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A B S T R A C T

Alzheimer's disease (AD) is marked by cognitive dysfunction emerging from neuropathological processes im-
pacting brain function. AD affects brain dynamics at the local level, such as changes in the balance of inhibitory
and excitatory neuronal populations, as well as long-range changes to the global network. Individual differences
in these changes as they relate to behaviour are poorly understood. Here, we use a multi-scale neurophysiolo-
gical model, “The Virtual Brain (TVB)”, based on empirical multi-modal neuroimaging data, to study how local
and global dynamics correlate with individual differences in cognition. In particular, we modeled individual
resting-state functional activity of 124 individuals across the behavioural spectrum from healthy aging, to
amnesic Mild Cognitive Impairment (MCI), to AD. The model parameters required to accurately simulate em-
pirical functional brain imaging data correlated significantly with cognition, and exceeded the predictive ca-
pacity of empirical connectomes.

1. Introduction

The cognitive and anatomical changes that occur in dementia due to
Alzheimer's disease (AD) have been widely documented (Braak and
Braak, 1991; Braak et al., 1993; Hyman et al., 2012; Van Hoesen and
Damasio, 1987; Weiner et al., 2012). Changes in structure and function
occur across a range of spatial scales. Neurofibrillary tangles (NFT)
disrupt axonal flow via tau phosphorylation, which in turn disrupt
functional communication. The accumulation of tau protein results in
the degeneration of axonal tracts, causing further damage in global
functional connectedness, and finally, neuronal death.

More recently, neuronal hyperactivity has been implicated in the
degenerative cascade of AD. This hyperactivity, characterized by
changes in local excitatory and inhibitory neuronal populations as well
as global hyperexcitation, have been documented in both Mild
Cognitive Impairment (MCI) and AD (Busche and Konnerth, 2015;
Celone et al., 2006; Dickerson et al., 2005; Jones et al., 2016; Sperling

et al., 2010). The imbalance in excitatory and inhibitory neural circuits
disrupts hippocampal functioning, which likely leads to cognitive de-
cline (Goutagny and Krantic, 2013; Scott et al., 2012; Verret et al.,
2012). The change in excitation/inhibition is particularly intriguing, as
it may be causally linked to the amyloid buildup that is a regular
characteristic of AD (Gleichmann et al., 2011; Gleichmann and
Mattson, 2010; Palop and Mucke, 2010). Interestingly, the excitation
that characterizes some subtypes of AD has actually been linked to an
increased risk of seizure (Amatniek et al., 2006; Mark et al., 1995).
Local excitation, integrated across the network via inter-area connec-
tions increases the coordinated activity of the network via heightened
FC (Deco et al., 2014b), which is a feature of seizure activity (Mishra
et al., 2013).

At the global level, AD has been described as a disconnection syn-
drome, characterized by the degeneration of the connectome and of
network organization that is governed by these long-range connections
(Delbeuck et al., 2003; He et al., 2008; Sanz-Arigita et al., 2010; Stam
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et al., 2007; Supekar et al., 2008; Wang et al., 2007). Both structural
and functional connectivity (SC, FC) are affected (Balachandar et al.,
2015; Filippi and Agosta, 2011; Matthews et al., 2013; Soldner et al.,
2012; Sun et al., 2014). Changes in global network organization have
been reported as a result (Delbeuck et al., 2003; He et al., 2008; Sanz-
Arigita et al., 2010; Stam et al., 2007; Supekar et al., 2008; Wang et al.,
2007).

To date, linking findings of AD pathology at these different scales of
interrogation has proven elusive. Computational models are a pro-
mising strategy for combining network-level connectivity with neural
mass models. These models allow for the systematic exploration of the
optimal levels of neural parameters such as excitation, inhibition,
coupling or conduction delays between distant regions. Computational
models have already proved informative for understanding the link
between SC and FC in the brain, for example via lesion studies (Alstott
et al., 2009; Honey and Sporns, 2008). Several studies have focused on
modeling changes in interconnected excitatory and inhibitory neural
populations as they relate to network organization in clinical popula-
tions (de Haan et al., 2012; de Haan et al., 2017; Yang et al., 2016).
Two of these studies have documented such changes in Alzheimer's
disease. In the first study, De Haan et al. (2012) emphasized the pa-
thological effects of hyperexcitability by showing that the vulnerability
of hub regions in AD is related to their increased excitability. De Haan
et al. (2017) showed that, contrary to their hypothesis, selective sti-
mulation of excitatory neurons resulted in the prolonged preservation
of oscillations, connectivity and network topology. The results of the
study emphasize the unpredictability of excitation/inhibition on the
complex dynamics of the brain. However, neither of these studies
linked these changes to observed differences in cognition, as they were
more interested in the influence on network properties.

The goal of the present work was to elucidate whether optimal
functioning points of local (excitation, inhibition) and global (long-
range coupling, conduction velocity) brain dynamics can be linked to
individual differences in cognition from healthy aging, to MCI, to AD.
Our objective was to understand whether variability in these para-
meters can be informative for individual differences in AD. To this end,
we used the novel neuroinformatics platform “The Virtual Brain” (TVB,
thevirtualbrain.org), a large-scale simulator of brain dynamics based on
connectivity metrics with the ability to target individual neural popu-
lations (Jirsa et al., 2017; Jirsa et al., 2010; Ritter et al., 2013; Roy
et al., 2014; Sanz Leon et al., 2013; Sanz-Leon et al., 2015; Woodman
et al., 2014). Here, we modeled changes in interconnected excitatory
and inhibitory neural populations that occur at the local level along
with global connectivity changes. Each brain region was modeled as a
local population comprising connected excitatory and inhibitory neu-
rons linked with NMDA and GABA synapses (Deco et al., 2014a). Neural
activity was generated as a function of the intra-areal local parameters –
the excitatory and inhibitory inputs, and the inter-regional long-dis-
tance individual diffusion-derived SC that integrates these across the
network (Deco et al., 2014b).

The strength of TVB is that it is based on individual structural and
functional data and thus the parameter values obtained reflect perso-
nalized Virtual Brains (Ritter et al., 2013; Sanz-Leon et al., 2015;
Woodman et al., 2014). We can compare these parameters across in-
dividuals and study their association with individual differences in
cognition. Previous work has shown that biophysical parameters de-
rived from TVB modeling can describe healthy neural dynamics (Jirsa
et al., 2010; Kunze et al., 2016; Roy et al., 2014), as well as disease. As a
proof of concept, it has been shown that these biophysical parameters
correlate with motor recovery from stroke (Adhikari et al., 2015; Falcon
et al., 2016a; Falcon et al., 2016b; Falcon et al., 2015), and the gen-
eration of epileptic seizures (Jirsa et al., 2014), along with seizure
progression (Jirsa et al., 2017). The biophysical parameters derived
from TVB modeling have been shown to correlate with a variety of
clinical phenotypes, and as such offer a potential for translation to
clinical applications.

In the present study, we sought to identify biophysical model neural
parameters that associated with cognition along the spectrum from
healthy controls to MCI to AD. We include non-demented amnestic MCI
(aMCI) subtypes within our investigation, given these individuals with
memory-based impairments demonstrate increased rates of progression
to AD – and are assumed to be experiencing a transitory, pre-clinical
stage (Fischer et al., 2007; Petersen et al., 2014; Ward et al., 2013).
aMCIs show widely variable rates of conversion to AD (Ward et al.,
2013), and thus differences within this group are of interest to the
present study. Importantly, we also create several models that reflect
the progression of AD. Neurodegeneration and functional changes occur
first in limbic and temporal regions of the brain, and later in motor and
sensory areas (Braak and Braak, 1991; Braak et al., 1993). The pattern
of destruction follows the clinical phenotype; memory is targeted first,
followed only later by sensory and motor function. Accordingly, mod-
eling is performed on a limbic subnetwork (Limbic SubNet model), as
well as the full brain (Whole Network model). Any discrepancies be-
tween the Limbic SubNet and the Whole Network model may be
characterized along the spectrum of cognitive phenotypes from healthy,
to aMCI to AD.

2. Methods

2.1. Subjects

Comprehensive behavioural data were acquired for 124 participants
from the fourth wave of the Sydney Memory and Ageing study (MAS)
(Sachdev et al., 2010; Tsang et al., 2013). At study baseline (approxi-
mately six years prior to acquisition of the current data), these com-
munity-dwelling participants were initially between 70 and 90 years of
age. Subjects were stratified based on cognitive performance into three
groups: 73 healthy controls (HC), 35 with amnestic MCI (aMCI), and 16
Alzheimer's Disease (AD).

For all study participants, exclusion criteria at baseline included a
Mini-Mental Statement Examination (Folstein et al., 1975) adjusted
score below 24, diagnosis of dementia, developmental disability, neu-
rological or psychiatric diseases, or inadequate comprehension of
English to complete a basic assessment. The study was approved by the
Human Research Ethics Committee of the University of New South
Wales, and participants gave written, informed consent.

2.2. Neuropsychological measures

Twelve individual neuropsychological tests were administered to
cover a broad range of cognitive functions. These domains assessed
included attention/processing speed, memory, language, visuospatial
ability, and executive function. These tests were grouped into cognitive
domains as part of the boarder longitudinal study (MAS) (Sachdev
et al., 2010; Tsang et al., 2013) – and selected accordingly to the pri-
mary cognitive function they assess (see Table S1). This was based upon
the extant literature and the widespread practice used by neu-
ropsychologists (Lezak et al., 2004; Strauss et al., 2006; Weintraub
et al., 2009). Further rationale for the cognitive groupings and their
scale-items homogeneity estimates are outlined elsewhere (Perry et al.,
2017).

Other measures such as the MMSE and the National Adult Reading
Test (NART IQ) (Nelson and Willison, 1991) were also administered.
The NART, which was administered to a subset of the current popula-
tion at study baseline, estimates premorbid intelligence levels (Bright
et al., 2002).

The neuropsychological assessments were used in two different
ways:

a) Diagnostic purposes
The neuropsychological and clinical profiles of the study partici-
pants determined the individual's classification into one of the three
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population groups (Sachdev et al., 2010; Tsang et al., 2013).
□ Healthy Controls (HC): Performance on all neuropsychological

test measures higher than a threshold of 1.5 SDs below normative
values (matched for age and education level). The criteria for
selection, and the demographic matching that was used to es-
tablish a normative reference is described in full elsewhere
(Tsang et al., 2013).

□ Mild Cognitive Impairment (MCI): If the following international
consensus criteria (Winblad et al., 2004) of MCI were met:
1. Subjective complaint of memory decline or other cognitive

function (from either the participant or informant).
2. Evidence of cognitive-decline, derived here by performance

1.5 SDs below the normative values on any of the neu-
ropsychological tests.

3. Normal or minimally impaired functional activities, de-
termined by informant ratings on the Bayer-ADL scale
(Hindmarch et al., 1998).

4. No current diagnosis of Dementia according to DSV-IV criteria
(APA, 2000).
Only MCI individuals demonstrating memory-based impair-
ments - hence meeting the criteria for the amnestic MCI
(aMCI) (Petersen, 2004) subtype - were included in the cur-
rent study. Fifteen of these aMCI individuals were further re-
presentative of the multi-domain aMCI subtype (md-aMCI)
(Petersen, 2004), whom are characterized by additional im-
pairments in non-memory domains.

□ Alzheimer's Disease (AD) patients: A diagnosis of Alzheimer's
Disease according to DSM-IV criteria (APA, 2000) – according to
a clinical expert panel comprising of geriatric psychiatrists,
neuropsychiatrists, clinical neuropsychologists and clinical psy-
chologists. All clinical and structural MRI data (where available)
were used in the diagnostic decision.

b) Correlative metrics with model parameters
Performance on the individual test scores were transformed into
quasi Z-scores, based upon the mean and SDs for a healthy reference
group (N=723), identified from all the study participants at
baseline (approximately 6 years prior to acquisition of the current
wave's data). Domain scores were calculated as the average of the
transformed test scores comprising each domain. The only exception
was the visuospatial domain that was represented by a single mea-
sure. The memory domain composite was further subdivided into
verbal memory after exclusion of a visual retention test (Benton
et al., 1996). If necessary, the signs of the z-scores were reversed so
that higher scores reflect better performance. The correspondence
between neuropsychological cognitive domain z-scores and clinical
diagnosis classification (healthy control, MCI, AD) is reported in the
Results.

2.3. Imaging data

Structural, diffusion (dMRI) and resting-functional MRI (rs-fMRI)
data were acquired on a Phillips 3 T Achieva Quasar Dual scanner.
dMRI were acquired with a single-shot echo-planar imaging (EPI) se-
quence with the following parameters: TR=13,586ms, TE= 79ms,
61 gradient directions (b=2400 s/mm2), a non-diffusion weighted
acquisition (b=0 s/mm2), 96×96 matrix, FOV=240×240mm2,
slice thickness= 2.5 mm, yielding 2.5 mm isotropic voxels. For rs-fMRI,
participants were instructed to lie quietly in the scanner and close their
eyes. A T2* weighted EPI sequence with the following parameters was
acquired: acquisition time= 7:02, TE=30ms, TR=2000ms, flip
angle= 90°, FOV 250mm, 136×136mm matrix size in Fourier space.
208 volumes were acquired, each consisting of twenty-nine 4.5 mm
axial slices. A structural T1-weighted image was also acquired with the
following parameters: TR= 6.39ms, TE=2.9ms, flip angle= 8°,
matrix size= 256×256, FOV=256×256×190, slice

thickness= 1×1×1mm isotropic voxels.
Data from all imaging modalities was then inspected in FSL View

(Smith et al., 2004) for quality checking purposes. Subjects were re-
moved if any of their scans had artifact issues, including slice dropouts
on the diffusion-images (defined by zebra-like blurring or complete
dropout) (Pannek et al., 2012b), complete orbitofrontal EPI signal
dropout (Weiskopf et al., 2007), ringing on T1-images, or severe geo-
metric warping.

2.4. Preprocessing and tractography of diffusion data

Steps involving the preprocessing and whole-brain tractography of
dMRI data were similar to those performed for a subset of the current
healthy control population (Perry et al., 2015b; Roberts et al., 2017). In
short, head motion correction was performed by rotation of the gra-
dient directions (Leemans and Jones, 2009; Raffelt et al., 2012), and
spatial intensity inhomogeneities were reduced via bias field correction
(Sled et al., 1998).

Estimates of fiber orientation and subsequent whole-brain tracto-
graphy were performed within MRtrix3 (v0.3.12-515; https://github.
com/MRtrix3) (Tournier et al., 2012), Fiber orientation distribution
(FOD) functions were first estimated using constrained spherical de-
convolution (CSD) (lmax= 8) (Tournier et al., 2008) of the diffusion
signal in voxel-populations with coherently-organized (FA > 0.7) fiber
bundles. We then performed iFOD2 (Tournier et al., 2012) probabilistic
tracking to propagate 5 million fiber tracks from random seeds
throughout the brain for each subject, with the following parameters:
step size= 1.25mm, minimum track length=12.5 mm, maximum
length=250mm, FOD threshold= 0.1, curvature= 1mm radius.

The sequences were acquired when reverse phase-encoding direc-
tion approaches were not the standard procedure within acquisition
protocols. Given that the alignment between the diffusion and anato-
mical priors will not be perfectly accurate, seeding of the tractograms
was not performed upon the grey/white-matter interface (i.e. ACT)
(Smith et al., 2012), nor were streamline-filtering approaches applied
(i.e. SIFT/SIFT2) (Smith et al., 2013).

2.5. fMRI processing

fMRI data processing was performed using the Data Processing
Assistant for Resting-State fMRI (DPARSF, v 3.2) (Chao-Gan and Yu-
Feng, 2010), which calls functions from SPM8 (http://www.fil.ion.ucl.
ac.uk/spm/). Slice-timing correction (realignment to mean functional
image) was performed, followed by co-registration to the structural
image (via 6 DOF). We then conducted linear detrending, nuisance
regression of 24 motion parameters (Friston et al., 1996) and seg-
mented WM/CSF signals (Ashburner and Friston, 2005). An average
structural brain template across all participants was generated
(DARTEL) (Ashburner, 2007), and native functional images were then
transferred to MNI space (3mm) via this template. Lastly, smoothing
(8mm) and temporal band-pass filtering (0.01–0.08 Hz) was per-
formed. Full description of the steps involved for the pre-processing of
these data are provided elsewhere (Perry et al., 2017)

2.6. Functional and structural brain networks

Connectomes representing patterns of SC and FC were constructed
for all subjects, estimated from streamline-tractography maps and
BOLD rs-fMRI signals, respectively. The widely-used AAL parcellation
(within MNI space) was used here to derive the inter-areal connectivity
estimates (Tzourio-Mazoyer et al., 2002). The choice of parcellation
was motivated by previous work. The performance of identifying
atrophy patterns in Alzheimer's using the standard AAL template has
been compared with a subdivision of the AAL parcels into regions
(N= 487) of smaller size (Mesrob et al., 2008). The AAL template in-
deed demonstrated higher classification accuracy when using inter-
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cohort validation, relative to the finer-grained parcellation (Mesrob
et al., 2008). The AAL template has also been widely used in AD studies
(Savio and Graña, 2017; Tijms et al., 2018; Wang et al., 2006), and was
recently used within a whole-brain computational modeling approach
to elucidate AD-related characteristics such as amyloid beta and tau
(Demirtas et al., 2017). Lastly, the AAL template was further chosen in
lieu of the FreeSurfer parcellation because the noted acquisition pro-
cedure circumvents the imperfect alignment between the diffusion and
T1-weighted imaging modalities.

For the structural connectomes, parcellations in subject-space were
first achieved with FSL5 (Smith et al., 2004) by linearly co-registering
each individual FA image into the FMRIB standard space template. By
applying the inverse of this above transformation matrix, the AAL
parcellation was subsequently transformed into subject-space. Given
that the functional images were already within MNI space, the parcel-
lation template was not transformed to native-space for functional
network construction.

FC was computed as the Pearson's correlation coefficient of the
mean BOLD signals (i.e. all region i voxels) between all ij region pairs.
For the SC matrices, two matrices were computed: (1) a weights con-
nection matrix, and (2) a distance matrix used to assess conduction
delays in the model. In the weights matrix, Wij represented the total
number of streamlines that start/terminate within a 2mm radius of
regions i and j. Note that the diffusion signal becomes noisier and
weaker around the grey-white matter boundaries. By selecting a 2mm
radius (default parameter within MRtrix tck2connectome), we ensured
these erroneous fiber terminations were still identified as connectome
edges. While this streamline identification approach could potentially
lead to over-sampling of the streamline weights, we otherwise

circumvent the potential for false negatives and under-sampling within
the connectome edges. Wij were corrected by the euclidean distance
between i and j and also total volumetric size (summed number of
voxels) of the two regions. A subset of the AAL regions was used in the
Limbic SubNet model, which characterized our AD subnetwork (see
Supplementary Table S2 for a region list).

2.7. Quality control of SC

We implemented stringent diffusion quality control procedures,
which have been standard protocol for our other published works
(Perry et al., 2015a; Roberts et al., 2016). In particular, each raw (i.e.
unprocessed) diffusion volume of every subject was visualized. Any
participant with notable motion effects and/or severe spatial distortions
was removed from the study, operationalized by either complete signal
dropout or “zebra-like” blurring of slices (Andersson and Sotiropoulos,
2016; Pannek et al., 2012a). Furthermore, each subject's Fractional
Anisotropy image was visualized, as was the accuracy of the co-regis-
tration between the FA image and AAL parcellation (that was originally
within FMRIB FA space). The FMRIB FA template was chosen for an
improved registration with each subject's FA image. The FMRIB FA
template was based upon normalization of independent FA images, and
relative to the MNI T1 brain provided with FSL, provided a more similar
anatomical shape to the subject FA images. An example of the align-
ment accuracy between the FMRIB and subject's FA image are provided
in Fig. S1D.

The steps involved in the estimates of fiber trajectories and the
subsequent construction of each subject's SC are summarized within
Fig. S1. Note that SC weights were exponentially distributed (see Fig.

Fig. 1. Workflow in TVB Modeling: Graphical representation of the sequential steps taken in this study: a) Individual empirical neuroimaging data; dMRI is the input
to the model, rsfMRI is used for model fitting and optimization, b) Personalized model: integration of global and local dynamics; c) Output: simulated rsfMRI time
series, FC is then computed, d) Optimization: model is optimized by iterative adjustment of parameters to achieve best fit of the simulated to the empirical FC. e)
Phenotype: individual patient demographics, cognitive domain scores etc., these are used to make, f) Patient predictions, by correlating cognitive domain scores with
model parameters.
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S2), and that SC networks were not disconnected as we have used a
dense-seeding approach with the tractography, and a relatively coarse
parcellation scheme. Moreover, thresholding was not performed. To
identify this did not potentially influence our results, we 1) checked
that raw connectome density distributions were consistent across clin-
ical groups (ANOVA: F(2,121)= 0.41, p=0.66) and 2) that density did
not correlate with cognitive performance (r=−0.039, p=0.67). The
parcellation and affine co-registration (to the diffusion images) algo-
rithm were identified to yield an acceptable standard of alignment ac-
curacy across the population groups (Fig. S1F).

2.8. Computational modeling with TVB

The Virtual Brain is a multi-scale modeling approach that combines
local parameters (i.e. population excitation, inhibition) with global
long-range parameters that take into account the connectivity structure
(i.e. global coupling) and dynamical interactions between regions (i.e.
conduction velocity). The TVB modeling process is as follows: 1) in-
corporation of subject SC matrices (weights and track distances); 2)
selection of a local model and parameters (see Section 2.8.1 below for
details); 3) selection of global parameters (i.e. conduction velocity,
global coupling); 4) simulation of rsfMRI time series based on an in-
tegration of global and local dynamics; 5) computation of the simulated
rsFC and fitting to the empirical rsFC; 6) iterative optimization by re-
running steps 1–5 until an optimal fit is achieved; and 7) correlating
optimal model parameters with patient phenotype (i.e. cognitive
scores). See Fig. 1 for a summary. This process was described in detail
elsewhere (Ritter et al., 2013; Sanz-Leon et al., 2015; Woodman et al.,
2014).

2.8.1. Model
We used the reduced Wong Wang model (Deco et al., 2014b), a

mean field model that simulates local regional activity via inter-
connected populations of excitatory pyramidal and inhibitory neurons,
with NMDA (excitatory) and GABA-A (inhibitory) synaptic receptors
(Deco and Jirsa, 2012; Deco et al., 2014b; Wong and Wang, 2006). The
model is based on firing rates and synaptic gating activity. The model
was chosen as it is one of the more refined local models with an ability
to model the balance between excitation and inhibition, which is dis-
rupted in AD (Busche and Konnerth, 2015; de Haan et al., 2012; de
Haan et al., 2017; Palop et al., 2007; Verret et al., 2012). As with all
populations models of large-scale neuronal activity, the model rests
upon a combination of abstraction and mean-field dimension reduction
(Breakspear, 2017). This is required to render it tractable, to improve
parameter identifiability and to speed up computation time, hence fa-
cilitating parameter exploration and optimization. The Wong Wang
model retains local within compartment excitatory and inhibitory
connectivity, mediated by local synaptic currents (Wong and Wang,
2006). These form part of our central hypothesis. The model is of
comparable complexity to other models used in computational assays of
healthy and compromised brain dynamics (de Haan et al., 2017), being
more complex than reduced oscillator models that have also been em-
ployed (Breakspear et al., 2010), while slightly less complex than po-
pulation models that retain multi-layer connectivity (Bastos et al.,
2012). Note however, that we do not test layer-specific hypotheses. All
population models are by definition more abstract than multi-com-
partment spiking neural models: while these play an important role in
dissecting microscopic models of disease, their high dimensionality and
myriad of parameters challenges attempts to scale then to understand
network and whole brain dynamics (Breakspear, 2017).

Each local population forms a node, which are then coupled to-
gether through subject-specific connectomes to model the corre-
sponding whole brain network dynamics. The behaviour at each node, i,
is defined according to a set of stochastic differential equations (Deco
et al., 2014b) describing synaptic currents I, synaptic gating variables, S
and firing rates r. Currents in excitatory (Ii(E)) and inhibitory

populations (Ii(I)) at node i are modeled as a combination of local re-
current feedback arising from the local fraction of activated synapses
(Si(E) and Si(E))), plus input from excitatory neurons in distant nodes Sj(E).

These are given as,

∑= + + −I W I L S G C S L Si
E

E O EE i
E

j
ij j
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where WE and WI scale the effect of a fixed external current IO
(= 0.382). LEE scales the local excitatory recurrence (excitatory influ-
ences on excitatory populations, E-E) and LIE scales the local inhibitory
synaptic coupling (inhibitory influences on excitatory populations). LEI
scales the local excitatory synaptic coupling (excitatory influences on
inhibitory populations, E-I). External input from other nodes is con-
veyed through the subject-specific connectome C. G is the global cou-
pling scaling factor for Cij, the structural connection matrix weights of
tracks between regions i and j. Note that LEE, LIE, and LEI correspond to
the combined influence of w+ and Ji or JNMDA that are described
elsewhere (Deco et al., 2014b). The firing rates of the neural popula-
tions in node I are then described by passing the corresponding input
currents through a sigmoid-shaped activation function H,
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where Ii(EI) is the input current to the (excitatory or inhibitory) popu-
lation i. The synaptic gating constants are aE=310 (nC−1), aI=615
(nC−1), bE=125 (Hz), bI=177 (Hz), dE=0.16 (s), dI=0.087 (s). The
set of equations are then closed by expressing the temporal evolution of
the simulated excitatory and inhibitory synaptic gating variables S as a
function of the corresponding firing rates,
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Note that in the absence of input, these variables relax back to zero
with time constants for the decay of synaptic gating variables of NMDA
and GABA receptors given by τE= τNMDA=100 (ms) and
τI= τGABA=10 (ms). The constant γ=0.000641 scales the self-feed-
back of local firing.

Stochastic influences are introduced to these self-consistent equa-
tions via νi, an uncorrelated Gaussian noise source with unit standard
deviation scaled in amplitude by σ=0.01 (nA). The model parameter
values are provided in Table S3.

2.8.2. Model fitting
Parameter space exploration was performed so that local and global

parameters were adjusted iteratively to optimize model fit to the em-
pirical data. Parameter fitting is done across the whole network, so that
parameters are consistent across all nodes in the modeled network.

Global parameters: Model fits were maximized by varying conduc-
tion velocity and global coupling. Conduction velocity reflects the
speed of signal transfer across white-matter fibers (in m/s). It is derived
from the Euclidean distances. Previous studies have suggested the im-
portance of conduction delays for resting-state BOLD (Deco et al., 2009;
Ghosh et al., 2008). Global coupling (G, arbitrary units) is a scaling
factor for the anatomical weights. It determines the balance between
global long-range input from distal regions, and the local recurrent
input from the local neural populations within regions. High global
coupling denotes greater weighting of the global over the local input,
such that activity in node i is driven more by activity propagated over
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the long-range connections from other nodes j.
Local parameters: The most salient group of parameters at the local

level determine the coupling between excitatory and inhibitory neu-
ronal populations. This is modeled via 3 local parameters: excitation
from recurrent excitatory-excitatory populations (LEE), excitatory input
to inhibitory populations (LEI), and dampening of activity via recurrent
inhibition from inhibitory to excitatory populations (LIE).

A progressive parameter space exploration was performed, with
parameters varied one at a time in the following order: conduction
speed, global coupling (G), inhibition-excitation (LEI), excitation-in-
hibition (LEI), excitation-excitation (LEE), in a manner similar to Falcon
et al. (2015, 2016a, 2016b). The following parameter ranges were used
([min, max, step size]: global coupling ([0.5, 2.0, 0.1]), inhibition-ex-
citation ([0.4, 2.6, 0.1]), excitation-inhibition ([0.025, 0.5, 0.025]),
excitation-excitation ([0.5, 2.0, 0.1]). Note that parameter ranges were
chosen based on parameters ranges in Deco et al. (2014a, 2014b).

Parameter exploration was performed according to the following
heuristic: For each set of parameter combinations, individual resting-
state BOLD fMRI time series of duration 3min were simulated using a
Balloon-Windkessel hemodynamic model (Buxton et al., 1998; Friston
et al., 2000). Resting-state BOLD FC was then derived from each of the
simulated time series. Specifically, model fitting was achieved by
iterative optimization of the biophysical parameters until the maximum
correlation to our subject-specific empirical FC across the range of input
parameters was obtained. Pearson's correlations between the lower
triangle of the empirical and the simulated FC matrices were used as the
fitting criterion. Optimal biophysical parameters for each subject were
those that achieved the best fit to the empirical FC.

2.8.3. Whole network, limbic SubNet, embeddedness of limbic SubNet
As not all brain regions are affected simultaneously in AD, model

parameters were estimated via three different approaches:

1) Whole Network modeling: Model input is the full network SC de-
rived from the AAL parcellation. Simulated BOLD FC was derived for
all regions.

2) Limbic SubNetwork: As certain limbic and temporal regions show
the greatest neuropathological changes and degeneration early in
the disease (Braak and Braak, 1991; Braak et al., 1993; Van Hoesen
and Solodkin, 1994), associated with memory declines (Braak and
Braak, 1991; Braak et al., 1993), we did additional modeling in a
subnetwork that included the following regions in both hemi-
spheres: cingulum (anterior, middle, posterior), hippocampus
proper, parahippocampus, amygdala, temporal pole (superior,
middle) (see Table S2). Model input was an SC of this subnetwork,
derived as a subset of the AAL parcellation. Simulated BOLD FC of
these regions was derived.

3) Embeddedness of Limbic SubNet: In order to characterize the
discrepancies of brain dynamics in the Limbic SubNet and the larger
network, we quantified the discrepancy between Limbic SubNet and
Whole Network model parameters (Limbic SubNet – Whole Network
optimal parameters).

2.9. Statistical analysis

Analyses were done by comparing individuals' optimal model
parameters: (1) with neuropsychological cognitive z-scores in a con-
tinuous scale and (2) between groups (healthy, aMCI, AD - based on
clinical diagnosis). See Fig. S3 for correspondence between cognitive
scores and clinical diagnosis groups.

(1) Model correlates of cognition

To investigate the relationship between individual z-scores on the 6
cognitive domain measures (attention, language, executive functioning,

visuospatial, memory, verbal memory), and the optimal biophysical
parameters across subjects, we conducted a set of Partial Least Squares
(PLS) correlation analyses (Krishnan et al., 2011; McIntosh and
Lobaugh, 2004). Behavioural PLS is comparable to a Canonical Corre-
lation Analysis, such that it decomposes the correlation between two
variables into latent variables (LVs), or components, which identify the
maximum least squares relationship between the variables. PLS is more
robust than canonical correlation when there is potential for colinearity
among the measures which is often the case in neuroimaging data. The
LVs in PLS are comparable to LVs in canonical correlation.

The 4 biophysical model parameters were inputted as X and the 6
cognitive performance domains were inputted as Y, and the correlation
between the two was computed. The cross-block correlation matrix was
decomposed with SVD, yielding mutual orthogonal LVs, which have
weights for X and Y variables and the singular value (i.e., covariance)
that conveys the magnitude of the relation between X and Y for that LV.
Within each LV, the reliability of the contributions of each measure in X
and Y were captured via the bootstrap estimation of confidence inter-
vals for the weights converted to correlations. Permutations tests were
used to assess the statistical significance of each LV, where its covar-
iance (singular value) is compared to a distribution of random permu-
tation of data pairings (McIntosh and Lobaugh, 2004).

(2) Group differences in biophysical model parameters

Differences in model parameters across clinical groups (healthy
controls, MCI, AD) and network model (Limbic SubNet, Whole
Network) were assessed using a non-rotated task PLS with two factors.
Non-rotated task PLS is comparable to a MANOVA in that it tests for
differences between groups with several dependent variables. However,
non-rotated PLS is more robust than a MANOVA when there is a po-
tential for colinearity among the measures.

As large variations in prognosis rates have been reported among
MCIs (Ward et al., 2013), we conducted a post-hoc analysis of variances
in model parameters across and within groups. A Levene's test with two
factors – group (healthy, MCI, AD), and condition (Limbic SubNet,
Whole Network) was used to assess homogeneity of variance of bio-
physical parameters.

2.9.1. Estimation of model advantage over empirical FC and SC
To assess if there was any quantitative advantage in associating

model parameters with cognition, compared to associating SC/FC with
cognition, we performed the following: We conducted 100 bootstraps
across subjects, for each iteration we performed two PLS analyses 1)
biophysical parameters with cognition and 2) connectomes (SC and FC)
with cognition. The 2 resulting distributions of obtained total covar-
iances were saved.

The expected values for the covariances will differ between analyses
because of scale differences. We corrected for this by conducting 100
permutations across subjects to build a null distribution for each ana-
lysis, each time summing covariances across all latent variables to take
into account the whole spectrum of the covariance/relationship. The
obtained total covariances were then corrected by the mean of its
permuted null distribution.

The two resulting distributions of corrected covariances were
compared by subtracting connectomes with cognition covariances from
the biophysical parameters with cognition covariances. A difference
distribution above zero would affirm that biophysical parameters cor-
relate with cognition above and beyond SC and FC.

3. Results

3.1. Subject demographics, cognition, clinical grouping

Mean demographics, MMSE and IQ scores by group are shown in
Table S4. Neuropsychological cognitive domain scores corresponded
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tightly with clinical diagnosis groupings; scores decreased consistently
and significantly across the three clinical diagnosis groups
(HC > MCI > AD; see Fig. S5). Internal consistency scores of cogni-
tive domain scores are shown in Table S5.

3.2. Model fitting and parameter estimation

Both the Limbic SubNet model and the Whole Network model
generated good fits between the individual empirical and the simulated
FC for each subject (Limbic SubNet: r=0.57, SD=0.075, 95%
CI=[0.48, 0.65], Whole Network: r=0.31, SD=0.0453, 95%
CI=[0.29, 0.33], mean r, SD, CI across subjects, for FCs generated with
the optimal parameter values). The parameter search space showed a
slow gradation toward a single optimal solution rather than multiple
local maxima (see Fig. S4). Thus, there is unlikely to be any appreciable
interaction between any of the parameters. A systematic exploration of
this has previously been shown using the same Deco et al. (2014a,
2014b) model (Schirner et al., 2018) and another similar model (Sanz-
Leon et al., 2015).

Model fit did not differ significantly across groups, but was sig-
nificantly higher for the Limbic SubNet than Whole Network model (2
factor ANOVA: group F(2,121)= 2.27, p=0.15, model F
(1,121)= 5817.77, p < 0.0001, group ∗model interaction: F
(2,121)= 2.21, p=0.11). We found that the 3 local parameters as well
as global coupling correlated with model fit across subjects (see Table
S6). However, conduction velocity did not influence model results in
initial parameter explorations, thus time delays were not included in
the model. Note that the effects we have reported are robust to using
the SC weights normalized by track length. The optimal model para-
meters remained consistent when re-running the model with track
length on two sample subjects.

3.3. Model correlates of cognition

We correlated model biophysical parameters with cognitive z-scores
within the Limbic SubNet model, Whole Network model and the em-
bedded Limbic SubNet (see Fig. 2).

We identified a single significant latent variable (LV) that char-
acterizes the relationship between the biophysical parameters and
cognitive domain z-scores for each of the models. Model parameters
derived from the Limbic SubNet, the Whole Network, and the dis-
crepancy between these two (the Embedded Limbic SubNet model)
correlated with cognition on this LV (Limbic SubNet: p=0.018, Whole
Network: p=0.01, Embedded Limbic SubNet: p < 0.001). The con-
tributions of cognitive performance domains are shown in Fig. 2B.

Within the Whole Network model, cognitive domain z-scores cor-
related negatively with inhibition, and positively with global coupling
and excitation (excitation-inhibition and excitation-excitation). In
contrast, within the Limbic SubNet, cognitive domain z-scores corre-
lated negatively with global coupling and excitation (both excitation-
inhibition, and excitation-excitation), and positively with inhibition.

We observed that the discrepancy between model parameters of the
Limbic SubNet and the Whole Network correlates with cognitive per-
formance (see Embedded Limbic SubNet model, Fig. 2). Individuals
with higher cognitive scores (i.e. healthy subjects) have a greater dis-
crepancy in inhibition, and lower discrepancy in excitatory and global
coupling parameters.

Note that these results hold when correcting for subject demo-
graphics (age, non-English speaking background, sex, and education)
via regression and using residuals for analysis.

3.4. Group differences in biophysical model parameters

Thus far we had compared biophysical model parameters with
cognitive performance as a surrogate measure of disease severity. In
order to examine whether parameters could also be used to differentiate

between clinical diagnosis groups, we compared model parameters
across clinical groups (healthy, aMCI, AD) and network (Limbic SubNet,
Whole Network). Here, we did not observe group differences between
parameters, nor an effect of network, but we did observe a significant
group ∗ network interaction (p=0.004). See Table 1, and the same
data in Fig. 3, for optimal parameters and details by group.

Of note here (Table 1, Fig. 3) was the large variance among the MCIs
in the Limbic SubNet compared to healthy controls and ADs. A Levene's
test of homogeneity of variance for optimal values of each parameter
was significant for group, network, and their interaction (except for the
group ∗ network interaction of inhibitory-excitatory parameter) (see
Table 2).

We hypothesized that the lack of differences between groups was
due to the large variability in the aMCI group as well as the large dif-
ferences in sample sizes between groups. In order to account for vari-
able sample sizes that led to the unequal weighing of groups, we con-
ducted a secondary analysis comparing the healthy and AD group,
matching for age and sample size (N= 16 per group). Here, we re-
ported a significant effect of clinical group (healthy, AD) (p=0.003,
d=0.45) and network (Limbic SubNet, Whole Network) (p=0.003,
d=0.73), as well as a group ∗ network interaction (p=0.02,
d=0.29).

3.5. Model advantage over empirical connectomes

Next, we compared our individualized patient models to empirical
imaging data in their ability to predict clinical phenotype, for both the
Limbic SubNet and Whole Network. We observed that: (1) the covar-
iance between model parameters and cognition exceeded (2) the cov-
ariance between empirical connectomes and cognition (see Fig. 4; re-
sults shown here are for the Limbic SubNet model).

We bootstrapped covariances of (1) and (2) (see Methods), and
subtracted the two to assert that model parameters with cognition
significantly exceed connectomes (SC combined with FC) with cogni-
tion (see Methods). The mean of the difference distribution (the dif-
ference distribution was the connectomes with cognition covariance
subtracted from model with cognition covariance)= 0.95, 95% CIs:
[0.17, 1.70]. Thus, the difference distribution was reliably> 0.

See Supplementary materials for more details on reductions in
empirical SC and FC weights (Fig. S5), as well as graph measures across
clinical groups. We also checked for SC-FC differences between groups,
which were non-significant F(2,123)= 1.09, p=0.338.

3.6. Subject motion

An ANOVA was conducted to compare framewise displacement
between healthy controls, MCIs, and ADs to check whether subject
motion was driving any differences between groups (Power et al.,
2012). The result was non-significant (F(2,123)= 0.38, p=0.68).

4. Discussion

We used a neurophysiological multi-scale brain network model (The
Virtual Brain) to examine how individual optimal functioning points of
local (inhibition/excitation) and global (long-range coupling) dynamics
correlate with variability in cognition across healthy controls, amnesic
Mild Cognitively Impaired (aMCI), and Alzheimer's (AD) patients. The
study is a compelling proof of concept that the modeling platform can
be used to characterize an individual's own network and local dynamics
and has a clinical utility that can inform about the disease. We modeled,
1) the Limbic SubNet, which includes the regions of primary onset of
the pathology (Van Hoesen and Solodkin, 1994), and 2) the Whole
Network, which encompassed also the Limbic SubNet. We also char-
acterized the embeddedness of the Limbic SubNet within the full net-
work, which describes the influence of the larger network to the sub-
network.
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We were interested in global long-range network changes (Delbeuck
et al., 2003; He et al., 2008; Sanz-Arigita et al., 2010; Stam et al., 2007)
as well as local excitatory/inhibitory dynamics on neural activity
(Palop et al., 2007; Paula-Lima et al., 2013), as these changes have
consistently been observed in AD. Quantitative metrics in our model
reflect optimal levels of local excitation, inhibition, and global coupling
for each individual. Such parameters have been linked to the emergence
of important network features in health (Deco et al., 2009; Deco and
Jirsa, 2012; Deco et al., 2014b), and performance in clinical conditions
(Falcon et al., 2016b; Falcon et al., 2015). A link between model

measures (e.g. excitation/inhibition) and function has been ascertained
in computational models of AD in the past (de Haan et al., 2012; de
Haan et al., 2017). Here, we showed these model parameters allow for
the characterization of an individual's own network and local dynamic
changes in MCI and AD that reflect cognitive performance.

Specifically, we found that optimal levels of excitation, inhibition
and global coupling in the individual subject's model were associated
with cognitive performance scores across six cognitive domains (at-
tention, language, executive function, visuospatial, memory, and verbal
memory). When disease severity was characterized by cognitive

Fig. 2. A) Correlation between biophysical
model parameters and cognitive domain z-
scores across all subjects for the Limbic
SubNet, Whole Network model and the
embedded Limbic SubNet. Biophysical
model parameters are the optimal: global
coupling, inhibition-excitation, excitation-
inhibition, and excitation-excitation.
Cognition domain z-scores include: atten-
tion (Att), language (Lan), executive func-
tion (Exe), visuospatial (Vis), memory
(Mem), and verbal memory (Ver). B) The
contributions of the cognitive domain
scores to the cognition-parameter relation-
ship. Confidence intervals on these correla-
tions were obtained by bootstrap estima-
tion. C) Individual subject cognitive domain
scores and biophysical parameter scores,
color coded across groups. These are the
weighted sum of cognitive domain scores
and biophysical model parameters per sub-
ject, respectively, and are similar to factor
scores from factor analysis. The Embedded
Limbic SubNet model was characterized as
the model parameter discrepancy between
the Limbic SubNet parameters and the
Whole Network parameters.

Table 1
Mean (SD) of optimal biophysical model parameters per group and network.

Cohort Average across subjects Healthy MCI AD

Limbic SubNet Whole brain Limbic SubNet Whole brain Limbic SubNet Whole brain Limbic SubNet Whole brain

Global coupling 1.03 (0.44) 0.98 (0.21) 0.9151 (0.26) 0.9315 (0.21) 1.1914 (0.64) 0.9343 (0.21) 1.0000 (0.32) 0.9500 (0.23)
Inh-Exc 1.49 (0.26) 1.46 (0.16) 1.5082 (0.20) 1.4082 (0.13) 1.4029 (0.36) 1.4629 (0.21) 1.4812 (0.28) 1.4687 (0.14)
Exc-Inh 0.1593 (0.0359) 0.1621 (0.0238) 0.1541 (0.028) 0.1716 (0.0226) 0.1721 (0.0488) 0.1507 (0.0205) 1.1594 (0.0315) 0.1656 (0.0239)
Exc-Exc 1.35 (0.3135) 1.41 (0.1751) 1.3589 (0.25) 1.5219 (0.15) 1.4714 (0.41) 1.3571 (0.17) 1.4125 (0.33) 1.4938 (0.17)
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performance alone, there was a clear association between severity and
biophysical model parameters (Fig. 2). However, biophysical para-
meters did not differ when compared strictly across clinical diagnosis
groups. This was likely due to the large variation in biophysical model
parameters in the aMCI group (see Fig. 3). The large variance in the
optimal values of excitation/inhibition as well as global dynamics in the
aMCI group was an important finding in our study, particularly in light
of the heterogenic nature of this group in terms of phenotype and
conversion. We conducted a secondary analysis in order to ascertain
that biophysical parameters are nonetheless informative for clinical
group. When matched for sample size and age, healthy controls' bio-
physical parameters differed significantly from ADs'.

Particularly intriguing was the finding that the Limbic SubNet and
Whole Network model showed opposing brain-behavioural patterns.
We describe each below, and follow with an embeddedness explanation

of this discrepancy.

4.1. Limbic SubNet

Within the Limbic SubNet, we observed that global inter-regional
inputs and excitation correlated negatively with cognition, while in-
hibition correlated positively with cognition. The excitation/inhibition
findings are consistent with the view that over-excitation is damaging
to the system, leading to synapse debilitation, excitotoxicity, and sub-
sequent cell death in AD (Palop et al., 2007; Paula-Lima et al., 2013),
while inhibition serves to counteract its effects as a sort of compensa-
tory mechanism to reduce vulnerability to excitotoxicity (Lapchak
et al., 2000; Palop et al., 2007; Schwartz-Bloom et al., 2000; Velasco
and Tapia, 2002; Zhang et al., 2007). On the other hand, the finding
that global inter-regional coupling correlated negatively with cognition
within the Limbic SubNet suggests that a limbic system where neuronal
dynamics are driven by neuronal activity from other regions is mala-
daptive. This is consistent with shifts that have been observed in global
dynamics in healthy aging (McIntosh et al., 2014), as well as matura-
tion (Fair et al., 2009). Disease-related alteration in global coupling is
in line with reports of connectome degeneration and of network re-
organization that is governed by these long-range connections
(Delbeuck et al., 2003; He et al., 2008; Sanz-Arigita et al., 2010; Stam
et al., 2007; Supekar et al., 2008; Wang et al., 2007).

4.2. Whole brain

The brain-behavioural relationships we observed in the Whole Brain
model were quite different than in the Limbic SubNet. In the Whole
Brain model, we found that excitation and inhibition were positively
and negatively correlated with cognition, respectively. This suggests
that the effects of excitation and inhibition are not straightforward and
often unpredictable in a complex system like the brain. The positive
cognition correlate of excitation that we found is in contrast with our
findings in the Limbic SubNet (where cognition correlated negatively
with excitation), as well as with the damaging effects of over-excitation
that have consistently been reported (Busche and Konnerth, 2015;
Celone et al., 2006; Dickerson et al., 2005; Gleichmann et al., 2011;
Gleichmann and Mattson, 2010; Jones et al., 2016; Sperling et al.,
2010). Interestingly, similar unpredictability of excitation on function
in AD has been reported previously (de Haan et al., 2017). In a whole-
brain computational model of AD, de Haan et al. (2017) found that,
contrary to their hypothesis, selective stimulation of excitatory neurons
was actually beneficial for preserving network function. In the present
study, excitation in the Whole Brain model was also positively linked to

Fig. 3. Variance of biophysical parameters across clinical groups for: A) the Limbic SubNet, where the greatest variance was observed among the MCI cohort, and B)
the Whole Network, where the parameter variances were equal across groups.

Table 2
Levene's test of variance in model parameters for group (healthy, MCI, AD) and
network (Limbic SubNet, Whole Network), and their interaction.

Parameter Group
(healthy, MCI, AD)

Network
(limbic SubNet,
whole)

Group×network

Global
coupling

F(2,242)= 14.56
p < 0.0001***

F(1,242)= 31.24
p < 0.0001***

F(2,242)= 16.28
p < 0.0001***

Inh-Exc F(2,242)= 17.54
p < 0.001***

F(1,242)= 32.82
p < 0.001***

F(2,242)= 2.71
p=0.0688

Exc-Inh F(2,242)= 4.03
p < 0.05***

F(1,242)= 26.84
p < 0.0001***

F(2,242)= 7.61
p < 0.0001***

Exc-Exc F(2,242)= 11.66
p < 0.0001***

F(1,242)= 55.93
p < 0.0001***

F(2,242)= 7.35
p < 0.0001***

The astericks (*) represent significant (p < 0.05) variance in the model para-
meter.

Fig. 4. Covariance of biophysical model parameters with cognition outperforms
covariance of connectomes (SC combined with FC) with cognition.
Distributions shown are covariances from bootstrap resampling.
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preserved cognition.

4.3. Embeddedness

Although the notion of embeddedness was first introduced within
social-economic network sciences (Granovetter, 1985), it has more re-
cently been used to characterize neural networks and to describe how
the network exerts influence onto a subnetwork that lies within it (Misic
et al., 2011; Vlachos et al., 2012). A subnetwork is embedded within a
larger network if its behaviour or properties are affected by the outside
system. Embeddedness can be characterized by the difference in dy-
namics between the network and the subnetwork. That is, the more
different the dynamics, the greater the influence of the larger network
on the subnetwork.

Here, we studied embeddedness in order to better understand the
disparity in the cognition-parameter associations in the Limbic SubNet
and the Whole Network model. We characterized the difference in
optimal levels of functioning in the Limbic SubNet nodes and Whole
Network, and therefore the dependency between the two (i.e. em-
beddedness), as a function of cognition. We showed that the de-
pendency of these two sets of model parameters differ across severity,
suggesting that the influence of the larger network on the Limbic
SubNet varies in disease.

4.4. Variation in aMCI group

Of note was the striking variability in model parameters within the
aMCI group. This is particularly interesting in light of the variability
that exists in phenotype and conversion rates among aMCI patients.
With an annual conversion rate of about 20% (Ward et al., 2013), only a
certain portion of aMCIs will convert to AD within the next few years.
We suggest that the high variability we found may reflect disparities in
the classification of MCI and its subtypes. We propose that those aMCIs
individuals that will be converters will have a biophysical parameter
fingerprint closer to that of the AD group, while those that will not
convert will have biophysical parameters closer to that of the healthy
group. A follow-up study with MAS longitudinal multi-wave data will
test the use of biophysical model parameters in the individual predic-
tion of conversion.

4.5. Model parameters above empirical connectomes

Individual subjects' model parameters were better predictors of
cognition compared to empirical structural and functional connectivity.
This is important, as our model adds value above and beyond SC and FC
for making predictions about disease-related cognitive decline. The
model identifies the key features of SC and FC that reflect the unique
biophysical properties of the subject, thereby reducing the irrelevant
noise inherent in the connectomes and capturing the most predictive
representation of the empirical data. A related observation was made in
a modeling study of stroke outcome (Falcon et al., 2016a, 2016b),
whereby biophysical parameters at pre-therapy conditions were more
strongly associated with long-term motor recovery than the patient's
physical features of stroke or their demographics.

4.6. Caveats and considerations

We note several possible limitations of our study. One concern is
that the cognition-related differences in biophysical model parameters
could be driven by non-biological factors. To reduce or correct for the
influence of non-biological factors, a number of precautions were taken:
1) Quality control of SCs (see Methods), 2) analysis of model fits across
disease severity, 3) analysis of SC-FC across disease severity. We con-
clude that neither model fit nor SC-FC relationships varied with severity
and are thus unlikely to contribute to biophysical model differences in
our study.

As the simulations were based on SCs, we conducted rigorous
quality control of our matrices. Nonetheless, the validity of our SCs
could be improved by using filtering methods that ensure the stream-
line weights more accurately resemble the underlying densities (Smith
et al., 2013, 2015). In addition, the validity could also be enhanced by
performing tracking upon the grey/white-matter interface (Smith et al.,
2012). While these methods were not employed, and we acknowledge
the limitations of our widely-adopted normalization approach (Yeh
et al., 2016), the current diffusion data do still benefit from being
processed with the most advanced options currently available for the
present acquisitions. These approaches have been shown to distinguish
between normal aging and neurodegenerative groups; Of note, a recent
study which also employed fiber-orientation based estimations of SC,
identified striking voxel-wise microstructural differences in MCI and AD
patients (relative to controls) (Mito et al., 2018). Similarly, fMRI is a
helpful tool for the identification of AD-related dysfunction at early
stages of the disease (Sperling, 2011) in view of the synaptic changes
that occur early in the course of the pathology, often before measurable
clinical symptoms (Coleman et al., 2004; Selkoe, 2002). However, it is
important to take into consideration that changes in rsfMRI in AD may
be an effect of pathological neurovascular differences in the BOLD
signal and hemodynamic response (Sperling, 2011). Studying AD-re-
lated changes using a neural model circumvents some of these issues.

We also chose a local neuronal population model that was suffi-
ciently complex to capture the key features of interest (excitatory and
inhibitory synaptic currents) but, as with all population models, em-
bodying other abstractions. Future models could address more nuanced
aspects of synaptic and circuit pathophysiology through the employ-
ment of more detailed multi-layer cortical models.
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