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THE MOMENT PROBLEM ON CURVES WITH BUMPS

DAVID P KIMSEY AND MIHAI PUTINAR

Abstract. The power moments of a positive measure on the real line or
the circle are characterized by the non-negativity of an infinite matrix,
Hankel, respectively Toeplitz, attached to the data. Except some for-
tunate configurations, in higher dimensions there are no non-negativity
criteria for the power moments of a measure to be supported by a pre-
scribed closed set. We combine two well studied fortunate situations,
specifically a class of curves in two dimensions classified by Scheiderer
and Plaumann, and compact, basic semi-algebraic sets, with the aim at
enlarging the realm of geometric shapes on which the power moment
problem is accessible and solvable by non-negativity certificates.

1. Introduction

Throughout the present note R[x1, . . . , xd] denotes the ring of polynomials
with real coefficients in d indeterminates. We adopt the standard notation

xγ =
d
∏

j=1

x
γj
j and |x| :=

√

x21 + . . .+ x2d,

where x = (x1, . . . , xd) ∈ R
d and γ = (γ1, . . . , γd) ∈ N

d
0. The convex cone of

polynomials p ∈ R[x1, . . . , xd] which can written as a sum of squares is Σ2.
The elements of Σ2 represent universally non-negative polynomials. The real
zero set of the ideal I := (p1, . . . , pk) generated by p1, . . . , pk in R[x1, . . . , xd]
is

V(I) := {x ∈ R
d : p1(x) = . . . = pk(x) = 0}.

Recalling some basic notions of real algebraic geometry is also in order.
Specifically, for a finite subset R = {r1, . . . , rk} ⊆ R[x1, . . . , xd], we let QR

stand for the quadratic module generated by R:

QR = {σ0 + r1 σ1 + . . .+ rk σk : σ0, . . . , σk ∈ Σ2}.

Also,

KQ := {x ∈ R
d : rj(x) ≥ 0 for j = 1, . . . , k}
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is the common non-negativity set of elements of Q = QR. In general a
quadratic module is a subset of the polynomial algebra closed under addition
and multiplication by sums of squares, see [6].

Given a multisequence s = (sγ)γ∈Nd
0

and a closed set K ⊆ R
d, the full

K-moment problem on R
d entails determining whether or not there exists a

positive Borel measure µ on R
d such that

(1.1) sγ =

∫

Rd

xγdµ(x) for γ ∈ N
d
0

and

(1.2) suppµ ⊆ K.

If conditions (1.1) and (1.2) are satisfied, then we say that s has a K-
representing measure.

A multisequence s = (sγ)γ∈Nd
0

is called positive definite if

Ls(f) ≥ 0 for f ∈ Σ2.

It is clear that Riesz-Haviland functional Ls is non-negative on the quadratic
module Q, whenever the moment problem with s has a KQ-representing
measure, where

KQ = {x ∈ R
d : r(x) ≥ 0 for r ∈ Q}.

Whether the converse is true is one of the central questions of multivariate
moment problem theory, see [6, 9] for ample details. In this direction we
recall a useful terminology. A quadratic moduleQ is said to satisfy the strong
moment property (SMP) if every Q-positive functional L : R[x1, . . . , xd] → R

is a moment functional with the additional requirement that the measure
supported on KQ, i.e., there exists a positive Borel measure µ supported by
KQ such that

L(f) =

∫

f(x)dµ(x) for f ∈ R[x1, . . . , xd].

When dropping the requirement supp(µ) ⊆ KQ in the (SMP), we simply
say that Q possesses the moment property (MP). A quadratic module Q is
called
archimedean if there exists a positive constant C with the property C−|x|2 ∈
Q. In this case KQ is compact and, by an observation of the second author,
the module Q has property (SMP), see again [6, 9] for details.

A classical theorem due to Hamburger (see [2, 3, 4] and [9] for a contempo-
rary treatment) asserts that on the real line every positive definite sequence
has the strong moment property. In equivalent terms, the non-negativity of
the infinite Hankel matrix (sk+n)

∞
k,n=0 is necessary and sufficient for (sn)

∞
n=0

to be the power moment sequence of a positive measure on R.
Two dimensions are special, notably for allowing to extend similar suffi-

cient positivity conditions for the solvability of the moment problem along
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codimension-one unbounded varieties, that is real algebraic curves. Note
that if q ∈ R[x1, x2] is non-zero, than V(q) is a curve, or a set of real points.

One step further, we are seeking only reduced principal ideals, that is we
enforce that a polynomial f vanishes on V(q) if and only if f ∈ (q). This
happens if the factorization of q into irreducible factors is square free and
each factor changes sign in R

2. See [1] for a proof and the natural framework
for such a real Nullstellensatz. In this scenario we simply say that (q) is a
real ideal. The main results of [7] and [5] may be combined to produce the
following theorem.

Theorem 1.1 ([7], [5]). Let (q) be a non-trivial, real principal ideal in
R[x1, x2]. Then

(q) + Σ2 = {p ∈ R[x1, . . . , xd] : p(x) ≥ 0 for all x ∈ V(q) }

if and only if the following conditions hold:

(i) All real singularities of V(q) are ordinary multiple points with inde-
pendent tangents.

(ii) All intersection points of V(q) are real.
(iii) All irreducible components of V(q)′ (i.e., the union of all irreducible

components of V(q) that do not admit any non-constant bounded
polynomial functions) are non-singular and rational.

(iv) The configuration of all irreducible components of V(q)′ contains no
loops.

In particular, the above result implies that the quadratic module (q)+Σ2

has the strong moment property [7, 5]. The above result is in sharp contrast
to higher dimensional situations, where in general not every positive definite
functional along a variety is represented by integration against a positive
measure (see, [8] for details).

2. Main result

We consider the union of a curve which satisfies conditions (i)-(iv) in
Theorem 1.1 with a side (to become clear in an instant) of a truly compact
semi-algebraic set with the aim at providing positivity certificates for the
moment problem to be solvable on that prescribed support.

Theorem 2.1. Let (q) be a non-trivial, real principal ideal of R[x1, x2] whose
zero set satisfies conditions (i)-(iv) in Theorem 1.1 and let Q ⊆ R[x1, x2] be
an archimedean quadratic module. Then the quadratic module Σ2 + qQ has
the strong moment property.

Before proving Theorem 2.1, we pause to note that the positivity set of
Σ2 + qQ is V(q) ∪ [KQ ∩ {q > 0}]. For instance, taking q(x1, x2) = x1 and
Q generated by 1 − x21 − x22 one finds the positivity set of the composed
quadratic module to be the x2-axis union with the half-disk {(x1, x2), x1 ≥
0, x21 + x22 ≤ 1}. Whence the title of this note.
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Figure 1. Q = {1− (x1 − 1)2 − (x2 − 2)2} and q(x1, x2) = x2 − x21

Figure 2. Q = {1− x21 − x22} and q(x1, x2) = x2(3x
2
1 − x22)

Proof of Theorem 2.1. We denote in short x = (x1, x2). Let L ∈ R[x]′ be
a non-trivial linear functional which is non-negative on Σ2 + qQ. We want
to prove that L is represented by integration against a positive measure
supported by V(q)∪[KQ∩{q ≥ 0}]. Since L is non-zero, the Cauchy-Schwarz
inequality

L(f)2 ≤ L(f2)L(1), f ∈ R[x],

implies L(1) > 0. Below we will use repeatedly the observation that there
are elements f ∈ R[x] with the property L(f) > 0.

The functional h 7→ L(qh) is non-negative for h ∈ Q andQ is an archimedean
quadratic module, so there exists a positive measure supported ν by KQ,
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such that:

L(qf) =

∫

KQ

fdν, f ∈ R[x],

see [6, 9].
We claim that the measure ν does not carry mass on the set {q ≤ 0}:

(2.1) ν({q ≤ 0}) = ∅.

The positivity of the functional L on squares yields

L({tqg + f}2) ≥ 0 t ∈ R and f, g ∈ R[x].

On the other hand,

L({tqg + f}2) = t2L(q2g2) + 2tL(qfg) + L(f2),

hence

(2.2)

(
∫

KR

f(x)g(x) dν(x)

)2

≤

(
∫

KR

q(x)g(x)2 dν(x)

)

L(f2)

for f, g ∈ R[x].
The non-negativity set KQ is compact, therefore continuous functions on

KR can be uniformly approximated by polynomials. Moreover, continuous
functions on KQ are dense in L2(ν). That is

(2.3)

(
∫

KR

f(x)ψ(x) dν(x)

)2

≤

(
∫

KR

q(x)ψ(x)2 dν(x)

)

L(f2),

where f ∈ R[x] and ψ ∈ L2(ν). If we let χ = 1V(I)∩KQ
denote the charac-

teristic function of V(I) ∩KQ and ψ = χ, then (2.3) becomes
(
∫

KR

f(x)χ(x) dν(x)

)2

≤

(
∫

KR

q(x)χ(x) dν(x)

)

L(f2).

From q(x)χ(x) = 0 we infer
∫

V(q)∩KR

f(x)dν(x) = 0, f ∈ R[x].

Choosing next ψ to be the characteristic function of a compact subset of
the open set {q < 0}, we find from (2.3):

0 ≤

(
∫

KR

q(x)χ(x) dν(x)

)

L(f2).

In particular,

0 ≤

∫

KR

q(x)χ(x) dν(x) ≤ 0,

for every characteristic function of a compact subset of {q < 0}. This proves
(2.1).
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Next we choose ψ in (2.3) of the form ψ = f
q
φ, where φ = φ2 is the

characteristic function of a compact subset of {q > 0}. We find

(
∫

KR

f(x)

(

f(x)

q(x)

)

φ(x) dν(x)

)2

≤

(
∫

KR

q(x)

(

f(x)2

q(x)2

)

φ(x) dν(x)

)

L(f2),

or equivalently, since q > 0 on the support of φ:

(
∫

KR

(

f(x)2

q(x)

)

φ(x) dν(x)

)2

≤

(
∫

KR

(

f(x)2

q(x)

)

φ(x) dν(x)

)

L(f2).

But
(

f2

q

)

φ ≥ 0, hence

∫

KR

(

f(x)2

q(x)

)

φ(x) dν(x) ≤ L(f2).

A monotonic sequence of such characteristic functions φ converging point
wise to the characteristic function of {q > 0} implies 1

q
∈ L1(ν). Recall that

L(1) > 0.
Let Λ : R[x] → R denote the linear functional

(2.4) Λ(f) = L(f)−

∫

KR

(

f(x)

q(x)

)

dν(x), f ∈ R[x].

We claim that

(2.5) Λ(q f) = 0 for f ∈ R[x]

and

(2.6) Λ(f2) ≥ 0 for f ∈ R[x].

Assertion (2.5) follows immediately from the definition of Λ. We will now
verify (2.5). Given the ν-integrability of 1

q
we can choose ψ = f/q in (2.3).

This yields

(
∫

KR

f(x)2

q(x)
dν(x)

)2

≤

(
∫

KR

f(x)2

q(x)
dν(x)

)

L(f2)

for f ∈ R[x]. Since f(x)2

q(x) ≥ 0 on the support of the measure ν, we find

L(f2) ≥ Λ(f2) for f ∈ R[x]

which is exactly (2.6).
Finally, because the ideal (q) is real and its zero set satisfies conditions

(i)-(iv) in Theorem 1.1 Λ has a representing measure supported on V(q).
This proves that the integration against the measure µ = ν

q
+ σ represents

the original functional L. Moreover, the support of µ in contained in the
union of the supports of σ and ν, that is suppµ ⊂ V(q)∪ [KQ∩{q > 0}]. �
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Given a bisequence s = (sγ)γ∈N2

0

and p(x) =
∑

0≤|λ|≤n pλx
λ ∈ R[x1, x2],

we shall let p(E)s denote the bisequence given by

(p(E)s)(γ) :=
∑

0≤|λ|≤n

qλsλ+γ

Corollary 2.2. Let s = (sγ1,γ2)(γ1,γ2)∈N2

0

be a positive definite bisequence

and let QR ⊆ R[x1, x2] be an archimedean quadratic module, where R =
{r1, . . . , rm} ⊆ R[x1, x2]. If there exists q ∈ R[x1, x2] such that (q) is a non-
trivial, real principal ideal of R[x1, x2] whose zero set satisfies conditions
(i)-(iv) of Theorem 1.1 and

(2.7) q rj(E)s is positive definite for j = 1, . . . ,m,

then s has a representing measure µ with

suppµ ⊆ V(q) ∪ [KQR
∩ {q > 0}].

Proof. Let Ls : R[x1, x2] → R denote the Riesz-Haviland functional with
respect to s. Then, since s is positive definite and we have a suitable q ∈
R[x1, x2] such that (2.7) is in force, we have

Ls(f + q g) ≥ 0 for f + q g ∈ Σ2 + q QR.

Thus, the desired conclusion follows immediately from Theorem 2.1. �

We add a few remarks on the above result and its proof.

(a) If the quadratic module in the statement of the theorem is finitely
generated Q = Q(r1, . . . , rk), then the enhanced quadratic module
which is shown to carry (SMP) is Q(q, qr1, . . . , qrk). Notice that the
latter may not be archimedean, although Q is.

(b) Changing the generator of the principal ideal (q) will alter the out-
come of the statement, for instance −q instead of q in the enhanced
quadratic module will flip the “bumps” on the other side of the curve
V(q).

(c) The statement of Theorem 2.1 and Corollary 2.2 can be generalized
to any number of variables, keeping (q) a real ideal with its zero set
hypersurface possessing the (SMP). This is the case for instance of
a compact zero set V(q). Indeed, if V(q) is compact, then Σ2 + (q)
is a quadratic module with (SMP) [9].
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