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Dual Contrastive Learning for Next POI Recommendation with Long and
Short-Term Trajectory Modeling

Zhi Liu, Junhui Deng, Deju Zhang, Zhiyu Chen, Guojiang Shen, Xiangjie Kong*

College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China

Abstract

Next point-of-interest (POI) recommendation is a challenging
task that aims to recommend the next location that a user may
be interested in based on their check-in trajectories. Since
users travel not only with long-term stable preferences but also
with short-term dynamic interests, there is often a potential de-
pendency between long-term and short-term preferences. Most
existing works tend to mine the dependencies between long-
term and short-term trajectories by contrastive learning but al-
ways ignore the negative impact of the learned dependencies
on the accuracy of short-term trajectory modeling. Moreover,
they often only utilize the context information of the user’s tra-
jectory, while neglecting the spatiotemporal dependencies be-
tween user trajectories. To address these issues, we proposed
a novel dual contrastive learning framework DCLS. Specifi-
cally, we designed a novel dual contrastive learning scheme,
for which we built two views: the first view is between the
user’s own long-term and short-term trajectories, and the sec-
ond view is between the short-term trajectories of different
users. We performed contrastive learning on both views, to
learn the dependency between long-term and short-term tra-
jectories, and improve the accuracy of trajectory modeling. We
also designed a multi-class attention fusion module, which in-
tegrates the spatiotemporal influence of trajectory dependen-
cies on user mobility, enhancing the recommendation perfor-
mance. We conducted extensive experiments on three real-
world datasets, which demonstrated that our model achieves
advanced performance in the next POI recommendation.

Keywords: Next POI Recommendation; Contrastive Learn-
ing; Attention Mechanism

Introduction
Due to the development of transportation and modern net-
works, each user’s daily travel choices have become more
complex. In the face of complicated information, POI rec-
ommendation substantially improves the efficiency of users
in travel decision-making and also provides a more scientific
reference value for enterprises’ location and advertising (Fu
et al., 2024; Z. Liu et al., 2023).

The next POI recommendation differs from the POI rec-
ommendation in that it considers the user’s real-time interests
to make dynamic POI recommendations (Yang, Liu, & Zhao,
2022). Existing works found that users’ interests consist of
stable long-term preferences and short-term temporary inter-
ests, and considering these two aspects can improve the per-
formance of the recommendation (Zheng et al., 2022; Duan,
Fan, Zhou, Liu, & Wen, 2023). However, previous works of-
ten focused on the learning of either long-term or short-term
trajectories (L. Huang, Ma, Wang, & Liu, 2019; Zhu et al.,
2021). This could lead to the entanglement of long-term and
short-term preferences, which may affect the recommenda-
tion accuracy. Recently, some work (Sun et al., 2020; J. Liu,
Chen, Huang, Li, & Min, 2023) recognized the unique in-
formation in trajectories of different periods and attempted

to use Long Short-Term Memory (LSTM), Recurrent Neu-
ral Networks (RNN), and other methods to learn this infor-
mation. These works on the next POI recommendation have
made some progress by modeling long and short-term trajec-
tories. However, some aspects remain unaddressed.

Firstly, existing methods usually focus on learning users’
long-term and short-term trajectories, while ignoring the po-
tential dependencies between them. However, exploiting the
dependencies between long-term and short-term trajectories
can lead to higher-quality recommendations. Users’ long-
term preferences influence their short-term travel choices.
Users’ short-term preferences are also updating users’ stable
interests.

Secondly, a common method used by existing works to
mine the dependencies between long-term and short-term tra-
jectories is contrastive learning. When introducing trajectory
dependencies to short-term trajectories, contrastive learning
also brings noise to the trajectory modeling, thus affecting
the accuracy of short-term trajectory modeling.

Finally, the same check-in segments in different trajecto-
ries reveal the spatiotemporal dependency among user trajec-
tories (Yang et al., 2022). These shared trajectories indicate
the similarity of individual mobility behavior, which can be
used to predict the next POI. However, most existing models
only fuse the user’s own long-term and short-term trajectory
information for recommendation, ignoring the spatiotemporal
dependency among all trajectories. This leads to suboptimal
recommendation performance.

In response to these challenges, this paper proposed a novel
Dual Contrastive Learning framework with Long and Short-
term trajectory modeling named DCLS. The goal of this
framework is to capture the high-order dependency between
long-term and short-term trajectories effectively while main-
taining the accuracy of short-term trajectory modeling. For
this purpose, we designed a novel dual contrastive learning
scheme, for which we also designed two views. The first
view is between the user’s own long-term and short-term tra-
jectories. The second view is between the short-term tra-
jectories of different users. In the information fusion for
the recommendation, we use the graph attention mechanism
(GAT) to learn the spatiotemporal dependence hidden in all
users’ trajectories, thus providing a more comprehensive tra-
jectory modeling. In summary, the primary contributions of
our model are listed as follows:

• A dual contrastive learning framework (DCLS) for the next
POI recommendation is proposed, which can mine the de-
pendencies between long-term and short-term trajectories
while considering the spatiotemporal dependencies of tra-
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jectories.

• We designed a novel dual contrastive learning scheme and
a novel information fusion strategy. The former can fully
explore the dependencies between long-term and short-
term trajectories while ensuring accurate trajectory mod-
eling. The latter can adaptively fuse long-term preference,
short-term preference, and spatiotemporal dependency.

• Extensive experiments conducted on three public bench-
mark datasets demonstrate that the performance of DCLS
surpasses the state-of-the-art next POI recommendation
methods.

Related Work
Long and Short-Term Trajectory Modeling
Despite the impressive development of work on the next POI
recommendations, there is still a minority of work focused
on studying long and short-term trajectory modeling for the
next POI recommendations. Recently, some works have at-
tempted to learn long and short-term trajectory preferences
separately (Jiang, He, Cui, Xu, & Liu, 2023; Sun et al.,
2020). Zhu et al. (Zhu et al., 2021) employed the Bidirec-
tional Long Short-Term Memory (Bi-LSTM) neural networks
with a package-level attention mechanism to study the long-
term and short-term preferences of users. Liu et al. (J. Liu et
al., 2023) introduced a Graph Neural Network (GNN) based
model that transforms POIs into low-dimensional metrics, in-
tegrating both long and short-term preferences for a compre-
hensive representation of dynamic preferences. Additionally,
Duan et al. (Duan et al., 2023) adopt a shared transformer
encoder to encode both long and short-term behaviors, em-
phasizing behavioral commonalities over time. This innova-
tive approach enables precise modeling and adaptive fusion
of users’ preferences, showcasing a significant advancement
in POI recommendation methodologies. These studies ex-
ploited the relationship between long-term and short-term tra-
jectories but ignored the protection of the accuracy of trajec-
tory modeling.

Contrastive Sequential Recommendation
The self-supervised learning (SSL) paradigm, which has
demonstrated remarkable success in learning representations
from real data through pairs of positive and negative sam-
ples in diverse fields (Y. Zhang et al., 2022; B. Wu et al.,
2023), recent works have explored its potential application
in sequence recommendation (Zhou et al., 2020; Xie et al.,
2022; Nizri, Azaria, & Hazon, 2023). Xie et al. (Xie et al.,
2022) leveraged three random augmentation operators to en-
hance sequence augmentation techniques. Similarly, Zhou et
al. (Zhou et al., 2020) employed item masking and item crop-
ping while introducing four contrastive tasks to pre-train a
bidirectional transformer for next-item prediction. Huang et
al. (C. Huang, Wang, Wang, & Yao, 2023) innovatively de-
vised a sequence attribute for next-item prediction, introduc-
ing a dual-transformer module and a dual contrastive learn-
ing scheme to learn users’ low and high-level preferences

discriminatively. Despite these works promoting the devel-
opment of sequential recommendation, the potential of con-
trastive learning for the next POI recommendation has not
been fully exploited.

Preliminaries And Problem Formulation
Let P = {p1, p2, · · · , pN} be a set of POIs, U =
{u1,u2, · · · ,uM} be a set of users, where N,M are the total
number of POIs and users. H = {h1,h2, · · · ,h24} is used to in-
dicate which part of the day it is (map a day to 24 slices), and
D = {0,1} is used to indicate whether it is a weekend or not.
Each POI p∈P is denoted by a tuple p= ⟨lat, long,cat,num⟩
of latitude, longitude, POI categories, and visited-num, re-
spectively.

Definition 1 (Trajectory) Let Qu
i = {q1,q2, · · · ,q|Qu

i |} be a
set of check-in recorders of user u on i-th day. Each check-
in is denoted by q = ⟨u, p,h,w⟩, which indicates that user u
visited POI p at time h and whether the day was a weekend.

Definition 2 (POI-POI graph) The POI-POI graph G =
(P,A) shows the network of interactions and associations
between POIs globally, where P denotes the set of POIs.
A∈ RN×N denotes the adjacent matrix, and the value of ai, j in
A represents the number of times pi and p j have been visited
consecutively.

Short-term trajectories react to the user’s current move-
ment state. When making recommendations, the sequence of
check-in points before the recommendation is used as a short-
term trajectory T u

s = Qu
i . And T u

l = {Qu
1,Q

u
2, · · · ,Qu

i−1} de-
notes the user u’s long-term trajectories, consisting of check-
in trajectories for several days (e.g.,7 days) before the rec-
ommendation task, where i is the total number of the user’s
trajectories. Specifically, for each user, given the long-term
trajectories T u

l , and the short-term trajectory T u
s , we aim to

give the user a set of sets of POIs S he wants to visit at the
next timestamp.

Methodology
The framework of DCLS is shown in Figure 1, which is
composed of three key components: (1) Trajectory Model-
ing Module is used to encode long and short-term trajecto-
ries separately (2) Dual Contrastive Learning Module is used
to fully mine the dependencies of long-term and short-term
trajectories and ensures the accuracy of short-term trajectory
modeling, by conducting contrastive learning on two views
(3) Multi-Class Attention Fusion Module is used to capture
the importance of different time-span preferences and model
the potential spatiotemporal dependencies between different
trajectories, which will adaptively fuse long and short-term
trajectories through one layer of attention and then fuses spa-
tiotemporal dependencies through the graph attention mech-
anism.

Trajectory Modeling Module
Trajectory embedding It is widely known that the next
POI recommendation is characterized by rich spatiotempo-

5710



L
S

T
M

M
L

P

C
ro

ss-

E
n

tro
p

y

Trajectory 𝑄𝑖

𝐻𝑙
𝑢 𝐻𝑙

𝑛𝑒𝑔 𝐻𝑠
𝑝𝑜𝑠

𝐻𝑠
𝑛𝑒𝑔

h′

userEmbed-layer categoryEmbed-layer hourEmbed-layer dayEmbed-layerpoiEmbed-layer

𝐻𝑠
𝑢

… 

Short-term trajectory

Long-encoder

𝑓𝑙𝑜𝑛𝑔

Short-encoder 

𝑓𝑠ℎ𝑜𝑟𝑡

… mask

Trajectory 𝑄1

Trajectory𝑄𝑖−1

… Trajectory 𝑄2
…

Long-term trajectory

… ……

Inter-contrastive 

learning

Intra-contrastive 

learning

User long traj-embedding Negative long traj-embedding User short traj-embedding Positive short traj-Embedding Negative short traj-embedding

GCN

poiId attri1 attri2 …

… … …

… … …

global trajectory message

Q            K          V

softmax(Q⨯K)⨯V

Attention layer

Global Attention 

Network

Random mask

𝐿𝑖𝑛𝑡𝑒𝑟 𝐿𝑖𝑛𝑡𝑟𝑎

𝐿𝑝𝑜𝑖

POI-POI graph

attribute table

logit

I

II

III

Figure 1: The overall framework of DCLS. This framework mainly consists of three modules: (I) Trajectory Modeling Module
(II) Dual Contrastive Learning Module (III) Multi-Class Attention Fusion Module

ral contexts. Therefore, we take into account various factors
when embedding the representation of trajectories, including
categories, visit times, and weekend information. GCN (Kipf
& Welling, 2016) is introduced to learn the dependencies re-
lation of POIs. Let the output of the last GCN layer be the
hidden representation ep ∈ RN×dp , which also is the learned
global embedding matrix, where dp refers to the dimension of
the POI embedding and the i-th column of ep is epi denotes
the embedding of POI pi.

Then, the most basic embedding layer is used here for
learning the embeddings for the remaining contexts. Finally,
for the user’s trajectory Qu

i = {q1,q2, · · · ,q|Qu
i |}, each check-

in point can be expressed as:

eqi = epi ⊕ eui ⊕ eci ⊕ ehi ⊕ ewi (1)

where ⊕ is the concatenation operation. And eu ∈ Rdu is
the embedding of the user, ec ∈ Rdc is the embedding of the
category, eh ∈ Rdh is the embedding of the access time, and
ew ∈ Rdw is the embedding of the weekend indicator. The
sum of all embedding dimensions is denoted as D for conve-
nience. So the embedding of the trajectory Qu

i is denoted as
EQu

i
= [eq1 ,eq2 , · · · ,eq|Qu

i |
] ∈ R|Qu

i |×D.

Long-term trajectory modeling For the user’s long-term
trajectories T u

l , each trajectory in the user’s long-term se-
quence will be randomly masked according to 10% proba-
bility to get T u∗

l . Then the T u∗
l is fed into the trajectory em-

bedding module to obtain the embedding of each trajectory.
Finally concatenate the representations of each trajectory in
the long-term trajectories to obtain the user’s long-term tra-

jectories embedding representation ET u
l
∈ RX×D, where X de-

notes the total number of check-in points in the long-term
trajectories.

To model both long and short-term trajectories well, a bi-
directional transformer encoder is introduced as long and
short-term trajectory encoders to learn the long and short-
term trajectories hidden representation respectively. The
user’s long-term trajectories representation ET u

l
is fed into the

long-term trajectory encoder:

HT u
l
= longEncoder(ET u

l
) (2)

where HT u
l
∈ RX×D is the hidden representation of the long-

term trajectories. In this equation, the long-term trajectory
encoder is specified as follows:

HT u
l
= LayerNorm(HT u

l
+Dropout(FFN(Ui))) (3)

Ui = MultiHead(Attention(ET u
l
Wq,ET u

l
Wk,ET u

l
Wv)) (4)

where Wq,Wk,Wv ∈ RD×D
h are the learnable transformation

weight matrices of query, key, and value, respectively. h de-
notes the number of heads.

Short-term trajectory modeling Firstly, the user’s short-
term trajectory is fed into the trajectory embedding module
to get the embedding ET u

s ∈ RY×D, where Y denotes the total
number of check-in points in the short-term trajectory. Then,
ET u

s is fed into the short-term trajectory encoder:

HT u
s = shortEncoder(ET u

s ) (5)
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HT u
s ∈ RY×D is the hidden representation that reflects the

short-term preference of the user.

Dual Contrastive Learning
Inter-contrastive learning Typically, long-term trajecto-
ries represent the user’s overall travel pattern, while a short-
term trajectory represents the user’s specific travel plan. For
instance, users who prefer natural scenery are more likely to
choose a park, while users who like urban life are more likely
to go to a mall. However, the user’s short-term travel choices
may also reflect a change in their long-term preference. For
example, a user who usually likes urban areas may start to
visit more natural places, indicating a shift in their prefer-
ence. Therefore, there is a potentially important relation-
ship between the user’s long-term and short-term preferences.
To explore this potentially important relationship, contrastive
learning is adopted to mine the information from the first view
we designed. By comparing the preferences of different peri-
ods, the user’s short-term choices can be optimized according
to their long-term preferences, and long-term preferences can
be updated based on their short-term choices. T u

s is the em-
bedding of the short-term trajectories of user u. Then, the
long-term trajectories T+

l of the same user are positive sam-
ples, and the long-term trajectories T−

l of different users are
negative samples.

Hu
s = mean(shortEncoder(ET u

s )) = mean(HT u
s ) (6)

Hu
l = mean(longEncoder(ET u

l
)) = mean(HT u

l
) (7)

H−
l = mean(longEncoder(ET−

l
)) =

1
m

m

∑
i=0

H l−
i (8)

where m is the number of negative samples. ET u
s ,ET u

l
,ET−

l
are the embeddings of the user’s short-term trajectory, long-
term trajectories, and negative sample trajectories, respec-
tively. Finally, the preferences of Hu

s , Hu
l , and H−

l will be
compared using a simplified InfoNCE loss.

Linter =−log(σ(µ < Hu
s ,H

u
l >))−

log(1−σ(µ < Hu
s ,H

−
l >< Hu

l ,H
−
l >))

(9)

where σ denotes the sigmoid function, and <,> denotes the
inner product of two embeddings regulated by temperature
t. The µ is a parameter that controls the magnitude of the
gradient of the loss function.

Intra-contrastive learning The second view is between
the short-term trajectories of different users. Given that short
trajectories with the same destination tend to have similar
preferences, the trajectories T−

s whose destination is differ-
ent from the target user’s destination are negative samples.
The trajectories T+

s whose destination is consistent with the
target user’s destination are positive samples. Similarly, the
intra-contrastive loss is calculated as follows:

H+
s = mean(shortEncoder(ET+

s
)) =

1
n

n

∑
i=0

Hs+
i (10)

H−
s = mean(shortEncoder(ET−

s
)) =

1
m

m

∑
i=0

Hs−
i (11)

Lintra =−log(σ(µ < Hu
s ,H

+
s >))−

log(1−σ(µ < Hu
s ,H

−
s >< H+

s ,H−
s >))

(12)

where ET+
s
,ET−

s
are the embeddings of the positive sample

short trajectories and the negative sample short trajectories,
respectively. n,m are the number of positive and negative
samples, respectively.

Multi-Class Attention Fusion
Long and short-term preferences fusion The importance
of long-term and short-term preferences largely depends on
the sequence order of the current user’s visits (Zheng et al.,
2022). If the user visits several new types of points consecu-
tively, then the user is mainly influenced by short-term prefer-
ences at this time. If the user visits a place they have been to
in the past, then the user is likely to be affected by long-term
preferences. For this reason, a separate LSTM is deployed
to model the recently visited sequences explicitly. The final
output of the LSTM is hq. In the long-term and short-term fu-
sion process, the hidden representation hq is used as the query
vectors for the attention mechanism. Then the user’s long and
short-term preferences are concatenated into hk and hv as the
key vector and the value vector, respectively.

h′ =
T

∑
i=1

aq,kihvi ,hvi ∈ hv (13)

αq,ki =
exp(hT

q hki)

∑
T
i=1 exp(hT

q hk′i
)

(14)

where T represents the total number of long-term and short-
term trajectories; αq,ki denotes the attention score for each
latent representation hki based on the user’s present situation.
Then the learned user preference h′ passed through a multi-
layer perception (MLP) to get the probability distribution y′ ∈
R1×N over the N POIs.

Spatiotemporal dependencies fusion A simplified graph
attention mechanism is employed to learn potential depen-
dencies between POIs from graph G (Yang et al., 2022).
This mechanism can capture the spatiotemporal dependen-
cies between global trajectory points. The node feature ma-
trix Z ∈ RN×d f is first linearly transformed to get Wz ∈ RN×dp

and then matrix-multiplied with the two parts of the attention
weight tensor to get W1 and W2 ∈ RN×N , respectively.

W1 =Wza1,W2 =Wza2 (15)

Â = A+ i (16)

where a1 and a2 are two learnable vectors in the attention ma-
trix, respectively. A ∈ RN×N is the adjacent matrix, i ∈ RN×N

is an all-ones matrix used to ensure that zeros in A do not af-
fect the calculation. Next, W1 and the transpositions of W2
are summed and a LeakyRelu activation function is applied
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Table 1: Performance comparison in HR@K and NDCG@K on three datasets.

PHO NYC SIN

HR@5 HR@10 NDCG@5 NDCG@10 HR@5 HR@10 NDCG@5 NDCG@10 HR@5 HR@10 NDCG@5 NDCG@10

ATST-LSTM 0.1579 0.2377 0.1033 0.1385 0.1667 0.2031 0.0912 0.1638 0.1296 0.1933 0.1027 0.1476
PLSPL 0.1775 0.2569 0.1285 0.1538 0.1741 0.2413 0.0961 0.1825 0.1447 0.1719 0.1126 0.1384
iMTL 0.1830 0.2747 0.1301 0.1632 0.1798 0.2422 0.0989 0.1861 0.1505 0.1801 0.1051 0.1423

CFPRec 0.3421 0.4253 0.2432 0.2730 0.2771 0.3606 0.1971 0.2190 0.2310 0.3085 0.1588 0.1836
ContraRec 0.3381 0.3680 0.2843 0.2939 0.1951 0.2368 0.1425 0.1560 0.2047 0.2710 0.1454 0.1660
DisenPOI 0.4209 0.4988 0.3402 0.3652 0.2940 0.3634 0.2401 0.2594 0.2808 0.3420 0.2307 0.2506
CLSPRec 0.5368 0.6368 0.3811 0.4175 0.3545 0.4352 0.2653 0.2871 0.3544 0.4093 0.2794 0.2942

DCLS 0.6842 0.7017 0.5255 0.5472 0.4357 0.4980 0.3385 0.3599 0.4382 0.4894 0.3592 0.3747
Improvement(%) 27.4 10.1 37.8 31.0 22.9 14.4 27.5 25.3 23.6 19.5 28.5 27.3

Table 2: Ablation study on the PHO.

HR@5 HR@10 NDCG@5 NDCG@10

Full Model 0.6842 0.7017 0.5255 0.5472
w/o G 0.6579 0.6930 0.5178 0.5314
w/o S 0.6754 0.7281 0.5230 0.5356

w/o att1 0.5439 0.6579 0.3998 0.4305
w/o att2 0.6404 0.6930 0.4959 0.5203

to get the alignment score. Then, the alignment score and Â
are multiplied to obtain the final attention matrix w′ ∈ RN×N .

w′ = relu(W1 +W T
2 )Â (17)

Finally, the POI recommendation probability distribution ȳ ∈
R1×N under global attention weight w′ fine-tuning can be ex-
pressed as :

ȳ = y′+w′ (18)

Training and Optimization
The cross-entropy is adopted as the loss function to calculate
the POI prediction loss during the model training process.

Lpoi =−
N

∑
i=1

log(ȳi) (19)

where ȳi denotes the probability that POI pi will be visited
at the next time, and N is the number of POIs. Meanwhile,
two contrastive learning tasks are introduced to optimize the
model. The final loss function is expressed as follows:

Lall = Lpoi +αLinter +βLintra (20)

where α,β are loss coefficients and they control the strengths
of the two contrastive learning tasks respectively.

Experiments
Datasets and Experimental Settings
We conducted experiments on three real-world public
datasets collected from Foursquare: Singapore (SIN), New
York City (NYC), and Phoenix (PHO). These check-in
datasets spanned about 18 months (April 2012 to September
2013). To ensure the reliability of our data, POIs with less

than 10 interactions and trajectories with less than 3 check-
ins are removed, and inactive users with less than 5 check-ins
are filtered out.

The key hyperparameters in our model are set as follows.
The embedding dimensions of POI and user are both dp,du =
64. The embedding length of the POI category, the access
time, and the weekend indicator are dc,dh,dw = 32. The loss
weights of the two contrastive learning tasks are set to α,β =
1. Moreover, we employ the Adam optimizer with a learning
rate in {1e−4,1e−5}.

Baselines and Evaluation Metrics
To demonstrate the validity of the proposed model, we com-
pared the performance of DCLS with the following recent
models: an Attention-based model: ATST-LSTM (L. Huang
et al., 2019); models considering the spatio-temporal context:
PLSPL (Y. Wu, Li, Zhao, & Qian, 2020), iMTL (L. Zhang et
al., 2021), DisenPOI (Qin et al., 2023); models based on con-
trastive learning: CFPRec (L. Zhang et al., 2022), ContraRec
(Wang et al., 2023), CLSPRec (Duan et al., 2023).

In evaluating model performance, we adopt two widely
used metrics: Hit Rate at K (HR@K) and Normalized Dis-
counted Cumulative Gain at K (NDCG@K). HR@K mainly
measures the accuracy of the recommendation results, that
is, whether the ground truth item appears in the top-K list.
On the other hand, NDCG@K places more emphasis on the
ranking quality of the recommended sequences, taking into
account the position of the ground truth item in the list. In
general, the higher the values of these two metrics, the better
the performance in the next POI recommendation.

Results and Analysis
Overall performance comparison In Table 1, we show
the performance of our proposed model and several baseline
models. The results show that DCLS outperforms other base-
line models on all datasets, which validates the advantages
of our model. This is because (a) by designing two views
of contrastive learning objectives, the dependencies between
short and long trajectories are fully exploited and the accu-
racy of the trajectory modeling is guaranteed (b) spatiotem-
poral dependencies between trajectories are considered and
adaptively integrated with users’ long and short-term prefer-
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(a) HR@10 (b) NDCG@10

Figure 2: Comparison of different learning methods to learn
about spatiotemporal dependence of trajectories. (i) att-adj
denotes learning on G, (ii) att-dis denotes learning on G′, (iii)
att-no denotes not learning spatiotemporal dependencies

ences, resulting in a more comprehensive preference model-
ing.

Ablation study Due to space limitations, we only show the
performance comparison on the PHO dataset, with similar
results for the NYC and SIN datasets. To validate the ef-
fectiveness of the different modules in DCLS, we compared
the performance of the full model with its four variants. 1)
w/o G removed GCN and replaced it with a simple embed-
ding layer; 2) w/o S removed the dual contrastive learning
scheme; 3) w/o att1 removed the spatiotemporal dependence
fusion; 4) w/o att2 disregarded the effect of the user’s current
state on the importance of long and short-term preferences.
These experimental results are shown in Table 2. We can
see that the performance of DCLS is generally higher than
the rest of the variants, so we can say that each module in
DCLS contributes to the performance improvement. First,
w/o att1 has the lowest performance, indicating that incor-
porating spatio-temporal dependence is helpful for inferring
user preferences. Second, w/o S is lower than the full model
in most cases, suggesting that the dual-contrast scheme im-
proves most of the performance of recommendations. DCLS
consistently beats w/o G, which verifies that the GCN-based
learning of POI embeddings is effective. w/o att2 also shows
that the long and short-term trajectory fusion strategy that we
designed enhances the overall performance.

Analysis of spatiotemporal dependency fusion We fur-
ther analyze the learning of spatiotemporal dependencies. We
construct two graphs: a POI-POI graph G and a geographic
adjacency graph G′. G′ is an undirected graph, where the
distance between two POIs is calculated by the haversine for-
mula. If the distance is less than a predefined threshold ∆d,
they are connected; otherwise, they are not. Then we con-
duct experiments on these two graphs and also consider the
case without spatio-temporal dependency learning. The ex-
perimental results are shown in Figure 2. From this figure, we
can draw the following conclusions: First, learning the spa-
tiotemporal dependencies of trajectories is very helpful for
recommendation performance. Second, the spatiotemporal

(a) Parameter of α (b) Parameter of β (c) Parameter of dp

Figure 3: Parameter sensitivity analysis of DCLS

dependency information learned from the check-in sequences
of all users is better than that learned from the geographic
distance in most cases. It can also be said that the real-world
adjacency relationship between POIs can be learned from the
user’s check-in sequences. This is understandable, as users
tend to visit POIs that are geographically close when travel-
ing.
Sensitivity and parametric analyses A parameter sensi-
tivity analysis is also conducted to evaluate the impact of dif-
ferent hyperparameters on DCLS, including the contrastive
loss weights α and β for the two views and the POI embed-
ding size dp. Due to space limitations, we only report the
experimental results on PHO, as shown in Figure 3. When α

increases from 0 to 1 (β is fixed at 1), we can see that all the
performance metrics of DCLS show a zigzag upward trend.
When β increases from 0 to 1 (α is fixed at 0), the model per-
formance has a similar growth trend. From this, we can see
that the dual contrastive tasks designed have both contributed
to the improvement of the model performance. We also found
that when the POI embedding size dp ranges from 16 to 128,
the performance of DCLS first increases and then gradually
decreases. This is because the small embedding dimension
lacks sufficient capacity to represent all relevant information.
Consequently, the model fails to capture essential features,
resulting in suboptimal performance. Conversely, an exces-
sively large embedding dimension introduces redundancy in
the model’s parameters. This redundancy can hinder train-
ing efficiency and lead to overfitting, ultimately degrading the
model’s generalization ability.

CONCLUSION

In this paper, we proposed DCLS, a novel dual-contrast learn-
ing framework that can fully utilize long and short-term tra-
jectory information to accurately recommend the next POI
for users. A dual-contrast scheme has been designed to fully
exploit the dependency relationship between long-term and
short-term trajectories while ensuring the accuracy of trajec-
tory modeling. Meanwhile, a multi-class attention fusion
mechanism is developed to fuse long-term and short-term
trajectories and spatiotemporal dependency adaptively. We
conducted extensive experiments on three real-world datasets
which demonstrate the effectiveness and superiority of our
model over the state-of-the-art baselines.
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