
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Contribution of Force Sensing at Fingertips on the Autonomous Learning of In-Hand 
Manipulation Without Vision

Permalink
https://escholarship.org/uc/item/9g0741d8

Author
Ojaghi, Pegah

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9g0741d8
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
SANTA CRUZ

CONTRIBUTION OF FORCE SENSING AT FINGERTIPS ON THE
AUTONOMOUS LEARNING OF IN-HAND MANIPULATION

WITHOUT VISION

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Pegah Ojaghi

December 2022

The Dissertation of Pegah Ojaghi
is approved:

Dr. Michael Wehner, Chair

Dr. Luca de Alfaro

Dr. Francisco Valero-Cuevas

Peter Biehl
Vice Provost and Dean of Graduate Studies



Copyright © by

Pegah Ojaghi

2022



Table of Contents

List of Figures v

List of Tables x

Abstract xi

Acknowledgments xii

1 Introduction 1
1.1 Current state-of-the-art in in-hand manipulation and its limitations . . . 1
1.2 Contributions of the current work to the field . . . . . . . . . . . . . . . 4
1.3 Consequences of this work . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Limitations of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Establish an end-to-end simulation environment to enable in-hand ma-
nipulation 8
2.1 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Tactile Information . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Reinforcement Learning Algorithm for dexterous manipulation 15
3.1 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Model-free RL algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Details on the reward function . . . . . . . . . . . . . . . . . . . . 16
3.3 Learning the policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Proximal Policy Optimization Algorithm . . . . . . . . . . . . . . 17
3.4 Overview of Simulation Environment and Learning Trail . . . . . . . . . 20
3.5 Curricula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.1 Details on the curriculum . . . . . . . . . . . . . . . . . . . . . . 23

iii



4 Identifying useful learning strategies 25
4.1 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 The Effects of Learning Strategies . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Curriculum 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.2 Curriculum 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.3 Curriculum 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.4 Curriculum 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.5 Curriculum 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Curriculum drives manipulation performance . . . . . . . . . . . . . . . . 43
4.4 The second phase of learning dictates end performance . . . . . . . . . . 45
4.5 Rotating the ball is critical in learning how to lift the ball . . . . . . . . 46

5 Effect of sensory information 48
5.1 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 In-hand manipulation performance . . . . . . . . . . . . . . . . . . . . . 48
5.3 Effect of sensory information . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4 Learning Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Conclusion 55
6.1 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Sensory Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3 Active sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.4 Limitations, opportunities and future directions . . . . . . . . . . . . . . 58

Bibliography 60

iv



List of Figures

2.1 A three-finger robotic agent the MuJoCo environment. . . . . . . . . . . 10
2.2 Degrees of freedom (DOFs) of the hand: a three-finger robotic hand inter-

acts with a 70 mm diameter ball in the MuJoCo environment (only one of
the three fingers is shown for simplicity) . . . . . . . . . . . . . . . . . . 11

2.3 The ball can traverse on x and y directions with (without damping or
friction) and rotate around the z axis (with damping and friction). The
system can work with no tactile sensory, binary, normal force only, or
both normal and tangential forces, which creates four cases for the tactile
sensory conditions. These are null (No-tactile), contact or no contact
(Binary-contact, 1 or 0), force normal to the finger pad (Normal-force,
fn), or the full contact force vector (3D-force, f = [ft,1, ft,2, fn]). . . . . . 14

3.1 Our reward is a combination of i) rewarding the angular velocity of the
ball θ̇y in a positive direction (primary reward); and ii) penalizing the
distance between the ball and desired heights |zd − zb| (penalty reward)). 17

3.2 Basic process of learning dexterous manipulation by RL. . . . . . . . . . 21
3.3 Overview of simulation environment and learning. . . . . . . . . . . . . 22
3.4 The overview diagram of Proximal Policy Optimization (PPO) algorithm

for in-hand manipulation. The ball’s state is not passed into the PPO
policy for learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

v



4.1 Performance for Curriculum 1 [L| R+L] for all options of tactile informa-
tion. The joint distribution of mean ball’s height (mm) vs. the number of
completed rotations in each Monte Carlo run for the last episode is shown.
Each Monte Carlo run is color-coded based on the range of reward from
lowest to highest reward among all tactile conditions. Curriculum 1 failed
to lift the ball or rotate it in all MC runs. These results highlight the im-
portance of the choice of Curriculum targeting a particular performance
goal. For example, rotating the ball is most critical for the performance
of a task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Performance for Curriculum 2 [R| R+L] for all options of tactile infor-
mation. The learning policy enabled the robotic hand to rotate the ball
in the first 1,000 episodes. After changing the reward to both rotation
and lift, the hand still gets most of its reward via rotation since lifting is
incorporated into the reward function only at the second half of the MC
run. Although in general the robotic hand is not successful in lifting the
ball in all MC runs, several instances of manipulation (both rotation and
lift) are demonstrated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Performance for Curriculum 2 [R|R+L] for all options of tactile informa-
tion. It shows the violin plot of completed rotations for each Monte Carlo
run at every 250 episodes. The width of the plot indicates the frequency
of the corresponding completed rotations and black points are shown each
Monte Carlo runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Performance for Curriculum 2 [R|R+L] for all options of tactile informa-
tion. Boxplots of the aggregated reward for tactile information while the
boxes’ orange lines show the median values, the edges of the boxes are
the 25th and 75th percentiles. The reward gained per 2,000 episodes is
visualized as boxplots grouped by the each tactile information aggregated
over 60 Monte Carlo runs per box. . . . . . . . . . . . . . . . . . . . . . 31

vi



4.5 Performance for Curriculum 3 [R+L|R+L] for all options of tactile infor-
mation. The cumulative reward for the last episode of each MC run is color
coded. Note that the desired manipulation performance is represented by
those points inside the green box defining the desired ball height. Note the
ceiling and floor effects for mean height as the ball can get caught against
the palm, or be rolled against the ground, respectively. . . . . . . . . . . 32

4.6 Performance for Curriculum 3 [R+L|R+L] for all options of tactile infor-
mation. Lift success rate (the percentage of time the ball spent within
25% of the desired height over the duration of an episode). Boxplots, with
median, across tactile information options for 60 MC runs at eight repre-
sentative episodes, 250 episodes apart. Lift success rate (the percentage
of time the ball spent within 25% of the desired height over the duration
of an episode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.7 Performance for Curriculum 3 [R+L|R+L] for all options of tactile infor-
mation. Cumulative reward for each representative episode. Boxplots of
the aggregated reward for tactile information while the boxes’ orange lines
show the median values, the edges of the boxes are the 25th and 75th per-
centiles. The reward gained per 2,000 episodes is visualized as boxplots
grouped by the each tactile information aggregated over 60 Monte Carlo
runs per box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.8 Performance for Curriculum 4 [R+L|R] for all options of tactile informa-
tion. The lack of reward for lifting in the second half of the 60 MC runs
focuses the robotic hand on rotating the ball in its final performance. Sur-
prisingly, the robotic hand continues to lift the ball even if not rewarded
for it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.9 Performance for Curriculum 4 [R+L|R] for all options of tactile informa-
tion. It shows the violin plot of completed rotations for each Monte Carlo
run at every 250 episodes. The width of the plot indicates the frequency
of the corresponding completed rotations. Each black point represents one
Monte Carlo run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

vii



4.10 Performance for Curriculum 4 [R+L|R] for all options of tactile informa-
tion. Boxplots of the aggregated reward for tactile information while the
boxes’ orange lines show the median values, the edges of the boxes are
the 25th and 75th percentiles. The reward gained per 2,000 episodes is
visualized as boxplots grouped by the each tactile information aggregated
over 60 Monte Carlo runs per box. . . . . . . . . . . . . . . . . . . . . . 38

4.11 Performance for Curriculum 5 [R+L|L] for all options of tactile informa-
tion. Note that the lack of reward for rotation in the second half of the
60 MC Runs now allows the hand to focus on placing the ball within the
desired height range. Surprisingly, however, the robotic hand continues to
rotate the ball even if not rewarded for it—likely because it has ‘learned’
rotation and lift in a coupled way. However, note that lift performance and
learning rates are largely equivalent across tactile information options—
with 3D-force being highest . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.12 Performance for Curriculum 5 [R+L|L] for all options of tactile informa-
tion. Lift success rate (the percentage of time the ball spent within 25% of
the desired height over the duration of an episode). Boxplots, with median,
across tactile information options for 60 MC runs at eight representative
episodes, 250 episodes apart. . . . . . . . . . . . . . . . . . . . . . . . . 41

4.13 Performance for Curriculum 5[R+L|L] for all options of tactile informa-
tion. Cumulative reward for each representative episode. Boxplots of the
aggregated reward for tactile information while the boxes’ orange lines
show the median values, the edges of the boxes are the 25th and 75th per-
centiles. The reward gained per 2,000 episodes is visualized as boxplots
grouped by the each tactile information aggregated over 60 Monte Carlo
runs per box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.14 Pareto plots for the final performance from each curriculum highlight the
divergence in manipulation performance across learning strategies. Final
performance for all curricula across all tactile information options. . . . 44

viii



5.1 Pareto plots for the final performance across curricula and the four tactile
information options. Each Pareto plot shows the mean final performance
for all curricula and corresponding tactile information available to the
learning policy: (a) No-tactile, (b) Binary-contact, (c) Normal-force, and
(d) 3D-force. While curriculum drives learning to distinct regions, the
tactile information available to the PPO policy (Fig. 3.3) also affects the
robotic hand’s ability to learn manipulation. Interestingly, we see that
learning happened even in the absence of tactile information (a), and that
manipulation performance was not always best with 3D-force information
(b-d). Note these Pareto plots only consider those final episodes when the
ball was on average lifted to within 25% of the desired height. . . . . . . 53

5.2 Types of ‘learners’ for Curriculum 5 with 3D-Force sensing. Out of 60
Monte Carlo runs, four distinct types of learners were visually identified:
those that after the change in reward from a combination to only lifting, a
had their performance decrease before going on to exceed the performance
at the end of 1K trials (10% of trials), b experienced a sudden increase in
performance at the switch (53.33% of trials), c continuously improved their
lifting performance (13.33% of trials), or d plateaued in their learning well
within the first phase (18.33% of trials). Note that 5% of runs experienced
no learning. The shaded region in the ‘Dip and Improve After Switch’
and ‘Improve After Switch’ highlight the change in performance when the
reward changes after 1K episodes. . . . . . . . . . . . . . . . . . . . . . . 54

ix



List of Tables

2.1 Physical simulation parameters for the three-fingered robotic hand and
the ball. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Tactile information options available to the learning algorithm. . . . . . . 13

3.1 Proximal-policy optimization (PPO) hyperparameters . . . . . . . . . . 20
3.2 We used five curricula that rewarded different combinations of rotation

and lift during each half of a Monte Carlo (MC) run. These changes in
the coefficients of the reward function define a progression of goals (i.e.,
curriculum learning) over the two halves of each run. . . . . . . . . . . . 24

x



Abstract

Contribution of force sensing at fingertips on the autonomous learning of in-hand

manipulation without vision

by

Pegah Ojaghi

Autonomous dexterous manipulation (i.e., reorienting objects with the fingertips) remains

beyond the grasp of robots. Dexterous manipulation (e.g., picking up a lemon to squeeze

it) differs from grasping an object because it requires re-orienting the object with the

fingertips without dropping it. Prior work has demonstrated autonomous learning to

manipulate objects, but dropping them is prevented by an upward-facing palm, a table-

top, or slowly introducing gravity.

In this dissertation, I demonstrated autonomous learning of dexterous manipulation

of a ball with a downward-facing palm against gravity. I use a reinforcement learning

algorithm (proximal-policy optimization) to demonstrate that a simulated downward-

facing three-fingered robotic hand can autonomously learn to reach for and manipulate

a 5 gram ball while rotating it at the desired height. Importantly, only curricula that

rewarded ball rotation from the start succeeded. This dynamic interaction with the ball

in the absence of vision, like child’s play, is likely a form of active sensing necessary

to build useful end-to-end models for dexterous manipulation against gravity. Tactile

information was useful in interesting ways for this ball: Lacking tactile information hin-

dered—but did not prevent—learning, while Binary-contact and Normal-force sensing

performed comparably to 3D-force. This dynamical interplay among curricula, tactile

information and learning trends illuminate features of human manipulation and provide

a path towards autonomous reach and manipulation by robots.
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Chapter 1

Introduction

1.1 Current state-of-the-art in in-hand manipulation

and its limitations

The human hand’s ability to interact with the world is essential to our biomechanical,

manipulative, perceptual, cognitive, psychological, social, linguistic, and artistic every-

day activities [1, 2, 3]. This fantastic ability to manipulate objects of various shapes,

sizes, and materials and control the objects’ position has inspired scientists and inventors

for centuries (e.g., [4]). Recently, dexterous manipulation of objects, one of the most

complex types of biological movement and a fundamental everyday task for humans, has

attracted the attention of many researchers in the robotic community. Building robots

with dexterous hand manipulation ability provides tools for humans to perform repetitive

and dangerous tasks while avoiding harm. The flexibility of dexterous hands in robots is

critical when the goal is to blend the robots into a human-centric environment created

with ergonomics in mind. The similarity of robotic hands to humans would facilitate

engaging interaction, which is vital for education, caregiving [5] and helping the elderly

and individuals living with disabilities.
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Despite the necessity of dexterous manipulation for robotic systems achieving it for

autonomous robots is still challenging and remains an open problem [6, 7, 1, 8, 9, 4, 10].

Today’s successful control algorithms for dexterous manipulation often require a com-

bination of models of the physical system or an expert demonstration of the task [11,

12, 13, 14]. Therefore, current methods either leverage a prior model or derive one from

large amounts of data [15, 16, 17, 18]. The conventional model-based control algorithms

are one of these methods which generate trajectories for complex and dynamic in-hand

manipulation [19, 20, 21]. However, these methods rely on accurate dynamics models

and state estimates, which are often challenging to create for the intermittent contacts,

friction, and nonlinearities characteristic of manipulation tasks in the unstructured real

world. Even with a perfect model, most existing methods of in-hand manipulation are

too slow to operate in real-time, making it impossible to adapt to an uncertain environ-

ment. Another approach for learning dexterous manipulation is to use a model learned

from data, where the model either operates directly over the raw state or over a feature

representation of the state [22]. Although these models are very data-efficient, they do

not scale well to complicated nonlinear dynamics or high-dimensional state spaces.

In addition, vision is often necessary for these systems to perform well [11]. These

methods, however, continue to be impractical for autonomous learning and performance

of manipulation in unstructured human environments.

Reinforcement Learning (RL), which refers to learning to behave optimally in a

stochastic environment by taking actions and receiving rewards, addresses these short-

comings and promises autonomous learning of in-hand manipulation with minimal human

supervision. Reinforcement learning methods have made significant progress for dexter-

ous manipulation to aid the development of intelligent agents with the ability to adapt

to new circumstances rapidly and achieve goals in a wide range of environments [23].

RL approaches, either model-based policy or model-free policy, can circumvent the is-
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sues with conventional model-based control algorithms for dexterous manipulation [24].

Model-based RL approach builds a predictive model of an environment and derives a

controller from it. However, their primary drawback is inferior performance compared

to their model-free counterparts [23] which is driven by the necessity to learn accurate

models to find a good policy. Model-free RL techniques for in-hand manipulation learn a

direct mapping from states to actions (learning complex policies from raw state inputs)

[25, 26] with good performance on complex tasks [27, 28].

The aforementioned current studies on autonomous learning in dextrous robots are

focused on either grasp or manipulation of an object resting on the upward-facing palm

[29, 30, 31, 11]. It is essential to distinguish manipulation as the ability to hold an

object with the fingertips to change its orientation dynamically. Moreover, manipulation

is distinct from grasp, which is the static coupling of an object to the hand by applying

finger forces [8, 4, 32].

Despite the previous studies’ successful results, the upward-facing palm configuration

makes the grasp inherently stable, and the possibility of dropping the objects held in these

configurations is not likely. However, in-hand manipulation performed against gravity is

a vitally important capability for robots to achieve real-world tasks. Another line of work

studied the autonomous dexterous in-hand manipulation with a hand facing upward or

downward [33]. Although this is the only work that manipulates an object with a hand

facing downward without an underlying surface, it is essential to initialize the object in

a stable configuration. Moreover, to improve the performance, the authors used training

in a curriculum where gravity is slowly introduced (i.e., gravity curriculum).

Lastly, despite the excellent performance of the aforementioned autonomous learn-

ing methods with a hand facing upward or downward absence of tactile sensing imposes

certain limitations on these approaches. In addition, vision is often necessary for these

systems to perform well [11]. These methods, however, continue to be impractical for
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autonomous learning and performance of manipulation in unstructured human environ-

ments. With visual uncertainty due to lighting, shadows, and occlusions, tactile infor-

mation is necessary to perform an in-hand manipulation task. Rich tactile information

available to humans and robots allows them to recognize and manipulate an object with-

out vision. Tactile information can provide greater robustness to variations in object

properties [34, 35, 36], perturbations [37], and sensing errors [38] beside the information

that provides on the object’s pose and contact normals [39, 40]. Investigations on tac-

tile sensing have the potential to improve robotic in-hand manipulation. Learning and

execution of manipulation tasks depend on the availability of proper tactile information

[9, 8]. Recent trends in using tactile information in the robotic community focus on

the role of tactile information in grasping the object rather than dexterous manipulation

[41, 42, 43, 44]. Even though there is strong evidence that tangential forces play a role

in dexterous manipulation tasks in humans [34, 45, 46], the contribution of these tan-

gential forces to autonomous dexterous manipulation in robots remains unexplored. Not

knowing the optimal type and distribution of tactile sensors on the fingers or the object

and the need to process large data sets are some of the reasons why tactile information

has not made systematic headway in robotic manipulation [47].

To the best of our knowledge, one study has explored improved autonomous dexterous

in-hand manipulation for rolling an object with tactile feedback [27]. Due to difficulty in

modeling, the approach only trains on a physical robot which is slow and costly to run.

However, this work manipulates an object resting on a table not held against gravity.

1.2 Contributions of the current work to the field

The limitations and needs mentioned in the previous section are why this thesis fo-

cuses on autonomously learning in-hand manipulation tasks against gravity with different

levels of tactile information. Moreover, to successfully manipulate the object we did not
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need to ‘initialize the object in a stable configuration’ which is needed in other works. As

in biology, our end-to-end RL algorithm can learn quickly (i.e., be data-efficient), empha-

sizing tactile information for effective dexterous manipulation. The algorithm explores

learning to manipulate objects against gravity while studying the effects of force sensing

at the fingertips to accelerate learning and enhance performance. Moreover, it does so

based on a data-driven approach that uses few shots (limited experience).

At its core, my work significantly extends that of prior approaches as the simulation

environment includes the effects of gravitational acceleration (so there is a risk of dropping

the ball), realistic contact dynamics, and our robotic agent learns to manipulate the

object with few shots and limited information. In contrast to model-based approaches

(which require full prior knowledge of the hand and object) and data-driven in-palm hand

manipulation (which make the grasp inherently stable), my autonomous learning does

not use a prior model. In addition, the algorithm shows how the influence of type of

force sensing impact the agent’s ability to learn to manipulate the object autonomously.

I show that providing the rotation from the start is necessary for learning manipulation.

I explore this idea of mastering tasks by encouraging the agent to start with task-

specific exploration that would lead to active sensing in the context of autonomous robotic

manipulation. Importantly, we evaluated different levels of tactile information that will

guide and justify future work to implement this approach to hardware.

The way my work went beyond the state-of-the art, therefore, is by demonstrating for

the first time a method with the ability to autonomously learn to manipulate an object

against gravity while revealing the role of tactile information in in-hand manipulation.

Moreover, it does so based on a data-driven approach that uses few shots (limited expe-

rience). Importantly, our work focuses on manipulating the objects against gravity with

the risk of being dropped at any time. Lastly, my work underlines the importance of

curricula in manipulation and shows how the right choice of a curriculum can enhance
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performance and robustness across multiple tasks by facilitating active-sensing.

1.3 Consequences of this work

This work is a step toward achieving the autonomous learning and adaptation capa-

bilities seen in biological systems with exceptional agility and energy efficiency in in-hand

manipulation. By demonstrating the natural emergence of learning for grasp and ma-

nipulation in bio-robotic systems, we shed light on the implicit sensorimotor processes in

biological systems that may grant humans unparalleled dexterity.

Broadly, this work advances neuroprosthetics in a novel bio-inspired way. It helps

form a foundation for future studies on the role of tactile sensory information in human

adaptability. Further, it provides valuable insight for developers and manufacturers of

affordable consumer-products types of robots that do not rely on vision to operate in

unstructured environments. These sensory-motor robots will allow significant progress

in understanding hand disabilities and rehabilitation in multiple neurological conditions

and strokes.

1.4 Limitations of this work

While our work pushes the field of autonomous manipulation forward, it has some

limitations. We have only studied the robotic hand with three fingers due to the difficulty

of controlling the hand with five fingers of such complexity. Using three fingers seems a

good compromise for manipulation since it is the minimum number of fingers required to

accomplish stable grasps. However, the scalability of this approach to systems with more

fingers is an interesting question that should be addressed in future work. Moreover,

here we mainly focused on learning in-hand manipulation in the agent actuated by servo

motors and did not consider tendon-driven hand.

6



Evaluating the performance across a more comprehensive set of different manipulation

tasks—is another interesting research topic that can be investigated in future work. In

addition, here, we evaluated the adaptability of the system to different learning curricula

but did not study how it performs in the deployment phase with uncertainty in the

environment.

Lastly, we tested our approach in simulations only. But, as with many other studies

looking to bridge the sim2real divide [48, 49], we used a realistic physics engine (i.e.,

MuJoCo) that enables future work to implement our approach in hardware. Developing

the hardware system for this hand would be an essential next step (on which we are

working) to test the full potential of our approach and study its real-world performance.

1.5 Thesis Outline

The following six chapters forming this dissertation are organized as follows: In Chap-

ter 2, an overview of how to set up an end-to-end simulation environment to enable in-

hand manipulation and a deeper insight into our algorithm pipeline are provided. Chapter

3 introduces our proposed learning algorithm, which enable autonomous learning in our

servo-driven hand using limited experience. The autonomous learning is possible by the

choice of useful curricula, complemented by meta-parameters in the Proximal Policy Algo-

rithm. In Chapter 4, we study the effects of learning strategies in autonomously learning

of in-hand manipulation. Chapter 5 evaluates the impact of different type of force sens-

ing on the agent’s ability to autonomously learn to manipulate the object autonomously.

Lastly, Chapter 6 summarizes all proposed algorithms, benefits, and conclusion.
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Chapter 2

Establish an end-to-end simulation

environment to enable in-hand

manipulation

2.1 Chapter summary

To demonstrate autonomous in-hand manipulate with a downward-facing three-finger

robotic hand without vision, we establish an end-to-end simulation environment. This

breakthrough was made possible mostly by the choice of a useful curriculum combined

with proper meta-parameters for the established reinforcement learning (proximal-policy

optimization) algorithm [50]. To reveal the effect of dimensionality of force sensing at

the fingertips on the autonomous learning of in-hand manipulation, we divided my work

into designing a hand in simulation and learning dexterous in-hand manipulation poli-

cies using reinforcement learning. To check the effectiveness of different tactile sensory

levels in in-hand manipulation, I responded to the fundamental question of ‘which task

should our hand execute?’. We choose the dynamical manipulation task of lifting a ball
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and rotating it along a horizontal rotation axis at a target height. This section first

describes the design of our hand dynamics, tactile sensory information, the ball, and our

environment. Next, we go deeper into our learning algorithm in the next chapter.

2.2 Simulation Environment

Designing a bio-inspired hand to perform autonomous learning for in-hand manipu-

lation in simulation is challenging because of the unique functions and abilities of the

human hand. Due to the high complexity of five fingers, controlling such a system is

difficult [11]. Although prior methods of controlling the five-fingered hand have shown

promising in-hand manipulation results in simulation, either they have not been trans-

ferred to a real-world robot [19, 20] or only trained on a physical robot [18, 27, 51].

Due to the fact that physical trials are so slow and costly to run, the learned behaviors

are very limited. In this work, we designed a 3-fingered bio-inspired hand. Using three

fingers seems a good compromise for manipulation since the minimum number of fingers

is required to accomplish stable grasps in simulation and hardware.

Our autonomous learning manipulation is performed in a simulated environment in

the MuJoCo physics engine, which allows us to implement reinforcement learning al-

gorithms on a robotic agent in a realistic environment that includes contact dynamics

(including penetration) and gravitational acceleration [52, 21]. The MuJoCo physics en-

gine provides methods to mimic touch sensing at specified locations. This is based on

specifying the tactile sensors’ active zones by so-called sites. Each site can be represented

as either ellipsoid or a box. If a body’s contact point falls within a site’s volume and

involves a geometry attached to the same body as the site, the corresponding contact

force is included in the sensor reading.

We simulated a bio-inspired, three-fingered robotic hand with a palm and three iden-

tical servo-driven fingers: two adjacent fingers (analogous to the ‘index’ and ‘middle’
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Figure 2.1: A three-finger robotic agent the MuJoCo environment.

fingers) and one opposing them (analogous to the ‘thumb’) (Figure 2.1). Each finger

consisted of two joints that could rotate about the y-axis (q1 and q2 in Fig. 2.2), similar

to the flexion or extension seen in human fingers. The size of the palm and length of

each ‘phalanx’ was based on an average human hand [22, 27]. An additional servo motor

was included at the base of the hand, which provides translational motion in the vertical

direction (zh).

Figure 2.2. depicts our simulated environment as well as the schematic of the hand.

A three-finger robotic agent interacts with a ball in the MuJoCo environment via seven

DOFs: two actuated rotational joints (q1 and q2) per finger plus the vertical position of

the palm of the hand (zh). This enables the agent to manipulate the ball by rotating

it (θy) and lifting it (zb) to a target height (zt). To keep the ball’s motion in-plane, it

is free to move vertically (z) and horizontally (x), and rotate in the plane (θy), but is

lightly restricted in its translation in the lateral (y) direction and rotation about the (z)

and (x) axes by a simulated stiffness. Viscous damping is applied to all of the ball’s

translational and rotational degrees of freedom to slow down the dynamics and prevent

numerical instabilities for the simulation of the rigid fingers and the ball.
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Figure 2.2: Degrees of freedom (DOFs) of the hand: a three-finger robotic hand interacts
with a 70 mm diameter ball in the MuJoCo environment (only one of the three fingers
is shown for simplicity)

The robotic hand attempts to manipulate a 70 mm diameter, 5 gram ball, which

starts each episode on the ground with the palm of the robotic hand at the height of 200

mm above the ground. The ball height zb is defined at the center of the ball, and we

specified a desired height for the ball zd to be 25 mm above zb. In other words, the

desired height zd is 60 mm above the ground. Through simulation constraints, the ball is

limited to 2 translational DOFs (moving vertically z and horizontally x) and 1 rotational

DOF (rotation about the θy direction; see figure 2.2). We included viscous damping

in the translational and rotational DOFs of the ball to stabilize the simulation. We

further limited the ball’s movement in the x direction by adding stiffness to the ball. We

also use OpenAI baselines library and MuJoCo-py interface to implement reinforcement

learning algorithms developed in Python. Physical parameters for all entities in the

simulation must be specified (either directly or indirectly) including size, mass, stiffness,

and damping. Relevant simulation parameters for the hand and ball are provided in
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Table 2.1.

Entity Parameter Value
Mass 76 gram

Finger Mass 17.8 gram
Link length 50 mm

Phalanx diameter 10 mmHand Palm width 20 mm
Palm diameter 120 mm

Initial hand height (zh(0)) 200 mm
Maximum translation (zh) 130 mm

Joint damping 5× 10−6 N·s/mm
Joint limits (q1) [−45◦, 45◦]
Joint limits (q2) [−90◦, 0◦]

Mass 5 gram
Diameter 70 mm

Desired height (zd) 60 mm
Height (zb) 35 mm

Stiffness in x direction 1× 10−3 N/mmBall Damping in x direction 1× 10−4 N·s/mm
Damping in z direction 1× 10−3 N·s/mm

Damping about y direction 5× 10−4 N·s/rad

Table 2.1: Physical simulation parameters for the three-fingered robotic hand and the
ball.

2.2.1 Tactile Information

We evaluate our algorithm performance in the presence four different sensory modali-

ties. Our agent has four options for tactile information from the pad of each finger, which

are added to the state vector. Tactile information is provided to the learning algorithm

via the tactile force state vector for the simulated robotic hand (sh,f ). These are null (No-

Tactile), Binary-contact (binary 1 vs. 0), force normal to the finger pad (Normal-Force,

Fn), or the full 3D-Force vector( sh, f = [ft,1, ft,2, fn]) . The tactile sites are only used

on the internal side (i.e., the ‘pads’ of the fingertips) of the distal phalanx of each finger.

12



We used MuJoCo’s built-in features to record contact force magnitude (Normal-Force)

(‘touch’) and 3D-Force sensing (‘force’) on the fingertips of all three fingers [52, 31].

Normal-force sensor sites at the soft fingertips provide a nonnegative scalar-value indi-

cating the cumulative normal contact forces on the sensor area. The 3D-force sensor sites

provide a 3D array of 3 orthogonal forces (one normal and two tangential to the sensor

site for each sensor) of scalar values representing the 3D contact force vector. Binary

sensors can only return one of two mutually exclusive values. Binary force sensing for

the tactile information may report a switch on or off; when there is a contact, Binary

tactile information will result in 1 as an output and 0 otherwise. In the No-tactile case,

the state vector for the tactile information sh,f is null. The friction coefficient for dy-

namically generated contact pairs is also specified for all fingertips (a.k.a. soft contact

with friction) [52].

As shown in Fig. 2.3, the possible contact tactile information at each fingertip is

indicated by sh, f = [ft,1, ft,2, fn] and it depends on tactile sensing available at finger-

tips. Table 2.2 indicates the detailed tactile information for the four tactile force sensing

options.

Tactile Information in State Variable
No-tactile Binary-contact Normal-force 3D-force
sh,F = 0 sh,f =

[d 1
(1−expfn ) − 0.5e, 0, 0]

sh,f =
[0, 0, fn]

sh,f = [ft1, ft2, fn]

Table 2.2: Tactile information options available to the learning algorithm.

The state of the system is 20-dimensional and consists of angles and velocities of all

joints of the robotic hand as well as the position and velocities of the palm of the hand sh

and position of the and velocity of the ball sb.
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Fn
Ft1

Ft2

Tactile sensory cases
Degees of Freedom

of the system

3D-force : sh,f=[ft1,ft2,fn]    

Normal-force : sh,f=fn

Contact-force: sh,f=1, 0

No-force: sh,f=0

yθ

Degrees of Freedom

Translation: x, z

x

z

Rotation: yθ

Figure 2.3: The ball can traverse on x and y directions with (without damping or
friction) and rotate around the z axis (with damping and friction). The system can
work with no tactile sensory, binary, normal force only, or both normal and tangential
forces, which creates four cases for the tactile sensory conditions. These are null (No-
tactile), contact or no contact (Binary-contact, 1 or 0), force normal to the finger pad
(Normal-force, fn), or the full contact force vector (3D-force, f = [ft,1, ft,2, fn]).
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Chapter 3

Reinforcement Learning Algorithm

for dexterous manipulation

3.1 Chapter summary

We confront the particularly challenging task of dynamic manipulation, where the

fingertips of a downward-facing hand interact with a ball to both lift and rotate it, and

the object is at risk of falling at any time. Our key finding is that this challenging task

can be learned autonomously using the industry-standard PPO algorithm, but only if

a correct strategy (i.e., curriculum) is used. To study the effects of learning strategies,

we investigated different combinations of rewards function during the learning phase. In

this chapter, we demonstrate our data-driven learning approach which does not require

an explicit model of the hand, ball or hand-ball interactions, as this is most critical in

unstructured environments (cf. model-based approaches).
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3.2 Model-free RL algorithm

The concept of reward engineering is developing a reward scheme to inject a notion of

success into the system, which is at the core of RL [53]. Reward shaping involves carefully

designing reward functions that provide the agent with rewards for progress towards the

goal. In the next subsection, we discuss about the details on the reward function.

3.2.1 Details on the reward function

In our algorithm, the goal is reached when the agent rotates the ball while keeping it

against gravity between target height span which is ±25 percentage of that desired height

(25 mm). Since we care about manipulating (rotating to be specific) the ball against

gravity at the desired height range (between [18.75, 31.25] mm), we used a combination

of primary (positive) reward and punishment (penalty or negative reward) at every time

step.

Angular velocity of the ball θ̇y would be the primary reward, and the absolute distance

of the state from the reference state of having the ball at the fixed desired position

(zd = 25 mm, Fig. 2.2) would be the punishment. We choose the dynamical manipulation

task of rotating and lifting along a horizontal rotation axis at the desired height (and

adding a penalty proportional to the distance between the current height and the desired

height). The reward function is described by

Rewardt = cRθ̇y,t − cL|zh,t − zd|, (3.1)

where cR = 0.51 and cL = 0.49. These coefficients change when we wanted to focus on

only on aspect of the task (rotation or lifting; see details on the Table 3.1). Although we

use dynamical manipulation task of rotating as a primary reward, to make the interpre-

tation of the results easier we calculated completed round of rotations as our performance

measurement—instead of reward rotation itself. Not all of the simulated state variables
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Compound Reward: R+L

Reward Terms

Lift Penalty: L= -c (|z - z |)
b dL

Rotation Reward: R = c θ yR

Figure 3.1: Our reward is a combination of i) rewarding the angular velocity of the
ball θ̇y in a positive direction (primary reward); and ii) penalizing the distance between
the ball and desired heights |zd − zb| (penalty reward)).

are used in the PPO policy. Although the ball’s state is used for the reward function, it

is not passed into the PPO policy for learning. In other words, the dynamic interaction

with the ball happens in the absence of vision (or any other direct, constant monitoring

means for the balls velocity or position).

3.3 Learning the policy

We use a model-free RL algorithm to learn the policy to autonomously learn in-

hand manipulation of a ball against gravity through utilizing tactile sensory information.

The proposed algorithm consists of our agent interacting with an environment (ball)

and receiving a reward depending on the action. This loop continues until the learning

period ends. The algorithm’s primary purpose is to learn a behavior that maximizes

the accumulated reward (lifting+rotation reward). We used end-to-end Proximal Policy

Optimization (PPO) as our main autonomous learning algorithm.

3.3.1 Proximal Policy Optimization Algorithm

PPO is a set of policy gradient methods that optimize a surrogate objective function

using multiple minibatch updates per data sample [50, 54]. The objective function to
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optimize is the sum of several loss functions and is given by

LCLIP+V F+S
t (θ) = Êt[LCLIPt (θ)− c1L

V F
t (θ) + c2S[πθ](st)], (3.2)

The LCLIPt (θ) is the surrogate objective function and ensures that the policy updates will

not be too large. While the LV Ft is a squared-error loss, it ensures that the loss from both

policy and value functions of the neural networks are accounted for. The S denotes the

entropy bonus term, which encourages a more random policy (i.e., more exploration), so

a larger entropy coefficient c2 will encourage more exploration [54].

To implement PPO, we use the PPO1 implementation from OpenAI’s stable baselines

repository [55] with MultiLayer Perceptron (MLP) Artificial Neural Network (ANN) as

for the actor-critic map.

To autonomously learn in-hand manipulation of a ball against gravity through uti-

lizing tactile information, we use a model-free RL algorithm to learn the policy. We

used PPO as our main algorithm as it seeks to find a balance between the ease of imple-

mentation, sample complexity, and ease of adjustment, trying to update at each step to

minimize the cost function while assuring that the new policies are not too far from last

policies [50, 56]. It has also been adopted as one of the default methods OpenAI owing

to its excellent performance [57, 55].

At every time step t, the robotic hand observes the state of the hand sh,t and the state

of the ball sb,t, predicts the optimized action, executes it at, and a reward is used rt. The

state sh,t contains the angle and angular velocity qt, q̇t of each finger and the position and

linear velocity of the palm at every time step t. The overview diagram of the Proximal

Policy Optimization algorithm in this work is shown in Figure 3.3b. Each Curriculum

was evaluated for 60 independent MC runs, which were repeated for the four tactile

conditions. Each independent MC is chosen with 60 different seeds. For each tactile

information, the initial seed for the random number generator was held constant across
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different curricula. In other words, the first MC run seed was exactly the same for all

curricula. For example, Curriculum 1, Normal-force MC run 25, has the same parameters

as Curriculum 3, 3D-force MC run 25.

To achieve a level of performance that is desirable, in the process of training our

RL model, we tune the PPO hyperparameters. The clipped surrogate loss of the PPO

algorithm prevents divergence, as discussed in [50]. Although, it may prematurely shrink

exploration variance when performing the updates over multiple iterations. PPO also

adds an entropy loss term that penalizes low variance to prevent these issues with low

variance and premature convergence. It showed that higher entropy loss weight minimizes

the risk of getting stuck in the local optimum. However, if entropy loss weight is too

big, it may result in noisy policy and deteriorated average performance. Therefore, fine-

tuning the entropy loss term for PPO can become tricky. Based on the results of different

entropy loss weights for policy’s standard deviation in [58], we optimized the entropy loss

term to find a balance between variance and average performance.

Additionally, the entropy loss meta-parameter is tuned to find a balance between vari-

ance and average performance. PPO uses the generalized advantage estimator (GAE)

to significantly reduce the variance of policy gradient estimates at the cost of some tol-

erable level of bias. GAE is parameterized by λ ∈ [0, 1] which enables the PPO agent

with a mechanism to control policy updates according to the significance of each sam-

pled state and therefore enhance learning reliability [59]. Changing this hyperparameter

enables PPO to find a balance between variance and bias of policy gradient estimates

[60]. In our work, this trade-off was achieved by changing the lambda meta-parameter

to relatively demote rewards achieved later in the episode (when the ball may have been

dropped) and instead emphasizing immediate rewards at every point in time (as is the

case in real life).

The number of optimization epochs, GAE parameter λ, and the entropy coefficient are

19



set to values shown in Table 3.1. All other parameters are kept at their default values per

PPO implementation defaults. The hyperparameters for the PPO algorithm are listed

in Table 3.1. Hyperparameters that are not defaults have been chosen empirically (trial

and error and carefully going over resulting performances).

Hyperparameter Value
Adam stepsize 1×10−5

Number of epochs 8
Discount (γ) 0.99
Entropy coefficient 0.02
Advantage estima-
tion (λ)

0.85

Minibatch size 64

Table 3.1: Proximal-policy optimization (PPO) hyperparameters

3.4 Overview of Simulation Environment and Learn-

ing Trail

A learning trail starts with the ball on the ground and hand and fingertips suspended

above the ball. Each MC run consisted of 2,000 episodes lasting 10 s sampled at 0.01 s

(left), which leads to 5-hours and 33-minutes of simulated time. Each learning trial was

split into two equal halves where the reward function changed between the two halves of

the MC run. As it is shown in Figure 3.2 and 3.3 (b) in each episode, the agent takes an

action a in state s and receives reward r. It also observes that the state has changed to

a new state s′.

At the beginning of every episode, we define the curriculum reward and tactile infor-

mation and the PPO seeding. Each training period consists of one independent Monte

Carlo run, which has 2,000 training episodes. At the start of each Monte Carlo run,

the PPO policy is provided a random seed, and the policy is updated throughout the
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Figure 3.2: Basic process of learning dexterous manipulation by RL.

2,000 training episodes. (Figure 3.3 (b) left ). In our implementation, the newest policy

parameters from the optimizer at the beginning of every episode are updated and used

to generate the next training episodes.

3.5 Curricula

Learning in a meaningful order (usually a cascade of tasks of increasing complexity, or

curriculum learning), is a cornerstone of biological learning that has been transferred and

applied to machine learning and artificial intelligence [61, 62]. Our approach leverages

curriculum learning, training the robot with different subtasks to autonomously learn the

desired in-hand dynamic manipulation. In each MC run for each curriculum, the reward

function changed after 1,000 episodes—as shown via rotation and lift icons in Table 3.2.

We considered five distinct curricula that are differed in the behavior (rotation and lift)

rewarded in two halves of MC runs. This is illustrated by a circle with a curved arrow

(rotation) and a vertical arrow (lift) throughout the paper and pictured in the second

column of the Table 3.2). As shown in the last column from Equation (3.1) by changing

cR and cL variables, we update the reward function in two equal half of the MC run in

each curriculum.
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(a) Degrees of freedom (DOFs) of the hand and ball: A three-finger robotic
hand interacts with a ball in the MuJoCo environment . Reward Options:
Instantaneous reinforcement comes from the combination of i) rewarding
the angular velocity of the ball θ̇y in a positive direction (primary reward);
and ii) penalizing the distance between the ball and desired heights |zd− zb|
(penalty reward). Tactile Information: The learning policy has four sensing
options for tactile information from the pad of each finger (Tactile Area),
which are added to the state vector for the hand (sh). These are null (No-
tactile), contact or no contact (Binary-contact, 1 or 0), force normal to the
finger pad (Normal-force, fn), or the full contact force vector (3D-force,
f = [ft1, ft2, fn]).
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(b) In each MC run for each curriculum, the reward function changed after 1,000
episodes—as shown via rotation and lift icons in all results figures.

Figure 3.3: Overview of simulation environment and learning.
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3.5.1 Details on the curriculum

To autonomously learn in-hand manipulation, we used combinations of reward func-

tions to emphasize one or both critical features of manipulation: lifting and rotating the

ball. Instantaneous reinforcement comes from the combination of (i) rewarding the an-

gular velocity of the ball θ̇y in a positive direction ( primary reward); and (ii) penalizing

the distance between the ball and target height |zt − zb| (penalty reward) (Figure 3.3).

These reward functions define the agent’s goal during two 1,000 episode learning phases.

To study the effects of learning strategies, we used five curricula (Table 3.2), each

rewarding different combinations of rotation and lift during each half of a Monte Carlo

(MC) run. The coefficients of the reward function (cR and cL in equation (3.1)) explicitly

weight rotation (R) and lift (L) rewards, respectively (Fig. 3.3b). Based on the fact that

our algorithm is rewarded for lifting and rotating, the learning phase is divided into

two phases, the first 1,000 episodes and the second 1,000 episodes, in which each phase is

10,000 seconds. We made different curricula by changing these coefficients at the halfway

point of the MC run (e.g., Curriculum 5 is [R+L|L]). Note these curricula were executed

as independent MC runs for each of the four sensing options for tactile information from

the pad of each finger (Fig. 3.3).
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Reward During First
Half of the MC Run

Reward During Second
Half of the MC Run

Coefficients of equation (3.1) for the
[first | second] halves of each MC Run

Curriculum 1 [L | R+L]
[cR = 0, cL = 0.49 | cR = 0.51, cL = 0.49]

Curriculum 2 [R | R+L]
[cR = 0.51, cL = 0 | cR = 0.51, cL = 0.49]

Curriculum 3 [R+L | R+L]
[cR = 0.51, cL = 0.49 | cR = 0.51, cL = 0.49]

Curriculum 4 [R+L | R]
[cR = 0.51, cL = 0.49 | cR = 0.51, cL = 0]

Curriculum 5 [R+L | L]
[cR = 0.51, cL = 0.49 | cR = 0, cL = 0.49]

Table 3.2: We used five curricula that rewarded different combinations of rotation and lift
during each half of a Monte Carlo (MC) run. These changes in the coefficients of the reward
function define a progression of goals (i.e., curriculum learning) over the two halves of each run.

Figure 3.4: The overview diagram of Proximal Policy Optimization (PPO) algorithm
for in-hand manipulation. The ball’s state is not passed into the PPO policy for learning.
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Chapter 4

Identifying useful learning strategies

4.1 Chapter summary

Using a three-finger robotic hand in simulation, we demonstrate what, to our knowl-

edge, is the first example of autonomous learning to pick up and manipulate an object

against gravity without vision. The in-hand manipulation is possible by choice of useful

curricula, complemented by meta-parameters in the PPO algorithm to emphasize imme-

diate rewards. In this chapter, we investigate the importance of each Curriculum to lead

to distinct final performances.

4.2 The Effects of Learning Strategies

Using the RL algorithm, a curriculum-learning-based approach adopted in our work,

we demonstrate autonomous learning of autonomous dexterous manipulation in simula-

tion with gravity. The primary focus of our work is (1) how the influence of the right

strategy (Curriculum) impacts the simulated three-fingered robotic agent’s ability to

learn to manipulate (lift and rotate) a ball autonomously. To study the effects of the

right learning strategies, we used five curricula (Table 3.2), each with different rewarding
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combinations of rotation and lifted during each half of a Monte Carlo (MC) run. Each

Curriculum was evaluated for 60 independent Monte Carlo runs, which were repeated

for the four tactile conditions. Between phases of training (phase 1: episodes 1-1,000

and phase 2: 1,000-2,000), the reward function generally changed depending upon which

of the five Curricula was being run. The coefficients of the reward function (cR and cL

in equation (3.1)) explicitly weight rotation (R) and lift (L) rewards, respectively (Fig.

3.3b). We made different curricula by changing these coefficients at the halfway point of

the MC run (e.g., Curriculum 1 is [L|L+R]).

4.2.1 Curriculum 1

Since our algorithms learn in-hand manipulations in the context of rewards received

from interactions with the ball. Reward functions play a central role in specifying how

an agent should act. In this Curriculum, the hand is expected to explore lifting first and

then explore both rotation and lifting.

In this Curriculum, we changed the weight rotation (R) and lifted (L) rewards at the

halfway point of the MC run such that it is indicated as [L|L+R]. In this Curriculum,

the rotation is not rewarded from the start for learning in-hand manipulation. Based on

the results in Curriculum 1 in Figure 4.1, the results show that the hand failed to lift the

ball or rotate it a full revolution in all MC runs.

4.2.2 Curriculum 2

In this Curriculum, at the halfway point of the MC run, the weight reward is changed

such that the rotation given in the first half. This Curriculum is indicated as [R|L+R].

By comparing the results of These, we demonstrate that while lifting the ball seems like

a ‘simpler’ task, it does not appear to be possible before the system ‘understands’ the

dynamics of manipulation. First, our agent plays with the object to understand the
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Figure 4.1: Performance for Curriculum 1 [L| R+L] for all options of tactile information.
The joint distribution of mean ball’s height (mm) vs. the number of completed rotations
in each Monte Carlo run for the last episode is shown. Each Monte Carlo run is color-
coded based on the range of reward from lowest to highest reward among all tactile
conditions. Curriculum 1 failed to lift the ball or rotate it in all MC runs. These results
highlight the importance of the choice of Curriculum targeting a particular performance
goal. For example, rotating the ball is most critical for the performance of a task.
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dynamics of the world around it, similar to what we do when we are toddlers [4].

By comparing the results of theses curricula, we realized that manipulation is the

significant first step to a successful lifting. By rewarding (and therefore encouraging),

the exploration of the full dynamics of manipulation, the agent is enabled to learn the

combined manipulation task of rotating and lifting the ball. (cf. Figures 4.1 and 4.2).

The violin plots in Figure 4.3 show the distribution of completed rotations during

learning phase. It shows that the hand gets most of its reward via rotation since lifting

is incorporated into the reward function only at the second half of the MC run. The

boxplots of total aggregated reward this curriculum is shown in Figure 4.4.

4.2.3 Curriculum 3

In this Curriculum, we don’t change the weight rotation (R) and lifted (L) rewards at

the halfway point of the MC run such that, so it is indicated as [L+R|L+R]. According

to this curriculum, our agent tries to achieve a goal based on its defined reward function

(the goal is to rotate the ball while keeping the ball’s height within the target height

range). Furthermore, Curriculum 3, which might be considered the ‘best’ in terms of

manipulation is a compromise for performance that achieves a balanced lift and rotation

manipulation schema (Figure 4.5). The joint distribution of performance during the last

episode of 60 MC runs (mean ball’s height (mm) vs. the number of completed rotations

is shown in this figure. Surprisingly, however, Contact-force produces the most MC runs

with high rewards inside the desired height range. 3D-force, had the least number of MC

runs that were caught against the palm.

In Curriculum 3, the mean number of data points inside the target range for all

options of tactile information is 25, while it has 14 numbers of completed rounds of

rotations. In all Curricula except Curriculum 3, the reward function evolves and changes

over the learning period (phase 1 and phase 2). In Curriculum 3, lifting and rotating are
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C2

Figure 4.2: Performance for Curriculum 2 [R| R+L] for all options of tactile information.
The learning policy enabled the robotic hand to rotate the ball in the first 1,000 episodes.
After changing the reward to both rotation and lift, the hand still gets most of its reward
via rotation since lifting is incorporated into the reward function only at the second half
of the MC run. Although in general the robotic hand is not successful in lifting the ball in
all MC runs, several instances of manipulation (both rotation and lift) are demonstrated.
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Figure 4.3: Performance for Curriculum 2 [R|R+L] for all options of tactile information.
It shows the violin plot of completed rotations for each Monte Carlo run at every 250
episodes. The width of the plot indicates the frequency of the corresponding completed
rotations and black points are shown each Monte Carlo runs.
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Figure 4.4: Performance for Curriculum 2 [R|R+L] for all options of tactile information.
Boxplots of the aggregated reward for tactile information while the boxes’ orange lines
show the median values, the edges of the boxes are the 25th and 75th percentiles. The
reward gained per 2,000 episodes is visualized as boxplots grouped by the each tactile
information aggregated over 60 Monte Carlo runs per box.
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Figure 4.5: Performance for Curriculum 3 [R+L|R+L] for all options of tactile infor-
mation. The cumulative reward for the last episode of each MC run is color coded. Note
that the desired manipulation performance is represented by those points inside the green
box defining the desired ball height. Note the ceiling and floor effects for mean height as
the ball can get caught against the palm, or be rolled against the ground, respectively.
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rewarded over the entire learning period (2,000 episodes). We demonstrate how changing

the reward function during two phases in each curriculum affects the agent’s resulting

manipulation performance. As it is shown in Figure 4.6, Contact-force and 3D-force

are relatively equivalent in their learning rates; and better than No-tactile and Normal-

force for Curriculum 3. The number of Monte Carlo runs with the highest rewards range

(dark red hue) is achieved in Contact-force and 3D-force. Despite the fact that aggregated

reward of lifting and rotating for Contact-force and 3D-force are similar, the total reward

is achieved by (i) keeping the ball at a target height range for Binary, while for 3D-force

it is achieved by (ii) rotating the ball on the ground (Figure 4.6).

The number of Monte Carlo runs with the highest rewards range (dark red hue)

is achieved in Contact-force and 3D-force. Despite the fact that aggregated reward of

lifting and rotating for Binary and 3D-Force are similar, the total reward is achieved by

(i) keeping the ball at a target height range for Binary, while for 3D-force it is achieved

by (ii) rotating the ball on the ground (Figure 4.6).

The resulting cumulative rewards plotted along with boxplots at eight representative

episodes in Figure 4.7. All runs during different episodes showed the aggregated reward

of Binary, and 3D-Force are similar.

4.2.4 Curriculum 4

In this Curriculum, at the halfway point of the MC run, the weight reward is changed

such that the lifting is not given in the second half is indicated as [R+L|R]. Although

the second phase of the learning does not incorporate lifting reward, we still see some

successful runs with keeping the ball at the target height range in Contact-force and 3D-

force. For instance, by switching off the lifting reward the second phase of Curriculum 4,

we still see success in keeping the ball in the target range and rotating it in No-tactile,

Contact-force and 3D-force. Interestingly, Curriculum 4 is not rewarded for lifting at the
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Figure 4.6: Performance for Curriculum 3 [R+L|R+L] for all options of tactile infor-
mation. Lift success rate (the percentage of time the ball spent within 25% of the desired
height over the duration of an episode). Boxplots, with median, across tactile informa-
tion options for 60 MC runs at eight representative episodes, 250 episodes apart. Lift
success rate (the percentage of time the ball spent within 25% of the desired height over
the duration of an episode).
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Figure 4.7: Performance for Curriculum 3 [R+L|R+L] for all options of tactile infor-
mation. Cumulative reward for each representative episode. Boxplots of the aggregated
reward for tactile information while the boxes’ orange lines show the median values,
the edges of the boxes are the 25th and 75th percentiles. The reward gained per 2,000
episodes is visualized as boxplots grouped by the each tactile information aggregated over
60 Monte Carlo runs per box.
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C4

Figure 4.8: Performance for Curriculum 4 [R+L|R] for all options of tactile information.
The lack of reward for lifting in the second half of the 60 MC runs focuses the robotic hand
on rotating the ball in its final performance. Surprisingly, the robotic hand continues to
lift the ball even if not rewarded for it.

end of its curriculum but occasionally lifts as well.

We plotted the results on a violin plot in Figure 4.9 to represent the distribution of

completed rotations obtained at every 250 episodes. The width of the shape represents

the frequency of the number of the completed rotations. Figure 4.9 shows that the violin

plot of all tactile information be wide and short, which means that there is little difference

between the best and worst tactile information.

As it is shown in Figure 4.10, there is an increase in the total reward for all lev-

els of tactile sensory information at the second phase as the reward function does not
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Figure 4.9: Performance for Curriculum 4 [R+L|R] for all options of tactile information.
It shows the violin plot of completed rotations for each Monte Carlo run at every 250
episodes. The width of the plot indicates the frequency of the corresponding completed
rotations. Each black point represents one Monte Carlo run.

37



250 500 750 1k 1.25k 1.5k 1.75k 2k
Episode #

−3000

−2000

−1000

0

1000

2000

3000

4000

Re
wa

rd

No-Tactile
Binary
1D-Force
3D-Force

Figure 4.10: Performance for Curriculum 4 [R+L|R] for all options of tactile informa-
tion. Boxplots of the aggregated reward for tactile information while the boxes’ orange
lines show the median values, the edges of the boxes are the 25th and 75th percentiles.
The reward gained per 2,000 episodes is visualized as boxplots grouped by the each tactile
information aggregated over 60 Monte Carlo runs per box.
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incorporate lifting reward.

4.2.5 Curriculum 5

In this Curriculum, we changed the weight rotation (R) and lifted (L) rewards at the

halfway point of the MC run such that it is indicated as [R+L|L]. Consider Curricula 3

and 5 which rewarded both lifting and rotation initially, and include the goal of lifting

the ball within the desired height range during the second half of the MC runs. They

perform as expected with Curriculum 5 being the better lifter as it only rewards lifting

(but rotates, albeit slower, nonetheless; Fig. 4.11). The mean number of data points

inside the target range for Curriculum 5 is 42, while only 6 numbers of completed rounds

of rotations for all tactile information.

Curriculum 5 shows, on average, that lift success naturally increases upon switching

from a combined reward to one that only rewards lifting (Fig. 4.13).

We used two visualizations to understand and gain insight from all curricula and

sensory information. The first is based on the joint distribution of the mean ball’s height

(mm) vs. the number of completed full rotations at the final episode over 60 Monte Carlo

runs, of Figures 4.11. The spectrum of colors in Figures 4.5 shows the measurement of

rewards for different runs in all levels of sensory information, where the highest reward

is in a dark red hue. The bar plots show the distribution of the runs, and the height

distribution is binned in three categories: below, above, and within the target range.

The second visualization is the boxplots of total aggregated reward and the success

rate as a percentage of time the ball’s height spent in the target range in each curriculum,

of Figures 4.12 and 4.13.
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Figure 4.11: Performance for Curriculum 5 [R+L|L] for all options of tactile informa-
tion. Note that the lack of reward for rotation in the second half of the 60 MC Runs
now allows the hand to focus on placing the ball within the desired height range. Sur-
prisingly, however, the robotic hand continues to rotate the ball even if not rewarded
for it—likely because it has ‘learned’ rotation and lift in a coupled way. However, note
that lift performance and learning rates are largely equivalent across tactile information
options—with 3D-force being highest
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Figure 4.12: Performance for Curriculum 5 [R+L|L] for all options of tactile informa-
tion. Lift success rate (the percentage of time the ball spent within 25% of the desired
height over the duration of an episode). Boxplots, with median, across tactile information
options for 60 MC runs at eight representative episodes, 250 episodes apart.

41



250 500 750 1k 1.25k 1.5k 1.75k 2k
Episode #

−3000

−2000

−1000

0

1000

2000

3000

4000

Re
wa

rd

No-Tactile
Binary
1D-Force
3D-Force

Figure 4.13: Performance for Curriculum 5[R+L|L] for all options of tactile information.
Cumulative reward for each representative episode. Boxplots of the aggregated reward
for tactile information while the boxes’ orange lines show the median values, the edges
of the boxes are the 25th and 75th percentiles. The reward gained per 2,000 episodes is
visualized as boxplots grouped by the each tactile information aggregated over 60 Monte
Carlo runs per box.
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4.3 Curriculum drives manipulation performance

We trained our algorithm in five curricula and evaluated the performance on all

curricula with cumulative results across all sensory modalities. Results are shown in

Figure 4.14, which depicts a Pareto graph for the mean numbers of data points inside

the target height range against the mean number of completed rounds of rotation for the

data points inside the target height range. The Pareto graph in Figure 4.14 enables one

to evaluate the performance and the effects of each curriculum on the overall success of

our agent. This figure shows that curriculum-learning makes a significant difference in

manipulation performance.

Our main finding, which runs counter to intuition, is that using rotation reward of

the ball from the start is necessary to learn manipulation (both lifting and rotation). In

contrast, a case that starts by only rewarding lifting, as in Curriculum 1, will not learn

to manipulate the ball autonomously. The finding that manipulation is not learned in

Curriculum 1 demonstrates that while lifting the ball seems like a ‘simpler’ task than

rotating the ball; it does not appear to be possible before the system ‘understands’ the

dynamics of manipulation. Our findings from Curriculum 2 suggest that our agent must

first play with the object to understand the dynamics of the world around it, similar to

what we do when we are toddlers [4]—as such, rotating the ball is a significant first step

to a successful lifting.

As mentioned above, the first curriculum demonstrates the total reward function to

be cumulative of lifting reward and rotating reward for the whole 2,000 episodes over

four types of sensory information. While any height over 50 mm is when the ball has

been locked in the hand, we may still see some manipulation reward (rotating the ball)

through hand form closure [8, 63].

Curriculum 3 and Curriculum 5 had a final performance that could be useful for

autonomous manipulation. This is opposed to for example Curriculum 2, in which ‘lifting’
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Figure 4.14: Pareto plots for the final performance from each curriculum highlight the
divergence in manipulation performance across learning strategies. Final performance
for all curricula across all tactile information options.

is only added in the second phase of learning, and so the agent cannot learn and perform

the lifting task to its full extent compared to Curricula 3 and 5. However, it does learn to

lift the ball to a degree, which is in contrast to the agent neither learning to lift nor rotate

the ball in Curriculum 1 (only lifting rewarded first). Note these curricula were executed

as independent MC runs for each of the four sensing options for tactile information from

the pad of each finger (Fig. 3.3).

Our RL algorithm does not encourage the agent to start with a task-specific explo-

ration since our agent learned autonomously without human intervention. In essence,

continual learning performs incrementally where the new tasks leverage the knowledge

learned in the previous tasks. Based on Curriculum 1 and Curriculum 2 in Figure 4.14,

learning a ‘new’ task (lifting/or rotation) only for the second 1K episodes will not allow

the agent to succeed. Curricula 3-5 enable the agent to learn and explore all the venues

of the action space and exploit the knowledge at any given time step for the first half of

the designated time (first 1,000 episodes), but only Curriculum 3 and Curriculum 5 had a
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final performance that could be useful for autonomous manipulation. This is opposed to

for example Curriculum 2, in which ‘lifting’ is only added in the second phase of learning,

and so the agent cannot learn and perform the lifting task to its full extent compared

to Curricula 3 and 5. However, it does learn to lift the ball to a degree, which is in

contrast to the agent neither learning to lift nor rotate the ball in Curriculum 1 (only

lifting rewarded first). Note that the desired manipulation performance is represented

by those points inside the green box defining the desired ball height. These are plotted

in Figs. 4.14.

4.4 The second phase of learning dictates end per-

formance

The role of the reward function is fundamental in the ability to learn in-hand manip-

ulation (lifting and rotating) against gravity as it defines the goal our agent strives to

achieve during training. Based on the reward function in the second phase of learning,

the performance of each curriculum at the end of learning changes. In each curriculum,

the algorithm learns by being rewarded either for lifting the ball, rotating the ball, or

both in each phase. In all Curricula except Curriculum 3, the reward function evolves

and changes over the learning period (phase 1 and phase 2). In Curriculum 3, lifting

and rotating are rewarded over the entire learning period (2,000 episodes). We demon-

strate how changing the reward function during two phases in each curriculum affects the

agent’s resulting manipulation performance (Figure 4.14). Manipulation performance at

the end of each curriculum specifies a location on a Pareto plot (Fig. 4.14.

Considering the goal of lifting the ball within the target height range in the second

phase, Curricula 3 and 5 (Figures 4.5 and 4.11) are far better lifters than Curricula 2

and 4. An interesting consequence of curriculum learning is that without changing the
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reward halfway through, it might not be possible to obtain the performance in Curriculum

5 even with different reward parameters as demonstrated by essentially no learning seen

in Curriculum 1. This is of consequence as Curriculum 5 has the best performance in

terms of lifting the ball and keeping it at a specific height. Interestingly, it also rotates

the ball slower than Curriculum 3 in achieving this lifting performance. In contrast, in

Curricula 2 and 4, the mean number of data points inside the target range is 3 and 4,

respectively, while the complete round of rotation is 16 and 17, respectively.

When only lift or rotation are rewarded in the first half of the MC run even though

both features of manipulation are rewarded in the second half of the MC run (as in

Curricula 1 and 2), manipulation is not achieved. In contrast, rewarding rotation and

lift from the start enables manipulation, regardless of what is rewarded in the second

half of the MC run as demonstrated in Curricula 3-5.

4.5 Rotating the ball is critical in learning how to

lift the ball

Our main finding, which runs counter to intuition, is using a curriculum that rewards

rotation of the ball from the start is necessary to learn manipulation (both lifting and

rotation). In contrast, a curriculum that starts by only rewarding lifting, as in Curriculum

1, will not learn to autonomously manipulate the ball, and will actually not learn to lift

or rotate the ball. The finding that manipulation is not learned in Curriculum 1 in Figure

4.14 demonstrates that while lifting the ball seems like a ‘simpler’ task than rotating the

ball, it does not appear to be possible before the system ‘understands’ the dynamics of

manipulation. Our findings from Curriculum 2 suggest that our agent must first play

with the object to understand the dynamics of the world around it, similar to what we

do when we are toddlers [4]. As such, rotating the ball is the significant first step to
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a successful lifting. As shown in Figure 4.14, Curricula 2-5 by rewarding rotation from

the beginning (and therefore encouraging) the exploration of the full dynamics of the

environment, the agent is enabled to learn the combined manipulation task of rotating

and lifting the ball (cf. Figs. 4.14 and 4.11).
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Chapter 5

Effect of sensory information

5.1 Chapter summary

Using the RL algorithm, we demonstrate autonomous learning of autonomous dex-

terous manipulation in simulation with gravity. This section discusses the results of

available tactile information (i.e., force) at the fingertips for in-hand manipulation. We

evaluate four types of tactile sensing included in the state variable used in the PPO al-

gorithm to determine the effects of sensory information on learning manipulation. This

section studies the effect of rotating the ball on learning how to lift the ball. We demon-

strate how the right choice of curriculum can enable achieving the desired manipulation

performance in previous chapters.

5.2 In-hand manipulation performance

As it is mentioned in the previous chapter, we choose the dynamical manipulation

task of lifting a ball and rotating it along a horizontal rotation axis at a target height. Our

algorithm would learn by being rewarded for both lifting and rotating. A learning trial

consisted of 2,000 episodes, split into two equal learning phases. This task is performed
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with four types of tactile information at its soft fingertips. To evaluate the effectiveness

of different tactile sensory information, we divide our work into five different curricula.

The details of the curricula are shown in Table 3.2.

To investigate the performance of our autonomous learning in-hand manipulation

using different tactile sensory information, the joint distribution of the mean ball’s height

(mm) vs. the number of completed rotations in each Monte Carlo run for the last episode

are shown in (e.g. Figure 4.5 and Figure 4.11) . Each joint distribution graph consists of

data for 60 independent Monte Carlo runs. Each Monte Carlo run is color-coded based

on the range of rewards from lowest to highest reward among all tactile conditions. The

spectrum of colors in the figures shows the measurement of rewards for different Monte

Carlo runs, where the highest reward is shown in dark red. As it mentioned earlier, the

goal is reached when the agent rotates the ball while keeping it against gravity between

height [18.75, 31.25]mm which is the duty cycle of ±%25 of that target height (25 (mm)

from the ground). This duty cycle of ±%25 of that target height indicates the green box

in Figure 4.5. The results discussed in further details in next sections for each case.

5.3 Effect of sensory information

We evaluate our algorithm performance on all curricula in the presence four different

sensory modalities. Our agent has one of four levels of tactile information available at

its fingertips: No-Tactile (i.e., null), Contact-force (detecting contact), 1D-force (normal

force) and 3D-force vector (normal plus tangential forces). The Pareto front in Fig-

ure 5.1 enables one to evaluate the difference in the effects of each tactile condition on

manipulation performance.

Pareto plots for the final performance from each curriculum highlight the divergence

in manipulation performance across tactile information are shown in Figure 5.1. Mean

final performance for all successful curricula and tactile information options. The tactile
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information available to the PPO policy (Fig. 3.3) affects the robotic hand’s ability

to learn manipulation. Surprisingly, learning happened even in the absence of tactile

information (No-tactile) and manipulation performance was not always best with 3D-

force information. Note these Pareto plots only consider those final episodes when the ball

was on average lifted to within 25% of the desired height. For complete final performance

outside of the desired height range, see Figs. 4.5 and 4.11 and Supplementary Figs. 4.2

and 4.8, which show similar trends.

Based on the results in Figure 5.1, Curriculum 5 shows that 3D-force learned to lift

best (50 counts inside the target height range); however, the 1D-force and Contact-force

are similar (with 42 counts). In contrast, No-tactile has the worst performance compared

with any other condition with tactile information (32 counts). Comparing the results

in Curriculum 3 shows that sensory information is beneficial, but interestingly tactile

sensing with Contact-force information had higher performance in terms of both rotating

and lifting the ball compared with 1D-force and 3D-force (the mean number of data points

inside the target range is 25, while it has 14 numbers of completed rounds of rotations).

Our results in all curricula show that tactile information makes a difference, although for

Curricula 2 and 4 the number of runs that learned to have a final performance within

the mean height range was small.

The results show that 3D-force tactile information at the fingertips was useful—but

not strictly necessary or always led to the best performance (Figs. 5.1, 4.5, and 4.11).

From Figure 5.1 we observe that having any tactile information (Contact-force, 1D-force,

3D-force) always leads to better performance than the case of No-tactile information.

Still, it is interesting that the agent can learn to manipulate without any tactile infor-

mation (e.g., C5).

It was surprising to us that the different options of tactile information proved to be of

secondary importance compared to curriculum. This idea was reinforced by the seminal
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work by Johansson and Westling [64, 65] demonstrating that numbing the fingerpads

with temporary anaesthetic greatly impairs fine control of grasp, as evidenced by their

once famous video showing how an adult loses the ability to light a match. Moreover,

active state estimation is a tenet of linear feedback control to optimize control actions.

Our results in Fig. 5.1 fly in the face of these longstanding notions about the critical

importance of tactile information for manipulation.

The resolution of this paradox comes from other lessons in biological and nonlinear

control in the form of switching, wait-and-act, or hybrid control [66] where the system

alternates between open- and closed-loop control. An engineering example is how adding

a ‘deadband’ around the target temperature in a thermostat eliminates chatter. A bio-

logical example is how humans perform stick-balancing where we wait for the stick to fall

over a certain amount before making a corrective movement [67]. This alternative control

approach, then, explains why continual feedback is neither necessary nor, at times, better.

Rather, intermittent Binary-contact does well for our nonlinear dynamic manipulation

case with intermittent contact between the fingertips and ball. Moreover, Normal-force

and 3D-force are not always better, and even the open-loop No-tactile control can work,

albeit worse than the others. This important result that provides evidence to revise

the role of tactile information will allow freer thinking for engineers (and bioroboticists)

creating the next generation of dexterous hands.

As it is shown in Fig. 4.14) and No-tactile being lowest (but which still learns to lift!).

However, note that lift performance and learning rates are largely equivalent across tactile

information options—with 3D-force being highest (detail in Fig. 4.14) and No-tactile

being lowest (but which still learns to lift!)
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5.4 Learning Trends

Curriculum 5 shows, on average, that lift success naturally increases upon switching

from a combined reward to one that only rewards lifting (Fig. 4.13). But average lift

success does not tell the whole story. We visually examined how individual trials within

Curriculum 5 for 3D-force responded to the switch in reward, and find that the MC

runs fall into distinct learning trends (see Fig. 5.2). Most surprisingly, the majority

(53.33%) of individual MC runs show mostly no success in lifting the ball before the

switch, even though Curriculum 5 rewards it from the start. But, after the switch

in reward, the success in lifting the ball improves quickly and dramatically (see Fig.

??). This learning trend, which we that call ‘Covert Learning’, highlights that learning

is happening but is not overtly demonstrated (even if rewarded). The other learning

trends are also interesting in their own right as they show the expected increase in lift

performance from the start.

We reviewed the learning trends in detail we find interesting trends. We see that

certain MC runs within a curriculum can exhibit ‘covert learning’ that is revealed only

after the reward function changes (Fig. 5.2).
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Figure 5.1: Pareto plots for the final performance across curricula and the four tactile
information options. Each Pareto plot shows the mean final performance for all curricula
and corresponding tactile information available to the learning policy: (a) No-tactile,
(b) Binary-contact, (c) Normal-force, and (d) 3D-force. While curriculum drives learn-
ing to distinct regions, the tactile information available to the PPO policy (Fig. 3.3)
also affects the robotic hand’s ability to learn manipulation. Interestingly, we see that
learning happened even in the absence of tactile information (a), and that manipulation
performance was not always best with 3D-force information (b-d). Note these Pareto
plots only consider those final episodes when the ball was on average lifted to within 25%
of the desired height.
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Figure 5.2: Types of ‘learners’ for Curriculum 5 with 3D-Force sensing. Out of 60
Monte Carlo runs, four distinct types of learners were visually identified: those that
after the change in reward from a combination to only lifting, a had their performance
decrease before going on to exceed the performance at the end of 1K trials (10% of
trials), b experienced a sudden increase in performance at the switch (53.33% of trials),
c continuously improved their lifting performance (13.33% of trials), or d plateaued
in their learning well within the first phase (18.33% of trials). Note that 5% of runs
experienced no learning. The shaded region in the ‘Dip and Improve After Switch’ and
‘Improve After Switch’ highlight the change in performance when the reward changes
after 1K episodes.
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Chapter 6

Conclusion

The main contributions of this work are: i) we show the importance of curriculum

learning and active sensing/exploration in learning complicated tasks of manipulation

(rotation and lifting against gravity); we extend our work by exploring the role of the

reward function used on the ability to learn a combined in-hand manipulation task; ii)

we show the significant contributions of different levels of tactile sensory information in

the combined manipulation tasks.

6.1 Learning

The data intensive nature of reinforcement learning necessitates use of simulated

environments for training model[48]. Here we show how a model-free, open-loop approach

allows autonomous learning to produce effective movements in in-hand manipulation.

Many model-free approaches use RL algorithms where control parameters are tuned

based on a reward function and extensive interactions with the environment [68, 69]. Fur-

thermore, this proposed methodology does not require analytical dynamic or kinematic

models and the learned skills generalize to novel objects with a slight loss in performance

[27, 10]. As mechanical systems begin to approximate the human-hand more faithfully
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[70, 71], reinforcement learning will be necessary for these devices to be useful. This

further follows the fact that precise prior knowledge of the system and the environment

is not usually available for dynamical tasks in the physical world [48, 72, 73]. Our au-

tonomous learning uses RL algorithms which does not use a prior model. It uses the

end-to-end proximal policy optimization (PPO), where the control parameters are tuned

based on our reward functions during each phase of the learning period. In fact, PPO

has been identified as one of the most robust approaches against reward perturbances

[56].

To enable the agent to operate in a real-world scenario, we tackled the manipulation

problem with the hand facing downwards without external support. In this setup, we

demonstrate the effect of different curricula on autonomous learning.

Comparing all curricula, we see how the curriculum drives manipulation performance.

As Curriculum 1 and 2 suggests, learning a ’new’ task only for 1,000 episodes (the second

1,000 episodes) will not allow the agent to succeed. In contrast, if we enable the agent

to explore all the avenues to achieve reward, over the 2,000 episodes, we can make the

hand do one task perfectly on its known. This result is shown in Curricula 3-5, where

we allow the agent to learn and explore all the avenues and explore the action space and

exploit the knowledge at any given time step for the first half of the designated time.

Looking at the rewards of the last episode of these three curricula through Figure 4.8

and 4.11 we see agent was able to achieve the highest rewards based on the designated

reward function for the second 1,000 episodes).

6.2 Sensory Modalities

Besides sensor systems that help the robots to structure their environment, like cam-

eras, radar sensors, etc., a sensor system on the robot’s surface that can detect mechanical

contacts of the robot with its environment is needed [74, 75]. Contact information from
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tactile sensors attached to the fingertips has been utilized for manipulation recognition

[76, 77]. For the tactile sensors applied on robots, most of the sensors are designed for

the fingertip, which measures the force or contact during manipulation task [77, 78].

We evaluate the dynamical manipulation task of lifting a ball and rotating it along

a horizontal rotation axis at a target height to check the effectiveness of different tactile

sensory information in in-hand manipulation. Although our results in all curricula show

that the dimensionality of tactile information is a determinant of success, it depends on

our goal to show which sensory condition is better than the others. For the same num-

ber of training epochs across sensory conditions, the 3D force-sensing enabled significant

improvement in learning rate and final performance compared to the null condition and

other sensory information on Curriculum 5. However, we did not find a further improve-

ment in learning rates or performance increase for this sensory condition on Curriculum

3.

6.3 Active sensing

Mastery in a manipulation task is often achieved by practice, which is performing a

task repeatedly with a specific goal in mind. Task-specific random exploration (active

sensing) enables an agent to learn the specific tasks that it would not be able to learn

otherwise [79]. Active sensing in robotics incorporates how to make decisions for the next

actions to maximize information gain and minimize costs [80]. Here, we have explored this

idea of mastering tasks by encouraging the agent to start with task-specific exploration

that would lead to active sensing in the context of autonomous robotic manipulation.

Exploring the idea of mastering a task by encouraging the agent to start with task-

specific exploration that would lead to active sensing is one of the fundamental decisions

in choosing our reward. We show that providing a curriculum that from the start rewards

rotating the ball, as opposed to lifting the ball, is necessary to learn manipulation. We
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believe this is because rewarding rotation first encourages a form of active sensing [79]

in which our agent can learn to lift the ball against gravity while rotating it at a target

height. By rewarding (and therefore encouraging) exploration of the full dynamics of

manipulation (i.e., the grasp matrix of the system [63]), the implicit model being built

approximates full rank and is, therefore, more practical. This is also perhaps analogous

to the observability and persistence of excitation in control theory [81].

In the context of Machine Learning, a human usually specifies a curriculum to be

followed by the agent where prior knowledge provides a rank ordering of the functional

components of the task based on assumed complexity. In our case, we did not specify

such rank-ordering as the agent learned autonomously without human intervention. In

retrospect, one would have thought lifting the ball by learning form closure is “simpler”

than lifting and spinning the ball, which requires force closure [8, 81]. However, we find

that exploring how to rotate the ball (a more “complex” task) seems to be, in fact, critical

to learning how to lift the ball (a “simpler” task).

Looking at the success rate (the percentage of time being spent between the targeted

height range of 18.75 and 31.25mm), we see the importance of learning to lift the ball

lies under starting to explore the environment (action space); in our designed task this

happens through the rotational task. This is being extracted by looking at all five

curricula; comparing the lifting task of the first Curriculum and curricula 3 and 5, we

see learning to lift is not applicable without any exploitation of the fingers.

6.4 Limitations, opportunities and future directions

While our work pushes the field of autonomous manipulation forward, it has some

limitations. First, our work is done in simulation. But, as with many other studies

looking to bridge the sim2real divide [48, 49], we used a realistic physics engine (i.e.,

MuJoCo) that enables future work to implement our approach in hardware. We also
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made some kinematic simplifications by using a three-fingered robotic hand (as opposed

to five), but three is the minimum number of fingers required for manipulation, and it is

common for useful robotic hands to have fewer than five fingers [27, 71]. Admittedly, we

added some stabilizing stiffness and damping to reduce the effective kinematic degrees

of freedom to keep the ball from rolling away and facilitate learning (our hand does not

move laterally). These constraints could likely be relaxed in future work at the expense

of increased run time. However, these reduced kinematic degrees of freedom do not in

themselves annul the proof-of-principle we present: a robotic hand that learned dynamic

dexterous manipulation.

We did not study the generalizability of our results to other objects (e.g., tools),

which leaves room for promising future work. Finally, our learning approach seems

to implicitly couple the tasks of rotating and lifting the ball in a way that cannot be

learned separately (rotation can be learned individually but lift cannot). While our

approach is practical and useful for dynamic manipulation, it does not solve the problem

of autonomously generating static grasps, which was not our focus. Finding a way to

bridge autonomous learning for the combined abilities of grasp and manipulation could

be an exciting adaptation of our approach to autonomous learning.
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