
Lawrence Berkeley National Laboratory
LBL Publications

Title
A Sociotechnical Typology of Scientific Software

Permalink
https://escholarship.org/uc/item/9g27k0h8

Authors
Paine, Drew
Cohoon, Johanna
Poon, Sarah
et al.

Publication Date
2024-12-06

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9g27k0h8
https://escholarship.org/uc/item/9g27k0h8#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


A Sociotechnical Typology of Scientific
Software

Drew Paine, Hannah Cohoon, Sarah Poon, Rajshree Deshmukh,
Cody O'Donnell, Dan Gunter, Lavanya Ramakrishnan

strudel@lbl.gov

Abstract
User experience (UX) work is key to the development of usable, sustainable software.
Within scientific software development the adoption of UX methods is increasing but not
yet common enough. The Scientific sofTware Research for User experience, Design,
Engagement, and Learning (STRUDEL) project launched in 2022 to develop resources for
scientific software development that are needed to improve user experience, software
quality, and software sustainability. One key project objective was the identification and
classification of key characteristics of scientific work and software into a typology. This
report documents the STRUDEL Typology, including discussion of the motivation for this
type of conceptual tool, and discusses known gaps for future work.

Keywords — scientific software development, user experience, sociological typology,
sociotechnical, software sustainability, STRUDEL
Report Number: LBNL-2001570, https://escholarship.org/uc/item/9g27k0h8
Acknowledgments: This work is funded by gifts of the Sloan Foundation to Berkeley Lab,
grants #10074, #10572, and #22557. The contents of this report represent the views of the
authors and do not represent that of any other entity.

mailto:strudel@lbl.gov
https://escholarship.org/uc/item/9g27k0h8
https://sloan.org/grant-detail/10074
https://sloan.org/grant-detail/10572
https://sloan.org/grant-detail/G-2024-22557


Executive Summary
The Scientific sofTware Research for User experience, Design, Engagement, and Learning
(STRUDEL) project began in 2022 to develop resources for scientific software development
to improve user experience, software quality, and software sustainability. A key objective
was the identification of key characteristics of scientific work and software; these
characteristics were organized into a typology that facilitates planning and identification of
knowledge gaps. This report defines the STRUDEL Typology which classifies scientific
software development work.

Typologies are an approach to classification based on general types, enabling structured
analysis and comparison. STRUDEL leverages this social science approach to systematically
analyze and compare the work diverse scientific projects producing software under take.
Developed based on the STRUDEL team’s experience supporting scientific software teams
and in light of established literature, the typology recognizes commonalities that impact
user experiences and sustainability of the software being produced.

This first version of the STRUDEL Typology includes three key facets that include additional
dimensions. The first facet, Project Composition, captures the overall organizational
elements that shape how a scientific project is organized and executed. Domain, primary
purpose, funding model, key products, and success metrics are all dimensions within
Project Composition. The second facet, People and Teams, includes dimensions like team
size, physical distribution, roles and composition, turnover and diversity of experience. The
third and largest facet, Software Product, includes five subsections: meta, user groups, user
interfaces, data products, and STRUDEL Task Flows. The last of these subsections, Task
Flows, are sets of steps (represented by a series of screens) that help to accomplish a task
and represent how a user progresses through a UI. A series of Task Flows may be
composed to create a formal Workflow using the STRUDEL Design System, a complement
to the STRUDEL Typology that is described on the STRUDEL website: strudel.science. To
recognize knowledge gaps or guide planning, users of the STRUDEL Typology can answer
questions regarding the various dimensions. The STRUDEL Typology supplies these
questions and example answers.

2

https://strudel.science/


Introduction and Background
Software is a ubiquitous and critical resource in scientific research. Scientific software
development is a complex sociotechnical process essential to the production of knowledge.
A significant ongoing challenge to developing and stewarding scientific software is the
substantial work required to ensure that it is a reliable, usable, and sustainable product for
user communities. Sustainable software continues to be available and meet user needs
over time, despite changes in the surrounding software ecosystem [3]. User experience
(UX) research and UX guided development are critical aspects of sustainability and are
important for delivering reliable and useful software to user communities [4,6,7].

The Scientific sofTware Research for User experience, Design, Engagement, and Learning
(STRUDEL1) project was created by the User Experience (UX2) team in Berkeley Lab’s
Scientific Data Division in 2022 to provide UX resources to scientific communities. STRUDEL
is a tool for developing usable scientific interfaces and helping teams better manage
outcomes around their software sustainably over time. The STRUDEL team set out to
address two key questions.

● What are the characteristics of scientific work and software and how can they be
classified into a typology to better improve user experience and software
sustainability?

● What are the elements of a design framework for user experience of scientific
software?

The remainder of this report addresses the first question by presenting the STRUDEL
Typology. The second question is addressed through our Design System, available on our
website3. We present the motivation for the STRUDEL Typology, its overarching structure,
and detailed facets and questions an end user can consider when building scientific
software.

Motivation —Why have a typology?
A typology enables researchers to systematically analyze and compare diverse phenomena.
By applying a typology, you can recognize key characteristics of what you are studying and
distinguish it from similar phenomena. The STRUDEL typology for scientific projects helps
surface factors that impact user experience and software sustainability, enabling those
projects to make better decisions and plan effectively. When software projects apply the
typology, they can identify knowledge gaps that need to be addressed, consider how
certain characteristics may affect their planning and development efforts, and they have
the opportunity to surface tacit knowledge.

3 https://strudel.science/design-system/overview/

2 https://ux.lbl.gov

1 https://strudel.science

3

https://paperpile.com/c/3VVwhj/51Xs
https://paperpile.com/c/3VVwhj/CbA8+YmGk+9wYv
https://strudel.science/design-system/overview/
https://ux.lbl.gov
https://strudel.science


Scientific software ranges in complexity from stand-alone analysis scripts to large-scale
cyberinfrastructure for collecting, analyzing, and storing data from multi-site experiments.
Scientific software project teams also vary in size and makeup. Much of scientific software
is developed by a single author though large, distributed teams also produce important
packages and libraries [1]. Relevant incentives and challenges may be influenced by a
project’s organizational makeup and setting [2]. For instance, doctoral students preparing
for a faculty role may prioritize novel contributions and rapid development over best
practices and thorough documentation, a sustainability challenge for software developed
in university labs. In contrast, Other organizations developing scientific software may hire
professional research software engineers, minimizing those concerns though introducing
others like budget.

Our team developed the typology as a thinking aid so that we could offer strategic advice to
scientific software projects, tailored to the projects’ individual circumstances. However, the
STRUDEL Typology can be used by anyone involved with planning, developing, or sustaining
a scientific software product who needs to think through current or potential challenges in
their work. Example stakeholders include
individuals fulfilling a variety of roles such as:

● Project Leadership. Project leaders can
identify opportunities for UX, Software
Sustainability, Community Engagement,
etc. and determine when and how much
to invest over a project’s life cycle.

● Project Domain Experts. Scientists on
the project can identify & give feedback
on common workflows to help specify
requirements for the software products
being developed.

● Project Developers. Project developers
can use the typology to identify common
Task Flows and examine which pieces of
the Design System to start their work
with.

● Funding Agencies. Staff can use the
typology to evaluate proposed projects
and request investment or planning for
UX, software sustainability, and so on.

Our long-term goal is to leverage the typology to design a Planning Framework. This
Planning Framework would enable scientific software teams to improve their project
planning and design processes, going beyond highlighting knowledge gaps and surfacing
important questions and instead providing recommendations to users.

4

https://paperpile.com/c/3VVwhj/87An
https://paperpile.com/c/3VVwhj/X9Y9


Typology Overview
The STRUDEL Typology is a conceptual tool for categorizing elements of scientific projects
building and using software products. The STRUDEL Typology was iteratively developed
through review of sociotechnical literature and analysis of interviews with five scientific
project leaders. We crafted the typology to help identify and compare common activities in
scientific software work that ought to be considered when focusing on requirements, user
experience, sustainability, and other important considerations. The focus on scientific
software production and use, especially its UX and sustainability, is a key distinction and
bias of the STRUDEL Typology, rather than focusing on other scientific concerns like data
life cycles [9] or more general topics like the organization of human infrastructure [5].
STRUDEL is constructed to help tease apart three interconnected aspects of work to help
typology users focus on the relationships between different key elements of software
(Figure 1).

Figure 1. Illustration of the three high level interconnected aspects of scientific work shaping software
development and use. At the highest level Organizational concerns shape the context of work, Social
concerns capture and highlight the dynamics of people doing work, and Technical concerns foreground
details shaping software products.

The three overarching aspects are categorized by Organizational, Social, and Technical
concerns. The Organizational and Social concerns shape the entire context of a project and
its ability to deliver software to a user community. Technical concerns foreground
particular threads in a project’s context that are bound up with Organizational and Social
aspects to influence the design and use of scientific software for research work. We unpack
the dimensions and questions for every facet below.

5

https://paperpile.com/c/3VVwhj/opt1
https://paperpile.com/c/3VVwhj/RZB3


Typology Facets
The following sections lay out the dimensions of the STRUDEL Typology’s three high level
facets: Project Composition, People and Teams, and Software Products. For each high level
facet we present dimensions capturing a category or concept. Each dimension has one or
more key questions that a scientific software project team may want to consider the
answer(s) to in their decision making processes. Example answers are provided.

Project Composition
Project Composition captures the overall organizational elements that shape how a
scientific project is organized and executed. This category of information is important to
helping stakeholders characterize and reflect upon the structure of a project. Such
understanding contextualizes the software this entity is creating, using, or supporting for a
focal user community.

Recognizing and reflecting on the categories of questions below is helpful to Principal
Investigators and technical leaders on a project when evaluating how the team will be able
to support development and stewardship of particular software(s).

Dimension Key Questions Example Answers

Science
Domain

How many domain(s) does the
project and its products serve?

●One domain
● A handful of domains
●General purpose for science

What domain(s) does the project
and its products serve?

Primary
Purpose

What is the foundational
purpose of the project?

●Develop Software application or
library

● Produce theoretical results
● Produce experimental results
● Create a physical artifact
(instrument)

●Develop data repository or
service

Funding
Model(s)

Who is funding the project? ●NSF
●DOE
●NASA

What is being funded?

6



Dimension Key Questions Example Answers

Are software products being
directly funded? If so, for how
long?

Key Product(s) What are the key products being
created and/or focused on?

● Scientific Papers
●Dataset(s)
● Instrument(s)
● Analyses
● Software
●Documentation

Success
Metrics of
Product(s)

What are key metrics that the
project must collect & share with
a funding agency about its
product(s)?

●Number of citations to dataset(s)
● Type(s) of citations to dataset(s)
●Number of users: visitors and/or
downloads

● Science impact

People and Teams
The People and Teams facet captures the overall social elements shaping how a scientific
project conducts work. This facet captures information about the individuals responsible
for developing and supporting the project’s software products and how they’re organized
to accomplish this work. These dimensions are represented to help capture the diversity of
contributors to the work while making visible the relationships which can shape and affect
a project’s success delivering software over time.

Identifying and reflecting on these questions is key to all members of a project when
evaluating how they’re collectively able to support the development and stewardship of
particular software(s). Understanding the disciplinary backgrounds and skill sets directly
influences the trajectory of the development work depending on whether the appropriate
individuals are available. Identifying and tracking turnover within a project and its teams
alongside changes in the physical distribution of members may also be key to ensuring
work is sustained reliably over time based on the availability of key individuals or skill sets.

RSE = Research Software Engineer

Dimension Key Questions Example Answers

Size What is the scale of the project
team?

● Xtra Small: 2-5 people
● Small: 6-15
● Medium: 16 - 50

7



Dimension Key Questions Example Answers

● Large: 51 - 100
● Xtra Large: 100+

Physical
Distribution

How are the members of the
project team distributed
geographically?

● 1 site
● 2-3 sites
● 4+ sites

How many people are co-located
at each site and which roles do
they hold?

Roles &
Composition

What roles individuals hold and
how many people from each role
are on the team?

● Domain Scientists: X
● RSE - Facility Staff: X
● RSE - Full Stack: X
● RSE - AI/ML: X
● RSE - UX/Front End: X
● Community Engagement: X
● Administrative: X
● Other: X

How many roles do individuals
typically hold?

How many Domain Scientists
write code for the project’s
software products? (As opposed
to just their own analysis code)

How many RSEs, from which
categories, came to that role
from a Domain Scientist
background?

Turnover How frequently do individuals
join and leave teams?

What roles do these individually
commonly fulfill?

What backgrounds do these
individuals come from?

8



Dimension Key Questions Example Answers

Diversity of
Experience

What is the distribution of
people across levels of seniority?

● Student: X
● Postdoc: X
● Early Career: X
● Senior: X

What types of educational
and/or professional
backgrounds do team members
have?

Software Product(s)
The Software Product(s) facet is the most extensive and is crafted to encompass a range of
technical considerations. This facet has five key sub-elements which each have multiple
dimensions and questions organized to highlight key aspects relevant to the production of
the software product(s) a project is developing and sustaining over time. The five key
sub-aspects characterized so far are:

● Meta: contextual details about the purpose of the software
● User Groups: details about intended users
● User Interfaces: elements for user interaction
● Data Products: details on data key to the software
● STRUDEL Task Flows: how users complete activities

In addition, future work may call out a dimension specifically on documentation which is a
key element of any software’s use and sustainability over time.

Software Products — Meta
The Meta sub-dimension surfaces general elements characterizing a scientific software
product’s purpose and how it is developed. Much of this information may be needed to
understand the history and context of the particular software product in question. Meta
dimensions capture broad technological aspects (computing paradigms, tech stacks) along
with social/organizational issues (contribution and support models) highlight details key to
getting a product to be successfully used by a scientific community.

Dimension Key Questions Example Answers

Required Types What types of software products
does the project require?

● Framework/Library
● Web app

9



Dimension Key Questions Example Answers

● API
● Other (list)

When are the individual types of
software needed by the project?

● Immediately
● During instrument construction
● Before experiment begins
● Other

Computing
Paradigms

What types of systems is the
software developed to run on
without modifications?

● Personal
● Cluster
● HPC
● Cloud

Product
Competition

What products already exist
from outside of this project?

What would be in competition
with this project’s product
outputs?

Technology
Stack(s)

What technologies are being
used or developed?

Programming languages or
frameworks, etc.

Who is primarily developing this
stack?

● The project team
● Scientific community
● Open Source organization
● Commercial entity
● Hybrid

Distribution
Model(s)

How is the software product
distributed to end users?
(possibly multiple ways)

● Direct desktop download
● Package manager
● Service
● Web GUI
● Mobile GUI
● API only

Contribution
Model(s)

Who is able to contribute to the
software’s development?

● Solely the project team
● Fully Open Source

10



Dimension Key Questions Example Answers

● Other?

Support
Model(s)

How is (or does) the project
support the software product(s)
being developed?

How is this tied to the project’s
funding model?

How long does the project
anticipate supporting a
particular software product?

Software Products — User Groups
User Groups are key sub-dimensions of Software Product(s). These dimensions emphasize
characteristics about the intended user community of a software product whose user
experience is being shaped.

Dimension Key Questions Example Answers

User Type(s) What types of users are
anticipated?

What backgrounds do they come
from?

Are project team members also
members of the end user
community? If so, which roles do
they fulfill?

Size of User
Base

How many people actively use
the product?

● Small (<100 people)
● Medium (100 - 1,000 people)
● Large (>1,000 people)

Usage
Frequency

For each type of user how
frequently are they using the
product?

● Daily
● Weekly
● Monthly
● Few times a year
● Yearly
● Once

11



Dimension Key Questions Example Answers

Usage
Motivation

For each type of user why are
they using this product?

Software Products — User Interfaces
The User Interfaces (UIs) sub-dimension focuses on key details about the user interfaces a
project’s software needs to provide to support its target user base. Capturing and reflecting
on the information these dimensions capture is likely necessary for teams to understand
what interfaces they are building (APIs, web sites, etc.) and how they plan to accomplish
this essential work.

Dimension Key Questions Example Answers

UI Type(s) What types of UIs does the
software product need to
provide?

● CLI
● API
● GUI - Mobile
● GUI - Web
● GUI - Desktop
● GUI - Notebook

Usage by UI
Type(s)

Which types of UIs are the most
commonly used? By which user
roles?

UI
Framework(s)

Has the product team chosen
any UI frameworks?

What UI framework(s) is the
project using?

● React
● Bootstrap

What motivated the selection of
a particular UI framework?

UI
Development
Stage(s)

When are each type of UI being
developed by the project?

● As part of first release/MVP
● Secondary release
● Uncertain

12



Dimension Key Questions Example Answers

UI Patterns What types of UI patterns are
currently being used or
anticipated to be implemented?

● Information modules: entity
summaries, entity detail views,
dashboards, timelines, history

● Data views: catalogs, data tables
● Data inputs: multi step wizards,

very long forms
● Data visualizations: basic charts

and graphs, maps, structural
diagrams, tabular diagrams

Software Products — Data Products
Data Products is the next sub-dimension of Software Product(s) and foregrounds a couple
of key concerns about scientific data. We scoped this dimension narrowly since there are
myriads of characterizations of scientific data (e.g., FAIR principles [10] and data life cycle
models [8]) that project teams may reference.

Dimension Key Questions Example Answers

Data Types What types of data are being
produced or used through this
software product?

● Experimental
● Observational
● Computational or Theoretical
● Other

Openness How is data obtained or used in
the project in conjunction with
this software product?

● User contributed
● Project gathered
● Community repository
● Proprietary commercial
● Other

Software Products — STRUDEL Task Flows
STRUDEL Task Flows are the final sub-dimension of the Software Product(s) aspect. Task
Flows are a primary element of the STRUDEL Design System which are sets of steps
(represented by a series of screens) that help to accomplish a task and represent how a
user progresses through a UI4. A series of Task Flows may be composed to create a formal

4 https://strudel.science/design-system/task-flows/overview/

13

https://paperpile.com/c/3VVwhj/BZTn
https://paperpile.com/c/3VVwhj/e4SH
https://strudel.science/design-system/task-flows/overview/


Workflow that can be specified using a graph representation. Workflows enable scientific
software users to accomplish their work and we are identifying key Task Flows that end up
being combined by projects and users to accomplish their work.

Dimension Key Questions Example Answers

Type(s) in Use What types of Task Flows are
required and in use in the
software product?

● Compare Data
● Contribute Data

Purpose of
Flows

What are the reasons for using
the flow?

● Enabling user to upload data to a
repository

● Enabling setup of a
computational job for execution
on an HPC system

Complexity of
Flows

How complex is the task flow to
enable a user’s work?

● # of steps to complete
● # of points of human interaction
● Amount of time
● Density of data/information

Known Gaps for Future Work
The first version of this typology captures an extensive state of scientific software
production. It has been drafted based on the experience and expertise of the UX team to
reflect the dimensions that were most relevant to consultation and design efforts.

The sociotechnical landscape related to scientific software development is broad and
further additions to the STRUDEL Typology are needed. Through preliminary socialization
and examination of additional projects we know that there are a range of gaps worth
further exploring and resolving in future iterations. For example, documentation and
mechanisms for providing code contributions are both largely overlooked in our initial
STRUDEL Typology.

As the STRUDEL Typology is expanded and revised, some dimensions may be reorganized
and renamed. The key facets and dimensions of the present STRUDEL Typology were
chosen to strategically direct attention. For example, the Data Products dimension in the
Software Products facets was named as such to distinguish it from other products like
papers or instruments and maintain a narrower scope. As the Typology becomes more
comprehensive, it may prove more appropriate to include these other possible products,
prompting a new dimension title and/or position within the Typology.

14



A final important avenue for further development is the Planning Framework. Going
beyond highlighting knowledge gaps and surfacing important questions as the Typology
does now, this tool is envisaged as a way for developers to apply the Typology and receive
tailored advice. Our expectation is that software teams will leverage the Planning
Framework to apply appropriate resources in a timely manner and anticipate and mitigate
UX challenges.

Conclusion
The STRUDEL Typology is a tool for assessing the characteristics of scientific software
projects. By responding to key questions about project facets and dimensions, software
developers and other stakeholders can identify knowledge gaps, initiate important
planning discussions, and surface tacit knowledge. The STRUDEL Typology is informed by
the experience of the UX team in Berkeley Lab’s Scientific Data Division and will continue to
be revised and expanded. Feedback and contributions are welcome on the project’s Github
(https://github.com/strudel-science/).

15

https://github.com/strudel-science/


References
1. V. R. Basili, J. C. Carver, D. Cruzes, L. M. Hochstein, J. K. Hollingsworth, F. Shull, and M. V.

Zelkowitz. 2008. Understanding the High-Performance-Computing Community: A
Software Engineer’s Perspective. Software, IEEE 25, 4: 29–36.

2. Johanna Cohoon, Caifan Du, and James Howison. 2025. Tales of Transitions: Seeking
Scientific Software Sustainability. Proceedings of the ACM on human-computer interaction
9, 1. https://doi.org/10.1145/3701208

3. Asif Imran and Tevfik Kosar. 2019. Software sustainability: A systematic literature
review and comprehensive analysis. arXiv [cs.SE]. Retrieved from
http://arxiv.org/abs/1910.06109

4. Drew Paine, Devarshi Ghoshal, and Lavanya Ramakrishnan. 2020. Investigating Scientific
Data Change with User Research Methods. Lawrence Berkeley National Laboratory,
Berkeley, CA. Retrieved from https://escholarship.org/uc/item/87b7h27d

5. Drew Paine and Charlotte P. Lee. 2020. Coordinative Entities: Forms of Organizing in
Data Intensive Science. Computer supported cooperative work: CSCW: an international
journal 29, 3: 335–380. https://doi.org/10.1007/s10606-020-09372-2

6. Lavanya Ramakrishnan and Daniel Gunter. 2017. Ten Principles for Creating Usable
Software for Science. https://doi.org/10.1109/eScience.2017.34

7. Lavanya Ramakrishnan, Sarah Poon, Valerie Hendrix, Daniel Gunter, Gilberto Z.
Pastorello, and Deborah Agarwal. 2014. Experiences with User-Centered Design for the
Tigres Workflow API. https://doi.org/10.1109/eScience.2014.56

8. UK Data Archive,. 2013. Research Data Lifecycle. Retrieved 2013 from
http://data-archive.ac.uk/create-manage/life-cycle

9. Jillian C. Wallis, Alberto Pepe, Matthew S. Mayernik, and Christine L. Borgman. 2008. An
Exploration of the Life Cycle of eScience Collaboratory Data. Retrieved from
http://hdl.handle.net/2142/15122

10. Mark D. Wilkinson, Michel Dumontier, Ijsbrand Jan Aalbersberg, Gabrielle Appleton,
Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino da Silva
Santos, Philip E. Bourne, Jildau Bouwman, Anthony J. Brookes, Tim Clark, Mercè Crosas,
Ingrid Dillo, Olivier Dumon, Scott Edmunds, Chris T. Evelo, Richard Finkers, Alejandra
Gonzalez-Beltran, Alasdair J. G. Gray, Paul Groth, Carole Goble, Jeffrey S. Grethe, Jaap
Heringa, Peter A. C. ’t Hoen, Rob Hooft, Tobias Kuhn, Ruben Kok, Joost Kok, Scott J.
Lusher, Maryann E. Martone, Albert Mons, Abel L. Packer, Bengt Persson, Philippe
Rocca-Serra, Marco Roos, Rene van Schaik, Susanna-Assunta Sansone, Erik Schultes,
Thierry Sengstag, Ted Slater, George Strawn, Morris A. Swertz, Mark Thompson, Johan
van der Lei, Erik van Mulligen, Jan Velterop, Andra Waagmeester, Peter Wittenburg,
Katherine Wolstencroft, Jun Zhao, and Barend Mons. 2016. The FAIR Guiding Principles
for scientific data management and stewardship. Scientific Data 3: 160018.
https://doi.org/10.1038/sdata.2016.18

16

http://paperpile.com/b/3VVwhj/87An
http://paperpile.com/b/3VVwhj/87An
http://paperpile.com/b/3VVwhj/87An
http://paperpile.com/b/3VVwhj/X9Y9
http://paperpile.com/b/3VVwhj/X9Y9
http://paperpile.com/b/3VVwhj/X9Y9
http://dx.doi.org/10.1145/3701208
http://paperpile.com/b/3VVwhj/51Xs
http://paperpile.com/b/3VVwhj/51Xs
http://arxiv.org/abs/1910.06109
http://paperpile.com/b/3VVwhj/CbA8
http://paperpile.com/b/3VVwhj/CbA8
http://paperpile.com/b/3VVwhj/CbA8
https://escholarship.org/uc/item/87b7h27d
http://paperpile.com/b/3VVwhj/RZB3
http://paperpile.com/b/3VVwhj/RZB3
http://paperpile.com/b/3VVwhj/RZB3
http://dx.doi.org/10.1007/s10606-020-09372-2
http://paperpile.com/b/3VVwhj/9wYv
http://paperpile.com/b/3VVwhj/9wYv
http://dx.doi.org/10.1109/eScience.2017.34
http://paperpile.com/b/3VVwhj/YmGk
http://paperpile.com/b/3VVwhj/YmGk
http://paperpile.com/b/3VVwhj/YmGk
http://dx.doi.org/10.1109/eScience.2014.56
http://paperpile.com/b/3VVwhj/e4SH
http://data-archive.ac.uk/create-manage/life-cycle
http://paperpile.com/b/3VVwhj/opt1
http://paperpile.com/b/3VVwhj/opt1
http://hdl.handle.net/2142/15122
http://paperpile.com/b/3VVwhj/BZTn
http://paperpile.com/b/3VVwhj/BZTn
http://paperpile.com/b/3VVwhj/BZTn
http://paperpile.com/b/3VVwhj/BZTn
http://paperpile.com/b/3VVwhj/BZTn
http://paperpile.com/b/3VVwhj/BZTn
http://paperpile.com/b/3VVwhj/BZTn
http://paperpile.com/b/3VVwhj/BZTn
http://paperpile.com/b/3VVwhj/BZTn
http://paperpile.com/b/3VVwhj/BZTn
http://paperpile.com/b/3VVwhj/BZTn
http://paperpile.com/b/3VVwhj/BZTn
http://paperpile.com/b/3VVwhj/BZTn
http://dx.doi.org/10.1038/sdata.2016.18



