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Dynamic Revenue Maximization:

A Continuous Time Approach∗

Dirk Bergemann† Philipp Strack ‡

May 22, 2015

Abstract

We characterize the revenue-maximizing mechanism for time separable allocation problems

in continuous time. The willingness-to-pay of each agent is private information and changes

over time.

We derive the dynamic revenue-maximizing mechanism, analyze its qualitative structure

and frequently derive its closed form solution. In the leading example of repeat sales of a

good or service, we establish that commonly observed contract features such as flat rates, free

consumption units and two-part tariffs emerge as part of the optimal contract. We investigate

in detail the environments in which the type of each agent follows an arithmetic or geometric

Brownian motion or a mean-reverting process. We analyze the allocative distortions and

show that depending on the nature of the private information the distortion might increase or

decrease over time.

Keywords: Dynamic Mechanism Design, Repeated Sales, Stochastic Flow, Flat Rates, Two-

Part Tariffs, Leasing.
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1 Introduction

1.1 Motivation

We analyze the nature of the revenue-maximizing contract in a dynamic environment with private

information at the initial time of contracting as well as in all future periods. We consider a setting

in continuous time and are mostly concerned with environments where the uncertainty, and in

particular the private information of the agent is described by a Brownian motion. The present

work makes progress by considering allocation problems that we refer to as weakly time separable.

Namely, (i) the set of available allocations at time t is independent of the history of allocations and

(ii) the flow utility functions of the agent and the principal at time t depend only the initial and

the current private information of the agent (and hence the qualifier of weakly time separable).

With time separability, the allocation rule that maximizes the expected dynamic virtual surplus

has the property that the allocation at time t is a function of the report of the agent at time 0 and

time t only. As a result, at every time t > 0, each agent is only facing a static reporting problem

since the current report is only used to determine the current allocation. A notable implication

of this separability is that the incentive compatibility conditions can be decomposed completely

into a time 0 problem and a sequence of static problem at all times t > 0. The restriction to

time separable allocation problems is sufficiently mild to include many of the allocation problems

explicitly analyzed in the literature so far, for the example the optimal quantity provision by the

monopolist as in Battaglini (2005) or the auction environment of Eső and Szentes (2007).

The specific contribution of the continuous time setting to the analysis of the optimal mechanism

arises after establishing the necessary conditions for optimality under time separability. And in fact,

we obtain the first order conditions by using the envelope theorem using a small class of relevant

deviations which is precisely the approach taken in discrete time, see for Eső and Szentes (2007) and

Pavan, Segal, and Toikka (2014) for the seminal contributions. The resulting dynamic version of the

virtual utility accounts for the influence that the present private information has on the future state

of the world (and hence future private information of the agent) through a term that Pavan, Segal,

and Toikka (2014) refer to as impulse response function. Now, in continuous time, the equivalent

expression, which is commonly referred to as stochastic flow, is compact and summarizes the nature

of the underlying stochastic process in an explicit formula. We then make use of the information
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conveyed by the stochastic flow in three distinct ways.

First, we explicitly derive the nature of the optimal allocation policy and the associated transfer

rules. We consider in some detail a number of well-known stochastic processes, in particular the

arithmetic and the geometric Brownian motion. The natural starting point here is to consider the

case in which the private information of the agent is the current state of the process, in particular

the initial state of the Brownian motion is private information, but we also analyze the problem

when either the drift or volatility of the process are private information. In Section 5 we consider the

nature of the optimal mechanism for repeated sales when the type of the agent follows a geometric

Brownian motion. We establish that commonly observed contract features such as flat rates, free

consumption units, two-part tariffs and leasing arrangements emerge as solutions to the optimal

contract design.

Second, we derive sufficient conditions for the optimality of the dynamic mechanism in terms

of the primitives of the stochastic process. This is demonstrated in detail in Section 6 where

we, for example, derive sufficient conditions for optimality when the private information of agent

cannot be ordered by first order stochastic dominance. In particular, we can allow the variance

rather than the mean of the stochastic process to form the private information, and yet display

transparent sufficient conditions for optimality. In much of the earlier literature, the types had

to be assumed to be ordered according to first-order stochastic dominance in order to give rise to

sufficient conditions for optimality.

Third, we systematically extend the analysis from Markovian settings where the initial private

information (as well as any future private information) is the state of the stochastic process to

settings in which the initial private information can present a parameter of the stochastic process,

such the mean or variance of the Markov process. The subsequent private information continues to

pertain to the state of the Markov process. This specification of the private information, the initial

information about the parameter of the process and the ongoing information about the state of the

process still conforms with our restriction to weakly time separable environments.

The initial private information may represent the drift or the volatility of the Brownian motion,

or the long-run mean or the reversion rate of a mean-reverting Ornstein-Uhlenbeck process. The

resulting informational term in the virtual utility, which is referred to as generalized stochastic flow

in probability theory, still permits a compact representation that can be used for the determination
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of the optimal policy and/or for the sufficient conditions. With the notable exception of the recent

papers by Boleslavsky and Said (2013) and Skrzypacz and Toikka (2015), and a discussion in the

supplementary appendix of Pavan, Segal, and Toikka (2014), the earlier contributions with an in-

finite horizon did not allow for the possibility that the initial private information may pertain to a

parameter of the stochastic process itself, such as the drift or the volatility. Interestingly, the con-

tinuous time version of the resulting generalized impulse response function is often a deterministic

function of the initial state and time, whereas the corresponding discrete time process has a gener-

alized impulse response function that depends on the realization of the entire sample path. This is

shown for example in Section 5 where the initial private information is the mean of the geometric

Brownian motion. The discrete time counterpart of this process, namely the multiplicative random

walk, was analyzed earlier by Boleslavsky and Said (2013). Here the generalized impulse response

term involves the number of realized upticks and downticks. In the continuous time equivalent,

the generalized stochastic flow is simply the expected number of upticks or downticks which is a

deterministic function of time and the initial state.

We should add that the current focus on time separable allocation problems is restrictive in

that it excludes problems such as the optimal timing of a sale of a durable good, where the present

decision, say a sale, naturally preempts certain future decision, say a sale, again. But our setting

allows us to restrict attention to a small class of deviations, deviations that we call consistent. The

consistent deviations, by themselves only necessary conditions, nonetheless completely describe the

indirect utility of the agent in any incentive compatible mechanism. More precisely, at time zero

the initial shock of the agent is drawn and the initial shock determines the probability measure

of the entire future valuation process. If the agent deviates he changes the probability measure of

the reported valuation process. To avoid working with the change in measures directly we restrict

attention to consistent deviations. We call a deviation consistent if, after his initial misreport, say

b instead of a, the agent reports his valuation as if it would follow the same Brownian motion as

the one which drives his true valuation. As there is a true initial shock, namely b, which could have

made these subsequent reports truthful, the principal cannot detect such a deviation and is forced

to assign the allocation and transfer process of the imitated shock b. In particular, this allows us to

evaluate the payoffs of the truthful and the consistently deviating agent with respect to the same

expectation operator. Now, as we assume the initial shock to be one-dimensional and given that
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all deviations are parametrized over the time zero shock, standard mechanism design arguments

deliver the smoothness of the value function of the agent.

Within the class of time separable allocation policies we can rewrite the sufficiency conditions

exclusively in terms of the flow virtual utilities. By using the class of consistent deviations and

allowing for time separable allocation policies, we can completely avoid the verification of the

incentive compatibility conditions via backward induction methods which was the basic instrument

to establish the sufficient conditions used in much of the preceding literature with dynamic adverse

selection.

1.2 Related Literature

The analysis of the revenue-maximizing contract in an environment where the private information

may change over time appears first in Baron and Besanko (1984). They considered a two period

model of a regulator facing a monopolist with unknown, but in every period, constant marginal cost.

Besanko (1985) offers an extension to a finite horizon environment with a general cost function,

where the unknown parameter is either i.i.d. over time or follows a first-order autoregressive process.

Since these early contributions, the literature has developed rapidly. Courty and Li (2000) consider

the revenue-maximizing contract in a sequential screening problem where the preferences of the

buyer change over time. Battaglini (2005) considered a quantity discriminating monopolist who

provides a menu of choices to a consumer whose valuation can change over time according to a

commonly known Markov process. In contrast to the earlier work, he explicitly considered an infinite

time horizon and showed that the distortion due to the initial private information vanishes over time.

Eső and Szentes (2007) rephrased the two period sequential screening problem by showing that the

additional signal arriving in period two can always be represented by a signal that is orthogonal

to the signal in period one. Eső and Szentes (2014) generalize this insight in an infinite horizon

environment and show that the information rent of the agent is only due to his initial information.

Pavan, Segal, and Toikka (2014) consider a general environment in an infinite horizon setting and

allowing for general allocation problems, encompassing the earlier literature (with continuous type

spaces). They obtain general necessary conditions for incentive compatibility and present a variety of

sufficient conditions for revenue-maximizing contracts for specific classes of environments. They also

observed the beneficial implications of time separable environments for a tighter characterization
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of the optimal contract.

A feature common to almost all of the above contributions is that the private information of

the agent is represented by the current state of a one-dimensional Markov process, and that the

new information that the agent receives is controlled by the current state, and in turn, leads to

a new state of the Markov process. Notably, Pavan, Segal, and Toikka (2014), Boleslavsky and

Said (2013) and Skrzypacz and Toikka (2015) allowed for the possibility that the initial private

information is about a parameter of the stochastic process itself.1 For example, Boleslavsky and

Said (2013) let the initial private information of the agent be the mean of a multiplicative random

walk. Interestingly, this dramatically changes the impact that the initial private information has on

the future allocations. In particular, the distortions in the future allocation may now increase over

time rather than decline as in much of the earlier literature. The reason is that the influence of the

parameter of the stochastic process, such as the drift or the variance, on the valuation may increase

over time.2 Finally, Kakade, Lobel, and Nazerzadeh (2013) consider a class of dynamic allocation

problems, a suitable generalization of the single unit allocation problem and impose a separability

condition (additive or multiplicative) on the interaction of the initial private information and all

subsequent signals. The separability condition allows them to obtain an explicit characterization

of the revenue-maximizing contract and derive transparent sufficient conditions for the optimal

contract.

The remainder of the paper proceeds as follows. Section 2 presents the model. In Section 3 we

derive the necessary and sufficient conditions for the revenue-maximizing contract. In Section 4 we

analyze the implications of the revenue-maximizing contract for the structure of the intertemporal

distortions. The nature of the optimal contract for repeat purchases of a product or service is

analyzed in Section 5 in an environment where the type follows a geometric Brownian motion.

Section 6 examines the optimal allocation among competing bidders when the private valuation is

either driven by the arithmetic Brownian motion or the mean-reverting Ornstein-Uhlenbeck process.

1This is equivalent to assuming that the private information of the agent corresponds to the state of a two-

dimensional Markov process, whose first component is constant after time zero, but influences the transitions of the

second component.
2In a recent contribution, Garrett and Pavan (2012) also exhibit the possibility of increasing distortions over time,

but the source there is a trade-off in the retention decision of a known agent versus a hiring decision of new, hence

less well known agent.
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Section 7 concludes. The Appendix contains some auxiliary proofs and additional results.

2 Model

There are n agents indexed by i ∈ {1, . . . , n} = N . Time is continuous and indexed by t ∈ [0, T ],

where the time horizon T can be finite or infinite. If the time horizon is infinite, then we assume a

discount rate r ∈ R+ which is strictly positive, r > 0.

The flow preferences of agent i are represented by a quasilinear utility function:

vit · ui(t, xit)− pit. (1)

The function ui : R+ × R+ → [0, u] is continuous and strictly increasing in x, decreasing in t and

satisfies ui(t, 0) = 0 for all t ∈ R+. We refer to ui(t, xit) as the valuation of xit ∈ [0, x] ⊂ R+ with

0 ≤ x < ∞. The allocation xit can be interpreted as either the quantity or quality of a good that

is allocated to agent i at time t. The type of agent i in period t is given by vit ∈ R and the flow

utility in period t is given by the product of the type and the valuation. The payment in period t

is denoted by pit ∈ R.

The type vit of agent i at time t depends on his initial shock θi at time t = 0 and the contem-

poraneous shock W i
t at time t:

vit , φi(t, θi,W i
t ) . (2)

The function φi : R+ ×Θ×R→ R aggregates the initial shock θi and the contemporaneous W i
t of

agent i into his type vit. The initial private information θi is not restricted to be the initial type vi0,

but might be any other characteristic determining the probability measure over paths of the types

(vt)t∈R+ . In the case of the arithmetic or geometric Brownian motion, the initial shock θi could

constitute the initial value vi0, but it could also be the drift µi or the variance (σi)
2

of the Brownian

motion. Similarly, in the case of a mean reverting process, the initial shock θi could constitute the

mean reversion speed or the long run-average of the stochastic process. In any event, at time zero

each agent i privately learns his initial shock θi ∈ (θ, θ̄) = Θ ⊆ R, which is drawn from a common

prior distribution F i : R→ [0, 1], independently across agents.

The distribution F i has a strictly positive density f i > 0 with decreasing inverse hazard rate

(1− F i) /f i. The contemporaneous shock is given by a random process (W i
t )t∈R+ of agent i that
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changes over time as a consequence of a sequence of incremental shocks and W i
t is assumed to be

independent of W j
t for every j 6= i. In Sections 5 and 6, the valuation function ui (t, xit) is simply

a linear function ui (t, xit) = xit and the type vit can then be directly interpreted as the marginal

willingness to pay of agent i.

The function φi is twice differentiable in every direction and in the following we use a small

annotation for partial derivatives:

φiθ(t, θ
i, wi) ,

∂φi(t, θi, wi)

∂θ
. (3)

If θi is the initial value of the process of agent i, that is vi0 = θi, then the derivative φiθ is commonly

referred to as the stochastic flow ; or generalized stochastic flow if θi determines the evolution of a

diffusion by influencing the drift or variance term (see for example Kunita (1997)). The stochastic

flow process (φiθ(t, θ,W
i
t ))t∈R+ is the analogue of the impulse response functions described in the

discrete time dynamic mechanism design literature (see Pavan, Segal, and Toikka (2014), Definition

3). As we will see in the examples presented later the stochastic flow is of a very simple form

for many classical continuous time diffusion processes, like the arithmetic and geometric Brownian

motion.

We assume that for every agent i a higher initial shock θi leads to a higher type, φiθ(t, θ
i, wi) ≥ 0;

and an agent i who observed a higher value of the process W i
t has a higher type, φiw(t, θi, wi) > 0

for every (t, θi, wi) ∈ R+ ×Θ× R.

Assumption 1 (Decreasing Influence of Initial Shock).

The relative impact of the initial shock on the type:

φiθ(t, θ
i, wi)

φi(t, θi, wi)
(4)

is decreasing in wi for every (t, θi, wi) ∈ R+ ×Θ× R.

Assumption 2 (Decreasing Influence of Initial vs Contemporaneous Shock).

The ratio of the marginal impact of initial and contemporaneous shocks:

φiθ(t, θ
i, wi)

φi
wi

(t, θi, wi)
(5)

is decreasing in θi for every (t, θi, wi) ∈ R+ ×Θ× R.
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The last assumption implies that the type with a large initial shock is influenced more by the

contemporaneous shocks that arrive after time zero.

Assumption 3 (Finite Expected Impact of the Initial Shock).

The expected influence of the initial shock on the type grows at most exponentially: there exists

C ∈ R+, q ∈ (0, r) such that E [φiθ(t, θ
i,W i

t )] ≤ Ceqt for all t ∈ R+ and θi ∈ Θ.

Assumption 3 ensures that the effect of a marginal change in the agent’s type on the sum of

discounted expected future types is finite.

At every point in time t the principal chooses an allocation xt ∈ X from a compact, convex set

X ⊂ Rn
+, where xit can be interpreted as the quantity or quality of a good that is allocated to agent

i at time t. We assume that it is always possible to allocate zero to an agent:

x ∈ X ⇒ (x1, . . . , xi−1, 0, xi+1, . . . , xn) ∈ X .

To ensure that the problem is well-posed we assume that every feasible allocation process xi = (xit)

gives finite expected utility to agent i,

E
[∫ T

0

e−rt1{vit≥0}v
i
tu
i(t, xit)dt | θi

]
<∞,

for every θi in the support of F i. The principal receives the sum of discounted flow payments∑
i∈N p

i
t minus the production costs c(xt):

E

[∫ T

0

e−rt

(∑
i∈N

pit − c (xt)

)
dt

]
. (6)

The cost c : X → R+ is continuous and increasing in every component with c (0) = 0. With minor

abuse of language we shall refer throughout the paper to the net revenue (or profit) maximization

problem given by (6) as simply the revenue maximization problem.

Definition 1 (Value Function).

The indirect utility, or value function, V i(θi) of agent i given his initial shock θi, his consumption

process (xit)t∈R+ and his payment process (pit)t∈R+ is

V i(θi) = E
[∫ T

0

e−rt
(
ui(t, xit)v

i
t − pit

)
dt | θi

]
. (7)
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A contract specifies an allocation process (xt)t∈R+ and a payment process (pt)t∈R+ . The allocation

xt and the payment pt can depend on all types reported (vis)s≤t,i∈N by the agents prior to time t.

We assume that the agent has an outside option of zero and thus require the following definition:

Definition 2 (Incentive and Participation Constraints).

A contract (xt, pt)t∈R+ is acceptable if for every agent i it is individually rational to accept the

contract

V i(θi) ≥ 0 for all θi ∈ Θ ,

and it is optimal to report his shock θi and his type (vit)t∈R+ truthfully at every point in time t ∈ R+.

Given the transferable utility, we define the flow welfare function s : R+ × Rn × X → R that

maps an allocation x ∈ X and a vector of types v ∈ Rn into the associated flow of welfare

s(t, v, x) =
∑
i∈N

vitu
i(t, xi)− c(x) . (8)

The social value of the allocation process (xt)t∈[0,T ] aggregates the discounted flow of social welfare

over time and is given by:

E

[∫ T

0

e−rt

(∑
i∈N

vitu
i(t, xit)− c (xt)

)
dt

]
= E

[∫ T

0

e−rts(t, vt, xt)dt

]
. (9)

As the allocation xt at time t does not influence the future evolution of types or the set of possible

future allocations the problem of finding a socially efficient allocation is time-separable. We define

the optimal allocation function x† : R+ × Rn → Rn that maps a point in time t and a vector of

types v into the set of optimal allocations

x†(t, v) = arg max
x∈X

s(t, v, x) . (10)

An allocation process (xt)t∈[0,T ] is welfare maximizing if and only if xt ∈ x†(t, vt) almost surely for

every t ∈ [0, T ].

Given the essentially static character of the social allocation problem, it follows immediately

that the welfare maximizing allocation x† can be implemented via a sequence of static Vickrey-

Clarke-Groves mechanisms and associated payments:

p† it , p† i(t, vt) = max
x∈X

∑
j 6=i

[
uj(t, x)− uj(t, x†(t, vt))

]
vjt − c(x) + c(x†(t, vt)) . (11)
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3 Revenue Maximization

In this section we derive a revenue-maximizing direct mechanism. Without loss of generality we

restrict attention to direct mechanisms, where every agent i reports his initial shock θi and his type

vit truthfully. We first obtain a revenue equivalence result for incentive compatible mechanisms.

3.1 Necessity

We begin by establishing that the value function of the agent if he reports truthfully is Lipschitz

continuous. As φi is strictly increasing in wi we can implicitly define the function ω : R+×Θ×R→ R

by

vi = φi(t, θi, ω(t, θi, vi)) for all (t, θi) ∈ R+ ×Θ . (12)

Thus ω identifies the value that the contemporaneous shock W i
t has to have at time t to generate

a contemporaneous type vi given the initial shock θi. We derive a necessary condition for incentive

compatibility that is based only on the robustness of the mechanism to a small class of deviations,

which we refer to as consistent deviations.

Definition 3 (Consistent Deviation).

A deviation by agent i is referred to as a consistent deviation if agent i with type vi0 = φi(0, a,W i
0)

(and associated initial shock a ∈ Θ) misreports v̂i0 = φi(0, b,W i
0) (and associated initial shock b ∈ Θ)

at t = 0 and continues to misreport:

v̂it = φi(t, b, ω(t, a, vit)), (13)

instead of his true type vit at all future dates t ∈ R+.

Thus, an agent who misreports with a consistent deviation, continues to misreport his true type

vit in all future periods. More precisely, agent i’s reported type v̂it = φi(t, b,W i
t ) equals the type

he would have had if his initial shock would have been b instead of a. We note that the misreport

generated by a consistent deviation has the property that the principal can infer from the misreport

the true realized path of the contemporaneous shocks W i
t . Now, since the allocation depends on

the type vit rather than the path of contemporaneous shocks W i
t , the (inferred) truthfulness in the

shocks is not of immediate use for the principal. We now show that this, one-dimensional, class
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of consistent deviations is sufficient to uniquely pin down the value function of the agent in any

incentive compatible mechanism at time t = 0. The class of consistent deviations we consider here

are not local deviations at one point in time, but rather represent a global deviation in the sense

that the agent changes his reports at every point in time.

As φi(0, θi,W0) is strictly increasing in θi, it is convenient to describe the initial report directly

in terms of the true initial shock a and the reported initial shock b. We thus define V i(a, b) to be

the indirect utility of agent i with initial shock a but who reports shock b and misreports his type

consistently as v̂it = φi(t, b, ω(t, a, vit)). Note that by construction W i
t = ω(t, a, vit). Consequently

the allocation agent i gets by consistently deviating and reporting b is the same allocation that he

would get if his initial shock were b and he were to report it truthfully. Hence V i(a, b) is the indirect

utility of an agent who has the initial shock a but reports initial shock b and misreports his type

consistently and is given by:

V i(a, b) = E
[∫ T

0

e−rt
(
ui(t, xit(b))φ

i(t, a,W i
t )− pit(b)

)
dt

]
.

Note, that when restricted to consistent deviations the mechanism design problem turns into a

standard one-dimensional problem, and the Envelope theorem yields the derivative of the indirect

utility function of the agent:

Proposition 1 (Regularity of Value Function).

The indirect utility function V i of every agent i ∈ N in any incentive compatible mechanism is

Lipschitz continuous and has the weak derivative

V i
θ (θi) = E

[∫ T

0

e−rtui(t, xit(θ))φ
i
θ(t, θ

i,W i
t )dt

]
a.e. . (14)

Proof. As the agent can always use consistent deviations, a necessary condition for incentive com-

patibility is V (a, a) = supb V (a, b) . As φi is differentiable the derivative of V with respect to the

first variable is given by

Va(a, b) =
∂

∂a
E
[∫ T

0

e−rt
(
ui(t, xit(b))φ

i(t, a,W i
t )− pit(b)

)
dt

]
= E

[∫ T

0

e−rt
(
ui(t, xit(b))φ

i
θ(t, a,W

i
t )
)

dt

]
≤ uE

[∫ T

0

e−rtφiθ(t, a,W
i
t )dt

]
,

which is bounded by a constant by Assumption 3. By the Envelope theorem (see Milgrom and

Segal (2002), Theorem 1 and Theorem 2) we have that V i(θi) = V i(θi, θi) is absolutely continuous
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an the (weak) derivative is given by (14). As argued above (14) is bounded and thus V i is Lipschitz

continuous.

We introduce a dynamic version of the virtual utility function J i : R+ ×Θ× R→ R as:

J i(t, θi, vit) = vit −
1− F i(θi)

f i(θi)
φiθ(t, θ

i, ω(t, θi, vit)) . (15)

We observe that the above virtual utility is modified relative to its static version only by the term

of the stochastic flow φiθ that multiplies the inverse hazard rate. Thus, the specific impact of the

private information in the dynamic mechanism is going to arrive exclusively through the stochastic

flow φiθ (see (3)), the continuous time equivalent of the impulse response function. The properties

of the virtual utility are summarized in the following proposition:

Proposition 2 (Monotonicity of Virtual Utility).

If the virtual utility J i(t, θi, vit) is positive then it is non-decreasing in θi and vit.

The proof of Proposition 2 given in the Appendix establishes the monotonicity of the virtual util-

ity from Assumptions 1 and 2 using algebraic arguments. We observe that Proposition 2 establishes

the monotonicity of the virtual utility only for the case that the virtual utility is positive. In fact,

our assumptions are not strong enough to ensure the monotonicity of the virtual utility independent

of its sign. The reason not to impose stronger monotonicity conditions is that for many important

examples discussed later (for example the geometric Brownian motion with unknown initial value)

the virtual utility is only monotone if positive.

We can now establish a revenue equivalence result that describes the revenue of the principal in

any incentive compatible mechanism solely in terms of the allocation process x = (xt)t∈R+
and the

expected time zero value the lowest type derives from the contract V i(θ).

Theorem 1 (Revenue Equivalence).

For any incentive compatible direct mechanism the expected payoff of the principal depends only on

the allocation process (xt)t∈R+ and is given by the dynamic virtual surplus:

E

[∫ T

0

e−rt

(∑
i∈N

pit − c(xt)

)
dt

]
= E

[∫ T

0

e−rt

(∑
i∈N

J i(t, θit, v
i
t)u

i(t, xit)− c(xt)

)
dt

]
−
∑
i∈N

V i(θ). (16)
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Proof. Partial integration gives that in any incentive compatible mechanism (x, p) the expected

transfer received by the principal from agent i equals the expected virtual utility of agent i :

E
[∫ T

0

e−rtpitdt

]
= E

[∫ T

0

e−rtui(t, xit)v
i
tdt

]
−
∫ θ

θ

f(θi)V i(θi)dθi

= E
[∫ T

0

e−rtui(t, xit)v
i
tdt

]
−
∫ θ

θ

f i(θi)
1− F i(θi)

f i(θi)
V i
θ (θi)dθi − V i(θ)

= E
[∫ T

0

e−rtui(t, xit)

(
vit −

1− F i(θi)

f i(θi)
φiθ(t, θ

i,W i
t )

)
dt

]
− V i(θ) .

Summing up the transfers of all agents and subtracting the cost gives the result.

As Theorem 1 provides a necessary condition for incentive compatibility it follows that if there

exists an incentive compatible contract (x, p) such that the allocation process x maximizes the

expected virtual surplus given by (16), then it maximizes the principal’s surplus. Clearly, to max-

imize the virtual surplus it is optimal to set the transfer to the lowest initial shock equal to zero:

V i(θ) = 0 for all agents i ∈ N . We denote by J(t, θ, vt) ∈ Rn the vector of virtual utilities,

J(t, θ, vt)
i = J i(t, θi, vit). The revenue of the principal defined by (16) equals the expected welfare

when true utilities (types) v are replaced with virtual utilities J , hence referred to as the dynamic

virtual surplus :

E
[∫ T

0

e−rts(t, J(t, θt, vt), xt)dt

]
−
∑
i∈N

V i(θ) , (17)

where we defined the flow social value s (·) earlier in (8). In the next step we establish that there

exists a direct mechanism that maximizes the dynamic virtual surplus defined in (17). To do so let

us first state the following result which ensures that there exists a time separable allocation that

maximizes the dynamic virtual surplus:

Proposition 3 (Virtual Surplus Maximizing Allocation).

There exists an allocation function x? : R+ × Θ × Rn → X that maximizes the dynamic virtual

surplus. Furthermore, the allocation x? i(t, θ, vt) of agent i is non-decreasing in his type vit and his

initial shock θi.

Proof. For every t, θ, vt there exists a non-empty set of allocations which maximize the flow of

virtual surplus,

X?(t, θ, vt) = arg max
x∈X
{s(t, J(t, θ, vt), x)} = arg max

x∈X

{∑
j∈N

J j(t, θj, vjt )u
j(t, xj)− c(x)

}
.
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As ui and c are increasing in xi is is optimal to set the consumption of agent i to zero, xi = 0,

if his virtual utility J i(t, θi, vit) is negative. As ui is increasing in x and J i is increasing in θi and vi by

Proposition 2 it follows that the objective function of the principal
∑

i∈N max{0, J i(t, θi, vit)}ui(t, xi)−

c(x) is super-modular in (θi, xi) and (vit, x
i). By Topkis’ theorem, there exists a quantity x?(t, θ, vt) ∈

X?(t, θ, vt) that maximizes the flow virtual surplus such that the allocation x? i(t, θ, vt) of agent i is

non-decreasing in θi and vit. As the virtual surplus of the principal at time t depends only on t, the

initial reports θ, and the type vt, this flow allocation that conditions only on (t, θ, vt) is an optimal

allocation process:

sup
(xt)

E
[∫ T

0

e−rts(t, J i(t, θit, v
i
t), xt)dt

]
= E

[∫ T

0

e−rt sup
x∈X

s(t, J i(t, θit, v
i
t), xt)dt

]
.

3.2 Sufficiency

To prove incentive compatibility of the optimal allocation process let us first establish a version of

a classic result in static mechanism design.

Proposition 4 (Static Implementation).

Let X ⊂ R and let V : X×X → R be absolutely continuous in the first variable with weak derivative

V1 : X ×X → R+ and let V1 be increasing in the second variable. Then the payment

p(x) = V (x, x)−
∫ x

0

V1(z, z)dz .

ensures that truth-telling is optimal: V (x, x)− p(x) ≥ V (x, x̂)− p(x̂) for all x, x̂ ∈ X.

Proposition 4 is similar to Lemma 1 in Pavan, Segal, and Toikka (2014) and Proposition 2 in

Rochet (1987) and differs only in the continuity requirements, namely absolute continuous here

rather than Lipschitz continuous there.

In the first step we construct flow payments that make truthful reporting of types optimal (on

and off the equilibrium path) if the virtual surplus maximizing allocation process x? is implemented.

Define the payment process pt , p(t, θ, vt) where the flow payment pi : t× Θ× Rn → R of agent i

is given by:

pi(t, θ, vt) , vit u
i(t, x? i(t, θ, vt))−

∫ vit

0

ui(t, x? i(t, θ, (z, v−it )))dz . (18)
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Proposition 5 (Incentive Compatible Transfers).

In the contract (x?, p) it is optimal for every agent at every t > 0 to report his type vit truthfully,

irrespective of the reported shock θi and past reported types (vis)s<t.

Proof. As the allocation x?(t, θ, vt) and the payment p(t, θ, vt) at time t are independent of all past

reported types (vs)s<t the reporting problem of each agent i is time-separable. As ui is increasing

in x, and x? is increasing in vi by Proposition 2, we can apply Proposition 4 to

(vi, v̂i) 7→ viui(t, x?(t, θ, (v̂i, v−i))) ,

and so guarantee that the payment scheme p(t, θ, v) makes truthful reporting of types optimal for

all t, θ, v, v̂i.

It remains to augment the payments from Proposition 5 with additional payments that make it

optimal for the agents to report their initial shocks θ truthfully. As the payments of Proposition

5, see (18) ensure truthful reporting of types even after initial misreports, we know how agents will

behave even after an initial deviation. This insight transforms the time zero reporting problem into

a static design problem in which the payments of Proposition 4 can be used to provide incentives

at time t = 0.

We define the payment process for agent i as the sum of the flow incentive payment pi(t, θ, vt)

and an annuitized payment πi(θ) that depends only on the initial report θ :

P i?
t , pi(t, θ, vt) + πi(θ) (19)

where the annuitized payment πi : Θ→ R of agent i is given by:

πi(θ) = E
[ ∫ T

0

re−rt

1− e−rT
[ ∫ vit

0

ui(t, x? i(t, θ, (z, v−it )))dz (20)

−
∫ θi

θ

φiθ(t, z,W
i
t )u

i(t, x? i(t, (z, θ−i), (φi(t, z,W i
t ), v

−i)))dz
]
dt

]
.

Theorem 2 (Revenue Maximizing Contract).

The virtual surplus maximizing contract (x?, P ?) maximizes the revenue of the principal. In the

virtual surplus maximizing contract it is optimal for every agent i to report his shock θi and type vit

truthfully for all t ≥ 0, irrespective of the reported shocks θi and past reported types (vis)s<t.
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Proof. We start with the flow payments pi of Proposition 5 given by (19). By construction of the

payments each agent reports his type truthfully independent of his initial report θi. Let V̂ (θi, θ̂i)

be the agent’s value if his true initial shock is θi but he reports θ̂i and reports truthful after time

zero

V̂ (θi, θ̂i) = E
[∫ T

0

e−rt
[
vit u

i(t, x? i(t, (θ̂i, θ−i), vt))− p(t, (θ̂i, θ−i), vt)
]

dt

]
.

As it is optimal to report vit truthfully we have that

∂

∂vit

(
vit u

i(t, x? i(t, (θ̂i, θ−i), vt))− p(t, (θ̂i, θ−i), vt)
)

= ui(t, x?(t, (θ̂i, θ−i), vt)) .

Thus, the derivative of agent i’s value with respect to his initial shock is given by

V̂θ(θ
i, θ̂i) = E

[∫ T

0

e−rt
[
φiθ(t, θ

i,W i
t )u

i(t, x? i(t, (θ̂i, θ−i), vt))
]

dt

]
.

As φiθ is positive, ui is increasing in x, and x? i is increasing in θ̂i by Proposition 2, Proposition

4 implies that truthful reporting of θi is optimal for agent i if he has to make a payment of

πi(θ)(1 − e−r T )/r at time zero. As the principal can commit to payments we can transform this

payment into a constant flow payment with the same discounted present value by multiplying with

r/(1 − e−r T ). Note, that as the payment π(θ) does not depend on the types it is optimal for the

agent to report his types truthfully in the contract (x?, P ?) where P ?
t , p(t, θ, vt) + π(θ).

Theorem 2 describes a revenue-maximizing direct mechanism in which the agents report their

types and the principal decides on an allocation and associated transfers at every point in time. The

next result shows that in the case of a single agent there also exists a simple indirect mechanism in

the form of a two-part tariff which maximizes the intertemporal revenues of the principal. In this

mechanism the agent picks a specific contract at time zero and then chooses how much to consume

at every point in time. The price paid by the agent at time t for his consumption xt at time t

depends only the initial contract choice through the fixed payment π and the level of consumption

xt at time t through the variable payment, and thus takes the form of a two-part tariff.

Proposition 6 (Two-Part Tariff).

With a single agent there exists a revenue-maximizing two-part tariff: at time zero the agent chooses

an fixed payment π and then at every point in time t chooses his consumption xt and associated

price p̃(t, π, xt).
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Proof. Define the set of types such that a given allocation x is optimal at time t

V ?(t, θ, x) = {v ∈ R : x = x?(t, θ, v)} .

For every allocation x such that V ?(t, θ, x) 6= ∅ there exists at least one type v such that the agent

would receive this allocation x if he reported v in the direct mechanism of Theorem 2. The payment

of the mechanism described in Theorem 2 depends only on the allocation, but not on the type v.

Thus, we have that the following payment implements the virtual surplus maximizing allocation in

an indirect mechanism:

p̃(t, θ, x) =

inf{p(t, θ, v) : v ∈ V ?(t, θ, x)}, if V ?(t, θ, x) 6= ∅;

∞, otherwise .

(21)

By convention, we assign an arbitrarily large payment, ∞, to the choice of an allocation that is

never optimal and V ? = ∅. By Theorem 2, there exists an incentive-compatible flow payment that

is constant over time, π (θ) such that the agent reveals his true initial type, θ. Hence we can choose

the allocation dependent payment p(t, θ, v) to depend on the corresponding fixed payment π (θ) and

let p(t, π (θ) , x) be the consumption dependent payment. If π : Θ → R fails to be invertible, then

the agent can be offered a choice of menus across all p̃(t, θ′, x) for all θ′ ∈ Θ such that the associated

fixed payment π (θ) = π (θ′) as given by (20).

The revenue-maximizing mechanism suggested by Proposition 6 is a menu over static contracts.

This means that it is sufficient that the payments and allocations at time t depend only on the time

t types and the time zero shocks θ.

3.3 The Relation between Discrete and Continuous Time Models

We should emphasize that the basic proof strategy to construct the optimal dynamic mechanism

in continuous time mirrors the approach taken in discrete time, see Eső and Szentes (2007) and

Pavan, Segal, and Toikka (2014). As in these earlier contributions, we obtain the first order condi-

tions by using the envelope theorem using a small class of relevant deviations. Thus, the valuable

insights from discrete time carry over to continuous time. Similarly, for the sufficient conditions, we

use monotonicity conditions and time separability of the allocations to guarantee that it remains

optimal for the agent to report truthfully after any misreport. Here, the continuous time version of



19

the sufficiency arguments have the advantage that they can be expressed directly in terms of the

primitives of the stochastic process which we will illustrate in Section 6.

A brief, but more detailed comparison with the discrete time arguments might be instructive at

this point. Eső and Szentes (2007) and Pavan, Segal, and Toikka (2014) show that the additional

signals arriving after the initial period can be represented as signals that are orthogonal to the

past signals. In the present setting, the type vt at every point in time is represented as a function

φi of the initial shock θi, and an independent time t signal contribution (increment) dWt, i.e.

vt = φi(t, θi,W i
t ). Our use of consistent deviations is similar to the deviations used in Pavan, Segal,

and Toikka (2014) and Eső and Szentes (2014) where each agent reports the shock Wt after time

zero truthfully to establish revenue equivalence.

We can also relate the relevant conditions that guarantee the monotonicity of the type with

respect to the initial shock. Indeed, our Assumptions 1 and 2 are closely related to the Assumptions

1 and 2 of Eső and Szentes. In particular, we show in the Appendix that our Assumption 1 is implied

by Assumption 1 in Eső and Szentes and thus weaker. Furthermore, Assumption 2 of our setup is

exactly equivalent to Assumption 2 in Eső and Szentes. Hence, the basic conditions on the payoffs

and the shocks extend the conditions of Eső and Szentes directly to an environment with many

periods and many (flow) allocation decisions.

Pavan, Segal, and Toikka (2014) observed in the context of a discrete time environment that

time-separability of the allocation plus monotonicity of the virtual utility in θi and vit is sufficient

to ensure strong monotonicity of the virtual surplus maximizing allocation (monotonicity in θi

and vit after every history). Furthermore, they show that strong monotonicity is sufficient for the

implementability of the virtual surplus maximizing allocation (Corollary 1). In Section 5 in the

supplementary Appendix they use this insight to describe optimal mechanisms for discrete time

situations where the private information of the agent is not the initial state of the process, but a

parameter influencing the transitions.

As the allocation at time t does not change the set of possible allocations at later times our

environment is time-separable. Our assumptions are similar to the assumptions made in the section

discussing separable environments in Pavan, Segal, and Toikka (2014) in the sense that they en-

sure strong monotonicity which in turn implies implementability of the virtual surplus maximizing

allocation.
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4 Long-run Behavior of the Distortion

In this section we analyze how the allocative distortions behave in the long-run. We are interested

in the expected social welfare generated by the revenue-maximizing allocation compared to the

expected welfare generated by the socially optimal allocation. We begin with the following definition

and recall that the flow social welfare s (·) is the sum of the flow utilities over all agents, see (8).

Definition 4 (Vanishing Distortion).

The allocative distortion vanishes in the long-run if the social welfare generated by the revnue-

maximizing allocation converges to the social welfare generated by the socially optimal allocation as

t→∞:

lim
t→∞

E
[
s
(
t, vt, x(t, vt)

)
− s
(
t, vt, x(t, J(t, θ, vt))

)]
= 0 .

The characterization of the long-run behavior comes in two parts. We first provide sufficient

condition for the distortions to vanish in the long-run. Then we provide necessary conditions for

persistence of allocative distortions in the long-run in the case of a single agent.

Proposition 7 (Long-run Behavior of the Distortion).

The following two statements characterize the long-run behavior of the distortions:

(a) The distortion vanishes in the long run if the expected type of any initial shock converges to the

expected type of the lowest shock, i.e.

lim
t→∞

E
[
vt | θi = x

]
− E

[
vt | θi = θ

]
→ 0 . (22)

(b) If n = 1, u(t, x) = x, c(x) is twice continuously differentiable, strictly convex with 0 < c′′(x) ≤ D

and the expected type for a (non-zero measure) set of shocks does not converge to the expected

type of the lowest shock (i.e. (22) is not satisfied), then the allocative distortion does not vanish.

Proof. First note that the difference in the expected type between a random and the lowest initial

shock equals

E [vt]− E
[
vt | θi = θ

]
= E

[
φi(t, θi,W i

t )− φi(t, θ,W i
t )
]

= E

[∫ θ

θ

1− F i(z)

f i(z)
φiθ(t, z,W

i
t )f(z)dz

]

= E
[

1− F i(θi)

f i(θi)
φiθ(t, θ

i,W i
t )

]
.
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Part (a): We prove that the distortion vanishes if limt→∞ E
[

1−F i(θi)
f(θi)

φiθ(t, θ
i,Wt)

]
= 0. We first

show that the welfare loss at a fixed point in time can be bounded by the difference between virtual

utility J ∈ Rn and type v ∈ Rn

s(t, v, x?(t, v))− s(t, v, x?(t, J))

=

(∑
i∈N

viui(t, x? i(t, v))− c(x?(t, v))

)
−

(∑
i∈N

viui(t, x? i(t, J))− c(x?(t, J))

)

=

(∑
i∈N

viui(t, x? i(t, v))− c(x?(t, v))

)
−

(∑
i∈N

J iui(t, x? i(t, J))− c(x?(t, J))

)
−
∑
i∈N

(vi − J i)ui(t, x? i(t, J))

≤

(∑
i∈N

viui(t, x? i(t, v))− c(x?(t, v))

)
−

(∑
i∈N

J iui(t, x? i(t, v))− c(x?(t, v))

)
−
∑
i∈N

(vi − J i)ui(t, x? i(t, J))

=
∑
i∈N

(vi − J i)(ui(t, x? i(t, v))− ui(t, x? i(t, J)).

As the set of possible allocations X is compact and ui is continuous there exists a constant C > 0

such that ∑
i∈N

(vi − J i)(ui(t, x? i(t, v))− ui(t, x? i(t, J)) ≤ C
∑
i∈N

(vi − J i) .

Hence the welfare loss resulting from the revenue-maximizing allocation resulting from the revenue-

maximizing allocation is linearly bounded by the difference between virtual utility and type. As

the difference between vit and J it equals 1−F i(θi)
f i(θi)

φiθ(t, θ
i,W i

t ) it follows that

E [s(t, vt, x
?(t, vt))− s(t, vt, x?(t, Jt))] ≤ C E

[∑
i∈N

(vi − J i)

]

= C E

[∑
i∈N

1− F i(θi)

f i(θi)
φiθ(t, θ

i,W i
t )

]
= C

(
E [vt]− E

[
vt | θi = θ

])
.

Taking the limit t→∞ gives the result.

Part (b): We prove that the distortion does not vanish in the long run if the expected type of any

initial shock does not converge to the expected type of the lowest initial shock. First, we prove that
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the distortion changes the allocation. As ui(t, x) = x is linear and c is convex this implies that the

function x 7→ vx− c(x) is concave and has an interior maximizer for every (t, v). This implies that

for every point in time t and every type v

0 = v − c′(x?(t, v)) .

By the implicit function theorem

x?v(t, v) =
1

c′′(x?(t, v))
≥ 1

D
.

Intuitively this means that the allocation is responsive to the type v. We calculate the change in

social welfare induced by the type v and the virtual valuation J

s(t, v, x?(t, v))− s(t, v, x?(t, J)) = [vx?(t, v)− c(x?(t, v))]− [vx?(t, J)− c(x?(t, J))]

=

∫ v

J

x?(t, z)dz − (v − J)x?(t, J)

=

∫ v

J

x?(t, z)− x?(t, J)dz

≥ 1

D

∫ v

J

(z − J)dz =
(v − J)2

2D
.

As the difference between type and virtual utility is given by 1−F i(θi)
f i(θi)

φiθ(t, θ
i,W i

t ) taking expectations

yields

E [s(t, v, x(v))− s(t, v, x(J))] ≥ 1

2D
E
[
(
1− F i(θi)

f i(θi)
φiθ(t, θ

i,W i
t ))

2

]
≥ 1

2D
E
[
(
1− F i(θi)

f i(θi)
φiθ(t, θ

i,W i
t ))

]2

=
(E [vt]− E [vt | θi = θ])

2

2D
,

where the middle step follows from Jensen’s inequality. As limt→∞ E [vt |θ = x ]− E [vt | θi = θ] 6= 0

for positive probability set of initial shock x it follows that limt→∞ E [vt ]− E [vt | θi = θ] 6= 0.

The sufficient condition for the allocative distortion to vanish requires that the conditional

expectation of the type vt at some distant horizon t converges for all initial realizations of the

shock, θ, to the conditional expectation of the type vt given the lowest initial shock θ. Clearly, in

any model where the initial state θ is the current state of a recurrent Markov process, such as in

Battaglini (2005), the sufficient condition will be satisfied as the influence of the initial state on the

distribution of the future states of the Markov process is vanishing.
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In turn, the failure of the sufficient condition is almost a necessary condition for the allocative

distortion to persist. However, in addition we need to guarantee that the allocation problem is

sufficiently responsive to the conditional expectation of the agent everywhere. This can be achieved

by the linearity and convexity conditions in Proposition 4.2. We state the necessary conditions only

for the problem with a single agent. With many agents, we would have to be concerned with the

further complication that the distortion that each individual agent faces may be made obsolete by

the distortion faced by the other agents, and thus a more stringent, and perhaps less transparent

set of conditions would be required.

5 Repeated Sales

A common economic situation that gives rise to a dynamic mechanism design problem is the repeated

sales problem where the buyer is unsure about his future valuation for the good. Examples of such

situations are gym membership and phone contracts. At any given point in time the buyer knows

how much he values making a call or going to the gym, but he might only have a probabilistic

assessment on how much he values the service tomorrow or a year in the future. Usually, it is

harder for the buyer to assess how much he values the good at times that are further in the future.

Mathematically this uncertainty about future valuations can be captured by modelling the buyer’s

valuation as a stochastic process.

From the point of view of the seller the question arises whether the uncertainty of the buyer

can be used to increase revenues by using a dynamic contract. A variety of dynamic contracts are

used, for example for gym memberships and mobile phone contracts, as documented in DellaVigna

and Malmendier (2006) or Grubb and Osborne (2015):

1. Flat Rates in which the buyer only pays a fixed fee regardless of his level consumption;

2. Two-Part Tariffs in which the buyer selects from a menu a fixed fee and a price of consumption.

He pays the fixed fee independent of his level of consumption and a unit price for the realized

consumption level. Tariffs with higher fixed fees feature lower unit prices of consumption

3. Leasing Contracts in which the buyer selects the length of the lease term and the price charged

per unit of time.
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While those dynamic contracts can be observed in a wide range of situations, their theoretical

properties, surprisingly, have not been widely analyzed. Using a dynamic mechanism design per-

spective, we can explain why and under what circumstances these specific (and other) features of

dynamic contracts and consumption plans might be offered. For the purpose of this section, we

consider a single buyer, and hence omit the superscript i. We assume that u (t, xt) = xt for all t,

and the flow utility of the agent is described by

vt · xt − pt, (23)

and hence vt immediately represents the willingness-to-pay of the agent in period t.

In the following we describe the revenue-maximizing dynamic contract offered by a monopolistic

seller. In general, dynamic contracts could have complicated features as the payments at time t

could depend on all the past consumption decisions and messages sent by the agent. However we

will show, using the results of the previous section, in particular Proposition 6 that offering a menu

of simple static contracts is sufficient to maximize the expected intertemporal revenue.

5.1 Unknown Initial Value

We shall assume that the type (vt)t∈R+ of the buyer follows a geometric Brownian motion with zero

drift, and possible shifted upwards by v ≥ 0:

dvt = (vt − v)σdWt , (24)

where (Wt)t∈R+ is a Brownian motion and solution to the above differential equation is given by:

vt = φ(t, θ,Wt) = v0 exp

(
−σ

2

2
t+ σWt

)
+ v. (25)

The choice of the shifted geometric Brownian motion as the type process ensures that the valuation

vt for the good will be greater than v at every point in time t. With zero drift, the valuation at

time t is the agent’s best estimate of his valuation at later times s > t:

vt = E[vs | vt] .

In this subsection, the initial shock θi is taken to be the initial valuation of the buyer v0 ∈ (v,∞).

We assume that the distribution function F is such that

v0 7→
1− F (v0)

f(v0) v0

(26)



25

is decreasing – a condition that is strictly weaker than the familiar increasing hazard rate condition

– and that f(v) ≥ 1/v.

At every point in time t the buyer chooses an amount of consumption xt ∈ X ⊆ R+ and pays

pt such that his overall utility equals

E
[∫ ∞

0

e−rt(vt · xt − pt)dt
]
.

To evaluate dynamic contracts from the sellers perspective, we assume that the seller faces contin-

uous, non-decreasing production cost c : X → R+, such that his overall payoff equals

E
[∫ ∞

0

e−rt(pt − c(xt))dt
]
.

We can then specialize the form of the revenue-maximizing contract obtained earlier in Theorem 2

to the specific environment of the shifted geometric Brownian motion here. The stochastic flow of

the shifted geometric Brownian motion is simply

φθ(t, θ,Wt) =
vt − v
v0

,

and thus the virtual utility, derived earlier in its general form in (15), can now be written as:

J(t, v0, vt) = vt

(
1− 1− F (v0)

f(v0)v0

)
+

1− F (v0)

f(v0)v0

v . (27)

By Theorem 2 it is then sufficient to verify that the above virtual surplus is increasing in v0 and vt

to guarantee that a virtual surplus-maximizing contract exists.

Proposition 8 (Virtual Utility with Geometric Brownian Motion).

The virtual utility J(t, v0, vt) in the environment of the geometric Brownian motion defined by (25)-

(26) is increasing in v0 ∈ R+ and vt ∈ R+ and a virtual surplus-maximizing contract exists.

As shown in Theorem 1 the seller aims to maximize

E
[∫ T

0

e−rt (Jtxt − c(xt))
]
.

In the case of the geometric Brownian motion, the virtual utility, and hence the virtual surplus, are

simply a linear function of the type vt of the agent. The intercept and the slope of the function

are determined by the value of the initial shock θ = v0 and the lower bound v. We can therefore
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directly identify an indirect mechanism, a pricing mechanism, that aligns the preferences of the

agents with those of the principal. Let us define

M(v0) ,

(
1− 1− F (v0)

f(v0)v0

)−1

, (28)

and so we can express the virtual surplus of the principal as follows:

J(t, v0, vt)xt − c(x) =

(
vt

(
1− 1− F (v0)

f(v0)v0

)
+

1− F (v0)

f(v0)v0

v

)
x− c(x)

= M(v0)−1 (vtx−M(v0)c(x) + (M(v0)− 1)xv) .

It follows that a consumption based payment pt (v0, xt) given by

pt (v0, xt) ,M(v0)c(xt)− (M(v0)− 1)xtv,

perfectly aligns the interest of the buyer and the seller, the agent and the principal at every point

in time t > 0. After all, it leads agent and principal to solve their respective optimality conditions

at the same xt. It remains to prove that it is incentive compatible for the buyer to report his time

zero type truthfully. The following results describes optimal contracts (indirect mechanism) for the

seller.

Proposition 9 (Revenue Maximizing Indirect Mechanism).

A revenue-maximizing indirect mechanism is given by a menu (π, p(π, xt)) of membership fees π

and consumption prices p(π, xt) of the form

p(π, xt) = M(π)c(xt)− (M(π)− 1)v xt. (29)

Thus, the optimal contract is of the following form: At time zero the seller offers a menu of

static contracts each consisting of a time independent and recurrent membership fee π ≥ 0, and a

consumption dependent payment:

p(π, xt) = M(π)c(xt)− [M(π)− 1] v xt.

The consumption dependent payment p consists of a price of consumption of M(π) ≥ 1, literally

the mark-up, and a linear consumption discount (M(π)− 1)vxt. If the buyer accepts a contract he

has to pay a recurring membership fee π ≥ 0 independent of his consumption. At the same time
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he has to pay p(π, xt) depending on his consumption xt in period t such that his overall payment

at time t equals

pt = π + p(π, xt) = π +M(π)c(xt)− [(M(π)− 1] vxt . (30)

The optimal fixed fee π(v0) that is chosen by the agent at the beginning of the contracts depends

on the agent’s initial valuation v0. It will be such that

M(π(v0)) =

(
1− 1− F (v0)

f(v0)v0

)−1

.

With the general characterization of the optimal contract given by Proposition 9 we next estab-

lish under what conditions on the nature of the private information and the cost of delivering the

service c (x) the above mentioned contract features will arise as a part of an optimal contract.

5.1.1 Flat Rate Contracts

In a flat rate contract the payment pt = π is constant over time and independent of the level of

consumption chosen by the buyer. Suppose that the set of possible allocation is given by X = [0, 1],

and that the minimal valuation v equals zero. Assume that the cost of production c (x) is constant

and normalized to zero, c (x) = 0. As the buyer’s utility given by (23) increases linearly in the

level of the consumption, he will always want to consume the good at the maximal possible level

if he faces a flat rate. A direct consequence of the transfers described in (30) is the following

result characterizing an optimal mechanism with zero (marginal) cost of production: The optimal

mechanism is a flat rate where every agent who accepts the contract at time zero, makes a constant

flow payment, independent of his consumption, and consumes the maximal possible amount: xt = 1.

Now, if his current valuation vt is below the flat rate pt = π, not only is his current flow of utility

negative, but so is his expected continuation utility of the contract:

E
[∫ ∞

t

e−rs(vs − ps)dt | vt
]

=
vt − π
r

. (31)

As a consequence of condition (31) only the agent with an initial valuation v0 ≥ π will accept the

contract. All agents with an initial valuation v0 < π reject the contract and never consume the

good no matter how high the consumption utility is at times t > 0.
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5.1.2 Two-Part Tariffs

With constant cost of production, the optimal contract leads to flat rate tariffs. We next consider

the case of increasing and convex costs. We maintain the assumption that the minimal valuation v

equals zero and assume that the cost function c (x) is strictly increasing and convex for x ∈ R+.3

In particular, we allow for a constant but positive marginal cost of production. By condition (30)

a two-part tariff where the agent pays π independent of his consumption and M(π)c(x) depending

on his consumption x is a revenue-maximizing contract for the principal. It is worth emphasizing

that a simple menu of static two-part tariffs can hence maximize the expected dynamic revenue of

the principal.

We illustrate the structure of the two-part tariff with the following quadratic cost function

c(x) = x2/2 and assume that the initial valuation v0 is exponentially distributed with mean µ:

F (v0) = 1− exp(−v0

µ
),

which will allow us to explicitly compute the terms of the contract. By Proposition 9, we know that

if the agent decided on a contract (π,M(π)) then the optimal consumption of the agent at time t

is given by

{xt} = arg max
x≥0

(
x vt −M(π)

x2

2

)
=

vt
M(π)

. (32)

Hence, the agent’s expected time zero utility from the contract (π,M (π)) is

max
(xt)t∈R+

E
[∫ ∞

0

e−rt(vtxt − π −M(π)c(xt))

]
= E

[∫ ∞
0

e−rt
(

v2
t

2M(π)
− π

)]
=

v0

2M(π)(r − σ)
− π

r
. (33)

Hence, the agent chooses his optimal contract at time 0 by maximizing his expected net utility (33)

over π to select a contract (π,M(π)) based only on his time zero valuation v0. Let us denote by

π(v0) the fixed fee chosen by the agent of initial valuation v0. By Proposition 8, in the optimal

contract the mark-up M (π (v0)) computed earlier in its general form as (28) is given as a function

3As we established the revenue equivalence theorem under the assumption that the quantity x is bounded we

understand the model with unbounded quantities as the limit of optimal mechanisms when the bound on x converges

to infinity.
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of the initial valuation v0 by:

M(π(v0)) =


v0

v0−µ , if v0 ≥ µ,

∞, otherwise.

(34)

Hence every buyer who has initially a valuation v0 below the average time zero valuation µ will be

excluded and never consume the good no matter how high his future valuation is. The mark-up

decreases and converges to one, and hence the socially efficient allocation as v0 → ∞. Since the

mark-up in the incentive compatible indirect mechanism has to satisfy (34) we can compute the

membership fee π to be paid by the buyer with initial valuation v0 from the incentive compatibility

at time t = 0 based on (33) and get:

π (v0) =
rµ

2 (r − σ)

(
ln
v0

µ

)
.

We illustrate the nature of the optimal tariff in Figure 1. The left panel expresses the membership

fee π and the mark-up M (π) in the two-part tariff as a function of the initial type (blue and red

curve respectively). The right panel incentive compatible choice describes the equilibrium trade-off

between the level of the membership π and the mark-up M (π) which is given by:

M (π) =

[
1− exp

(
−2π(r − σ)

rµ

)]−1

.

It follows that a lower mark-up M (π) is purchased at the expense of higher membership fee π.

In the optimal contract, an agent with a higher initial valuation is willing to purchase the rights

to lower mark-up by means of higher membership fee. In consequence, an agent with a higher

membership fee faces less distortion with respect to his flow consumption decision.

In Figure 2 we illustrate how the intertemporal distortions induced by the optimal contract in-

fluence the consumption choices over time. The solid lines are two path realizations of the geometric

Brownian motion without drift. One path starts at an initial valuation of v0 = 2 (blue) and one

at v0 = 7 (red). It so happens that both of these paths coincide after time t = 1.75. Now the

dashed lines represent the consumption levels in the revenue-maximizing contract. Note, that even

after the valuations coincide in the sample path, the consumption levels associated with different

initial valuations differ. In particular, the optimal consumption level react with differential inten-

sity to changes in the valuations. By contrast, the consumption of the agent in the social welfare

maximizing allocation would exactly equal his valuation.
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Figure 1: The two-part tariff in the direct mechanism (left) and in the indirect mechanism (right).

The markup M(v0) is in red and the membership fee π(v0) in blue.
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Figure 2: Consumption path and valuation if the initial valuation v0 is exponentially distributed

with mean one and the valuation evolves as a geometric Brownian motion without drift.
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5.1.3 Free Minute Contract

We now consider the case in which the minimal type v of the agent is is strictly positive and that

the density at the minimal valuation is bounded away from zero, or f(v) > 1/v. In addition we

assume that the marginal cost of providing the good vanishes for small quantities, i.e. c′(0) = 0.

When the agent decides how much to consume at time t he solves the maximization problem:

max
x
{xvt − (π +M(π)c(x)− (M(π)− 1)vx)} .

This leads to the first order condition:

0 = vt −M(π)c′(x) + (M(π)− 1)v ⇔ c′(x) = v +
(vt − v)

M(π)
.

As the marginal cost of providing the good vanishes if the quantity goes to zero it follows that the

consumption of the agent is bounded from below at every point in time by c′−1(v). Hence we can

interpret the amount c′−1(v) as a quantity provided to the agent for free. This is a feature that is

common in mobile phone contracts. In such a contract the agent can consume a certain number of

minutes for free and only has to pay for the consumption exceeding this amount.

5.2 Unknown Drift

We now return to the cost structure that lead to the flat rate contract earlier, namely, the cost of

production is constant and normalized to zero and xt ∈ [0, 1]. Different from the preceding analysis

we now assume that the initial private information θ of the agent is about the drift of the geometric

Brownian motion, or µ = θ, rather than the initial value of the geometric Brownian motion v0

which we now assume to be public information. We set the lower bound on valuations v to zero. In

consequence, the valuation vt now evolves according to:

dvt = vt (θdt+ σdWt) ,

and the solution to the above differential equation is given by:

vt = φ(t, θ,Wt) = v0 exp

(
(θ − σ2

2
)t+ σWt

)
. (35)

The derivative of the type vt = φ(t, θ,Wt) with respect to θ, the generalized stochastic flow, now

equals:

φθ = φt,
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and the virtual utility is now given by:

J(t, θ, vt) = vt

(
1− 1− F (θ)

f(θ)
t

)
. (36)

Interestingly, the distortion is still formed on the basis of a multiplicative handicap, but now the

handicap factor is increasing linearly in time as expressed by the second term of the virtual utility. It

follows that in contrast to the above cases of unknown initial value, the distortion is now growing over

time. As vt is positive, it follows that the virtual valuation is strictly positive until a deterministic

time T is reached which is precisely given by the hazard rate:

L(θ) =
f(θ)

1− F (θ)
,

and thereafter the virtual utility turns negative. Thus, the allocation of the object to agent i ends

with probability one at time L(θ). The optimal contract can now be implemented by a constant

leasing payment p(θ) the agent makes at every time t ∈ [0, L(θ)].

Proposition 10 (Leasing Contract).

The revenue-maximizing mechanism allocates the object to the agent with initial shock θ if and only

if t ∈ [0, L(θ)] and requires a payment of

p(t, θ) =


r

1−e−rL(θ)

(
v0

e(θ−r)L(θ)−1
θ−r −

∫ θ
0
e(z−r)L(z)[L(z)(z−r)−1]

(z−r)2 dz
)
, if t ∈ [0, L(θ)];

0, otherwise.

To establish the above formula for the payments we calculate the expected value that the agent

with initial shock θ derives from getting the object until time L(θ). By the envelope theorem the

payment equals this value minus the integral over the marginal value of those types with a lower

initial shock.

In a recent paper, Boleslavsky and Said (2013) derive the revenue-maximizing contract in a

discrete time setting where the private information of a single agent is the uptick probability of a

multiplicative random walk. As it is well known, the geometric Brownian motion can be viewed

as the continuous time limit of the discrete time multiplicative random walk stochastic process.

Thus, it is interesting to compare their results to the implications following our analysis. In terms

of the private information of the agent, the unknown drift in the geometric Brownian motion

here represents the unknown uptick probability analyzed in Boleslavsky and Said (2013). As the
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general convergence result of the stochastic process itself would suggest, we can also establish, see

the Appendix for the details, that the continuous time limit of the virtual valuation derived in

Boleslavsky and Said (2013) is the virtual utility derived above by (36). However, in the continuous

time limit the expression for the virtual utility, see (36), becomes notably easier to express and

to interpret. The analysis in Boleslavsky and Said (2013) explicitly verifies the validity of the

incentive constraints in the case of a single agent. With the general approach taken here, we can

obtain sufficient conditions for the revenue optimal contract and associated allocations even in the

presence of many agents. In fact, the next section considers such an allocation problem, namely

the allocation of a single unit among competing bidders. This second class of allocation problems

is notably more restrictive in terms of the cost of providing the service, namely constant for a

single unit, but allow us to obtain some novel insight regarding the structure of the intertemporal

distortion with many agents.

6 Sequential Auctions and Distortions

We illustrate the impact that the structure of the private information has on the intertemporal

policies and the allocative distortion within the context of a sequential auction model. The allocation

problem is as follows. At every point in time t, the owner of a single unit of a, possibly divisible,

object wishes to allocate it among the competing bidders, i = 1, ..., n. The allocation space is given

at every instant t by xit ∈ [0, 1] and
∑n

i=1 x
i
t ≤ 1. The marginal cost of providing the object is

constant and normalized to zero. The flow utility of each agent i is given by vit · xit − pit.

We can interpret the allocation process as a process of intertemporal licensing where the current

use of the object is determined on the basis of the past and current reports of the agents. In

particular, the assignment of the object can move back and forth between the competing agents.

Alternatively, the description of the valuation could be rephrased as a description of the marginal

cost of producing a single good, and the associated allocation process is the solution to a long-term

procurement contract with competing producers. As in the static theory of optimal procurement,

the virtual utility would then be replaced by the virtual cost, but the structure of the allocation

process would remain intact.
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6.1 Arithmetic Brownian Motion

In the previous section we represented the valuation process by a geometric Brownian motion, now

we consider the arithmetic Brownian motion, thus indicating the versatility of the current approach.

The arithmetic Brownian motion vit is completely described by its initial value vi0, the drift µi and

the variance σi of the diffusion process Wt. The willingness to pay of agent i evolves according to:

dvit = µidt+ σidW i
t ,

and the willingness-to-pay of agent i, vit, is:

vit = vi0 + µit+ σiW i
t . (37)

We analyze the incentive problem when either one of the three determinants of the Brownian motion,

the initial value, the drift or the variance is unknown, whereas the remaining two are commonly

known. Surprisingly, we find that even though we consider the same stochastic process, the nature

of the private information, i.e. about which aspect of the process the agent is privately informed, has

a substantial impact on the optimal allocation. In particular, we find that the distortion is either

constant, increasing or random (and increasing in expectation) depending on the precise nature of

the private information.

Unknown Initial Value – Constant Distortion We begin with the case where the initial value

of the Brownian motion, vi0 = θi, is private information to agent i, as are all future realizations vit.

In contrast, the drift µi and the variance σi of the Brownian motion are assumed to be commonly

known. Given the representation of the Brownian motion (37), we have

vit = φi(t, θi,W i
t ) = θi + µit+ σiW i

t . (38)

The partial derivative of φi with respect to θi is given by φiθ = 1 and thus the virtual utility is given

by:

J i(t, θi, vit) = vit −
1− F i(θi)

f i(θi)
, (39)

and the distortion imposed by the revenue-maximizing mechanism is constant over time. In every

period, the object is allocated to the agent i∗t with the highest virtual utility, provided that the

valuation is positive. Thus, the allocation proceeds by finding the bidder with the highest valuation,
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after taking into account a handicap, that is determined once and for all through the report of the

initial shock.

Earlier, we gave a general description of the payments decomposed into an annualized up-front

payment π and a flow payment pt. In the present auction environment, we can give an explicit

description of the flow payments in terms of the virtual utility of the agents. The associated flow

transfer of the bidders, pit follows directly from the logic of the second price auction:

pit =

 maxj 6=i

{
vjt −

1−F j(θj)
fj(θj)

}
+ 1−F i(θi)

f i(θi)
, if i = i∗t ;

0, if i 6= i∗t .
(40)

Thus, it is only the winning bidder who incurs a flow payment. By rewriting (40), we find that

the winning bidder has to pay his valuation, but receives a discount, namely his information rent,

which is exactly equal to the difference in the virtual utility between the winning bidder and the

next highest bidder, i.e.

pi
∗

t = vi
∗

t −
(
J i
∗
(t, θi

∗
, vi
∗

t )−max
j 6=i∗

{
J j(t, θj, vjt )

})
. (41)

By construction of the transfer function, the flow net utility of the bidder is positive whenever he

is assigned the object, as

vi
∗

t ≥ vjt −
1− F j(θj)

f j(θj)
+

1− F i(θi
∗
)

f i(θi∗)
, (42)

and thus, the flow allocation proceeds as a “handicap” second price auction, where the price of

the winner is determined by the current value of the second highest bidder, as measured by the

virtual utility. The “handicap” is computed as the difference between the constant handicap of the

current winner and the current second highest bidder. The above version of the handicap auction

appeared in Eső and Szentes (2007) in a two period model of a single unit auction. Similarly, Board

(2007) develops a handicap auction in a discrete time, infinite horizon model, but one in which the

object is allocated only once – at an optimal stopping time. There the handicap is represented –

as it is here – by the constant terms, (1− F j (θj)) /f j (θj) and (1− F i (θi)) /f i (θi), but the second

highest value is computed as the continuation value of the remaining bidders, as in Bergemann and

Välimäki (2010).

Unknown Drift – Increasing Distortion We now consider the case where the initial private

information is the drift of the Brownian motion. Let vit ∈ R+ be an arithmetic Brownian motion
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with drift θi and known variance σi and known initial value, vi0:

vit = φi(t, θi,W i
t ) = vi0 + θit+ σiW i

t . (43)

The derivative of the valuation φi with respect to the initial private information θi, which is now

the drift of the Brownian motion, is given by φiθ = t. Thus the virtual utility is now:

J i(t, θi, vit) = vit −
1− F i(θi)

f i(θi)
t. (44)

The flow payment is of exactly the same form as (41), and the virtual utility function is given

by (44). The distortion is still formed on the basis of the handicap, by the inverse hazard rate

(1− F (θi)) /f (θi), but now the handicap is increasing linearly in time. In contrast to the case

of the unknown starting value, the distortion is growing deterministically over time, rather than

vanishing over time. Since vit might be growing as well, the deterministic increase in the distortion

does not allow us to conclude that the assignment of the object is terminated with probability one

at some finite time T , a conclusion that we arrived earlier in Section 5 where we considered the

geometric Brownian motion.

Unknown Variance – Random Distortion We conclude the analysis with the case of unknown

variance and the valuation vit then evolves according to:

vit = φi(t, θi,W i
t ) = vi0 + µit+ θiW i

t . (45)

Now, the initial private information θi represents the volatility of the Brownian motion. The

derivative of the valuation φi with respect to the initial private information θi now takes the form:

φiθ =
φi − vi0 − µit

θi
= W i

t

In consequence the virtual utility of agent i can be expressed as:

J i(t, θi, vit) = vit −
1− F i(θi)

f i(θi)
W i
t

= vit −
1− F i(θi)

f i(θi)

vit − vi0 − µit
θi

= vit

(
1− 1− F i(θi)

f i(θi)θi

)
+

1− F i(θi)

f i(θi)θi
(vi0 + µit). (46)
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We observe from the first line of the above virtual utility that the expected virtual utility equals

the initial value vi0 for any time zero shock θi. The variance of the Brownian motion does not lend

itself to an ordering along the first order stochastic dominance criterion, rather it is ordered by

second order stochastic dominance. Formally, in the case of unknown variance φi is not increasing

in θi and fails Assumption 2. But as those assumptions were only used to establish that the virtual

utility is increasing in θi, vit if it takes positive values, we can dispense with them here as we can

ensure monotonicity here by requiring that µi, vi0 ≤ 0.

The basic proof idea is to use the convexity of the objective function to guarantee that an increase

in variance leads to an increase in the expected (virtual) valuation. After all, if the virtual utility

turns negative, the seller does not want to assign the object to the buyer, thus the revenue is flat

and equal to zero. It therefore follows that the revenue of the seller has a convex like property. But

in contrast to the utility of the buyer, which is linear in vit, and hence strictly convex if truncated

below by zero, the virtual surplus of the seller has additional terms, as displayed by (46) which need

to be controlled to guarantee the monotonicity of the virtual utility. From the expression of the

virtual utility function we can immediately derive sufficient conditions for the monotonicity. Thus

if we assume that the initial value vi0 is negative, vi0 ≤ 0, and the arithmetic Brownian motion has

a negative drift µi ≤ 0, then we are guaranteed that the convexity argument is sufficiently strong.

Formally, let θ̂i be the solution to θ̂i − 1−F i(θ̂i)
f i(θ̂i)

= 0. As

J i(t, θi, vit) ≤ vit

(
1− 1− F i(θi)

f i(θi)θi

)
the virtual utility J i(t, θi, vit) is only positive if the valuation vit is negative, for all θi < θ̂i. But this

implies that the gross expected utility of all agents with initial shock θi < θ̂i is negative, and hence

they cannot generate a nonnegative revenue due to the ex ante participation constraint, and hence,

it can never be optimal to allocate to an agent with variance θi < θ̂i. Thus, we ignore agents with

low variance θi < θ̂i and never allocate the object to them. As 1−F i(θi)
f i(θi)

is decreasing we have that

1− 1−F i(θi)
f i(θi)θi

> 0 for all θi > θ̂ and hence J i(t, θi, vit) is increasing in vit and θi for all vit > 0 , θi > θ̂i.

Hence, by the argument of Proposition 5, there exists a payment such that truthful reporting of

valuations becomes optimal irrespective of the reported types. As the virtual utility

J i(t, θi, φi(t, θi,W i
t )) = W i

t (θ
i − 1− F i(θi)

f i(θi)
) + µit+ vi0
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is increasing in θi whenever W i
t > 0 and decreasing whenever W i

t < 0 it follows that the product

W i
tu

i(t, x? i(t, (θ̂i, θ−i), vit))

is increasing in the reported shock θ̂i. The derivative of the agents utility with respect to his initial

shock simplifies to

E
[∫ T

0

e−rt
[
W i
t u

i(t, x? i(t, (θ̂i, θ−i), vit))
]

dt

]
and thus, by the argument of Theorem 2, the virtual surplus maximizing allocation for the shocks

θi > θ̂i is incentive compatible.

The last two examples emphasize that our approach can accommodate not only private infor-

mation about the initial state of a random process, but also private information about a parameter

of the stochastic process, such as the mean or the variance of the process.

6.2 Ornstein-Uhlenbeck process

Finally we describe the implications for the revenue-maximizing allocation if the stochastic process

is given by the Ornstein-Uhlenbeck process, which is the continuous-time analogue of the discrete-

time AR(1) process. This example is closely connected to the discrete time literature. Besanko

(1985) showed that the distortions induced by the discrete-time AR(1) process vanish for privately

known initial values of the process if and only if the process is mean-reverting. Furthermore, the

AR(1) process, was the leading example in the analysis of the impulse response function in Pavan,

Segal, and Toikka (2014).

The Ornstein-Uhlenbeck process vit is completely described by its initial value vi0, the mean

reversion level µ, the mean reversion speed M ≥ 0 and the variance σ ≥ 0 of the diffusion process

Bt. The willingness to pay of agent i evolves according to the stochastic differential equation:

dvit = m(µ− vt)dt+ σdBi
t ,

where Bt is a standard Brownian motion. The Ornstein-Uhlenbeck process can be represented using

a distinct Brownian motion B̃ as:

vt = v0e
−mt + µ(1− e−mt) +

σe−mt√
2m

B̃2mt−1 . (47)
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Hence we can define the process W as a time-changed Brownian motion by

Wm
t =

e−mt√
2m

B̃2mt−1 .

Using W we can represent the valuation of the agent as

vt = v0e
−mt + µ(1− e−mt) + σWm

t .

Unknown Initial Value Consider the case where the valuation process is an Ornstein-Uhlenbeck

process and the initial valuation is private information, i.e. vi0 = θi. Given the representation (47)

it follows that
∂φi(t, θi,W i

T )

∂θi
= e−mt.

Thus, Assumption 1 and 2 are satisfied. The virtual utility J i equals

J i(t, θi, vit) = vit −
1− F i(θi)

f i(θi)
e−mt .

Hence the optimal mechanism is a handicap mechanism with a deterministic handicap that is

exponentially decreasing over time. As the Ornstein-Uhlenbeck process converges to a stationary

distribution which is independent of the starting value θi, Proposition 7 applies and the distortion

vanishes in the long run. Intuitively the initial valuation does not change the expected valuation in

the long run.

Unknown Long Run Average We can also take a parameter of the stochastic process to be the

private information of the agent, that is we can take the expected long run average of the process

to be the private information of agent i, i.e. µ = θi. Given the representation (47) it follows that

∂φit
∂θi

= 1− e−mt.

Thus, Assumption 1 and 2 are satisfied. The virtual utility J i equals

J i(t, θi, vit) = vit −
1− F i(θi)

f i(θi)
(1− e−mt) .

Hence the optimal mechanism is a handicap mechanism with a deterministic handicap that is

increasing over time. As the Ornstein-Uhlenbeck process converges in the long run to a stationary

distribution which depends on the long run average θi the distortion increases in the long run.
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Intuitively, the expected valuation converges to the long run average θi, and so does the virtual

utility, it converges to the long rune average of the virtual utility as well. In a notable recent

contribution, Skrzypacz and Toikka (2015) consider dynamic mechanisms for repeated trade under

private information. In particular they analyze the discrete time version of the mean-reverting

process in which the persistence of the stochastic process is private information, the equivalent of

the mean-reversion speed m here. They establish that the allocative distortion is increasing over

time rather than decreasing as it is when the initial state of the stochastic process constitutes the

private information.

7 Conclusion

We analyzed a class of dynamic allocation problems with private information in continuous time. In

contrast to much of the received literature in dynamic mechanism design, the private information

of each agent was not restricted to the current state of the Markov process. In particular, the

initial private information was allowed to pertain to a one-dimensional parameter of the stochastic

process such as the drift of the arithmetic or geometric Brownian motion, or the speed of the mean-

reverting process. By allowing for a richer class of private information structures, we gained a better

understanding about the nature of the distortion due the private information. In contrast to the

settings where the private information always pertains to the state of the Markov process and where

the distortions induced by the revenue-maximizing allocation are typically vanishing over time, we

have shown that the distortion can be constant, increasing or decreasing over time. The analysis

of the private information in terms of the stochastic flow, the equivalent of the impulse response

functions in continuous time, allowed us directly link the nature of the private information to the

nature of the intertemporal distortion.

A distinct advantage of the continuous and time-separable approach taken here is that we could

offer explicit solutions, in terms of the optimal allocation, the level of distortion and the transfer

payments. We highlighted this advantage in the analysis of the repeated sales environment in which

we gave complete, explicit and surprisingly simple solutions to a class of sales or licensing problems.

In particular, we showed that we can implement the dynamic optimal contract by means of an

essentially static contract, a membership contract, that displayed such common empirical features
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as flat rates, free consumption units and two-part tariffs.
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Appendix

Proof of Proposition 2. As there is no risk of confusing agents we drop the upper indices in the

proof and denote by (θ, v) the type and the type of agent i. Assume that the virtual utility is

positive J(t, θ, v) > 0. We first prove the monotonicity in v and than in θ.

Part 1: J(t, θ, v) > 0⇒ Jv(t, θ, v) ≥ 0:

Note that

J(t, θ, v) = v − 1− F (θ)

f(θ)
φiθ(t, θ, w(t, θ, v)) = v

(
1− 1− F (θ)

f(θ)

φiθ(t, θ, w(t, θ, v))

φi(t, θ, w(t, θ, v))

)
.

As φiθ > 0 it follows that J(t, θ, v) ≤ v and hence v ≥ 0. Consequently the second term needs to be

positive as well. Clearly, v 7→ v is non-decreasing. As φiθ/φ
i is decreasing in w by (4) and w(t, θ, v)

is increasing in v, so the second term is increasing in v.

Part 2: J(t, θ, v) > 0⇒ Jθ(t, θ, v) ≥ 0 :

It remains to prove that the virtual utility J(t, θ, v) = v− 1−F (θ)
f(θ)

φiθ(t, θ, w(t, θ, v)) is non-decreasing

in θ. First, note that 1−F (θ)
f(θ)

is decreasing in θ by assumption. Second, note that 0 = φiθ +φiwwθ and

hence

∂

∂θ
φiθ(t, θ, w(t, θ, v)) = φiθθ(t, θ, w(t, θ, v)) + φiθw(t, θ, w(t, θ, v))wθ(t, θ, v)

= φiθθ(t, θ, w(t, θ, v))− φiθw(t, θ, w(t, θ, v))
φiθ(t, θ, w(t, θ, v))

φiw(t, θ, w(t, θ, v))
.

Now we replace w(t, θ, v) by w and prove that the derivative is negative for any w ∈ R :

= φiθ(t, θ, w)

(
φiθθ(t, θ, w)

φiθ(t, θ, w)
− φiθw(t, θ, w)

φiw(t, θ, w)

)
= φiθ(t, θ, w)

(
∂

∂θ
log(φiθ(t, θ, w))− ∂

∂θ
log(φiw(t, θ, w)

)
= φiθ(t, θ, w)

∂

∂θ
log

(
φiθ(t, θ, w)

φiw(t, θ, w)

)
≤ 0 .

The last step follows as
φiθ(t,θ,w)

φiw(t,θ,w)
is decreasing in θ by (5), and so the logarithm is decreasing as

well.



43

Proof of Proposition 4. We have that

V (x, x̂)− p(x̂) = V (x, x̂)− V (x̂, x̂) +

∫ x̂

0

V1(z, z)dz =

∫ x

x̂

V1(z, x̂)dz +

∫ x̂

0

V1(z, z)dz

=

∫ x

x̂

(V1(z, x̂)− V1(z, z)) dz +

∫ x

0

V1(z, z)dz ≤
∫ x

0

V1(z, z)dz = V (x, x)− p(x) .

Proof of Proposition 8. We begin with the case where v = 0. Note that in this case Assumption 1

and 2 are satisfied and thus Proposition 2 yields the monotonicity of the virtual valuation J(t, v0, vt)

in v0 and vt conditional on Jt ≥ 0.

If v is greater than zero it follows from f(v) > 1/v and the monotonicity of 1−F (v0)
f(v0)v0

that for all

v0 ≥ v

1− 1− F (v0)

f(v0)v0

> 0 .

Hence, the virtual utility defined in (27) is increasing in vt and v0. The proof of Theorem 2 show

that this is sufficient for for the existence of a payment that makes it incentive compatible to report

the time zero valuation truthfully.

Proof of Proposition 10. We can explicitly calculate the time zero expected utility the agent derives

from consuming the good when she reported a shock θ̂ if her true shock equals θ

V̂ (θ, θ̂) = E

[∫ L(θ̂)

0

e−r tvtdt

]
=

∫ L(θ̂)

0

e−r tE [vt] dt =

∫ L(θ̂)

0

e−r teθ tv0dt

= v0

[
e(θ−r)t

θ − r

]t=L(θ̂)

t=0

= v0
e(θ−r)L(θ̂) − 1

θ − r
.

Thus, time zero transfers that make this allocation incentive compatible are given by

V̂ (θ, θ)−
∫ θ

0

∂V

∂θ̂
(z, z)dz = v0

e(θ−r)L(θ) − 1

θ − r
−
∫ θ

0

e(z−r)L(z) [L(z)(z − r)− 1]

(z − r)2
dz .

If payment is made as a flow transfer on the time interval [0, L(θ)] we need to adjust it by multiplying

with r(1− e−rL(θ))−1.

Relationship to Eső and Szentes (2007)

In Lemma 2 Eső and Szentes show that their Assumption 1 is equivalent to (in our notation)

φiθw(t, θ, w) ≤ 0, (A)
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and their Assumption 2 is equivalent to (in our notation)

φiθθ(t, θ, w)

φiθ(t, θ, w)
≤ φiθw(t, θ, w)

φiw(t, θ, w)
. (B)

As
∂

∂w

φiθ
φi

=
φiθwφ

i − φiθφiw
φi2

,

Assumption 1 of Eső and Szentes implies our Assumption 1 and is thus stronger. As

∂

∂θ

φiθ
φiw

=
φiθθφ

i
w − φiθφiθw
φi2w

=
φiθ
φiw

(
φiθθ
φiθ
− φiθw

φiw

)
.

Hence, Assumption 2 of our setup is exactly equivalent to Assumption 2 in Eső and Szentes.

Relationship to Boleslavsky and Said (2013)

We briefly establish the relationship between the multiplicative random walk in the discrete time

environment of Boleslavsky and Said (2013) and the geometric Brownian motion analyzed here. Let

(Xk)k∈N be a multiplicative random walk, i.e.

Xk+1 =

uXk, with probability θ,

dXk, with probability 1− θ ;

for some d < 1 < u and let the uptick probability θ ∈ (0, 1) be the private information. Boleslavsky

and Said (2013) show, see page 11, equation (7), that the virtual utility in period k equals4

vik

(
1−

∑
s≤k

1{Xs=dXs−1}
u− d
d(1− θ)

1− F i(θ)

f i(θ)

)
.

In the next step we let the period length ∆ go to zero. To do so let d ≡ d∆, u ≡ u∆ and t ≡ ∆k ∈ N.

The virtual utility at the physical time t thus equals

vit

1−
∑
s≤ t

∆

1{Xs=dXs−1}

(
(
u

d
)∆ − 1

) 1− F i(θ)

f i(θ)(1− θ)

 .

4For convenience we translated their result into our notation. We use k for the period to clearly differentiate

between periods and physical time.
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Note that
∑

s≤ t
∆

1{Xs=dXs−1} is Binomial distributed and converges to its expectation for ∆ → 0,

i.e.

lim
∆→0

∑
s≤ t

∆

1{Xs=dXs−1} = E

∑
s≤ t

∆

1{Xs=dXs−1}

 = (1− θ) t
∆
.

As lim∆→0
1
∆

(
(u
d
)∆ − 1

)
= 1 we have that the virtual utility goes to:

vit

(
1− (1− θ) t

∆

(
(
u

d
)∆ − 1

) 1− F i(θ)

f i(θ)(1− θ)

)
= vit

(
1− t 1

∆

(
(
u

d
)∆ − 1

) 1− F i(θ)

f i(θ)

)
= vit

(
1− 1− F i(θ)

f i(θ)
t

)
,

which establishes the convergence to the virtual utility derived earlier in (36).
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Eső, P., and B. Szentes (2007): “Optimal Information Disclosure in Auctions,” Review of

Economic Studies, 74, 705–731.

(2014): “Dynamic Contracting: An Irrelevance Result,” Oxford University and LSE.

Garrett, D., and A. Pavan (2012): “Managerial Turnover in a Changing World,” Journal of

Political Economy, 120(879-925).

Grubb, M., and M. Osborne (2015): “Cellular Service Demand: Biased Beliefs, Learning and

Bill Shock,” American Economic Review, forthcoming.

Kakade, S., I. Lobel, and H. Nazerzadeh (2013): “Optimal Dynamic Mechanism Design and

the Virtual Pivot Mechanism,” Operations Research, 61, 837–854.



47

Kunita, H. (1997): Stochastic Flows and Stochastic Differential Equations. Cambridge University

Press, Cambridge.

Milgrom, P., and I. Segal (2002): “Envelope Theorem for Arbitrary Choice Sets,” Economet-

rica, 70, 583–601.

Pavan, A., I. Segal, and J. Toikka (2014): “Dynamic Mechanism Design: A Myersonian

Approach,” Econometrica, 82, 601–653.

Rochet, J.-C. (1987): “A Necessary and Sufficient Condition for Rationalizability in a Quasi-

Linear Context,” Journal of Mathematical Economics, 16, 191–200.

Skrzypacz, A., and J. Toikka (2015): “Mechanisms for Repeated Trade,” American Economic

Journal: Microeconomics, forthcoming.




