Lawrence Berkeley National Laboratory

Recent Work

Title

Genomewide Gene Expression Analysis of Response of Desulfovibrio vulgaris to High pH

Permalink

https://escholarship.org/uc/item/9g10f1kg

Author

Stahl, D.A.

Publication Date


2007-03-15

K-050 Genomewide Gene Expression Analysis of Response of *Desulfovibrio vulgaris* to High pH.

Stolyar S. ¹, Q. He⁴, E. Alm², K. Huang², K. L. Hillesland ¹,T.C. Hazen², S. E. Borglin², D. Joyner², A. Arkin³, J. Zhou⁴, D. Stahl¹, 1-University of Washington, Seattle, WA; 2 -Lawrence Berkeley National Laboratory, CA; 3 -University of California, Berkeley; 4 - Oak Ridge National Laboratory, TN.



ABSTRACT

As a part of the DOE Genomics CTL, initiative evaluating the use of microbial stress response to monitor the status of environmental systems, we studied the effect of exposure to high lataline (pH10) media on exponentially growing Desulfovitrio vulgarist Hildenborough (DrH) cells. Any given Gram-negative bacterium under high PH stress is challenged by mainly three factors: inracellular alkalinized PH, diminished membrane potential and misfolded degrading proteins. To maintain viability in this stressful state, the cell could transport protons or acids into the cell, synthesize compounds that acidify the cytoplasm, activate systems for protein repairing, or increase degradation of denatured proteins. In our experiments, several genes reported to be upregulated in E. coli it high PH were also upregulated in DrH. These include privates were downrequlated during PH 10 stress. DrH also upregulated reproteins are such as dank and an ATP-dependent Clp protease, an ATP-dependent proteins Ea. Some energy production genes were consistently downregulated a thigh PH. These include private carboxylase, desulforeredoxin, and ferredoxin II. Finally, the microarray data revealed a potential DrH specific PH moneostasis mechanism. In DrH but not other Deliportocoloctric or E. coli, its Navi *Pl ampiorer hand. and a patative L-asparate oxidase gene are adjacent in the genome and likely to be in the same operon. Both of these genes were upregulated in D. Mr algority during high stress. Thus, part of the DrH response to high PH stress. Thus, part of the DrH response to high PH stress. Thus, part of the DrH response to high PH stress. Thus, part of the DrH response to high PH stress. Thus, part of the DrH response to high PH stress. Thus, part of the DrH response to high PH stress. Thus, part of the DrH response to high PH stress. Thus, part of the DrH response to high PH stress. Thus, part of the DrH response to high PH stress. Thus, part of the DrH response to high PH stress. Thus, part of the DrH response to high PH stress. Thus

EXPERIMENTAL APPROACH

<u>D. sulearis. Microarray. Manufacturing.</u> 70 mer oligo probes were designed using a software Arra/Oligos/elector (Zhu 2002). The whole genome microarray covered 374 ORFs. Oligo probes were spotted onto UltraGAPSTM coated glass slides (Corning Life Science, NY) using a Microgrid II arrayer (Genomic Solution Inc. MI).

Cell Growth and High pH Upshift Conditions. D. vulgaris cells were grown in L84D medium supplemented with lactate and sulfate. PH was adjusted to 10 by addition of KOH when culture reached middle exponential growth phase. Cells were harvested for RNA isolation after 30 and 60, 120 and 240 minutes. To test growth rate of mutants at different pH. cells were grown in B3 medium (0.1g NaCl. 0.1g of MgCP-6H20, 0.1g CaCl.-2H20, 0.5g NH,Cl. 0.1g KCl. 1.4g of Na,SO4, 0.001g of Reszurine. Iml of IM K,HPOA, Iml of Trace Minerals, 1ml of Thuer's Vitamins, Iml of 1M Cystein and Iml of 1M Na,Si in one liter) with lactate and sulfate using the following buffering agents: sodium bicarbonate for pH 7; and elycine for pH 80 and 90.

RNA Isolation and Microarray Hybridization. Total cellular RNA was isolated from cell cultures using the Trizol procedure (BRL), treated with RNase-free DNase I, and purified using RNeasy columns (Qiagen). CDNA was synthesized using total RNA (10 µg) as the template and fluorescently labeled with Cy3-dUTP in a reverse transcription reaction. Genomic DNA was labeled with Cy3-dUTP. Labeled cDNA and genomic DNA was then hybridized to the D.vulgaris whole-genome array at 50°C overnight in the presence of 50% formamide.

Microarray Analysis. Arrays were scanned using the scanning laser confocal fluorescence microscope of the ScanArray® Microarray Analysis System (GSI Lumonics), and hybridization signal intensities were quantitated using the software of ImaGeneTM (Biodiscovery). Statistical analysis of the microarray data was performed using ArrayStat and cluster analysis was performed using TIGR MultiExperiment Viewer (MeV).

RESULTS

Figure 1. K-means cluster analysis of gene expression pattern for all genes.

III *****	41,0000	#11 Same	m man .	107 Bease	MY Saids
				Contract of	
11 Marie			to	and beauti	IIT Bases
as man	an 1000	27 500.00	and the same	gitt beast	GIT THAN
					=
SET Record	Na haran			an invest	and the same
	-		-		

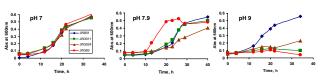
Table 1. Genes significantly upregulated in pH upshift stress (cluster 2)

		-		-		. , ,
Gene ID		Log2 ra	tio			Gene description
		30min	60 min	120min	240 min	
ORF04473	DVU3301	0.88	3.36	1.53	3.70	hypothetical protein
ORF04472	DVU3300	0.68	2.27	0.84	3.57	hypothetical protein
ORF00217	DVU0774	1.77	2.57	2.20	3.21	ATP synthuse, F1 epsilon subunit (stpC)
ORF04773	DVU0086	1.18	0.84	1.88	3.00	hypothetical protein
ORF04091	DVU3081	0.27	2.38	1.35	2.64	Integral membrane protein, putative
ORF04144	DVU3110	0.91	1.19	1.35	2.45	L-asportate celdase, putative
ORF04771	DVU0085	1.36	1.90	1.75	2.45	tryptophan synthase, beta subunit (trp8)
ORF02910	DVU2368	1.64	1.90	1.87	2.42	(3R)-hydroxymytistoyl-(acyl-carrier-protein) dehydratase (fab2)
ORF01110	DVU1314	ND	1.20	1.41	2.41	ribosomal protein L24 (rpiX)
ORF01122	DVU1322	1.51	1.64	1.80	2.34	ribosomal protein L15 (rpiO)
ORF02019	DVU1858	1.56	1.68	1.58	2.31	"Cold-shock" DNA-binding domain protein
ORF03992	DVU3028	1.57	2.07	1.92	2.30	glycolate oxidase iron-sulfur subunit.
ORF05070	DVU0258	0.96	0.95	1.24	2.28	sensory transduction histidine kinase-related
ORF00219	DVU0775	1.11	1.55	1.63	2.27	ATP synthase, F1 beta subunit (alpfl)
ORF00220	DVU0776	0.87	1.60	1.13	2.26	ATP synthase, F1 gamma subunit (stpG)
ORF05195	DVU0331	1.36	1.18	1.83	2.23	pulative histidine prolein kiruse
ORF03854	DVU2946	1.98	2.45	2.10	2.16	hypothetical protein
ORF04468	DVU3298	1.38	1.86	1.09	2.15	hypothetical protein
ORF04140	DVU3108	1.36	1.60	1.41	2.10	Na+84+ antiporter NhaC (nhaC) -
ORF00918	DVU1198	1.94	2.05	1.59	2.03	riboflavin synthase, bela subunit (ribil)
ORF00078	DVU0693	1.09	1.52	1.48	2.01	respiratory nitrate reductase, beta subunit (narit)
ORF03173	DVU2526	1.68	1.24	1.42	1.98	periplasmic (rife) hydrogenase large subunit precursor
ORF00079	DVU0694	2.17	1.91	1.01	1.97	molybdopterin oxidoreductase
ORF00354	DVU0855	1.64	1.76	1.60	1.96	coeruyme pqq synthesis protein, pulative
ORF03647	DVU2816	1.04	1.80	1.87	1.95	efflux system protein
ORF04988	DVU0211	1.32	1.68	1.02	1.94	converved hypothetical protein
ORF04508	DVU3325	1.27	2.13	2.12	1.94	hypothetical protein
ORF04586	DVU3371	0.54	2.18	1.55	1.87	mett
ORF05148	DVU0303	1.58	1.87	2.05	1.82	hypothetical protein
ORF00660	DVU1035	1.09	2.03	2.11	1.82	glucokinane (glk)
ORF01117	DVU1319	1.66	1.64	1.34	1.80	ribosomal protein L18 (rpIR)
ORF03251	DVU2572	1.25	1.36	1.80	1.76	femous iron transport protein A, putative
ORF00041	DVU0667	2.28	1.52	1.74	1.69	HD domain protein
ORF01094	DVU1304	1.53	1.67	1.46	1.66	ribosomal protein L4/L1 family
ORF02762	DVU2283	1.24	1.56	1.64	1.64	hypothetical protein
ORF02913	DVU2370	1.58	1.80	1.62	1.64	outer membrane protein OmpH, putative
ORF01324	DVU1446	2.98	2.30	2.56	1.63	Heptoxythamsferase family
ORF05481	DVU0493	1.47	1.81	1.45	1.61	hypothetical protein
ORF05084	DVU0265	1.61	2.08	1.54	1.56	25.3 kd prolein in hmc operon
ORF04004	DVU3035	1.41	1.74	1.31	1.56	methyl-accepting chemolasis protein, putative

Figure 2. Gene organization of several chromosomal segments containing genes up regulated at high pH. Color of the contour lines indicates up regulation \blacksquare ; down regulation \blacksquare ; unchanged \blacksquare

Inactivated in mutant JW 383

Inactivated in mutant JW 3011


Inactivated in mutant JW 3024

C C	DVU3108 (0000110) (3313) (512)		
Gene ID#	Protein assigned function	Cellular process	
DVU3108	Na/H antiporter	Ion transport	
DVU3109	Fe-S cluster binding	Electron transfer	
DVU3110	L-aspartate oxidase	Amino acid metabolism	
DVU3111	cAMP-binding proteins - catabolite gene activator	Gene regulation	
DVU3112	Flp pilus assembly protein TadD, contains TPR repeats	Motility	
DVU3113	carbamoyl-phosphate synthase, small subunit	Amino acid metabolism	
DVII3114	3.deoxy.manno.octulosonate cytidylyltransferase	Linopolycaccharida biocantharic	

5S rRNA	DVU2580	2582 2583
Gene ID#	Protein assigned function	Cellular process
DVU2579	contains TPR repeats	Signal transduction
DVU2580	histidine kinase	Signal transduction
DVU2581	response regulator, CheY like reciever	Signal transduction
DVU2582	regulator, TetR family	Signal transduction
DVU2583	lipoprotein	Cell envelope biogenesis

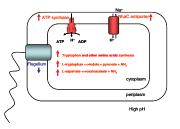

Gene ID#	Protein assigned function	Cellular process
DVU0330	response regulator	Signal transduction
DVU0331	histidine kinase	Signal transduction
DVU0332	hypothetical protein	
DVU0333	hypothetical protein	
DVU3334	D-alanineD-alanine ligase	Cell envelope biogenesis
DVU0335	3-deoxy-D-manno-octulosonic-acid transferase, putative	Cell envelope biogenesis

Figure 3. Effect of pH on growth of D. vulgaris mutants

JW801 - wt; JW 3011- Tn insertion in DVU2580; JW 3024 - Tn insertion in DVU0331; JW 383 - deleted DVU 3108

Fugure 3. Conceptual model of D. vulgaris high pH stress response

CONCLUSIONS

- D. wulgaris response to high pH stress is somewhat similar to that in E. coli and other bacteria. ATPase, tryptophan synthase GDVU0085, typtohanase TnaA (DVU 2204), one nhaC Na"/H¹ antiporter (DVU3108) have been found to be upregulated showing commonality in pH stress response of DvH and E.coli. In addition to that, genes for some chaperones and proteases such as dnaK (DVU0811), ATP-dependent Clp protease (DVU1874), and DVU3303, coding for ATP-dependent protease La were also upregulated.
- Our data suggested that reactions involved in amino acid metabolism are part of the defense mechanism against high pH upshift. However, the exact mechanism of protection needs to be elucidated.
- Impaired growth of mutants JW3011, JW3024, JW3024 demonstrated that proton-sodium antiporter NhaC (DVU3108) and two regulators (DVU 311 and DVU 2580) are involved in high pH stress response of D. vulgaris

ACKNOWLEDGMENT

ESPP is part of the Virtual Institute for Microbial Stress and Survival supported by the U.S. Department of Energy, Office of Biological and Environmental Research, Genomics Program. GTL through contract DE-ADC/20GCH 11231 between Lawrence Berkeley National Laboratory and the U.S Department of Energy. We are greatly thankful to Judy Walf, Joseph Ringbauer, and Zane Grant for generously providing D. wulgar's mutants.