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Abstract. Three-dimensional time dependent numerical
simulations of compressible magnetohydrodynamic fluids
describing super-Alfv́enic, supersonic and strongly magne-
tized space and laboratory plasmas show a nonlinear relax-
ation towards a state of near incompressibility. The latter
is characterized essentially by a subsonic turbulent Mach
number. This transition is mediated dynamically by dis-
parate spectral energy dissipation rates in compressible mag-
netosonic and shear Alfvénic modes. Nonlinear cascades
lead to super-Alfv́enic turbulent motions decaying to a sub-
Alfv énic regime that couples weakly with (magneto)acoustic
cascades. Consequently, the supersonic plasma motion is
transformed into highly subsonic motion and density fluctu-
ations experience a passive convection. This model provides
a self-consistent explaination of the ubiquitous nature of in-
compressible magnetoplasma fluctuations in the solar wind
and the interstellar medium.

1 Introduction

Density fluctuations in the interstellar medium (ISM) exhibit
a Kolmogorov-like spectrum over an extraordinary range of
scales (from an outer scale of a few parsecs to scales of
200 km or less) with a spectral index close to –5/3 (Arm-
strong et al., 1981, 1995). These fluctuations are detected
with great sensitivity by Very Long Baseline Interferometer
(VLBI) phase scintillation measurements (Armstrong et al.,
1995; Spangler, 2001). In interstellar plasma turbulence, the
plasma density fluctuates randomly in time and space. As the
radio refractive index is proportional to the plasma density,
there will be corresponding variations in the refractive index.
The angular broadening measurements also reveal, more pre-
cisely, a Kolmogorov-like power spectrum for the density
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fluctuations in the interstellar medium with a spectral expo-
nent slightly steeper than –5/3 (Spangler, 1999). Regardless
of the exact spectral index, the density irregularities exhibit
a definite power-law spectrum that is essentially character-
istic of a fully developed isotropic and statistically homo-
geneous incompressible fluid turbulence, described byKol-
mogorov(1941) for hydrodynamic andKraichnan(1965) for
magnetohydrodynamic fluids. This means that turbulence,
manifested by interstellar plasma fluid motions, plays a ma-
jor role in the evolution of the ISM plasma density, velocity,
magnetic fields, and the pressure. Radio wave scintillation
data indicates that the rms fluctuations in the ISM and inter-
planetary medium density, of possibly turbulent origin and
exhibiting Kolmogorov-like behaviour, are only about 10%
of the mean density (Matthaeus et al., 1991; Spangler, 2001).
This suggests that ISM density fluctuations are only weakly
compressible. Despite the weak compression in the ISM den-
sity fluctuations, they nevertheless admit a Kolmogorov-like
power law, an ambiguity that is not yet completely resolved
by any fluid/kinetic theory or computer simulations. That the
Kolmogorov-like turbulent spectrum stems from purely in-
compressible fluid theories (Kolmogorov, 1941; Kraichnan,
1965) of hydrodynamics and magnetohydrodynamics offers
the simplest possible turbulence description in an isotropic
and statistically homogeneous fluid. However, since the ob-
served electron density fluctuations in the ISM possess a
weak degree of compression, the direct application of such
simplistic turbulence models to understanding the ISM den-
sity spectrum is not entirely obvious. Moreover, the ISM is
not a purely incompressible medium and can possess many
instabilities because of gradients in the fluid velocity, den-
sity, magnetic field etc. where incompressibility is certainly
not a good assumption. A fully self-consistent description
of the ISM fluid, one that couples the incompressible modes
with the compressible modes and deals with the strong non-
linear interactions amongst the ISM density, velocity and the
magnetic field, is, therefore highly desirable.
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Fig. 1. Schematic of the Mach number as determined from the
large-scale flows (left) and small-scale fluctuations (right). A large-
scale flow or constant mean background flow leads typically to a
constant Mach number, whereas local fluctuating eddies give rise
to turbulent Mach numbers which depend upon local properties of
high frequency and smaller-scale turbulent fluctuations.

Compressibility is therefore an intrinsic characteristic of
interplanetary, interstellar, and laboratory magnetohydrody-
namic (MHD) plasmas. A compressible fluid admits per-
turbative motions that have speeds comparable to the local
sound speed. A fluctuation or turbulent Mach number de-
fined locally asMs=U/Cs, C

2
s =γp/ρ, therefore expresses

the compressibility of the magnetofluid. Since a compress-
ible magnetofluid contains magnetoacoustic modes, an in-
compressible magnetofluid corresponds to a fluid in which
fast-scale modes are absent. Understanding why magnetoflu-
ids observed in the solar wind or laboratory frequently be-
have as though they are incompressible has proved a major
challenge to our understanding of small-scale dynamical pro-
cesses in a plasma. The past 15 years have witnessed an
effort to understand this apparent paradox of compressible
MHD behaving as though it were incompressible in a vari-
ety of environments ranging from the solar wind (Matthaeus
and Brown, 1988; Zank and Matthaeus, 1990; Bhattachar-
jee et al., 1998) to the interstellar medium (ISM). A signif-
icant motivation for all these studies, as mentioned above,
is the observation of a Kolmogorov-like density spectrum
over decades in wavenumber space that appears to pervade
the ISM (Armstrong et al., 1981, 1995). Why an apparently
compressive characteristic of ISM turbulence should behave
as though it were a manifestation of incompressible MHD
turbulence has yet to be answered conclusively although
numerous attempts have been made (Higdon, 1984, 1986;
Montgomery et al., 1987; Zank and Matthaeus, 1993; Lith-
wick and Goldreich, 2001; Bhattacharjee et al., 1998; Cho
and Lazarian, 2003; Dastgeer and Zank, 2004a,b,c, 2006a).
In this paper, we address the fundamental question of un-
der what conditions fully compressible 3-D MHD turbulence
can relax to an incompressible state. This question has to
be answered if we are to address the outstanding question
regarding the origin of the ISM density power law spectrum.

In this paper, we explore the dynamics of multiple scale
coupling in a super-Alfv́enic, supersonic, and a strongly
magnetized compressible MHD plasma. Remarkably, we
find a profound tendency of decaying compressible MHD
turbulence to evolve towards a subsonic regime by segregat-
ing spectral energy in shear Alfvénic and fast/slow magne-
tosonic modes (MHD waves). In the subsonic regime, the
compressibility of an MHD plasma weakens substantially
and leads to a state ofnear incompressibility, in which den-
sity fluctuations advect only passively. The equations gov-
erning MHD are discussed in section II. Section III deals
with the nonlinear three-dimensional MHD simulations of
compressible magnetoplasmas, whereas section IV describes
theoretical aspects of the simulation results in the context of
nearly incompressible flows. A discussion concerning the
development of NI theory is therefore outlined in the ap-
pendix A. Finally, conclusions are presented in Sect. V.

2 MHD model

Statistically homogeneous, isotropic and isothermal MHD
plasma can be cast in terms of a single fluid densityρ(r , t),
magneticB(r , t) and velocity U(r , t) fields and pressure
p(r , t) as

∂ρ

∂t
+ ∇ · (ρU)=0, (1)

∂B
∂t

=∇×(U×B)+η∇
2B, (2)

ρ

(
∂

∂t
+ U · ∇

)
U=−∇p+

1

4π
(∇×B)×B

+ν∇
2U+η̂∇(∇ · U). (3)

∇ · B=0. (4)

The equations are closed with an equation of state relat-
ing the perturbed density to the pressure variables. Here
r=xêx+yêy + zêz is a three dimensional vector,η and
ν are, respectively, magnetic and kinetic viscosities. The
above equations can be normalized using a typical length
scale (̀ 0), density (ρ0), pressure (p0), magnetic field (B0)
and the velocity (U0). With respect to these normaliz-
ing ambient quantities, one may define a constant sound
speedCs◦=

√
γp0/ρ0, sonic Mach numberMs◦=U0/Cs◦ ,

Alfv én speedVA◦
=B0/

√
4πρ0, and Alfvénic Mach num-

berMA◦
=U0/VA◦

. The magnetic and mechanical Reynolds
numbers areRm◦

≈U0`0/η andRe◦
≈U0`0/ν, and the plasma

betaβ0=8πp0/B
2
0. While these quantities arise purely out

of the normalizations and are associated with a bulk (large-
scale) plasma motion, there can exist turbulent speeds, Mach
and Reynolds numbers which depend locally on the small-
scale and relatively high frequency fluctuations. This is il-
lustrated schematically in Fig.1. It is this component that
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Fig. 2. Snap-shot of turbulent magnetic field in three dimensions.
Shown are the iso-surfaces of|B| turbulent fluctuations at interme-
diate time step.

describes the high frequency contribution corresponding to
the acoustic time-scales in the modified pseudosound rela-
tionship proposed in the Nearly Incompressible (NI) theory
by Zank and Matthaeus(1990, 1991, 1993). A brief discus-
sion of NI theory is outlined in the Appendix. We define the
sound speed excited by the small-scale turbulent motion as

C̃s(r , t)=
√

γ ρ(γ−1)/2,

γ being the ratio of the specific heats, the sonic turbulent
Mach number

M̃s(r , t) =

√
〈|U|2〉

C̃s

,

the fluctuating Alfv́enic speed̃VA=B̃/
√

4πρ̃, and the turbu-
lent Alfvénic Mach number

M̃A(r , t)=

√
〈|U|2〉

ṼA

.

The turbulent Reynolds numbers and plasma betaβ̃ can be
defined correspondingly. Note that we follow the evolution
of these local quantities to understand the predominance of
Alfv énic fluctuations in the Solar wind and local interstellar
medium which are believed to be responsible for turbulent
cascades of energy and the origin of the density fluctuation
spectrum. Furthermore, all the small-scale fluctuating pa-
rameters are measured in terms of their respective normal-
ized quantities.

3 Nonlinear three-dimensional simulations

Nonlinear mode coupling interaction studies in three (3-
D) dimensions are performed to investigate the multi-scale
evolution of a decaying compressible MHD turbulence de-
scribed by the closed set of Eqs. (1) and (4). All the fluc-
tuations are initialized isotropically (no mean fields are as-
sumed) with random phases and amplitudes in Fourier space
and evolved further by integration of Eqs. (1) and (4) using a
fully de-aliased pseudospectral numerical scheme (Gottlieb
et al., 1977). This algorithm conserves energy in terms of the
dynamical fluid variables rather than using a separate energy
equation written in a conservative form (Ghosh et al., 1993).
The evolution variables are discretized in Fourier space and
we use periodic boundary conditions. The initial isotropic
turbulent spectrum was chosen (for solenoidal as well as irro-
tational velocity components) to be close tok−2 with random
phases in all three directions. The choice of such (or even a
flatter than –2) spectrum treats the solenoidal as well as the
irrotational components of the velocity field on an equal foot-
ing and avoids any influence on the dynamical evolution that
may be due to the initial spectral non-symmetry. The equa-
tions are advanced in time using a second-order predictor-
corrector scheme. The code is made stable by a proper de-
aliasing of spurious Fourier modes and choosing a relatively
small time step in the simulations. Our code is massively
parallelized using Message Passing Interface (MPI) libraries
to facilitate higher resolution in a 3-D volume. It satifies the
condition of incompressibility associated with the magnetic
field, i.e.∇ · B=0, at each time step, and also conserves the
total energy, i.e.E=1/2

∫
(|U|

2
+|B|

2) dv, and cross helicity
H=1/2

∫
|U · B dv, in the absence of dissipation, through-

out the simulation time. Kinetic and magnetic energies are
equi-partitioned between the initial velocity and the magnetic
fields. The latter helps treat the transverse or shear Alfvén
and the fast/slow magnetosonic waves on an equal footing,
at least during the early phase of the simulations. MHD tur-
bulence evolves under the action of nonlinear interactions
in which larger eddies transfer their energy to smaller ones
through a forward cascade.

The energy in the smaller Fourier modes migrates towards
the higher Fourier modes following essentially the vector
triad interactionsk+p=q. These interactions involve the
neighboring Fourier components (k, p, q) that are excited
in the local inertial range turbulence. We have performed
a number of simulations to verify the consistency of of our
results by varying resolution, box size, small-dissipation pa-
rameter and other constants. A snap shot of turbulent mag-
netic field fluctuations at a resolution of 2563 in a cube of
volume 23 during the evolution is shown in Fig.2. The cor-
responding density fluctuations are shown in Fig.3. Dur-
ing this nonlinear spectral transfer process, MHD turbu-
lent fluctuations are dissipated gradually due to the finite
Reynolds number, thereby damping small scale motion as
well. There also exists nonlinear damping that can occur due

www.nonlin-processes-geophys.net/14/351/2007/ Nonlin. Processes Geophys., 14, 351–359, 2007
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Fig. 3. Iso-surfaces of the density fluctuations at some intermediate
time are shown in figure. Relatively small-scales are excited in the
density fluctuations.

to the nonlinear mode coupling amongst various neighboring
Fourier modes. This results in a net decay of turbulent sonic
Mach numberM̃s as shown in Fig.4. The turbulent sonic
Mach number continues to decay from a supersonic (M̃s>1)
to a subsonic (̃Ms<1) regime. This indicates that turbulent
cascades associated with the nonlinear interactions, in com-
bination with the dissipative effects at the small-scales, pre-
dominantly cause the supersonic MHD plasma fluctuations
to damp strongly leaving primarily subsonic fluctuations in
the MHD fluid. The most striking effect to emerge from the
decay of the turbulent sonic Mach number is that the density
fluctuations begin to scale quadratically with the subsonic
turbulent Mach number as soon as the compressive plasma
enters the subsonic regime, i.e.δρ∼O(M̃2

s ) when M̃s<1.
This signifies essentially aweakcompressibility in the mag-
netoplasma, and can be referred to as anearly incompressible
state.

The transition of the compressible magnetoplasma from
a supersonic to a subsonic or nearly incompressible regime
is intriguing and warrants a detailed understanding of the
nonlinear dynamics. While it is evident that the compress-
ible (fast/slow magnetosonic) modes are being depleted in
the subsonic regime, the mutual interplay between compress-
ible and incompressible (Alfv́en) MHD modes needs further
clarification, as they are fundamentally responsible for the
energy cascades. To identify the distinctive role of these
MHD modes, we introduce diagnostics that distinguish en-
ergy cascades into Alfv́enic and slow/fast magnetosonic fluc-

Fig. 4. Nonlinear compressible magnetofluid MHD simula-
tions, in both three and two dimensions, show a decay of tur-
bulent supersonic Mach number̃Ms to below unity. A transi-
tion from a super-̃Ms>1 to a sub-M̃s<1 sonic regime can be
observed. In the latter, rms density fluctuationsδρ tend to
a steady-state and scale asO(M̃2

s ). The numerical resolution
in a 3-D box of sizeπ3 is 1503 or 2003. Initial turbulent
Reynolds numbers arẽRe=R̃m≈200 (drop to about 20–25%).
Other parameters areγ=5/3, β◦=10−3, MA◦

=1. − 2., Ms◦=5. −

10., η=µ=10−4
−10−5, dt=10−3. Different resolutions and ini-

tial conditions do not qualitatively change the evolution exhibited
in the figure.

tuations. Since the Alfv́enic fluctuations are transverse, the
propagation wave vector is orthogonal to the oscillations i.e.
k ⊥ U, and the average spectral energy contained in these
(shear Alfv́enic modes) fluctuations can be computed as

〈kSAM〉
2
'

∑
k |ik×Uk |

2∑
k |Uk |2

.

On the other hand, fast/slow magnetosonic modes propagate
longitudinally along the fluctuations, i.e.k ‖ U, and thus
carry

〈kSFM〉
2
'

∑
k |ik · Uk |

2∑
k |Uk |2

modal energy. Similarly, total energies in the respective
modes can be quantified as

ESAM=
1

2

∑
k

|Uk |
2
〈kSAM〉

2

and

ESFM=
1

2

∑
k

|Uk |
2
〈kSFM〉

2.

The evolution of the modal and total energies is depicted in
Fig. 5 (respectively the left and right y-axes). Although the
modal energies inkSAM and kSFM modes are identical ini-
tially, the disparity in the cascade rate causes the energy in
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longitudinal fluctuations to decay far more rapidly than the
energy in the Alfv́enic modes. The Alfv́enic modes, after a
modest initial decay, sustain the energy cascade processes by
actively transferring spectral power amongst various Fourier
modes. By contrast, the fast/slow magnetosonic modes pro-
gressively weaken and suppress the energy cascades. The
discrepancy in the cascades persists even at long times. The
kSFM mode represents collectively a dynamical evolution of
small-scale fast plus slow magnetosonic cascades and does
not necessarily distinguish the individual constituents (i.e.
the fast and slow modes) due to their wave vector align-
ment relative to the magnetic field. The physical implica-
tion, however, that emerges from Fig.5 is that the fast/slow
magnetosonic modesdo notcontribute efficiently to the en-
ergy cascade process, and that the cascades are governed
predominantly by non-dissipative Alfvénic modes that sur-
vive the collisional damping in compressible MHD turbu-
lence. This immediately suggests that because of the decay
of the fast/slow magnetosonic modes in compressible MHD
plasmas, supersonic turbulent motions become dominated by
subsonic motions and the nonlinear interactions are sustained
primarily by Alfvénic modes thereafter; the latter being in-
compressible. The progressive dominance of the Alfvénic
cascades can further be substantiated by plotting the ratio
of the energies of the Alfv́enic and fast/slow magnetosonic
modes, i.e.ESAM/ESFM (dashed curve in Fig.5, right y-
axis). The progressive weakening of the turbulent cascades
in the compressive modes can be theoretically understood on
the basis of a nearly incompressible model and is discussed
in the subsequent section.

4 Theoretical basis

The effect of inhibiting the fast/slow magnetosonic wave cas-
cade is that the compressible magnetoplasma relaxes dynam-
ically to a nearly incompressible (NI) state in the subsonic
turbulent regime, and the solenoidal component of the fluid
velocity makes a negligible contribution i.e.∇ · U � 1, but
not 0. The solenoidal velocity is associated essentially with
the modekSAM whose eventual weakening can be understood
by the NI theory in two ways. (1) In the subsonic regime,
the turbulent sonic Mach is a small number,ε2

=γ M̃2
s � 1.

The normalized MHD momentum equation in the subsonic
regime then reads

ρ

(
∂

∂t
+ U · ∇

)
U=−

1

ε2
∇p+(∇×B)×B+ν̄∇

2U. (5)

It is evident that ifUt is to vary on slower time scales only
(corresponding to incompressible motions), then it is neces-
sary that several time derivatives of the solution be of order
of O(1). The use of Kreiss’ principle (Kreiss, 1982; Zank
and Matthaeus, 1993) to eliminate fast-time and small-scale

Fig. 5. Spectral energy transfer among shear Alfvén mode (kSAM)
and slow/fast magnetosonic waves (kSFM) during a dissipative com-
pressible MHD simulation is shown (left y-axis). These modes
carry an identical energy initially so that kSAM≈kSFM(t=0). As
time progresses, turbulence decay and spectral transfer due to kSFM
is suppressed significantly (left y-axis). While the latter decays,
the former gradually increases indicating that the energy is being
drained from the kSFM modes. A monotonic enhancement of the ra-
tio ESAM/ESFM (right y-axis) confirms the progressive dominance
of Alfv énic cascades over magnetosonic cascades.

solutions (corresponding to the compressible motions) then
yields a restriction on the pressure fluctuations as

p=1+ε2p1,

where 1 stands for a leading order incompressible solution.
On differentiating the momentum equation, and using the re-
maining equations, one obtains

∂2U
∂t2

'O(1) terms+
1

ε2
∇(γp∇ · U). (6)

Theonlychoice that leads to bounded solutions is

∇ · U → O(ε2).

This is consistent with the simulation results in that strongly
compressible MHD plasmas tend to exhibit a nearly incom-
pressible state by decreasing the solenoidal velocity compo-
nent i.e.∇ · U → O(ε2) (or |ik · Uk | � 1 in Fourier space
for the simulations). (2) The solenoidal component in the
subsonic regime can be shown to be a smaller quantity, ap-
pearing at an orderO(ε2), by using a singular perturbative
expansion series inU, B, ρ, as

∇η · U1≈
1

γ

∂p1

∂τ ′

where the slow and the fast time scales are decomposed ac-
cording to

∂

∂t
'

∂

∂τ
+

1

ε

∂

∂τ ′
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Fig. 6. Evolution of the turbulent plasmaβ in compressible MHD
turbulence. Notice that the plasma is strongly magnetized initially
with β<1. As the turbulence evolves, the plasma-β increases grad-
ually to a higher values such thatβ>1. This indicates that the
compressible magnetoplasma is dominated progressively by shear
Alfv én waves that are largely incompressible. This is consistent
with the results of Figs. 3 and 4.

and the small and large scales by

∇'∇η+ε∇ξ .

The (small) solenoidal contribution estimated in this manner
further suggests that it is indeed a manifestation of the small-
scale, high-frequency turbulent motion. The two conjectures
serve as the necessary and sufficient condition for the com-
pressible motion to exhibit near incompressibility (Zank and
Matthaeus, 1993). It is thus clear from both the arguments,
made within the context of the simulation results, that com-
pressible MHD turbulence tends asymptotically towards a
state of nearly incompressibility through dissipation. Nearly
incompressible MHD is a valid description of the magneto-
plasma strictly in the subsonic regime in which the leading
order plasma motion is incompressible, and weak compress-
ibility enters at an orderM̃2

s ∼O(ε2) � 1 such that the den-
sity fluctuations preserve the scalingδρ∼O(M̃2

s ).
One of the most exciting results of the transition to the

subsonic regime in compressible MHD turbulence is that the
density fluctuations advectpassively. Within the context of
our simulations, the passive convection of the density can
be understood from the Fourier transformed fluid continuity
equation,

∂σk

∂t
+i

∑
k

δ(k+k′)Uk · k′σk′'−
ik · Uk

Nk
, (7)

where

σk=
ln ρ

Nk
,

Nk=

√∑
k

|Uk |2.

The Dirac delta functionδ, resulting from a nonlinear decon-
volution in Fourier space, is finite only for those interactions
that obey the Fourier diadk+k′

=0. It then follows from the
simulations, the physical arguments advanced to justify the
nearly incompressibility, and from the solenoidal component
as estimated above, that the rhs of the continuity equation
makes an insignificant contribution to the energy cascade.
The entire dynamics is therefore dominated by convective
transport that leads to a passive convection of density fluctu-
ations in weakly compressible MHD turbulence as it evolves
to a subsonic state.

The transition of magnetoplasma from a compressible to
a nearly incompressible state not only transforms the char-
acteristic supersonic motion into subsonic motion, but also
attenuatesplasma magnetization. This can be seen from the
evolution of the turbulent plasma-β̃ as shown in Fig.6. The
plasma-̃β is defined as the ratio of plasma thermal pressure
and magnetic pressure. Figure 5 shows that the magnetic
pressure exceeds the thermal pressure (β̃<1) initially in the
fully compressible magnetoplasma. When the strongly mag-
netized compressible plasma fluctuations decay, (see Figs. 3
and 4), the magnetization decreases and the low beta plasma
(β̃<1) evolves into a high beta (β̃>1) state. This implies
that the plasma pressure evolves to exceed the magnetic en-
ergy dynamically by exciting perturbations that are populated
largely by short turbulent length-scales

kρ̂i≥1>k0λmpf

(where ρ̂i is the ion gyroradius,k0∼1/`0 and λmpf is
mean free path scale-length) in an inertial range. Physi-
cally this means that plasma particles tied to the magnetic
field lines are expelled from their gyro orbits due to an in-
creasingly dominant gas pressure. This leads eventually to
a reduced plasma magnetization and hence plasma fluctu-
ations, experiencing larger particle pressure than the mag-
netic pressure, transit into aβ>1 regime where they exhibit
near incompressibility. A direct consequence of the mag-
netoplasma evolving into a high beta regime is that super
Alfv énic (M̃A>1) plasma is damped into sub-Alfvénic mo-
tion (M̃A<1). Mode conversion is a further factor that ex-
plains, in part, the transition of an MHD plasma from com-
pressible to nearly incompressible. This can be illustrated by
a simple argument. The turbulent plasma-β̃ is

β̃'
8πp̃

B̃2
∼

C̃2
s

Ṽ 2
A

∼
M̃2

A

M̃2
s

.

Thus a monotonic decrease iñMs corresponds to a higher
value ofβ̃, i.e. as the magnetofluid becomes increasingly in-
compressible,M̃s becomes smaller, consistent with Fig.4.
This, however, places the stringent but justifiable criterion
on the dynamical evolution of compressible magnetoplas-
mas, which is that the magnetosonic fluctuations must de-
cay faster than the Alfv́enic motions. This statement corre-
sponds precisely to the theoretical justification for using an

Nonlin. Processes Geophys., 14, 351–359, 2007 www.nonlin-processes-geophys.net/14/351/2007/
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incompressible fluid description (Zank and Matthaeus, 1990,
1993). The latter, nevertheless, survive the nonlinear damp-
ing or dissipation.

The progressive enhancement of the turbulent plasmaβ̃

provides, additionally, a complimentary understanding of the
discrepant cascade rates in the subsonic regime of compress-
ible magnetoplasma. The high plasmaβ̃ regime implies that
the shear Alfv́en modes propagate more slowly than sound
waves. Thus MHD perturbations in the steady state are or-
dered asŨ<ṼA<C̃s . The nonlinear interaction time-scales
associated with this ordering are

τ̂s<τ̂a<τNL,

whereτ̂a , τ̂s andτNL denote respectively the Alfvénic, the
fast/slow magnetosonic and the nonlinear eddy turn over
time-scales. This inequality indicates that the nonlinear inter-
action time for Alfv́en modes increases compared to that of
the magneto(acoustic) modes. Consequently, the plasma mo-
tion becomes increasingly incompressible on Alfvénic time
scales. During this gradual transformation to incompressibil-
ity, the compressible fast/slow magnetosonic modes do not
couple well with the Alfv́en modes. The cascades are there-
fore progressively dominated by the shear Alfvén modes,
while the compressible fast/slow magnetosonic waves sup-
press the nonlinear cascades by dissipating the longitudinal
fluctuations.

It is interesting to compare our results with other work.
For instance, a neutral (hydrodynamic) fluid evolves to a
quasiequilibrium state, when forced externally, in which the
rotational component of the velocity spectrum is very close
to that of the incompressible case even for a large Mach
number ('0.9) case (Kida and Orszag, 1990). Similarly,
decaying supersonic hydrodynamic turbulence develops a
Kolmogorov-like (solenoidal) velocity spectrum (Porter et
al., 1994). By contrast, our simulations deal with the magne-
tized compressible plasma and it is thus natural to ask what
role the magnetic field plays on turbulent decay rates. It has
been shown byMac Low et al.(1998, 1999) that a magnetic
field does not alter the decay rate and thus both isothermal,
compressible MHD and hydrodynamical turbulence decay at
an almost similar rate. In the context of our simulations,
we believe that when a strongly magnetized compressible
plasma decays nonlinearly, the magnetization decreases and
the turbulent plasma pressure evolves to exceed the turbu-
lent magnetic energy [i.e. thẽβ>1 regime in Fig.6] dynam-
ically by exciting perturbations that are increasingly non-
magnetized (i.e. hydrodynamic-like). The turbulent mag-
netic field thus becomes weak eventually and has almost no
influence on the turbulent decay rates. Nonetheless, decaying
supersonic, super Alfvenic MHD turbulence tends to follow
a δρ ∝ M2

s scaling in a subsonic regime that correlates rms
density fluctuations with the subsonic turbulent Mach num-
ber. Note that the latter serves as an important constraint on
the passive scalar theory of density convection in our model.

5 Conclusions

The mostnoveland notable point to emerge from our simula-
tions is the definite scaling between the turbulent Mach num-
ber and the rms density fluctuations, i.e. that|δρ|

2/M̃s∼O(1)

is obeyed in subsonic magnetofluid turbulence. Conse-
quently, the density fluctuations behave as passively con-
vected structures. A direct consqeuence of this result, as
described above, is that it provides a possible explanation
of the observed interplanetary (IPM) and possibly inter-
stellar medium (ISM) density fluctuations which exhibit a
Kolomogorov-like power spectrum. Our simulations are
thereforethe firstresults to identify that density fluctuations
in the IPM and ISM possibly emerge as a result of weak
compressibility in the gas and are convected passively in the
background incompressible fluid flow field while preserv-
ing the constraint|δρ|

2/M̃s∼O(1). We finally conclude that
eventual nonlinear decoupling of Alfvénic and magnetosonic
modes leads to near incompressibility in a nonlinearly de-
caying, compressible magnetoplasma turbulence. Nonlin-
ear cascades play a catalytic role not only in weakening the
energy cascades by the compressive fast/slow magnetosonic
modes, but also damp the supersonic and the super Alfvénic
plasma motions leaving only subsonic and Alfvénic regimes.
A direct implication is that a nearly incompressible state de-
velops naturally in a subsonic compressive ISM or IPM mag-
netoplasma and the density fluctuations, scaling quadrati-
cally with the subsonic turbulent Mach number, exhibit a
characteristic spectrum that is determined typically by pas-
sive convection in the field of nearly incompressible velocity
fluctuations. The super- to subsonic transformation seen in
our simulations is realized explicitly because the fluctuating
or turbulent Mach numbers depend on local small scale dy-
namics and not on bulk or mean motion. Note that we have
not included forcing effects such as those due to solar flares
or supernovae blasts etc. Our work thus assumes that the
solar wind or interstellar plasma is evolving freely without
experiencing external forcing. The spectral properties of the
density, velocity and magnetic field fluctuations will be an
objective of our furture investigations.

Appendix A

A physical description of NI theory

One of the earlier attempts to understand the ISM density
fluctuations dates back to the analytic work ofHigdon(1984,
1986) in which density fluctuations were shown to be ad-
vected by velocity and magnetic field fluctuations.Mont-
gomery et al.(1987) related the density fluctuations to an
incompressible fluid turbulence by assuming an equation
of state to relate ISM density fluctuations to incompress-
ible MHD. This approach, called a pseudosound approxima-
tion, assumes that density fluctuations are proportional to the
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pressure fluctuations through the square of sound speed i.e.
δρ∼C2

s δP ∞, whereδρ, Cs, δP
∞ are respectively the den-

sity, sound speed, and incompressible pressure. The den-
sity perturbations inMontgomery et al.(1987) are therefore
“slaved” to the incompressible magnetic field and the veloc-
ity fluctuations. As described in Sect. II, this assumption
ignores the contribution from relatively high frequency and
short wavelength fluctuations. This hypothesis was further
contrasted byBayly et al. (1992) on the basis of their 2-D
compressible hydrodynamic simulations who demonstrated
that a spectrum for density fluctuations can arise purely as
a result of abondoning a barotropic equation of state with-
out even requiring a magnetic field. The pseudosound fluid
description of compressibility, justifying the Montgomery et
al. approach to the density-pressure relationship, was further
extended by (Matthaeus and Brown, 1988) in the context of a
compressible magnetofluid (MHD) plasma with a polytropic
equation of state in the limit of a low plasma acoustic Mach
number (Matthaeus and Brown, 1988). The theory, origi-
nally describing the generation of acoustic density fluctua-
tions by incompressible hydrodynamics (Lighthill , 1952), is
based on a generalization of Klainerman and Majda’s work
(Klainerman and Majda, 1981, 1982; Majda, 1984) and ac-
counts for fluctuations associated with a low turbulent Mach
number fluid, unlike purely incompressible MHD. Such a
nontrivial finite departure from the incompressibility state is
termed a “nearly incompressible” fluid description. The pri-
mary motivation behind NI fluid theory was to develop an
understanding and explanation of the interstellar scintillation
observations of weakly compressible ISM density fluctua-
tions that exhibit a Kolmogorov-like power law. The NI the-
ory is, essentially, an expansion of the compressible fluid or
MHD equations in terms of weak fluctuations about a back-
ground of strong incompressible fluctuations. The expansion
parameter is the turbulent Mach number. The leading or-
der expansion satisfies the background incompressible hy-
drodynamic or magnetohydrodynamic equations (and there-
fore fully nonlinear) derived on the basis of Kreiss principle
(Kreiss, 1982), while the higher order yields a high frequency
weakly compressible set of nonlinear fluid equations that de-
scribe low turbulent Mach number compressive HD as well
as MHD effects. Zank and Mathaeus derived the unified self-
consistent theory of nearly incompressible fluid dynamics
for non-magnetized hydrodynamics as well as magnetoflu-
ids, with the inclusion of the thermal conduction and energy
effects, thereby identifying different and distinct routes to in-
compressibility (Zank and Matthaeus, 1990, 1991, 1993).

The theory of nearly incompressible (NI) fluid, developed
by Matthaeus, Zank and Brown, based on a perturbative ex-
pansion technique is, perhaps the first rigorous theoretical at-
tempt to understand the origin of weakly compressible den-
sity fluctuations in the interstellar medium, and one that pro-
vides formally a complete fluid description of ISM turbu-
lence with the inclusion of thermal fluctuations and the full
energy equation self-consistently, unlike the previous mod-

els described above (Zank and Matthaeus, 1990, 1991, 1993;
Matthaeus and Brown, 1988). A central tenant of NI the-
ory is that the ISM density fluctuations are of higher order,
of higher frequency and possess smaller length-scales than
their incompressible counterparts to which they are coupled
through passive convection and the low frequency generation
of sound. Thus, the NI fluid models, unlike fully incompress-
ible or compressible fluid descriptions, allow us to address
weakly compressible effects directly in a quasi-neutral ISM
fluid. Furthermore, NI theory has enjoyed notable successes
in describing fluctuations and turbulence in the supersonic
solar wind.

Various nonlinear aspects of NI theory have lately been
explored byDastgeer and Zank(2004a,b,c, 2006a,b) in two
as well as three dimensions using nonlinear fluid simulations
aimed primarily at understanding the nonlinear cascades in
the interstellar turbulence that lead to the observed density
fluctuation spectrum. Some of these significant advance-
ments are reported in this paper.
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