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ABSTRACT OF THE DISSERTATION

Visualizing Monte Carlo Error and Terminating Markov Chain Monte Carlo Simulation

by

Nathan Lane Robertson

Doctor of Philosophy, Graduate Program in Applied Statitstics
University of California, Riverside, September 2019

Dr. James M. Flegal, Chairperson

Markov chain Monte Carlo (MCMC) is a sampling technique that allows for esti-

mating features of intractable probability distributions. Output analysis of MCMC samples

aims to assess the quality of the sampler and the resulting estimates. We provide an ex-

ample based overview of current best practices using visualizations and the estimation of

features of interest using Markov chain central limit theorems. Most features of interest

are functionals of expectations or quantiles. The estimation of quantiles has thus-far been

limited to univariate theory and marginal limiting distributions, while the estimation of

expectations enjoys multivariate approaches through a joint limiting distribution. In this

work, we provide an extension to jointly estimate combinations of functionals of expecta-

tions and quantiles through a joint limiting distribution for the Monte Carlo error. We use

this limiting distribution to establish a procedure for finding sets of simultaneous intervals

forming confidence regions of approximately correct coverage probabilities. These simulta-

neous intervals motivate a class of visualizations for Monte Carlo errors for a broad class of

estimation procedures for which a multivariate normal limiting distribution holds. Finally,

we consider MCMC sample size through sequential stopping rules which terminate simula-

vi



tion once the Monte Carlo errors become suitably small. We develop a general sequential

stopping rule for combinations of expectations and quantiles from Markov chain output and

provide a simulation study to illustrate the validity.
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Chapter 1

Introduction

Markov chain Monte Carlo (MCMC) sampling is a tool to estimate features of a

distribution, π, by generating correlated samples from an approximation of π. This sce-

nario frequently arises in a Bayesian setting where models often have complex dependency

structures between parameters. A Bayesian practitioner may particularly be interested in

credible intervals for each parameter which entails the estimation of multiple quantiles.

Often, little attention is provided to the error of the estimation procedure other than to

report univariate Monte Carlo standard errors based on marginal distributions, ignoring

dependencies among parameters. An improvement is to provide confidence regions for mul-

tivariate output. However, currently there does not exist an approach for the multivariate

estimation of quantiles for the marginal distributions. Further, visualization of confidence

regions is problematic for multi-dimensional quantities as well as practical interpretation.

Current visualizations tend to highlight credible intervals of marginal distributions or pre-

diction intervals such as seen in the software “Stan” (Stan Development Team, 2018) or R

package (R Core Team, 2013) “tidybayes” (Kay, 2018).
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We aim to improve upon this “Stan”dard by providing a visualization which in-

corporates jointly estimated error in a marginal friendly interpretation. A successful visual-

ization will work for any combination of quantiles and expectations as well as highlight the

quality of the estimation. Creating this visualization requires three tasks: (i) develop our

joint limiting distribution, a general Markov chain central limit theorem (MC CLT) for the

Monte Carlo error of combinations of expectations which is transformed using a Bahadur

representation of a quantile, (ii) estimate the covariance of the distribution of our limiting

distribution and (iii) generate simultaneous confidence intervals with an overall confidence

level.

This visualization will motivate a new sequential stopping rule based on confidence

regions formed by our simultaneous intervals. We prove a general sequential stopping rule

for MCMC simulations for confidence regions satisfying certain limiting conditions. We

then specify conditions on the Markov chain and choose confidence regions which satisfy

the more general conditions. An important step in developing this sequential stopping rule

is establishing the strong consistency of any estimators present in the confidence region.

In particular, we need strongly consistent estimators for the covariance of our limiting

distribution which requires estimating two parts: the covariance of a Markov chain CLT

for expectations and a transformation matrix containing density values of the marginal

distributions of interest.
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1.1 Components for Building Visualizations

Markov chain CLTs provide a means to estimate the Monte Carlo standard er-

rors for expectations, based on the variance or covariance matrix of the Normal limiting

distribution. These standard errors may then be used to calculate confidence intervals to

assess the quality of the estimate. Jones (2004) examines various conditions that establish

the existence of a Markov Chain CLT. In particular, he examines the link between mixing

sequences and ergodicity leading to some fairly weak conditions. Vats et al. (2019) expand

upon the fairly weak polynomial ergodic condition to a multivariate setting. Doss et al.

(2014) consider the limiting distribution for the Monte Carlo error of univariate quantiles

of functionals. Under the assumption of independent identically distributed data, Ferguson

(1998) develops a joint limiting distribution for the mean and a quantile of a random vari-

able, however, this has not been extended for MCMC samples or other cases of dependent

sampling.

Quantile estimation is often performed nonparametrically through the use of an

order statistic estimator. Several techniques have been used to developed normal limiting

distributions for this estimator such as the Bahadur representation of a quantile (Bahadur,

1966) or empirical processes (Doss et al., 2014). While originally developed for independent

identically distributed (i.i.d.) random variables, the Bahadur representation has several

extensions to cases of dependent sequences such as in Ghosh (1971) and Sen (1968). Exten-

sions to stationary processes are established for uniformly mixing processes in Sen (1972)

which are weakened to strongly mixing processes in Wang et al. (2011) and Yoshihara

(1995). The conditions in Wang et al. (2011) are generally weaker than in Yoshihara (1995)
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except for an assumption that the probability the sequence repeats a value in consecutive

times is zero. This extra assumption does not hold for Metropolis-Hastings algorithms and

proves to be of limited use to our work.

Confidence regions in multivariate settings often take one of two approaches, a

region of minimum volume or simultaneous intervals on the marginal distributions. A min-

imum volume region represents the smallest set of values for which the given probability

level is attained, which takes an elliptical form in the case of a multivariate normal dis-

tribution. The location of this ellipsoid is determined by the mean vector while the shape

is determined by the covariance matrix. Simultaneous intervals are typically based upon

a Bonferroni correction which approximates the overall confidence level of independent

marginal intervals, creating a hyper-rectangular confidence region of probability at least

the overall confidence level. The location of the hyper-rectangle is determined by the mean

vector while the diagonals of the covariance matrix, the marginal variances, determine the

length of each side. The ellipsoid confidence region covers less of the support but at the

cost of having to consider contour plots to visualize. The hyper-rectangle, however, can be

visualized by looking at just the marginal plots but covers a larger portion of the support

and has an unknown overall confidence level. For this reason, we propose a method to

incorporate the covariance information to determine appropriate marginal confidence levels

yielding an overall confidence level for cases of a joint multivariate normal distribution.
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1.2 Components for Building a Sequential Stopping Rule

Several estimators have been developed for Markov chain CLT covariance matri-

ces of expectations. Many of these estimators have roots in stationary processes, where

dependency structures provide challenges to estimating these variances. The applicability

to general dependence structures makes the estimators particularly appealing in the MCMC

setting in which they may be applied under slightly different assumptions. The covariance

of our joint limiting distribution is composed of two components, a Markov chain CLT co-

variance matrix for joint expectations and a transformation matrix related to the Bahadur

representation of a quantile. We discuss the form of this matrix further in Chapter 4. To

estimate the joint expectation covariance matrix, some common families of estimators in-

clude regenerative sampling, spectral variance and batch means estimators as discussed by

Seila (1982), Vats et al. (2018), and Vats et al. (2019), respectively. Regenerative sam-

pling estimators have fallen out of favor due to modest gains over the comparably cheap

batch means estimator as discussed in Jones et al. (2006). Additionally, regenerations oc-

cur increasingly infrequently as the dimension of the chain increases requiring substantially

more samples. Spectral variance estimators tend to outperform batch means estimators in

asymptotic efficiency for certain lag windows and truncation points. Furthermore, work

has gone into developing optimal truncation points for window functions in Liu and Flegal

(2018a). The increased quality of estimation comes with a substantial increase in computa-

tional cost, however batch means estimators have similar performance when samples sizes

become large. A new family of batch means estimators, the weighted batch means estima-

tor introduced by Liu and Flegal (2018b), incorporates window functions into the batch
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means procedure trading a modest increase in computational cost for significant gains in

estimation quality. Furthermore, Vats and Flegal (2018) introduce a new window function,

the lugsail window, to address concerns of downward bias known to plague batch means

estimators. A thourough study of the performance of weighted batch means and spectral

variance estimators in Liu and Flegal (2018b) informs our decision to limit this work to the

family of weighted batch means estimators.

Assessing the standard error of quantile estimates requires estimating the density

of the corresponding quantile at said point. Several classes of density estimators have been

proposed of which kernel density estimators (Rosenblatt, 1956) are one of the most popular

and well studied. Silverman (1986) provides a review of several, but a non-exhaustive list,

of these estimators. We restrict our conversation to the class of kernel density estimators.

Particularly of interest to us is the property of strong consistency and identifying sufficient

conditions on a Markov chain. Early work by Ryzin (1969) only establishes the strong

consistency of kernel density estimators for independent data and is not sufficient for our

work. We turn to stationary process literature and the result of Meyn and Tweedie (1993)

which establishes conditions for which Markov chains may behave like a stationary process.

Takahata (1980) establishes strong consistency for univariate weakly dependent sequences

via a law of the iterated logarithm. Masry and Györfi (1987) provides multivariate density

estimation for assumption of asymptotically uncorrelated processes using mixingale theory.

Roussas (1988) establishes strong consistency under different conditions for strong mixing

processes.

The classic question of sample size determination, or stopping time, has a different

context in the case of simulated procedures. The collection of samples becomes a matter
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of computational resources and time instead of a physical collection of data. This makes

collecting additional samples to improve the certainty of estimation comparatively cheap.

Some early attempts at answering the question of whether enough samples have been col-

lected took the form of checking various diagnostics for non-convergence of the Markov

chain. Once the diagnostics fail to detect non-convergence estimation may then take place.

One of these diagnostics, the Heidelberger-Welch diagnostic Heidelberger and Welch (1983),

applies to general stationary processes of one-dimension and considers the process satisfac-

tory once the confidence interval length for a mean is below some threshold based weighted

by the magnitude of the estimate, or relative magnitude. Glynn and Whitt (1992) formal-

ize this process for fixed-width and relative magnitude procedures to parameters of general

stochastic sequences satisfying a functional central limit theorem (FCLT). This provided

the first sequential stopping rule which is applicable to MCMC as formalized for univariate

sequences in Jones et al. (2006). Flegal and Gong (2015) weight the fixed-width using the

posterior standard deviation as an improvement for Bayesian problems. Doss et al. (2014)

consider the estimation of quantiles. Early multivariate stopping rules consider termination

once each dimension of the chain has reached its stopping time and taking the largest as

provided by Gong and Flegal (2016). Vats et al. (2019) expand the univariate results to a

multivariate stopping rule for expectations based on the volume of the confidence region.

We extend the results of Vats et al. (2019) to jointly estimated expectations and quantiles

of functionals of the chain in Chapter 4.

Chapter 2 provides some background theory on Markov chains and MCMC simu-

lations needed to develop our class of visualizations and sequential stopping rule. We next

present the current state of MCMC output analysis in Chapter 3. We provide an example

7



to illustrate certain properties of MCMC samplers and a second example to serve as a guide

for what should be expected in an analysis. Chapter 4 contains the submitted paper “New

Visualizations for Monte Carlo Simulations” (Robertson et al., 2019) which develops a joint

limiting distribution for combinations of expectations and quantiles from Monte Carlo sim-

ulation and provide a class of visualizations to analyze the resulting Monte Carlo error. In

Chapter 5 we develop a sequential stopping rule based on our joint limiting distribution

and provide a simulation study as evidence for the validity of our methods. We conclude

with a discussion of future work in Chapter 6.
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Chapter 2

Markov Chains and MCMC

To facilitate our development of MCMC output analysis tools, we present some

Markov chain theory and set notation that will be used throughout this work. We review

concepts of Markov chain converge, CLTs, and current output analysis tools that will be

built upon in subsequent chapters. We conclude with a review of some common MCMC

sampling algorithms.

2.1 Markov Chain Theory

Let {Xi}∞i=1 ∈ Xd be a Harris recurrent Markov chain with invariant distribution π.

Essentially, Harris recurrence provides that any set of positive measure may be reached with

positive probability must occur infinitely often. A formal definition for Harris recurrent is

beyond the scope of this work and may be found in Meyn and Tweedie (1993). The Markov

transition kernel defines the probability of transitioning to state A given that the chain had

value x, i.e. P (x,A) = Pr{Xj+1 ∈ A|Xj = x}. The n-step transition kernel defines the

9



probability of this transition in n steps, i.e.

Pn(x,A) = Pr{Xj+n ∈ A|Xj = x}.

This transition probability only depends on the past through the state at time j. We need

a more general definition for cases where Xj is from some probability distribution instead

of a fixed value. When this initial probability measure is the invariant distribution the

process is stationary, but this is generally uncommon in MCMC applications. For an initial

probability measure λ(·) on B(X), we define

Pn(λ,A) =

∫
X
Pn(x,A)λ(dx).

The dependence upon the previous value in the chain creates a correlation structure pro-

viding challenges when making inference about π.

2.1.1 Ergodicity

Many properties about the Markov chain are characterized by the behavior of

Pn(x,A) as n→∞. The total variation norm,

TV (Pn) = lim
n→∞

||Pn(λ, ·)− π(·)|| = 2 lim
n→∞

sup
A
|Pn(x,A)− π(A)|,

measures how quickly the n-step transition kernel converges to the invariant distribution.

Bounds placed on TV (Pn) act as conditions from which much of the theory is derived.

10



Consider the bound

TV (Pn) ≤M(x)tn. (2.1)

When (2.1) holds for some t < 1 and a nonnegative bounded function M(x) the chain is

said to be uniformly ergodic. This is the strongest condition we consider but is perhaps

unreasonable to assume for general state space Markov chains. A weaker form of ergodicity,

geometrically ergodic, relaxes the condition on M(x) to merely be a non-negative function.

The last form of ergodicity we consider is the weaker polynomial ergodicity. A chain is

considered polynomial ergodic of order m when there exists a non-negative function M(x)

and m ≥ 0 such that

TV (Pn) ≤M(x)n−m. (2.2)

Uniform ergodicity implies geometric ergodicity which in turn implies polynomial ergodicity.

Hence, any results requiring polynomial ergodicity will hold for other forms. Establishing

geometric or polynomial ergodicity is often quite challenging and problem specific. Er-

godicity is established on a theoretical level often using drift and minorization conditions

(Meyn and Tweedie, 1993) and not based on the output of a chain. Geometric ergodicity

has been shown to be satisfied for many Gibbs samplers and Metropolis-Hasting algorithms

(see e.g. Acosta et al., 2014; Doss and Hobert, 2010; Hobert and Geyer, 1998; Jarner and

Hansen, 2000; Jarner and Roberts, 2002; Johnson et al., 2013; Jones and Hobert, 2004;

Jones et al., 2012; Marchev and Hobert, 2004; Roberts and Polson, 1994; Tan and Hobert,

2009), indicating that geometric ergodicity is often a reasonable assumption.
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2.1.2 Mixing Sequences

A second way to characterize the asymptotic behavior of a sequence of random

variables is through mixing conditions. These measure how quickly the dependence of

between Xk and Xk+n decays as n→∞ and provide a notion of how much stickiness exists

in a sequence. A slowly decaying dependence causes large amounts of correlation in the

sequence hindering the ability to explore the state space. By placing a notion on the rate

of decay of dependence we may develop a notion of how well the state space is explored.

Let F j+kj be the σ-algebra generated by Xj , . . . , Xj+k, σ(Xj , . . . , Xj+k), and F∞n

be the tail σ-algebra, σ(Xn, Xn+1, . . .). A sequence is considered strongly mixing, or

α−mixing, if

α(n) = sup
k≥1

sup
A∈Fk1 ,B∈F∞k+n

|P (A ∩B)− P (A)P (B)| n→∞−→ 0. (2.3)

The next mixing condition we condiser requires defining L2(F), the set of square integrable

functions over F . A sequence is considered asymptotically uncorrelated, or ρ−mixing, if

ρ(n) = sup{Cor(U, V ) : U ∈ L2(Fk1 ), V ∈ L2(F∞k+n), k ≥ 1} n→∞−→ 0. (2.4)

A sequence is considered uniformly mixing, or φ−mixing, if

φ(n) = sup
k≥1

sup
A∈Fk1 ,B∈F∞k+n

|P (B|A)− P (B)| n→∞−→ 0. (2.5)

Uniformly mixing implies asymptotically uncorrelated and asymptotically uncorrelated im-

plies strongly mixing. A summary of the relationship between various mixing conditions
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may be found in Bradley (1986, 2005). The various links between mixing conditions and

various forms of ergodicity are discussed by Jones (2004) and used to establish several con-

ditions for the existence of a Markov chain CLT. The most relevant of these results to this

work provides that a geometrically ergodic Markov chain that satisfies detailed balance is

an asymptotically uncorrelated sequence. A kernel P is said to satisfy detailed balance with

respect to π if

π(dx)P (x, dy) = π(dy)P (y, dx).

A Markov chain that satisfies detailed balance is reversible. This guaranties any transition

which occurs has a nonzero probability of occurring in reverse during the next transition.

2.2 Estimation

Frequently features of π that are of interest may be expressed as expectations or

quantiles of a function of the Markov chain {Xj}. Posterior means and variances fit into

the former while posterior credible intervals are an example of the latter.

2.2.1 Expectations

Let g : X→ Rp and θg be a feature of π such that

θg = E[g(X)] =

∫
X
g(x)π(dx). (2.6)

We may then estimate θgwith

ḡn =
n∑
i=1

g(Xi). (2.7)
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When E[|g|] < ∞, the Birkhoff ergodic theorem (Birkhoff, 1931) provides that ḡn is a

strongly consistent estimator for Eπ[ḡn] = θg, i.e. ḡn → θg with probability one. Under

certain conditions a Markov chain central limit theorem (MC CLT) holds, i.e.

√
n(ḡn − θg)

d→ N(0,Σ) (2.8)

as n → ∞ (Jones, 2004). Typically the assumptions for a Markov chain CLT consist of a

moment condition on the function g and either a mixing condition or a form of ergodicity.

For example, Vats et al. (2019) establish a CLT under the fairly week conditions there exists

a δ > 0 such that E|g|2+δ < ∞ and {Xj} is polynomial ergodic of order m > (2 + δ)/δ.

These results provide limiting distributions for moments but not quantiles of interest.

The structure of Σ is particularly noteworthy in that it accounts for the dependence

of the sampling procedure in addition to an estimate of the covariance of g(Xj). That is

Σ = Cov(g(Xj), g(Xj)) +
∞∑
i=1

[
Cov(g(Xj), g(Xj+i)) + Cov(g(Xj), g(Xj+i))

′] . (2.9)

It will be convenient to denote the first term

Σg = Cov(g(Xj), g(Xj)). (2.10)

This is the covariance that would result if the sequence g(X) were independent identically

distributed.

Several estimators has been proposed to estimate Σ (see Section 1.2). We limit our

discussion to the batch means estimator which has been shown to be a strongly consistent
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estimator with increasing batch sizes (Vats et al., 2019). Let b = b
√
nc be the batch size

equal a be the number of batches such that n = ab. Taking Y = g(X) for simplicity of

notation, the mean for the kth batch is

Ȳk(b) = b−1
b∑
t=1

Ykb+t,

while the overall mean is

Ȳ = a−1
a∑
k=1

Ȳk(b).

The batch means approach treats the mean of each batch as if it were an observation and

calculates the sample covariance matrix. The batch means estimator with batch size b is

Σ̂ =
b

a− 1

a−1∑
k=0

(Ȳk(b)− Ȳ )(Ȳk(b)− Ȳ )′ . (2.11)

2.2.2 Quantiles

Let W ∼ π, h : X→ R, and V = h(W ). We consider estimation of quantiles of V ,

the distribution of a functional on π. Letting FV and fV be the distribution and density

functions of V, the quantile is defined as

ξq = inf{v : FV (v) ≥ q}. (2.12)

This may be estimated with

ξ̂q = h(X)bnqc:n, (2.13)
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the bnqcth order statistic of h(X)i. Doss et al. (2014) establish the strong consistency of ξ̂q.

When {Xi} is polynomial ergodic of order m > 1 a MC CLT holds,

√
n(ξ̂q − ξq)

d→ N

(
0,

σ2

fV (ξq)2

)
, (2.14)

where σ2 is the variance of the MC CLT for the Monte Carlo error

1

n

n∑
i=1

I(h(Xi) > ξ̂q)− (1− q).

This Monte Carlo error is a special case of (2.8) using an indicator function as the choice of

g. The result in (2.14) has thus far only been established for a single quantile of a univariate

distribution V . When multiple quantiles from V are of interest, such as when estimating

the endpoints of a credible interval, or when quantiles from different marginal distributions,

each quantity must either be considered separately or with a multiple correction such as

Bonferroni. In Chapter 4 we develop a general joint limiting distribution for combinations

of expectations and quantiles.

2.3 Effective Sample Size

Due to the dependence of a Markov chain, the variability of the Monte Carlo error

is higher than if independent identically distributed samples were collected from π. Recall

Σg = Cov(g(X), g(X)T ). One might wish to know how many i.i.d. samples our dependent

Monte Carlo sample is equivalent to. To measure this, we consider the effective sample size
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(ESS) (Vats et al., 2019) defined as

ESS = n

(
|Σg|
|Σ|

)1/p

. (2.15)

To estimate (2.15) we must estimate Σ using an estimator such as batch means (2.11) and

Σg. The sample covariance estimator is appropriate for estimating Σg, i.e.

Σ̂g =
1

n

n∑
j=1

(Yj − Ȳ )(Yj − Ȳ )′.

The choice of n versus n−p in the denominator is largely irrelevant when n >> p as should

be the case for a reasonable number of MCMC samples.

ESS for estimating quantiles is similarly defined. Let σ2Ig = Var(I(g(X) ≤ ξq)).

Then effective sample size for quantiles reduces to the ratio of variances of the limiting

distributions for estimating the indicator functions,

ess = n
σ2Ig
σ2

. (2.16)

2.4 Sequential Stopping Rules

Consider estimating θg using simulations from the Markov chain {Xj}nj=1. Under

a Markov chain CLT the Monte Carlo error becomes arbitrarily small as n → ∞ and

simulation may stop once this error becomes suitably small. Consider an error tolerance ε

and a confidence level 1− α. Assume there exists a CLT for the Monte Carlo error ḡn − θg

and let χ2
1−α,p be the 1−α quantile of a χ2

p distribution. Then there exists a 1−α confidence
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region

CEα (n) = {ḡn : n(ḡn − θg)TΣ−1(ḡn − θg) ≤ χ2
1−α,p}. (2.17)

In practice Σ is unknown and must be estimated. Accounting for the uncertainty in esti-

mating Σ leads to an improved confidence region

CTα (n) = {ḡn : n(ḡn − θg)T Σ̂−1(ḡn − θg) ≤ T 2
1−α,p,ν(n)}, (2.18)

where the degrees of freedom ν(n) of the Hotelling’s T 2 distribution depends upon the

estimator of Σ and is an increasing function of n. Since T 2
p,ν(n)

n→∞−→ χ2
p, C

T
α (n) → CEα (n)

as n→∞. The corresponding volume of the confidence region is

Vol(CTα (n)) =
2πp/2

pΓ(p/2)

(
T 2
1−α,p,ν(n)

n

)p/2
|Σ̂|1/2, (2.19)

with Vol(CEα (n)) defined similarly.

Let K be a metric of the estimation process. Define a stopping time

t∗(ε) = inf{n : (Vol(CTα (n))1/p + a(n) ≤ εK̂}, (2.20)

where a(n) is a function a(n) = o(n−1). This stopping time, called a fixed-width relative

metric sequential stopping time, represents the smallest n such that the pth volume of

the confidence region becomes smaller than the prescribed error tolerance weighted by the

metric K. Theorem 1 from Vats et al. (2019) formalizes this under fairly weak assumptions.
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Theorem 1 Let g : X → Rp be such that EF ||g||2+δ < ∞ for some δ > 0 and let X be

an F-invariant polynomial ergodic Markov chain of order k > (1 + ε1)(1 + 2/δ) for some

ε1 > 0. If K̂ → K with probability 1 and Σ̂ → Σ with probability 1, as n → ∞, then, as

ε→ 0, t∗(ε)→∞ and Pr{θg ∈ CTα (t∗(ε))} → 1− α.

The univariate case reduces to stopping once the length of the confidence interval

becomes less than εK̂,

t∗(ε) = inf{n : 2z1−γ/2
σ̂√
n

+ a(n) ≤ εK̂},

and provides some motivation for the choice of relative metric K. The relative metric

provides a weighting of ε to determine what is considered reasonably small. When the

notion of small is known, that is for cases when ε does not need to be weighted, it may be

reasonable to consider the identity metric K = 1. Another choice of metric from operations

research literature for general stochastic simulations is the relative magnitude metric (Glynn

and Whitt, 1992; Heidelberger and Welch, 1983) where K = |θg| and | · | is the absolute

value or the Euclidean norm in higher dimensions. This choice of metric leans on the idea

that the amount of acceptable error should be related to the magnitude of the quantity of

interest. This also helps to solve the issue of different stopping times for chains sampling

distributions with different units such as millimeters versus meters. A third metrics, the

relative standard deviation metric, proposed by Flegal and Gong (2015) is motivated by

the Bayesian setting where K is chosen to be the posterior standard deviation. Vats et al.

(2019) consider a generalization setting K = σg, or K = |Σg|1/2p in the multivariate case,

to extend the metric to cases where a functional of the invariant distribution is of interest.
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This choice of metric appeals to the sense of choosing reasonably small based on how much

variance there is in the quantity of interest. Choosing K = |Σg|1/2p in (2.20) is equivalent

to terminating simulation once the ESS has reached some threshold related to ε and p (Vats

et al., 2019), providing another intuition for the reasonability of this metric.

2.5 Sampling a Markov Chain

Various algorithms exist for sampling a Markov chains with two of the most pop-

ular being the Metropolis-Hastings algorithm and the Gibbs sampler.

2.5.1 Metropolis-Hastings

The Metropolis-Hastings (MH) algorithm generates samples from a probability

distribution by simulating a draw from a proposal distribution and accepting this draw into

the sample with an acceptance probability based on the proposed value and the previous

value of the Markov chain. If the proposed value is rejected, then the previous value is taken

as the new value. Formally, let F (·|x) be the proposal distribution with density f(·|x). The

Metropolis-Hasting algorithm generates xi+1 given current state xi as follows.

1. Sample x∗ from f(·|xi)

2. Let r(xi, x
∗) = min

{
π(x∗)f(xi|x∗)
π(xi)f(x∗|xi|) , 1

}

3. Set xi+1 =


x∗ w.p. r(xi, x

∗)

xi w.p. 1− r(xi, x∗)

Since the acceptance probability includes π(·) in both the numerator and denominator the

normalizing constant cancels causing π to only need to be known up to that constant. The
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choice of proposal distribution greatly affects the quality of the sampler. More specifically,

the choice of proposal determines the mixing properties as discussed above. We illustrate

these properties in Chapter 3.

A special MH algorithm that is particularly popular is the Metropolis-Hasting

Random Walk which selects f(·|x) to be symmetric about x. Often f(·|x) is chosen to be

normal. The sampling algorithm may be rewritten in the following form.

1. Sample ε from f(·|0)

2. Set x∗ = xi + ε

3. Let r(xi, x
∗) = min

{
π(x∗)
π(xi)

, 1
}

4. Set xi+1 =


x∗ w.p. r(xi, x

∗)

xi w.p. 1− r(xi, x∗)

These types of samplers are particularly useful in that the variance of the proposal distri-

bution may be tuned to find an adequate acceptance probability. This may often be easier

than specifying new shapes as in the standard MH algorithm.

2.5.2 Gibbs Sampler

Another commonly used algorithm is the Gibbs sampler. In elaborate models

of high dimension finding an appropriate proposal distribution for a MH sampler can be

particularly challenging. The Gibbs sampler is a common choice to handle these types of

problems as it generates samples from a joint distribution by sampling from a series of

conditional distributions.
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Consider sampling from a distribution f(y), y ∈ Y1 × . . . × Ym for which each

conditional distribution fj(yj |y1, ..., yj−1, yj+1, ..., ym) may be simulated from. A sequential

scan Gibbs sampler generates sample y(i+1) given current state y(i) as follows.

1. Sample y∗1 from f1(·|y2, ..., ym)

2. Sample y∗2 from f2(·|y∗1, y3, ..., ym)

. . .

j. Sample y∗j from fj(·|y∗1, ..., y∗j−1, yj+1, ...ym)

. . .

m. Sample y∗m from fm(·|y∗1, ..., y∗m−1)

m+1. Set y(i+1) = (y∗1, ..., y
∗
m)

The order of updates for the various yj is up to the practitioner with the order often chosen

according to the influence of the starting values. The order of updates need not even be fixed

as in the case of the random scan Gibbs sampler in which y1, ..., ym are sampled in a random

order each update. The random scan is not commonly used in practice but has a place in

the theory as it satisfies detailed balance (Jones, 2004). Other variants of the Gibbs sampler

may update yj as a block of random variables when fj is multivariate. Additionally, various

sampling procedures may be used to update an individual yj such as a MH update when

f(yj | . . .) is challenging to sample from. This particular update is referred to as a Metropolis

within Gibbs update. These component wise samplers may offer superior convergence rates

over full dimensional updates (Johnson et al., 2013). Particularly, component wise updates

provide larger improvements when little correlation exists between components.
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Chapter 3

MCMC Output Analysis

The conclusions drawn from an analysis are only be as good as the MCMC sampler

the analysis is built on and the quality of estimation. To assess the quality of the sampler

and estimation we may look at the output of the sample and estimates. More specifically,

the quality of the sampler may be assessed by examining trace plots and acceptance rates

while the quality of the estimates may be assessed by examining the standard errors or

measures related to the standard errors.

We illustrate the concerns of output analysis through the following example. Let

X be a random variable distributed according to a mixture of 3 normal distributions, with

density

fX(x) = .3f1(x; 1, 2.5) + .5f2(x; 5, 4) + .2f3(x; 11, 3). (3.1)

where fj(x;µj , σ
2
j ) is the density of the jth mixture component with mean µj and variance

σ2j . We consider estimating the mean and variance of this distribution using a MH random

walk with proposal distribution N(0, γ2). A more thorough explanation of a MH sampler
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may be found in Section 2.5.1. In this case we have an analytic solution available

E[X] =

3∑
i=1

aiµi = 5,

and

Var(X) =
3∑
i=1

ai(σ
2
i + µ2i )−

(
3∑
i=1

aiµi

)2

= 15.35.

3.1 Sampler Quality

In the following we consider various settings of the MH random walk to illustrate

the usefulness of output analysis. Let γ2 be the variance of the proposal distribution and

X1 be the starting value of the Markov chain. We consider the following cases.

• Moderate Mixing/Poor Start: γ2 = 9 and X1 = 50

• Moderate Mixing/Good Start: γ2 = 9 and X1 = 0

• Poor Mixing: γ2 = 10, 000 and X1 = 0

• Good Mixing: γ2 = 100 and X1 = 0

These cases will be sufficient to illustrate what we look for in assessing the quality of output

from an MCMC sample and will be referenced in the discussion below.

3.1.1 Starting Values

In some special cases a Markov chain may be able to start with an initial value

from the invariant distribution, π, of interest. This may occur in cases for which a linchpin

sampler (Acosta et al., 2014) is available, but is generally unavailable for situations in which
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MCMC is the appropriate tool. In practice starting values must be chosen which affects

the estimates. However, these estimates will be asymptotically unbiased due to the ergodic

theorem. In this sense more samples taken may make up for a poor starting value with

the quantity of additional samples related to how extreme the poor value. A poor starting

value is a starting value in the extreme tails of the distribution away from the bulk of

the density. Figure 3.1 pictures an example of a poor and reasonable starting value. The

resulting estimates of the mean after 1,000 samples are 4.54 and 6.26 for a reasonable and

bad starting value respectively. Both estimates are reasonably far from the true value due

to the small sample size, however, the poor starting value has a noticeable effect on the

estimation as it introduces substantial finite sample bias.

“Any point you don’t mind having in a sample is a good starting point” (Charles

Geyer). While simple, these words provide a useful starting place for a discussion on

choosing a starting value. As long as a value is in the state space it should eventually be

visited given infinite samples and may be considered a reasonable starting value given the

result of Meyn and Tweedie (1993) that convergence of the Markov kernel for an initial

distribution implies convergence for every initial distribution. However, as demonstrated

in Figure 3.1 some starting values were superior to others. This occurs due to how likely

the vales are to occur compared to how many samples have been taken. Our poor starting

value causes a disproportionate amount of the sample to be in an extreme tail of the

distribution. As more samples are collected this proportion will even out over time. This

motivates choosing starting values within the bulk of the density. A posterior mode estimate

fulfills this conditions, and usually a rough maximum likelihood estimate will as well. A
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Figure 3.1: Trace plots for the first 1,000 iterations of a MH random walk sampler with
reasonable and poor starting values

26



linchpin sampler (Acosta et al., 2014) may be used to generate an initial sample achieving

a stationary process, however this is not required for the existence of a CLT and SLLN we

require. In some cases it may be more effective to run a preliminary chain to identify areas

of higher density.

3.1.2 Mixing

Another concern with any sampler are the mixing properties of the Markov chain.

These indicate how quickly and well the Markov chain explores the target distribution. The

theoretical mixing properties are further discussed in Section 2.1. Mixing properties may

also be examined visually using trace plots as in the top row of Figure 3.2. The nature of

the random walk provides two conflicting goals in wanting to accept a reasonable number

of samples while also wanting the samples to explore the state space. Large jumps in the

chain are good for exploring the state space but often have low acceptance probabilities

leading to the chain getting stuck for long periods of time, as is the case in the poor mixing

in Figure 3.2. To get a large acceptance probability the steps become very small leading

to heavy correlation in the chain. The moderate mixing example provides a case where

the steps are fairly small but still provide a reasonable exploration of the state space. The

good mixing example balances jump size with acceptance probability to provide quicker

exploration of the state space. In our good mixing example the acceptance probability is

very close to the theoretical optimal value for a one dimensional chain of .44 (Roberts and

Rosenthal, 2001). A discussion on optimal acceptance probabilities for MH random walk

samplers may be found in Rosenthal’s chapter of Brooks et al. (2010). The bottom row

of Figure 3.2 provides the density estimates based on each chain with the actual density
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superimposed in red. The results provide another visual of the quality of mixing with the

poor mixing not attaining an adequate view of the target distribution while the moderate

mixing provides a reasonable fit.

Another tool to visualize mixing is through an auto-correlation plot as seen in the

middle row of Figure 3.2. Auto-correlation for lag k is the correlation between Xj and Xj+k,

and the auto-correlation plot plots the estimated auto-correlation for increasing lag values.

Since mixing is measure of how quickly the dependence fades between values early and late

in the chain, a chain with good mixing should exhibit rapidly decaying auto-correlation and

approach 0. Here we see the auto-correlation decreasing most rapidly for our good mixing

example while our poor mixing example has the slowest decay.

3.1.3 Burn-In

The practice of discarding early iterations of the Markov chain is known as burn-in.

This practice lacks a theoretical justification as it is just a method of specifying an initial

distribution. Burn-in does not provide stationarity of the Markov chain and should not be

viewed as such. While the theory says it is unnecessary, Figure 3.1 provides an example of

when burn-in may be helpful. The estimate based on the poor starting value is closer to

truth when omitting the first 50 samples. However, discarding the initial 50 samples may

have been avoided by picking a better starting value such as in the reasonable starting value

plot. In practice, burn-in may be reasonable to consider when it is more efficient to run the

chain for extra iterations than to perform a quick starting value search.

28



0 200 400 600 800 1000

0
5

10
15

Poor Mixing

iteration

X

acceptance prob = 0.049

0 200 400 600 800 1000

0
5

10
15

Moderate Mixing

iteration

X

acceptance prob = 0.767

0 200 400 600 800 1000

0
5

10
15

Good Mixing

iteration

X

acceptance prob = 0.436

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Poor Mixing

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Moderate Mixing

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Good Mixing

0 5 10 15

0.
00

0.
05

0.
10

0.
15

Poor Mixing

x

de
ns

ity

0 5 10 15

0.
00

0.
05

0.
10

0.
15

Moderate Mixing

x

de
ns

ity

0 5 10 15

0.
00

0.
05

0.
10

0.
15

Good Mixing

x

de
ns

ity

Figure 3.2: Top: trace plots, Middle: auto-correlation plots, Bottom: density estimates for
the first 1,000 iterations of a MH random walk for various proposal distributions
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3.2 Sampling Termination

To address the question of when have enough samples been collected, we turn to

sequential stopping rules and effective sample sizes. Vats et al. (2019) established the con-

nection between termination based on a fixed-volume relative standard deviation sequential

stopping rule and termination once the effective sample size has reached some prespecified

threshold. Each of these quantities is dependent upon the standard errors of the estimate.

We set ε = .05, see (2.20), and a 95% confidence level, which for a two parameter

estimation and a relative standard deviation corresponds to an effective sample size (2.15)

of 7,529. Our procedure is as follows. Take 10,000 initial samples and calculate the stopping

criteria. If the stopping criteria is not met, collect 10,000 additional samples and recalculate

the stopping criteria. This is repeated until the stopping criteria is met at which time the

total number of samples taken is considered the stopping time. Figure 3.3 depicts the

confidence region calculated after each 10,000 samples for various samplers. Each ellipse is

colored corresponding to how close the number of samples is to the stopping time with green

representing the first check. The colors gradual shift to blue the closer to the stopping time.

The ellipse corresponding to the stopping time is drawn in red. The lone black point marks

the true parameter values being estimated. The chains with good and moderate mixing

stop relatively quickly while the poor mixing chain requires substantially more simulation

effort. The starting values also demonstrate an effect on the confidence region progression

with very large confidence regions initially. Figure 3.4 places all the confidence regions at

stopping time in one frame. We see that the confidence regions are all of a similar size with
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Figure 3.3: Confidence regions over increasing sample size for various samplers
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Figure 3.5: Stopping criteria over increasing sample size for various samplers
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387 182 244 600 627 332 418 300
798 584 660 39 274 174 50 34
1895 158 974 345 1755 1752 473 81
954 1407 230 464 380 131 1205

Table 3.1: LCD Projector lifetimes in projection hours

variations arising for two main reasons. The first reason is each chain has to estimate the

relative standard deviation metric which takes the form of the 2pth root of the determinate

of Σg. The second reason is due to the number of samples collected between stopping time

checks. This is most visible in the good mixing case which is close to the stopping criteria by

30,000 but is next checked at 40,000 when it might have stopped around 32,000 with smaller

increments. The stopping time criteria progression in terms of volume and ESS is given in

Figure 3.5. Figure 3.6 tracks the estimation of each parameter over time. Unsurprisingly,

the poorly mixing chain stabilizes the slowest and still maintains a comparatively large error

in its mean estimate. This is also noticeable in the confidence region plot in Figure 3.3 where

the truth is not captured in the confidence region.

3.3 Reliability Example

We consider fitting a Weibull model of LCD projector lifetimes as discussed in

Hamada et al. (2008) with data presented in Table 3.1. In particular, we consider the mean

time to failure and the reliability after 1,500 hours of use.
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Figure 3.6: Parameter estimates over increasing sample size until stopping time for various
samplers
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Let Ti be the failure time of the ith subject in hours. We consider the model

Ti|λ, β ∼Weibull(λ, β) (3.2)

λ ∼ Gamma(αλ = 2.5, θλ = 2350) (3.3)

β ∼ Gamma(αβ = 1, θβ = 1) (3.4)

with densities

f(ti|λ, β) = λβ(t)β−1 exp{−λ(t)β} (3.5)

f(λ) =
θαλλ

Γ(αλ)
λαλ−1 exp{−θλλ} (3.6)

f(β) =
θ
αβ
β

Γ(αβ)
βαβ−1 exp{−θββ}. (3.7)

The Weibull lifetimes yield a closed form expression for the mean time to failure

(MTTF)

MTTF = λ−1/βΓ

(
β + 1

β

)
, (3.8)

and reliability function

RT (t) = 1− FT (t) = exp{−λtβ}. (3.9)

To estimate these quantities, we choose the function g : R+ → R+ × R+ such that

g(T ) =

λ−1/βΓ
(
β+1
β

)
exp{−λ1500β}

 . (3.10)
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3.3.1 Sampling

In order to sample from our approximate posterior we take a Gibbs Sampler with

a Metropolis within Gibbs update for β. We then update λ by drawing from the conditional

distribution

λ|β, t ∼ Gamma(αλ + n, θλ +
∑

tβi ). (3.11)

To simulate β, we consider a Metropolis-Hastings random walk with increment distribution

N(0, .005). This increment distribution was choosen as it lead to an acceptance probability

≈ .4, which is near the optimal rate for a one-dimensional MH random walk. As we are

using a Gibbs sampler which samples from conditional distributions, we only need to specify

a starting value for β. We may then sample λ as it is independent of the previous λ value

conditional on the current β value. We set an initial sample size of 10,000 and a starting

value β = 1.

We start by examining the trace plots of λ and β in Figure 3.7. The chain appears

to be mixing fairly well as the samples appear to traverse the distribution in relatively

few samples. Additionally, the starting value chosen for β appears to be well within an

area of high density and seems reasonable. We next consider the auto-correlation within

the chain in Figure 3.8. There is a large amount of lag correlation in each parameter.

The correlation fades somewhat steadily indicating that the estimates should be reasonable

provided the sample size is appropriately large. We are however interested in functions

of these parameters and may be interested in the auto-correlation for the transformed

samples. Here the auto-correlation decays quickly as illustrated in Figure 3.9. Also of

37



0 2000 4000 6000 8000 10000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
 λ Trace Plot

iteration

 λ

0 2000 4000 6000 8000 10000

0.
9

1.
0

1.
1

1.
2

1.
3

 β Trace Plot

iteration

 β

Acceptance Probability = 0.407

Figure 3.7: Trace plots of 10,000 MCMC samples for λ and β
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Figure 3.9: ACF plots for MTTF and R(1500)
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Figure 3.10: Cross Correlation plot of MTTF and R(1500)

interest to us is the cross-correlation between MTTF and RT (1500) in Figure 3.10. Cross-

correlation measures the lag correlation between two sequences of random variables, in this

case MTTF and R(1500). The two quantities exhibit small amounts of lag correlation

but extremely high correlation between paired terms, or g(Xi) = (g1(Xi), g2(Xi)). This

indicates information about MTTF is highly informative to R(1500) and that the elliptical

confidence region orientation will be nearly 45◦.

3.3.2 Stopping and Estimation

We now run the sampler for batches of 5,000 samples at a time until the estimated

ESS surpasses 7529 which corresponds to a 95% confidence level and ε = .05. This occurs

after 55,000 samples and yields the estimates MTTF = 597.658 with standard error .654

and RT (1500) = .0737 with standard error .00042. The final estimated effective sample size
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is 7840. The confidence region and ESS progression are pictured in Figure 3.11. We may

conclude that the mean time to failure for a LCD projector is just short of 600 and that it

is unlikely for it to last at least 1,500 hours.
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Chapter 4

Monte Carlo Visualizations

The following is from the submitted paper “New Visualizations for Monte Carlo

Simulations” Robertson et al. (2019).

4.1 Introduction

The analysis of output obtained from a Monte Carlo simulation is an essential

part of ensuring reliable simulation studies. We propose new visualization tools based on

simultaneous confidence intervals with a desired confidence level, which are narrower than

conservative approaches (e.g. Bonferonni). Our focus is on Monte Carlo settings including

sampling independent and identically distributed (i.i.d.) random variables and correlated

sampling of random variables arising from strongly mixing sequences or Markov chain Monte

Carlo (MCMC). However, the conditions we require allows our approach to be used more

broadly.
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Suppose possibly correlated Monte Carlo samples are used to estimate features of

a distribution. This scenario frequently arises in physical and mathematical problems when

other approaches are intractable. Typically, the interest is in estimating several parame-

ters simultaneously, which may include both expectations and quantiles. Further, there is

often dependence between the parameters. For example, simulation studies often compare

statistical techniques or models using i.i.d. replications to estimate multiple quantities si-

multaneously (e.g. estimation error and prediction error). Alternatively, a Bayesian may be

interested in estimating multiple posterior means along with credible intervals simultane-

ously.

Due to variability in repeated simulations, it is imperative to include estimated

simulation uncertainty with feature estimates to give a sense of the simulation’s quality

and reliability. Reporting simulation uncertainty usually amounts to reporting Monte Carlo

standard errors or confidence intervals. We note reporting only the Monte Carlo sample size

(or effective sample size) does not, in general, provide the necessary indication of simulation

uncertainty; see Flegal et al. (2008) and Koehler et al. (2009) for additional discussion.

When standard errors are reported, they are almost always univariate, ignoring

multiplicity and dependence among parameters. One can address this by providing mul-

tivariate confidence regions when estimating expectations Vats et al. (2018); Vats et al.

(2019), but this does not address the estimation of quantiles or the simultaneous estimation

of means and quantiles. More importantly, visualization and interpretation of confidence

regions is problematic for multi-dimensional quantities. Most current visualizations ignore

Monte Carlo uncertainty altogether and report quantities from empirical marginal distri-

butions, e.g., by using sample boxplots. Software such as Stan (Stan Development Team,
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2018) and tidybayes (Kay, 2018) suffer from the same drawbacks when reporting credible

intervals or prediction intervals. We provide a flexible and novel class of visualizations for

assessing the quality of simultaneous estimation of means and quantiles from Monte Carlo

simulations.

Consider a motivating example estimating the mean and (.10, .90)-quantiles for

a three component mixture of normal densities. We simulate draws using a Metropolis-

Hastings (MH) random walk to estimate the 3-dimensional quantity of interest and its

corresponding 3 × 3 asymptotic covariance matrix. Figure 4.1 shows 90% simultaneous

confidence intervals superimposed on a plot containing an empirical density estimate. Fig-

ure 4.1 indicates substantial uncertainty around the estimates when only 1,000 samples are

drawn and that 50,000 samples provide far more certainty. A closer examination reveals

that the confidence regions displayed around each quantity of interest have different lengths.

Figure 4.1 enables practitioners to visualize simultaneous simulation uncertainty. It clearly

illustrates both the variability of the distribution, π, and the uncertainty in estimation from

using a Monte Carlo simulation without overemphasizing point estimates and hence follows

suggested practice (see e.g. Shubin, 2015). Our visualization tools apply much more broadly

than the motivating example in Figure 4.1. For example, one can consider more than one

parameter, additional means and quantiles, or even boxplots. We illustrate these in a series

of examples, but many other uses of our methodology are possible.

The techniques proposed here provide simultaneous intervals for any combination

of quantiles and expectations. That is, the parameters of interest will be in their respective

confidence intervals simultaneously with the desired level of significance, say 1 − α. It
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Figure 4.1: Visualization of simultaneous uncertainty bounds for the mean and (.10, .90)-
quantiles.
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is important to note that our results are neither pointwise intervals each having coverage

probability 1−α nor conservative simultaneous intervals (e.g. Bonferonni) where the overall

coverage probability often greatly exceeds 1− α.

To construct simultaneous confidence intervals with the desired level of signifi-

cance, we propose a parametric approach that utilizes joint asymptotic normality for the

Monte Carlo error of expectations and quantiles. To this end, our first result establishes

asymptotic normality of sample means and quantiles where we also provide estimators for

the covariance matrix of the asymptotic normal distribution. Our result holds for settings

where a strong law, a central limit theorem (CLT) for sample means, and a Bahadur (1966)

quantile representation hold. We illustrate sufficient conditions for i.i.d. sampling, strongly

mixing processes, and Markov chain sampling. Therefore, techniques described here are

widely applicable.

Given joint asymptotic normality, one could construct marginal confidence inter-

vals, conservative simultaneous intervals, or confidence regions with 1−α coverage based on

an ellipsoid. However, each of these suffer from drawbacks mentioned previously. Instead,

we construct simultaneous intervals using joint asymptotic normality to obtain a 1 − α

confidence hyper-rectangle. As we illustrate later, our algorithm reduces to a univariate op-

timization problem. These simultaneous intervals form the building blocks for the proposed

visualization techniques.

We implement our methodology and visualizations in three examples. Our first

example continues the three component mixture of normals. Since the truth is known in

this example, we assess finite sample performance of simultaneous confidence intervals by

comparing coverage probabilities with other univariate and multivariate methods. This
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Monte Carlo simulation study illustrates the utility of our visualization tools. Our second

example considers another Monte Carlo simulation study comparing estimation error for

different regression methods, where we equip the standard side-by-side boxplots with simul-

taneous confidence intervals. The resulting plot is especially useful in indicating whether

sufficient Monte Carlo replications have been run. Our third example illustrates a couple

of different marginal-friendly visualizations for Bayesian inference on two sets of features

from a posterior distribution.

The remainder is organized as follows. In Section 4.2, we present the joint asymp-

totic distribution of sample means and quantiles for both independent and dependent se-

quences. Section 4.3 presents a univariate optimization method for obtaining simultaneous

confidence intervals. Section 4.4 presents example visualizations for the three component

mixture of normals, two Monte Carlo simulations studies, and a Bayesian analysis. We

conclude with a discussion in Section 4.5.

4.2 Joint asymptotic distribution

Consider a probability distribution, π, with support X ⊆ Rd, d ≥ 1. We develop a

joint asymptotic distribution for the estimators of p1 expectations and p2 quantiles associ-

ated with π using a process X = {X1, X2, . . . }. We will be more specific below about what

must be assumed about X.

First, suppose g : X→ Rp1 and consider estimating p1 expectations

θg = Eπ [g(X)] =

∫
X
g(x)π(dx) .
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We assume that with probability one, as n→∞,

ḡn =
1

n

n∑
j=1

g(Xj)→ θg (4.1)

and that the sampling distribution for the Monte Carlo error, ḡn − θg, can be obtained via

a CLT. That is, there exists a p1 × p1 positive definite matrix Σg such that, as n→∞,

√
n(ḡn − θg)

d→ Np(0,Σg) . (4.2)

The formulation and estimation of Σg will be discussed in detail later.

Now consider estimating p2 quantiles associated with π. These quantiles could

be with respect to any functional of X and not merely the components of X or g(X).

Unfortunately, this level of generality leads to somewhat cumbersome notation. Define a

function h : X → Rp2 such that h(X) = (h1(X), . . . , hp2(X))′ where each hi(X) represents

some functional of interest. Further, define Q = (q1, . . . , qp2)′ where qi is the desired quantile

from hi(X). We note that two functionals hi(X) and hj(X) may be the same, as it is often

the case that multiple quantiles of the same functional are being estimated. For V = h(X),

the p2 quantiles of interest are associated with marginal distribution functions of V , say

Fhi(v), which we assume are absolutely continuous with continuous densities fhi(v). Finally,

define the qi-quantile associated with Fhi as

ξqi = F−1hi
(qi) = inf{v : Fhi(v) ≥ qi},
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where our interest is in estimating the vector of p2 quantiles denoted

φ =
(
ξq1 , . . . , ξqp2

)′
.

Estimation is straightforward using marginal order statistics from h(X). That is, let ξ̂qi =

hi(X)dnqie:n be the dnqieth order statistic of hi(X) and denote the vector of p2 estimated

quantiles as

φ̂n =
(
ξ̂q1 , . . . , ξ̂qp2

)′
.

A strong law for estimators of Fhi(v) is enough to ensure φ̂n → φ as n→∞ with probability

one (see e.g. Doss et al., 2014; Serfling, 1981).

The joint asymptotic distribution for p1 expectations and p2 quantiles can be estab-

lished using the Bahadur quantile representation. To this end, define empirical distributions

for Fhi as

F̄hi(v) =
1

n

n∑
j=1

I(hi(Xj) ≤ v),

with vectorized representation

F̄h(v) =
(
F̄h1(v1), . . . , F̄hp2 (vp2)

)′
.

Since probabilities can be expressed as expectations of indicator functions, the strong law

ensures that, as n → ∞, F̄h(φ) → Q with probability one. Further, the CLT at (4.2) can
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be re-expressed as

√
n


 ḡn

1− F̄h(φ)

−
 θg

1−Q


 d→ Np1+p2

0,Σ =

 Σg Σgh

Σhg Σh


 (4.3)

as n→∞, where Σ and Σh are positive definite covariance matrices, and Σgh = Σ′hg are the

p1×p2 cross-covariance matrices. Next, consider the Bahadur (1966) quantile representation

ξ̂qi = ξqi +

(
1− F̄hi(ξqi)

)
− (1− qi)

fhi(ξqi)
+ rn,qi , (4.4)

where rn,qi is op(n
−1/2). Then the joint distribution for estimation of p1 expectations and

p2 quantiles is established in the following theorem.

Theorem 2 Suppose a strong law, CLT, and Bahadur quantile representation hold as at

(4.1), (4.3), and (4.4), respectively. Let Ah be a p2 × p2 diagonal matrix with ith diagonal

elements fhi(ξqi). If

Λ =

 Ip1 0p1×p2

0p2×p1 Ah

 ,

then, as n→∞,

√
n

ḡn − θg
φ̂n − φ

 d→ N
(
0,Λ−1ΣΛ−1

)
. (4.5)

Proof. Let Rn =
(
rn,q1 , . . . , rn,qp2

)′
, then by (4.4),

(
1− F̄h(φ)

)
− (1−Q) = Ah

(
φ̂n − φ

)
+AhRn

P→ Ah

(
φ̂n − φ

)
. (4.6)
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Combining (4.3) and (4.6) we have

√
n


 ḡn

1− F̄h(φ)

−
 θg

1−Q


 =

√
n

 ḡn − θg

Ah

(
φ̂n − φ

)
+ op(1)

=
√
nΛ

ḡn − θg
φ̂n − φ

+ op(1).

Using Theorem 2 requires estimation of Λ−1 and Σ. Since Λ is a diagonal matrix

with non-zero diagonals, its inverse Λ−1 is readily available. Then kernel density estimators

with a Gaussian kernel can be used to estimate fhi(ξ̂qi), and hence estimate Λ. The matrix Σ

requires more specific attention since i.i.d. and dependent sampling schemes yield different

structures of Σ. We discuss these differences in the next two sections, both of which are

implemented in R as part of the supplementary material.

4.2.1 Independent sequences

Suppose X = {X1, X2, . . . } are i.i.d. realizations from π. The strong law and

CLT hold for estimating θg provided, Eπ‖g‖ < ∞ and Eπ‖g‖2 < ∞, respectively. Since

|F̄h(·)| ≤ 1, these conditions also ensure the joint distribution at (4.3). The Bahadur quantile

representation at (4.6) requires 0 < fhi(ξqi) < ∞ and continuity of fhi in a neighborhood

of ξqi for all i (Ghosh, 1971). This is weaker than our prior assumption that Fhi(v) is

absolutely continuous with continuous density fhi(v), which is required for more general

processes.
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Joint asymptotic distributions for i.i.d. sampling have received substantial atten-

tion. Laplace found the joint asymptotic distribution of the sample mean and the sample

median (Stigler, 1973). Ferguson (1998) provides a nice derivation for a sample mean and an

arbitrary quantile along with an expression of the covariance (also see Lin et al., 1980). This

result can be generalized to sample means and arbitrary quantiles associated with distinct

marginal random variables. Babu and Rao (1988) provide an expression of the covariance

between two quantiles. These results yield an exact, albeit complicated, expression for

Λ−1ΣΛ−1 from (4.5). Suppose Yj =
(
g(Xj), I(h(Xj) > φ̂n)

)′
, then our R implementation

estimates Σ by the sample covariance of {Y1, Y2, . . . , Yn}.

4.2.2 Dependent sequences

This section provides conditions for the strong law, CLT, and Bahadur quantile

representation when X = {X1, X2, . . . } is a dependent sequence. Specifically, we consider a

stationary strongly mixing (or α-mixing) setting and its connection to MCMC simulations.

The discussion here is not exhaustive and does not provide minimal known conditions; see

Bradley (1986, 2005) and Jones (2004) for more information.

The strong law holds for estimating θg, provided Eπ‖g‖ < ∞ and X is strongly

mixing (Blum and Hanson, 1960). Since Harris ergodic Markov chains are strongly mixing,

the strong law holds under the same moment conditions (Jones, 2004; Meyn and Tweedie,

2009). Ibragimov (1962) provides a CLT if there exists a δ > 0 such that Eπ‖g‖2+δ < ∞

and X mixes sufficiently fast. Corollary 2 of Jones (2004) (using additional results from

Ibragimov and Linnik, 1971) provides a CLT for geometrically and polynomial ergodic

Markov chains. Yoshihara (1995) provides the Bahadur quantile representation at (4.6)
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when Fhi(v) is absolutely continuous with continuous density fhi(v) such that 0 < fhi(ξqi) <

∞ and X mixes sufficiently fast. Such a mixing condition holds for polynomial ergodic

Markov chains (Jones, 2004). Wang et al. (2011) weakens these mixing conditions, but

their Bahadur quantile representation is not applicable for MH algorithms.

Recall that Yj =
(
g(Xj), I(h(Xj) > φ̂)

)′
. For a stationary strongly mixing se-

quence, an expression for Σ is

Σ = Cov(Yj , Yj) +

∞∑
i=1

[
Cov(Yj , Yj+i) + Cov(Yj , Yj+i)

′] . (4.7)

Estimation of Σ at (4.7) is a well studied problem and may be accomplished using batch

means (Chen and Seila, 1987; Vats et al., 2019), weighted batch means (Liu and Flegal,

2018b), spectral variance (Andrews, 1991; Priestley, 1981; Vats et al., 2018), initial sequence

(Dai and Jones, 2017), recursive (Chan and Yau, 2017) or regenerative sampling estimators

(Hobert et al., 2002; Seila, 1982).

Due to computational simplicity we restrict our attention to batch means estima-

tors with batch size equal to b
√
nc. Let n = ab where a is the number of batches and b is

the batch size. The mean for the kth batch is Ȳk(b) = b−1
∑b

t=1 Ykb+t and the overall mean

is Ȳ = a−1
∑a

k=1 Ȳk(b). Then the batch means estimator with batch size b is

Σ̂ =
b

a− 1

a−1∑
k=0

(Ȳk(b)− Ȳ )(Ȳk(b)− Ȳ )′ .
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4.3 Simultaneous confidence intervals

We now develop simultaneous confidence intervals for the p-dimensional vector

(θg, φ)′ having a 1 − α coverage level. The general procedure will use lower and upper

bounds on the confidence region and search over possible values between.

Confidence regions in multivariate settings often take one of two approaches, a

region of minimum volume or intervals based on marginal distributions. A minimum volume

region takes an elliptical form for a limiting multivariate normal distribution. The location

of this ellipsoid is determined by the mean vector while the shape is determined by the

eigenvalues and eigenvectors of the covariance matrix. Unfortunately, visualizing an ellipsoid

is challenging when p ≥ 4, hence they are rarely presented in Monte Carlo output analysis. It

is more common to report confidence intervals based on the marginal distributions creating

a hyper-rectangular confidence region. The location of the hyper-rectangle is determined by

the mean vector while the diagonals of the covariance matrix, i.e. the marginal variances,

determine the length of each side. The popularity of hyper-rectangles stems from the

fact they can be easily reported and visualized. We improve hyper-rectangular confidence

regions by incorporating the full covariance information to determine appropriate marginal

confidence levels yielding a simultaneous confidence level of 1− α.

First, consider a hyper-rectangular confidence region based on marginal intervals

each with confidence level 1− α, i.e. intervals not adjusted for multiplicity. Denote such a

region as CLBα . If the random variables, (ḡn, φ̂n), are perfectly correlated, this will yield the

correct overall coverage level while yielding undercoverage in any other case. The region

CLBα will act as the lower bound for our coverage level. We consider Bonferroni corrected
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simultaneous intervals as an upper bound, denoted CUBα . If all components of (ḡn, φ̂n)

are uncorrelated, CUBα yields the approximately correct overall coverage level. However,

overcoverage occurs in any other case. Assuming a fixed estimate of Λ−1ΣΛ−1, intervals of

these forms maintain a constant aspect ratio in the axes. That is, the ratio of the lengths

of the intervals in CLBα and CUBα is the same for all components. This property allows

searching for a hyper-rectangular confidence region between CLBα and CUBα with the correct

confidence level 1−α to reduce to a one-dimensional line search. A sketch of two-dimensional

confidence regions and the appropriate line search is pictured in Figure 4.2.
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Figure 4.2: Plot of CLBα (blue) and CUBα (red) from a 90% confidence region for a bivariate
normal distribution with component variances 9 and 4. The black line in the first quadrant
indicates the potential search values to achieve the desired overall coverage level.

Consider a hyper-rectangular confidence region CSIα (z) with critical value z con-

structed using estimators of Λ−1ΣΛ−1 described in Section 4.2. We are intersted in P (X ∈

CSIα (z)) where X is approximately from a multivariate normal distribution with covariance

matrix Λ̂−1Σ̂Λ̂−1. For CLBα = CSIα (z1−α/2), we have P (X ∈ CLBα ) ≤ (1 − α) and for

CUBα = CSIα (z1−α/2p), we have P (X ∈ CUBα ) ≥ (1 − α). Since P (X ∈ CSIα (z)) is strictly

increasing as z increases, we can use the bisection method between z1−α/2 and z1−α/2p to

find z∗ such that P (X ∈ CSIα (z∗)) ≈ (1− α).
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The solution using the bisection method will be up to some error tolerance ε =

P (X ∈ CSIα (z∗)) − (1 − α). The choice of ε deserves some care depending on how P (X ∈

CSIα (z)) is calculated. We rely on the function pmvnorm from the R package mvtnorm (Genz

et al., 2018) which provides an error bound on the probability calculated. We conducted

several simulations varying covariance, dimension, and probability values. The largest error

recorded was approximately .002 with most errors less than .001. Results from this study

are available upon request. We recommend setting ε = .001 or ε = .002.

4.4 Example visualizations

This section demonstrates the flexibility of our class of visualizations in various

Monte Carlo simulation settings. In each example, we identify a combination of means and

quantiles of interest, obtain 1−α level simultaneous confidence intervals, and integrate the

intervals within a standard plot. The full R code is available as part of the supplementary

material to ensure reproducibility of simulations and plots presented below.

4.4.1 Mixture of normal distributions

This section provides details for the mixture of normal distributions example from

the introduction. In the subsequent section we will demonstrate the accuracy of our proce-

dure by estimating coverage probabilities via a Monte Carlo simulation. Let X be a random

variable distributed according to a mixture of 3 normal distributions, with density

fX(x) = .3f1(x; 1, 2.5) + .5f2(x; 5, 4) + .2f3(x; 11, 3). (4.8)
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where fj(x;µj , σ
2
j ) is the density of the jth mixture component with mean µj and variance

σ2j . We consider simultaneous estimation of the mean, .10 quantile, and .90 quantile denoted

µ, ξ.10, and ξ.90, respectively. Specifically, we have (θg, φ)′ = (µ, ξ.10, ξ.90) from (4.5). If fX

is a posterior density, then (ξ.10, ξ.90) would be characterized as an 80% credible interval.

We collect i.i.d. samples from (4.8) and estimate (θg, φ)′ and Λ−1ΣΛ−1 as described

in Section 4.2. We then calculate CSIα (z∗) at the 90% confidence level and estimate the

density to create our visualization in the top row of Figure 4.3. The estimates of (θg, φ)′

are represented by purple lines with the blue region around each estimate representing

the simultaneous simulation uncertainty. As the number of samples increases, simulation

uncertainty decreases. Another point of interest is in the different amount of simulation

uncertainty surrounding ξ.10 and ξ.90. The shape of the density is asymmetric, thus the two

quantiles occur at different density values. This affects the value of Λ−1 and contributes to

the different lengths of the error regions around each estimate.

To illustrate our methods for a dependent sampling case we use a random walk

MH sampler with proposal distribution N(0, 9). We estimate (θg, φ)′ and Λ−1ΣΛ−1 as

described in Section 4.2. Simultaneous confidence intervals are presented in the bottom row

of Figure 4.3 where the MCMC plots contain notably more simulation uncertainty than the

i.i.d. case. This occurs due to within chain correlation captured by the infinite sum at (4.7).

One measure of this is effective sample size (ESS), which estimates how many i.i.d. samples

a correlated sample is equivalent to. Our MH sampler had an ESS (Vats et al., 2019) to

n ratio of about .2, hence it is unsurprising the i.i.d. n = 10, 000 and MCMC n = 50, 000

plots in Figure 4.3 illustrate similar levels of simulation uncertainty.
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Figure 4.3: Simultaneous 90% confidence intervals of the mean, .10 quantile, and .90 quantile
from a mixture of normal distributions.
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4.4.2 Coverage probabilities

This section continues the mixture normal distributions where we illustrate two

points. First, we demonstrate simultaneous confidence intervals CSIα (z∗) have the correct

coverage probability in finite samples via a Monte Carlo simulation. Second, we illustrate

the utility of our visualization tools for this Monte Carlo simulation.

To examine the coverage properties of our estimating procedure, n i.i.d. samples

are again collected from (4.8) to estimate (θg, φ)′. Using the same simulated data, simulta-

neous confidence intervals CSIα (z∗), uncorrected marginal intervals CLBα , and simultaneous

Bonferonni intervals CUBα are calculated at the 80% and 90% confidence levels for which

we record whether each region contains the true value. The true value of θg = µ is ex-

pressible as the sum of each mixture mean multiplied by the mixture probability yielding

µ = 5. To calculate φ = (ξ.10, ξ.90), a numerical optimization technique may be used to

integrate
∫ y
−∞ fX(x)dx over values of y until the desired probability is found. We use the

integrate function in R and found ξ.10 = .2544116 and ξ.90 = 11.0143117 with absolute error

less than 2.5e-6. Thus, we have six binary outcomes, one for each region and confidence

level combination, which are naturally correlated since we are using the same simulated

data. We replicate this sampling scheme 2,000 times to create a Monte Carlo sample of

six Bernoulli estimates based on the n samples. We then calculate simultaneous intervals,

using Theorem 2, with overall 95% confidence level and plot the results in the top row of

Figure 4.4. This procedure was repeated for n = 500, 1000, 5000, and 10000.

Within each plotting window, Figure 4.4 shows observed coverage probabilities

for the uncorrected marginal intervals CLBα , simultaneous confidence intervals CSIα (z∗), and
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Figure 4.4: Simultaneous 95% confidence intervals for coverage probabilities based on 2,000
replications comparing uncorrected marginal intervals CLBα , simultaneous confidence inter-
vals CSIα (z∗), and simultaneous Bonferonni intervals CUBα . Blue intervals with a circle and
dark red intervals with a square correspond to .9 and .8 nominal levels, respectively.
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simultaneous Bonferonni intervals CUBα from left to right. Blue intervals around a circle

and drak red intervals around a square correspond to .9 and .8 nominal levels, respectively.

Figure 4.4 also contains dashed lines for the .9 and .8 target nominal levels. Clearly, CLBα

yields significant undercoverage while failing to ever capture the nominal coverage proba-

bility within any of its interval estimates. For CSIα (z∗), the confidence intervals contain the

nominal level as the sample size increases illustrating simultaneous intervals yield coverage

close to the nominal level. Bonferonni intervals, CUBα , approach a value which overesti-

mates the nominal level. This overcoverage is relatively small since the adjustment is based

on a small number of quantities. However, estimation procedures of higher dimensionality

will correspond to more conservative estimates for the upper bound. Usually in a Monte

Carlo simulation such as this, only point estimates would be provided in a table. Then the

difference between simultaneous and Bonferonni intervals would be difficult to observe and

virtually impossible to argue its significance.

Now consider the dependent sampling case using our random walk MH sampler

with proposal distribution N(0, 9). All simulation settings remain the same except sample

size which we take to be five times larger based on our previous discussion on ESS. That

is, we consider n = 2500, 5000, 25000, and 50000. The bottom row of Figure 4.4 provides

results from the MCMC simulation, which are consistent with the i.i.d. results.

4.4.3 Side-by-side boxplots

Performance of statistical methodologies is often illustrated by loss function com-

parisons with existing methods over repeated simulations. Visualization of such Monte

Carlo studies is often done using side-by-side boxplots. Our visualization tools can be used
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to illustrate the variability in the estimation of the quantiles in the boxplots. More impor-

tantly, the visualization provides a tool to assess whether sufficient replications have been

used.

Consider a comparison of lasso (Tibshirani, 1996), ridge (Hoerl and Kennard,

1970), and ordinary least squares (OLS) regressions. Let y ∈ R100 be the observed response

vector, X be a 100×21 dimensional matrix of covariates, and β∗ ∈ R21 be the true regression

coefficient vector. For ε ∼ N100(0, I100), our data generating model is

y = Xβ∗ + ε .

We set β∗ to be such that the first 11 elements are zero, and the last 10 are random draws

from a normal distribution with mean 0 and variance 2. The matrix X is constructed such

that the first column is all 1s, and the rows of X−1, the matrix X with the first column

removed, are drawn from N20(0,Ω), where the ijth entry of Ω is .90|i−j|. Over repeated

simulations, we fit a lasso, ridge, and OLS regressions to estimate the vector of coefficients.

Lasso and ridge estimates are obtained using the glmnet package (Friedman et al., 2009)

with tuning parameters chosen using cross-validation. In each replication, we note the

squared estimation error of the estimated coefficient, β̂, that is, ‖β̂ − β∗‖2. We repeat the

simulation for 100, 500, and 2000 Monte Carlo replications. Figure 4.5 presents the resulting

boxplots with and without simultaneous confidence intervals.

Recall a box in the boxplot has 25%, 50%, and 75% quantiles. To construct simul-

taneous confidence intervals, we appeal to the 9-dimensional joint asymptotic distribution

for i.i.d. sequences for these quantiles and line search algorithm of Section 4.3. The simulta-
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Figure 4.5: Boxplots of squared estimation error for lasso, ridge, and OLS with and without
simultaneous confidence intervals. Monte Carlo sample size increases from left to right.
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neous confidence intervals immediately indicate that with only 100 Monte Carlo replications,

all quantile estimates have large variation. This variability is significantly improved with

2000 Monte Carlo replications. Such an analysis is impossible with the upper plots.

4.4.4 Visualizations for Bayesian analysis

Our final example integrates simultaneous confidence intervals within standard

density plots and boxplots for Bayesian analysis. The specific example we consider is a Gibbs

sampler targeting the posterior distribution for a hierarchical normal model, analyzing the

school data of Gelman et al. (2004).

Consider, for j = 1, . . . , J , the hierarchical model

Yj | θj ∼ N(θj , σ
2
j )

θj ∼ N(µ, τ2) ,

with σ2j known and priors f(µ) ∝ 1 and f(τ) ∝ 1/τ . The school data are comprised of

estimated effects on student performance on verbal SAT scores after undergoing a coaching

program. There are 8 schools in the sample for which each yj is an estimated effect and

σj is a known standard error for school j. We are interested in estimating features of the

posterior distributions of the θj ’s, the coaching effect for each school. To estimate this we

simulate draws from the joint posterior θ, µ, τ |y with a deterministic scan Gibbs sampler
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Figure 4.6: Plot of the estimates of an 80% credible interval for each θ with simultaneous
90% confidence intervals for 10,000 samples.
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using the following full conditional distributions

θj |µ, τ, y ∼ N

yjτ2 + µσ2j
τ2 + σ2j

,
1

1
σ2
j

+ 1
τ2

 , µ|θ, τ, y ∼ N
(
θ̄,
τ2

J

)
, and

τ2|θ, µ, y ∼ Inv− χ2

J − 1,
1

J − 1

J∑
j=1

(θj − µ)2

 ,

where θ̄ is the average of the θj ’s.

One might only be interested in credible intervals for each parameter. In Figure 4.6

we plot the simultaneous intervals in the form of marginal plots from 10,000 samples, while

recalling that the simulation uncertainty estimates incorporate the full covariance structure.

Many of the plots have similar shapes but different scales, thus some care should be taken

in interpreting the length of each error region in each plot. Figure 4.7 presents the same

analysis from a sample of 100,000, for which the simulation uncertainty of each quantity is

substantially smaller. Figures 4.6 and 4.7 illustrate one reason accounting for simulation

uncertainty can be important. Consider the left endpoints of the credible regions in the

plots for θ2, θ4, and θ8. Notice that in Figure 4.6 the left endpoints are indistinguishable

from zero when we account for the Monte Carlo error, but this is no longer an issue with

Figure 4.7.

Our procedure allows us to display something akin to the output of a Stan plot.

Figure 4.8 includes a mean estimate and both an 80% and 95% credible interval for each θ

in a boxplot inspired design. To make this plot, we estimated the resulting 40-dimensional

(θg, φ)′ vector and covariance matrix. This approach makes it perhaps easier to compare the

size of error regions around each estimate but discards the information gained by examining
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Figure 4.7: Plot of the estimates of an 80% credible interval for each θ with simultaneous
90% confidence intervals for 100,000 samples.
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Figure 4.8: Boxplot inspired design where blue, red, and orange boxes correspond to a
simultaneous 90% confidence level uncertainty of the posterior mean, 80% and 95% credible
intervals, respectively.
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the marginal densities. Additionally, this sort of visualization requires each θ to be on a

similar scale. Once again the sample size determines the size of the confidence regions, with

n = 100, 000 having substantially less simulation uncertainty.

4.5 Discussion

We provide a novel flexible class of visualizations for assessing the quality of esti-

mation for Monte Carlo sampling. These visualizations are particularly helpful addressing

concerns of Monte Carlo sample sizes and may be applied to a wide variety of problems

including Monte Carlo estimation of expectations and quantiles, simulation studies, and

visualization of a Bayesian analysis. The marginal-friendly interpretation retains more in-

formation than previously available methods. The line search algorithm that yields the

1−α simultaneous confidence intervals can be more widely applied to any statistic with an

approximately multivariate normal sampling distribution (e.g. maximum likelihood estima-

tors).

One issue not addressed is the case of a large number of quantities of interest, par-

ticularly in MCMC sampling. In these cases, downward bias exhibited by batch means may

lead to noticeable undercoverage of the simultaneous intervals. Other variance estimators

such as weighted batch means or a lugsail window function Vats and Flegal (2018) may be

used to induce upward bias to combat undercoverage. Additionally, our methods are only

as good as the sampling method allows. A poor sampler may not provide representative

samples from the target yielding misleading results or could require an enormous number
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of samples to be meaningful. We have offered no sampling guidance, but note this is a

fundamental challenge in MCMC simulations (see e.g. Brooks et al., 2010; Fishman, 1996).
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Chapter 5

Sequential Stopping Rule for Joint

Expectations and Quantiles

The previous chapter developed a joint limiting distribution for combinations of

expectations and quantiles of Monte Carlo simulations and developed a class of plots to

visualize the associated uncertainty. We concluded that it is desirable to have a sample size

for which the uncertainty regions are small enough that they become difficult to distinguish

from the estimate. We formalize this procedure through the creation of a sequential stopping

rule that handles more general quantities than those of Glynn and Whitt (1992), Jones et al.

(2006), and Vats et al. (2019).

5.1 Sequential Stopping Rule

We consider using Theorem 2 to create a new sequential stopping rule for any

confidence region satisfying
√
n(Vol(Cα(n)))1/p

w.p.1−→ c > 0, where c is a constant. This
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result largely mirrors Vats et al. (2019) but places the assumptions on quantities of interest

and the form of the confidence region rather than the underlying Markov chain. Once the

general results is available we may consider the restrictions on the Markov chains and forms

of the confidence region which satisfy our assumptions.

Consider the stopping rule

τ(ε) = inf{n > 0 : Vol(Cα(n))1/p + s(n) < εK̂n}, (5.1)

where K̂n is an estimator of an estimation metric K and s(n) is a positive decreasing

function of n such that s(n) = o(n−1/2). Common choices for Kn include 1, the magnitude

of the estimate, and the determinant of the posterior covariance matrix. These metrics

yeild fixed-volume, relative magnitude, and relative covariance stopping rules as discussed

in Vats et al. (2019). To simplify notation, let Θ̂n =

ḡn
φ̂

 and Θ =

θ
φ

.

Theorem 3 Suppose
√
nΣ̂
−1/2
n Λ̂n(Θ̂n − Θ) satisfies a functional CLT, Λ̂n → Λ w.p. 1,

Σ̂n → Σ w.p. 1, K̂n → K w.p. 1, and
√
n(Vol(Cα(n)))1/p

w.p.1−→ c > 0. Then as ε → 0,

τ(ε)→∞ and Pr{Θ ∈ Cα(τ(ε))} → 1− α.

Proof. Let

V (n) = (Vol(Cα(n)))1/p + s(n),

and simplifying the notation to

τ(ε) = inf{n > 0 : V (n) < εK̂n}.
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Since V (n) > s(n),

T (ε) = inf{n > 0 : s(n) > εK̂n} < τ(ε).

Since T (ε)→∞ as ε→ 0, T (ε) < τ(ε)→∞.

By assumption
√
nVol(Cα(n))1/p → c and s(n) = o(n−1/2) implies

√
ns(n) → 0.

Therefore

√
nV (n) =

√
n[Vol(Cα(n))1/p + s(n)] =

√
nVol(Cα(n))1/p +

√
ns(n)

w.p.1−→ c > 0

as n→∞.

By definition of τ(ε),

V (τ(ε)− 1) > εK̂τ(ε)−1 and
V (τ(ε)− 1)

K̂τ(ε)−1
> ε.

Therefore,

lim
ε→0

sup ε[τ(ε)]1/2 ≤ lim
ε→0

sup

(
V (τ(ε)− 1)

K̂τ(ε)−1

)
[τ(ε)]1/2 =

c

K
. (5.2)

Also by the definition of τ(ε), there exists u(ε) be a positive random variable on [0, 1] such

that

V (τ(ε) + u(ε)) < εK̂τ(ε)+u(ε) and
V (τ(ε) + u(ε)

K̂τ(ε)+u(ε)

> ε.

Therefore,

lim
ε→0

inf ε[τ(ε)]1/2 ≥ lim
ε→0

inf

(
V (τ(ε) + u(ε))

K̂τ(ε)+u(ε)

)
[τ(ε)]1/2 =

c

K
. (5.3)
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Then, by (5.2) and (5.3)

lim
ε→0

ε[τ(ε)]1/2 =
c

K
. (5.4)

We may now apply a standard random time change argument as discussed in

Billingsley (1968), yielding

√
τ(ε)Σ̂

−1/2
τ(ε) Λ̂τ(ε)(Θ̂τ(ε) −Θ)→ Np(0, Ip).

Then

Pr{Θ ∈ Cα(τ(ε))} w.p.1−→ 1− α

as ε→ 0.

We now address conditions on the Markov chain {Xj}, for these assumptions.

5.1.1 FCLT

We build upon Theorem 2,

√
n(Θ̂n −Θ)→ N(0,Λ−1ΣΛ−1),

which implies

√
nΣ−1/2Λ(Θ̂n −Θ)→ Np(0, Ip).

When Λ̂n → Λ w.p.1 and Σ̂n → Σ w.p.1, then Σ̂
−1/2
n Λ̂n → Σ−1/2Λ w.p.1 and

Σ̂−1/2n Λ̂n(Σ−1/2Λ)−1
w.p.1−→ Ip. (5.5)
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Then,

Σ̂−1/2n Λ̂n(Σ−1/2Λ)−1
√
nΣ−1/2Λ(Θ̂n −Θ) =

√
nΣ̂−1/2n Λ̂n(Θ̂n −Θ)→ IpNp(0, Ip).

Finally, we find the normal limiting distribution stated in terms of our estimators,

√
nΣ̂−1/2n Λ̂n(Θ̂n −Θ)→ Np(0, Ip). (5.6)

The conditions to establish a Markov chain CLT are often sufficient to establish a FCLT.

In particular, Vats et al. (2018) establish a strong invariance principle under the conditions

{Xj} is polynomial ergodic of order k > (1 + ε1)(1 + 2/δ) and EF ||g||2+δ <∞. This strong

invariance principle implies the existence of a FCLT. These assumptions and the techniques

of Doss et al. (2014) appear enough to satisfy a FCLT for (5.6) however a formal proof is

left for future work.

Thus we establish our FCLT with the conditions of Theorem 2 and strongly consis-

tent estimators. This requires the assumptions for Bahadur’s representation of a quantile,

i.e. {Xj} is polynomial ergodic, there exists a δ > 0 such that E||g||2+δ <∞, and for each

i = p1 + 1, . . . , p1 + p2 Fhi is absolutely continuous with continuous density fhi such that

0 < fhi(ξqi).

5.1.2 Strongly Consistent Estimator of Λ

Recall

Λ =

Id1 0

0 A

 ,
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where

[A]ij =


fhi(ξqi) i = j

0 otherwise

(5.7)

Thus, estimating Λ reduces to estimating the densities fhi at a single point. Masry and

Györfi (1987) provide a strongly consistent estimator for densities of stationary processes

that are asymptotically uncorrelated. This estimation deserves its own section and will

be discussed in Section 5.2. We will establish that a geometrically ergodic Markov chain

satisfying detailed balance is a sufficient condition on the Markov chain to estimate the

associated densities with probability one.

5.1.3 Strongly Consistent Estimators for Σ and K

These quantities are associated with the estimation of only expectations and thus

the restrictions on the Markov chain are identical to those for the case of expectations. We

restrict our discussion to the batch means estimator for Σ and turn to Theorem 2 from Vats

et al. (2019) for which we need the following conditions.

Condition 4 Let || · || be the Euclidean norm and {B(t), t ≥ 0} be a p−dimensional mul-

tivariate Brownian motion. There exists a p× p lower triangular matrix L, a non-negative

increasing function γ on the positive integers, a finite random variable D, and a sufficiently

rich probability space such that, with probability 1,

||n(θ̂n − θ)− LB(n)|| < Dγ(n) as n→∞. (5.8)

Condition 5 The batch size bn satisfies the following conditions,
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1. the batch size bn is an integer sequence such that bn →∞ and n/bn →∞ as n→∞

where, bn and n/bn are monotonically increasing,

2. there exists a constant c ≥ 1 such that
∑

n(bnn
−1)c <∞.

Theorem 6 Let g be such that EF ||g||δ+2 <∞ for some δ > 0. Let X be an F−invariant

polynomial ergodic Markov chain of order k > (1+ ε1)(1+2/δ) for some ε1 > 0. Then (5.8)

holds with γ(n) = n1/2−λ for some λ > 0. If Condition 5 holds and b
−1/2
n (log n)1/2−λ → 0

as n→∞, then Σ̂n → Σ, with probability 1, as n→∞.

We satisfy the requirements for Theorem 6 with bn = b
√
nc and require {Xj} be polynomial

ergodic of order at least m = (1 + ε1)(1 + 2/δ) and E|g|2+δ <∞.

5.1.4 Convergence of Confidence Region Volume

We consider two forms of confidence regions.

CEα (n) =
{

Θ̂n : n(Θ̂n −Θ)T Λ̂nΣ̂−1n Λ̂n(Θ̂n −Θ) ≤ χ2
1−α,p

}
, (5.9)

and

CSIα (n) =

p⋂
i=1

Θ̂n :
√
n
(

[Θ̂n]i − [Θ]i

)
≤ z∗α

√
[Σ̂]ii

[λ̂]ii

 . (5.10)

CEα (n) is the classic ellipsoidal confidence region for a multivariate normal distribution while

CSIα (n) is the hyperrectangular confidence region discussed in Section 4.3. We first prove

convergence of the volume of CEα (n).

Theorem 7 Assume there exists a CLT of the form (4.5). Then as n→∞
√
nVol(CEα (n))

converges to a positive finite constant.
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Proof. The volume of the ellipsoidal confidence region is

Vol(CEα (n)) =
2πp/2

pΓ(p/2)

(
χ2
1−α,p
n

)p/2
|Λ̂−1n Σ̂nΛ̂−1n |1/2. (5.11)

Since

|Λ̂−1n Σ̂nΛ̂−1n |1/2
w.p.1−→ |Λ−1ΣΛ−1|1/2,

and all the other terms are constant,

Vol(CEα (n))
w.p.1−→ n−p/2

2πp/2

pΓ(p/2)

(
χ2
1−α,p

)p/2 |Λ−1ΣΛ−1|1/2.

Thus

√
n
{

Vol(CEα (n))
}1/p w.p.1−→ √n{n−p/2 2πp/2

pΓ(p/2)

(
χ2
1−α,p

)p/2 |Λ−1ΣΛ−1|1/2
}1/p

=

{
2πp/2

pΓ(p/2)

(
χ2
1−α,p

)p/2 |Λ−1ΣΛ−1|1/2
}1/p

= c(E) > 0.

The result for CSIα (n) is similar.

Theorem 8 Assume there exists a CLT of the form (4.5). Then as n→∞
√
nVol(CSIα (n))

converges to a positive finite constant.
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Proof. The simultaneous intervals confidence region has volume

Vol(CSIα (n)) =

p∏
i=1

[Θ̂n]i + z∗α

√
[Σ̂n]ii

√
n[Λ̂n]ii

−
[Θ̂n]i + z∗α

√
[Σ̂n]ii

√
n[Λ̂n]ii




=

p∏
i=1

2z∗α

√
[Σ̂n]ii

√
n[Λ̂n]ii


= (2z∗α)pn−p/2

p∏
i=1


√

[Σ̂n]ii

[Λ̂n]ii

 .

Since √
[Σ̂n]ii

[Λ̂n]ii

w.p.1−→
√

[Σ]ii
[Λ]ii

,

for each i = 1, . . . , p, and all other terms are constant

Vol(CSIα (n))
w.p.1−→ n−p/2(2z∗α)p

p∏
i=1

(√
[Σ]ii

[Λ]ii

)
.

Thus,

√
n
{

Vol(CSIα (n))
}1/p w.p.1−→ √n{n−p/2(2z∗α)p

p∏
i=1

(√
[Σ]ii

[Λ]ii

)}1/p

= 2z∗α

{
p∏
i=1

(√
[Σ]ii

[Λ]ii

)}1/p

= cSI > 0.

Hence both CEα (n) and CSIα (n) satisfy our condition as n→∞,

√
n(Vol(Cα(n)))1/p

w.p.1−→ c > 0.
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5.2 Density Estimation

Consider the kernel density estimator

f̂n(y) =
1

n

n∑
j=1

1

bj
K

(
y − Yj
bj

)
, (5.12)

with bandwidth bn → 0 and kernel K which satisfies the following two conditions.

1. K ∈ L1,
∫
RK(u)du = 1

2. K is bounded and K(y) = O(|y|−1−ε) for some ε > 0

Masry and Györfi (1987) establish conditions on the kernel density and process which yield

a strongly consistent estimator for f(y). Assumption 1 is concerned with the sequence {Yj}

while Assumption 2 is concerned with the kernel and bandwidth choice.

Assumption 1 The process {Yj} is asymptotically uncorrelated with

∞∑
n=1

(log n)(log2 n)u2nρ
2(n) <∞

and un = n−v for some 0 ≤ v ≤ 1/2.

Assumption 2 Let K be a kernel and bn be a bandwidth parameter satisfying

•
∫
R uK(u)du = 0

•
∫
R u

2K(u)du <∞

•
∑∞

i=1 b
2
i =∞.

We now present a simplified univariate version of Masry and Györfi’s (1987) Theorem 2.3
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Theorem 9 Let f̂n(y) be defined as in (5.12).

(a) For almost all y we have

lim
n→∞

E[f̂n(y)] = f(y).

(b) Assume that f is twice differentiable and its second derivative is and bounded and

continuous on R. The kernel K is assumed to satisfy Assumption 2. Then

lim
n→∞

(
1

n

n∑
i=1

b2i

)−1
(E[f̂n(y)]− f(y)) =

1

2

∫
R
u2f

′′
(y)K(u)du.

(c) If in addition the process {Yj} satisfies Assumption 1 and bn is chosen as

bn ∼ n−(1−2v)/5,

then {
n4(1−2v)(5)

(log n)(log2 n)1+δ

}1/2

(f̂n(y)− f(y))→ 0 (5.13)

with probability 1 as n→∞ for every δ > 0.

The conditions placed on the kernel density, K(·), are independent of {Yj}, and

the bandwidth, bn, is determined by the value v. Therefore, the only condition placed

on the Markov chain is that {Yj} is asymptotically uncorrelated with the specified rate of

convergence. Jones (2004) provides us with the following corollary relating asymptotically

uncorrelated sequences to ergodic Markov chains.
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Corollary 10 A Harris ergodic Markov chain {Yj} is asymptotically uncorrelated if Y is

geometrically ergodic and satisfies detailed balance. Additionally, there exists a θ > 0 such

that ρ(n) = O(e−θn).

We may then relate Corollary 10 to Assumption 1 through the following Lemma.

Lemma 11 Let {Yj} be a geometrically ergodic Markov chain satisfying detailed balance.

Then
∞∑
j=1

(log(n))(log2(n))u2nρ
2(n) <∞

with un = n−v, for any 0 ≤ v ≤ 1/2.

Proof. We begin by setting un = n−v and rearranging terms.

∞∑
n=1

(log(n))(log2(n))u2nρ
2(n) =

∞∑
n=1

(log(n))(log2(n))(n−v)2ρ2(n)

=

∞∑
n=1

(log(n))

(
log(n)

log(2)

)
n−2vρ2(n)

=
1

log(2)

∞∑
n=1

(log(n))2n−2vρ2(n)

Since ρ(n) = O(e−θn), there exist an l > 0 and n∗ such that for n ≥ n∗,

|ρ(n)| ≤ le−θn.

Hence,

ρ2(n) ≤ (le−θn)2 = l2e−(2θ)n.
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We let M = l2 and define a new θ := 2θ yielding

ρ2(n) ≤Me−θn. (5.14)

We split the sum into two parts between n? − 1 and n?. Then we substitute the upper

bound (5.14) for the sum containing n?.

1

log(2)

∞∑
n=1

(log(n))2n−2vρ2(n)

=
1

log(2)

n∗−1∑
n=1

(log(n))2n−2vρ2(n) +
1

log(2)

∞∑
n=n∗

(log(n))2n−2vρ2(n)

≤ 1

log(2)

n∗−1∑
n=1

(log(n))2n−2vρ2(n) +
1

log(2)

∞∑
n=n∗

(log(n))2n−2vMe−θn.

Notice 0 ≤ ρ2(n) ≤ 1, thus (log(n))2n−2vρ2(n) is finite for all n. Hence,

1

log(2)

n∗−1∑
n=1

(log(n))2n−2vρ2(n) = Cn∗ <∞.
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Additionally, note that (log(n))2n−2vMe−θn is positive and monotone decreasing for n such

that log(n){2vn + θ} > 2
n , since

d

dn

(
[log(n)]2n−2vMe−θn

)
=

2 log(n)

n
n−2vMe−θn + [log(n)]2

d

dn

[
n−2vMe−θn

]
=

2 log(n)

n
n−2vMe−θn + [log(n)]2M

[
−2vn−2v−1e−θn + n−2ve−θn(−θ)

]
=

2 log(n)

n
n−2vMe−θn + [log(n)]2M(−n−2ve−θn)[2

v

n
+ θ]

= log(n)n−2vMe−θn
[

2

n
− log(n)

{
2
v

n
+ θ
}]

.

We choose n∗ to be large enough to satisfy log(n){2vn + θ} > 2
n . Then

1

log(2)

n∗−1∑
n=1

(log(n))2n−2vρ2(n) +
1

log(2)

∞∑
n=n∗

(log(n))2n−2vMe−θn

= Cn∗ +
M

log(2)

∞∑
n=n∗

(log(n))2n−2ve−θn,

and
∞∑

n=n∗

(log(n))2n−2ve−θn <∞ ⇐⇒
∫ ∞
n∗

(log(n))2n−2ve−θndn <∞.

To evaluate
∫∞
n∗ (log(n))2n−2ve−θndn we note n−2v increases as v decreases to 0.

Thus,

∫ ∞
n∗

(log(n))2n−2ve−θndn <

∫ ∞
n∗

(log(n))2n−2(0)e−θndn =

∫ ∞
n∗

(log(n))2e−θndn. (5.15)
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Additionally, n2 > [log(n)]2 for all n, thus

∫ ∞
n∗

(log(n))2e−θndn <

∫ ∞
n∗

(n)2e−θndn.

We can now solve this integral using the property
∫
udv = uv −

∫
vdu.

∫ ∞
n∗

n2e−θndn =

[
−n

2

θ
e−θn

]∞
n∗

+
2

θ

∫ ∞
n∗

ne−θndn

=

[
−n

2

θ
e−θn

]∞
n∗

+
2

θ

{[
−n
θ
e−θn

]∞
n∗

+
1

θ

∫ ∞
n∗

e−θndn

}
= −1

θ

[
n2e−θn

]∞
n∗
− 2

θ2

[
ne−θn

]∞
n∗
− 2

θ3

[
e−θn

]∞
n∗

= −1

θ

[
0− (n∗)2e−θn

∗
]
− 2

θ2

[
0− n∗e−θn∗

]
− 2

θ3

[
0− e−θn∗

]
=

(n∗)2e−θn
∗

θ
+

2n∗e−θn
∗

θ2
+

2e−θn
∗

θ3
<∞.

Therefore,

ρ(n) = O(e−θn) =⇒
∞∑
j=1

(log(n))(log2(n))u2nρ
2(n) <∞. (5.16)

Notice in (5.15) choosing v = 0 provides that any v > 0 will hold. Thus we may choose any

0 ≤ v ≤ 1/2.

We summarize the main result of this section with the following corollary to The-

orem 9.

Corollary 12 Let {Yj} be a geometrically ergodic Markov chain satisfying detailed balance,

f̂n(y) be defined as in (5.12), the bandwidth bn = n−(1−2v)/5 for some 0 ≤ v ≤ 1/2, and the

kernel K satisfy Assumption 2. Then f̂n(y)→ f(y) with probability 1 as n→∞.
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5.3 MCMC Sequential Stopping Rule

We may now state a more specific version of Theorem 3 with the assumptions on

the Markov chain for confidence regions (5.9) and (5.10).

Theorem 13 Let {Xn} be a geometric ergodic Markov chain satisfying detailed balance,

there exists a δ > 0 such that E||g||2+δ < ∞, for each i = 1, . . . , p2 Fhi is absolutely

continuous with continuous density fhi such that 0 < fhi(ξqi), Σ̂n is a batch means estimator

with batch size b
√
nc, f̂ is a kernel density estimator with bandwidth ∼ n−1/5 and a Gaussian

kernel, K̂n → K w.p.1., and stopping rule τε(C
E
α (n)) or τε(C

SI
α (n)). Then as ε→, 0 τε → 0

w.p.1 and Pr{Θ ∈ Cα} = 1− α.

The proof of this theorem follows from Theorem 3, a strong invariance principle for poly-

nomial ergodic Markov chains, Theorem 6, Theorem 7, Theorem 8, and Corollary 12.

5.4 Simulation Study

To test the stopping rule in Theorem 13, we preform repeated simulation from a

probability distribution of interest. We conduct replications of an MCMC sampler which

terminates based on our stopping rule and calculate the proportion of replicates whose

confidence region contains the truth. This forms a Monte Carlo sample from which we

estimate the coverage probabilities for each confidence region. We consider the ellipsoidal

and simultaneous interval confidence regions as well as hyper-rectangular regions based on

the lower and upper bound intervals. The lower and upper bound confidence regions also

satisfy the criteria for Theorem 3, albeit for an unknown confidence level. Each simulation

will be conducted with various choices of ε, confidence level, and relative metric. The first
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example returns to our mixture of normals described in Section 4.4.1. The second example

considers a logistic regression on the Anguilla eel data included in the R package dismo

(Hijmans et al., 2017).

5.4.1 Mixture of Normals

We consider a mixture of three normal distribution for which we estimate the mean

and a 90% credible interval which takes the form of the .1 and .9 quantiles. We conduct

2,000 replications for each combination of relative metric, ε, and confidence level. Taking

only three quantities of interest, we expect the upper bound confidence region to provide

a conservative coverage estimate. The amount of overcoverage may be rather small due to

the low dimension of the problem. Similarly, we expect the lower bound confidence regions

to provide undercoverage that may be less exaggerated than examples of higher dimension.

ε = .1 ε = .05 ε = .02

Conf Cα n̄ σn Cα n̄ σn Cα n̄ σn
.90 E 0.89 10008 194 0.89 33590 2513 0.89 199390 7703

SI 0.90 18333 2410 0.88 66463 4322 0.88 405028 15655
LB 0.79 13323 2367 0.78 45693 3573 0.80 275183 12766
UB 0.93 20313 1985 0.91 75235 4996 0.92 458808 18026

.95 E 0.94 11325 2207 0.94 41520 2814 0.93 248570 8899
SI 0.95 23330 2478 0.94 86905 5446 0.95 530833 18977

LB 0.88 17602 2504 0.87 64198 4613 0.88 388873 15877
UB 0.96 25070 2382 0.95 94648 6017 0.96 578928 21233

.99 E 0.99 15778 1812 0.99 59210 3396 0.99 359600 11369
SI 0.99 34998 2986 0.99 133215 7158 0.98 819585 27898

LB 0.97 28878 2790 0.97 108993 6549 0.97 670203 24193
UB 0.99 36848 3131 0.99 140858 7737 0.99 869628 29130

Table 5.1: Mixnormal coverage probabilities for relative standard deviation stopping rule
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Figure 5.1: Mixnormal coverage probabilities for relative standard deviation stopping rule
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Figure 5.2: Mixnormal coverage probabilities for relative magnitude stopping rule
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Figure 5.3: Mixnormal coverage probabilities for fixed volume stopping rule
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ε = .1 ε = .05 ε = .02

Conf Cα n̄ σn Cα n̄ σn Cα n̄ σn
.90 E 0.87 5000 0 0.88 5000 0 0.87 14910 1169

SI 0.88 5000 0 0.89 5357 1289 0.89 27655 2972
LB 0.76 5000 0 0.78 5000 0 0.77 19588 2296
UB 0.90 5000 0 0.91 6138 2097 0.91 30968 3136

.95 E 0.93 5000 0 0.93 5000 0 0.94 18033 2448
SI 0.94 5000 0 0.93 7858 2475 0.95 35705 3269

LB 0.88 5000 0 0.88 5183 938 0.88 26680 2865
UB 0.95 5000 0 0.95 8810 2130 0.96 38620 3515

.99 E 0.98 5000 0 0.98 5035 417 0.98 24858 2190
SI 0.98 5000 0 0.99 10203 998 0.99 53830 4268

LB 0.97 5000 0 0.97 9765 1082 0.97 44363 3753
UB 0.99 5000 0 0.99 10558 1582 0.99 56908 4662

Table 5.2: Mixnormal coverage probabilities for relative magnitude stopping rule

The simulation results for the relative standard deviation, relative magnitude, and

fixed-volume metrics are presented in Tables 5.1, 5.2, and 5.3 respectively. Additionally, we

include coverage plots inspired by Figure 4.4 in Figures 5.1, 5.2, and 5.3. All simulation

settings yield more accurate coverage probabilities for smaller ε values with Ellipse and SI

approaching the nominal level, LB approaching some value less than the nominal level, and

UB approaching some value greater than the nominal level. Particularly interesting is that

Ellipse consistently has the smallest average number of samples n̄ even though it approaches

correct coverage levels and LB does not. Of the interval based confidence regions we find

the number of samples to be smallest for LB and largest for UB as expected. Results for

the coverage probabilities at the 99% confidence level do not appear to be precise enough to

demonstrate the differences in coverage. However, the average sample size at termination

seems to follow a pattern consistent with the other settings. To get a sense for the spread

in termination values, we report σn, the standard deviation of the number of samples per

replicate. The relative magnitude results contain some settings for which σn = 0 and
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ε = .1 ε = .05

Conf Cα n̄ σn Cα n̄ σn
.90 E 0.90 132625 6134 0.90 521280 15590

SI 0.89 267373 11919 0.89 1058365 31881
LB 0.80 182468 9572 0.78 718435 25106
UB 0.92 303338 13627 0.91 1199133 37806

.95 E 0.94 165160 7005 0.96 649592 18361
SI 0.94 350948 14757 0.95 1388540 38354

LB 0.88 257780 12555 0.89 1016008 33821
UB 0.96 382230 16531 0.96 1515395 44462

.99 E 0.99 238588 8922 0.99 941145 23788
SI 0.99 540615 21181 0.99 2142218 56093

LB 0.97 442778 18100 0.98 1754028 49018
UB 0.99 573163 21802 0.99 2275185 60001

Table 5.3: Mixnormal coverage probabilities for fixed volume stopping rule

n̄ = 5, 000. These correspond to cases where the stopping time is identified as occurring

during the check at the minimum specified sample size. This acts as an indication that

either the minimum sample size is high or the particular value of ε may not appropriately

small enough for estimating these quantities.

5.4.2 Bayesian Logistic Regression

The Anguilla eel data examines 1,000 sites in New Zealand and recorded whether

the presence of Anguilla australis was observed. Each site contains a variety of observations

about the environment and how the observations were reported which may be used to

predict the presence of eels. We consider fitting the following Bayesian logistic regression
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model

Yi ∼ Bernoulli(µi)

µi =
exp{xTi β}

1 + exp{xTi β}

β ∼ Normal(0, 100Id),

where xTi is the ith row of the d × d design matrix X. We aim to fit a model using the

variables DSDist, USNative, DSMaxSlope, and Method. Method is a categorical variable

will four levels yielding a total of d = 8 β values and p = 24 quantities of interest when

estimating an 80% credible interval for each β. We use the function MCMClogit from the R

package MCMCpack (Martin et al., 2011). As the true value of each quantity of interest is

unknown, we take 20,000,000 samples from one long run of the Markov chain and treat the

resulting estimate as “truth.” Relying on an estimated value of truth is expected to affect

our estimated coverage probabilities with undercoverage.

We limit ourselves to 500 replications and the fixed-volume stopping rule for the

simultaneous confidence interval and ellipsoid confidence regions. A relative metric provides

a way to weight ε to yield an appropriately small threshold for a particular sampler. We

forgo a relative metric and demonstrate a small choice for ε is problem dependent. We start

by considering the logistic regression model fit without including the categorical variable

Method, reducing the dimension of the sampler to d = 4 and estimation to p = 12. We

consider ε = .01, .005, and .001 at a 90% confidence level with results in Table 5.4. The

coverage probabilities for the ellipsoid confidence regions are very far from the nominal level
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ε = .01 ε = .005 ε = .001

Conf Cα n̄ σn Cα n̄ σn Cα n̄ σn
.90 E 0.48 10000 0 0.61 19220 2684 0.83 364100 12251

SI 0.88 14720 4997 0.89 45480 5062 0.89 997380 30914

Table 5.4: Coverage probabilities for logistic regression example without categorical variable
included (p = 12)

ε = .01 ε = .005

Conf Cα n̄ σn Cα n̄ σn
.90 E 0.61 90260 4167 0.78 364260 8934

SI 0.86 285480 8862 0.89 1118020 21708

Table 5.5: Coverage probabilities for logistic regression example with categorical variable
included (p = 24)

for ε = .01 and .005. We note that the largest ε we considered in this problem is smaller

than the smallest value we considered in our mixture normal example, demonstrating that

ε is problem specific. The ellipsoid confidence region particularly suffers when ε = .01 as

every replicate terminated at the minimum sample size 10,000. As expected, the coverage

probabilities improve as ε decreases with ε = .001, yielding an estimated coverage probability

that may be reasonable considering the “truth” is an estimated quantity. The simultaneous

intervals confidence region fairs better with close coverage probabilities, even in the ε = .01

case. The simultaneous interval procedure includes a line search component which may be

providing some self-correction in the choice of z∗ causing the improved accuracy in coverage

probabilities.

We now consider the full logistic regression model with d = 8 and p = 24 in

Table 5.5. The additional terms in the model appear to help alleviate the termination

at minimum sample size when ε = .01. The results are similar to those in Table 5.4 in
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that coverage probabilities improve as ε decreases, but the sample size at termination is

significantly larger.
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Chapter 6

Future Work

The visualizations developed in Chapter 4 and stopping rule proposed in Chapter 5

provide useful tools for analyzing MCMC output. Future work will focus on four main

tasks: relaxing conditions on the Markov chain in Theorem 13, improving Theorem 2 by

incorporating the distribution of Λ̂, extending our results to other samplers such as Adaptive

MCMC (Rosenthal, 2011), and output analysis based on parallel MCMC simulations.

Our current conditions on the Markov chain in Theorem 13 are largely determined

by the need for a strongly consistent density estimator as the other assumptions are satisfied

with merely polynomial ergodicity. Results from Roussas (1988) look promising, however

it is not obvious that all the assumptions made are satisfied without stronger assumptions

aside from the weakened ergodicity. With the newly relaxed conditions a new limiting

distribution may be found for Theorem 2. This new limiting distribution should converge

as n→∞ to a multivariate normal distribution and mirror the result as in the case with just

expectations where a batch means estimator yields a Hoetelling’s T 2 distribution. This new

98



limiting distribution should improve coverage probabilities and result in smaller stopping

times.

Adaptive MCMC samplers are an MCMC-like algorithm in which the covariance

of the proposal distribution updates every n◦ steps. The updating mechanism is non-

Markovian but still may satisfy a CLT with restrictions placed on the adaptation. In

particular, cases where the covariance converges to a constant or changes very little, known

as diminishing adaptation, may emit a CLT. This CLT may then be used to create visu-

alizations such as those we have proposed. Extensions of the sequential stopping rules are

more challenging as the set of assumptions are stricter and not obviously satisfied.

Parallel computing provides another arena for which our tools may prove use-

ful. We concern ourselves with a recent parallel approach to sequential stopping rules for

stochastic simulations proposed by Dong and Glynn (2016). By using independent parallel

simulations they avoid the assumption of a strongly consistent estimate of the covariance

of the CLT for the Monte Carlo error. Their methods focus on general stochastic simula-

tions, however no assumptions are violated in the MCMC machinery and thus we focus on

the MCMC setting. The general idea is to simulate m independent replications of a chain

(sectioning) and compute a parameter estimate θ̃m and a sample variance estimator S2
m(n)

using all m chains. A major advantage to this strategy is that S2
m(n) does not need to be a

strongly consistent estimator of σ2. In addition, each chain is independent and thus parallel

computing is employable.
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6.1 Sectioning Method

For a fixed number of chains m, as n→∞

√
m(θ̃m − θ)
S2
m(n)

D→ tm−1, (6.1)

where tm−1 is the Student-t distribution with m − 1 degrees of freedom. This yields the

fixed sample size confidence interval

C1[n] =

[
θ̃m − tδ/2,m−1

Sm(n)√
m

, θ̃m − tδ/2,m−1
Sm(n)√

m

]
(6.2)

with tδ/2,m−1 chosen such that P (−tδ/2,m−1 < tm−1 < tδ/2,m−1). If we want a sequential

stopping rule, then the simulation stops when uδ/2,mSm(n)/
√
m ≤ ε where uδ/2,m is the

upper δ/2 quantile of a distribution, u presented in Table 6.1, which will be discussed in

detail later.

We let θ = ψ(F ) where ψ is a real-valued functional on the space of probability

distributions and F is the stationary distribution of X. We will primarily concern ourselves

with expectations such as ψ(F ) =
∫
xF (dx), however other functionals such as quantiles

will satisfy the following constraints. Let F̂ (n, ·) denote the empirical distribution based on

the chain {X(s) : 0 ≤ s ≤ n}, that is

F̂ (n, x) =
1

n

n∑
k=1

1{X(k) ≤ x}. (6.3)
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We are also interested in an empirical distribution based on all m chains

F̂m0 (n, x) =
1

nm

m∑
i=1

n∑
k=1

1{X(k) ≤ x} =
1

m

m∑
i=1

F̂i(n, x). (6.4)

Let θ̃m = ψ(F̂m0 (n)) be an estimator for θ based on the m chains. The following assumptions

will be required to establish the proper probability coverage.

Assumption 3 θ̃m satisfies a FCLT.

Assumption 4 As ε→ 0,

n

ε

(
ψ
(
F̂m0 (n/ε2)

)
− 1

m

m∑
i=1

ψ
(
F̂i(n/ε

2)
))
⇒ 0. (6.5)

Based on these assumptions we may estimate θ with either 1
m

∑m
i=1 ψ(F̂i(n)) or

ψ(F̂m0 (n)). Typically ψ(F̂m0 (n)) is preferred as it has less bias for finite sample sizes (Dong

and Glynn, 2016).

The error size may be estimated with

Γ(n, F̂ ) =

√√√√ 1

m(m− 1)

m∑
i=1

(
ψ
(
F̂i(n)

)
− ψ

(
F̂m0 (n)

))2
. (6.6)

This Γ(n, F̂ ) depends on the function ψ. We will suppress this in our notation for clarity.

Proposition 14 (Dong and Glynn, 2016) Under Assumption 3 and 4

ψ
(
F̂m0 (n/ε2)

)
− θ

Γ(n, F̂ )
⇒ B̄(n)√

1
m(m−1)

∑m
i=1

(
B(n)− B̄(n)

)2 (6.7)
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as ε → 0, where Bi for i = 1, ...,m are independent Brownian motion and B̄(n) =∑m
i=1Bi(n). For a fixed n this follows a tm−1 distribution.

This then allows the construction of 100(1− δ)% confidence intervals with

[
ψ
(
F̂m0 (n)

)
− tδ/2,m−1Γ

(
n, F̂

)
, ψ
(
F̂m0 (n)

)
+ tδ/2,m−1Γ

(
n, F̂

)]
. (6.8)

6.1.1 Sectioning method sequential stopping rules

We now consider sequential stopping rules for the sectioning method. To prevent

early termination for badly behaved Γ
(
n, F̂

)
, let a(n) be a strictly positive function mono-

tonically decreasing to 0, satisfying a(n) = O(n−γ) for γ > 1/2, to ensure a(n) decays at a

faster rate than Γ
(
n, F̂

)
. We define our stopping rule

κ(ε) = inf
{
n > 0 : Γ(n, F̂ ) + a(n) < ε

}
. (6.9)

This again depends on the function ψ which we will suppress in our notation. To determine

the limiting distribution of κ(ε) we first define

K(σ) = inf

n > 0 : σ

√√√√ 1

m(m− 1)n2

m∑
i=1

(Bi(n)− B̄(n))2 < 1

 . (6.10)

The distribution of K(σ) is determined by noting that K(σ)
σ2 = K(1) and the distribution of

K(1) is provided by the following lemma.

Lemma 15 (Dong and Glynn, 2016)

(1) When m = 2,K(1) = 0.
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(2) When m = 3,K(1) = 0.

(3) When m ≥ 4,K(1) follows a Gamma distribution with shape parameter γ = (m− 3)/2

and rate parameter λ = m(m− 1)/2.

Theorem 16 (Dong and Glynn, 2016) Under Assumption 3 and 4, for m ≥ 4,

ψ
(
F̂mo (κ(ε))

)
− θ

Γ(κ(ε))
⇒ σB̄(K(σ))

K(σ)

d
=

Z√
mK(1)

. (6.11)

as ε→ 0, where Z ∼ N(0, 1) is independent of K(1).

Let u be the appropriate quantile from the distribution Z/
√
mK(1). This lets us

ease notation by defining a stopping rule based on the limiting distribution u,

κ1(ε) = inf
{
n > 0 : u

(
Γ(n, F̂ ) + a(n)

)
< ε
}
. (6.12)

Now we may construct 100(1− δ)% confidence intervals with the following

Cm[κ1(ε)] =
[
ψ
(
F̂m0 (κ1(ε))

)
± uδ/2

(
Γ(κ1(ε), F̂ ) + n(κ1(ε))

)]
. (6.13)

Some previously computed quantiles of the distribution Z/
√
mK(1) were calcu-

lated by Dong and Glynn (2016) and are reported in table 6.1. Z/
√
mK(1) has larger

tails than the corresponding t distribution used in non-sequential procedures. Plots of

Z/
√
mK(1) for m = 10 and m = 20 overlaid with the corresponding t distributions for a

non-sequential are presented in Figure 6.1.
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.9 .925 .95 .975 .995

m = 10 1.603±.001 1.833±.001 2.148±.002 2.680±.002 3.963±.005

m = 15 1.465±.001 1.661±.001 1.925±.002 2.352±.002 3.298±.003

m = 20 1.409±.001 1.593±.001 1.840±.001 2.230±.002 3.064±.003

m = 25 1.380±.001 1.558±.001 1.792±.001 2.164±.002 2.945±.003

m = 30 1.361±.001 1.536±.001 1.765±.001 2.126±.002 2.872±.002

Table 6.1: (Dong and Glynn, 2016) Quantiles of Z/
√
mK(1) based on 106 i.i.d. samples

Figure 6.1: Density approximation of u = Z√
mK(1)

for m = 10 and m = 20 compared to the

t distribution with 9 and 19 degrees of freedom respectively.
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We may now consider a relative metric νθ with estimator ν̂m based on the m

sections. The stopping rule may now be defined as

κ∗(ε) = inf
{
n > 0 : u

(
Γ(n, F̂ ) + a(n)

)
< ε|ν̂m|

}
. (6.14)

The asymptotic validity is then given as a generalization to Dong and Glynn’s (2016)

Theorem 4.

Proposition 17 Under Assumption 3 and 4, for m ≥ 4,

ψ
(
F̂mo (κ∗(ε))

)
− θ

Γ(κ∗(ε))
⇒ σB̄(K(σ/|νn|))

K(σ)

d
=

Z√
mK(1)

, (6.15)

as ε→ 0, where Z ∼ N(0, 1) is independent of K(1).

A relative error sequential stopping rule then is defined as

κ2(ε) = inf
{
n > 0 : u

(
Γ(n, F̂ ) + a(n)

)
< ε

∣∣∣ψ (F̂m0 (n)
)∣∣∣} . (6.16)

The following theorem characterizes the distribution yielding the scaling parameter of in-

terest.

Theorem 18 (Dong and Glynn, 2016) Under Assumption 3 and 4, for m ≥ 4,

ψ
(
F̂mo (κ2(ε))

)
− θ

Γ(κ2(ε))
⇒ σB̄(K(σ/|θ|))

K(σ)

d
=

Z√
mK(1)

. (6.17)

as ε→ 0, where Z ∼ N(0, 1) is independent of K(1).
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The resulting 100(1− δ/2)% confidence interval is

Cm[κ2(ε)] =
[
ψ
(
F̂m0 (κ2(ε))

)
± uδ/2

(
Γ(κ2(ε), F̂ ) + a(κ2(ε))

)]
. (6.18)

We now consider our Bayesian setting and define

κ3(ε) = inf
{
n > 0 : u

(
Γ(n, F̂ ) + a(n)

)
< ελ̂m

}
, (6.19)

as the posterior standard deviation stopping rule where λ̂ is the estimated posterior stan-

dard deviation. The following theorem characterizes the distribution yielding the scaling

parameter of interest.

Theorem 19 Under Assumption 3 and 4, for m ≥ 4,

ψ
(
F̂mo (κ3(ε))

)
− θ

Γ(κ3(ε))
⇒ σB̄(K(σ/λ))

K(σ)

d
=

Z√
mK(1)

. (6.20)

as ε→ 0, where Z ∼ N(0, 1) is independent of K(1).

The resulting 100(1− δ/2)% confidence interval is

Cm[κ3(ε)] =
[
ψ
(
F̂m0 (κ3(ε))

)
± uδ/2

(
Γ(κ3(ε), F̂ ) + a(κ3(ε))

)]
. (6.21)

6.1.2 Example

We consider a Metropolis-Hastings random walk with a Normal(µ = 2, σ2 = 2)

target distribution and a Normal(0, σ2 = 1/2) increment distribution. Thus we are trying
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to make an inference about θ = µ and use the following sampler. We start with an initial

value x0 and let f(x) be the pdf of the target distribution.

1. Draw ε ∼ N(0, 1/2)

2. Set x∗ = xt−1 + ε

3. Set a = min
{

1, f(x∗)
f(xt−1)

}

4. Let xt =


x∗ w.p. a

xt−1 w.p. 1− a

5. repeat steps 1-4.

The results are contained in Table 6.2. We once again see our fixed-width rules yielding the

largest stopping times for each value of ε. Every simulation attained a coverage probability

of at least 1−δ/2, however there are some issues of overcoverage. This stems from not using

a CLT based procedure as we are basing the distribution u on the exact stopping time and

do not have u as a limiting distribution for n→∞. As such we obtain overcoverage when

we sample more than κi(ε) which occurs when κi(ε) is greater than the minimum simulation

effort. In these cases the proper coverage distribution should be between Z/
√
mK(1) and

t. It is important to note that the recorded values of n are for each independent chain and

thus for each simulation the total number of samples is m× n. One advantage gained here

is that since each chain is independent parallel computing may be employed and may in

certain situations be faster overall than CLT based methods.
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ε stopping rule mean θ estimate mean n std. dev. n coverage probability

.1 κ1(ε) 1.994 3380 1610 .900

.1 κ2(ε) 1.987 1160 276 .929

.1 κ3(ε) 1.989 1820 749 .917

.05 κ1(ε) 1.998 12700 6270 .910

.05 κ2(ε) 1.996 3400 1570 .914

.05 κ3(ε) 1.998 6640 3310 .912

.02 κ1(ε) 2.000 73700 37600 .915

.02 κ2(ε) 2.000 19300 9280 .911

.02 κ3(ε) 2.000 37800 18500 .903

Table 6.2: Results of 1000 replications of Metropolis-Hastings random walk sampler for
MCMC sectioning stopping rules based on 90% confidence intervals andm = 10 independent
chains.

6.2 Multivariate Section Methods

Sectioning methods present their own set of challenges in developing extensions to

multivariate settings. A naive approach estimates each dimension separately and terminates

once each component has met its stopping time for a Bonferroni adjusted confidence level.

More precisely, for Θ ∈ Rp, let κ(i)(ε) be the stopping time with confidence level 1−α/(2p)

based on estimating Θi with the marginal process {Xij}∞j=1. We define the stopping time

κcomp(ε) = sup{κ(1)(ε), ..., κ(p)(ε)}. (6.22)

The resulting coverage probability for κcomp(ε) will approach a limit greater than 1− α as

ε→ 0. Generally overcoverage is not a major concern in terms of accuracy, but the increased

computational burden is problematic. Further, no information about the dependencies

between quantities of interest is maintained. We turn our attention to developing results

analogous to Vats et al.’s (2019) extension of univariate procedures in Jones et al. (2006).
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Consider the univariate setting where for a fixed sample size Proposition 14 gives

ψ
(
F̂m0 (n/ε2)

)
− θ̃m

Γ(n, F̂ )
⇒ B̄(n)√

1
m(m−1)

∑m
i=1

(
B(n)− B̄(n)

)2 ∼ tm−1.
Squaring the distribution allows us to write this in matrix notation. Let

Φ =

(
1

m(m− 1)

)[ m∑
i=1

(
ψ(F̂i(n))− ψ(F̂m0 (n))

)(
ψ(F̂i(n))− ψ(F̂m0 (n))

)T]
,

then

ψ
(
F̂m0 (n/ε2)

)
− θ̃m

Γ(n, F̂ )

2

=
[
ψ
(
F̂m0 (n/ε2)

)
− θ̃m

]T
Φ−1

[
ψ
(
F̂m0 (n/ε2)

)
− θ̃m

]
⇒ T 2

1,m−1,

where T 2
1,m−1 is Hotelling’s T-squared distribution with dimensionality parameter 1 and

m− 1 degrees of freedom. This inspires a potential stopping rule based on the region

Cm,pα (n) =
[
ψ
(
F̂m0 (n/ε2)

)
− θ̃m

]T
Φ−1

[
ψ
(
F̂m0 (n/ε2)

)
− θ̃m

]
. (6.23)

The potential stopping rule is then

κm,pα (ε) = inf
{
n : Vol(Cm,pα (n))1/p + a(n) < ε

}
. (6.24)

A major challenge with (6.24) is identifying the form of Vol(Cmα (n)) when n is taken to be a

random stopping time. The univariate case uses a cancellation technique to avoid requiring

a strongly consistent estimator of the process variance. It is not clear that this approach

exists in the multivariate case as there is now a covariance to consider.
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