ESI) 

calculated for C17H20N7O4 [M - H]- m/z 386.16, found 386.07. 

 

 
 

tert-butyl (3-((1H-tetrazol-5-yl)carbamoyl)indolin-3-yl)carbamate, bis-

triethylammonium salt (45). 43 (23.0 mg, 0.048 mmol, 1.0 equiv.) was dissolved 

in ethanol (40 mL) and DMF (300 uL) and hydrogenated for 5h using an “H-Cube” flow 
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hydrogenator with a 10% Pd/C cartridge; 1 mL/min, 1 atm H2, 40 °C, loop configuration. 

The crude reaction mixture was concentrated and directly purified by reverse phase 

HPLC (water/MeOH/0.1% TEA:AcOH) to afford the desired product as a 

triethylammonium salt. Note: Crude reaction mixture unstable; store cold or purify 

immediately. 45 (3.9 mg, 18%) obtained as a tan film. 1H NMR (400 MHz, CD3OD) δ = 

7.41 (br d, J = 7.5 Hz, 1H), 7.14 (t, J = 7.5 Hz, 1H), 6.77 - 6.70 (m, 2H), 4.52 (br d, J = 

10.5 Hz, 1H), 3.67 - 3.62 (m, 1H), 3.13 (q, J = 7.3 Hz, 12H), 1.44 (br s, 9H), 1.26 (t, J = 

7.2 Hz, 18H); LRMS (ESI) calculated for C15H18N7O3 [M - H]- m/z 344.15, found 344.14. 

 

 
 

methyl (tert-butoxycarbonyl)tryptophanate (S103). Commercially available DL-

tryptophan methyl ester hydrochloride (100 mg, 0.393 mmol, 1.0 equiv.) was reacted 

with di-tert-butyl dicarbonate in dry dichloromethane (4 mL) according to general 

procedure A, except 1.1 equiv. of N,N-diisopropylethylamine was used, and the reaction 

mixture was concentrated and directly purified, sans workup. S103 (125.2 mg, 100%) 

obtained as a white solid. Note: Atropisomerism observed by NMR. 1H NMR (400 MHz, 

DMSO-d6) δ = 10.85 (br s, 0.3H), 7.49 (d, J = 7.8 Hz, 1H), 7.34 (d, J = 8.3 Hz, 1H), 7.20 

(br d, J = 8.0 Hz, 0.4H), 7.16 (s, 1H), 7.11 - 7.04 (m, 1H), 7.03 - 6.94 (m, 1H), 4.25 - 

4.16 (m, 0.84H), 4.12 (br s, 0.16H), 3.60 (s, 3H), 3.16 - 3.06 (m, 1H), 3.05 - 2.94 (m, 

1H), 1.33 (s, 7.5H), 1.22 (br s, 1.5H); 13C NMR (100 MHz, DMSO-d6) δ = 172.93, 

155.31, 136.09, 135.93, 127.02, 123.73, 123.57, 120.94, 118.39, 117.99, 111.38, 
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109.70, 78.23, 54.67, 54.58, 51.73, 28.13, 27.75 (br), 26.76; LRMS (ESI) calculated for 

C17H22N2NaO4 [M + Na]+ m/z 341.15, found 341.03. 

 

 
 

(tert-butoxycarbonyl)tryptophan (S104). S103 (105.2 mg, 0.330 mmol, 1.0 equiv.) 

was reacted in methanol (5 mL) with 1M lithium hydroxide (661 uL, 0.661 mmol, 2.0 

equiv.) according to general procedure B, except after 7h additional 1M lithium 

hydroxide (2.0 equiv.) and methanol (2 mL) were added. Semi-crude S104 (99.1 mg, 

99%) obtained as a white solid. LRMS (ESI) calculated for C16H19N2O4 [M - H]- m/z 

303.14, found 303.3. 

 

 
 

tert-butyl (1-((1H-tetrazol-5-yl)amino)-3-(1H-indol-3-yl)-1-oxopropan-2-

yl)carbamate (46). Semi-crude S104 (99.1 mg, 0.326 mmol, 1.0 equiv.) was reacted 

with 5-aminotetrazole monohydrate (1.1 equiv.) in 2 mL DMF according to general 

procedure H. 46 (32.2 mg, 28%) obtained as a light tan solid. Note: Product is prone to 

oxidation (N-oxide) on the benchtop; store cold under Ar. Note: Slight atropisomerism 

observed by 1H NMR. 1H NMR (400 MHz, DMSO-d6) δ = 12.28 (br s, 1H), 10.84 (br s, 

1H), 7.71 (br d, J = 7.8 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.21 (br s, 1H), 7.17 (br d, J = 

7.3 Hz, 1H), 7.05 (t, J = 7.4 Hz, 1H), 7.00 - 6.91 (m, 1H), 4.52 - 4.36 (m, 1H), 3.21 - 3.09 
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(m, 1H), 3.01 (br dd, J = 9.4, 14.2 Hz, 1H), 1.32 (s, 7.4H), 1.17 (br d, J = 2.9 Hz, 1.6H); 

13C NMR (100 MHz, DMSO-d6) δ = 172.19, 155.36, 149.64 (br), 136.03, 127.11, 124.25, 

120.91, 118.64, 118.20, 111.29, 109.30, 78.35, 55.33, 28.14, 27.21; LRMS (ESI) 

calculated for C17H20N7O3 [M - H]- m/z 370.16, found 370.19. 

 

 
 

2‐(bis((tert‐butoxy)carbonyl)amino)prop‐2‐enoate (S105). A dried 50 mL RB was 

charged with commercially available methyl (tert-butoxycarbonyl)serinate (1.500 ml, 

7.40 mmol, 1.0 equiv.) and dry acetonitrile (14.8 mL). Di-tert-butyl dicarbonate (4.039 g, 

18.5 mmol, 2.5 equiv.) was then added, followed by dropwise addition of N,N-

diisopropylethylamine (2.579 ml, 14.8 mmol, 2.0 equiv.). After 3h, 4-

dimethylaminopyridine (452 mg, 3.70 mmol, 0.5 equiv.) was added. Another 0.5 equiv. 

4-dimethylaminopyridine was added at 5h, followed by 1.0 equiv. 4-

dimethylaminopyridine at 7h. After 24h, 0.5 equiv. 4-dimethylaminopyridine was added, 

and the reaction was heated at 45 °C for 4h. The crude reaction mixture was transferred 

to a sep. funnel with ~ 125 mL EtOAc and washed with sat. NH4Cl, sat. NaHCO3, and 

brine. The organic layer was further washed with 3 x 50 mL sat. NH4Cl, dried over 

MgSO4, and concentrated. The resulting oil was dried under hivac overnight. S105 

(2.440 g, 109%, wet with EtOAc) obtained as a yellow solid. 1H NMR (400 MHz, CDCl3) 

δ = 6.33 (s, 1H), 5.63 (s, 1H), 3.78 (s, 3H), 1.45 (s, 18H); 13C NMR (100 MHz, CDCl3) δ 

= 163.93, 150.58, 136.02, 124.61, 83.10, 52.32, 27.81; LRMS (ESI) calculated for 

C14H23NNaO6 [M + Na]+ m/z 324.14, found 324.10. 
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methyl 2‐(bis((tert‐butoxy)carbonyl)amino)‐3‐(2‐oxo‐2,3‐dihydro‐1,3‐

benzoxazol‐3‐yl)propanoate (S106). A 3 mL vial was charged with S105 (200.0 mg, 

0.664, 1.0 equiv.), benzo[d]oxazol-2(3H)-one (92 mg, 0.682 mmol, 1.0 equiv.), and dry 

acetonitrile (2 mL). Cesium carbonate (22 mg, 0.066 mmol, 0.1 equiv.) was then added, 

and the vial was sealed and heated at 80 °C overnight. The crude reaction mixture was 

transferred to a sep. funnel with ~ 100 mL EtOAc and washed with ~ 50 mL water and 

brine; the organic layer was dried over MgSO4, concentrated, and purified on a silica 

column with 0-40% EtOAc:hexanes. S106 (256.9 mg, 89%) obtained as a colorless oil. 

1H NMR (400 MHz, CDCl3) δ = 7.10 - 7.02 (m, 2H), 7.02 - 6.95 (m, 1H), 6.87 (d, J = 7.8 

Hz, 1H), 5.31 (dd, J = 5.4, 8.8 Hz, 1H), 4.45 - 4.32 (m, 2H), 3.68 (s, 3H), 1.27 (s, 18H); 

13C NMR (100 MHz, CDCl3) δ = 168.40, 153.88, 151.27, 142.35, 130.99, 123.53, 

122.13, 109.62, 107.91, 83.46, 55.82, 52.19, 41.56, 27.36; LRMS (ESI) calculated for 

C21H28N2NaO8 [M + Na]+ m/z 459.17, found 459.08. 

 

 
 

methyl 2-((tert-butoxycarbonyl)amino)-3-(2-oxobenzo[d]oxazol-3(2H)-

yl)propanoate (S107). A 20 mL vial was charged with S106 (257 mg, 0.589, 1.0 equiv.) 

and dry acetonitrile (5.9 mL). Lithium bromide (153 mg, 1.77 mmol, 3.0 equiv.) was then 
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added, and the vial was sealed and heated at 65 °C overnight. The crude reaction 

mixture was transferred to a sep. funnel with EtOAc and partitioned with water; the 

layers were separated, and the aqueous layer was further extracted with 2 x 50 mL 

EtOAc. The organics were combined, dried over MgSO4, and concentrated. Crude S107 

(211.0 mg, 107%) obtained as a colorless oil. LRMS (ESI) calculated for C16H20N2NaO6 

[M + Na]+ m/z 359.12, found 359.03. 

 

 
 

2-((tert-butoxycarbonyl)amino)-3-(2-oxobenzo[d]oxazol-3(2H)-yl)propanoic acid 

(S108). Crude S107 (198.0 mg, 0.589 mmol, 1.0 equiv.) was reacted in methanol (10 

mL) with 1M lithium hydroxide (1.177 mL, 1.18 mmol, 2.0 equiv.) according to general 

procedure B. Semi-crude S108 (165.0 mg, 87%) obtained as a tan solid. LRMS (ESI) 

calculated for C15H17N2O6 [M - H]- m/z 321.11, found 321.21. 

 

 
 

tert-butyl (1-((1H-tetrazol-5-yl)amino)-1-oxo-3-(2-oxobenzo[d]oxazol-3(2H)-

yl)propan-2-yl)carbamate (47). Semi-crude S108 (165.0 mg, 0.512 mmol, 1.0 equiv.) 

was reacted with 5-aminotetrazole monohydrate (1.1 equiv.) in 3.5 mL DMF according 

to general procedure D (20m activation). 47 (64.9 mg, 28% over 3 steps) obtained as an 

off-white solid. 1H NMR (400 MHz, DMSO-d6) δ = 12.34 (br s, 0.25H), 7.42 - 7.21 (m, 
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2.5H), 7.21 - 7.04 (m, 2H), 4.64 (br s, 1H), 4.28 - 4.13 (m, 1H), 4.14 - 4.00 (m, 1H), 1.23 

(s, 9H); 13C NMR (100 MHz, DMSO-d6) δ = 169.20 (br), 154.99, 154.94, 153.75, 149.40 

(br), 142.00, 131.25, 123.67, 122.19, 109.53, 109.19, 78.72, 52.24 (br), 52.16, 43.02 

(br), 27.86; LRMS (ESI) calculated for C16H18N7O5 [M - H]- m/z 388.14, found 388.12.  

 

 
 

methyl N-(tert-butoxycarbonyl)-O-(methylsulfonyl)serinate (S109). A dried 100 mL 

RB was charged with commercially available methyl (tert-butoxycarbonyl)serinate 

(1.200 ml, 5.92 mmol, 1.0 equiv.) and dry dichloromethane (36 mL), then cooled to 0 °C. 

Methanesulfonyl chloride (550 uL, 7.11 mmol, 1.2 equiv.) was then added, followed by 

dropwise addition of N,N-diisopropylethylamine (1.238 mL, 7.11 mmol, 1.2 equiv.). After 

addition was complete, the reaction mixture was immediately warmed to r.t. and allowed 

to stir for 1h. The crude reaction mixture was then transferred to a sep. funnel with 

dichloromethane and water, the layers separated, and the organic layer was washed 

with 2 x ~ 60 mL brine. Dried over MgSO4 and concentrated; dried under hivac for 2h. 

Note: This product is unstable at r.t., and rapidly begins to decompose. Crude S109 

(1.760 g, 100%) obtained as a yellow oil. 1H NMR (400 MHz, CDCl3) δ = 5.48 (br d, J = 

7.3 Hz, 1H), 4.59 - 4.49 (m, 1H), 4.48 - 4.41 (m, 1H), 3.77 - 3.72 (m, 3H), 2.98 (s, 3H), 

1.40 (s, 9H); 13C NMR (100 MHz, CDCl3) δ = 168.98, 154.91, 80.38, 68.87, 52.83, 

52.39, 37.14, 28.03; LRMS (ESI) calculated for C10H19NNaO7S [M + Na]+ m/z 320.08, 

found 320.07. 
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methyl 2-((tert-butoxycarbonyl)amino)-3-(2-oxo-2,3-dihydro-1H-benzo[d]imidazol-

1-yl)propanoate (S110). A 3 mL vial was charged with crude S109 (326.4 mg, 1.10 

mmol, 1.0 equiv.), 2-hydroxybenzimidazole (147 mg, 1.10 mmol, 1.0 equiv.), cesium 

carbonate (715 mg, 2.20 mmol, 2.0 equiv.), and dry DMF (2 mL). The vial was sealed 

and heated at 60 °C overnight. The crude reaction mixture was transferred to a sep. 

funnel with ~ 100 mL EtOAc and sat. NH4Cl, the layers separated, and the organic layer 

further extracted with brine. Dried over MgSO4, concentrated, and purified on a silica 

column with 30-60% EtOAc:hexanes. S110 (74.4 mg, 20%) obtained as a white solid. 

1H NMR (400 MHz, CD3OD, drops CDCl3) δ = 7.08 - 6.89 (m, 5H), 4.54 (br t, J = 5.5 Hz, 

1H), 4.20 (br d, J = 5.8 Hz, 2H), 3.65 (s, 3H), 1.32 (s, 9H); 13C NMR (100 MHz, CD3OD, 

drops CDCl3) δ = 171.05, 156.02, 155.79, 130.43, 128.30, 122.19, 121.72, 109.90, 

108.22, 80.48, 53.31, 52.90, 42.42, 28.30; LRMS (ESI) calculated for C16H22N3O5 [M + 

H]+ m/z 336.16, found 336.09. 

 

 
 

2-((tert-butoxycarbonyl)amino)-3-(2-oxo-2,3-dihydro-1H-benzo[d]imidazol-1-

yl)propanoic acid (S111). S110 (74.4 mg, 0.222 mmol, 1.0 equiv.) was reacted in 

methanol (5 mL) with 1M lithium hydroxide (444 uL, 0.444 mmol, 2.0 equiv.) according 
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to general procedure B. Semi-crude S111 (70.2 mg, 99%) obtained as a white solid. 

LRMS (ESI) calculated for C15H18N3O5 [M - H]- m/z 320.13, found 320.15. 

 

 
 

tert-butyl (1-((1H-tetrazol-5-yl)amino)-1-oxo-3-(2-oxo-2,3-dihydro-1H-

benzo[d]imidazol-1-yl)propan-2-yl)carbamate (48). Semi-crude S111 (70.2 mg, 0.218 

mmol, 1.0 equiv.) was reacted with 5-aminotetrazole monohydrate (1.1 equiv.) in 2.5 mL 

DMF according to general procedure D (10m activation). 48 (8.4 mg, 10% over two 

steps) obtained as a white solid. 1H NMR (400 MHz, DMSO-d6) δ = 12.27 (br s, 1H), 

10.91 (br s, 1H), 7.23 - 7.04 (m, 2H), 6.94 (br s, 3H), 4.54 (br d, J = 6.1 Hz, 1H), 4.25 - 

4.03 (m, 2H), 1.28 (s, 9H); 13C NMR (100 MHz, DMSO-d6) δ = 169.68 (br), 154.88, 

154.57, 149.60 (br), 130.30, 128.27, 120.99, 120.40 (br), 108.77, 107.72, 78.74, 53.68 

(br), 41.47, 27.94; LRMS (ESI) calculated for C16H19N8O4 [M - H]- m/z 387.15, found 

387.13. 

 

 
 

spiro[indoline-3,2'-[1,3]dithiolan]-2-one (S112). A dried 25 mL RB was charged with 

indoline-2,3-dione (200 mg, 1.36 mmol, 1.0 equiv.), then purged with Ar. Dry 

dichloromethane (6.5 mL) was then added, followed by 1,2-ethanedithiol (125 ul, 1.50 

mmol, 1.1 equiv.). Boron trifluoride diethyl etherate (218 uL, 1.77 mmol, 1.3 equiv.) was 
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then added dropwise. The reaction mixture was allowed to stir at r.t. overnight. The 

crude reaction mixture was then directly purified on a silica column with 0-35% 

EtOAc:hexanes. S112 (288.2 mg, 95%) obtained as a white solid. 1H NMR (400 MHz, 

DMSO-d6) δ = 10.62 (br s, 1H), 7.41 (dd, J = 0.7, 7.5 Hz, 1H), 7.25 (dt, J = 1.3, 7.7 Hz, 

1H), 7.02 (dt, J = 1.0, 7.5 Hz, 1H), 6.85 (d, J = 7.8 Hz, 1H), 3.80 - 3.65 (m, 4H); 13C 

NMR (100 MHz, DMSO-d6) δ = 178.32, 141.57, 129.98, 126.62, 125.17, 122.37, 

110.00, 61.98, 40.10; LRMS (ESI) calculated for C10H10NOS2 [M - H]- m/z 224.02, found 

224.00. 

 

 
 

methyl 2-((tert-butoxycarbonyl)amino)-3-(2-oxospiro[indoline-3,2'-[1,3]dithiolan]-1-

yl)propanoate (S113). A 20 mL vial was charged with crude S109 (361.4 mg, 1.22 

mmol, 1.0 equiv.), S112 (271.4 mg, 1.22 mmol, 1.0 equiv.), cesium carbonate (792 mg, 

2.43 mmol, 2.0 equiv.), and dry DMF (6 mL). The vial was sealed and stirred overnight. 

The crude reaction mixture was transferred to a sep. funnel with ~ 100 mL EtOAc and 

water, the layers separated, and the organic layer further extracted with 2 x 60 mL 

brine, dried over MgSO4, concentrated, and purified on a silica column with 0-35% 

EtOAc:hexanes. Semi-crude S113 (335.8 mg, 65%) obtained as a yellow oil; 

contaminated with ~ 15% S112 (1H NMR). 1H NMR (400 MHz, CDCl3) δ = 7.49 (d, J = 

7.3 Hz, 1H), 7.31 - 7.25 (m, 1H), 7.10 - 7.05 (m, 1H), 7.06 - 7.00 (m, 1H), 5.51 (br d, J = 

7.3 Hz, 1H), 4.55 (q, J = 6.7 Hz, 1H), 4.08 - 4.03 (m, 1H), 4.02 - 3.94 (m, 1H), 3.88 - 
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3.81 (m, 2H), 3.70 (s, 3H), 3.65 - 3.59 (m, 2H), 1.39 (s, 9H); 13C NMR (100 MHz, CDCl3) 

δ = 178.13, 170.43, 154.82, 142.06, 129.90, 125.91, 125.33, 123.22, 108.74, 79.97, 

61.87, 52.87, 51.23, 41.69, 40.29, 40.18, 28.05; LRMS (ESI) calculated for 

C19H25N2O5S2 [M + H]+ m/z 425.12, found 425.04. 

 

 
 

methyl 2-((tert-butoxycarbonyl)amino)-3-(2-oxoindolin-1-yl)propanoate (S114). 

Semi-crude S113 (335.8 mg, 0.791 mmol, 1.0 equiv.) was taken up in dry methanol (20 

mL). Nickel(II) bromide ethylene glycol dimethyl ether complex (488 mg, 1.58 mmol, 2.0 

equiv.) was then added; sodium borohydride (126 mg, 3.32 mmol, 4.2 equiv.) was then 

added portionwise (12 mg per) over 2h30m. NOTE: Sodium borohydride addition is very 

exothermic – do not add in bulk without sufficient thermal control. Once addition was 

complete, the crude reaction mixture was diluted with EtOAc and filtered through Celite. 

The organic washings were transferred to a sep. funnel and diluted with water; adjusted 

to pH 1 with 0.1N HCl. The layers were separated, and the organic layer was further 

washed with 2 x 60 mL brine. Dried over MgSO4, concentrated, and purified on a silica 

column with 0-15% acetone:dichloromethane. S114 (116.4 mg, 29% over two steps) 

obtained as a white solid. 1H NMR (400 MHz, CDCl3) δ = 7.26 - 7.17 (m, 2H), 7.05 - 

6.98 (m, 1H), 6.95 (br d, J = 7.8 Hz, 1H), 5.53 (br d, J = 6.8 Hz, 1H), 4.54 (q, J = 5.8 Hz, 

1H), 4.05 (br d, J = 5.6 Hz, 2H), 3.71 (s, 3H), 3.48 (s, 2H), 1.37 (s, 9H); 13C NMR (100 

MHz, CDCl3) δ = 175.67, 170.55, 155.01, 144.11, 127.81, 124.32, 124.18, 122.40, 
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108.33, 79.96, 52.69, 52.22, 41.58, 35.32; LRMS (ESI) calculated for C17H23N2O5 [M + 

H]+ m/z 335.16, found 335.03. 

 

 
 

2-((tert-butoxycarbonyl)amino)-3-(2-oxoindolin-1-yl)propanoic acid (S115). S114 

(116.4 mg, 0.348 mmol, 1.0 equiv.) was reacted in methanol (5 mL) with 1M lithium 

hydroxide (696 uL, 0.696 mmol, 2.0 equiv.) according to general procedure B. Semi-

crude S115 (107.6 mg, 97%) obtained as a tan solid. LRMS (ESI) calculated for 

C16H19N2O5 [M - H]- m/z 319.13, found 319.39. 

 

 
 

tert-butyl (1-((1H-tetrazol-5-yl)amino)-1-oxo-3-(2-oxoindolin-1-yl)propan-2-

yl)carbamate (49). Semi-crude S115 (50.0 mg, 0.156 mmol, 1.0 equiv.) was reacted 

with 5-aminotetrazole monohydrate (1.1 equiv.) in 2 mL DMF according to general 

procedure D (10m activation). 49 (16.9 mg, 13% over two steps) obtained as a light tan 

solid. 1H NMR (400 MHz, DMSO-d6) δ = 12.25 (br s, 0.5H), 7.30 - 7.11 (m, 2H), 7.06 - 

6.90 (m, 2H), 4.50 (br s, 1H), 4.11 - 3.88 (m, 2H), 3.49 (br s, 2H), 1.28 (br s, 9H); 13C 

NMR (100 MHz, DMSO-d6) δ = 175.01, 169.79 (br), 154.94 (br), 149.51 (br), 144.22, 

127.30, 124.61, 124.21, 121.82, 108.35, 78.75, 52.58 (br), 40.80 (br), 34.98, 27.95; 

LRMS (ESI) calculated for C17H20N7O4 [M - H]- m/z 386.16, found 386.29.  
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methyl 2-((tert-butoxycarbonyl)amino)-3-(2-oxopyridin-1(2H)-yl)propanoate (S116). 

A 3 mL vial was charged with crude S109 (328.3 mg, 1.10 mmol, 1.0 equiv.), 2-

hydroxypyridine (105 mg, 1.10 mmol, 1.0 equiv.), cesium carbonate (720 mg, 2.21 

mmol, 2.0 equiv.), and dry DMF (2 mL). The vial was sealed and heated at 100 °C 

overnight. The crude reaction mixture was transferred to a sep. funnel with ~ 100 mL 

EtOAc and water, and the aqueous pH was adjusted to 7 with 0.1N HCl. The layers 

were separated, and the organic layer was further washed with 2 x 50 mL brine, dried 

over MgSO4, concentrated, and purified on a silica column with 0-70% EtOAc:hexanes. 

S116 (24.6 mg, 8%) obtained as a gray film. 1H NMR (400 MHz, CDCl3) δ = 7.33 (br t, J 

= 7.3 Hz, 1H), 7.22 (br d, J = 6.6 Hz, 1H), 6.54 (br d, J = 9.0 Hz, 1H), 6.15 (t, J = 6.6 Hz, 

1H), 5.77 (br d, J = 5.8 Hz, 1H), 4.64 - 4.48 (m, 1H), 4.34 (br d, J = 2.4 Hz, 2H), 3.76 (s, 

3H), 1.39 (s, 9H); 13C NMR (100 MHz, CDCl3) δ = 170.38, 163.14, 155.30, 139.98, 

138.26, 120.83, 106.11, 80.13, 53.33, 52.73, 50.33, 28.17; LRMS (ESI) calculated for 

C14H21N2O5 [M + H]+ m/z 297.14, found 297.15. 

 

 
 

2-((tert-butoxycarbonyl)amino)-3-(2-oxopyridin-1(2H)-yl)propanoic acid (S117). 

S116 (42.6 mg, 0.144 mmol, 1.0 equiv.) was reacted in methanol (3 mL) with 1M lithium 
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hydroxide (288 uL, 0.288 mmol, 2.0 equiv.) according to general procedure B (5h). 

Semi-crude S117 (29.7 mg, 73%) obtained as a brown film. LRMS (ESI) calculated for 

C13H17N2O5 [M - H]- m/z 281.11, found 281.29. 

 

 
 

tert-butyl (1-((1H-tetrazol-5-yl)amino)-1-oxo-3-(2-oxopyridin-1(2H)-yl)propan-2-

yl)carbamate (50). Semi-crude S117 (29.7 mg, 0.105 mmol, 1.0 equiv.) was reacted 

with 5-aminotetrazole monohydrate (1.1 equiv.) in 2 mL DMF according to general 

procedure D (20m activation). 50 (12.9 mg, 26% over two steps) obtained as a tan solid. 

1H NMR (400 MHz, CD3OD) δ = 7.53 (br s, 2H), 6.56 (br d, J = 8.5 Hz, 1H), 6.38 (br d, J 

= 5.6 Hz, 1H), 4.83 (br s, 1H), 4.71 - 4.56 (m, 1H), 4.19 - 3.96 (m, 1H), 1.37 (s, 9H); 13C 

NMR (100 MHz, CDCl3) δ = 170.77 (br), 165.27 (br), 157.54 (br), 151.49 (br), 142.68, 

140.75 (br), 120.97 (br), 108.75, 81.40, 54.47 (br), 52.18 (br), 28.72; LRMS (ESI) 

calculated for C14H18N7O4 [M - H]- m/z 348.14, found 348.24. 

 

 
 

methyl 2‐(bis((tert‐butoxy)carbonyl)amino)‐3‐(2‐oxo‐1,2‐dihydroquinolin‐1‐

yl)propanoate (S118). A 3 mL vial was charged with S105 (200.0 mg, 0.664, 1.0 

equiv.), 2-hydroxyquinolone (99 mg, 0.684 mmol, 1.03 equiv.), and dry acetonitrile (2 

mL). Cesium carbonate (22 mg, 0.066 mmol, 0.1 equiv.) was then added, and the vial 

N
H

NHBoc
O

N

O

NN
N
N
H

O
NBoc2

O

N
O



 319 

was sealed and heated at 80 °C overnight. The crude reaction mixture was transferred 

to a sep. funnel with ~ 100 mL EtOAc and washed with ~ 50 mL water and brine; the 

organic layer was dried over MgSO4, concentrated, and purified on a silica column with 

30-80% EtOAc:hexanes. S118 (108.9 mg, 3789%) obtained as a colorless oil. 1H NMR 

(400 MHz, CDCl3) δ = 7.64 - 7.58 (m, 1H), 7.52 - 7.47 (m, 1H), 7.46 - 7.37 (m, 2H), 7.19 

- 7.12 (m, 1H), 6.64 - 6.58 (m, 1H), 5.53 - 5.46 (m, 1H), 5.11 - 4.99 (m, 1H), 4.83 (br dd, 

J = 3.0, 14.5 Hz, 1H), 3.75 (br s, 3H), 1.27 (s, 18H); 13C NMR (100 MHz, CDCl3) δ = 

169.24, 162.17, 151.36, 139.74, 139.24, 130.47, 128.89, 121.97, 121.35, 120.70, 

113.58, 83.07, 56.00, 52.24, 42.06, 27.51; LRMS (ESI) calculated for C23H31N2O7 [M + 

H]+ m/z 447.21, found 447.07. 

 

 
 

methyl 2-((tert-butoxycarbonyl)amino)-3-(2-oxoquinolin-1(2H)-yl)propanoate 

(S119). A 20 mL vial was charged with S118 (108.9 mg, 0.244, 1.0 equiv.) and dry 

acetonitrile (2.45 mL). Lithium bromide (64 mg, 0.732 mmol, 3.0 equiv.) was then 

added, and the vial was sealed and heated at 65 °C overnight. The crude reaction 

mixture was transferred to a sep. funnel with EtOAc and partitioned with water; the 

layers were separated, and the aqueous layer was further extracted with 2 x 50 mL 

EtOAc. The organics were combined, dried over MgSO4, and concentrated. Crude S119 

(82.8 mg, 98%) obtained as a colorless oil. LRMS (ESI) calculated for C18H23N2O5 [M + 

H]+ m/z 347.16, found 347.10. 
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2-((tert-butoxycarbonyl)amino)-3-(2-oxoquinolin-1(2H)-yl)propanoic acid (S120). 

Crude S119 (82.8 mg, 0.239 mmol, 1.0 equiv.) was reacted in methanol (5 mL) with 1M 

lithium hydroxide (478 uL, 0.478 mmol, 2.0 equiv.) according to general procedure B. 

Semi-crude S120 (69.9 mg, 88%) obtained as a tan solid. LRMS (ESI) calculated for 

C17H19N2O5 [M - H]- m/z 331.13, found 331.01. 

 

 
 

tert-butyl (1-((1H-tetrazol-5-yl)amino)-1-oxo-3-(2-oxoquinolin-1(2H)-yl)propan-2-

yl)carbamate (51). Semi-crude S120 (69.9 mg, 0.210 mmol, 1.0 equiv.) was reacted 

with 5-aminotetrazole monohydrate (1.1 equiv.) in 2.5 mL DMF according to general 

procedure D (20m activation). 51 (29.0 mg, 30% over 3 steps) obtained as a white solid. 

Note: Slight atropisomerism observed by NMR. 1H NMR (400 MHz, DMSO-d6) δ = 

12.32 (br s, 0.3H), 12.22 (br s, 0.7H), 7.92 (d, J = 9.5 Hz, 1H), 7.71 (br d, J = 7.5 Hz, 

1H), 7.64 - 7.54 (m, 2H), 7.25 (br t, J = 6.8 Hz, 1H), 7.16 (br d, J = 6.6 Hz, 0.7H), 6.60 

(d, J = 9.5 Hz, 1H), 4.68 - 4.48 (m, 3H), 1.25 (s, 7.5H), 1.09 (br s, 1.5H); 13C NMR (100 

MHz, DMSO-d6) δ = 169.94, 161.84, 154.96, 149.61 (br), 140.05, 139.36, 130.69, 
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129.05, 122.08, 120.78, 120.48, 114.36, 78.76, 52.78, 42.75, 27.93; LRMS (ESI) 

calculated for C18H20N7O4 [M - H]- m/z 398.16, found 398.14. 

 

 
 

8-bromo-2-((4-methoxybenzyl)oxy)quinolone (S121). A dried 25 mL RB was charged 

with commercially available 8-bromoquinolin-2(1H)-one (200 mg, 0.893 mmol, 1.0 

equiv.) and dry DMF (8 mL). The reaction mixture was cooled to 0 °C, and 60.0% 

sodium hydride (43 mg, 1.07 mmol, 1.2 equiv.) was added, followed by a 1 mL rinse of 

dry DMF. The bubbling suspension was immediately warmed to r.t. and allowed to stir 

for 30m, at which point 4-methoxybenzylchloride (157 uL, 1.16 mmol, 1.3 equiv.) was 

added dropwise. The reaction mixture was stirred at 60 °C overnight. Note: Heating 

NaH/DMF is unsafe, especially at larger scales – take appropriate care. The crude 

reaction mixture was transferred to a sep. funnel with ~ 100 mL EtOAc and diluted with 

sat. NH4Cl. The layers were separated, and the organic layer was washed with 

additional 2 x 50 mL brine, dried over MgSO4, and concentrated. Purified on a silica 

column with 0-25% EtOAc:hexanes. S121 (241.6 mg, 79%) obtained as a light pink 

solid. 1H NMR (400 MHz, CDCl3) δ = 8.00 - 7.90 (m, 2H), 7.67 - 7.60 (m, 3H), 7.22 (t, J 

= 7.8 Hz, 1H), 6.96 (d, J = 8.5 Hz, 3H), 5.63 (s, 2H), 3.83 (s, 3H); 13C NMR (100 MHz, 

CDCl3) δ = 162.15, 159.40, 143.49, 139.10, 132.95, 130.63, 129.12, 127.01, 126.12, 

124.28, 122.40, 113.99, 113.70, 67.69, 55.13; LRMS (ESI) calculated for 

C17H14BrNNaO2 [M + Na]+ m/z 366.01, found 365.94. 
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(2-methoxy-2-oxoethyl)zinc(II) bromide (S122). A dried 25 mL pear-shaped RB was 

charged with zinc powder (415 mg, 6.35 mmol, 2.0 equiv.), then purged with Ar. Dry 

tetrahydrofuran (12.7 mL) was then added, followed by dropwise addition of 

chlorotrimethylsilane (40 ul, 0.318 mmol, 0.1 equiv.). The suspension was allowed to stir 

at r.t. for 20m, then heated to 45 °C. Methyl bromoacetate (300 ul, 3.17 mmol, 1.0 

equiv.) was then added dropwise, and the reaction was allowed to stir at 45 °C for 45 

minutes, then cooled to r.t. The remaining Zn was allowed to settle. The resulting yellow 

solution was used as a 250 mM stock for couplings. Note: The solution was made fresh 

for couplings; begins to lose coloration ~ 12h at r.t/Ar. 

 

 
 

methyl 2-(2-((4-methoxybenzyl)oxy)quinolin-8-yl)acetate (S123). A 20 mL vial was 

charged with S121 (266 mg, 0.773 mmol, 1.0 equiv.), 

tris(dibenzylideneacetone)dipalladium (35.4 mg, 0.039 mmol, 0.05 equiv.), and QPhos 

(27.5 mg, 0.039 mmol, 0.05 equiv.). The vial was fitted with a septa, purged with Ar, and 

dry tetrahydrofuran (3 mL) was added, followed by a 0.25M solution of S122 (3.712 ml, 

0.928 mmol, 1.2 equiv.) in THF. The septa was replaced with a teflon cap and the vial 

was heated at 70 °C overnight. The crude reaction mixture was transferred to a sep. 

funnel with ~ 100 mL EtOAc and washed with sat. NaHCO3 and brine, dried over 

MgSO4, and concentrated. Purified on a silica column with 0-25% EtOAc:hexanes. 
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S123 (247.4 mg, 95%) obtained as a light pink solid. 1H NMR (400 MHz, CDCl3) δ = 

7.96 (d, J = 9.0 Hz, 1H), 7.66 (dd, J = 1.2, 8.0 Hz, 1H), 7.60 (d, J = 7.1 Hz, 1H), 7.57 - 

7.52 (m, 2H), 7.37 (dd, J = 7.3, 8.0 Hz, 1H), 7.02 - 6.95 (m, 3H), 5.53 (s, 2H), 4.22 (s, 

2H), 3.82 (s, 3H), 3.75 (s, 3H); 13C NMR (100 MHz, CDCl3) δ = 172.42, 160.92, 159.16, 

144.48, 138.83, 131.23, 130.25, 129.70, 129.25, 126.68, 124.74, 123.40, 113.61, 

112.90, 67.13, 54.90, 51.48, 37.33; LRMS (ESI) calculated for C20H19NNaO4 [M + Na]+ 

m/z 360.12, found 360.01. 

 

 
 

methyl 2-azido-2-(2-((4-methoxybenzyl)oxy)quinolin-8-yl)acetate (S124). S123 

(180.1 mg, 0.534 mmol, 1.0 equiv.) was reacted in 15 mL tetrahydrofuran according to 

general procedure F. Note: The generated enolate was not soluble in THF; rapid stirring 

of a thick suspension required. S124 (66.5 mg, 33%) obtained as a white solid. 1H NMR 

(400 MHz, CDCl3) δ = 8.03 (d, J = 9.0 Hz, 1H), 7.78 (dd, J = 1.2, 8.0 Hz, 1H), 7.68 (dd, 

J = 1.2, 7.3 Hz, 1H), 7.47 (d, J = 8.5 Hz, 2H), 7.45 - 7.40 (m, 1H), 7.00 (d, J = 8.8 Hz, 

1H), 6.97 - 6.92 (m, 2H), 5.98 (s, 1H), 5.53 - 5.40 (m, 2H), 3.83 (s, 3H), 3.76 (s, 3H); 13C 

NMR (100 MHz, CDCl3) δ = 170.25, 161.74, 159.46, 143.71, 139.16, 130.82, 129.90, 

129.09, 129.04, 128.85, 125.30, 123.73, 113.96, 113.90, 68.00, 61.47, 55.26, 52.68; 

LRMS (ESI) calculated for C20H18N4NaO4 [M + Na]+ m/z 401.12, found 400.95. 
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methyl 2-((tert-butoxycarbonyl)amino)-2-(2-((4-methoxybenzyl)oxy)quinolin-8-

yl)acetate (S125). A round bottom flask was charged with S124 (66.5 mg, 0.176 mmol, 

1.0 equiv.) and dry methanol (6 mL). Anhydrous tin(II) chloride (67 mg, 0.351 mmol, 2.0 

equiv.) was then added; stirred at r.t. for 68h. The crude reaction mixture was 

transferred to a sep. funnel with ~ 75 mL EtOAc and partitioned with 75 mL sat. 

NaHCO3. The aqueous layer was extracted with an additional 2 x 50 mL EtOAc; the 

organics were combined, dried over MgSO4, and concentrated. The resulting residue 

was taken up tetrahydrofuran (2.5 mL); solid di-tert-butyl dicarbonate (46 mg, 0.211 

mmol, 1.2 equiv.) was then added, followed by dropwise addition of N,N-

diisopropylethylamine (37 ul, 0.211 mmol, 1.2 equiv.). The reaction mixture was stirred 

for 14h, at which point it was transferred to a sep. funnel with ~75 mL EtOAc and 

washed with ~50 mL sat. NaHCO3 and brine. The EtOAc layer was dried over MgSO4 

and concentrated -- purified on a silica column with 0-30% EtOAc:hexanes. S125 (47.2 

mg, 59%) obtained as a white solid. 1H NMR (400 MHz, CDCl3) δ = 8.01 (d, J = 8.8 Hz, 

1H), 7.76 - 7.61 (m, 2H), 7.48 (d, J = 8.5 Hz, 2H), 7.38 (dd, J = 7.3, 8.0 Hz, 1H), 7.01 - 

6.91 (m, 3H), 6.20 (br d, J = 9.3 Hz, 1H), 5.81 (d, J = 9.5 Hz, 1H), 5.49 (d, J = 12.4 Hz, 

1H), 5.34 (d, J = 12.4 Hz, 1H), 3.82 (s, 3H), 3.65 (s, 3H), 1.45 (s, 9H); 13C NMR (100 

MHz, CDCl3) δ = 172.07, 161.47, 159.35, 155.49, 143.64, 139.37, 133.66, 130.80, 

129.47, 129.14, 127.86, 125.29, 123.96, 113.95, 113.44, 79.72, 67.80, 56.39, 55.20, 

52.44, 28.34; LRMS (ESI) calculated for C25H29N2O6 [M + H]+ m/z 453.20, found 453.15. 
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2-((tert-butoxycarbonyl)amino)-2-(2-((4-methoxybenzyl)oxy)quinolin-8-yl)acetic 

acid (S126). S125 (47.2 mg, 0.104 mmol, 1.0 equiv.) was reacted in methanol (4 mL) 

with 1M sodium hydroxide (146 uL, 0.146 mmol, 1.4 equiv.) according to general 

procedure B, except three additional aliquots of 1M sodium hydroxide (146 uL, 0.146 

mmol, 1.4 equiv.) were added over 3d. Semi-crude S126 (47.2 mg, 103%) obtained as 

a white solid. LRMS (ESI) calculated for C24H25N2O6 [M - H]- m/z 437.17, found 437.04. 

 

 
 

tert-butyl (2-((1H-tetrazol-5-yl)amino)-1-(2-((4-methoxybenzyl)oxy)quinolin-8-yl)-2-

oxoethyl)carbamate (S127). Semi-crude S126 (45.7 mg, 0.104 mmol, 1.0 equiv.) was 

reacted with 5-aminotetrazole monohydrate (1.1 equiv.) in 3 mL DMF according to 

general procedure D (1h activation). S127 (23.0 mg, 43% over two steps) obtained as a 

white solid. 1H NMR (400 MHz, DMF-d7) δ = 12.46 (br s, 1H), 8.35 (d, J = 9.0 Hz, 1H), 

7.95 (d, J = 7.8 Hz, 1H), 7.85 (d, J = 7.1 Hz, 1H), 7.61 (br d, J = 8.5 Hz, 1H), 7.55 - 7.42 

(m, 3H), 7.10 (d, J = 8.8 Hz, 1H), 6.98 (d, J = 8.5 Hz, 2H), 6.53 (d, J = 8.5 Hz, 1H), 5.55 

- 5.38 (m, 2H), 3.83 (s, 3H), 1.44 (s, 9H); 13C NMR (100 MHz, DMF-d7) δ = 172.01, 

162.59, 160.65, 156.75, 151.74, 144.94, 141.09, 134.51, 131.14, 130.66, 130.31, 

129.26, 126.38, 124.95, 114.87, 114.35, 79.79, 68.77, 56.89, 55.98, 28.87; LRMS (ESI) 

calculated for C25H26N7O5 [M - H]- m/z 504.20, found 504.22. 
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tert-butyl (2-((1H-tetrazol-5-yl)amino)-2-oxo-1-(2-oxo-1,2-dihydroquinolin-8-

yl)ethyl)carbamate (52). S127 (23.0 mg, 0.045 mmol, 1.0 equiv.) was suspended in 

acetonitrile (4 mL) and water (1 mL). Ammonium cerium(IV) nitrate (224 mg, 0.409 

mmol, 9.0 equiv.) was then added in 1.0 equiv. aliquots (25 mg) over 5h. After complete 

conversion, the crude reaction mixture was transferred to a sep. funnel with EtOAc and 

water. The layers were separated, and the aqueous layer was further extracted with 2 x 

50 mL EtOAc. The organics were combined, dried over MgSO4, and concentrated. 

Purified by reverse phase HPLC (water/MeOH/0.05% formic acid) to afford 52 (11.3 mg, 

64%) as a white solid. 1H NMR (400 MHz, DMSO-d6) δ = 12.42 (br s, 1H), 10.79 (br s, 

1H), 8.04 (br s, 1H), 7.96 (d, J = 9.5 Hz, 1H), 7.68 (d, J = 7.3 Hz, 1H), 7.55 (br d, J = 6.8 

Hz, 1H), 7.21 (t, J = 7.7 Hz, 1H), 6.57 (d, J = 9.5 Hz, 1H), 5.83 (br s, 1H), 1.39 (br s, 

9H); 13C NMR (100 MHz, DMSO-d6) δ = 169.41 (br), 161.75, 155.55 (br), 149.72 (br), 

141.01, 136.96 (br), 130.84 (br), 128.90 (br), 121.98 (br), 121.74, 121.62 (br), 119.93 

(br), 79.16, 54.55 (br), 28.10 (br); LRMS (ESI) calculated for C17H18N7O4 [M - H]- m/z 

384.14, found 384.09. 
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Chapter 5 

Fragment Discovery for Diverse β-lactamases 
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Fragment Screening: 

Our previous synthetic efforts to inhibit new β-lactamases were primarily structure-

guided migrations from the original CTX-M series, as discussed in Chapters 1 and 4. 

Despite the homology between KPC-2 and CTX-M, these efforts failed to generate an 

inhibitor scaffold that could target both enzymes. While the resulting scaffold from 

Chapter 4 could likely be modified to do so, inhibiting more diverse β-lactamases, such 

as the metallo-lactamase NDM-1 or the Class D OXA-48, proves to be quite challenging 

due to the lack of tractable knowledge around non-covalent affinity with these enzymes. 

Computational screening against CTX-M resulted in chemotypes with cross-class 

activity (Chapter 2), but these molecules were already quite large with poor ligand 

efficiency (LE), representing a suboptimal approach to gain insight into molecular 

recognition. To this end, we felt comparative fragment screening offered the best 

approach, as fragment hits would have higher LE, representing discrete molecular 

interactions, and cross-class hits would likely bind within a shared substrate envelope, 

making further optimization tractable. Importantly, these efforts are also backed by 

robust crystallography, allowing us to view the binding orientation for hits and any 

subsequent fragment enumeration. 

We opted to use surface plasmon resonance (SPR) as our primary screen due to 

the throughput and material requirements; SPR also allows for subsequent “pair-wise” 

binding and competition experiments for confirmed hits. In order to validate the 

approach, various N-terminal tagged His-Avi(Biotin) proteins were immobilized onto a 

Neutravidin conjugated GE CM5 chip and tested with putative positive controls, which 

are necessary to adjust for surface degradation throughout the screening run. CTX-M-
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14 immobilized well; the positive control was our previously reported compound 1,1 

which displayed a Kd of 160 nM, in line with our observed Ki of 90 nM (Figure 5-1). 

Importantly, compound 1 binding could be ablated by preincubation with avibactam prior 

to immobilization, combined with 5 µM avibactam in the running buffer (CTX-M t1/2: ~ 40 

m),2 suggesting the binding of 1 accurately represents the state of the active site. While 

carbapenemase KPC-2 immobilized well, we could not bind inhibitor 1, which has a 

weaker affinity for KPC-2,3 as well as β-lactam substrates meropenem or nitrocefin. 

Attempts to alter the buffer composition or temperature did not restore substrate 

binding; non-specific immobilization with EDC/NHS also failed to produce substrate-

active KPC-2. Given these results, we decided that any fragment hit would be assessed 

for KPC-2 activity at the biochemical validation stage. Metallo-lactamase NDM-1 has 

been previously used in SPR experiments,4 and we confirmed that when immobilized, it 

recognizes substrate meropenem (not shown). Meropenem has aqueous stability issues 

making it ill suited for a screening control,5 so captopril was tested. Notably, purchased 

captopril required TCEP in the running buffer, and displayed a two-site binding curve, 

consistent with the presence of an L and D form (Figure 5-2). The observed Kd values 

were close to the previously reported IC50 values,6 suggesting captopril would be a 

reasonable proxy for protein state. OXA-48 has also been used in SPR experiments,7 

and when immobilized, recognized substrate meropenem (not shown). Substrate 

binding could be ablated by preincubation with avibactam prior to immobilization (OXA-

48 t1/2: 17h),2  suggesting functional enzyme (not shown). Given the stability of 

meropenem, we sought to use compound 2 as a control, which was discovered from a 

previously reported fragment screen.7  In our hands compound 2 showed a two-site 
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binding curve, with a Kd1: 28 µM/ Stoichiometry: 1 for “site one”, in line with the reported 

Kd; “site two” was a weaker, non-specific binding element with some reference channel 

binding (Figure 5-3). Like other positive controls, “site-one” binding could be ablated by 

preincubation with avibactam prior to immobilization, leaving only the nonspecific 

binding elements. While imperfect as a control, we felt that sufficiently low 

concentrations of 2 should approximate active site availability in OXA-48. 

 

 
Figure 5-1. Compound 1 binding to CTX-M-14. a Compound 1 binding could be 
ablated by preincubation with avibactam prior to immobilization, combined with 5 µM 
avibactam in the running buffer. 
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Figure 5-2. Captopril binding to NDM-1. Captopril showed a two-site binding curve, 
consistent with the presence of an L and D form. Removing TCEP ablated most activity. 
a Reported in reference 6. 
 

 

Figure 5-3. Compound 2 binding to OXA-48. Compound 2 showed a two-site binding 
curve, the weaker of which seemed to be non-specific binding unaffected by avibactam. 
a Reported in reference 7. b The tighter binding site of compound 2 could be ablated by 
preincubation with avibactam prior to immobilization. 
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With controls in hand, we screened CTX-M, NDM-1, and OXA-48 against two 

fragment libraries totaling ~ 4300 fragments. Our internal library was assembled from 

commercial fragments available from Maybridge, Life Chemicals, and Asinex; the Drug 

Discovery Unit (DDU) at University of Dundee also provided a bespoke library, which is 

structurally distinct and complementary to ours, and in particular possesses a higher 

proportion of fragments with saturated (sp3) hybridized carbon atoms (Figure 5-4). We 

anticipate that this second library will help reveal distinct consensus binding 

interactions, especially when considering the types of scaffolds preferred in Chapter 4. 

Once complete, the primary screening data was loess normalized for surface 

degradation and inter-assay variability using RALPH.8 The resulting scatterplots are 

shown below with initial hits denoted in red, as defined per boxplot cutoff (75th percentile 

+ 3xIQR) (Figure 5-5). 

 

 
Figure 5-4. Histogram analysis of both fragment libraries. Fraction of sp3 atoms 
(0.1-1; x-axis) and molecular weight (color) distribution of fragments in the SMDC and 
DDU libraries. 
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Figure 5-5. Primary screening scatterplots for CTX-M-14, NDM-1, and OXA-48. 
Solvent corrected data was loess normalized for surface degradation and variability per 
flow cell. Initial hits denoted in red, as defined per boxplot cutoff (75th percentile + 
3xIQR). The DDU fragment collection still needs to be screened against OXA-48. 
 

Fragment Validation: 

Screening hit rates were roughly equivalent between libraries and enzymes, 

averaging to about 5% (Table 5-1). One of the drawbacks of an unbiased SPR screen 

is false-positives; fragments are more promiscuous binders by virtue, and can bind 

allosterically or non-specifically elsewhere in the protein, incorrectly reporting as a hit. In 

order to weed out non-functional molecules, hits were pooled and tested for biochemical 

activity in single point response against all enzymes. While this work is still in progress, 

early results from our internal library are encouraging (Table 5-2). Though few of the 

tested compounds possess tri-class activity, many inhibit two classes, suggesting 

conserved binding hotspots. Some of the fragments even possess mid-µM activity, 

especially against OXA-48, which has been challenging to link with Class A active 

scaffolds. Perhaps unsurprisingly, many of the biochemically active hits are carboxylic 

acids, which are recognized by the acid-binding motif. The DDU library should nicely 

compliment these flatter and more rigid fragments, especially during later growing and 
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merging efforts. Once the initial hits have been profiled for single point biochemical 

activity, select fragments will be characterized in dose response for biochemical and 

SPR activity, and subsequently crystallized with the appropriate proteins. We anticipate 

that this fragment-based approach will nicely compliment our previous structure-based 

efforts, helping to create a more discrete rule set for building non-covalent affinity 

across diverse β-lactamases. 

 

Table 5-1. Hit rate by enzyme and library.  

 

 

 

 

 

 

 

  

CTX-M-14 NDM-1 OXA-48

UCSF 158 (5.9%) 148 (5.5%) 108 (4.0%)

DDU 63 (4.0%) 82 (5.2%)
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Table 5-2. Single point inhibition for selected hits (2.4 mM). 

 

CTX-M-14 
Initial Hit

NDM-1 
Initial Hit

OXA-48 
Initial Hit Total Hits CTX-M-14 NDM-1 OXA-48

Y Y Y 3 No Inhibition No Inhibition 51% Inhib

Y Y Y 3 No Inhibition Insoluble 17% Inhib

Y Y Y 3 No Inhibition 52% Inhib      
(Ki: 568 μM)

74% Inhib    
(Ki = 650 μM)

Y N Y 2 38% Inhib No Inhibition No Inhibition

Y N Y 2 24% Inhib No Inhibition 12% Inhib

Y N Y 2 21% Inhib No Inhibition No Inhibition

Y N Y 2 No Inhibition No Inhibition 21% Inhib

Y N Y 2 No Inhibition No Inhibition 15% Inhib

Y N Y 2 No Inhibition No Inhibition 18% Inhib

Y N Y 2 14% Inhib No Inhibition No Inhibition

Y N Y 2 Insoluble No Inhibition No Inhibition

Y N Y 2 24% Inhib 25% Inhib 16% Inhib
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CTX-M-14 
Initial Hit

NDM-1 
Initial Hit

OXA-48 
Initial Hit Total Hits CTX-M-14 NDM-1 OXA-48

Y N Y 2 19% Inhib No Inhibition No Inhibition

Y N Y 2 19% Inhib No Inhibition 32% Inhib

Y N Y 2 17% Inhib No Inhibition No Inhibition

Y N Y 2 41% Inhib No Inhibition 25% Inhib

Y N Y 2 16% Inhib No Inhibition 25% Inhib

Y N Y 2 21% Inhib No Inhibition No Inhibition

Y N Y 2 12% Inhib No Inhibition No Inhibition

Y N Y 2 16% Inhib No Inhibition No Inhibition

Y N Y 2 14% Inhib No Inhibition 

Y N Y 2 16% Inhib No Inhibition No Inhibition

Y N Y 2 18% Inhib No Inhibition No Inhibition

Y N Y 2 28% Inhib No Inhibition 12% Inhib

O O

F3C

O

OH

N
N N

N

SH

N
N

OH

O

N

N N

H
N

CF3

NH2

N

O

OH

Br

H
N

O

F3C

O

H
N

N N

O

OH

O

N
N

O

N
H

O

N
N S

N

O

O
O

N
N N

N

O
O

N
N

O

HO
O

N
N

O

N
H



 338 

 

 

CTX-M-14 
Initial Hit

NDM-1 
Initial Hit

OXA-48 
Initial Hit Total Hits CTX-M-14 NDM-1 OXA-48

Y N Y 2 16% Inhib No Inhibition No Inhibition

Y N Y 2 14% Inhib No Inhibition No Inhibition

Y N Y 2 25% Inhib No Inhibition 22% Inhib

Y N Y 2 18% Inhib No Inhibition 64% Inhib

Y N Y 2 12% Inhib No Inhibition 15% Inhib

Y N N 1 No Inhibition No Inhibition No Inhibition

Y N N 1 17% Inhib No Inhibition No Inhibition

N Y N 1 12% Inhib No Inhibition No Inhibition

Y N N 1 No Inhibition No Inhibition 37% Inhib

Y N N 1 16% Inhib No Inhibition No Inhibition

Y N N 1 No Inhibition 32% Inhib No Inhibition

Y N N 1 30% Inhib No Inhibition 
90% Inhib   
(Ki = 178 
μM) 
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CTX-M-14 
Initial Hit

NDM-1 
Initial Hit

OXA-48 
Initial Hit Total Hits CTX-M-14 NDM-1 OXA-48

Y N N 1 No Inhibition No Inhibition 57% Inhib

Y N N 1 No Inhibition No Inhibition 20% Inhib

Y N N 1 No Inhibition No Inhibition No Inhibition

Y N N 1 No Inhibition 19% Inhib 27% Inhib

Y N N 1 No Inhibition No Inhibition No Inhibition
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Methods: 

Fragment Screens 

Screening experiments were run on a GE Biacore 4000, which has four flow cells 

with five hydrodynamically addressable spots per flow cell. N-terminal His-Avi(Biotin) 

proteins were captured on a Neutravidin conjugated CM5 chip, where the Neutravidin 

was first conjugated using EDC/NHS and quenched with 1M ethanolamine. Proteins 

were immobilized to 7-10000 RU using an immobilization buffer consisting of 10 mM 

HEPES pH 7.5, 150 mM NaCl, 0.05% Tween 20, and 250 µM TCEP. Unbound 

Neutravidin was blocked with NH2-PEG2-Biotin, including the reference spot, which was 

also Neutravidin conjugated. Running buffer varied per enzyme, and consisted of the 

following: CTX-M-14: 10 mM HEPES pH 7.5, 150 mM NaCl, 0.05% Tween 20, 250 µM 

TCEP, and 5% DMSO; NDM-1: 100 mM HEPES pH 7.5, 150 mM NaCl, 200 µM ZnCl2, 

100 µM TCEP, 0.05% Tween 20, and 5% DMSO; OXA-48: 100 mM Tris-H2SO4 pH 7.0, 

50 mM NaHCO3, 0.01% Triton X-100, 250 µM TCEP, and 5% DMSO. The fragment 

libraries were split between flow cells and run in parallel. Positive and negative (DMSO 

blank) controls were run every 10 cycles, and consisted of the following: CTX-M-14: 1 at 

150 nM; NDM-1: captopril at 100 µM; OXA-48: 27 at 50 µM. All data was reference and 

blank subtracted per flow cell, and solvent corrected for bulk refractive index shift using 

a correction curve from 3.75-6.25% DMSO. The corrected data was subsequently 

normalized per flow cell using RALPH,8 which loess normalizes the positive control 

regression and baseline drift throughout the run. Each scatterplot shown is from a single 

flow cell. Hits were defined per boxplot cutoff (75th percentile + 3xIQR). 
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