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ABSTRACT OF THE DISSERTATION

Competitive and Universal Learning

by

Yi Hao

Doctor of Philosophy in Electrical Engineering (Communication Theory and Systems)

University of California San Diego, 2021

Professor Alon Orlitsky, Chair

Modern data science calls for statistical inference algorithms that are both data-efficient

and computation-efficient. We design and analyze methods that 1) outperform existing algorithms

in the high-dimensional setting; 2) are as simple as possible but efficiently computable.

One line of our work aims to bridge different fields and offer unified solutions to multiple

questions. Consider the following canonical statistical inference tasks: distribution estimation,

functional estimation, and property testing, sharing the model that provides sample access to an

unknown discrete distribution. In a recent paper in NeurIPS ’19, we showed that a single, simple,

and unified estimator – profile maximum likelihood (PML), and its near-linear time computable

variant are sample-optimal for estimating multiple distribution attributes. The result covers 1)

xv



any appropriately Lipschitz and additively separable functionals; 2) sorted distribution; 3) Rényi

entropy; 4) `2 distance to the uniform distribution, yielding an optimal tester for distributions’

closeness. This work makes PML the first unified sample- and time-optimal method for the

learning tasks mentioned above. A single algorithm with such broad applicability is universal.

Another line of our work focuses on instance-optimal learning that designs algorithms

with near-optimal guarantees for every possible data input. A flagship problem is distribution

estimation over discrete or continuous domains, where ordering and geometry play an essential

role. Going beyond worst-case guarantees, researchers designed algorithms that compete with a

genie estimator that knows the actual distribution but is reasonably restricted. To obtain state-of-

the-art algorithms for both tasks, we leveraged the simple but nontrivial idea of “data binning”. For

discrete settings, we group symbols that appear the same number of times. And for continuous

settings, we partition the real domain and separate symbols according to pre-designed local

quantiles. The respective algorithms run in near-linear-time, achieve the best-known estimation

guarantees regarding the genie estimators, and appear in ICML’19 and NeurIPS ’20. A genie-like

algorithm adaptive to almost every data sample is competitive.

We present a comprehensive understanding of universal and competitive algorithms

for multiple fundamental learning problems. Our ideas and techniques may shed light on key

challenges in modern data science and numerous applications beyond the scope of this dissertation.

xvi



Chapter 1

Introduction

The primary purpose of our research lies in designing and analyzing statistical inference

algorithms, with a focus on several challenges emerging from modern data science: dimensionality

and structure, sample and time efficiency, and algorithmic adaptiveness to data complexity.

To meet these challenges and narrow the gap between theory and practice, we strive

to propose and study methods that: 1) outperform existing algorithms in the high-dimensional

setting or data-sparse regime; 2) are as simple as possible but efficiently computable; 3) possess

near-optimal guarantees for every possible data input; 4) bridge and unify approaches in different

fields. Below, we illustrate these points through concrete results and examples and introduce

some general notation for subsequent sections along the way.

1.1 Universal Learning

Consider the following canonical statistical inference problems: distribution estimation,

functional estimation, and distribution property testing. They all share the setting that provides

access to samples from an unknown discrete distribution p. Respectively, they aim to learn

p or its probability multiset, approximate a (symmetric) functional f (p), and test whether p

equals or is far from a known distribution. Motivated by the diverse applications ranging from
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ecology to language modeling, researchers in learning, information theory, computer science have

studied these fundamental statistical questions in the high-dimensional regime during the past

two decades, and proposed numerous methods.

Wouldn’t it be nice to have a unified and straightforward approach that optimally addresses

all three problems? We asked this question after working on some specific sub-questions such as

entropy estimation. We first observed that these inference tasks share the same sufficient statistic –

sample profile, defined as the multiset of empirical counts of different symbols. Concurrently,

a paper by our group showed that for a given sample profile, the respective (profile) maximum

likelihood distribution (PML) serves as the optimal plug-in estimators for four specific functionals,

including Shannon entropy and support size. Mathematically, given a sample Xn ∼ p, the

multiplicity of a symbol x is the number of times x appearing in Xn. The sample profile, ϕ(Xn), is

the multiset of multiplicities of different symbols in Xn. And the respective PML estimate is the

distribution that maximizes the probability of observing a length-n sample with profile ϕ(Xn).

Impressed by how natural and intrinsic these arguments are, we realized that the PML

method holds the potential of being the first universal, sample- and time-optimal approach in high

dimensions for all the learning tasks mentioned above.

With the conjecture in mind, we showed that the simple PML (plug-in) estimator and

its near-linear time computable variant are sample-optimal for estimating 1) any appropriately

Lipschitz and additively separable functionals, such as Shannon entropy and `1 distance to the

uniform; 2) sorted probability distribution under `1 distance; 3) Rényi entropy of arbitrary order

α > 3/4; 4) `2 distance to the uniform distribution, yielding an optimal tester for distributions’

closeness. Moreover, one can compute the PML once and simultaneously perform all these tasks

while maintaining high confidence in the estimation and testing accuracy.

The respective research paper [HO19a], titled “the broad optimality of profile maximum

likelihood”, appeared in NeurIPS 2019 as a spotlight presentation. At the heart of the work is a

broad class of explicit estimators with optimal sample efficiency and exponentially small error
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probabilities, accompanied by a set of duality and chaining arguments.

1.2 Instance-Optimal Learning

The success of PML reveals the power of symmetry and maximum likelihood, but not

every learning problem has such elegant properties. A flagship problem is distribution estimation,

either over discrete or continuous domains, where ordering and geometry play an essential

role. Classical formulations aim to design min-max estimators. And it is well-known that the

naive empirical distribution and its add-constant variants are optimal under several performance

measures, including `1 distance and KL divergence. However, practical distributions are rarely

the worst possible and often quite simple, such as power-law and exponential, rendering the

min-max approach overly pessimistic, and its estimators, typically sub-optimal in practice.

Researchers turned to competitive or instance-optimal formulations in the past decade,

seeking algorithms that compete with a genie estimator that knows the actual distribution but

is reasonably restricted. For discrete settings, the genie estimator is assumed to be natural.

Namely, it assigns the same probability to symbols appearing the equal number of times. For

continuous distributions, the genie estimator is chosen from an expressive class such as piecewise

polynomials. The former formulation reflects the best human-designed estimator without any

prior knowledge on the distribution, while the latter intends to exploit distribution structure

assumptions at hand.

Given these formulations, one designs learning algorithms whose estimation error, for

every distribution, is at most a constant multiple of that of the best genie, plus a distribution-free

slack term that vanishes with the sample size. As the genie incurs an error that represents the limit

of estimation for each distribution instance, research works along this line have been focused on

determining the best constant factor and the lowest error slack term. Mathematically, for any p,

let OPTn(p) be the n-sample loss of the optimal genie. Then, one wants to find an estimator p̂
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whose n-sample estimation loss `n(p̂, p) is at most c ·OPTn(p)+ f (n) for every p, where c is a

constant, and f (n) is an error function that vanishes with n, typically at an O(1/
√

n) rate.

To obtain state-of-the-art algorithms for both problems, we leveraged the simple but

nontrivial idea of “data binning” that puts observed symbols into different categories. Intuitively,

a single observation’s behavior is often dominated by randomness, but that of a group of symbols

would be robust and predictable.

For discrete settings, we group symbols appearing an equal number of times. Our method

estimates the total probability mass in each group through an improved Good-Turing smoothing

scheme, then distributes the mass equally among the group’s symbols. For continuous settings,

we compete with a standard and powerful genie that approximates the underlying density with

the best degree-d piecewise polynomial(s). Our method greedily partitions the real domain into

disjoint intervals, then groups symbols within each according to pre-designed local quantiles.

Through the simple yet powerful binning idea, we created algorithms that achieve the

best-known competitive estimation guarantees. Recall from the last section that the profile of Xn

is the multiset ϕ(Xn) of the multiplicities of observed symbols. Define the dimension of a profile

ϕ as the number D(ϕ) of distinct multiplicities. Over discrete domains and under KL divergence,

our approach achieves an optimal factor of c = 1 and learns each distribution to the optimal

slack f (n) of order n−1 ·D(ϕ(Xn))≤ 2n−1/2, with high probability. Over the real domain and

under `1 distance, our method attains the best constants c among all existing estimators that are

efficiently computable for multiple d values. For example, both the log-concave and monotone

density mixtures are well approximated by piecewise linear (d = 1) curves, for which our method

achieves a factor of c = 2.25 without knowing the number of mixture components, while the best

current algorithm yields c≥ 9.

For discrete distribution learning, the method is near-linear time computable, appearing

in an ICML ’19 paper [HO19b]. We established the optimality of the respective slack error

term n−1 ·D(ϕ(Xn)) in a subsequent work [HO20b] in NeurIPS ’20. For continuous density
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estimation, our algorithm runs in polynomial time for any d, presented in a separate NeurIPS ’20

paper [HJOR20].

1.3 Data Amplification

A paradox frequently encountered in designing new learning algorithms is that we want

to approach an optimal algorithm’s performance, but have few clues for how the optimal learner

behaves, as it seems that otherwise, the problem is resolved. To get around this obstacle, we

proposed an intuitive and useful methodology, data amplification, with the idea of amplifying the

amount of data at hand for simple algorithms to boost their performance.

Consider the following generic learning formulation: given a sample Xn from an unknown

distribution p, learn some of its attributes T (p). For distribution estimation, the attribute T (p) is

the distribution itself; for real functional estimation, T (p) is a functional value f (p); for parameter

estimation, T (p) is a collection of parameters controlling the behavior of the distribution. Also,

let A be any algorithm that takes Xn to approximate T (p) by A(Xn).

The method of data amplification takes as a benchmark a natural and commonly used

estimator A , which should be relatively easy to analyze. For a large class of learning tasks, it

constructs an n-sample estimator that instance-by-instance performs as well as A would perform

with a much larger sample size A(Xna), where a > 1 is a properly chosen factor. It therefore

effectively “amplifies” the amount of data available compared to common estimation techniques.

During the past three years, we applied the data amplification method to a sequence of

fundamental learning problems and obtained the best results for most of them. A cornerstone

example is Shannon entropy estimation. The best-known and most commonly used estimator is the

empirical (plug-in) estimator that evaluates the empirical distribution’s entropy. For distributions

over a large, size-k alphabet, the expected worst-case error achieved by the n-sample empirical

estimator is of order k/n, whenever n ≥ k. In the past decade, a sequence of research works
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showed that for n≥ k/ logk, more sophisticated estimators achieve the min-max performance of

order k/(n logn), demonstrating a logarithmic improvement.

Hence, in terms of the worst-case performance, the n-sample min-max entropy estimator

is as good as the n logn-sample empirical estimator. Applying the data amplification method

with A being the empirical estimator and a = logn, we showed that this n-to-n logn phenomenon

holds for each and every discrete distribution, regardless of the potentially unknown alphabet size.

As a direct corollary, we established that in the n� k/ logk data-sparse regime, the min-max

estimation rate becomes order log(1+ k/(n logn)), revealing a surprising elbow effect.

Following the method’s general applicability, the n-to-n logn data amplification phe-

nomenon holds for a broad class of functionals beyond Shannon entropy. For example, the above

result covers any functional in the ∑x gx(px) form, where px is the probability of symbol x, and

gx is a given 1-Lipschitz real function over [0,1]. The proposed algorithms require only a sample,

run in near-linear time, and amplify the effective sample size by order of magnitude for every

distribution, with high probability.

Inspired by federated learning with decentralized data from different local sources, we

also considered a more general data amplification setting where one has sample access to multiple

distributions and wishes to understand their relationships. Numerous essential learning problems

fall into this category and can be formulated as tasks of estimating multi-distribution functionals.

For example, mixture testing asks whether one distribution is (close to) a linear combination of

the rest, and independence testing queries if one distribution is near the others’ product.

Perhaps surprisingly, nearly all existing works address cases with at most two distributions,

and little is known about how to design sample- and time-efficient algorithms for such high-

dimensional functionals. Fortunately, data amplification again shed light on the new direction.

For a given sample size and distribution, the empirical-distribution plug-in estimator pos-

sesses a simple form and smooth expectation (viewed as a function of probabilities). Leveraging

this fact, we applied a smoothing method based on Bessel functions and derived a family of
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estimators that match the empirical estimator’s performance with access to more samples. For

several essential statistical learning tasks, including the mixture and independence testing, we

obtained the first efficiently computable estimator whose sample complexity is sub-linear in the

distributions’ alphabet sizes.

Recently, we applied data amplification to a generalization of the well-known unseen

species problem, initially studied by Fisher in the early 1940s. The new method led to estimators

with optimal sample and time complexities, and recovered many notable results in prior works.

The respective paper [HL20b] is accepted to NeurIPS ’20 as a spotlight presentation.

The generic approach for learning entropy, support size, and many other single-distribution

functionals appears in NeurIPS ’18 [HOSW18] and ICML ’20 [HO20a], while paper [HO20a]

presents a stronger guarantee. The linear-time algorithm for learning the relationship among

multiple data sources appears in COLT ’20 [HL20a].

1.4 Thesis Organization

The rest of this thesis is organized as follows:

• Chapter 2 establishes the universal optimality of the profile maximum likelihood (PML)

estimator for numerous fundamental learning tasks, ranging from estimating functionals to

approximating sorted distributions to testing distribution closeness.

• Chapter 3 designs a competitive distribution estimator that outperforms the widely renowned

Good-Turing smoothing technique, both theoretically and experimentally.

• Chapter 4 derives an instance-optimal estimator for entropy and many other Lipschitz

functionals. For every possible distribution, the method amplifies the effective data size

and uses only n/ logn observations to approach the performance of the empirical plug-in

estimator corresponding to n observations.
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• Chapter 5 proposes profile entropy, a novel complexity measure unifying the concepts of

estimation, inference, and compression for sequential models. The results built on this

measure connect and complete those in preceding chapters.
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Chapter 2

The Broad Optimality of Profile Maximum

Likelihood

2.1 Introduction

A distribution p over a discrete alphabet X of size k corresponds to an element of the

standard simplex

∆X :=

{
p ∈ Rk

≥0 : ∑
x∈X

p(x) = 1

}
.

A distribution property is a mapping f : ∆X → R associating a real value with each

distribution. A distribution property f is symmetric if it is invariant under domain-symbol

permutations. A symmetric property is additive, i.e., additively separable, if it can be written

as f (p) := ∑x f (p(x)), where for simplicity we use f to denote both the property and the

corresponding real function.

Many important symmetric properties are additive. For example,

• Support size S(p) := ∑x1p(x)>0, a fundamental quantity arising in the study of vocab-

ulary size [ET76, McN73, TE87], population estimation [Goo53, ML07], and database

studies [HNSS95].
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• Support coverage Cm(p) := ∑x(1− (1− p(x))m), where m is a given parameter, the

expected number of distinct elements observed in a sample of size m, arising in biologi-

cal [Cha84, KLR99] and ecological [Cha84, CC14, CL92, CCG+12] research;

• Shannon entropy H(p) :=−∑x p(x) log p(x), the primary measure of information [CT12,

Sha48] with numerous applications to machine learning [Bre15, CL68, QKC13] and neu-

roscience [GK02, MS95];

• Distance to uniformity D(p) := ‖p− pu‖1, where pu is the uniform distribution over ∆X ,

a property being central to the field of distribution property testing [BFR+00, BFF+01,

Can17, Ron10].

Besides being additive and symmetric, these four properties have yet another attribute in

common. Under the appropriate interpretation, they are also all 1-Lipschitz. Specifically, for two

distributions p,q ∈ ∆X , let Γp,q be the collection of distributions over X ×X with marginals p

and q on the first and second factors respectively. The relative earth-mover distance [VV11b],

between p and q is

R(p,q) := inf
γ∈Γp,q

E
(X ,Y )∼γ

∣∣∣∣log
p(X)

q(Y )

∣∣∣∣ .
One can verify [VV11b, VV16] that H, D, and C̃m := Cm/m are all 1-Lipschitz on the metric

space (∆X ,R), and S̃ := S/k is 1-Lipschitz over (∆≥1/k,R), the set of distributions in ∆X whose

nonzero probabilities are at least 1/k. We will study all such Lipschitz properties in later sections.

An important symmetric non-additive property is Rényi entropy, a well-known measure

of randomness with numerous applications to unsupervised learning [JHE+03, Xu99] and image

registration [MHGM00, NHZC06]. For a distribution p ∈ ∆X and a non-negative real parameter

α 6= 1, the α-Rényi entropy [Rén61] of p is Hα(p) := (1−α)−1 log(∑x pα
x ). In particular, denoted

by H1(p) := limα→1 Hα(p), the 1-Rényi entropy is exactly Shannon entropy [Rén61].
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2.1.1 Problems of Interest

In this work, we consider three fundamental statistical learning problems concerning the

estimation and testing of distributions and their properties.

(Sorted) Distribution Estimation

A natural learning problem is to estimate an unknown distribution p ∈ ∆X from an i.i.d.

sample Xn∼ p. For any two distributions p,q∈ ∆X , let `(p,q) be the loss when we approximate p

by q. A distribution estimator p̂ : X ∗→ ∆X associates every sequence xn ∈ X ∗ with a distribution

p̂(xn). We measure the performance of an estimator by its sample complexity

n(p̂,ε,δ) := min{n : ∀p ∈ ∆X , Pr
Xn∼p

(`(p, p̂(Xn))≥ ε)≤ δ},

the smallest sample size that p̂ requires to estimate all distributions in ∆X to a desired accuracy

ε > 0, with error probability δ ∈ (0,1). The sample complexity of distribution estimation is

n(ε,δ) := min{n(p̂,ε,δ) : p̂ : X ∗→ ∆X },

the lowest sample complexity of any estimator. For simplicity, we will omit δ when δ = 1/3.

For a distribution p ∈ ∆X , we denote by {p} the multiset of its probabilities. The sorted

`1 distance between two distributions p,q ∈ ∆X is

`¡

1(p,q) := min
p′∈∆X :{p′}={p}

∥∥p′−q
∥∥

1 ,

the smallest `1 distance between q and any sorted version of p. As illustrated in Section 2.D.1, this

is essentially the 1-Wasserstein distance between uniform measures on the probability multisets

{p} and {q}. We consider both the sorted and unsorted `1 distances.
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Property Estimation

Often we would like to estimate a given property f of an unknown distribution p ∈ ∆X

based on a sample Xn ∼ p. A property estimator is a mapping f̂ : X ∗→ R. Analogously, the

sample complexity of f̂ in estimating f over a set P ⊂ ∆X is

n f ( f̂ ,P ,ε,δ) := min{n : ∀p ∈ P , Pr
Xn∼p

(| f̂ (Xn)− f (p)| ≥ ε)≤ δ},

the smallest sample size that f̂ requires to estimate f with accuracy ε and confidence 1−δ, for

all distributions in P . The sample complexity of estimating f over P is

n f (P ,ε,δ) := min{n f ( f̂ ,P ,ε,δ) : f̂ : X ∗→ R},

the lowest sample complexity of any estimator. For simplicity, we will omit P when P =

∆X , and omit δ when δ = 1/3. The standard “median trick” shows that log(1/δ) · n f (P ,ε) ≥

Ω(n f (P ,ε,δ)). By convention, an estimator f̂ is sample-optimal if n f ( f̂ ,P ,ε) = Θ(n f (P ,ε)).

Property Testing: Identity Testing

A closely related problem is distribution property testing, of which identity testing is the

most fundamental and well-studied [Can17, Gol17]. Given an error parameter ε, a distribution q,

and a sample Xn from an unknown distribution p, identity testing aims to distinguish between the

null hypothesis

H0 : p = q

and the alternative hypothesis

H1 : ‖p−q‖1 ≥ ε.

A property tester is a mapping t̂ : X ∗→{0,1}, indicating whether H0 or H1 is accepted.
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Analogous to the two formulations above, the sample complexity of t̂ is

nq(t̂,ε,δ) := min{n : ∀i ∈ {0,1} and ∀p ∈ Hi, Pr
Xn∼p

(t̂(Xn) 6= i)≤ δ},

and the sample complexity of identity testing with respect to q is

nq(ε,δ) := min{n(t̂,ε,δ) : t̂ : X ∗→{0,1}}.

Again, when δ = 1/3, we omit δ. For q = pu, the problem is also known as uniformity testing.

2.1.2 Profile Maximum Likelihood

The multiplicity of a symbol x ∈ X in a sequence xn := x1, . . . ,xn ∈ X ∗ is µx(xn) := |{ j :

x j = x,1≤ j ≤ n}|, the number of times x appears in xn. These multiplicities induce an empirical

distribution pµ(xn) that associates a probability µx(xn)/n with each symbol x ∈ X .

The prevalence of an integer i≥ 0 in xn is the number ϕi(xn) of symbols appearing i times

in xn. For known X , the value of ϕ0 can be deduced from the remaining multiplicities, hence we

define the profile of xn to be ϕ(xn) = (ϕ1(xn), . . . ,ϕn(xn)), the vector of all positive prevalences.

For example, ϕ(alfalfa) = (0,2,1,0,0,0,0). Note that the profile of xn also corresponds to the

multiset of multiplicities of distinct symbols in xn.

For a distribution p ∈ ∆X , let

p(xn) := Pr
Xn∼p

(Xn = xn)

be the probability of observing a sequence xn under i.i.d. sampling from p, and let

p(ϕ) := ∑
yn:ϕ(yn)=ϕ

p(yn)
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be the probability of observing a profile ϕ. While the sequence maximum likelihood estimator

maps a sequence to its empirical distribution, which maximizes the sequence probability p(xn),

the profile maximum likelihood (PML) estimator [OSVZ04] over a set P ⊆ ∆X maps each profile

ϕ to a distribution

pϕ := argmax
p

p(ϕ)

that maximizes the profile probability. Relaxing the optimization objective, for any β ∈ (0,1),

a β-approximate PML estimator [ADOS17] maps each profile ϕ to a distribution pβ

ϕ such that

pβ

ϕ(ϕ)≥ β · pϕ(ϕ).

Originating from the principle of maximum likelihood, PML was proved [ADJ+12a,

ADOS17, ABKS18, AGZ17, Das12, OSVZ04] to possess a number of useful attributes, such as

existence over finite discrete domains, majorization by empirical distributions, consistency for

distribution estimation under both sorted and unsorted `1 distances, and competitiveness to other

profile-based estimators.

Let ε be an error parameter and f be one of the four properties in the introduction.

Set n := n f (ε). Recently, [ADOS17] showed that for some absolute constant c′ > 0, if c <

c′ and ε ≥ n−c, then a plug-in estimator for f , using an exp(−n1−Θ(c))-approximate PML, is

sample-optimal. Motivated by this result, [CSS19b] constructed an explicit exp(−O(n2/3 log3 n))-

approximate PML (APML) whose computation time is near-linear in n. Combined, these results

provide a unified, sample-optimal, and near-linear-time computable plug-in estimator for the

four properties.
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2.2 New Results and Implications

2.2.1 New Results

Additive Property Estimation

Recall that for any property f , the expression n f (ε) denotes the smallest sample size

required by any estimator to achieve accuracy ε with confidence 2/3, for all distributions in ∆X .

Let f be an additive symmetric property that is 1-Lipschitz on (∆X ,R). Let ε > 0 and n≥ n f (ε)

be error and sampling parameters. For an absolute constant c ∈ (10−2,10−1), if ε≥ n−c,

Theorem 1. The PML plug-in estimator, when given a sample of size 4n from any distribution

p∈ ∆X , will estimate f (p) up to an error of (2+o(1))ε, with probability at least 1−exp(−4
√

n).

For a different c > 0, Theorem 1 also holds for APML, which is always near-linear-time

computable [CSS19b].

Rényi Entropy Estimation

For X of size k and any p ∈ ∆X , it is well-known that Hα(p) ∈ [0, logk]. The following

theorems characterize the performance of the PML plug-in estimator in estimating Rényi entropy.

For any distribution p ∈ ∆X , error ε ∈ (0,1), absolute constant λ ∈ (0,0.1), and sampling

parameter n, draw a sample Xn ∼ p and denote its profile by ϕ. Then for sufficiently large k,

Theorem 2. For α ∈ (3/4,1), if n = Ωα(k1/α/(ε1/α logk)),

Pr
(
|Hα(pϕ)−Hα(p)| ≥ ε

)
≤ exp(−

√
n).

Theorem 3. For non-integer α > 1, if n = Ωα(k/(ε1/α logk)),

Pr
(
|Hα(pϕ)−Hα(p)| ≥ ε

)
≤ exp(−n1−λ).
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Theorem 4. For integer α > 1, if n = Ωα(k1−1/α(ε2 log(1/ε))−(1+α)) and Hα(p)≤ (logn)/4,

Pr(|Hα(pϕ)−Hα(p)| ≥ ε)≤ 1/3.

Replacing 3/4 by 5/6, Theorem 2 also holds for APML with a better probability bound

exp(−n2/3). In addition, Theorem 3 holds for APML without any modifications.

Sorted Distribution Estimation

Let c be the absolute constant defined just before Theorem 1. For any distribution p ∈ ∆X ,

error ε ∈ (0,1), and sampling parameter n, draw a sample Xn ∼ p and denote its profile by ϕ.

Theorem 5. If n = Ω(n(ε)) = Ω
(
k/(ε2 logk)

)
and ε≥ n−c,

Pr(`¡

1(pϕ, p)≥ ε)≤ exp(−Ω(
√

n)).

For a different c> 0, Theorem 5 also holds for APML with a significantly better probability

bound exp(−n2/3).

Identity Testing

The recent works of [DK16] and [Gol16] provided a procedure reducing identity testing

to uniformity testing, while modifying the desired accuracy and alphabet size by only absolute

constant factors. Hence below we consider uniformity testing.

The uniformity tester TPML shown in Figure 2.1 is purely based on PML and satisfies

Theorem 6. If ε = Ω̃(k−1/4) and n = Ω̃(
√

k/ε2), the tester TPML(Xn) will be correct with proba-

bility at least 1− k−2. The tester also distinguishes between p = pu and ‖p− pu‖2 ≥ ε/
√

k.

The Ω̃(·) notation only hides logarithmic factors of k. The tester TPML is near-optimal as

for uniform distribution pu, [DGPP18] yields an Ω(
√

k logk/ε2) lower bound on npu(ε,k
−2).
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For space considerations, we postpone proofs and additional results to the Appendices.

The rest of the paper is organized as follows. Section 2.2.2 presents several immediate implications

of the above theorems. Section 2.3 and Section 2.4 illustrate PML’s theoretical and practical

advantages by comparing it to existing methods for a variety of learning tasks. Section 2.5

concludes the paper and outlines multiple promising future directions.

Input: parameters k,ε,and a sample Xn ∼ p with profile ϕ.

if maxxµx(Xn)≥ 3max{1,n/k} logk then return 1;

elif
∥∥pϕ− pu

∥∥
2 ≥ 3ε/(4

√
k) then return 1;

else return 0.

Figure 2.1: Uniformity tester TPML

2.2.2 Implications

Several immediate implications are in order. We say that a plug-in estimator is universally

sample-optimal for estimating symmetric properties if there exist absolute positive constants c1,c2

and c3, such that for any 1-Lipschitz property on (∆X ,R), with probability ≥ 9/10, the plug-in

estimator uses just c1 times the sample size n required by the minimax estimator to achieve c2

times its error, whenever this error is at least n−c3 .

Note that the “1-Lipschitz property” class can be replaced by other general property

classes, but not by those containing only a few specific properties, since “universal” means

“applicable to all cases”.

Theorem 1 makes PML the first plug-in estimator that is universally sample-optimal for

a broad class of distribution properties. In particular, Theorem 1 also covers the four properties

considered in [ADOS17]. To see this, as mentioned in the introduction, C̃m, H, and D are 1-

Lipschitz on (∆X ,R); as for S̃, the following result [ADOS17] relates it to C̃m for distributions in

∆≥1/k, and proves PML’s optimality.
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Lemma 1. For any ε > 0, m = k log(1/ε), and p ∈ ∆≥1/k,

|S̃(p)−C̃m(p) log(1/ε) | ≤ ε.

The theorem also applies to many other properties. As an example [VV11b], given an

integer s > 0, let fs(x) := min{x, |x−1/s|}. Then to within a factor of two, fs(p) := ∑x fs(px)

approximates the `1 distance between any distribution p and the closest uniform distribution in

∆X of support size s.

In Section 2.3.1 we compare Theorem 1 with existing results and present more of its

strong implications.

Theorem 2 and 3 imply that for all non-integer α > 3/4 (resp. α > 5/6), the PML

(resp. APML) plug-in estimator achieves a sample complexity better than the best currently

known [AOST16]. This makes both the PML and APML plug-in estimators the state-of-the-art

algorithms for estimating non-integer order Rényi entropy. See Section 2.3.2 for a review of

known results, and see Section 2.3.2 for a detailed comparison between existing methods and ours.

Theorem 4 shows that for all integer α > 1, the sample complexity of the PML plug-in

estimator has optimal k1−1/α dependence [AOST16, OS17] on the alphabet size.

Theorem 5 makes APML the first distribution estimator under sorted `1 distance that is

both near-linear-time computable and sample-optimal for a range of desired accuracy ε beyond

inverse polylogarithmic of n. In comparison, existing algorithms [ADJ+12a, HJW18, VV11a]

either run in polynomial time in the sample sizes, or are only known to achieve optimal sample

complexity for ε = Ω(1/
√

logn), which is essentially different from the applicable range of

ε≥ n−Θ(1) in Theorem 5. We provide a more detailed comparison in Section 2.3.3.

Theorem 6 provides the first PML-based uniformity tester with near-optimal sample

complexity. As stated, the tester also distinguishes between p = pu and ‖p− pu‖2 ≥ ε/
√

k.

This is a stronger guarantee since by the Cauchy-Schwarz inequality, ‖p− pu‖1 ≥ ε implies
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‖p− pu‖2 ≥ ε/
√

k.

Note that several other uniformity testers in the literature (see Section 2.3.4) also provide

the same `2 testing guarantee, since all of them are essentially counting sample collisions, i.e.,

the number of location pairs such that the sample points at those locations are equal.

2.3 Related Work and Comparisons

2.3.1 Additive Property Estimation

The study of additive property estimation dates back at least half a century [Car69, Goo53,

GT56] and has steadily grown over the years. For any additive symmetric property f and se-

quence xn, the simplest and most widely-used approach uses the empirical (plug-in) estimator

f̂ E(xn) := f (pµ(xn)) that evaluates f at the empirical distribution. While the empirical estimator

performs well in the large-sample regime, modern data science applications often concern high-

dimensional data, for which more involved methods have yielded property estimators that are

more sample-efficient. For example, for relatively large k and for f being S̃, C̃m, H, or D, recent

research [JVHW15, OSW16, VV11a, VV11b, WY16, WY19] showed that the empirical estima-

tor is optimal up to logarithmic factors, namely n f (P ,ε) = Θε(n f ( f̂ E ,P ,ε)/logn f ( f̂ E ,P ,ε)),

where P is ∆≥1/k for S̃, and is ∆X for the other properties.

Below we classify the methods for deriving the corresponding sample-optimal estimators

into two categories: plug-in and approximation, and provide a high-level description. For

simplicity of illustration, we assume that ε ∈ (0,1].

The plug-in approach essentially estimates the unknown distribution multiset, which

suffices for computing any symmetric properties. Besides the empirical and PML estimators,

[ET76] proposed a linear-programming approach that finds a multiset estimate consistent with

the sample’s profile. This approach was then adapted and analyzed by [VV11a, VV11a], yielding

plug-in estimators that achieve near-optimal sample complexities for H and S̃, and optimal sample
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complexity for D, when ε is relatively large.

The approximation approach modifies non-smooth segments of the probability function

to correct the bias of empirical estimators. A popular modification is to replace those non-smooth

segments by their low-degree polynomial approximations and then estimate the modified function.

For several properties including the above four and power sum Pα(p) := ∑x pα
x , where α is a

given parameter, this approach yields property-dependent estimators [JVHW15, OSW16, WY16,

WY19] that are sample-optimal for all ε.

More recently, [ADOS17] proved the aforementioned results on PML estimator and made

it the first unified, sample-optimal plug-in estimator for S̃, C̃m, H and D and relatively large ε.

Following these advances, [HJW18] refined the linear-programming approach and designed a

plug-in estimator that implicitly performs polynomial approximation and is sample-optimal for

H, S̃, and Pα with α < 1, when ε is relatively large.

Comparison I: Theorem 1 and Related Property-Estimation Work

In terms of the estimator’s theoretical guarantee, Theorem 1 is essentially the same

as [VV11b]. However, for each property, k, and n, [VV11b] solves a different linear program

and constructs a new estimator, which takes polynomial time. On the other hand, both the

PML estimator and its near-linear-time computable variant, once computed, can be used to

accurately estimate exponentially many properties that are 1-Lipschitz on (∆X ,R). A similar

comparison holds between the PML method and the approximation approach, while the latter is

provably sample-optimal for only a few properties. In addition, Theorem 1 shows that the PML

estimator often achieves the optimal sample complexity up to a small constant factor, which is a

desired estimator attribute shared by some, but not all approximation-based estimators [JVHW15,

OSW16, WY16, WY19].

In term of the method and proof technique, Theorem 1 is closest to [ADOS17]. On

the other hand, [ADOS17] establishes the optimality of PML for only four properties, while
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our result covers a much broader property class. In addition, both the above mentioned “small

constant factor” attribute, and the confidence boost from 2/3 to 1− exp(−4
√

n) are unique

contributions of this work. The PML plug-in approach is also close in flavor to the plug-in

estimators in [VV11a, VV11a] and their refinement in [HJW18]. On the other hand, as pointed

out previously, these plug-in estimators are provably sample-optimal for only a few properties.

More specifically, for estimating H, S̃, and C̃m, the plug-in estimators in [VV11a, VV11a] achieve

sub-optimal sample complexities with regard to the desired accuracy ε; and the estimation

guarantee in [HJW18] is provided in terms of the approximation errors of Õ(
√

n) polynomials

that are not directly related to the optimal sample complexities.

2.3.2 Rényi Entropy Estimation

Motivated by the wide applications of Rényi entropy, heuristic estimators were proposed

and studied in the physics literature following [Gra88], and asymptotically consistent estimators

were presented and analyzed in the statistical learning literature [KLS12, XE10]. For the special

case of 1-Rényi (or Shannon) entropy, the works of [VV11a, VV11b] determined the sample

complexity to be n f (ε) = Θ(k/(ε logk)).

For general α-Rényi entropy, the best-known results in [AOST16] state that for integer and

non-integer α values, the corresponding sample complexities n f (ε,δ) are Oα(k1−1/α log(1/δ)/ε2)

and Oα(kmin{1/α,1} log(1/δ)/(ε1/α logk)), respectively. The upper bounds for integer α are

achieved by an estimator that corrects the bias of the empirical plug-in estimator. To achieve the

upper bounds for non-integer α values, one needs to compute some best polynomial approxima-

tion of zα, whose degree and domain both depend on n, and construct a more involved estimator

using the approximation approach [JVHW15, WY16] mentioned in Section 2.3.1.
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Comparison II: Theorem 2 to 4 and Related Rényi-Entropy-Estimation Work

Our result shows that a single PML estimate suffices to estimate the Rényi entropy of

different orders α. Such adaptiveness to the order parameter is a significant advantage of PML

over existing methods. For example, by Theorem 3 and the union bound, one can use a single

APML or PML to accurately approximate exponentially many non-integer order Rényi entropy

values, yet still maintains an overall confidence of 1−exp(−k0.9). By comparison, the estimation

heuristic in [AOST16] requires different polynomial-based estimators for different α values. In

particular, to construct each estimator, one needs to compute some best polynomial approximation

of zα, which is not known to admit a closed-form formula for α 6∈ Z. Furthermore, even for a

single α and with a sample size
√

k times larger, such estimator is not known to achieve the same

level of confidence as PML or APML.

As for the theoretical guarantees, the sample-complexity upper bounds in both Theo-

rem 2 and 3 are better than those mentioned in the previous section. More specifically, for

any α ∈ (3/4,1) and δ≥ exp(−k−0.5), Theorem 2 shows that n f (ε,δ) = Oα(k1/α/(ε1/α logk)).

Analogously, for any non-integer α > 1 and δ≥ exp(−k−0.9), Theorem 3 shows that n f (ε,δ) =

Oα(k/(ε1/α logk)). Both bounds are better than the best currently known by a log(1/δ) factor.

2.3.3 (Sorted) Distribution Estimation

Estimating large-alphabet distributions from their samples is a fundamental statistical

learning tenet. Over the past few decades, distribution estimation has found numerous applications,

ranging from natural language modeling [CG99] to biological research [AIS+08], and has been

studied extensively. Under the classical `1 and KL losses, existing research [BS04, KOPS15]

showed that the corresponding sample complexities n(ε) are Θ(k/ε2) and Θ(k/ε), respectively.

Several recent works have investigated the analogous formulation under sorted `1 distance,

and revealed a lower sample complexity of n(ε) = Θ(k/(ε2 logk)). Specifically, under certain

conditions, [VV11a, HJW18] derived sample-optimal estimators using linear programming, and
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[ADJ+12a, Das12] showed that PML achieves a sub-optimal O(k/(ε2.1 logk)) sample complexity

for relatively large ε.

Comparison III: Theorem 5 and Related Distribution-Estimation Work

We compare our results with existing ones from three different perspectives.

Applicable parameter ranges: As shown by [HJW18], for ε� n−1/3, the simple empir-

ical estimator is already sample-optimal. Hence we consider the parammeter range ε = Ω(n−1/3).

For the results in [ADJ+12a, Das12] and [VV11a] to hold, we would need ε to be at least

Ω(1/
√

logn). On the other hand, Theorem 5 shows that PML and APML are sample-optimal for

ε larger than n−Θ(1). Here, the gap is exponentially large. The result in [HJW18] applies to the

whole range ε = Ω(n−1/3), which is larger than the applicable range of our results.

Time complexity: Both the APML and the estimator in [VV11a] are near-linear-time

computable in the sample sizes, while the estimator in [HJW18] would require polynomial time

to be computed.

Statistical confidence: The PML and APML achieve the desired accuracy with an error

probability at most exp(−Ω(
√

n)). On the contrary, the estimator in [HJW18] is known to achieve

an error probability that decreases only as O(n−3). The gap is again exponentially large. The

estimator in [VV11a] admits a better error probability bound of exp(−n0.02), which is still far

from ours.

2.3.4 Identity Testing

Initiated by the work of [GR00], identity testing is arguably one of the most important and

widely-studied problem in distribution property testing. Over the past two decades, a sequence

of works [ADK15, BFF+01, DK16, DKN15, DGPP18, GR00, Pan08, VV17] have addressed

the sample complexity of this problem and proposed testers with a variety of guarantees. In
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particular, applying a coincidence-based tester, [Pan08] determined the sample complexity of

uniformity testing up to constant factors; utilizing a variant of the Pearson chi-squared statistic,

[VV17] resolved the general identity testing problem. For an overview of related results, we

refer interested readers to [Can17] and [Gol17]. The contribution of this work is mainly showing

that PML, is a unified sample-optimal approach for several related problems, and as shown in

Theorem 6, also provides a near-optimal tester for this important testing problem.

2.4 Experiments and Distribution Estimation

A number of different approaches have been taken to computing the PML and its ap-

proximations. Among the existing works, [ADM+10] considered exact algebraic computation,

[OSS+04, OSVZ04] designed an EM algorithm with MCMC acceleration, [Von12, Von14]

proposed a Bethe approximation heuristic, [AGZ17] introduced a sieved PML estimator and

a stochastic approximation of the associated EM algorithm, and [PJW17] derived a dynamic

programming approach. Notably and recently, for a sample size n, [CSS19b] constructed an

explicit exp(−O(n2/3 log3 n))-approximate PML whose computation time is near-linear in n.

In Section 2.A we introduce a variant of the MCMC-EM algorithm in [Pan12] and

demonstrate the exceptional efficacy of PML on a variety of learning tasks through experiments.

In particular, we derive a new distribution estimator for (unsorted) `1 distance by combining

the proposed PML computation algorithm with the denoising procedure in [VV16] and a novel

missing mass estimator. As shown below, the proposed distribution estimator has the state-of-the-

art performance.

In Figures 2.2, samples are generated according to six distributions of the same support

size k = 5,000. Details about these distributions can be found in Section 2.A.2. The sample size

n (horizontal axis) ranges from 10,000 to 100,000, and the vertical axis reflects the (unsorted)

`1 distance between the true distribution and the estimates, averaged over 30 independent tri-
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Figure 2.2: Distribution estimation under `1 distance

als. We compare our estimator with three different ones: the improved Good-Turing estimator

in [OS15, HO19b], which is provably instance-by-instance near-optimal [OS15], the empirical

estimator, serving as a baseline, and the empirical estimator with a larger n logn sample size. Note

that logn is roughly 11. As shown in [OS15], the improved Good-Turing estimator substantially

outperformed other estimators such as the Laplace (add-1) estimator, the Braess-Sauer estima-

tor [BS04], and the Krichevsky-Trofimov estimator [KT81]. Hence we do not include those

estimators here. The following plots showed that our proposed estimator further outperformed

the improved Good-Turing estimator in all the experiments.

2.5 Conclusion and Future Directions

We studied three fundamental problems in statistical learning: distribution estimation,

property estimation, and property testing. We established the profile maximum likelihood (PML)

as the first universally sample-optimal approach for several important learning tasks: distribution

estimation under the sorted `1 distance, additive property estimation, Rényi entropy estimation,
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and identity testing. Several future directions are promising. We believe that neither the factor of

4 in the sample size in Theorem 1, nor the lower bounds on ε in Theorem 1, 5, and 6 are necessary.

In other words, the PML approach is universally sample-optimal for these tasks in all ranges of

parameters. It is also of interest to extend the PML’s optimality to estimating symmetric properties

not covered by Theorem 1 to 4, such as generalized distance to uniformity [BC17, HOSW18],

the `1 distance between the unknown distribution and the closest uniform distribution over an

arbitrary subset of X .

Another important direction is competitive (or instance-optimal) property estimation.

It should be noted that all the referenced works including this paper are of the worst-case

nature, namely, designing estimators with near-optimal worst-case performances. On the contrary,

practical and natural distributions often possess simple structures, and are rarely the worst possible.

To address this discrepancy, the recent work [HO20a, HOSW18] took a competitive approach

and constructed estimators whose performances are adaptive to the simplicity of the underlying

distributions. Specifically, for any property in a broad class and every distribution in ∆X , the

expected error of the proposed estimator with a sample of size n/ logn is at most that of the

empirical estimator with a sample of size n, pluses a distribution-free vanishing function of n.

These results not only cover S̃, C̃m, H, and D, for which the logn-factor is optimal up to constants,

but also apply to any non-symmetric additive property ∑x fx(px) where fx is 1-Lipschitz for

all x ∈ X , such as the `1-distance to a given distribution. It would be of interest to study the

optimality of the PML approach under this formulation as well. Readers interested in estimating

non-symmetric properties may also find the paper [HO19c] helpful.
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2.A Numerical Experiments

A number of different approaches have been taken to computing the PML and its ap-

proximations. Among the existing works, [ADM+10] considered exact algebraic computation,

[OSS+04, OSVZ04] designed an EM algorithm with MCMC acceleration, [Von12, Von14]

proposed a Bethe approximation heuristic, [AGZ17] introduced a sieved PML estimator and

a stochastic approximation of the associated EM algorithm, and [PJW17] derived a dynamic

programming approach. Notably and recently, for a sample size n, [CSS19b] constructed an

explicit exp(−O(n2/3 log3 n))-approximate PML whose computation time is near-linear in n.

In this section, we first introduce a variant of the MCMC-EM algorithm in [OSS+04,

OSVZ04, Pan12] and then demonstrate the efficacy of PML on a variety of learning tasks through

experiments.

2.A.1 MCMC-EM Algorithm Variant

To approximate PML, the work [OSS+04] proposed an MCMC-EM algorithm, where

MCMC and EM stand for Markov chain Monte Carlo and expectation maximization, respectively.

A sketch of the original MCMC-EM algorithm can be found in [OSS+04], and a detailed

description is available in Chapter 6 of [Pan12]. The EM part uses a simple iteration procedure to

update the distribution estimates. One can show [Pan12] that it is equivalent to the conventional

generalized gradient ascent method. The MCMC part exploits local properties of the update

process and accelerates the EM computation. Below we present a variant of this algorithm that

often runs faster and is more accurate.

Step 1: We separate the large and small multiplicities. Define a threshold parameter

τ := 1.5log2 n and suppress Xn in pµ(Xn) for simplicity. For symbols x with µx(Xn)≥ τ, estimate
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their probabilities by pµ(x) = µx(Xn)/n and remove them from the sample. Denote the collection

of removed symbols by R and the remaining sample sequence by X r. In the subsequent steps, we

apply the EM-MCMC algorithm to X r.

The idea is simple: By the Chernoff-type bound for binomial random variables, with

high probability, the empirical frequency µx(Xn)/n of a large-multiplicity symbol x is very close

to its mean value p(x). Hence for large-multiplicity symbols we can simply use the empirical

estimates and focus on estimating the probabilities of small-multiplicity symbols. This is similar

to initializing the EM algorithm by the empirical distribution and fixing the large probability

estimates through the iterations. However, the approach described here is more efficient.

Step 2: We determine a proper alphabet size for the output distribution of the EM

algorithm. If the true value k is provided, then we simply use k−|R|. Otherwise, we apply the

following support size estimator [ADOS17] to X r:

Ŝ(X r) := ∑
j≥1

(1− (−(t−1)) j Pr(L≥ j)) ·ϕ j(X r),

where t = logr and L is an independent binomial random variable with support size d1
2 log2(

rt2

t−1)e

and success probability (t +1)−1. For any ε larger than an absolute constant, estimator Ŝ

achieves the optimal sample complexity n f (∆≥1/k,ε) in estimating support size, up to constant

factors [ADOS17].

Step 3: Apply the MCMC-EM algorithm in [OSS+04, Pan12] to ϕ(X r) with the output

alphabet size determined in the previous step, and denote the resulting distribution estimate by

pr. (In the experiments, we perform the EM iteration for 30 times.) Intuitively, this estimate

corresponds to the conditional distribution given that the next observation is a symbol with small

probability.

Step 4: Let Tµ := ∑x∈R pµ(x) be the total probability of the large-multiplicity symbols.

Treat pr as a vector and let p′r := (1−Tr) · pr. For every symbol x ∈ R, append pµ(x) to p′r, and
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return the resulting vector. Note that this vector corresponds to a valid discrete distribution.

Algorithm Code

The implementation of our algorithm is available at https://github.com/ucsdyi/PML.

For computational efficiency, the program code for the original MCMC-EM algorithm

in [OSS+04, Pan12] is written in C++, with a file name “MCMCEM.cpp”. The program code

for other functions is written in Python3. Note that to execute the program, one should have a

64-bit Windows/Linux system with Python3 installed (64-bit version). In addition, we also use

functions provided by “NumPy” and “SciPy”, while the latter is not crucial and can be removed

by modifying the code slightly.

Our implementation also makes use of “ctypes”, a built-in foreign language library for

Python that allows us to call C++ functions directly. Note that before calling C++ functions in

Python, we need to compile the corresponding C++ source files into DLLs or shared libraries. We

have compiled and included two such files, one is “MCMCEM.so”, the other is “MCMCEM.dll”.

Functions in “MCMCEM.cpp” can be used separately. To compute a PML estimate,

simply call the function “int PML(int MAXSZ=10000, int maximum EM=20, int EM n=100)”,

where the first parameter specifies an upper bound on the support size of the output distribution,

the second provides the maximum number of EM iteration, and the last corresponds to the sample

size n. This function takes as input a local file called “proFile”, which contains the profile

vector ϕ(Xn) in the format of “1 4 7 10 . . . ”. Specifically, the file “proFile” consists of only

space-separated non-negative integers, and the i-th integer represents the value of ϕi(Xn). The

output is a vector of length at most MAXSZ, and is stored in another local file called “PMLFile”.

Each line of “PMLFile” contains a non-negative number, corresponding to a probability estimate.

To perform experiments and save the plots to the directory containing the code, simply

execute the file “Main.py”. To avoid further complication, the code compares our estimator with

only three other estimators: empirical, empirical with a larger n logn sample size, and improved
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Good-Turing [OS15] (for distribution estimation under unsorted `1 distance). The implementation

covers all the distributions described in the next section. One can test any of these distributions

by including it in “D List” of the “main()” function. The implementation also covers a variety

of learning tasks, such as distribution estimation under sorted and unsorted `1 distances, and

property estimation for Shannon entropy, α-Rényi entropy, support coverage, and support size.

Finally, functions related to distribution and sample generation are available in file “Sam-

ples.py”. Others including the property computation functions, the sorted and unsorted `1 distance

functions, and the previously-described support size estimator, are in file “Functions.py”.

2.A.2 Experiment Distributions

In the following experiments, samples are generated according to six distributions with

the same support size k = 5,000.

Three of them have finite support by definition: uniform distribution, two-step distribution

with half the symbols having probability 2/(5k) and the other half have probability 8/(5k), and

a three-step distribution with one third the symbols having probability 3/(13k), another third

having probability 9/(13k), and the remaining having probability 27/(13k).

The other three distributions are over {i ∈ Z : i ≥ 1}, and are truncated at i = 5,000

and re-normalized: geometric distribution with parameter g = 1/k satisfying pi ∝ (1−g)i, Zipf

distribution with parameter 1/2 satisfying pi ∝ i−1/2, and log-series distribution with parameter

γ = 2/k satisfying pi ∝ (1− γ)i/i.

2.A.3 Experiment Results and Details

The proposed PML approximation algorithm has exceptional performance.
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Distribution Estimation under `1 Distance

We derive a new distribution estimator under the (unsorted) `1 distance by combining the

proposed PML computation algorithm with the denoising procedure in [VV16] and a missing

mass estimator [OS15].

First we describe this distribution estimator, which takes a sample Xn from some unknown

distribution p. An optional input is X , the underlying alphabet.

Step 1: Apply the PML computation algorithm described in Section 2.A.1 to Xn, and

denote the returned vector, consisting of non-negative real numbers that sum to 1, by V .

Step 2: Employ the following variant of the denoising procedure in [VV16]. Arbitrarily

remove a total probability mass of log−2 n from entries of the vector V without making any entry

negative. Then for each j ≤ log2 n, augment the vector by n/( j log4 n) entries of probability j/n.

For every multiplicity µ≥ 1 appearing in the sample, assign to all symbols appearing µ times the

following probability value. If µ≥ log2 n, simply assign to each of these symbols the empirical

estimate µ/n; otherwise, temporally associate a weight of bin(n,v,µ) :=
(n

µ

)
(1− v)n−µvµ with

each entry v in V , and assign to each of these symbols the current weighted median of V .

Step 3: If X is available, we can estimate the total probability mass M(Xn) :=

∑x∈X 1x 6∈Xn of the unseen symbols (a.k.a., the missing mass) by the following estimator:

M̂(Xn) :=
ϕ1(Xn)

∑ j( jϕ j(Xn)1 j>ϕ j+1 +( j+1)ϕ j+1(Xn)1 j≤ϕ j+1)
.

We equally distribute this probability mass estimate among symbols that do not appear in the

sample. As shown below, this distribution estimator achieves the state-of-the-art performance.

In Figures 2.3, the horizontal axis reflects the sample size n, ranging from 10,000 to

100,000, and the vertical axis reflects the (unsorted) `1 distance between the true distribution

and the estimates, averaged over 30 independent trials. We compare our estimator with three

others: the improved Good-Turing estimator [OS15, HO19b], the empirical estimator, serving as
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a baseline, and the empirical estimator with a larger n logn sample size. Note that logn is roughly

11. As shown in [OS15], the improved Good-Turing estimator is provably instance-by-instance

near-optimal and substantially outperforms other estimators such as the Laplace (add-1) estimator,

the Braess-Sauer estimator [BS04], and the Krichevsky-Trofimov estimator [KT81]. Hence we

do not include those estimators below.

As the following plots show, our proposed estimator outperformed the improved Good-

Turing estimator in all experiments.

Figure 2.3: Distribution estimation under `1 distance

Distribution Estimation under Sorted `1 Distance

In Figure 2.4, the sample size n ranges from 2,000 to 20,000, and the vertical axis

reflects the sorted `1 distance between the true distribution and the estimates, averaged over 30

independent trials. We compare our estimator with that proposed by [VV11a] that utilizes linear

programming, with the empirical estimator, and with the empirical estimator with a larger n logn

sample size.
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We do not include the estimator in [HJW18] since there is no implementation available,

and as pointed out by the recent work of [VKVK19] (page 7), the approach in [HJW18] “is quite

unwieldy. It involves significant parameter tuning and special treatment for the edge cases.” and

“Some techniques . . . are quite crude and likely lose large constant factors both in theory and in

practice.”

As shown in Figure 2.4, with the exception of uniform distribution, where the estimator

in [VV11a] (VV-LP) is the best and PML is the closest second, the PML estimator outperforms

VV-LP for all other tested distributions. As the underlying distribution becomes more skewed,

the improvement of PML over VV-LP grows. For the log-series distribution, the performance of

VV-LP is even worse than the empirical estimator. Additionally, the plots also demonstrate that

PML has a more stable performance than VV-LP.

Figure 2.4: Distribution estimation under sorted `1 distance
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Shannon Entropy Estimation under Absolute Error

In Figure 2.5, the sample size n ranges from 1,000 to 1,000,000, and the vertical axis

reflects the absolute difference between the true entropy values and the estimates, averaged

over 30 independent trials. We compare our estimator with two state-of-the-art estimators, WY

in [WY16], and jiao2015minimax in [JVHW15], as well as the empirical estimator, and the

empirical estimator with a larger n logn sample size. Additional entropy estimators such as

the Miller-Mallow estimator [Car69], the best upper bound (BUB) estimator [Pan03], and the

Valiant-Valiant estimator [VV11a] were compared in [WY16, JVHW15] and found to perform

similarly to or worse than the two estimators that we compared with, therefore we do not include

them here. Also, considering [VV11a], page 50 in [Yan16] notes that “the performance of linear

programming estimator starts to deteriorate when the sample size is very large.”

Note that the alphabet size k is a crucial input to WY, but is not required by either

jiao2015minimax or our PML algorithm. In the experiments, we provide WY with the true value

of k = 5,000.

As shown in the plots, our estimator performs as well as these state-of-the-art estimators.

α-Rényi Entropy Estimation under Absolute Error

For a distribution p ∈ ∆X , recall that the α-power sum of p is Pα(p) = ∑x p(x)α, implying

Hα(p) = (1−α)−1 log(Pα(p)). To establish the sample-complexity upper bounds mentioned in

Section 2.3.2 for non-integer α values, [AOST16] first estimate the Pα(p) using the α-power-sum

estimator proposed in [JVHW15], and then substitute the estimate into the previous equation.

The authors of [JVHW15] have implemented this two-step Rényi entropy estimation algorithm.

In the experiments, we take a sample of size n, ranging from 10,000 to 100,000, and compare our

estimator with this implementation, referred to as jiao2015minimax, the empirical estimator, and

the empirical estimator with a larger n logn sample size. Note that logn ranges from 9.2 to 11.5.

According to the results in [AOST16], the sample complexities for estimating α-Rényi entropy
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Figure 2.5: Shannon entropy estimation under absolute error

are quite different for α < 1 and α > 1, hence we consider two cases: α = 0.5 and α = 1.5.

As shown in Figure 2.6 and 2.7, our estimator clearly outperformed the one proposed

by [AOST16, JVHW15].

We further note that for small sample sizes and several distributions, the estimator

in [AOST16, JVHW15] performs significantly worse than ours. Also, for large sample sizes,

the estimators in [AOST16, JVHW15] degenerates to the simple empirical plug-in estimator. In

comparison, our proposed estimator tracks the performance of the empirical estimator with a

larger n logn sample size for nearly all the tested distributions.

2.B Lipschitz-Property Estimation

2.B.1 Proof Outline of Theorem 1

The proof proceeds as follows. First, fixing n, X , and a symmetric additive property f

that is 1-Lipschitz on (∆X ,R), we consider a related linear program defined in [Val12], and lower
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Figure 2.6: 0.5-Rényi entropy estimation under absolute error

bound the worst-case error of any estimators using the linear program’s objective value, say v.

Second, following the construction in [Val12], we find an explicit estimator f̂ ? that is linear, i.e.,

can be expressed as a linear combination of ϕi’s, and show optimality by upper bounding its

worst-case error in terms of v. Third, we study the concentration of a general linear estimator,

and through the McDiarmid’s inequality [McD89], relate the tail probability of its estimate to

the estimator’s sensitivity to the input changes. Fourth, we bound the sensitivity of f̂ ? by the

maximum difference between its consecutive coefficients, and further bound this difference by a

function of n, showing that the estimate induced by f̂ ? highly concentrates around its expectation.

Finally, we invoke the result in [ADOS17] that the PML-plug-in estimator is competitive to all

profile-based estimators whose estimates are highly concentrated, concluding that PML shares

the optimality of f̂ ?, thereby establishing Theorem 1.
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Figure 2.7: 1.5-Rényi entropy estimation under absolute error

2.B.2 Technical Details

Let f be a symmetric additive property that is 1-Lipschitz on (∆X ,R). Without loss of

generality, we assume that f (p) = 0 if p(x) = 1 for some x ∈ X .

Lower bound First, fixing n, X , and f , we lower bound the worst-case error of any

estimators.

Let u ∈ (0,1/2) be a small absolute constant. If there is an estimator f̂ that, when

given a length-n sample from any distribution p ∈ ∆X , will estimate f (p) up to an error of ε

with probability at least 1/2+u. Then for any two distributions p1, p2 ∈ ∆X satisfying | f (p1)−

f (p2)|> ε, we can use f̂ to distinguish Xn∼ p1 from Xn∼ p2, and will be correct with probability

at least 1/2+u.

On the other hand, for any parameter c1 ∈ (1/100,1/25] and c2 = 1/2+ 6c1, consider

the corresponding linear program defined in Linear Program 6.7 in [Val12], and denote by v the

objective value of any of its solutions. Then, Proposition 6.8 in [Val12] implies that we can find

two distributions p1, p2 ∈ ∆X such that | f (p1)− f (p2)|> v · (1−o(1))−O(n−c1 logn), and no
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algorithm can use Poi(n) sample points to distinguish these two distributions with probability at

least 1/2+u.

The previous reasoning yields that v < (1+o(1))ε+O(n−c1 logn). By construction, v is

a function of X ,n, and f , and essentially serves as a lower bound for ε.

Upper Bound Second, fixing n, X , and f , we construct an explicit estimator based on

the previously mentioned linear program, and show optimality by upper bounding its worst-case

error in terms of v, the linear program’s objective value.

A property estimator f̂ is linear if there exist real coefficients {`i}i≥1 such that the identity

f̂ (xn) = ∑i≥1 `i ·ϕi(xn) holds for all xn. The following lemma (Proposition 6.10 in [Val12])

bounds the worst-case error of a linear estimator when its coefficients satisfy certain conditions.

Lemma 2. Given any positive integer m, and real coefficients {βi}i≥0, define ε(y) := f (y)/y−

e−my
∑i≥0 βi · (my)i/i!. Let β?

i := βi−1 · i/m,∀i≥ 1, and β?
0 := 0. If for some a′,b′,c′ > 0,

1. |ε(y)| ≤ a′+b′/y,

2. |β?
j −β?

` | ≤ c′
√

j/m for any j and ` such that | j− `| ≤
√

j logm,

then given a sample Xm from any p ∈ DX , the estimator defined by ∑i≥1 β?
i ·ϕi will estimate f (p)

with an accuracy of a′+b′ · k+ c′ · logm and a failure probability at most o(1/poly(m)).

Following the construction in [Val12] (page 124), let z := (z0,z1, . . .) be the vector of

coefficients induced by any solution of the dual program of the previously mentioned linear

program. For our purpose, the way in which these coefficients are derived is largely irrelevant.

One can show that |z`| ≤ v ·nc2,∀`≥ 0. Let tn := 2n−c1 logn and α ∈ (0,1), and define

βi := (1− e−tnαi) f
(
(i+1)α

n

)
n

(i+1)α
+

i

∑
`=0

z`(1− tn)`α`(1−α)i−`
(

i
`

)
.

for any i≤ n, and βi := βn for i > n. The next lemma shows that we can find proper parameters

a,b, and c to apply Lemma 2 to the above construction. Specifically,
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Lemma 3. For any α ∈ [1/100,1) and some a′′,b′′ ≥ 0 such that a′′+b′′k ≤ v, if v≤ log2 n and

c1,c2 satisfy αc2 +(3/2−α)c1 ≤ 1/4, the two conditions in Lemma 2 hold for the above con-

struction with m = n/α, a′ = a′′+O(n−c1/2 log2 n), b′ = b′′(1+O(tn)), and c′ = O(n−1/4 log3 n).

Furthermore, for any i≥ 0, we have |βi| ≤ O(nαc2+(1−α)c1 log3 n).

This lemma differs from the results established in the proof of Proposition 6.19 in [Val12]

only in the applicable range of α, where the latter assumes that α ∈ [1/2,1). For completeness,

we will present a proof of Lemma 3 in Appendix 2.F.

By Lemma 2 and 3, if v ≤ log2 n, given a sample Xn/α from any p ∈ ∆X , the linear

estimator ∑i≥1 β?
i · ϕi will estimate f (p) with an accuracy of a′ + b′k + c′ log(n/α) = a′′ +

O(n−c1/2 log2 n)+b′′k(1+O(tn))+O(n−1/4 log4 n)≤ v(1+O(tn))+O(n−c1/2 log2 n) and a fail-

ure probability at most o(1/poly(n)). Recall that for fixed X ,n, and f , the value of v is a constant,

thus can be computed without samples. Furthermore according to the last claim in Proposi-

tion 6.19 in [Val12], for v > log2 n, the estimator that always returns 0 has an error of at most

(1+o(1))v. Hence with high probability, the estimator f̂ ? := ∑i≥1(β
?
i ·1v≤log2 n) ·ϕi will estimate

f (p) up to an error of v(1+o(1))+O(tn logn), for any possible values of v.

Concentration of linear estimators Third, we slightly diverge from the previous

discussion and study the concentration of general linear estimators.

The sensitivity of a property estimator f̂ : X ∗→ R for a given input size n is

sn( f̂ ) := max{ f (xn)− f (yn) : xn and yn differ in one element} ,

the maximum change in its value when the input sequence is modified at exactly one location.

For any p ∈ ∆X and Xn ∼ p, the following corollary of the McDiarmid’s inequality [McD89]

relates the two-side tail probability of f̂ (Xn) to sn( f̂ ).

Lemma 4. For all t ≥ 0, we have Pr
(
| f̂ (Xn)−E[ f̂ (Xn)]| ≥ t

)
≤ 2exp(−2t2 · (

√
nsn( f̂ ))−2).

Define `0 := 0. The next lemma bounds the sensitivity of a linear estimator f̂ := ∑i≥1 `i ·
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ϕi in terms of maxi≥1 |`i− `i−1|, the maximum absolute difference between its consecutive

coefficients.

Lemma 5. For any n and linear estimator f̂ := ∑i≥1 `i ·ϕi, we have sn( f̂ )≤ 2maxi≥1 |`i− `i−1|.

Proof. Let xn and yn be two arbitrary sequences over X that differ in one element. Let i be the

index where xi 6= yi. Then by definition, the following multiplicity equalities hold: µxi(x
n) =

µxi(y
n)+1, µyi(y

n) = µyi(x
n)+1, and µx(xn) = µx(yn) for x∈X satisfying x 6= xi,yi. For simplicity

of notation, let µ0 := µxi(x
n), µ1 := µyi(y

n), and for any i≥ 1, let f̂i := `i−1 ·ϕi−1 + `i ·ϕi.

The first multiplicity equality implies ϕµ0(x
n) = ϕµ0(y

n)+1 and ϕµ0−1(xn) = ϕµ0−1(yn)−

1. Therefore, we have f̂µ0(x
n)− f̂µ0(y

n) = `µ0 − `µ0−1. Similarly, the second equality implies

f̂µ1(x
n)− f̂µ1(y

n) =−`µ1 + `µ1−1. The third equality combines these two results and yields

f̂ (xn)− f̂ (yn) = `µ0− `µ0−1 +(−`µ1 + `µ1−1).

Applying the triangle inequality to the right-hand side completes the proof.

By these lemmas, we have the following result for the concentration of linear estimators.

Corollary 1. For any t ≥ 0, p ∈ ∆X , and f̂ := ∑i≥1 `i ·ϕi, if Xn ∼ p, then

Pr
(
| f̂ (Xn)−E[ f̂ (Xn)]| ≥ t

)
≤ 2min

i≥1
exp(−t2 · (

√
2n(`i− `i−1))

−2).

Sensitivity bound Fourth, we bound the sensitivity of f̂ ? = ∑i≥1(β
?
i ·1v≤log2 n) ·ϕi. By

Lemma 5, it suffices to consider the absolute difference between consecutive β?
i ’s. We assume

v≤ log2 n and α ∈ [1/100,1), and analyze two cases below, depending on whether i is greater

than 400nc1 or not. By Lemma 3, for i≤ 400nc1 , we have |βi| ≤ O(nαc2+(1−α)c1 log3 n). Define

β−1 := 0. Then,

|β?
i+1−β

?
i | ≤

∣∣∣∣400nc1 +1
n/α

βi

∣∣∣∣+ ∣∣∣∣400nc1

n/α
βi−1

∣∣∣∣≤ O
(

nαc2+(2−α)c1−1 log3 n
)
.
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For i > 400nc1 , we only need to consider i < n since β?
i+1 = β?

i for all i≥ n. Then,

|β?
i+1−β

?
i |

(a)
≤

∣∣∣∣∣ i

∑
`=0

z`(1− tn)`α`(1−α)i−`
(

i
`

)
(i+1)α

n

∣∣∣∣∣
+

∣∣∣∣∣i−1

∑
`=0

z`(1− tn)`α`(1−α)i−1−`
(

i−1
`

)
iα
n

∣∣∣∣∣
+

∣∣∣∣ f ((i+1)α
n

)
− f

(
iα
n

)∣∣∣∣+ ∣∣∣∣e−tnαi f
(
(i+1)α

n

)∣∣∣∣+ ∣∣∣∣e−tnα(i−1) f
(

iα
n

)∣∣∣∣
(b)
≤(nc2 log2 n)

∣∣∣∣∣ i

∑
`=0

(1− tn)`α`(1−α)i−`
(

i
`

)∣∣∣∣∣
+(nc2 log2 n)

∣∣∣∣∣i−1

∑
`=0

(1− tn)`α`(1−α)i−1−`
(

i−1
`

)∣∣∣∣∣
+

∣∣∣∣ f ((i+1)α
n

)
− f

(
iα
n

)∣∣∣∣+ ∣∣∣∣e−tnαi f
(
(i+1)α

n

)∣∣∣∣+ ∣∣∣∣e−tnα(i−1) f
(

iα
n

)∣∣∣∣
(c)
≤(nc2 log2 n)(1− tnα)i−1(2− tnα)+

∣∣∣∣ f ((i+1)α
n

)
− f

(
iα
n

)∣∣∣∣+2e−tnα(i−1)−1

(d)
≤2(nc2 log2 n)

(
1− logn

50nc1

)400nc1

+

∣∣∣∣ f ((i+1)α
n

)
− f

(
iα
n

)∣∣∣∣+2n−2/e

(e)
=2(nc2 log2 n)

(1− logn
50nc1

) 50nc1
logn

8logn

+

∣∣∣∣ f ((i+1)α
n

)
− f

(
iα
n

)∣∣∣∣+2n−2/e

( f )
≤2n−2 +

∣∣∣∣ f ((i+1)α
n

)
− f

(
iα
n

)∣∣∣∣ ,
where (a) follows from the triangle inequality; (b) follows from i≤ n, v≤ log2 n, and |z`| ≤ v ·nc2

for all `≥ 0; (c) follows from the binomial theorem and | f (x)| ≤ x| logx| ≤ 1/e for x ∈ (0,1]; (d)

follows from α≥ 1/100, i > 400nc1 , and tn = 2n−c1 logn; (e) follows from simple algebra; and

(f) follows from c2 = 1/2+6c1 < 1 and (1−1/x)x ≤ e−1 for x > 1.
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It remains to analyze the second term on the right-hand side.

RHS2 :=
∣∣∣∣ f ((i+1)α

n

)
− f

(
iα
n

)∣∣∣∣
(a)
=

(i+1)α
n

∣∣∣∣ f ((i+1)α
n

)
n

(i+1)α
− f

(
iα
n

)
n

(i+1)α

∣∣∣∣
(b)
=

(i+1)α
n

∣∣∣∣ f ((i+1)α
n

)
n

(i+1)α
− f

(
iα
n

)
n
iα

+ f
(

iα
n

)
n

i(i+1)α

∣∣∣∣
(c)
≤ (i+1)α

n

∣∣∣∣log
i+1

i

∣∣∣∣+ (i+1)α
n

∣∣∣∣ iαn
(

log
(

iα
n

))
n

i(i+1)α

∣∣∣∣
(d)
≤ (i+1)α

n
1
i
+O

(
logn

n

)
(e)
≤ O

(
logn

n

)
,

where (a), (b) and (e) follows from simple algebra; (c) follows from | f (x)/x− f (y)/y| ≤

| log(x/y)| for all x,y ∈ (0,1]; (d) follows from log(1+ x) ≤ x for x ≥ 0 and x| logx| ≤ 1/e

for x ∈ (0,1].

Consolidating the above inequalities and applying Lemma 5, we get the sensitivity bound

sn( f ?)≤ O
(

nαc2+(2−α)c1−1 log3 n
)
.

Competitiveness of PML A property estimator f̂ is profile-based if there exists a

mapping ĝ such that f̂ (xn)= ĝ(ϕ(xn)) for all xn ∈X ∗. The following lemma [ADJ+12a, ADOS17,

Das12] states that the PML estimator is competitive to other profile-based estimators.

Lemma 6. For any positive real numbers ε and δ, additive symmetric property f , and profile-

based estimator f̂ , the PML-plug-in estimator f (pϕ) satisfies

n f ( f (pϕ),2ε,δ · exp(3
√

n))≤ n f ( f̂ ,ε,δ).

For any β-approximate PML, a similar result holds with δ ·exp(3
√

n) replaced by δ ·exp(3
√

n)/β.

The factor exp(3
√

n) directly comes from the well-known result of [HR18] on integer
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partitions, since there is a bijective mapping from profiles of size n to partitions of integer n.

Final analysis Finally, we combine the above results and establish Theorem 1.

Denote by τ(n) the previous upper bound on sn( f ?). Let p be a distribution in ∆X and

Xn ∼ p. Let γ be an absolute constant in (0,1/4). Then by Lemma 4,

Pr
(
| f̂ ?(Xn)−E[ f̂ ?(Xn)]| ≥ 2n1−γ

τ(n)
)
≤ 2exp(−8n1−2γ).

Let ε > 0 be an error parameter. Assume there exists an estimator f̂ that, when given a length-αn

sample from any distribution p′ ∈ ∆X , estimates f (p′) up to an absolute error ε with prob-

ability at least 2/3. Then according to the results in the upper- and lower-bound sections,

with probability at most o(1/poly(n)), the estimate f̂ ?(Xn) will differ from f (p) by more

than v(1+o(1))+O(n−c1/2 log2 n)≤ ε(1+o(1))+O(n−c1/2 log2 n). In addition, by the equal-

ity ∑i≥1 i ·ϕi(Xn) = n and Lemma 3, we surely have | f̂ ?(Xn)| ≤ |∑i≥1(i/m)βi−1 ·ϕi(Xn)| ≤

maxi≥0 |βi| ≤ O(nαc2+(1−α)c1 log3 n). Multiplying this bound by o(1/poly(n)) yields a quantity

that is negligible comparing to O(n−c1/2 log2 n). Therefore, the absolute bias |E[ f̂ ?(Xn)]− f (p)|

is at most ε(1+ o(1))+O(n−c1/2 log2 n). The triangle inequality combines this with the tail

bound above:

Pr
(
| f̂ (Xn)− f (p)| ≥ ε(1+o(1))+O(n−c1/2 log2 n)+2n1−γ

τ(n)
)
≤ 2exp

(
−8n1−2γ

)
.

Let α = 1/4. For PML and APML estimators, set (γ,c1) to be (1/4,1/31) and (0.166,1/91), re-

spectively. Combined, the last inequality and Lemma 6 imply Theorem 1. There is a simple

trade-off between α and c1 induced by our proof technique. Specifically, if we increase the value

of c1 to achieve a better lower bound on ε, the value of α may need to be reduced accordingly,

which enlarges the sample complexity gap between our estimators and the optimal one. For

example, reducing α to 1/12 and 1/22, we can improve c1 to 1/25 and 1/20, respectively, for

both PML and APML.
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2.C α-Rényi Entropy Estimation

For any p ∈ ∆X and non-negative α 6= 1, the α-Rényi entropy [Rén61] of p is

Hα(p) :=
1

1−α
logPα(p) =

1
1−α

log
(

∑
x

p(x)α

)
.

For X of finite size k and any p ∈ ∆X , it is well-known that Hα(p) ∈ [0, logk].

2.C.1 Proof of Theorem 2: α ∈ (3/4,1)

For α∈ (3/4,1), the following theorem characterizes the performance of the PML-plug-in

estimator. For any distribution p ∈ ∆X , error parameter ε ∈ (0,1), and sampling parameter n,

draw a sample Xn ∼ p and denote its profile by ϕ. Then for sufficiently large k,

Theorem 2. For an α ∈ (3/4,1), if n = Ωα(k1/α/(ε1/α logk)),

Pr
(
|Hα(pϕ)−Hα(p)| ≥ ε

)
≤ exp(−

√
n).

We establish both this theorem and an analogous result for APML in the remaining section.

Let n be a sampling parameter and p ∈ ∆X be an unknown distribution. For some α-dependent

positive constants cα,1 and cα,2 to be determined later, let τ := cα,1 logn and d := cα,2 logn

be threshold and degree parameters, respectively. Let N,N′ be independent Poisson random

variables with mean n. Consider Poisson sampling with two samples drawn from p, first of size

N and the second N′. Suppressing the sample representations, for each x ∈ X , we denote by µx

and µ′x the multiplicities of symbol x in the first and second samples, respectively. Denote by

q(z) := ∑
d
m=0 amzm be the degree-d min-max polynomial approximation of za over [0,1]. We

consider the following variant of the polynomial-based estimator proposed in [AOST16].

P̂α := ∑
x

(
d

∑
m=0

am(2τ)α−mµm
x

nα

)
1µx≤4τ ·1µ′x≤τ +∑

x

(µx

n

)α

1µ′x>τ.
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The smaller the value of µ′x is, the smaller we expect the value of p(x) to be. In view of this, we

denote the first and second components of P̂α by P̂(s)
α and P̂(`)

α , and refer to them as small- and

large-probability estimators, respectively. Note that our estimator differs from that in [AOST16]

only by the additional 1µx≤4τ term, which for sufficiently large cα,1, only modifies E[P̂(s)
α ] by at

most n−2α.

Note that µ′ naturally induces a partition over X . For symbols x with µx ≤ 4τ, we denote

P(s)
a,µ′(p) := ∑

x:µx≤4τ

p(x)α,

the small-probability power sum. Analogously, for symbols x with µx > 4τ, we denote by

P(`)
a,µ′(p) := ∑

x:µx>4τ

p(x)α

the large-probability power sum. These are random properties with non-trivial variances and are

hard to be analyzed. To address this, we apply an “expectation trick” and denote by P(s)
a (p) :=

E[P(s)
a,µ′(p)] and P(`)

a (p) := E[P(`)
a,µ′(p)] their expected values, both of which are additive symmetric

properties.

Let ε be a given error parameter and n = Ωα(k1/α/(ε1/α logk)) be a sampling parameter.

First we consider the small probability estimator. By the results in [AOST16], for sufficiently

large cα,1, the bias of P̂(s)
α in estimating P(s)

α (p) satisfies

|E[P̂(s)
α ]−P(s)

α (p)| ≤ Oα(1) ·Pα(p)
(

k
n logn

)α

+n−α ≤ εPα(p),

where we have used n−α = Oα(εk−1(logk)α)≤ εPα(p). To show concentration, we bound the

sensitivity of estimator P̂(s)
α . For m≥ 0, we can bound the coefficients of q(x) as follows.

|am|= Oα((
√

2+1)d) = Oα(ncα,2).
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Therefore by definition, changing one point in the sample changes the value of P̂(s)
α by at

most

2

(
d

∑
m=0

|am|(2τ)α−m(4τ)m

nα

)
≤

d

∑
m=0

|am|(2τ)α2m+1

nα
= Oα

(
n2cα,2−α(logn)α

)
.

Let λ ∈ (0,1/4) be an arbitrary absolute constant. For sufficiently small cα,2, the right-hand side

is at most Oα

(
nλ−α

)
. The McDiarmid’s inequality together with the concentration of Poisson

random variables implies that for all ε≥ 0,

Pr
(
|P̂(s)

α −E[P̂(s)
α ]| ≥ εPα(p)

)
≤ 2exp(−Ωα(ε

2P2
α(p)n2α−1−2λ)).

Note that n = Ωα(k1/α/(ε1/α logk)) and Pα(p) ≥ 1, which follows from the fact that zα is a

concave function over [0,1] for α ∈ (0,1). Hence we obtain

Pr
(
|P̂(s)

α −E[P̂(s)
α ]| ≥ εPα(p)

)
≤ 3exp

(
−Ωα

(
ε

2n2α−1−2λ

))
.

For α > 3/4, we can set λ = (4α−3)/8. Direct calculation shows that for sufficiently large k,

the right-hand side is no more than exp(−8
√

n). Analogously, we can show that for α > 5/6, the

probability bound can be improved to exp(−Θ(n2/3)).

Second, we consider the large probability estimator. To begin with, we set n = Θα(k1/3).

By the results in [AOST16], for sufficiently large cα,1, the bias of P̂(`)
α in estimating P(`)

α (p)

satisfies

|E[P̂(`)
α ]−P(`)

α (p)| ≤ Oα

(
Pα(p)

τ

)
+

1
nα

,

which, for sufficiently large k, is at most εPα(p). Under the same conditions, the variance of P̂(`)
α

is at most

Var(P̂(`)
α )≤ Oα

(
∑
x

p(x)2α

τ

)
+

1
n2α
≤ (εPα(p))2

3
.
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Then, the Chebyshev’s inequality yields

Pr
(
|E[P̂(`)

α ]− P̂(`)
α | ≥ εPα(p)

)
≤ 1

3
.

The triangle inequality combines this tail bound with the above bias bound and implies

Pr
(
|P(`)

α (p)− P̂(`)
α | ≥ 2εPα(p)

)
≤ 1

3
.

Therefore, utilizing the median trick and α < 1, we can construct another estimator P̂(`,1)
α that

takes a sample of size n = Ωα(k1/α/(ε1/α logk)), and satisfies

Pr
(
|P(`)

α (p)− P̂(`,1)
α | ≥ 2εPα(p)

)
≤ 2exp(−Ωα(n/k1/3)))≤ 2exp(−Θ(n2/3)).

Recall that Pα(p) = P(s)
α (p)+P(`)

α (p). By the union bound and the triangle inequality, under

Poisson sampling with parameter n = Θα(k1/α/(ε1/α logk)),

Pr
(
|Pα(p)− (P̂(s)

α + P̂(`,1)
α )| ≥ 4εPα(p)

)
≤ exp(−8

√
n).

Since both N and N′ are Poisson random variables with mean n, we must have N +N′ ∼ Poi(2n),

implying that Pr(N +N′ = 2n) = e−2n(2n)2n/(2n)!. A variant of the well-known Stirling’s

formula states that m!≥ emm+1/2e−m for all positive integers m. We obtain Pr(N +N′ = 2n)≥

e−2n(2n)2n · (e(2n)2n+1/2e−2n)−1 ≥ 1/(e
√

2n) > 1/(4n). Hence, under fixed sampling with a

sample size of 2n, the estimator P̂(1)
α := (P̂(s)

α + P̂(`,1)
α ) satisfies

Pr
(
|Pα(p)− P̂(1)

α | ≥ 4εPα(p)
)
≤ 4nexp(−8

√
n).

Replacing n with n/2 and ε with ε/4, the sufficiency of profiles [AOST16] implies the existence
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of a profile-based estimator P̂?
α such that for any p ∈ ∆X ,

Pr
Xn∼p

(
|Pα(p)− P̂?

α(X
n)| ≥ εPα(p)

)
≤ 2nexp(−4

√
2n)< exp(−4

√
n).

Let δ denote the quantity on the right-hand side. For any xn with profile ϕ satisfying both p(ϕ)> δ,

we must have |P̂?
α(x

n)−Pα(p)| ≤ εPα(p). By definition, we also have pϕ(ϕ) ≥ p(ϕ) > δ and

hence |P̂?
α(x

n)−Pα(pϕ)| ≤ εPα(pϕ). For any ε ∈ (0,1/2), simple algebra combines the two

property inequalities and yields

|Pα(p)−Pα(pϕ)| ≤ 2εPα(p).

On the other hand, for a sample Xn ∼ p with profile ϕ′, the probability that we have p(ϕ′)≤ δ is

at most δ times the cardinality of the set Φn := {ϕ(xn) : xn ∈ X n}. The latter quantity corresponds

to the number of integer partitions of n, which, by the well-known result of [HR18], is at most

exp(3
√

n). Hence, the probability that p(ϕ′)≤ δ is upper bounded by exp(−
√

n). To conclude,

we have shown that

Pr
(
|Pα(p)−Pα(pϕ)| ≥ 2εPα(p)

)
≤ exp(−

√
n).

In terms of Rényi entropy values, applying the inequality ez−1≥ 1− e−z ≥ z/2 for all z≥ 0, we

establish that for α > 3/4 and n = Ωα(k/(ε1/α logk)),

Pr
(
|Hα(p)−Hα(pϕ)| ≥ ε

)
= Pr

(
Pα(pϕ)e−(α−1)ε ≤ Pα(p)≤ Pα(pϕ)e(α−1)ε

)
≤ exp(−

√
n).

2.C.2 Proof of Theorem 3: Non-Integer α > 1

The proof of the following theorem is essentially the same as that shown in the previous

section. However, for completeness, we still include a full-length proof.
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For any distribution p ∈ ∆X , error parameter ε ∈ (0,1), absolute constant λ ∈ (0,0.1), and

sampling parameter n, draw a sample Xn ∼ p and denote its profile by ϕ. Then for sufficiently

large integer k,

Theorem 3. For a non-integer α > 1, if n = Ωα(k/(ε1/α logk)),

Pr
(
|Hα(pϕ)−Hα(p)| ≥ ε

)
≤ exp(−n1−λ).

We establish this theorem in the remaining section. Let n be a sampling parameter and

p ∈ ∆X be an unknown distribution. For some α-dependent positive constants cα,1 and cα,2 to

be determined later, let τ := cα,1 logn and d := cα,2 logn be threshold and degree parameters,

respectively. Let N,N′ be independent Poisson random variables with mean n. Consider Poisson

sampling with two samples drawn from p, first of size N and the second N′. Suppressing the

sample representations, for each x ∈ X , we denote by µx and µ′x the multiplicities of symbol

x in the first and second samples, respectively. Denote by q(z) := ∑
d
m=0 amzm be the degree-d

min-max polynomial approximation of za over [0,1]. We consider the following variant of the

estimator proposed in [AOST16].

P̂α := ∑
x

(
d

∑
m=0

am(2τ)α−mµm
x

nα

)
1µx≤4τ ·1µ′x≤τ +∑

x

(µx

n

)α

1µ′x>τ.

The smaller the value of µ′x is, the smaller we expect the value of p(x) to be. In view of this, we

denote the first and second components of P̂α by P̂(s)
α and P̂(`)

α , and refer to them as small- and

large-probability estimators, respectively. Note that our estimator differs from that in [AOST16]

only by the additional 1µy≤4τ term, which for sufficiently large cα,1, only modifies E[P̂(s)
α ] by at

most n−2α.

Note that µ′ naturally induces a partition over X . For symbols x with µx ≤ 4τ, we denote
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by

P(s)
a,µ′(p) := ∑

x:µx≤4τ

p(x)α

the small-probability power sum. Analogously, for symbols x with µx > 4τ, we denote by

P(`)
a,µ′(p) := ∑

x:µx>4τ

p(x)α

the large-probability power sum. These are random properties with non-trivial variances and are

hard to be analyzed. To address this, we apply an “expectation trick” and denote by P(s)
a (p) :=

E[P(s)
a,µ′(p)] and P(`)

a (p) := E[P(`)
a,µ′(p)] their expected values, both of which are additive symmetric

properties.

Let ε be a given error parameter and n = Ωα(k/(ε1/α logk)) be a sampling parameter.

First we consider the small probability estimator. By the results in [AOST16], for sufficiently

large cα,1, the bias of P̂(s)
α in estimating P(s)

α (p) satisfies

|E[P̂(s)
α ]−P(s)

α (p)| ≤ Oα(1) ·Pα(p)
(

k
n logn

)α

+n−α ≤ εPα(p),

where we have used n−α = Oα(εk−α(logk)α)≤ εPα(p). To show concentration, we bound the

sensitivity of estimator P̂(s)
α . For m≥ 0, we can bound the coefficients of q(x) as follows.

|am| ≤ Oα((
√

2+1)d) = Oα(ncα,2).

Therefore by definition, changing one point in the sample changes the value of P̂(s)
α by at

most

2

(
d

∑
m=0

|am|(2τ)α−m(4τ)m

nα

)
≤

d

∑
m=0

|am|(2τ)α2m+1

nα
≤ Oα

(
n2cα,2−α(logn)α

)
.

Let λ ∈ (0,1/4) be an arbitrary absolute constant. For sufficiently small cα,2, the right-hand side
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is at most Oα

(
nλ−α

)
. The McDiarmid’s inequality together with the concentration of Poisson

random variables implies that for all ε≥ 0,

Pr
(
|P̂(s)

α −E[P̂(s)
α ]| ≥ εPα(p)

)
≤ 2exp(−Ωα(ε

2P2
α(p)n2α−1−2λ)).

Note that n = Ωα(k/(ε1/α logk)) and Pα(p)≥ k1−α. Hence we obtain

Pr
(
|P̂(s)

α −E[P̂(s)
α ]| ≥ εPα(p)

)
≤ 3exp

(
−Ωα(ε

2k2−2αn2α−1−2λ)
)
.

By simple algebra, for sufficiently large k, the right-hand side is at most exp(−n1−3λ).

Second, we consider the large probability estimator. To begin with, we set n = Θα(kλ). By

the results in [AOST16], for sufficiently large cα,1, the bias of P̂(`)
α in estimating P(`)

α (p) satisfies

|E[P̂(`)
α ]−P(`)

α (p)| ≤ Oα

(
Pα(p)

τ

)
+

1
n4α

,

which, for sufficiently large k, is at most εPα(p). Under the same conditions, the variance of P̂(`)
α

is at most

Var(P̂(`)
α )≤ Oα

(
∑
x

p(x)2α

τ

)
+

1
n8α
≤ (εPα(p))2

3
.

Then, the Chebyshev’s inequality yields

Pr
(
|E[P̂(`)

α ]− P̂(`)
α | ≥ εPα(p)

)
≤ 1

3
.

The triangle inequality combines this tail bound with the above bias bound and implies

Pr
(
|P(`)

α (p)− P̂(`)
α | ≥ 2εPα(p)

)
≤ 1

3
.

Therefore, utilizing the median trick, we can construct another estimator P̂(`,1)
α that takes a sample
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of size n = Ωα(k/(ε1/α logk)), and for sufficiently large k, satisfies

Pr
(
|P(`)

α (p)− P̂(`,1)
α | ≥ 2εPα(p)

)
≤ 2exp(−Ωα(n/kλ))≤ exp(−n1−2λ).

Recall that Pα(p) = P(s)
α (p)+P(`)

α (p). By the union bound and the triangle inequality, under

Poisson sampling with parameter n = Ωα(k/(ε1/α logk)),

Pr
(
|Pα(p)− (P̂(s)

α + P̂(`,1)
α )| ≥ 4εPα(p)

)
≤ exp(−n1−3λ).

Since both N and N′ are Poisson random variables with mean n, we must have N +N′ ∼ Poi(2n),

implying that Pr(N +N′ = 2n) = e−2n(2n)2n/(2n)!. A variant of the well-known Stirling’s

formula states that m!≥ emm+1/2e−m for all positive integers m. We obtain Pr(N +N′ = 2n)≥

e−2n(2n)2n · (e(2n)2n+1/2e−2n)−1 ≥ 1/(e
√

2n) > 1/(4n). Hence, under fixed sampling with a

sample size of 2n, the estimator P̂(1)
α := (P̂(s)

α + P̂(`,1)
α ) satisfies

Pr
(
|Pα(p)− P̂(1)

α | ≥ 4εPα(p)
)
≤ 4nexp(−n1−3λ).

Replacing ε with ε/4 and λ with λ/5, the sufficiency of profiles implies the existence of a

profile-based estimator P̂?
α such that for sufficiently large k and any p ∈ ∆X ,

Pr
Xn∼p

(
|Pα(p)− P̂?

α(X
n)| ≥ εPα(p)

)
≤ 4nexp(−n1−3λ/5)< exp(−n1−4λ/5).

Let δ denote the quantity on the right-hand side. For any xn with profile ϕ satisfying both p(ϕ)> δ,

we must have |P̂?
α(x

n)−Pα(p)| ≤ εPα(p). By definition, we also have pϕ(ϕ) ≥ p(ϕ) > δ and

hence |P̂?
α(x

n)−Pα(pϕ)| ≤ εPα(pϕ). For any ε ∈ (0,1/2), simple algebra combines the two

property inequalities and yields

|Pα(p)−Pα(pϕ)| ≤ 2εPα(p).
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On the other hand, for a sample Xn ∼ p with profile ϕ′, the probability that we have p(ϕ′)≤ δ is

at most δ times the cardinality of the set Φn := {ϕ(xn) : xn ∈ X n}. The latter quantity corresponds

to the number of integer partitions of n, which, by the well-known result of [HR18], is at most

exp(3
√

n). Hence, the probability that p(ϕ′)≤ δ is upper bounded by exp(−n1−λ). To conclude,

we have shown that

Pr
(
|Pα(p)−Pα(pϕ)| ≥ 2εPα(p)

)
≤ exp(−n1−λ).

In terms of Rényi entropy values, applying the inequality ez−1≥ 1− e−z ≥ z/2 for all z≥ 0, we

establish that for n = Ωα(k/(ε1/α logk)),

Pr
(
|Hα(p)−Hα(pϕ)| ≥ ε

)
= Pr

(
Pα(pϕ)e−(α−1)ε ≤ Pα(p)≤ Pα(pϕ)e(α−1)ε

)
≤ exp(−n1−λ).

2.C.3 Proof of Theorem 4: Integer α > 1

For an integer α > 1, the following theorem characterizes the performance of the PML-

plug-in estimator. For any p ∈ ∆X , ε ∈ (0,1), and a sample Xn ∼ p with profile ϕ,

Theorem 4. If n = Ωα(k1−1/α(ε2| logε|)−(1+α)) and Hα(p)≤ (logn)/4,

Pr(|Hα(pϕ)−Hα(p)| ≥ ε)≤ 1/3.

Due to the lower bounds in [AOST16], for all possible values of α, the sample complexity

of the PML plug-in estimator has the optimal dependency in k. The remaining section is devoted

to proving the above theorem. Note that estimating the Rényi entropy Hα(p) to an additive error

is equivalent to estimating the power sum Pα(p) to a corresponding multiplicative error. Given

53



this fact, we consider the estimator P̂α in [AOST16] that maps each sequence xn ∈ X ∗ to

P̂α(xn) := ∑
x

µx(xn)α

nα
,

where for any real number z, the expression zα denotes the falling factorial of z to the power

α. For a sample Xn ∼ p, we have E[P̂α(Xn)] = Pα(p). The following lemma [OS17, AOST16]

states that P̂α(Xn) often estimates Pα(p) to a small multiplicative error when n is large.

Lemma 7. Under the above conditions, for any ε,n > 0,

Pr
(
|P̂α(Xn)−Pα(p)| ≥ εPα(p)

)
= Oα(ε

−2n−1(Pα(p))−1/α).

For sufficiently large n=Ωα(k(α−1)/α), this inequality together with Pα(p)≤ k1−α implies

that

Pr
(
|P̂α(Xn)−Pα(p)| ≥ 1

2
·Pα(p)

)
≤ 1

4
.

The following corollary is a consequence of the above lemma, the sufficiency of profiles,

and the standard median trick.

Corollary 2. Under the above conditions, there is an estimator P̂?
α such that for any ε,n > 0,

Pr
(
|P̂?

α(X
n)−Pα(p)| ≥ εPα(p)

)
≤ 2exp

(
−Ωα(ε

2n(Pα(p))1/α)
)
.

In addition, the estimator P̂?
α is profile-based.

For simplicity, suppress Xn in pµ(Xn). Since the profile probability p(ϕ) is invariant to

symbol permutation, for our purpose, we can assume that pµ(y)≤ pµ(z) iff pϕ(x)≤ pϕ(y), for

all x,y ∈ X . Under this assumption, the following lemma [OSVZ11, AGZ17] relates pϕ to pµ.
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Lemma 8. For a distribution p and sample Xn ∼ p with profile ϕ,

Pr
(

max
x
|pϕ(x)− pµ(x)|>

2logn
n1/4

)
= O

(
1
n

)
.

Consider ε ∈ (0,1/2) and xn satisfying |P̂?
α(x

n)−Pα(p)| ≤ εPα(p). If we further have

Pα(p)≥ 2(n1/4(4logn)−1)1−α and maxy |pϕ(y)− pµ(y)| ≤ 2(logn)n−1/4, then,

Pα(p)
2

(a)
≤ P̂α(xn)

(b)
≤ Pα(pµ)

(c)
≤ 21+αPα(pϕ),

where (a) follows from the above assumptions; (b) follows from AB ≤ AB for any A,B≥ 0; and

(c) follows from the reasoning below.

• Let S denote the the collection of symbols x such that pµ(x) ≤ 4(logn)n−1/4. Then a

convexity argument yields ∑x∈S
(

pµ(x)
)α ≤ (n1/4(4logn)−1)1−α.

• Using (a), (b), and Pα(p) ≥ 4(n1/4(4logn)−1)1−α, we immediately obtain Pα(pµ) ≥

2(n1/4(4logn)−1)1−α and thus 2∑x∈S
(

pµ(x)
)α ≤ Pα(pµ)≤ 2∑x 6∈S

(
pµ(x)

)α.

• For any symbol x 6∈ S, we have pµ(x)> 4(logn)n−1/4. This together with the assumption

that maxx |pϕ(x)− pµ(x)| ≤ 2(logn)n−1/4 implies pµ(x)≤ 2pϕ(x).

• Therefore, the inequality ∑x 6∈S
(

pµ(x)
)α ≤ 2α

∑x 6∈S(pϕ(x))α ≤ 2αPα(pϕ) holds.

• Consequently, we establish Pα(pµ(x))≤ 2∑x 6∈S
(

pµ(x)
)α ≤ 21+αPα(pϕ).

By the inequality Pα(p)/2≤ 21+αPα(pϕ) and Corollary 2, if |P̂?
α(x

n)−Pα(pϕ)| ≥ εPα(pϕ),

pϕ(ϕ)≤ 2exp
(
−Ωα(ε

2n(Pα(pϕ))
1/α)

)
≤ 2exp

(
−Ωα(ε

2n(Pα(p))1/α)
)
.

Let δp denote the quantity on the right-hand side. If we further have p(ϕ) > δp, then by

definition, pϕ(ϕ) ≥ p(ϕ) > δp. Hence for any xn with profile ϕ satisfying both p(ϕ) > δp
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and |P̂?
α(x

n)−Pα(p)| ≤ εPα(p), we must have |P̂?
α(x

n)−Pα(pϕ)| ≤ εPα(pϕ). Simple algebra

combines the last two inequalities and yields

|Pα(p)−Pα(pϕ)| ≤ 4εPα(p).

On the other hand, for a sample Xn ∼ p with profile ϕ′, the probability that we have both

p(ϕ′)≤ δp and |P̂?
α(X

n)−Pα(p)| ≤ εPα(p) is at most δp times the cardinality of the set Φn
α,ε(p) :=

{ϕ(xn) : xn ∈ X n and |P̂?
α(x

n)−Pα(p)| ≤ εPα(p)}. Below we complete this argument by finding

a tight upper bound on |Φn
α,ε(p)| in terms of its parameters.

For any sequence xn such that ϕ(xn) ∈ Φn
α,ε(p), let Nϕ(xn) denote the number of preva-

lences ϕ j(xn) that are non-zero. Then by definition, we obtain

Nϕ(xn)

∑
j=0

jα

nα
≤∑

j

jα

nα
·ϕ j(xn) = P̂?

α(x
n)≤ 3

2
Pα(p).

Using the standard falling-factorial identity (( j+1)1+α− j1+α)/(1+α) = jα, we can further

simplify the expression on the left-hand side:

Nϕ(xn)

∑
j=0

jα

nα
=

(Nϕ(xn)+1)1+α

(1+α)nα
.

This together with the inequality above yields Nϕ(xn)≤ T n
α (p) := (3(1+α)nα ·Pα(p)/2)1/(1+α).

Further note that each prevalence in ϕ(xn) = (ϕ1(xn), . . . ,ϕn(xn)) can only take values in dnc :=

{0,1, . . . ,n}. Therefore, |Φn
α,ε(p)| is at most the number of T n

α (p)-sparse vectors over dncn, which

admits the following upper bound

(
n

T n
α (p)

)
|dnc|T

n
α (p) ≤ (n+1)2T n

α (p).
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Therefore, for δp · |Φn
α,ε(p)| to be small, it suffices to have

Ωα(ε
2n(Pα(p))1/α)� 2T n

α (p) log(n+1) = 2(3(1+α)nα ·Pα(p)/2)1/(1+α) log(n+1),

which in turn simplifies to

ε
2n1/(1+α)(Pα(p))1/(α(1+α))�Θα(logn).

Following this and Pα(p)≥ 4(n1/4(4logn)−1)1−α, we obtain the following lower bound on n.

n�Θα((ε
2| logε|)−(1+α)(Pα(p))−1/α).

In this case, the probability bound δp · |Φn
α,ε(p)| is no larger than 1/6.

Finally, let C denote the collection of sequences xn with profile ϕ that do not sat-

isfy |P̂?
α(x

n)−Pα(p)| ≤ εPα(p) or maxx |pϕ(x)− µx(xn)/n| ≤ 2(logn)n−1/4. By Corollary 2,

Lemma 8, and the union bound,

Pr
Xn∼p

(Xn ∈C)≤ 2exp
(
−Ωα(ε

2n(Pα(p))1/α)
)
+O

(
1
n

)
.

For n satisfying the lower-bound inequality above, the right-hand side is again no larger than 1/6.

This completes the proof of the theorem.

2.D Sorted Distribution Estimation

2.D.1 Sorted `1 Distance and Wasserstein Duality

For convenience, we first restate the theorem.
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Theorem 5. If n = Ω(n(ε)) = Ω
(
k/(ε2 logk)

)
and ε≥ n−c,

Pr(`¡

1(pϕ, p)≥ ε)≤ exp(−Ω(n1/11)).

In this section, we relate the estimation of sorted distributions to that of distribution

properties through a dual definition of the 1-Wasserstein distance.

Recall that we let {p} denote the multiset of probability values of a distribution p ∈ ∆X .

The sorted `1 distance between two distributions p,q ∈ ∆X is

`¡

1(p,q) := min
q′∈∆X :{q′}={q}

∥∥p−q′
∥∥

1 ,

which is invariant under domain-symbol permutations on either p or q.

For two distributions ω,ν over the unit interval [0,1], let Γ′ω,ν be the collection of distribu-

tions over [0,1]× [0,1] with marginals ω and ν on the first and second factors respectively. The

1-Wasserstein distance, also known as the earth-mover distance, between ω and ν is

W1(ω,ν) := inf
γ∈Γ′ω,ν

E
(X ,Y )∼γ

|X−Y | .

Equivalently, let L1 denote the collection of real functions that are 1-Lipschitz on [0,1]. Through

duality, one can also define the 1-Wasserstein distance [KR58] as

W1(ω,ν) = sup
f∈L1

(
E

X∼ω
f (X)− E

Y∼ν
f (Y )

)
.

For any p ∈ ∆X , let u{p} denote the distribution induced by the uniform measure on {p}. For any

distributions p,q ∈ ∆X , one can verify [VV16, GR16, HJW18] that

`¡

1(p,q) = k ·W1(u{p},u{q})≤ R(p,q).
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Combining this with the dual definition of W1, we obtain

`¡

1(p,q) = k · sup
f∈L1

(
E

X∼u{p}
f (X)− E

Y∼u{q}
f (Y )

)
= sup

f∈L1

(
∑
x

f (p(x))−∑
x

f (q(x))
)
.

2.D.2 Proof of Theorem 5

For a real function f ∈ L1, we denote by f (p) := ∑x f (p(x)) the corresponding additive

symmetric property. The previous reasoning also shows that for any p,q ∈ ∆X ,

R(p,q)≥ `¡

1(p,q)≥ | f (p)− f (q)|.

Therefore, property f is 1-Lipschitz on (∆X ,R).

Set n := sup f∈L1
n f (ε). The results in [HJW18] imply that if ε > n−0.3,

n = Θ

(
k

ε2 logk

)
.

Clearly, we only need to consider ε≤ 2, implying k = O(n logn). Let α,γ be absolute constants

in [1/100,1/6) and ε > 0 be an error parameter.

By the proof of Theorem 1 in Section 2.B.2, for any distribution p ∈ ∆X and Xn/α ∼ p,

with probability at least 1−2exp
(
−4n1−2γ

)
, the PML (or APML) plug-in estimator will satisfy

| f (p)− f (p
ϕ(Xn/α))|< ε(2+o(1))+O(n−c1/2 log2 n)+4n1−γ

τ(n),

where c1 ∈ (1/100,1/32], c2 = 1/2+6c1, and τ(n) = O
(

nαc2+(2−α)c1−1 log3 n
)

. Additionally,

in the previous section, we have proved that

`¡

1(p,q) = sup
f∈L1

( f (p)− f (q)) = sup
f∈L1

| f (p)− f (q)|.
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Though it seems that the above inequality and equation imply the optimality of PML (since f

is chosen arbitrarily), such direct implication actually does not hold. The reason is a little bit

subtle: The inequality on | f (p)− f (p
ϕ(Xn/α))| holds for any fixed function f and p ∈ ∆X , while

the function that achieves the corresponding supremum in

sup
f∈L1

∣∣∣ f (p)− f (p
ϕ(Xn/α))

∣∣∣= `¡

1

(
p, p

ϕ(Xn/α)

)

depends on both p and Xn/α, and hence is a random function. To address this discrepancy, we

provide a more involved argument below.

Let f be a function in L1. Without loss of generality, we also assume that f (0) = 0. Let

η ∈ (0,1) be a threshold parameter to be determined later. An η-truncation of f is a function

fη(z) := f (z)1z≤η + f (η)1z>η.

One can easily verify that fη ∈ L1. Next, we find a finite subset of L1 so that the η-truncation of

any f ∈ L1 is close to at least one of the functions in this subset.

For a parameter s > 3 to be chosen later. Partition the interval [0,η] into s disjoint sub-

intervals of equal length, and define the sequence of end points as z j := η · j/s, j ∈ dsc where

dsc := {0,1, . . . ,s}. Then, for each j ∈ dsc, we find the integer j′ such that | fη(z j)− z j′| is

minimized and denote it by j∗. Since fη is 1-Lipschitz, we must have | j∗| ∈ d jc. Finally, we

connect the points Z j := (z j,z j∗) sequentially. This curve is continuous and corresponds to a

particular η-truncation f̃η ∈ L1, which we refer to as the discretized η-truncation of f . Intuitively,

we have constructed an (s+1)× (s+1) grid and “discretized” function f by finding its closest

approximation in L1 whose curve only consists of edges and diagonals of the grid cells. By

construction,

max
z∈[0,1]

| fη(z)− f̃η(z)| ≤ η/s.

60



Therefore, for any p ∈ ∆X , the corresponding properties of fη and f̃η satisfy

| fη(p)− f̃η(p)| ≤ k ·η/s.

Note that | j∗| ∈ d jc for all j ∈ dsc, and f̃η(z) = zs∗ for z ≥ η. While there are infinitely many

η-truncations, the cardinality of the discretized η-truncations of functions in L1 is at most

s

∏
j=0

(2 j+1) = (s+1)
s−1

∏
j=0

(2 j+1)(2s−2 j+1)≤ (s+1)2s+1 = e(2s+1) log(s+1) ≤ e3s logs.

Consider any p ∈ ∆X and Xn/α ∼ p with a profile ϕ. Consolidate the previous results, and apply

the union bound and triangle inequality. With probability at least 1−2exp
(
3s logs−4n1−2γ

)
,

the PML plug-in estimator will satisfy

| fη(p)− fη(pϕ)| ≤ | fη(p)− f̃η(p)|+ | f̃η(p)− f̃η(pϕ)|+ | f̃η(pϕ)− fη(pϕ)|

≤ 2k ·η/s+ ε(2+o(1))+O(n−c1/2 log2 n)+4n1−γ
τ(n),

for all functions f in L1.

Next we consider the “second part” of a function f ∈ L1, namely,

f̄η(z) := f (z)− fη(z) = ( f (z)− f (η))1z>η.

Again, we can verify that f̄γ ∈ L1. To establish the corresponding guarantees, we make use of

the following result. Since the profile probability p(ϕ) is invariant to symbol permutation, for

our purpose, we can assume that p(y) ≤ p(z) iff pϕ(x) ≤ pϕ(y), for all x,y ∈ X . Under this

assumption, the next lemma, which follows from the consistency results in [OSVZ11, AGZ17],

relates pϕ to p. Let γ′ ∈ (0,1/4) be an absolute constant to be determined later. Then,
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Lemma 9. For any distribution p and sample Xm ∼ p with profile ϕ,

Pr
(

max
x
|pϕ(x)− p(x)|> mγ′−1/4

)
= O

(
m1/4 exp(−Ω(m1/2+2γ′))

)
.

Simply following the proofs in [OSVZ11, AGZ17], we obtain: Changing 1/4 to any

(fixed) number greater than 1/6, the above lemma also holds for APML with m1/2+2γ′ replaced

by m2/3+2γ′ .

For m = n/α, with probability at least 1−O
(
(n/α)1/4 exp(−Ω((n/α)1/2+2γ′))

)
,

| f̄η(p)− f̄η(pϕ)|= |∑
x

f̄η(p(x))− f̄η(pϕ(x))|

≤ ∑
x:p(x)>η or pϕ(x)>η

| f̄η(p(x))− f̄η(pϕ(x))|

≤ ∑
x:p(x)>η or pϕ(x)>η

|p(x)− pϕ(x)|

≤ (2/η)(n/α)γ′−1/4,

for all functions f in L1.

Consolidate the previous results. By the triangle inequality and the union bound, with

probability at least 1−2exp
(
3s logs−4n1−2γ

)
−O

(
(n/α)1/4 exp(−Ω((n/α)1/2+2γ′))

)
,

| f (p)− f (pϕ)| ≤ | fη(p)− fη(pϕ)|+ | f̄η(p)− f̄η(pϕ)|

≤ 2kη/s+ ε(2+o(1))+O(n−c1/2 log2 n)+4n1−γ
τ(n)+(2/η)(n/α)γ′−1/4,

for all functions f in L1. Now we can conclude that `¡

1
(

p, pϕ

)
is also at most the error bound

on the right-hand side. The reason is straightforward: Since with high probability, the above

guarantee holds for all functions in L1, it must also hold for the function that achieves the
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supremum in

sup
f∈L1

∣∣ f (p)− f (pϕ)
∣∣= `¡

1
(

p, pϕ

)
.

It remains to make sure that all the quantities in the error bound except ε(2+o(1)) vanish

with n, and the probability bound converges to 1 as n increases. Recall that k = O(n logn),

c1 ∈ (1/100,1/25], c2 = 1/2+6c1, and τ(n) = O
(

nαc2+(2−α)c1−1 log3 n
)

.

By direct computation, we can choose α = 1/100, c1 = 1/26, γ′ = 1/200, γ = (5/2+

5α)c1 +α/2, s = nγ′+3/4+c1 , and η = nγ′−1/4+c1/2. Note that this is just one possible set of

parameters. Given this choice, we have

`¡

1
(

p, pϕ

)
≤ ε(2+o(1))+O(n−c1/2 log3 n),

with probability at least 1− exp(−Ω(n1/2)). Additionally, the equation

sup
f∈L1

∣∣ f (p)− f (pϕ)
∣∣= `¡

1
(

p, pϕ

)
clearly yields that n(ε)≥ sup f∈L1

n f (ε). Hence for ε≥ O(n−c1/2 log4 n),

n(pϕ,(2+o(1))ε)≤ 100n(ε).

2.E Uniformity Testing

2.E.1 PML-Based Tester

Let ε be an arbitrary accuracy parameter and X be a finite set. Let pu denote the uniform

distribution over X . Given sample access to an unknown distribution p ∈ ∆X , the uniformity
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testing distinguishes between the null hypothesis

H0 : p = pu

and the alternative hypothesis

H1 : ‖p− pu‖1 ≥ ε.

After a sequence of research works [GR00, BFF+01, Pan08, AJOS13a, CDVV14, VV17, DKN15,

ADK15, DK16, DGPP18], it is shown that to achieve a k−Θ(1) bound on the error probability,

this task requires a worst-case sample size of order
√

k logk/ε2. The uniformity tester TPML(Xn) in

Figure 2.8 is purely based on PML, and takes as input parameters k and ε, and a sample Xn ∼ p.

Input: parameters k,ε,and a sample Xn ∼ p with profile ϕ.

1. If maxxµx(Xn)≥ 3max{1,n/k} logk, return 1;

2. Elif
∥∥pϕ− pu

∥∥
2 ≥ 3ε/(4

√
k), return 1;

3. Else return 0.

Figure 2.8: Uniformity tester TPML

In the rest of this section, we establish the following theorem.

Theorem 6. If ε = Ω̃(k−1/4) and n = Ω̃(
√

k/ε2), the tester TPML(Xn) will be correct with proba-

bility at least 1− k−2. The tester also distinguishes between p = pu and ‖p− pu‖2 ≥ ε/
√

k.

2.E.2 Proof of Theorem 6

Assume that ε≥ (logk)/k1/4. For a sample Xn ∼ pu, the multiplicity of each symbol x

follows a binomial distribution bin(n,k−1) with mean n/k. The following lemma [Che81] bounds

the tail probability of a binomial random variable.

64



Lemma 10. For a binomial random variable Y with mean M and any t ≥ 1,

Pr(Y ≥ (1+ t)M)≤ exp(−t(2/t +2/3)−1M).

Applying the above lemma to Y = µx(Xn) and t = 3max{k/n,1} logk immediately

yields that Pr(µx(Xn) ≥ (1+ t)n/k) ≤ k−3. By symmetry and the union bound, we then have

Pr(maxx µx(Xn)≥ (1+ t)n/k)≤ k−2. In the subsequent discussion, we denote by Φn
X the profile

set {ϕ(xn) : xn ∈ X n and maxx µx(xn)< (1+ t)n/k}.

Consider the problem of estimating the `2-distance between an unknown distribution and

the uniform distribution pu, for which we have the following result [Gol17].

Lemma 11. There is a profile-based estimator ˆ̀2 such that for any ε0 ≤ k−1/2, n = Ω(k−1/2/ε2
0),

p ∈ ∆X satisfying P2(p) = O(k−1), and Xn ∼ p,

• if ‖p− pu‖2 > ε0, then ˆ̀2(Xn)≥ 0.9ε0,

• if ‖p− pu‖2 < ε0/2, then ˆ̀2(Xn)≤ 0.6ε0,

with probability at least 2/3.

Set ε0 = ε/
√

k in the above lemma. Then, by the sufficiency of profiles and the stan-

dard median trick, there exists another profile-based estimator ˆ̀?
2 that under the same con-

ditions, provides the estimation guarantees stated above, with probability at least 1− δ for

δ := 2exp(−Ω(nε2/
√

k)). Scaling ε0 by positive absolute constant factors yields: If ‖p− pu‖2 >

0.67ε0, then ˆ̀2(Xn) ≤ 0.6ε0 with probability at most δ; if ‖p− pu‖2 < 0.75ε0, then ˆ̀2(Xn) ≥

0.9ε0 with probability at most δ.

Let ϕ′ be a profile. If we further have p(ϕ′)> δ, then by definition, pϕ′(ϕ
′)≥ p(ϕ′)> δ.

Hence for any xn with profile ϕ′, if ‖p− pu‖2 > ε0, we must have both ˆ̀2(xn) ≥ 0.9ε0 and∥∥pϕ′− pu
∥∥

2≥ 0.75ε0; if ‖p− pu‖2 < ε0/2, we must have both ˆ̀2(xn)≤ 0.6ε0 and
∥∥pϕ′− pu

∥∥
2≤

0.67ε0.
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On the other hand, for a sample Xn ∼ p with profile ϕ, the probability that we have both

p(ϕ)≤ δ and ϕ ∈Φn
X is at most δ times the cardinality of the set Φn

X . By definition, if ϕ ∈Φn
X ,

then ϕi = 0 for i≥ (1+ t)n/k. In addition, each ϕi can only take values in dkc= {0,1, . . . ,k}, im-

plying that |Φn
X | ≤ |dkc|(1+t)n/k ≤ exp(6max{n/k,1} log2 k). Therefore, we obtain the following

upper bound on the probability of interest: δ · |Φn
X | ≤ 2exp(−Ω(nε2/

√
k)+6max{n/k,1} log2 k).

In order to make the probability bound vanish, we need to consider two cases: n≤ k and n > k.

If n≤ k, it suffices to have n� (log2 k)
√

k/ε2; If n > k, it suffices to have ε� (logk)/k1/4. In

both cases, the probability bound is at most exp(− log2 k).

Next, consider estimating the power sum P2(p), which is at least k−1/2 for p ∈ ∆X . By

Corollary 2, there is a profile-based estimator P̂?
2 such that PrXn∼p(|P̂?

2 (X
n)−P2(p)| ≥ (ε/8) ·

P2(p))≤ 2exp(−Ω(nε2/
√

k)) = δ. Following the same derivations as above and in Section 2.C.3

with Φn
α,ε(p) replaced by Φn

X , we establish that

Pr
(
|P2(pϕ)−P2(p)|> P2(p)/2 and ϕ ∈Φ

n
X
)
≤ δ · |Φn

X | ≤ exp(− log2 k).

Now we are ready to characterize the performance of the tester TPML(Xn). For clarity, we divide

our analysis into two parts based on which hypothesis is true.

• Case 1: The null hypothesis H0 is true, i.e., p = pu.

– Step 1: By Lemma 10 and its implications, given p = pu, the probability of failure at

this step is at most PrXn∼pu(∃x ∈ X s.t. µx(Xn)≥ (1+ t)n/k)≤ k−2.

– Step 2: Note that P2(p) = k−1 and ‖p− pu‖2 = 0, and recall that ϕ = ϕ(Xn). The

tester accepts H1 in this step iff ϕ ∈Φn
X and

∥∥pϕ− pu
∥∥

2 ≥ 0.75ε0. By Lemma 11 and

the subsequent arguments, this happens with probability at most exp(− log2 k).

– Step 3: The tester always accepts H0 in this step. Hence by the union bound, if the

null hypothesis H0 is true, then the tester succeeds with probability at least 1− k−2.
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• Case 2: The alternative hypothesis H1 is true, i.e., ‖p− pu‖1 ≥ ε.

– Step 1 to 2: The tester accepts H1 if the conditions in either Step 1 or Step 2 are

satisfied, and hence incurs no error.

– Step 3: By the value of P2(p), we further divide our analysis into two parts:

∗ If P2(p) ≥ 10k−1, then
∥∥pϕ− pu

∥∥
2 < 0.75ε/

√
k implies that P2(pϕ) < 1.6k−1

and |P2(pϕ)− P2(p)| > P2(p)/2. Hence, the tester accepts H0 only if both

|P2(pϕ)−P2(p)|> P2(p)/2 and ϕ∈Φn
X happen, whose probability, by the above

disscusion, is at most exp(− log2 k).

∗ If P2(p)< 10k−1, then all the conditions in Lemma 11 are satisfied. In addition,

by the Cauchy-Schwarz inequality, we have ‖p− pu‖2 ≥ ‖p− pu‖1 · k−1/2 ≥ ε ·

k−1/2. The tester accepts H0 iff both
∥∥pϕ− pu

∥∥
2 < 0.75ε ·k−1/2 and ϕ∈Φn

X hold,

which happen, by Lemma 11 and the subsequent arguments, with probability at

most exp(− log2 k).

This completes the proof of the theorem.

2.F Proof of Lemma 3

The proof closely follows that of Proposition 6.19 in [Val12] (page 131–136), which we

refer to as the proposition’s proof. Note that in the work [Val12], the definitions of k and n are

swapped, i.e., k stands for the sample size, and n denotes the alphabet size. For consistency, we

still keep our notation.

Recall that we set tn := 2n−c1 logn and α ∈ (0,1), and define

βi := (1− e−tnαi) f
(
(i+1)α

n

)
n

(i+1)α
+

i

∑
`=0

z`(1− tn)`α`(1−α)i−`
(

i
`

)
.
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for any i≤ n, and βi := βn for i > n. Let w(i) denote the first quantity on the right-hand side, and

w := (w(0),w(1), . . .) be the corresponding vector. Similarly, let z̃α(i) denote the second quantity

on the right-hand side, and z̃α be the corresponding vector. Assume that v≤ log2 n.

First part of the proposition’s proof remains unchanged, which corresponds to the content

from page 131 to the second last paragraph on page 132, showing that

√
α‖z̃α‖2 = O(nαc2+(1−α)c1 · log3 n).

The assumption that α ∈ [1/100,1) implies
√

α ≥ 1/10, and hence we have |z̃α(i)| ≤

‖z̃α‖2 = O(nαc2+(1−α)c1 · log3 n). Recall that for lemma 2 to hold, the coefficients βi must satisfy

the following two conditions,

1. |ε(y)| ≤ a′+b′/y,

2. |β?
j −β?

` | ≤ c′
√

j/n for any j and ` such that | j− `| ≤
√

j logn,

where ε(y) := f (y)/y− e−ny
∑i≥0 βi · (ny)i/i!, and β?

i := βi−1 · i/n,∀i≥ 1, and β?
0 := 0.

We first consider the second condition and find a proper parameter c′.

Our objective is to find c′ > 0 such that c′ >
√

n/ j |β?
j −β?

` |. By the triangle inequality,

√
n
j
|β?

j −β
?
` | ≤

√
n
j

∣∣∣∣ j
n

z̃α( j−1)− `

n
z̃α(`−1)

∣∣∣∣+√n
j

∣∣∣∣ j
n

w( j−1)− `

n
w(`−1)

∣∣∣∣ .
We bound the two quantities on the right-hand side separately and consider two cases for

each. If both j and ` are at most 400nc1 , then

√
n
j

∣∣∣∣ j
n

z̃α( j−1)− `

n
z̃α(`−1)

∣∣∣∣≤ O(nc1/2−1/2) ·max
i
|zα(i)| ≤ O(nαc2+(3/2−α)c1−1/2 log3 n).

68



Recall that |z`| ≤ v ·nc2,∀`≥ 0. If one of j and ` is larger than 400nc1 , say j > 400nc1 , then

√
n
j

∣∣∣∣ j
n

z̃α( j−1)
∣∣∣∣≤
√

j
n

j−1

∑
`=0
|z`|(1− tn)`α`(1−α) j−1−`

(
j−1
`

)
≤
√

jnc2−1/2(log2 n)
j−1

∑
`=0

(1− tn)`α`(1−α) j−1−`
(

j−1
`

)
=
√

jnc2−1/2(log2 n)(1− tnα) j−1

≤
√

jnc2−1/2(log2 n)(1− logn/(50nc1))400nc1

≤
√

jnc2−1/2(log2 n)n−8.

For j < 2n2, the last quantity is at most n−1. For j > 2n2, we have ` > n2 and hence

√
n
j

∣∣∣∣ j
n

z̃α( j−1)− `

n
z̃α(`−1)

∣∣∣∣=√n
j
| j− `| z̃α(n−1)≤

√
n(logn)n−1 = (logn)n−1/2.

Similarly, we can bound the other quantity, i.e.,

√
n
j

∣∣∣∣ j
n

w( j−1)− `

n
w(`−1)

∣∣∣∣=√ n
α2 j

∣∣∣∣(1− e−tnα( j−1)) f
(

jα
n

)
− (1− e−tnα(`−1)) f

(
`α

n

)∣∣∣∣ .
Since f (the property) is 1-Lipschitz on (∆X ,R) and f (p) = 0 if p(x) = 1 for some x ∈ X , one

can verify that | f (x)| ≤ x| logx| ≤ e−1 and | f (x)/x− f (y)/y| ≤ | log(x/y)| for x,y ∈ [0,1] (the

corresponding real function). We consider two cases and bound the quantity of interest. If j≥
√

n,

√
n

α2 j

∣∣∣∣(1− e−tnα( j−1)) f
(

jα
n

)∣∣∣∣≤√ n
α2 j

∣∣∣∣ f ( jα
n

)∣∣∣∣≤√ n
α2 j

jα
n

log
(

jα
n

)
≤ O(n−1/4 logn).

The same bound also applies to the other term where j is replaced by `. If j >
√

n, then

e−tnα( j−1) ≤ exp(−2α(logn)n1/2−c1) = O(n−2). Analogously, the same upper bound holds for

69



the other term e−tnα(`−1). Hence, we ignore these two terms and consider only

√
n

α2 j

∣∣∣∣ f ( jα
n

)
− f

(
`α

n

)∣∣∣∣≤
√

j
n

∣∣∣∣ n
jα

f
(

jα
n

)
− n

`α
f
(
`α

n

)∣∣∣∣+
√

j
n

∣∣∣∣ n
jα
− n

`α

∣∣∣∣ f
(
`α

n

)
≤
√

j
n

∣∣∣∣log
j
`

∣∣∣∣+
√

j
n

∣∣∣∣ n
jα
− n

`α

∣∣∣∣ f
(
`α

n

)
≤
√

j
n
| j− `|

j
+

√
jn

α

| j− `|
j`

f
(
`α

n

)
≤
√

j
n
| j− `|

j
+

√
j
n
| j− `|

j

∣∣∣∣log
(
`α

n

)∣∣∣∣
≤ logn√

n
+

logn
n

∣∣∣∣log
(
`α

n

)∣∣∣∣
= O(n−1/2 logn).

Since αc2 +(3/2−α)c1 ≤ 1/4, we have O(nαc2+(3/2−α)c1−1/2 log3 n) = O(n−1/4 log3 n).

Hence, we can set the latter quantity to be c′. The above derivations also show that

|w(i)|=
∣∣∣∣(1− e−tnαi) f

(
(i+1)α

n

)
n

(i+1)α

∣∣∣∣≤ ∣∣∣∣log
(
(i+1)α

n

)∣∣∣∣= O(logn).

Together with βi = w(i) + z̃α(i) and |z̃α(i)| = O(nαc2+(1−α)c1 · log3 n), this inequality

implies

|βi| ≤ O(nαc2+(1−α)c1 log3 n).

It remains to analyze the first condition of Lemma 2 and find proper values for a′ and

b′. For this part, the corresponding proof in [Val12] also holds for α ∈ [1/100,1/2] (page 134

to the second last paragraph on page 135), hence no change is needed. One thing to note is

that 1/α and 1/
√

α are both O(1). For some a′′,b′′ ≥ 0 such that a′′+ b′′k ≤ v, we can set

a′ = a′′+O(n−c1/2 log2 n) and b′ = b′′(1+O(n−c1 logn)). The proof of Lemma 3 is complete.
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Chapter 3

Doubly Competitive Distribution

Estimation

3.1 Introduction

Estimating large-alphabet distributions from their samples is a fundamental statistical-

learning staple. Over the past few decades, distribution estimation has found numerous appli-

cations, ranging from language modeling [CG99] to biological studies [AIS+08], and has been

extensively studied. In the following subsections, we formalize the discussion and present major

research frameworks used in the field.

3.1.1 Distribution Estimation

Let ∆k denote the collection of distributions over the discrete alphabet [k] := {1, . . . ,k}.

Let [k]∗ be the set of finite-length sequences over [k]. An estimator is a mapping p̂ : [k]∗→ ∆k

that associates with every sequence xn a distribution p̂(xn) ∈ ∆k. Let Xn := X1, . . . ,Xn be an i.i.d.

sample sequence from an unknown p. Our objective is to find an estimator p̂ such that p̂(Xn)

approximates p well.
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Specifically, for two distributions p,q ∈ ∆k, let `(p,q) be the loss when approximating

distribution p by estimate q. The loss of estimating p by p̂(Xn) is therefore `(p, p̂(Xn)). We also

consider the expected loss, known as risk,

r`n(p, p̂) := EXn∼pL(p, p̂(Xn)).

The two most important losses for distribution estimation are the KL-divergence D(p ‖ q) :=

∑x∈[k] px log px
qx
, and the `1-distance |p−q| := ∑x∈[k] |px−qx|. We study mainly the KL-loss, hence

abbreviate rKL as simply r.

Next, we formalize the uncertainty about the distribution and the three common measures

for the approximation quality: min-max, structural, and competitive estimation.

3.1.2 Previous Works

Min-max While the underlying distribution p is unknown, it often belongs to a known

distribution collection P . The worst-case risk of an estimator p̂ over all distributions in P is

r`n(P , p̂) := max
p∈P

r`n(p, p̂),

and the minimal possible worst-case risk for P , incurred by any estimator, is the min-max risk,

r`n(P ) := min
p̂

r`n(P , p̂) = min
p̂

max
p∈P

r`n(p, p̂).

The most classical and widely-studied class of distributions is simply the set ∆k of all

discrete distributions. The problem of determining r`n(∆k) up to the first order was introduced

by [Cov72] and studied in a sequence of papers [KT81, BFSS02, Pan05]. Among the many

results on the topic, [BS04] showed that for KL-divergence, as n/k→ ∞, the min-max KL-risk

satisfies rn(∆k) = (1+o(1))k−1
2n , achieved by a variant of the add-3/4 estimator. On the other hand,
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[Pan05] proved that as k/n→ ∞, the optimal KL-risk becomes rn(∆k) = (1+o(1)) log k
n , which

is achieved by add-constant estimators. Similar results for other loss measures like `1-distance

can be found in [KOPS15].

Beyond min-max The success of add-constant estimators in achieving the classical

min-max risks does not extend to practical applications. One possible explanation is that practical

distributions, like power-law, or Poisson, are often rather simple and can be estimated more

efficiently and accurately than the worst distribution targeted by the min-max paradigm. The

desire to construct estimators that perform better on practical distributions has led to the following

two frameworks.

Structural Instead of considering arbitrary underlying distributions, the structural

approach focuses on learning distributions that posses a natural structure, such as monotonicity,

log-concavity, and m-modality. In many cases, structural assumptions lead to more effective

estimators that provably perform better on the corresponding distribution classes.

For example, [KOPS15] showed that for fixed k, as n increases, the empirical estimator

achieves the min-max `1-risk over ∆k,

r`1
n (∆k) = (1+o(1))

√
2(k−1)

πn
.

In many practical applications, the alphabet k is often large, hence several papers considered

structured distributions [ADLS17, DKS16b, Kam14, CDSS13, Das12, JW09, FOS08]. For

example, for the collection M t,m
k of t-mixture m-modal distributions over [k], more sophisticated

estimators, e.g., [ADLS17] attain

r`1
n (M t,m

k ) = Θ

(
tm logk

n

)1/3

,

which for k/ logk� n1/3(tm)2/3, is lower than r`1
n (∆k).

Drawbacks The structural approach leverages the structure assumptions to design more

73



efficient estimators, thus has the drawback of relying on the hypothetical models.

For example, to learn t-mixture m-modal distributions efficiently as above, one needs to

ensure the correctness of the structure assumption and know both t and m up to constant factors.

While it may seem possible to use hypothesis testing to find the best parameters, existing work on

distribution property testing shows that even testing whether a distribution is m-modal requires a

non-trivial number of samples [CDGR18]. Hence, when t and m are relatively large, finding the

best parameters may require many samples.

In addition, many structures possessed by real-world distributions, for example, mixtures

of log-concave and log-convex, have not been addressed before.

Competitive Instead of relying on often-uncertain structural assumptions, the compet-

itive distribution estimation framework takes a different view and aims to design universally

near-optimal estimators. Any reasonable estimator for i.i.d. distributions would assign the same

probability to all symbols appearing the same number of times in the sample, and we let Qnat

denote this collection of natural estimators.

Our objective is to design a distribution estimator p̂ that estimates every distribution

nearly as well as the best estimator designed with prior knowledge of the true distribution p, but

is restricted to be natural. Specifically, for any distribution p ∈ ∆k, the lowest risk of a natural

estimator knowing p is

r̃`n(p,Qnat) := min
p̂′∈Qnat

r`n(p, p̂′),

and the excess risk of an arbitrary estimator p̂ is

r̃`n(p, p̂) := r`n(p, p̂)− r̃`n(p,Qnat).

Therefore, the worst-case excess risk, or competitive risk, of the estimator p̂ over all distribution

in ∆k is

r̃`n(p̂) := max
p∈∆k

r̃`n(p, p̂).
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This formulation was introduced in [OS15] who showed that a simple variant of the Good-Turing

estimator p̂GT achieves a vanishing competitive KL-risk of r̃n(p̂GT)≤ (3+o(1))/n1/3, regardless

of the alphabet size, and a more involved estimator p̂MI achieves Θ̃(min{k/n,1/
√

n}), For `1-

distance, [VV16] designed a linear-programming-based estimator p̂LP and proved r̃`1
n (p̂LP) =

O(1/polylog(n)).

Drawbacks The upper bounds provided by the competitive approach apply to all

distributions, and similar to the min-max approach, track the excess error of the worst distribution.

As we now show, they are too lax for many practical distributions. Consider the following

generalization of the ubiquitous power-law distributions. For c > 0, α > 1, and large alphabet-size

k, define the enveloped distribution collection P α,c
k := {p ∈ ∆k : px ≤ c · x−α}. It can be shown

that for n ∈ [k0.1,k2] there is a constant Cα,c depending on α and c, such that the min-max KL-risk

of P α,c
k satisfies

rn(P α,c
k ) =Cα,c ·n−

α−1
α

+o(1).

By simple algebra, for α > 2 and large n, this term is smaller than Θ̃(min{k/n,1/
√

n}), the

lowest competitive risk of any estimator [OS15]. Hence the guarantees the competitive framework

provides do not suffice to address relatively “simple” common distributions.

3.2 New Results

The foregoing section reviewed the merits and drawbacks of classical and modern ap-

proaches to distribution-estimation. It noted that the min-max approach is “pessimistic” and often

performs sub-optimally in both theory and practice. Of the modern frameworks, the structural ap-

proach works well if the structural assumptions are both correct and accurate, but fails otherwise,

hence this approach is “local” but not “global”. The competitive approach constructs universally

near-optimal estimators, but provides the same guarantees regardless of the distribution’s structure,

potentially resulting in sub-optimal estimators for practical distributions, hence this approach is
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“global” but not “local”.

This raises the question of whether a single estimator can be both “global” and “local”.

Namely, without any assumptions on the distribution, provide universal excess-loss guarantees for

general distributions, and stronger excess-loss guarantees for simple distributions. For example,

an estimator p̂ such that for any distribution p, r̃n(p, p̂) ≤ n−1/2, and yet if the distribution p

happens to be in the enveloped power-law class P 3,c
k , then r̃n(p, p̂)≤ n−3/4.

We answer this question in the affirmative, and present the first competitive and structural

distribution estimator.

3.2.1 Definitions

Instant competitive loss For consistency, let us instantiate the loss ` as the KL-

divergence, i.e., for p,q ∈ ∆k,

`(p,q) := D(p ‖ q).

Let p ∈ ∆k be an unknown discrete distribution, and let xn be a realization of Xn ∼ p. The best

natural estimator, knowing both p and xn, incurs the minimal possible loss

˜̀xn(p,Qnat) := min
p̂′∈Qnat

`(p, p̂′(xn)),

and for this particular pair (p,xn), the excess loss of an arbitrary estimator p̂ is

˜̀xn(p, p̂) := `(p, p̂(xn))− ˜̀xn(p,Qnat).

Hence for sequence xn, the worst-case excess loss of p̂ over ∆k, or simply the instance competitive

loss of p̂, is

˜̀xn(p̂) := max
p∈∆k

˜̀xn(p, p̂).

Permutation class For any distribution p ∈ ∆k, we denote by 〈p〉 the collection of
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distributions in ∆k that are equal to p up to some permutation over [k]. Knowing 〈p〉 is equivalent

to knowing the multiset of p but not p itself.

General notation For Xn ∼ p ∈ ∆k, the multiplicity of a symbol x ∈ [k] is Nx :=

∑
n
i=11Xi=x, the number of times x appears in Xn. The prevalence of an integer µ is Φµ :=

∑x∈[k]1Nx=µ, the number of symbols that appear µ times. Let D := ∑µ>0 Φµ be the number of

distinct symbols in Xn, and let DΦ := ∑µ>01Φµ>0 be the number of distinct positive multiplicities.

Clearly, D ≥ DΦ, and typically, D� DΦ. For example, if all symbols in the sequence Xn are

distinct, then D = n, while DΦ is just 1.

3.2.2 Main Results

We construct an explicit, near-linear-time computable distribution estimator p̂∗ such that

Theorem 1. For any distribution p, let Xn ∼ p, then with probability at least 1−n−8,

˜̀Xn(p̂∗)≤ Õ
(

DΦ

n

)
.

Note that the right-hand side is determined by just Xn, its computation requires no

additional information about p.

The exact form of p̂∗ can be found in Section 3.5, and the proof of Theorem 1 appears in

the supplemental material.

Our main theorem implies the following new results and improvements on existing ones.

Global competitiveness In Section 3.3 we show that our estimator provides stronger

estimation guarantees than many existing estimators: adaptive estimators (Corollary 2) such as

the robust absolute discounting estimator [OD12, BHBO17]; competitive estimators (Corollary 4)

such as the modified Good-Turing estimator [OS15]; and min-max estimators (Corollary 5).

Example: Section 3.3 shows that DΦ ≤min{
√

2n,k}. Corollary 4 then concludes that the

excess loss ˜̀Xn(p̂∗) is always at most Õ (min{
√

n,k}/n), providing a guarantee not only stronger
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than the n−1/3 rate of the modified Good-Turing estimator, but also as strong as the more involved

estimator in [AJOS13b, OS15].

Local competitiveness In Section 3.4, we use the theorem to establish eight new

results on learning important structured distributions. We show that our estimator has strong

excess-loss bounds for three important structured distribution families: T-value (Corollary 7

and 8), log-concave (Corollary 9 and 10), and log-convex (Corollary 11, 12, and 13). Many

common distributions are covered by these three classes. In particular, our results for power-law

distributions (Corollary 12) are uniformly stronger than those in [FOOP17] for all parameter

regimes.

Example: Corollary 8 shows that for all uniform distributions, E[DΦ] is bounded above

by Õ(n1/3), hence the algorithm’s excess risk is at most Õ(n−2/3).

Robustness to model misspecification The structural approach often uses different

estimators for different distribution classes. By contrast, our single estimator provides robust and

adaptive guarantees for a variety of structural classes without any modification.

Example: Over uniform distributions, p̂∗ achieves an excess risk of Õ(n−2/3) (Corol-

lary 8), while for power law distributions with power parameter 1.5 , the same estimator achieves

an excess risk of Õ(n−3/5) (Corollary 11).

Robustness to domain permutations The structural approach often assumes that we

know how to order the symbols so that the underlying distribution would exhibit certain structure

(such as power-law). As discussed in Section 3.4, this assumption may be impractical. By

contrast, since the distribution of DΦ is the same for all p′ ∈ 〈p〉, the excess loss/risk guarantees

of our algorithm are invariant under any permutation of the domain symbols.

Example: If under some unknown ordering of the domain symbols, the underlying

distribution is a power-law with power parameter 1.5 , then Corollary 11 implies that our estimator

achieves an excess risk of Õ(n−3/5).

Outline Besides Section 3.3 and 3.4 mentioned above, we present the exact form of our
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estimator in Section 3.5.

3.3 Global Competitiveness

In this section, we present several implications of Theorem 1 for the universal estimation

guarantees of p̂∗. In particular, we show that p̂∗ is near-optimal under various classical and

modern distribution learning frameworks, including min-max and competitive mentioned above.

Corollary 1. For any distribution p,

r̃n(p, p̂∗)≤ Õ
(
E[DΦ]

n

)
.

As in the proof of Theorem 1, ˜̀Xn(p, p̂∗)≤ O(logn) always. The corollary then follows

from Theorem 1 itself.

Analogous to the previous definition of competitive distribution estimation, we can

consider competing with an estimator that knows the probability multi-set. Specifically, for any

distribution p ∈ ∆k, the lowest worst-case risk of a natural estimator knowing the multi-set of p is

ṙ`n(〈p〉) := min
p̂′

max
p′∈〈p〉

r`n(p′, p̂′),

and an arbitrary estimator p̂ has the multi-set excess risk of

ṙ`n(p, p̂) := r`n(p, p̂)− ṙ`n(〈p〉).

For KL-divergence, the following lemma relates ṙ`n to r̃`n.

Lemma 1. [OS15] For any distribution p ∈ ∆k and estimator p̂,

max
p′∈〈p〉

ṙn(p′, p̂)≤ r̃n(p, p̂).
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Together with Corollary 1, the lemma yields,

Corollary 2. For any distribution p,

max
p′∈〈p〉

ṙn(p, p̂∗)≤ Õ
(
E[DΦ]

n

)
.

Adaptive optimality The min-max results [KT81] imply that for any estimator, learning

an arbitrary k-symbol distribution up to a certain KL-risk requires Ω(k) samples in the worst case.

Since modern data science often considers applications over large alphabets, this is normally

viewed as a negative result. However, as experience suggests, many practical distributions have

small “effective alphabet sizes”. For example, if we draw 10 samples from a geometric distribution

with success probability 0.9, although the support size is infinite, with high probability, we shall

observe at most 3 distinct symbols.

To formalize this intuition, for a given n, let the effective alphabet size of a distribution p

be the expected number E[D] of distinct symbols that appear in Xn ∼ p. As in [FOOP17], given

n, k, and d, let Pd be the collection of distributions in ∆k satisfying E[D]≤ d. By Corollary 1, the

performance of p̂∗ over Pd is adaptive to d:

Corollary 3. For all d ≥ 2 and every distribution p ∈ Pd ,

rn(p, p̂∗)≤ d
n

logk+ Õ
(

d
n

)
.

The following lemma shows the optimality of Corollary 3.

Lemma 2. [FOOP17] Let α be any constant greater than 1. There exist constants c0 > 0 and n0

such that for d = n
1
α , any estimator p̂, all n > n0, and all k > max{3n,1.2

1
α−1 n

1
α},

max
p∈Pd

rn(p, p̂)≥ c0
d
n

logk− Õ
(

d
n

)
.
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Here we present two immediate implications. First, to learn a k-symbol distribution up to

a certain KL-risk, the number of samples we need is at most Õ(E[D] logk), which is often much

smaller than Ω(k). Second, in the extreme case when k/n→ ∞, the upper bound on rn(p, p̂∗) is

at most (1+o(1)) logk. Hence, our estimator achieves the min-max KL-risk over ∆k to the right

constant.

Competitive optimality Now we show that p̂∗ is near-optimal under the competitive

formulation described in Section 3.1.2. We begin by finding a simple upper bound for DΦ, the

number of distinct positive multiplicities. Since different multiplicities correspond to distinct

symbols, DΦ is at most the alphabet size k. On the other hand, since only distinct positive

multiplicities count, ∑
DΦ

µ=1 µ ≤ n. Hence, DΦ ≤ min{k,
√

2n}, which together with Corollary 1

yields

Corollary 4. For any distribution p,

r̃n(p, p̂∗)≤ Õ
(

min{k,
√

n}
n

)
.

The following lemma shows the optimality of Corollary 4.

Lemma 3. [OS15] For any estimator p̂,

max
p∈∆k

r̃n(p, p̂)≥ Ω̃

(
min{k,

√
n}

n

)
.

Min-max optimality The previous results show that p̂∗ often achieves the min-max

KL-risk rn(∆k) to the right constant. Specifically,

Corollary 5. Let α0 be any constant greater than 1/2. For any α > α0 and k > nα,

rn(∆k, p̂∗) = (1+on(1))rn(∆k).
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3.4 Local Competitiveness

We use Corollary 1 and 3 to establish eight new results on learning important structured

distributions. We show that our estimator has strong excess-loss bounds for three important

structured distribution families: T-value (Corollary 7 and 8), log-concave (Corollary 9 and 10),

and log-convex (Corollary 11, 12, and 13). Many common distributions are covered by these

three classes.

3.4.1 A Simple Bound on E[DΦ]

By Corollary 1, the excess KL-risk r̃n(p, p̂∗) of p̂∗ in estimating p is upper bounded by

Õ (E[DΦ]/n). Perhaps the most natural question to ask is: given n and p, how large is E[DΦ]? To

get a relatively simple closed-form expression for E[DΦ], we adopt the conventional “Poisson

Sampling” technique where the sample size is an independent Poisson variable with mean n. By

doing so, the multiplicities Nx ∼ Poi(npx) independently of each other. Under Poisson sampling,

the linearity of expectation implies

E[DΦ] = n−∑
µ>0

∏
x∈[k]

(
1− e−npx

(npx)
µ

µ!

)
.

Expanding the right-hand side would give us an expression consisting of n · (2k−1) terms, which

is hard to analyze. Hence, instead of evaluating E[DΦ] directly, we would like to work on its

simple upper bounds. Given sampling parameter n, we partition the unit-length interval (0,1] into

a sequence of sub-intervals,

I j :=
(
( j−1)2 logn

n
, j2 logn

n

]
, 1≤ j ≤

√
n

logn
.

For any distribution p, denote by pI j the number of probabilities px in I j. Then,
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Lemma 4. For any distribution p,

E[DΦ]≤ O(∑
j≥1

min
{

pI j , j
}
) · logn.

In addition, since p is a distribution, for all j, pI j ·
j2 logn

n ≤ 1, which in turn implies

min
{

pI j , j
}
≤min

{
n

j2 logn
, j
}
< n

1
3 .

More generally, let PI j denote the sum of probabilities px in I j. Then,

min
{

pI j , j
}
≤min

{
nPI j

j2 logn
, j
}
< (nPI j)

1
3 .

Combined, Corollary 1 and Lemma 4 yield

Corollary 6. For any distribution p,

r̃n(p, p̂∗)≤ Õ
(

1
n

)
∑
j≥1

min
{

pI j , j
}
.

To illustrate the Corollary’s significance, we present its implications for various distribu-

tion learning problems.

3.4.2 T-Value Distributions

A uniform distribution can be described as a distribution whose positive probabilities

take only a single value. As a generalization of this formulation, we call a distribution p a

T -value distribution if its positive probabilities px can take T different values. Note that T -value

distributions over [k] can be viewed as mixtures of T uniform distributions over different subsets

of [k], and that these distributions generalize T -piecewise histogram distributions. Intuitively, for

smaller values of T , we would expect the task of learning an unknown T -value distribution to be
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easier. The following corollary confirms this intuition.

Corollary 7. For any T -value distribution p and p′ ∈ 〈p〉,

r̃n(p′, p̂∗)≤ Õ

(
T

2
3 ∧n

1
6

n
2
3

)
.

Note that p ∈ 〈p〉. To prove the corollary, observe that by our previous result, for all j,

min
{

pI j , j
}
< (nPI j)

1
3 .

Note that for a T -value distribution, pI j 6= 0 for at most T different j values, say j1, . . . , jT . By

the above inequality and Corollary 6,

r̃n(p, p̂∗)≤ Õ
(

1
n

) T

∑
i=1

(nPI ji
)

1
3 ≤ Õ

(
T (n/T )

1
3

n

)
.

combined with Corollary 4, this completes the proof.

Uniform Distributions Now we consider the collection Uk of 1-value distributions, i.e.,

uniform distributions over non-empty subsets of [k]. Our objective is to derive a result stronger

than Corollary 7. Let Sp denote the support size of a distribution p ∈Uk. For all x ∈ [k], px is

either 0 or S−1
p . Since {I j, j≥ 1} is a partition of (0,1], there exists a unique j′ such that S−1

p ∈ I j′ ,

i.e.,

S−1
p ∈ I j′ =

logn
n

(
( j′−1)2, j′2

]
,

further implying 1+
√

n/(Sp logn)≥ j′. Together with DΦ ≤D≤ Sp and Corollary 6, this shows

Corollary 8. Let p be an arbitrary distribution in Uk, then

r̃n(p, p̂∗)≤ Õ

(
min

{
1√
nSp

,
Sp

n

})
.
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Note that the right-hand side is no more than Õ(n−2/3). Furthermore, in both the small

alphabet regime where Sp = O(1) and the large alphabet regime where Sp = Ω(n), we have

r̃n(p, p̂∗)≤ Õ(n−1), which is fairly tight.

3.4.3 Log-Concave Distributions

The class of discrete log-concave distributions covers a variety of well-known distribu-

tion classes including binomial, Poisson, negative binomial, geometric, hypergeometric, hyper-

Poisson, Skellam, and Pólya-Eggenberger [QBW90]. We say a discrete distribution p ∈ ∆k is

log-concave if for all x ∈ [k], p2
x ≥ px−1 · px+1, and denote the collection of all such distributions

by Lk. Further, for all σ > 0, let Ln,σ
k denote the collection of p ∈ Lk whose standard deviation

lies in (σ · log−1 n,σ]. Intuitively, one would expect the learning task over Ln,σ
k to be easier for

smaller values of σ. The following corollary demonstrates the correctness of this intuition and

shows the competitive performance of our estimator. Due to space considerations, we postpone

its proofs to the supplemental material.

Corollary 9. For any distribution p ∈ Ln,σ
k and p′ ∈ 〈p〉,

r̃n(p′, p̂∗)≤ Õ
(
(σn)−

1
3 ∧ σ

n

)
.

For any σ� 1, the right-hand side is uniformly smaller than the bound Õ(min{k,
√

n} ·

n−1) in Corollary 4.

For mixtures of distributions in Ln,σ
k , an analogous argument gives the following result.

Corollary 10. Let p be a t-mixture of distributions in Ln,σ
k and p′ be any distribution in 〈p〉,

r̃n(p′, p̂∗)≤ Õ
(
(σn)−

1
3 ∧ tσ∧

√
n

n

)
.
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3.4.4 Log-Convex Distributions

While the T-value and log-concave families cover many common distributions, there are

certainly more distribution classes to be explored. For example, a truncated power-law distribution

is always log-convex. In this section, we consider two generic classes of log-convex distributions:

power-law and Hurwitz–Lerch Zeta distribution families.

Enveloped power-law distributions Consider the collection P α,c
k := {p ∈ ∆k : px ≤

c · x−α} of enveloped (truncated) power-law distributions. Note that this definition generalizes

power-law families, and that distributions in P α,c
k are not necessarily log-convex. We have the

following result, whose proof appears in the supplemental material.

Corollary 11. For any distribution p ∈ P α,c
k and p′ ∈ 〈p〉,

r̃n(p′, p̂∗)≤ Õc,α

(
n−max{ α

α+1 ,
1
2}
)
.

The distribution collection P α,c
k has the interesting property that it is closed under mixtures.

Hence, Corollary 11 also covers mixtures of enveloped power-law distributions.

Implications of Corollary 11 Let pα ∈ ∆k be the truncated power-law distribution with

power α that is truncated at k, i.e., pα
x ∝ x−α, ∀x ∈ [k]. Clearly, we have pα ∈ P α,c

k for all c≥ 1.

The recent work of [FOOP17] shows that for k > {n,n
1

α−1} and any distribution p′ ∈ 〈pα〉, the

estimator p̂′′ proposed in [OD12] satisfies

ṙn(p′, p̂′′)≤ Oc,α

(
n−

2α−1
2α+1

)
.

A simple combination of Lemma 1 and Corollary 11 yields

Corollary 12. For any distribution p′ ∈ 〈pα〉,

ṙn(p′, p̂∗)≤ r̃n(p, p̂∗)≤ Õc,α

(
n−max{ α

α+1 ,
1
2}
)
.
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Our approach has the following three advantages over the previous result in [FOOP17].

First, for all α> 0, we have−α/(α+1)<−(2α−1)/(2α+1), hence our guarantee is uniformly

better than the previous one. Second, the previous result requires k > {n,n
1

α−1} to hold, which

can be non-realistic for α close to 1. In comparison, our result does not require such conditions at

all. Third, for small α < 1/2, the previous result only implies a multi-set excess risk of O(nΘ(1)),

while Corollary 12 always yields Õ
(

n−1/2
)

regardless of α.

Enveloped Hurwitz–Lerch Zeta distributions For any distribution p ∈ ∆k, p is a

(truncated) Hurwitz–Lerch Zeta (HLZ) distribution [GGOS08] if

px =
1

T (θ,s,a,k)
· θx

(a+ x)s+1 ,

for some parameter s≥ 0, a ∈ [0,1] and θ ∈ (0,1], where the normalization factor T (θ,s,a,k) :=

∑x∈[k]θ
x/(a+ x)s+1. Analogously, consider H θ,s,a,c

k := {p ∈ ∆k : px ≤ c ·θx/(a+ x)s+1} of en-

veloped HLZ distributions. HLZ distributions include the well-known Riemann Zeta, Zipf-

Mandelbrot, Lotka, Good, logarithmic-series, and Estoup distributions. These distributions have

various applications in many fields. For example, the Good distribution [ZA95] can be used to

model species’ frequencies and to estimate population parameters.

Note that H θ,s,a,c
k ⊆ P s+1,c

k for α ≥ 1. Hence, by Corollary 11, for any distribution

p ∈H θ,s,a,c
k and p′ ∈ 〈p〉,

r̃n(p′, p̂∗)≤ Õc,s

(
n−

s+1
s+2

)
.

Let x1 be the threshold parameter such that c · θx1 = n−1. Direct computation gives x1 =

log(cn)/ log 1
θ
. The symbols x ∈ [k] that are no larger than x1 contribute at most x1 to E[DΦ].

Furthermore, the proof of Lemma 4 essentially shows that symbols with probability no larger than

n−1 contributes at most O(logn) to E[DΦ]. We conclude that E[DΦ]≤ O(log(cn)/ log 1
θ
+ logn).

Corollary 3 combines the above results and yields
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Corollary 13. For any p ∈H θ,s,a,c
k and p′ ∈ 〈p〉,

r̃n(p′, p̂∗)≤ Õc,s

(
n

1
s+2

n
∧ 1− log−1

θ

n

)
.

Note that the right-hand side is the minimum of two quantities. For θ ∈ (1−n−
1

s+2 ,1], we

can reduce the upper bound to Õc,s(n−
s+1
s+2 ). On the other hand, for θ ∈ (0,1−n−

1
s+2 ], the upper

bound becomes Õc,s((1− log−1
θ) ·n−1).

3.4.5 Robustness to Domain Permutations

Our results on learning structured distribution families differ significantly from nearly all

the existing ones. Prior work has mainly considered unknown distribution with a certain structure

over a known and ordered domain. In our formulation, we assume that the underlying distribution

has certain structure under some particular ordering of the domain elements, and this ordering is

unknown to the estimator.

Below we illustrate this by a concrete example.

Let F be a finite discrete domain of size k. Consider learning an unknown log-concave

distribution P∈ ∆F from its sample sequence Y n. Traditional formulations like [CDSS13] assume

that we know an exact bijective mapping σ from F to [k], such that reordering the probabilities of

P according to σ yields a log-concave distribution p ∈ ∆k. Further applying σ to Y n and denoting

the resulting sequence by Xn transforms the problem into learning p from a sample sequence

Xn ∼ p. Here, the assumption that p is log-concave is equivalent to requiring p2
x ≥ px−1 · px+1,

for all x ∈ [k] \ {1,k}. We can see that such formulation may be non-practical. For example,

in natural language processing, the observed samples are words and punctuation marks. Even

we know these samples come from a log-concave distribution, we don’t know how to order the

alphabet, i.e., find the right mapping σ, so that the corresponding distribution p ∈ ∆k would be

log-concave.
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3.5 The Estimator

Let p be an arbitrary distribution in ∆k, and let Xn be a length-n sample sequence from p.

For simplicity, abbreviate 1µ
x := 1Nx=µ. For any natural number µ, denote the total probability

mass of the symbols that appear µ times by

Mµ := ∑
x∈[k]

px1
µ
x .

After observing Xn, an estimator p̂ approximates Mµ by

M̂µ := ∑
x:Nx=µ

p̂x(Xn).

Assume that p̂ is a natural estimator. By [OS15], the excess loss of p̂ over the best natural

estimator that knows the underlying distribution p is

˜̀Xn(p, p̂) = D(M ‖ M̂) := ∑
µ≥0

Mµ log
Mµ

M̂µ
.

The above characterization of ˜̀Xn(p, p̂) converts the problem of finding good natural estimators

for the underlying distribution to that of finding good estimators for

M := (M0, . . . ,Mn).

Intuition We first motivate the estimator, whose form is similar to that in [AJOS13b],

but with some modifications. Since the estimator is natural, it needs to approximate only

M := (M0, . . . ,Mn). The construction is guided by analyzing the estimator bias and concentration

properties for various multiplicities µ. To estimate M0, we use the provably near-optimal [RTS17]

Good-Turing estimator. For the remaining multiplicities, analysis shows that for moderate, yet
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frequent multiplicities, namely µ = O(logn) and Φµ = Ω(log2 n), the Good-Turing estimator per-

forms nearly optimally. For infrequent multiplicities, the empirical estimator performs better. For

the remaining multiplicities, both estimates are sub-optimal. Applying polynomial approximation

techniques, we construct a more involved estimator that approximates the behavior of a genie

that knows that expected Mµ values. The estimator is slightly simpler than that in [AJOS13b], yet

achieves better performance.

Details Since our estimator p̂∗ is natural, we simply specify M̂∗µ := ∑x:Nx=µ p̂∗x(X
n). To

simplify the analysis, we adopt the standard “Poisson sampling” technique, and make the sample

size a Poisson variable N with mean value n.

For N < n logn, let c1, c2, and c3 be properly chosen absolute constants. For any two

natural numbers µ≥ µ′, denote aµ′
µ := µ′!/µ! and Eµ′

x,µ := 1µ′
x aµ′

µ (Nx)
µ−µ′ , where AB is the falling

factorial of A of order B. Let

Ex,µ =
1

c1
√

µ/logn

µ−1

∑
µ′=µ−c1

√
µ/logn

Eµ′
x,µ.

We can show that Eµ := ∑x∈[k]Ex,µ is an unbiased estimator of E[Φµ]. Empirical-frequency

estimates Mµ by

φ̂µ := Φµ
µ
n
,

while Good-Turing estimates it by

Ĝµ := Φµ+1
µ+1

n
.

To avoid zero probability estimates, we modify the Good-Turing estimator to Ĝ′µ :=max{1/n, Ĝµ}

and let

Ôµ := Φµ
µ+1

n
Eµ+1

Eµ
,
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and similarly set

Ô′µ := min{max{1/n, Ôµ}, log2 n}.

For µ < n logn, our estimator is

M̂∗µ =



Ĝ′µ if µ = 0,

φ̂µ if µ≥ 1 and Φµ ≤ c2(log2 n),

Ô′µ if µ > c3 logn and Φµ > c2(log2 n),

Ĝ′µ if c3 logn≥ µ≥ 1 and Φµ > c2(log2 n).

As Poisson variables are concentrated around their mean, for N ≥ n logn, which rarely happens,

and µ ∈ [0,N], we simply set M̂∗µ = 1/(N +1). If these probability estimates do not sum to 1, we

normalize them by their sum.

Finally for each x ∈ [k], our distribution estimator is

p̂∗x(X
n) =

M̂∗Nx

ΦNx

.

3.6 Numerical Experiments

The estimator is easy to implement. In Section 1 of the supplemental material, we present

experimental results on a variety of distributions, and show that the proposed estimator indeed

outperforms the improved Good-Turing estimator in [OS15].

3.7 Future Directions

The results obtained in paper strengthen and extend the competitive approach to distribu-

tion estimation taken in [OS15]. It would be of interest to obtain similar results for distribution
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estimation under `1 distance. [KOPS15] showed that the simple empirical estimator achieves the

min-max `1-risk r`1
n (∆k) = (1+o(1))

√
2(k−1)/(πn). Yet the excess risk of the estimator in the

nice work of [VV16] is O(1/polylog(n)). Hence, for k ≤ Õ(n), this guarantee does not improve

that of the empirical estimator, raising the possibility of strengthening the competitive results.

A similar approach can be applied to the related property-estimation task. A property,

e.g., Shannon entropy, is simply a mapping f : ∆k → R. Most existing property-estimation

results are worst-case (min-max) in nature. Yet practical and natural distributions are rarely

the worst possible, and often possess a simple structure. To address this discrepancy, recent

works [HOSW18, HO20a] took a competitive approach, constructing estimators whose perfor-

mance is adaptive to the simplicity of the underlying distribution. Specifically, the widely-used

empirical estimator estimates property values by evaluating the property at the empirical distribu-

tion. For every property in a broad class and every distribution in ∆k, the expected error of the

estimator in [HO20a] with sample size n/ logn is at most that of the empirical estimator with

sample size n, plus a distribution-free vanishing function of n.

These results cover several well-known properties such as entropy and support size, for

which the logn factor is optimal up to constants, and also apply to any property in the form of

∑x fx(px), such as the `1 distance to a given distribution, where fx is 1-Lipschitz for all x ∈ [k]. It

would be of interest to construct a doubly-competitive estimator for property estimation as well.
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(a) Uniform (b) Two-Step (c) Geometric (parameter 1/k)

(d) Zipf with parameter 0.5 (e) Uniform prior (Dirichlet 1) (f) Dirichlet 2 prior

Figure 3.1: Experimental results for support k = 10,000, number of samples n ranging from
10k to 100k, averaged over 30 independent trials.

3.A Experiments

Experimental plots and relevant details are shown below.

Estimators We consider three estimators: the proposed estimator with sample size n, the

improved Good-Turing estimator [OS15] with the same sample size, and the empirical estimator

with a larger n logn sample size. As shown in [OS15], the improved Good-Turing estimator

considerably outperforms other estimators such as the Laplace estimator (add-1 estimator), the

Krichevsky-Trofimov estimator [KT81], and the Braess-Sauer estimator [BS04]. Hence we do

not include the latter estimators here.

Hyper-Parameters Our algorithm employs three hyper-parameters: c1 is inversely

related to the variance of the probability estimates and is best chosen above 1, c2 controls the

boundary between frequent and infrequent multiplicities and is best chosen below 1, and c3 is

proportional to the threshold separating small and large probabilities and is best chosen be around

1. In the experiments, we simply set c1 = 2, c2 = 0.5, and c3 = 1.
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Distributions We choose alphabet size k = 10,000 and consider six different distri-

butions over [k]: a uniform distribution of support size k; a two-step distribution with half the

symbols having probability 1/(2k), and the other half having probability 3/(2k); a geometric

distribution with parameter g = 1/k, i.e., pi = (1−g)i−1g, truncated at i = k and renormalized;

a Zipf distribution with parameter 0.5, i.e., pi ∝ i−0.5, truncated at i = k and renormalized; a

distribution generated by the uniform prior on ∆k; and a distribution generated by a Dirichlet-2

prior.

Experimental settings For each distribution we repeated the experiments 30 times

and show the average KL-divergence between the underlying distribution and the distribution

estimates. The relative performance of the three estimators is consistent over a wide range of

sample sizes. To better differentiate the performance of the three estimators, we limit the dynamic

range of the error by showing the results for sample sizes n ranging from 10 · k to 100 · k.

Code The code is available at https://github.com/ucsdyi/Competitive.

Conclusions As can be observed in all six plots, the proposed estimator outperforms the

improved Good-Turing estimator. Because of the estimator construction, outlined in Section 5 of

the main paper, the improvement is most pronounced when n≥ k.

3.B Proof of Theorem 1

In this section we prove Theorem 1 in the main paper.

Proof sketch From the discussion in Section 5 of the main paper, we need to estimate

only Mµ. Relations such as E[Mµ−1] = (µ/n)E
[
Φµ
]

suggest constructing estimators for E
[
Φµ
]
.

By the identity E
[
Φµ
]
= ∑x∈[k]E

[
1

µ
x
]
, we can further reduce the problem to estimating E

[
1

µ
x
]
.

We then approximate E
[
1

µ
x
]

by scaled versions of 1µ′
x where µ′ is close to µ. This simple

approach yields unbiased estimators Eµ′
x,µ with sub-optimal variances. An important observation

is that 1µ
x ·1µ′

x = 0 for all µ 6= µ′, making it possible to construct a new estimator Ex,µ with
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near-optimal variance by averaging a sequence of these unbiased estimators. Note that Ex,µ is

still unbiased. Summing the estimators over [k], we estimate E
[
Φµ
]

by Eµ := ∑x∈[k]Ex,µ. As

shown in [AJOS13b], a genie that knows both E[Φµ+1] and E[Φµ] could accurately estimate Mµ

by (Φµ(µ+1)/n)(E[Φµ+1]/E[Φµ]). Hence, to approximate the genie’s performance, we leverage

the estimator for E[Φµ] and use Ôµ := (Φµ(µ+1)/n)(Eµ+1/Eµ). Note that this estimator is the

ratio of two estimators and hence not easy to analyze. To simplify the analysis, we modify Eµ

slightly so that it has a structure similar to that of Eµ+1. Then we prove that for relatively large,

and frequent multiplicities, namely µ = Ω(logn) and Φµ = Ω(log2 n), the proposed estimator

almost achieves the performance of the genie. As illustrated in Section 5 of the main paper,

for other multiplicities, analysis shows that Good-Turing and empirical estimators are already

near-optimal. Combined, these estimates form our final estimator for the vector M, and establish

the guarantees stated in Theorem 1.

The Expected Total Probability Mass

To simplify our analysis, we adopt the standard “Poisson sampling” technique [MU05].

Instead of having a sample sequence of fixed length n, we make the sample size a Poisson random

variable N with mean value n. Let p be an arbitrary distribution over [k], and XN be a length-

Poi(n) sample sequence from p. Let Nx denote the number of times symbol x appearing in XN ,

and let Φµ denote the number of symbols appearing µ times. For simplicity, denote 1µ
x := 1Nx=µ.

Then, the total probability mass of the symbols that appear µ times is

Mµ = ∑
x∈[k]

px1
µ
x .

By the argument in Section 5 of the main paper, it suffices to design an estimator for Mµ.
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The expectation of Mµ is

E[Mµ] = E

[
∑

x∈[k]
px1

µ
x

]
= ∑

x∈[k]
pxe−npx

(npx)
µ

µ!
=

µ+1
n ∑

x∈[k]
E
[
1µ+1

x
]
=

µ+1
n

E
[
Φµ+1

]
.

Furthermore, as shown in [AJOS13b], a genie that knows both E[Φµ+1] and E[Φµ] could estimate

Mµ really well using the estimator

Oµ := Φµ
µ+1

n
E[Φµ+1]

E[Φµ]
.

Both observations suggest that we should find a good estimator for E[Φµ+1].

Estimating an Indicator Variable

The above derivation shows that E
[
Φµ+1

]
= ∑x∈[k]E

[
1

µ+1
x

]
. Symmetry further reduces

the problem to estimating a single term E
[
1

µ+1
x

]
. For notational convenience, we change (µ+1)

to µ. For any two natural numbers µ and µ′, let aµ′
µ := µ′!/µ!. Direct computation yields

E[1µ
x ] = E[1µ′

x ]a
µ′
µ (npx)

µ−µ′ .

To further simplify our derivations, let us assume that another two independent length-

Poi(n) sample sequences from p are given, say XN′ and XN′′ where N′ ∼ Poi(n) and N′′ ∼ Poi(n).

Denote by N′x and N′′x the number of times symbol x appearing, and Φ′µ and Φ′′µ the number of

symbols appearing µ times, in XN′ and XN′′ , respectively. This is equivalent to the commonly-used

“sample splitting” technique [WY16], namely, we split the given sample sequence into three

independent subsequences of roughly the same length. It is not hard to see that even without

these additional sample sequences, performing sample splitting shall change the right-hand side

of Theorem 1 by at most a multiplicative factor of three, hence does not affect the statement

of the theorem. By the last identity and properties of Poisson random variables, for µ≥ µ′, the
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following estimator is an unbiased estimator for E[1µ
x ],

Eµ′
x,µ := 1µ′

x aµ′
µ (N

′
x)

µ−µ′,

where AB is the falling factorial of A of order B.

Let c1 be a positive absolute constant. In the subsequent proofs, we will assume that c1 is

sufficiently small and lies in (0,1) to avoid large constants in the expressions. For c1 > 1, the

proof of Theorem 1 still follows from the remaining arguments. Other related constants have also

been chosen to simplify the proofs and expressions. For example, we set c3 = 100 to eliminate

some edge cases.

While the bias of Eµ′
x,µ in estimating E[1µ

x ] is zero, the variance of Eµ′
x,µ satisfies

Var(Eµ′
x,µ)≤ E[(Eµ′

x,µ)
2]≤

(
aµ′

µ

)2
E[1µ′

x ] ·E
[(

(N′x)
µ−µ′
)2
]
.

The quantity on the right-hand side is the product of three terms. We bound the first term

using the following lemma.

Lemma 5. For sufficiently large n and any two natural numbers µ,µ′ such that n logn > µ >

100logn and

µ− c1

√
µ

logn
≤ µ′ ≤ µ−1,

we have

(aµ′
µ )

2 ≤ 4
(µµ−µ′)2 .
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Proof. The quantity of interest satisfies

aµ′
µ =

µ′!
µ!

=
1

µµ−µ′ ·
µµ−µ′

∏
µ−µ′−1
j=0 (µ− j)

≤ 1
µµ−µ′ ·

 µ

µ− c1

√
µ

logn

c1

√
µ

logn

=
1

µµ−µ′ ·

 1

1− c1

√
1

µ logn

c1

√
µ

logn

≤ 1
µµ−µ′ ·

(
1(

1− 1
2

)2

) c2
1

logn

≤ 2
µµ−µ′ .

Replacing the first term by the upper bound in the lemma implies

Var(Eµ′
x,µ)

4
≤ E

((N′x)
µ−µ′

µµ−µ′

)2
E[1µ′

x ].

It suffices to bound the last quantity. To proceed, we need the following concentration inequalities

for Poisson random variables . Note that these inequities hold for any Poisson random variables,

and simply follow from the well-known Chernoff bound [MU05].

Lemma 6. For X ∼ Poi(M) and any λ > 0,

P(X ≤ (1−λ)M)≤

(
e−λ

(1−λ)(1−λ)

)M

≤ e−
λ2M

2 ,
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and

P(X ≥ (1+λ)M)≤

(
eλ

(1+λ)(1+λ)

)M

≤ e−
min{λ2,λ}M

3 .

Let c be a sufficiently large absolute constant. As a corollary of the lemma above, for any

natural number µ > 100logn and j such that
√

µ/(c logn)> j ≥ 1,

Pr
(

N′x > µ+ jc
√

µ logn
)

Pr(1µ
x = 1)≤ e−Θ( j

√
c logn),

and for any i≥ 1 and natural number µ,

Pr
(
N′x > µ+ iµ

)
Pr(1µ

x = 1)≤ e−Θ(iµ),

Intuitively, Poisson random variables are highly concentrated around their mean values. Hence,

for a Poisson random variable X and natural numbers a,b such that a� b, we should expect the

product Pr(X ≥ a) ·Pr(X ≤ b) to be small. We are ready to bound the quantity of interest.

Lemma 7. For sufficiently large n and any two natural numbers µ,µ′ such that n logn > µ >

100logn and

µ− c1

√
µ

logn
≤ µ′ ≤ µ−1,

we have

E

((N′x)
µ−µ′

µµ−µ′

)2
E[1µ′

x ]≤ e2c
(
E[1µ′

x ]+
1

nΘ(
√

c)

)
.

Proof. The proof follows from the two concentration inequalities above. Note that for µ′ ≤ µ−1,
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those inequalities still hold if we replace Pr(1µ
x = 1) by Pr(1µ′

x = 1).

E

((N′x)
µ−µ′

µµ−µ′

)2
E[1µ′

x ]

≤

(
1+ c

√
logn

µ

)2(µ−µ′)

E[1µ′
x ]+

√
µ/(c logn)

∑
j=1

(
1+( j+1)c

√
logn

µ

)2(µ−µ′)

e−Θ( j
√

c logn)

+
∞

∑
i=
√

c

(1+(i+1))2(µ−µ′)e−Θ(iµ)

≤ e2cE[1µ′
x ]+

√
µ/(c logn)

∑
j=1

e2( j+1)ce−Θ( j
√

c logn)+
∞

∑
i=
√

c

eΘ(
√

µ log i)e−Θ(iµ)

≤ e2cE[1µ′
x ]+

1
nΘ(
√

c)
+

∞

∑
i=
√

c

eΘ(
√

µ log i)e−Θ(iµ)

= e2c
(
E[1µ′

x ]+
1

nΘ(
√

c)

)
.

Ignoring the 1/nΘ(
√

c) term, the proof actually shows that Eµ′
x,µ is at most a constant

multiple of
√

E[1µ′
x ], with high probability.

Under Poisson sampling, the multiplicity Nx is also a Poisson random variable with mean

npx. Note that E[1µ′
x ] = e−npx(npx)

µ′/µ′!≤ (npx)e−npx(npx)
µ′−1/(µ′−1)!=E[1µ′−1

x ](npx). This

observation together with an argument analogous to that above yields

Lemma 8. Under the same conditions as in Lemma 4,

E

((N′x)
µ−µ′

µµ−µ′

)2
E[1µ′

x ]≤ e2c
(
E[1µ′

x ]+
px

nΘ(
√

c)

)
.

Since E[1µ′
x ] = Pr(Nx = µ′), and Eµ′

x,µ = O(

√
E[1µ′

x ]) with high probability, there exists an

absolute constant c′ satisfying

Pr(Eµ′
x,µ ≥ c′)≤ px

nΘ(c)
.
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An Estimator for E[1µ
x]

While Eµ′
x,µ is an unbiased estimator for E[1µ

x ], in the last section we showed that it can

have a constant variance. To reduce the estimation variance, we estimate E[1µ
x ] by the following

estimator

Ex,µ :=
1

c1
√

µ/logn

µ−1

∑
µ′=µ−c1

√
µ/logn

Eµ′
x,µ.

The estimator simply averages a sequence of Eµ′
x,µ’s and remains as an unbiased estimator for

E[1µ
x ]. An important observation is that Ex,µ is the sum of Eµ′

x,µ = 1
µ′
x aµ′

µ (N′x)
µ−µ′ , and only

one of these terms can be non-zero, as 1µ′
x ·1µ

x = 0 for all µ 6= µ′. Therefore, the inequality

Pr(Eµ′
x,µ ≥ c′)≤ px/nΘ(c) immediately translates to

Pr

(
Ex,µ >

c′

c1
√

µ/logn

)
≤ px

nΘ(c)
.

We have designed Ex,µ in a way such that its variance would be small. Specifically,

Lemma 9. Under the same conditions as in Lemma 4,

Var(Ex,µ)≤Θ

(
logn

µ

) µ−1

∑
µ′=µ−c1

√
µ/logn

(
E[1µ′

x ]+
px

nΘ(
√

c)

)
.
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Proof. The variance of Ex,µ satisfies

Var(Ex,µ)
(a)
=

(
1

c1
√

µ/logn

)2

Var

 µ−1

∑
µ′=µ−c1

√
µ/logn

1µ′
x aµ′

µ (N
′
x)

µ−µ′


(b)
≤ Θ

(
logn

µ

)
E

 µ−1

∑
µ′=µ−c1

√
µ/logn

1µ′
x aµ′

µ (N
′
x)

µ−µ′

2

(c)
= Θ

(
logn

µ

) µ−1

∑
µ′=µ−c1

√
µ/logn

E
[(
1µ′

x aµ′
µ (N

′
x)

µ−µ′
)2
]

(d)
≤ Θ

(
logn

µ

) µ−1

∑
µ′=µ−c1

√
µ/logn

(
E[1µ′

x ]+
px

nΘ(
√

c)

)
,

where (a) follows from Var(aX) = a2Var(X), (b) follows from Var(X)≤ EX2, (c) follows from

1
µ′
x ·1µ

x = 0 for all µ 6= µ′, and (d) follows from Lemma 1.

Estimating E[Φµ]

The last section shows that Ex,µ is a well-behaved estimator for E[1µ
x ]. Following the

identity E[Φµ] = ∑x∈[k]E
[
1

µ
x
]
, we naturally estimate E[Φµ] by

Eµ := ∑
x∈[k]

Ex,µ.

By construction, Eµ is an unbiased estimator for E[Φµ]. Due to Poisson sampling, all the
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multiplicities Nx are independent. Following lemma 9, the variance of Eµ admits

Var(Eµ) = ∑
x∈[k]

Var(Ex,µ)

≤ ∑
x∈[k]

Θ

(
logn

µ

) µ−1

∑
µ′=µ−c1

√
µ/logn

(
E[1µ′

x ]+
px

nΘ(
√

c)

)

= Θ

(
logn

µ

) µ−1

∑
µ′=µ−c1

√
µ/logn

(
E[Φµ′]+

1
nΘ(
√

c)

)
.

Furthermore, by a non-asymptotic version of the Stirling’s formula,

E[1µ
x ] = e−npx

(npx)
µ

µ!
≤ e−µ µµ

µ!
≤ e−µµµ · (2π)−1/2 eµ

µµ+1/2 =
1√
2πµ

.

Combining this with the following inequality mentioned in the last section,

Pr

(
Ex,µ >

c′

c1
√

µ/logn

)
≤ px

nΘ(c)
,

we immediately get

Pr

(∣∣Ex,µ−E[1µ
x ]
∣∣> c′

c1
√

µ/logn

)
≤ Pr

(
Ex,µ >−

1√
2πµ

+
c′

c1
√

µ/logn

)
≤ px

nΘ(c)
,

where we have increased the value of c′ by 1.

We are ready to characterize the tail probability of Eµ, for which we use the following

variation [AJOS13b] of the well-known Bernstein inequality.

Lemma 10. Let Y1, . . . ,Ym be m independent variables such that with probability ≥ 1− εi,

|Yi−E[Yi]|< M, then for any δ ∈ (0,1),

Pr

(∣∣∣∣∣∑i
Yi−E

[
∑

i
Yi

]∣∣∣∣∣>
√

2∑
i

Var(Yi) log
1
δ
+

2
3

M log
1
δ

)
≤ 2δ+∑

i
εi.
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Set δ = n−10, m = k, and Yx = Ex,µ for all x ∈ [k], and choose M = c′/c1
√

µ/logn and

εx = px/nΘ(c) for all x ∈ [k]. For a sufficiently large absolute constant c4, the concentration

inequality above combines all the previous results and yields

Pr

∣∣Eµ−E[Φµ]
∣∣> c4

log
3
2 n
√

µ

√√√√√ 1
c2

1
+

µ−1

∑
µ′=µ−c1

√
µ/logn

E[Φµ′]

≤Θ

(
1

n10

)
.

Next we derive a similar inequality for which E[Φµ′]’s in the inner sum are replaced with E[Φµ].

To do this, we utilize the following lemma [AJOS13b], which shows that E[Φµ] and

E[Φµ−1] are often close to each other. Note that we have made the constants explicit.

Lemma 11. For µ≥ 100logn,

|E[Φµ]−E[Φµ−1]| ≤ 5

√
logn

µ
E[Φµ−1]+

3
n2 ,

and for µ≥ 1,

E[Φµ]≤ O
(
(logn)E[Φµ−1]+

1
n

)
.

By the above lemma, for n logn > µ≥ 100logn,

E[Φµ−1]+µ
3
n2 ≤

(
1+10

√
logn

µ

)(
E[Φµ]+ (µ+1)

3
n2

)
.

This recursive inequality implies that for sufficiently small constant c1 and any µ′ satisfying
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µ− c1
√

µ/logn≤ µ′ ≤ µ−1,

E[Φµ′]+µ′
3
n2 ≤

(
E[Φµ]+ (µ+1)

3
n2

) µ

∏
i=µ′+1

(
1+10

√
logn

i

)

≤
(
E[Φµ]+ (µ+1)

3
n2

)(
1+10

√
logn

µ− c1
√

µ/logn

)c1
√

µ/logn

≤
(
E[Φµ]+ (µ+1)

3
n2

)(
1+

√
121logn

µ

)11c1

√
µ

121logn

≤
(
E[Φµ]+ (µ+1)

3
n2

)
e11c1

≤ 2
(
E[Φµ]+ (µ+1)

3
n2

)
,

where we have used the fact that (1+ 1/x)x < e for x > 0. Consequently, under the same

conditions,

E[Φµ′]≤ 2E[Φµ]+2(µ+1)
3
n2 ≤ 2E[Φµ]+

7logn
n

.

Hence for sufficiently small c1,

µ−1

∑
µ′=µ−c1

√
µ/logn

E[Φµ′ ]≤ 2c1
√

µ/logn
(
E[Φµ]+

7logn
n

)
≤ 2c1

√
µ

logn
E[Φµ]+

7logn√
n

.

This together with the previous tail bound yields

Lemma 12. For n logn > µ≥ 100logn,

Pr

(∣∣Eµ−E[Φµ]
∣∣> c4

log
3
2 n
√

µ

√
1
c2

1
+2c1

√
µ

logn
E[Φµ]

)
≤Θ

(
1

n10

)
.

An Alternative Estimator for E[Φµ−1]

Under the proper conditions mentioned previously, Ex,µ−1 is not only unbiased in esti-

mating E[1µ−1
x ], but also has small variance. However, our latter analysis calls for bounding
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the difference between Ex,µ−1 and Ex,µ, and it is inconvenient to use Ex,µ−1 since it may have

fewer terms than Ex,µ. Hence to simplify our derivations, we construct the following estimator for

E[1µ−1
x ],

E ′x,µ−1 :=
1
c1

√
logn

µ

µ−1

∑
µ′=µ−c1

√
µ/logn

Eµ′

x,(µ−1),

and consequently estimate E[Φµ−1] by

E ′µ−1 := ∑
x∈[k]

E ′x,µ−1.

By an argument that is almost the same as that in the last few sections,

Lemma 13. For n logn > µ≥ 100logn,

Pr

∣∣E ′µ−1−E[Φµ−1]
∣∣> c4

log
3
2 n
√

µ

√√√√ 1
c2

1
+2c1

√
µ−1
logn

E[Φµ−1]

≤Θ

(
1

n10

)
.

The Difference between Two Estimators

In this section, we consider

E(1)
µ := Eµ−E ′µ−1 = ∑

x∈[k]
(Ex,µ−E ′x,µ−1),

the difference between the two estimators Eµ and E ′µ−1. We show that, E(1)
µ , as an unbiased

estimator for E[Φµ]−E[Φµ−1], highly concentrates around its mean. In the subsequent sections,

we leverage this property to design an accurate estimator for the total probability Mµ.

Similar to the previous derivations, we start by considering a single term

E(1)
x,µ := Ex,µ−E ′x,µ−1.
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We can bound the absolute value of E(1)
x,µ as follows.

|E(1)
x,µ |= |Ex,µ−E ′x,µ−1|

=

∣∣∣∣∣∣ 1
c1

√
logn

µ

µ−1

∑
µ′=µ−c1

√
µ/logn

Eµ′
x,µ−

1
c1

√
logn

µ

µ−1

∑
µ′=µ−c1

√
µ/logn

Eµ′

x,(µ−1)

∣∣∣∣∣∣
≤ 1

c1

√
logn

µ

µ−1

∑
µ′=µ−c1

√
µ/logn

∣∣∣Eµ′
x,µ−Eµ−1

x,µ

∣∣∣
=

1
c1

√
logn

µ

µ−1

∑
µ′=µ−c1

√
µ/logn

∣∣∣1µ′
x aµ′

µ (N
′
x)

µ−µ′−1µ′
x aµ′

µ−1(N
′
x)

(µ−1)−µ′
∣∣∣

=
1
c1

√
logn

µ

µ−1

∑
µ′=µ−c1

√
µ/logn

1µ′
x aµ′

µ (N
′
x)

(µ−1)−µ′ ∣∣(N′x−µ)− (µ−µ′)+1
∣∣ .

The above inequality together with Var(E(1)
x,µ )≤ E(E(1)

x,µ )2 implies

Var(E(1)
x,µ )≤

1
c2

1

logn
µ

µ−1

∑
µ′=µ−c1

√
µ/logn

(aµ′
µ )

2E[1µ′
x ]E
(
(N′x)

(µ−1)−µ′ ∣∣(N′x−µ)− (µ−µ′)+1
∣∣)2

,

where we have used 1µ′
x ·1µ

x = 0 for all µ 6= µ′. Note that the bound on the right-hand side is a

sum of three-term products. Assume that n� 1 and n logn > µ > 100logn, and consider one

of these products that corresponds to an arbitrary µ′ satisfying µ− c1(µ/logn) ≤ µ′ ≤ µ− 1.

Lemma 5 bounds its first term as (aµ′
µ )2 ≤ 4/(µµ−µ′)2. Replacing the first term with this bound,

the following lemma further upper bounds the resulting quantity.

Lemma 14. Under the same conditions as in Lemma 4,

E[1µ′
x ]

(µµ−µ′)2E
(
(N′x)

(µ−1)−µ′ ∣∣(N′x−µ)− (µ−µ′)+1
∣∣)2
≤Θ

(
logn

µ

)
E[1µ′

x ]+
1

nΘ(
√

c)
.
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Proof. Since (N′x−µ) can be negative, we need the concentration inequality

Pr
(

N′x−µ <−c
√

µ logn
)

Pr(1µ
x = 1)≤ e−Θ(

√
c logn),

which follows from Lemma 6. Similar to the proof of Lemma 4, we have

E[1µ′
x ]E
(
(N′x)

(µ−1)−µ′ ∣∣(N′x−µ)− (µ−µ′)+1
∣∣)2 1

(µµ−µ′)2

≤ E[1µ′
x ]

(
2c
√

µ logn
µ

)2
(

1+ c

√
logn

µ

)2((µ−1)−µ′)

+

(
2µ−1

u

)2

e−Θ(
√

c logn)

+

√
µ/(c logn)

∑
j=1

(
1+( j+1)c

√
logn

µ

)2(µ−µ′)

e−Θ( j
√

c logn)+
∞

∑
i=
√

c

(1+(i+1))2(µ−µ′)e−Θ(iµ).

Since (1+ 1/x)x < e for x > 0, the first term on the right-hand side can be bounded by 4(c2 ·

e2c)E[1µ′
x ](logn)/µ. The sum of the remaining three terms is at most

4e−Θ(
√

c logn)+

√
µ/(c logn)

∑
j=1

e2( j+1)ce−Θ( j
√

c logn)+
∞

∑
i=
√

c

eΘ(
√

µ log i)e−Θ(iµ) ≤ 1
nΘ(
√

c)
.

Consolidating these bounds yields the desired result.

By E[1µ′
x ]≤ E[1µ′−1

x ](npx), an analogous argument yields

Lemma 15. Under the same conditions as in Lemma 4,

E[1µ′
x ]

(µµ−µ′)2E
(
(N′x)

(µ−1)−µ′ ∣∣(N′x−µ)− (µ−µ′)+1
∣∣)2
≤Θ

(
logn

µ

)
E[1µ′

x ]+
px

nΘ(
√

c)
.

There is always a unique µ′ such that 1µ′
x = 1. The proof of Lemma 14 together with

E[1µ′
x ]≤ E[1µ′−1

x ](npx) also shows that for a sufficiently large absolute constant c′′,

Pr
(
|E(1)

x,µ |>
c′′ logn

µ

)
≤ px

nΘ(c)
.
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Furthermore, the expectation of E(1)
x,µ satisfies

Lemma 16. For any natural number µ such that n logn > µ≥ 100logn,

|E[E(1)
x,µ ]| ≤ 1/µ.

Proof. Recall that E(1)
x,µ is an unbiased estimator for E[1µ

x ]−E[1µ−1
x ]. Therefore,

|E[E(1)
x,µ ]|= |E[1µ

x ]−E[1µ−1
x ]|

=

∣∣∣∣e−npx
(npx)

µ

µ!
− e−npx

(npx)
µ−1

(µ−1)!

∣∣∣∣
=

∣∣∣∣e−npx
(npx)

µ−1(npx−µ)
µ!

∣∣∣∣ .
In general, consider the function gµ(y) := e−yyµ−1(y−µ)/µ! for y≥ 0. The first-order derivative

of gµ(y) with respect to y is

g′µ(y) =−
1
µ!

e−yy−2+µ(µ2 + y2−µ(1+2y))

which has two roots, y1 := µ−√µ and y2 := µ+
√

µ. Since both gµ(0) and limy→∞ g(y) equal to

zero, the maximum of |gµ(y)| for y≥ 0 is max{|g(y1)|, |g(y2)|}. By a non-asymptotic version of

109



the Stirling’s formula,

|g(y1)|= e−µ+
√

µ (µ−
√

µ)µ−1√µ
µ!

≤ e−µ+
√

µ(µ−√µ)µ−1√µ
eµ

√
2πµµ+ 1

2

= e
√

µ
(

µ−√µ
µ

)µ−1 1√
2πµ

= e
√

µ
(

1− 1
√

µ

)√µ(
√

µ−(1/√µ)) 1√
2πµ

≤ e
√

µe−(
√

µ−(1/√µ)) 1√
2πµ

=
e1/
√

µ
√

2πµ
≤ 1

µ
.

Similarly, we can also show that |g(y1)| ≤ 1/µ.

Increase the value of c′′ by 1. The above lemma implies

Pr
(
|E(1)

x,µ −E[E(1)
x,µ ]|>

c′′ logn
µ

)
≤ px

nΘ(c)
.

Turning back to E(1)
µ and using Lemma 15, we can bound the variance of E(1)

µ as

Var(E(1)
µ )≤ ∑

x∈[k]
Var(E(1)

x,µ )≤Θ

(
log2 n

µ2

) µ−1

∑
µ′=µ−c1

√
µ/logn

(
E[Φµ′]+

1
nΘ((c/k)∧k)

)
.

Let c′4 be a sufficiently large absolute constant. By the Bernstein-inequality variation in Lemma 10,

Pr

∣∣∣E(1)
µ −E[E(1)

µ ]
∣∣∣> c′4

log2 n
µ

√√√√√1+
µ−1

∑
µ′=µ−c1

√
µ/logn

E[Φµ′]

≤Θ

(
1

n10

)
.

By Lemma 11, for sufficiently small constant c1 and any µ′ satisfying µ−c1
√

µ/logn≤ µ′≤ µ−1
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,

µ−1

∑
µ′=µ−c1

√
µ/logn

E[Φµ′ ]≤ 2c1
√

µ/logn
(
E[Φµ]+

7logn
n

)
≤ 2c1

√
µ

logn
E[Φµ]+

7logn√
n

.

Combined, the two inequalities above yield

Lemma 17. For n logn > µ≥ 100logn,

Pr

(∣∣∣E(1)
µ −E[E(1)

µ ]
∣∣∣> c′4

log2 n
µ

√
2+2c1

√
µ

logn
E[Φµ]

)
≤Θ

(
1

n10

)
.

Estimating the Total Probability Mass

A genie estimator that knows both E[Φµ] and E[Φµ−1] could accurately estimate Mµ−1 by

Oµ−1 := Φµ−1
µ
n

E[Φµ]

E[Φµ−1]
.

and achieve the following guarantee [AJOS13b] for a sufficiently large constant c′′4 .

Lemma 18. For µ satisfying n logn > µ≥ 100logn and E[Φµ−1]≥ 1,

Pr

(
|Mµ−1−Oµ−1| ≥ c′′4

√
E[Φµ−1](µ−1) log2 n

n

)
≤ O

(
1

n10

)
.

Replace E[Φµ]/E[Φµ−1] with Eµ/E ′µ−1. Our estimator is simply

Ôµ−1 := Φµ−1
µ
n

Eµ

E ′µ−1
.

Note that we use E ′µ−1 instead of Eµ−1 just to simplify the proofs. Clearly, our objective is to

characterize the estimation error |Mµ−1− Ôµ−1|. By the triangle inequality and the above lemma,

it suffices to bound
∣∣Oµ−1− Ôµ−1

∣∣. To do this, we use the following interesting result.
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Lemma 19. If b > 0, b+∆b > 0, and |∆b| ≤ 0.9b,

∣∣∣∣a+∆a
b+∆b

− a
b

∣∣∣∣≤ O
(
|∆b||a|+ |∆a||b|

b2

)
.

The above lemma appears in [AJOS13b] and follows by simple algebra. Set a = E[Φµ−

Φµ−1], b = E[Φµ−1], ∆a = Eµ−E ′µ−1−E[Φµ−Φµ−1], and ∆b = E ′µ−1−E[Φµ−1]. Note that

a = E[E(1)
µ ] and ∆a = E(1)

µ −E[E(1)
µ ]. Assuming that n logn > µ ≥ 100logn, we analyze each

term below.

For a = E[Φµ−Φµ−1], by Lemma 11,

|a| ≤ 5

√
logn

µ
E[Φµ−1]+

3
n2 .

For ∆a = E(1)
µ −E[E(1)

µ ], as shown in Lemma 17,

Pr

(
|∆a|> c′4

log2 n
µ

√
2+2c1

√
µ

logn
E[Φµ]

)
≤Θ

(
1

n10

)
.

For b = E[Φµ−1], Lemma 11 implies a lower bound

b≥

(
1+5

√
logn

µ

)−1(
E[Φµ]−

3
n2

)
≥ 2

3
E[Φµ]−

2
n2 ,

as well as an upper bound

b≤

(
1+10

√
logn

µ

)
E[Φµ]+

3
n2 ≤ 2E[Φµ]+

3
n2 .
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For ∆b = E ′µ−1−E[Φµ−1], Lemma 13 states that

Pr

|∆b|> c4
log

3
2 n
√

µ

√√√√ 1
c2

1
+2c1

√
µ−1
logn

E[Φµ−1]

≤Θ

(
1

n10

)
.

Our bound on |b| further implies

Pr

|∆b|> c4
log

3
2 n
√

µ

√√√√ 2
c2

1
+6c1

√
µ−1
logn

E[Φµ]

≤Θ

(
1

n10

)
.

Here, we can choose a sufficiently large constant c5 so that, if n� 1, µ> 100logn, and E[Φµ−1]>

c5(log2 n)/10, then |∆b| < 0.9b with probability at least 1−Θ(n−10). Also note that Φµ =

∑x∈[k]1
µ
x . In Lemma 10, set δ = n−10, m = k, and Yx = 1

µ
x for all x ∈ [k], M = 1, and choose

εx = 0 for all x ∈ [k]. Then,

Pr

∣∣Φµ−E
[
Φµ
]∣∣>√20 ∑

x∈[k]
Var(1µ

x) logn+
20
3

logn

≤ 2
n10 .

Together with Var(1µ
x)≤ E(1µ

x)2 = E[1µ
x ], the above inequality implies

Lemma 20. For sufficiently large n, and µ satisfying µ > 100logn and E[Φµ−1]> c5(log2 n)/10,

Pr
(∣∣Φµ−E

[
Φµ
]∣∣>√20E[Φµ] logn+

20
3

logn
)
≤ 2

n10 .

For our purpose, it suffices to apply the estimator Ôµ−1 to indices µ satisfying µ> 100logn

and E[Φµ]≥ 0.5c5 log2 n. While not knowing p, we can use the independent sample sequence

XN′′ to ensure that with high probability, E[Φµ]≥ 0.5c5 log2 n. More concretely, we only apply

Ôµ−1 to indices µ satisfying Φ′′µ−1 > c5 log2 n. By construction, E
[
Φµ
]
= E

[
Φ′′µ
]
. Then for
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sufficiently large c5 and n, and E[Φµ−1]< 0.5c5 log2 n, Lemma 20 implies

Pr
(
Φ
′′
µ−1 > c5 log2 n

)
≤ Pr

(∣∣Φ′′µ−1−E
[
Φµ−1

]∣∣>√20E[Φµ−1] logn+
20
3

logn
)
≤ 2

n10 .

Hence for µ satisfying the conditions mentioned previously, we can assume that E[Φµ−1] ≥

0.5c5 log2 n. Under this assumption, Lemma 11 implies that E[Φµ]≥ E[Φµ−1]/3≥ c5(log2 n)/6.

By the same reasoning, E[Φµ]/18≤ E[Φµ−1]/6≤Φµ−1 ≤ 6E[Φµ−1]≤ 18E[Φµ] with probability

at least 1−Θ(n−10). In other words, we can also assume that Φµ−1 = Θ(E[Φµ−1]) = Θ(E[Φµ]).

Recall that a = E[Φµ−Φµ−1], b = E[Φµ−1], ∆a = Eµ−E ′µ−1−E[Φµ−Φµ−1], and ∆b =

E ′µ−1−E[Φµ−1]. The union bound together with Lemma 19 combines all the results in this section

and yields that with probability at least 1−Θ(n−10),

∣∣Oµ−1− Ôµ−1
∣∣= Φµ−1

µ
n

∣∣∣∣ Eµ

Eµ−1
−

E[Φµ]

E[Φµ−1]

∣∣∣∣
= Φµ−1

µ
n

∣∣∣∣Eµ−Eµ−1

Eµ−1
−

E[Φµ]−E[Φµ−1]

E[Φµ−1]

∣∣∣∣
= Φµ−1

µ
n

∣∣∣∣a+∆a
b+∆b

− a
b

∣∣∣∣
≤ O

(
Φµ−1

µ
n
|∆b||a|+ |∆a||b|

b2

)

≤ O

Φµ−1
µ
n

(
log

3
2 n√
µ

√√
µ−1
lognE[Φµ]

)√
logn
µ+1E[Φµ−1]

(E[Φµ])2



+O

Φµ−1
µ
n

(
log2 n

µ

√√
µ

lognE[Φµ]

)
E[Φµ]

(E[Φµ])2


= O

(
log2 n

n

√√
µ

logn
E[Φµ]

)
.

Again, we can make c5 sufficiently large so that with probability at least 1−O(n−10), the upper
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bound is at most 0.9Oµ−1 and Oµ−1 = Θ(E[Φµ−1]µ/n). Combined, the upper bound of 0.9Oµ−1,

the identity Φµ−1 = Θ(E[Φµ−1]) = Θ(E[Φµ]), and Lemma 18 imply

Lemma 21. For µ satisfying n logn > µ≥ 100logn and Φ′′µ > c5 log2 n,

Pr

(
|Mµ−1− Ôµ−1| ≥ 2c′′4

√
E[Φµ−1](µ−1) log2 n

n

)
≤ O

(
1

n10

)
.

Therefore, with probability at least 1−O(n−10), we have both Ôµ−1 = Θ(E[Φµ−1]µ/n)

and

|Mµ−1− Ôµ−1| ≤ O

(√
E[Φµ−1](µ−1) log2 n

n

)
= O

(√
Φµ−1(µ−1) log2 n

n

)
.

Furthermore, if these two claims hold,

(Mµ−1− Ôµ−1)
2

Ôµ−1
≤ O

((
(
√

E[Φµ−1](µ−1) log2 n)/n
)2

E[Φµ−1]µ/n

)
≤ O

(
log4 n

n
1Φµ−1>0

)
.

Finally, we note that these results hold with high probability, i.e., 1−O(n−10), instead of surely.

To make sure that the KL-divergence between the underlying truth and our estimates is not infinity,

we modify our estimator slightly and denote

Ô′µ−1 := min{max{1/n, Ôµ−1}, log2 n}.

We use Ô′µ−1 to estimate Mµ−1 iff µ satisfies n logn > µ ≥ 100logn and Φ′′µ > 2c5 log2 n. Note

that this estimator also admits the above inequalities, since with probability at least 1−O(n−10),

the value of the original estimator satisfies Ôµ−1 = Θ(µΦµ−1/n)≤ O(N/n) = O(logn)< log2 n

and Ôµ−1 = Θ(µΦµ−1/n)≥Ω((log3 n)/n)> 1/n, implying that Ô′µ−1 = Ôµ−1.
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The Good-Turing Estimator

The Good-Turing estimator estimates Mµ−1 by

Ĝµ−1 :=
µ
n

Φµ.

Let c′5 be a sufficiently large absolute constant. The following lemma [DM04] characterizes the

performance of Ĝµ−1 in estimating Mµ−1.

Lemma 22. For µ satisfying E[Φµ−1]≥ 1 and δ ∈ (0,1),

Pr

(
|Mµ−1− Ĝµ−1|> c′5

√
E[Φµ]+1

µ log2 n
δ

n

)
≤ δ.

For indices µ satisfying 2 ≤ u ≤ 100logn and Φ′′µ−1 > 2c5(log2 n), we simply use the

following variant of the Good-Turing estimator,

Ĝ′µ−1 := max
{

1
n
, Ĝµ−1

}
.

Given Φ′′µ−1 > 2c5(log2 n), by derivations in the last section, we can assume that Φµ−1 =Θ(Φµ) =

Θ(E[Φµ−1]) = Θ(E[Φµ])≥ log2 n, and with probability at least 1−O(n−10), we would be correct.

Choose δ = n−10 in Lemma 22. Then,

Pr
(
|Mµ−1− Ĝµ−1|> 152c′5

√
E[Φµ]

µ log2 n
n

)
≤ 1

n10 .

Additionally, note that µ≤ 100logn. Hence with probability at least 1−O(n−10),

|Mµ−1− Ĝµ−1| ≤ O
(√

E[Φµ]
µ log2 n

n

)
≤ O

(√
Φµ−1(µ−1) log5/2 n

n

)
,
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and

(Mµ−1− Ĝµ−1)
2

Ĝµ−1
≤ O


(√

E[Φµ]
µ log2 n

n

)2

µ
nE[Φµ]

= O
(

µ log4 n
n

)
= O

(
log5 n

n
1Φµ−1>0

)
.

The estimator G′µ−1 also admits these inequalities since with probability at least 1−O(n−10), we

have G′µ−1 = µΦµ/n≥ 2(log3 n)/n > 1/n, implying G′µ = Gµ.

An Estimator for M0

For µ = 1, regardless of the value of Φ′′µ−1, we estimate the total probability Mµ−1 = M0,

by the estimator Ĝ′0 = max{1,Φ1}/n. We divide our analysis into two cases according to E[Φ0].

Case 1: If E[Φ0]≥ 1, then by Lemma 22, with probability at least 1−O(n−10),

|M0− Ĝ′0| ≤ |M0− Ĝ0|+
1
n
≤ O

(√
E[Φ1]+1

log2 n
n

)

If E[Φ1] ≥ c5 log2 n, then by Lemma 20 and arguments in the last section, with probability at

least 1−O(n−10), we have E[Φ1] = Θ(Φ1)≥Ω(log2 n). This together with the above inequality

further implies Ĝ′0 = Φ1/n and

|M0− Ĝ′0| ≤ O
(√

Φ1
log2 n

n

)
.

Therefore, with probability at least 1−O(n−10), we have Φ1 > 0 and

(M0− Ĝ′0)
2

Ĝ′0
≤ O


(√

Φ1
log2 n

n

)2

Φ1/n

≤ O
(

log4 n
n

1Φ1>0

)
.
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If E[Φ1]< c5 log2 n, then by the first inequality, with probability at least 1−O(n−10),

|M0− Ĝ′0| ≤ O
(√

E[Φ1]+1
log2 n

n

)
≤ O

(
log3 n

n

)
,

which further implies

(M0− Ĝ′0)
2

Ĝ′0
≤ O


(

log3 n
n

)2

1/n

≤ O

(
log6 n

n

)
.

Case 2: If E[Φ0]≤ 1, then by Lemma 11,

E[Φ1]≤ O
(
(logn)E[Φ0]+

1
n

)
≤ O (logn) .

Furthermore, by Lemma 20, with probability at least 1−O(n−10),

Φ0 ≤ O(logn).

For δ ∈ (0,1) and symbols x satisfying px ≥ log(n/δ)/n, we have Pr(10
x = 1) = e−npx ≤ δ/n.

Note that the number of such symbols is at most n. Hence by the union bound,

Pr
(
∃x ∈ [k] s.t. px >

log(n/δ)

n
,10

x = 1
)
≤ n · δ

n
= δ.

Setting δ = n−10 in the above inequality yields

Pr
(
∀x ∈ [k] s.t. px >

11log(n)
n

,10
x = 0

)
≥ 1−n−10.
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Therefore if we further have Φ0 ≤ O(logn),

M0 = ∑
x∈[k]

10
x · px ≤ O(Φ0) ·

11log(n)
n

= O
(

log2 n
n

)
.

In addition, since E[Φ1]≤ O(logn), Lemma 20 implies that with probability at least 1−O(n−10),

Φ1 ≤ O(logn).

Consolidating these results shows that with probability at least 1−O(n−10),

|M0− Ĝ′0| ≤ O
(

log2 n
n

+
logn

n

)
= O

(
log2 n

n

)
.

and

(M0− Ĝ′0)
2

Ĝ′0
≤ O


(

log2 n
n

)2

1/n

≤ O
(

log4 n
n

)
.

Summary of case 1 and 2: With probability at least 1−O(n−10),

|M0− Ĝ′0|= O
(
(
√

Φ1 +1) log3 n
n

)

and
(M0− Ĝ′0)

2

Ĝ′0
≤ O

(
log6 n

n

)
.

The Empirical Estimator

For Φ′′µ−1 ≤ 2c5(log2 n) and µ≥ 2, we use the empirical estimator,

φ̂µ−1 :=
µ−1

n
Φµ−1.
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By Lemma 20, since Φ′′µ−1 ≤ 2c5(log2 n), we can assume that E[Φµ−1]≤ O(log2 n) and Φµ−1 ≤

O(log2 n), and be correct with probability at least 1−O(n−10).

The next lemma in [DM04] characterizes the performance of φ̂µ−1 in estimating Mµ−1.

Lemma 23. For µ≥ 2 and δ ∈ (0,1),

Pr
(
|Mµ−1− φ̂µ−1| ≤ O

(
Φµ−1

√
µ log n

δ

n

))
≥ 1−δ.

Setting δ = n−10 in the lemma implies that with probability at least 1−n−10,

|Mµ−1− φ̂µ−1| ≤ O
(

Φµ−1

√
µ logn

n

)
≤ O

(√
Φµ−1(µ−1) log2 n

n

)
.

Assume that all the inequalities above hold. Then,

(Mµ−1− φ̂µ−1)
2

φ̂µ−1
≤ O


(

Φµ−1

√
µ logn

n

)2

µ−1
n Φµ−1

= O

(
Φµ−1 log2 n

n

)
= O

(
log4 n

n
1Φµ−1>0

)
.

As a final remark, we can choose c2 = 2c5.

Final Estimator

In case our estimates sum to 1, we can simply estimate each Mµ by

M̂µ :=



Ĝ′µ if µ = 0,

φ̂µ if µ≥ 1 and Φµ ≤ c2(log2 n),

Ô′µ if µ > c3 logn and Φµ > c2(log2 n),

Ĝ′µ if c3 logn≥ µ≥ 1 and Φµ > c2(log2 n),

120



Otherwise, we normalize these probability estimates by their sum,

T := ∑
µ≥0

M̂µ,

and approximate each Mµ by M̂∗µ := M̂µ/T .

First we show that T is often close to 1. By Lemma 6, under Poisson sampling,

Pr

(
1≤ ∑

µ≥1
Φµµ = Poi(n)≤ n logn

)
≥ 1−O(e−n).

By the union bound and results in the previous sections, with probability at least 1−O(n−8),

|Mµ− M̂µ| ≤ Õ

(√
Φµµ
n

)
,∀µ≥ 1,

(Mµ− M̂µ)
2

M̂µ
≤ Õ

(
1Φµ>0

n

)
,∀µ≥ 1,

|M0− M̂0| ≤ Õ
(√

Φ1 +1
n

)
,

and
(M0− M̂0)

2

M̂0
≤ Õ

(
1
n

)
.
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These inequalities further imply that with probability at least 1−O(n−8),

|T −1| ≤ |M̂0−M0|+ ∑
µ≥1
|M̂µ−Mµ|

≤ Õ
(√

Φ1 +1
n

)
+ ∑

µ≥1
Õ

(√
Φµµ
n

)

= ∑
µ≥0

Õ

(√
Φµµ
n

)

≤ Õ

(√
∑µ≥11Φµ>0

n

)
,

where the second inequality follows from ∑µ≥1 µΦµ < n logn and the Cauchy-Schwarz inequality.

To characterize the performance of estimator M̂∗ := {M̂∗µ}µ≥0, we bound the KL diver-

gence by the χ-squared distance. By the above inequalities, with probability at least 1−O(n−8),

∑
µ≥0

Mu log
Mµ

M̂∗µ
≤ ∑

µ≥0

(Mµ− M̂∗µ)
2

M̂∗µ

≤ 2(T −1)2 + ∑
µ≥0

2T
(Mµ− M̂µ)

2

M̂µ

≤ Õ
(

∑µ≥11Φµ>0

n

)
+ Õ

(
1
n

)
+ ∑

µ≥1
Õ
(
1Φµ>0

n

)
= Õ

(
∑µ≥11Φµ>0

n

)
= Õ

(
DΦ

n

)
.

Finally, for each x ∈ [k], define our probability estimate by

p̂∗x(X
n) =

M̂∗Nx

ΦNx

.
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The following identity [OS15] completes the proof of Theorem 1.

˜̀Xn(p, p̂∗) = ∑
µ≥0

Mµ log
Mµ

M̂∗µ
.

3.C Proof of Corollary 9

We begin with a lemma that partially characterizes the shape of a log-concave distribution.

Lemma 24. [DKS16a] Let p be a log-concave distribution with mean µp and standard deviation

σp. Let α,β ∈ [k] be integers satisfying α≤ µp−Ω(σp(1+ log(1/ε))) and β≥ µp +Ω(σp(1+

log(1/ε))). Then,
α

∑
x=1

px +
k

∑
x=β

px ≤ 2ε.

In addition, for σp larger than an absolute constant, the maximum probability satisfies

max
x∈[k]

px ∈ [1/(8σp),1/σp].

Setting ε = 1/n5 in the above lemma, we obtain

Pr(DΦ > Ω(log(n5)σ))≤ Pr(D > Ω(log(n5)σ))

≤ Pr(∃x,s.t. x 6∈ (α,β),Nx ≥ 1)

≤
α

∑
x=1

npx +
k

∑
x=β

npx

≤ 2 ·n−4.

Therefore, E[DΦ]≤ O
(
log(n5)σ

)
. Now, we use the second part of Lemma 9 to derive a different
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upper bound on E[DΦ]. Let jmax be the index such that maxx∈[k] px ∈ I jmax .

( jmax−1)2 logn
n

< max
x∈[k]

px <
logn

σ
.

The above inequality implies jmax <
√

2n/σ+1. Using the same reasoning as in Section 4.2 in

the main paper, we get

E[DΦ]≤ O
(
(
√

n/σ)
2
3 ·n

1
3

)
· logn = Õ

(
(σn)−

1
3

)
.

Combining the above two upper bounds on E[DΦ] yields

Corollary 14. For any distribution p ∈ Ln,σ
k and p′ ∈ 〈p〉,

r̃n(p′, p̂∗)≤ Õ
(
(σn)−

1
3 ∧ σ

n

)
.

3.D Proof of Corollary 11

Consider the collection P α,c
k := {p∈∆k : px≤ c ·x−α} of enveloped (truncated) power-law

distributions. Note that this definition generalizes power-law families, and that distributions in

P α,c
k are not necessarily log-convex. Let β ∈ (0,1) be a parameter to be determined, and x0 be

the threshold such that 2n(c · x−α

0 ) = nβ. The symbols x ∈ [k] that are no larger than x0 contribute

at most x0 to DΦ. On the other hand, for any x > x0, we have E[Nx] = npx ≤ n(c · x−α)< 0.5nβ.

Therefore, for x > x0,

Pr(Nx > 2nβ)≤ npx

1− px
Pr(Nx ≥ 2nβ)

≤ 2npx Pr
(

Nx ≥ E[Nx]+nβ

)
≤ 2npx exp

(
−nβ/3

)
,

124



where the first inequality follows from direct comparison and the last follows from the Chernoff

bound for binomial random variables. By the union bound,

Pr(∃x ∈ [k] s.t. Nx > 2nβ)≤ ∑
x∈[k]

Pr(Nx > 2nβ)

≤ 2nexp
(
−nβ/3

)
.

Therefore, with probability at least 1−2nexp
(
−nβ/3

)
,

DΦ ≤ x0 +2nβ = (2c)
1
α n

1−β

α +2nβ.

Optimizing the right-hand side by choosing β = 1/(α+1), the inequality simplifies to

DΦ ≤ ((2c)
1
α +2)n

1
α+1 .

Since DΦ ≤ n, we can convert this high-probability result into the expectation bound,

E[DΦ]≤ O(n
1

α+1 ).

Along with Corollary 6 in the main paper this implies

Corollary 15. For any distribution p ∈ P α,c
k and p′ ∈ 〈p〉,

r̃n(p′, p̂∗)≤ Õc,α

(
n−max{ α

α+1 ,
1
2}
)
.
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Chapter 4

Data Amplification: Instance-Optimal

Property Estimation

4.1 Introduction

Recent years have seen significant interest in estimating properties of distributions

over large domains [VV11a, JVHW15, JHW16, WY16, OSW16, ADOS17, HOSW18, WY19,

HO19a, HO19c, CSS19b, HL20a]. Chief among these properties are support size and coverage,

Shannon entropy, and L1 distance to a known distribution. The main achievement of these papers

is essentially estimating properties of distributions with alphabet size k using just k/ logk samples.

In practice however, the underlying distributions are often simple, and their properties

can be accurately estimated with significantly fewer than k/ logk samples. For example, if the

distribution is concentrated on a small part of the domain, or is exponential, very few samples

may suffice to estimate the property. To address this discrepancy, [HOSW18] took the following

competitive approach.

The best-known distribution property estimator is the empirical estimator that replaces

the unknown underlying distribution by the observed empirical distribution. For example, with
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n samples, it estimates entropy by the formula −∑i(Ni/n) log(Ni/n) where Ni is the number of

times symbol i appeared. Besides its simple and intuitive form, the empirical estimator is also

consistent, stable, and universal. It is therefore the most commonly used property estimator for

data-science applications.

The estimator in [HOSW18] uses n samples and for any underlying distribution achieves

the same performance that the empirical estimator would achieve with n
√

logn samples. It

therefore provides an effective way to amplify the amount of data available by a factor of
√

logn,

regardless of the domain or structure of the underlying distribution.

In this paper we present novel estimators that increase the amplification factor for all

sufficiently smooth properties including those mentioned above from
√

logn to the information-

theoretic bound of logn. Namely, for every distribution their expected estimation error with n

samples is that of the empirical estimator with n logn samples and no further uniform amplification

is possible.

It can further be shown [VV11a, JVHW15, ADOS17, WY19] that the empirical estimator

estimates all of the aforementioned four properties with linearly many samples, hence the sample

size required by the new estimators is always at most the k/ logk guaranteed by the state-of-the-art

estimators.

The current formulation has several additional advantages over previous approaches,

which we illustrate as follows.

Fewer assumptions It eliminates the need for some commonly used assumptions. For

example, support size cannot be estimated with any number of samples, as arbitrarily-many

low-probabilities may be missed. Hence previous research [ADOS17, WY19] unrealistically

assumed prior knowledge of the alphabet size k, and additionally that all positive probabilities

exceed 1/k. By contrast, the current formulation does not need these assumptions. Intuitively, if

a symbol’s probability is so small that it won’t be detected even with n logn samples, we do not

need to worry about it.

127



Refined bounds For some properties, our results are more refined than previously shown.

For example, existing results estimate the support size to within ±εk, rendering the estimates

rather inaccurate when the true support size S is much smaller than k. By contrast, the new

estimation errors are bounded by ±εS, and are therefore accurate regardless of the support size.

A similar improvement holds for the support coverage that we introduce below.

Graceful degradation For the previous results to work, one needs at least k/ logk

samples. With fewer samples, the estimators have no guarantees. By contrast, the guarantees of

the new estimators work for any sample size n. If n < k/ logk, the performance may degrade, but

will still track that of the empirical estimators with a factor logn more samples. See Theorem 1

for an example.

Instance optimality With the recent exception of [HOSW18], all modern property-

estimation research took a min-max-related approach, evaluating the estimation improvement

based on the worst possible distribution for the property. In reality, practical distributions are rarely

the worst possible and often quite simple, rendering min-max approach overly pessimistic, and

its estimators, typically suboptimal in practice. In fact, for this very reason, practical distribution

estimators do not use min-max based approaches [GS95]. By contrast, our competitive, or

instance-optimal, approach provably ensures amplification for every underlying distribution,

regardless of its complexity or support size.

In addition, the proposed estimators run in time near-linear in the sample size, and the

constants involved are very small, attributes shared by some, though not all existing estimators.

Below, we formalize the foregoing discussion in definitions.

Let ∆k denote the collection of discrete distributions over [k] := {1, . . . ,k}. A distribution

property is a mapping F : ∆k→ R. It is additive if it can be written as

F(p) := ∑
i∈[k]

fi(pi),
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where fi : [0,1]→ R are real functions. Many important distribution properties are additive:

Shannon entropy H(p) := ∑i∈[k]−pi log pi, is the principal measure of information

and randomness [CT12], and arises in many machine-learning [CL68, QKC13, Bre15], neuro-

science [MS95, VSLS+97, GK02], and other applications.

L1 distance Dq(p) := ∑i∈[k] |pi−qi|, where q is a given distribution, is one of the most

basic and well-studied properties in the field of distribution property testing [BFR+00, Ron10,

VV16, Can17].

Support size S(p) := ∑i∈[k]1pi>0, is a fundamental quantity for discrete distributions,

and plays an important role in vocabulary size [McN73, ET76, TE87] and population estima-

tion [Goo53, ML07].

Support coverage C(p) := ∑i∈[k](1− (1− pi)
m), for a given m, represents the number

of distinct elements we would expect to see in m independent samples, arises in many ecologi-

cal [Cha84, CL92, CCG+12, CC14], biological [Cha84, KLR99], genomic [ILLL09] as well as

database [HNSS95] studies.

4.2 Prior and New Results

Given an additive property F and sample access to an unknown distribution p, we would

like to estimate the value of F(p) as accurately as possible. Let [k]n denote the collection of all

length-n sequences, an estimator is a function F̂ : [k]n→ R that maps a sample sequence Xn ∼ p

to a property estimate F̂(Xn). We evaluate the performance of F̂ in estimating F(p) via its mean

absolute error (MAE) 1,

LF̂(p,n) := E
Xn∼p

∣∣F̂(Xn)−F(p)
∣∣ .

1As we aim to estimate only a single property value, the estimators in this paper all have negligible variances,
e.g., O(1/n0.9). Hence the MAE is the same as MSE for our purpose, and we choose the former because it induces
cleaner expressions.
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Since we do not know p, the common approach is to consider the worst-case MAE of F̂ over ∆k,

LF̂(n) := max
p∈∆k

LF̂(p,n).

The best-known and most commonly-used property estimator is the empirical plug-in estimator.

Upon observing Xn, let Ni denote the number of times symbol i∈ [k] appears in Xn. The empirical

estimator estimates F(p) by

F̂E(Xn) := ∑
i∈[k]

fi

(
Ni

n

)
.

Starting with Shannon entropy, it has been shown [WY16] that for n≥ k, the worst-case (max)

MAE of the empirical estimator ĤE is

LĤE(n) = Θ

(
k
n
+

logk√
n

)
. (4.1)

On the other hand, [JVHW15, WY16, ADOS17, HO19a, HO19c] showed that for n ≥ k/logk,

more sophisticated estimators achieve the best min-max performance of

L(n) := min
F̂

LF̂(n) = Θ

(
k

n logn
+

logk√
n

)
. (4.2)

Hence up to constant factors, for the “worst” distributions, the MAE of these estimators with n

samples equals that of the empirical estimator with n logn samples. A similar relation holds for

the other three properties we consider.

However, the min-max formulation is pessimistic as it evaluates the estimator’s per-

formance for the worst distributions. In many practical applications, the underlying distri-

bution is fairly simple and does not attain this worst-case loss, rather, a much smaller MAE

can be achieved. Several recent works have therefore gone beyond worst-case analysis and

designed algorithms that perform well for all distributions, not just those with the worst perfor-

mance [OS15, VV16, HO19b].
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For property estimation, [HOSW18] designed an estimator F̂A that for any underlying

distribution uses n samples to achieve the performance of the n
√

logn-sample empirical estimator,

hence effectively multiplying the data size by a
√

logn amplification factor.

Lemma 1 ([HOSW18]). For every property F in a large class including the aforementioned four

properties, there is an absolute constant cF such that for all distributions p, all ε ≤ 1, and all

n≥ 1,

LF̂A(p,n)−LF̂E

(
p,εn

√
logn

)
≤ cF · ε.

In this work, we fully strengthen the above result and establish the limits of data amplifi-

cation for all sufficiently smooth additive properties including four of the most important ones,

and all that are appropriately Lipschitz.

Using Shannon entropy as an example, we achieve a logn amplification factor. Equa-

tions (4.1) and (4.2) imply that the improvement over the empirical estimator cannot always

exceed O(logn), hence up to an absolute constant, this amplification factor is information-

theoretically optimal. Similar optimality arguments hold for our results on the other three

properties (e.g., see Table 1 in [ADOS17]).

Specifically, we derive efficient estimators Ĥ, D̂, Ŝ, Ĉ, and F̂ for the Shannon entropy, L1

distance, support size, support coverage, and a broad class of additive properties which we refer

to as Lipschitz properties. These estimators run in near-linear time, take a single parameter ε, and

given samples Xn ∼ p, amplify the data as described below.

For brevity, henceforth we shall write a∧b and a . b instead of min{a,b} and a = O(b),

respectively, and abbreviate support size S(p) by Sp and coverage C(p) by Cp.

The following five theorems hold for all ε≤ 1, all distributions p, and all n≥ 1.

Theorem 1 (Shannon entropy).

LĤ(p,n)−LĤE(p,εn logn). ε∧
(

Sp

n
+

1
n0.49

)
.
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Note that the estimator requires no knowledge of Sp or k. When ε = 1, the estimator

amplifies the data by a factor of logn. As ε decreases, the amplification factor decreases, and

so does the extra additive inaccuracy. One can also set ε to be a vanishing function of n, e.g.,

ε = 1/ log logn.

This result may be interpreted as follows. For distributions with large support sizes such

that the min-max estimators provide no or only very weak guarantees, our estimator with n

samples always tracks the performance of the n logn-sample empirical estimator. On the other

hand, for distributions with relatively small support sizes, our estimator achieves a near-optimal

O(Sp/n)-error rate.

Similarly, for L1 distance to a fixed distribution q,

Theorem 2 (L1 distance). For any q, we can construct an estimator D̂q for Dq such that

LD̂q
(p,n)−LD̂E

q

(
p,ε2n logn

)
. ε∧

(√
Sp

n
+

1
n0.49

)
.

Besides having an interpretation similar to that of Theorem 1, the above result shows that

for each q and each p, we can use just n samples to achieve the performance of the n logn-sample

empirical estimator. More generally, for any additive property F(p) := ∑i∈[k] fi(pi) that satisfies

the simple condition: fi is O(1)-Lipschitz, for all i,

Theorem 3 (General additive properties). Given F, we can construct an estimator F̂ such that

LF̂(p,n)−LF̂E

(
p,ε2n logn

)
. ε∧

(√
Sp

n
+

1
n0.49

)
.

The results in [KOPS15] show that no plug-in estimators provide those theoretical guar-

antees presented in Theorem 2 and 3. Henceforth, we refer to the above collection of distribution

properties as the class of Lipschitz properties. The L1 distance Dq, for any q, is in this class.

Lipschitz properties are essentially bounded by absolute constants and Shannon entropy
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grows at most logarithmically in the support size, and we were able to approximate all with

just an additive error. Support size and support coverage can grow linearly in k and m, and

can be approximated only multiplicatively. We therefore evaluate the estimator’s normalized

performance, regarding the property value.

Note that for both properties, the amplification factor is logarithmic in the property value,

which can be arbitrarily larger than the sample size n.

The following two theorems hold for ε≤ e−2,

Theorem 4 (Support size).
1
Sp

(
LŜ(p,n)−LŜE

(
p,n ·

logSp

log2
ε

))
. ε+S

1
| logε|−

1
2

p .

To make the slack term vanish, one can simply set ε to be a vanishing function of n (or

Sp), e.g., ε = 1/ logn. Note that in this case, the slack term modifies the multiplicative error

in estimating Sp by only o(1), which is negligible in most applications. Similarly, for support

coverage,

Theorem 5 (Support coverage).
1

Cp

(
LĈ(p,n)−LĈE

(
p,n ·

logCp

log2
ε

))
. ε+C

1
| logε|−

1
2

p .

The next section presents implications of these results.

4.3 Implications

Data amplification Numerous modern scientific applications, such as those emerging

in social networks and genomics, deal with properties of distributions whose support size Sp is

equal to or even larger than the sample size n.

In this data-sparse regime, the estimation error of the empirical estimator often decays at

a slow rate, e.g., 1/ logc n for some c ∈ (0,1), hence the proposed estimators yield a much more
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accurate estimate, paralleling that of the empirical with n logn samples. For applications where

n≥ 25,000 and regardless of the distribution structure, our approach significantly amplifies the

number of samples by at least a factor of 10, known by practitioners as an “order of magnitude”.

As for the data-rich regime where n� Sp, our method essentially recovers the the standard√
Sp/n rate of maximum likelihood methods in general, without knowing Sp.

Instance optimality With just n samples, our method emulates the performance of the

n logn-sample empirical estimator for every distribution instance. The method hence possesses

the vital ability of strengthening all MAE guarantees of the empirical estimator by a logarithmic

factor, which is optimal in many settings.

The significance of such “instance optimality” arises from 1) empirical estimators are

often simple and easy to analyze; 2) there is a rich literature on their estimation attributes, e.g.,

[Bus17] and the references therein; 3) empirical estimators are the best-known and most-used.

Consequently, we can work on a simple problem, analyzing the performance of the

empirical estimator, and immediately strengthen the result we obtain by a logarithmic-factor using

the theorems in this paper. In many cases, the strengthened results are challenging to establish via

other statistical methods. We present two examples below.

Entropy Consider entropy estimation over ∆k. As Equation 4.2 shows, the min-max

MAE is known for n ≥ k/ logk, and essentially becomes a constant when n gets close to the

k/ logk lower bound. Nevertheless, over an alphabet of size k, the value of entropy can go up

to logk. Hence, it is still possible to get meaningful estimation results in the n = o(k/ logk)

large-alphabet regime.

We follow the above strategy to solidify the statement. First, for empirical estimator ĤE,

[Pan03] [see Proposition 1] provides a short argument showing that its worst-case MAE, for all n

and k, satisfies

LĤE(n)≤ log
(

1+
k−1

n

)
+

logn√
n
.

Consolidating this inequality with Theorem 1 then implies
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Corollary 1. In the n = o(k/ logk) large-alphabet regime, the min-max MAE of estimating

Shannon entropy satisfies

L(n)≤ (1+o(1)) log
(

1+
k−1
n logn

)
.

Lipschitz Property The same type of arguments apply to any Lipschitz property F .

Again, we begin with characterizing the performance of the empirical estimator F̂E. By Lemma 3

and the Cauchy-Schwarz inequality, the bias of F̂E is at most O(
√

k/n). By the Efron-Stein

inequality, the standard deviation is no more than O(1/
√

n).

It then follows by Theorem 3 that: F̂ estimates F over ∆k to an MAE of ε with

O(k/(ε3 logk)) samples. Note that 1) this yields the first estimator for Lipschitz properties

with optimal sample dependence on k; 2) after a draft of this paper became available online,

[HO19c] improved the sample dependence on ε to the optimal ε2.

4.4 Estimator Construction and Analysis

For clarity, we focus on the proof of Theorem 1 about entropy estimation, and explain

only necessary modifications for similar arguments to go through for other properties. We begin

by relating the empirical entropy estimator to the “Bernstein polynomial” of function −x logx.

Notation For a sampling parameter n and accuracy ε ≤ 1, define the amplification

factor as a := ε logn. Without loss of generality, assume that ε ≥ 1/ logn and hence a ≥ 1.

For simplicity, write h(x) :=−x logx, m := na, τn := Θ(logn/n) and dn := Θ(logn), where the

asymptotic notations hide only properly chosen absolute constants.
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4.4.1 Bernstein Polynomial

Drawing i.i.d.samples Y m from any distribution p, the expected value of the empirical

estimator for entropy is

E[ĤE(Y m)] = ∑
i∈[k]

E
Mi∼bin(m,pi)

[
h
(

Mi

m

)]
.

Note that for any function f , m∈N, and x ∈ [0,1], the degree-m Bernstein polynomial of f is

Bm( f ,x) :=
m

∑
j=0

f
(

j
m

)(
m
j

)
x j(1− x)m− j.

Therefore, we can express the expectation of the empirical entropy estimator as

E
Y m∼p

[ĤE(Y m)] = ∑
i∈[k]

Bm(h, pi).

As modifying a sample changes the value of ĤE(Y m) by at most 2 logm/m, the Efron-Stein

inequality bounds its variance by 2log2m/m, which is negligible in magnitude. Hence, for our

purpose, we focus on finding a good approximation of each Bm(h, pi).

4.4.2 Estimator Construction and Computation

In the subsequent sections, given i.i.d.samples Xn ∼ p, we construct our estimator as

follows.

Substitute n by 2n for simplicity. According to Section 4.4.4, we first split the samples

into two halves, Xn
1 and X2n

n+1, and respectively denote by Ni and N′i the empirical counts of each

symbol i ∈ [k] in them.

Then, we follow [Dob58] to classify the symbols into two categories and decompose the
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sum

E
Y m∼p

[ĤE(Y m)] = ∑
i∈[k]

Bm(h, pi)

into two parts by thresholding the empirical counts N′i at level 1/ε. The first part, VL :=

∑i∈[k]Bm(h, pi)1N′i>1/ε, corresponds to the contribution of symbols with potentially large proba-

bilities. Illustrated in Section 4.4.3, this quantity is well approximated by the large-probability

estimator

V̂L := ∑
i∈[k]

h
(

Ni

n

)
·1N′i>

1
ε

,

to an MAE of 2(ε∧Sp/n). As for the small-probability part,

VS := ∑
i∈[k]

Bm(h, pi) ·1N′i≤
1
ε

,

we follow the arguments in Section 4.4.4 and 4.4.5 to learn each summand adaptively (to the

magnitude of the probability) and compute the summation.

Concretely, recall τn = Θ(logn/n) and dn = Θ(logn). For a given function and domain,

the polynomial achieving the minimal maximum deviation from the function over the domain is

the min-max polynomial. Then, denote by

h̃m(x) :=
dn

∑
t=0

btxt

the degree-dn min-max polynomial of B′m(h, pi) over interval In := [0,τn]. The small-probability

estimator is

V̂S := ∑
i∈[k]

(
d+1

∑
t=1

bt−1

t
·

Nt
i

nt

)
·1Ni.logn ·1N′i≤

1
ε

,

where for each symbol i, the term in the parentheses is an unbiased estimator for H̃m(pi) :=∫ pi
0 h̃m(s)ds. Next, we illustrate the technique and intuition behind the construction.

Differential smoothing The construction of V̂S presents a generic method for designing
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a polynomial G̃ that closely approximates a given differentiable function G with pointwise error

bounds.

More precisely, for a fixed interval I := [0,τ] and degree bound d ∈ N, we want to find a

polynomial G̃ of degree at most d, satisfying

max
x∈I
|G̃(x)−G(x)| ≤ c · x,

for a number c≥ 0 that is as small as possible.

We propose a novel method, differential smoothing, that addresses this approximation

problem and operates as follows.

1. Compute G′(x) and write g := G′.

2. Approximate g by its min-max polynomial g̃ over I.

3. Let c be the min-max approximation error in Step 2.

4. Compute G̃(x) :=
∫ x

0 g̃(t)dt.

By the triangle inequality for integrals, the resulting c and G̃ satisfy the desired inequality. Besides,

Step 2 and 3 can be jointly performed using the well-known Remez algorithm [PT09, Tre13].

Turning back to our estimator V̂S, by the reasoning in Section 4.4.6 and 4.4.7, the min-max

polynomial h̃m(x) approximates B′m(h,x) to within O(ε) over In. Hence, applying the method of

differential smoothing yields

|Bm(h,x)− H̃m(x)|. ε · x.

Further relating this inequality to the expectation of the empirical entropy estimator implies

∣∣∣ E
Y m∼p

[ĤE(Y m)]− ∑
i∈[k]

H̃m(pi)
∣∣∣. ∑

i∈[k]
ε · pi = ε.
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In Section 6.1 of the supplementary, we prove that the absolute bias is also at most O(Sp/n),

which requires some additional work. Finally, Section 7.1 bounds the mean absolute deviation of

the estimator by O(1/n0.49).

Consequently, we approximate H(p) by

Ĥ := V̂L + V̂S.

Computational complexity The dominant computation step is finding the min-max

polynomial of B′m(h,x), for which we utilize the well-known Remez algorithm [PT09, Tre13]. In

Section 9 of the supplementary, we shall argue that the algorithm takes only Õ(n) time to well

approximate B′m(h,x).

4.4.3 Large-Probability Estimator

Following the previous arguments, we say that i ∈ [k] is a large-probability symbol if

N′i > 1/ε. To the expectation of the m-sample empirical estimator, these symbols contribute

VL = ∑
i∈[k]

Bm(h, pi) ·1N′i>
1
ε

.

We estimate VL by respectively reweighing the empirical estimator associated with the first-half

samples:

V̂L = ∑
i∈[k]

h
(

Ni

n

)
·1N′i>

1
ε

.

To bound the estimation bias, we leverage the next lemma, stating that the Bernstein polynomial

of h closely approximates the function over [0,1].

Lemma 2. For any t ∈ Z+ and x ∈ [0,1],

−1− x
t
≤ Bt(h,x)−h(x)≤ 0.
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The number of symbols satisfying N′i > 1/ε is at most nε. Together with the lemma and

triangle inequality, this yields

|E[VL]−E[V̂L]| ≤ ∑
i∈[k]

(
1+a

m

)
(1− pi)E

[
1N′i>

1
ε

]
≤ 2ε.

Furthermore, the number of such symbols is also at most Sp, implying an alternative upper bound

of 2Sp/n.

For Shannon entropy, we note that adding 1/(2n) to the empirical estimate h(Ni/n)

may reduce its bias. This particular method, known as the “Miller-Mallow estimator”, appears

in [Mil55] and eliminates the first-order term of Bn(h,x)− h(x). Applying the method will

introduce extra complications in the analysis, and hence for entropy and general non-differentiable

properties, we employ the original empirical estimator. On the other hand, substituting the Miller-

Mallow estimate into our algorithm in Theorem 1 retains its theoretical guarantee.

For Lipschitz properties, the rich literature on Bernstein operators presents us with the

following bound.

Lemma 3 ([Bus17] Proposition 4.9). For any t ∈ Z+, x ∈ [0,1], and c-Lipschitz function f ,

|Bt( f ,x)− f (x)| ≤ c ·
√

x(1− x)
t

.

Combined with the Cauchy-Schwarz inequality, the lemma shows that the estimation bias

of the respective V̂L admits

|E[VL]−E[V̂L]| ≤ 2

(
ε∧
√

Sp

n

)
.

This completes the bias analysis of the large-probability estimator, while Section 6.2 in the

supplementary provides additional technical details. For the variance analysis, see Section 7.2.

The following three sections proceed to construct the small-probability estimator and introduce
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fundamental results from polynomial approximation theory.

4.4.4 Choice of Parameters and Sample Splitting

Section 4.4.1 calls for estimating Bm(h,x). Applying the method of differential smoothing

in Section 4.4.2, we first choose some domain I = [0,τ] and degree d, and estimate B′m(h,x) by

its min-max polynomial h̃m(x) = ∑
d
t=0 btxt over I. Then, we approximate Bm(h,x) by

H̃m(x) =
∫ x

0
h̃m(t)dt =

d

∑
t=0

bt

t +1
xt+1.

To estimate H̃m(x), note that given a binomial variable X∼bin(n,x), an unbiased estimator for xt

is X t/nt , where t ∈ N and AB denotes the B-th order falling factorial of A. Hence, we employ

Ĥm(X) :=
d+1

∑
t=1

bt−1

t
· X

t

nt ,

an unbiased estimator for H̃m(x) that corresponds to the parenthetical component in estimator

V̂S’s expression. Next, we illustrate the intuitions behind our choice of τ and d.

For any X ∼ bin(n,x), the variance of Ĥm(X) generally gets larger as the degree d

increases. On the other hand, a higher-degree polynomial is able to achieve a lower approximation

error. To balance this bias-variance trade-off, we want to reduce both the interval length, τ, and

the polynomial degree, d, while maintaining the approximation power.

As in Section 4.4.2, we set parameter τ = τn = Θ(logn/n) since below this threshold,

sample statistics are insufficient for inferring the relative magnitudes of the underlying probabil-

ities with high confidence. Regarding the degree parameter τ = τn = Θ(logn), below the logn

threshold, the approximation H̃m loses the ε · x guarantee; in contrast, above the threshold, the

final estimator may no longer possess a vanishing variance. For more details, see derivations in

Section 7.1 and Appendix A of the supplementary.
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One thing that follows the construction of H̃m and Ĥm is how to apply these approximations

to only probabilities of order τn. This issue arises from the fact that we observe symbol counts,

not ranges of the actual probability values. It is straightforward to deal with such uncertainty by

inferring the magnitudes of unknowns leveraging the counting statistics concentration.

For concentration, binomial random variables are sums of independent indicator variables

and possess Gaussian-type tail bounds. To avoid introducing additional statistical dependency, we

1) split the sample sequence into two halves of equal length; 2) denote respectively the empirical

counts of each symbol i in the first and second halves by Ni and N′i (where we slightly abused

the notation); 3) classify each i ∈ [k] as a large- or small- probability symbol by thresholding the

count N′i at 1/ε. The supplementary material presents relevant details in Section 5 and 6.2.

In the literature, the above procedure is often referred to as sample splitting. This idea

of classifying the symbols in the alphabet into two categories dates back to [Dob58], and has

been applied to estimate a variety of specific distribution properties in the past decade [AOST14,

JVHW15, WY16, HOSW18]. Recently, [HO19c] generalize this idea to estimate general prop-

erties by partitioning the unit interval into Θ̃(
√

n) pieces; [HO19b] apply the method to derive

state-of-the-art distribution estimators.

Sample splitting and additiveness of the property enable us to estimate the contributions

from the large and small probabilities separately. The rest sections assume this separation and

address the small-probability approximation error.

4.4.5 Min-Max Polynomial

Polynomials have extensive applications to statistical inference, ranging from approxi-

mating the norms of Gaussian parameters [CL11] to learning structured distributions [CDSS14,

ADLS17, HO19b] to estimating properties of distributions [JVHW15, OSW16, WY16, HOSW18,

HO19c].

As illustrated in Section 4.4.2 and 4.4.4, we aim to find a polynomial h̃m(x) of degree
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dn = Θ(logn) that satisfies the pointwise bound |B′m(h,x)− h̃m(x)|. ε over In = [0,τn].

The task naturally calls for a polynomial achieving the minimal maximum deviation from

B′m(h,x), commonly known as the respective min-max polynomial. Moreover, direct computation

shows that B′m(h,x) is the order-(m−1) Bernstein polynomial of another function:

B′m(h,x) = Bm−1(hm,x),

where function hm is defined as

hm(y) :=− log
m−1

m
+(m−1)

(
h
(

y+
1

m−1

)
−h(y)

)
.

Hence, our objective reduces to bounding the error of min-max polynomial approximations of

Bm−1(hm,x) over In. As one could expect, the analysis gets more involved since 1) Bm−1(hm,x) is

a high-degree polynomial with transcendental coefficients; 2) in general, there are no closed-form

formulas for the min-max polynomials of a real function.

Though sophisticated in its form, function Bm−1(hm,x) is continuous and relatively smooth,

as hinted by Lemma 2. This simple observation serves as the starting point for our subsequent

analysis. In the next section, we dive into approximation theory and present fundamental

connections between the smoothness of a function (characterized by specific quantities) and its

min-max polynomial approximation error over a given interval. The desired result then follows

by a sequence of inequalities and simplifications that enable us to gauge the smoothness of

Bm−1(hm,x).

For the proof of the derivative identity on hm and a more straightforward argument leading

to a weaker result, see Section 4 and 5 of the supplementary.
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4.4.6 Moduli of Smoothness

In this section, we introduce some notable results in approximation theory [DT12] that are

crucial for simplifying the problem. Denote ϕ(x) :=
√

x(1− x). For any function f : [0,1]→ R,

the first- and second- order Ditzian-Totik moduli of smoothness quantities of f are

w1
ϕ( f , t) := sup{| f (u)− f (v)| : 0≤ u,v≤ 1,

|u− v| ≤ t ·ϕ
(

u+ v
2

)}
,

and

w2
ϕ( f , t) := sup

{∣∣∣∣ f (u)+ f (v)−2 f
(

u+ v
2

)∣∣∣∣ :

0≤ u,v≤ 1, |u− v| ≤ 2t ·ϕ
(

u+ v
2

)}
,

respectively. Let Pd denote the collection of polynomials with real coefficients and degree

at most d. For any d ∈ Z+, interval I ⊂ R, and function f : I→ R, denote by

Ed[ f , I] := min
f̃∈Pd

max
x∈I
| f (x)− f̃ (x)|

the best approximation error of the degree-d min-max polynomial of f over I. For a bounded

domain I, we can always shift and rescale f to make it a real function over [0,1]. Hence, without

loss of generality, it suffices to consider and analyze Ed[ f ] := Ed[ f , [0,1]].

The connection between the best polynomial-approximation error Ed[ f ] of a continuous

function f and the second-order Ditzian-Totik moduli of smoothness w2
ϕ( f , t) is established in

the following lemma [DT12].

Lemma 4. There are absolute constants C1 and C2 such that for any continuous function f over
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[0,1] and d > 2,

Ed[ f ]≤C1w2
ϕ( f ,d−1),

and
1
d2

d

∑
t=0

(t +1)Et [ f ]≥C2w2
ϕ( f ,d−1).

The above lemma shows that the second-order smoothness quantity w2
ϕ( f , ·) essentially

characterizes E·[ f ], and thus transforms the problem of showing

|h̃m(x)−Bm−1(hm,x)|. ε, ∀x ∈ In,

to that of establishing

w2
ϕ(Bm−1(hm,τn · x),d−1

n ). ε,

where τn = Θ(logn/n) and dn = Θ(logn) by definition.

4.4.7 Simplification via Poissonization

The last block in our analysis is Poissonization, which helps decompose and simplify the

function to approximate. For any y ∈ [0,∞], define two functions:

f1(y) := E
X∼Poi(y)

[h(X)] =−e−y
∞

∑
j=1

y j

j!
( j log j)

and

f2(y) := E
X∼Poi(y)

[h(X +1)].

Let z(x) := (m− 1)x for simplicity. The following lemma, appearing in Appendix A.1 of the

supplementary relates Bm−1(hm,x) to these functions and base function h(x).
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Lemma 5. For any m ∈ Z+ and x ∈ [0, log4m/m],

hm(x)−Bm−1(hm,x) = [h(z(x)+1)− f2(z(x))]

− [h(z(x))− f1(z(x))]+ Õ
(

1
m

)
.

In particular, the above equation holds for any sufficiently large n and x ∈ In = [0,τn].

Since 1/m = 1/(na−1)≤min{1/ logn,Sp/n}, the last term on the right-hand side is negligible.

These results, together with the function-wise triangle inequality on w2
ϕ, further reduce the last

inequality in Section 4.4.6 to bounds in the form of

w2
ϕ(g(x),d

−1
n ). ε,

for function g(x) being hm(τn · x), h(z(x)), h(z(x)+1), f1(z(x)), and f2(z(x)), respectively.

We prove these bounds in Appendix A.2 and A.3 of the supplementary. In Appendix B, a

similar yet more involved argument extends the result to all Lipschitz properties. One reason for

the extra complication is the absence of concrete expression, as we impose only the Lipschitz

condition.

While these proofs are technical, a critical insight is that the optimization problems

induced by computing w2
ϕ for the above choices of g are all convex. Consequently, it suffices to

consider only the boundary cases of parameters.

4.5 Experiments

We demonstrate the efficacy of the proposed estimators by comparing their performance to

two state-of-the-art estimators [WY16, WY19], and empirical estimators with logarithmic larger

sample sizes. Due to method similarity, we present only the results for entropy and support size.

Additional estimators for both properties were compared in [OSW16, WY16, WY19, HOSW18,
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HO19a] and found to perform similarly to or worse than the estimators we tested, hence we

exclude them here. For each property, we considered nine natural-synthetic distributions, shown

in Figure 4.1 and 4.2.

Settings We experimented with nine distributions having support size S = 10,000:

uniform distribution; a two-steps distribution with probability values 0.5S−1 and 1.5S−1; Zipf

distribution with power 1/2; Zipf distribution with power 1; binomial distribution with success

probability 0.3; geometric distribution with success probability 0.9; Poisson distribution with

mean 0.3S; a distribution drawn from Dirichlet prior with parameter 1; a distribution drawn from

Dirichlet prior with parameter 1/2.

The geometric, Poisson, and Zipf distributions were truncated at S and re-normalized.

The horizontal axis shows the number of samples, n, ranging from S0.2 to S. Each experiment

was repeated 100 times and the reported results, shown on the vertical axis, reflect their mean

values and standard deviations. Specifically, the real property value is drawn as a dashed black

line, and the other estimators are color/shape coded, with the solid line displaying their mean

estimate, and the shaded area corresponding to one standard deviation.

We compared the estimators’ performance with n samples to that of two other recent

estimators as well as the empirical estimator with n, n
√

logA, and n logA samples, where for

Shannon entropy, A = n and for support size, A = Sp, the actual distribution support size (which

is S). We chose the parameter ε = 1. The graphs denote our proposed estimator by Proposed, F̂E

with n samples by Empirical, F̂E with n
√

logA samples by Empirical+, F̂E with n logA samples

by Empirical++, the entropy and support-size estimators in [WY16] and [WY19] by WY.

Results As Theorem 1 and 4 would imply and the experiments confirmed, for both

properties, the proposed estimators with n samples achieved the accuracy as the empirical

estimators with at least n logn samples for entropy and n logSp samples for support size. In

particular, for entropy, the proposed estimator with n samples performed significantly better than

the n logn-sample empirical estimator, for all tested distributions and all values of sample size n.
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Figure 4.1: Shannon entropy estimation

For both properties, the proposed estimators outperformed the state-of-the-art estimators in terms

of accuracy and stability regarding distribution structures.

In Figure 4.1, the horizontal axis is in logarithmic scale. The WY curve is flipped vertically

around Truth for all the curves to have similar trends. Besides the samples, the WY estimator

takes as input an upper bound of the support size, which is set to be the actual support size in the

experiments. The vertical axis shows only nonnegative values.

In Figure 4.2, the horizontal axis is in logarithmic scale. Besides the samples, the WY

estimator takes as input a lower bound of the smallest positive probability p+min, which is set to

be max{1/(10S),4p+min} in the experiments. Here, 1/(10S) is used to avoid division by zero in

numerical computation, and factor 4 represents a reasonable uncertainty about p+min. For several

distributions, such as uniform and geometric, knowing p+min yields the full knowledge of the entire

probability multiset. Finally, while estimator WY’s bias is slightly lower on a few distributions,

the corresponding standard deviation is too high to be acceptable.
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Figure 4.2: Support size estimation
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4.A Appendix Outline

For notational convenience, let h(p) :=−p log p for entropy, `q(p) := |p−q|−q for L1

distance, s(p) := 1p>0 for support size, and c(p) := 1− (1− p)m for support coverage. Below,

we provide an outline of the remaining contents and a high-level overview of our techniques.

In the main body, we focus on Shannon entropy and prove a weaker version of Theorem 1.

Theorem 6. For all ε ≤ 1 and all distributions p, the estimator Ĥ described in Section 4.D
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satisfies

LĤ(p,n)−LĤE (p,εn logn)≤ (1+ c · ε)∧
(

Sp

εn
+

1
n0.49

)
.

The proof of Theorem 6 in the rest of the paper is organized as follows. In Section 4.B,

we present a few useful concentration inequalities for Poisson and binomial random variables.

In Section 4.4.1, we relate the n-sample empirical estimator’s bias to the degree-n Bernstein

polynomial Bn(h,x) via Bn(h, pi) = E[h(Ni/n)]. In Section 4.C.1, we show that the absolute

difference between the derivative of Bn(h,x) and a simple function hn(x) is at most 1, uniformly

for all x≤ 1− (n−1)−1.

Let a := ε logn be an amplification parameter. In Section 4.C.2, we approximate hna(x)

by a degree-Θ(logn) polynomial h̃na(x) and bound the approximation error uniformly by c · ε.

Let H̃na(x) :=
∫ x

0 h̃na(t)dt. By construction, |B′na(h,x)− h̃na(x)| ≤ |B′na(h,x)−hna(x)|+ |hna(x)−

h̃na(x)| ≤ 1+ c · ε, implying |H̃na(x)−Bna(h,x)| ≤ x(1+ c · ε).

In Section 4.D, we construct our estimator Ĥ as follows.

First, we divide the symbols into small- and large- probability symbols according to

their counts in an independent n-element sample sequence. The concentration inequalities in

Section 4.B imply that this step can be performed with relatively high confidence. Then, we

estimate the partial entropy of each small-probability symbol i with a near-unbiased estimator of

H̃na(pi), and the combined partial entropy of the large-probability symbols with a simple variant

of the empirical estimator. The final estimator is the sum of these small- and large- probability

estimators.

In Section 4.E, we bound the bias of Ĥ. In Sections 4.E.1 and 4.E.2, we use properties of

H̃na and the Bernstein polynomials to bound the partial biases of the small- and large-probability

estimators in terms of n, respectively. The critical observation is |∑i(H̃na(pi)−Bna(h, pi))| ≤

∑i pi(1+ c · ε) = 1+ c · ε, implying that the small-probability estimator has a low bias. To

bound the bias of the large-probability estimator, we principally rely on the elegant inequality

|Bn(h,x)−h(x)| ≤ 1/n.
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By the triangle inequality, it remains to bound the mean absolute deviation of Ĥ. We bound

this quantity by bounding the partial variances of the small- and large- probability estimators

in Section 4.F.1 and Section 4.F.2, respectively. Intuitively speaking, the small-probability

estimator has a small variance because it is constructed based on a low-degree polynomial; the

large-probability estimator has a small variance because h(x) is smoother for larger values of x.

To demonstrate the efficacy of our methods, in Section 4.5, we compare the experimental

performance of our estimators with that of the state-of-the-art property estimators for Shannon

entropy and support size over nine distributions. Our competitive estimators outperformed these

existing algorithms on nearly all the experimented instances.

Replacing the simple function hn(x) by a much finer approximation of Bn(h,x) based on

differential smoothing, we establish the full version of Theorem 1 in Appendix 4.H. Applying

similar techniques, we prove the other four results in Appendices 4.I (Theorem 2 and 3), 4.J

(Theorem 4), and 4.K (Theorem 5).

Computational complexity Section 4.G presents the Remez algorithm [Rem34, PT09,

Tre13] for computing the best polynomial approximation of a function, and shows that it takes

only Õ(n) time to compute our approximation-based estimators.

4.B Concentration Inequalities

The next lemma gives tight tail probability bounds for Poisson/binomial random variables.

Lemma 6 ([GL17]). Let X be a Poisson or binomial random variable with mean µ, then for any

δ > 0,

P(X ≥ (1+δ)µ)≤

(
eδ

(1+δ)(1+δ)

)µ

≤ e−(δ
2∧δ)µ/3,
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and for any δ ∈ (0,1),

P(X ≤ (1−δ)µ)≤

(
e−δ

(1−δ)(1−δ)

)µ

≤ e−δ2µ/2.

4.C Approximating Bernstein Polynomials

With n samples, the bias of the empirical estimator in estimating H(p) is

Biasn(ĤE, p) := E[ĤE(Xn)]−H(p).

By the linearity of expectation, the right-hand side equals

E[ĤE(Xn)]−H(p) = ∑
i∈[k]

(
E
[

h
(

Ni

n

)]
−h(pi)

)
.

Noting that the degree-n Bernstein polynomial of h is

Bn(h,x) := E
Nx∼bin(n,x)

[
h
(

Nx

n

)]
=

n

∑
j=0

h
(

j
n

)(
n
j

)
x j(1− x)n− j,

we can express the bias of the empirical estimator as

Biasn(ĤE, p) = ∑
i∈[k]

(Bn(h, pi)−h(pi)) .

Given a sampling number n and a parameter ε≤ 1, define the amplification factor a := ε logn.

Let cl and cs be sufficiently large and small absolute constants, respectively. In the following

sections, we find a polynomial h̃na(x) of degree d−1 := dn−1 := cs logn−1, whose error in

approximating B′na(h,x) over In := [0,τn] := [0,cl(logn)/n] satisfies

|B′na(h,x)− h̃na(x)| ≤ 1+O(ε).
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By the triangle inequality of integrals, the degree-d polynomial

H̃na(x) :=
∫ x

0
h̃na(t)dt,

approximates Bna(h,x) with the following pointwise error guarantee.

Lemma 7. For any x ∈ In,

|Bna(h,x)− H̃na(x)| ≤ x(1+O (ε)) .

In Section 4.C.1, we relate B′n(h,x) to a simple function hn(x) that can be expressed in

terms of h(x). In Section 4.C.2, we approximate hn(x) by a linear combination of degree-d

min-max polynomials of h(x) over different intervals. The resulting polynomial is h̃na(x).

4.C.1 Derivative of Bernstein Polynomials

According to [Bus17], the first-order derivative of the Bernstein polynomial Bn(h,x) is

B′n(h,x) :=
n−1

∑
j=0

n
(

h
(

j+1
n

)
−h
(

j
n

))(
n−1

j

)
x j(1− x)(n−1)− j.

Hence, letting

hn(x) := n
(

h
((

n−1
n

)
x+

1
n

)
−h
((

n−1
n

)
x
))

,

we can write derivative B′n as

B′n(h,x) =
n−1

∑
j=0

hn

(
j

n−1

)(
n−1

j

)
x j(1− x)(n−1)− j = Bn−1(hn,x).
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Recall that h(x) =−x logx. After some algebra, we get

hn(x) =− log
(

n−1
n

)
+(n−1)

(
h
(

x+
1

n−1

)
−h(x)

)
.

Furthermore, utilizing analytical attributes of h(x) [BLM72], we can bound the absolute difference

between h(x) and its Bernstein polynomial as follows.

Lemma 8. For any m > 0 and x ∈ [0,1],

−1− x
m
≤ Bm(h,x)−h(x)≤ 0.

As an immediate corollary,

Corollary 2. For any x ∈ [0,1− (n−1)−1],

|B′n(h,x)−hn(x)|= |Bn−1(hn,x)−hn(x)| ≤ 1.

Proof. Given the equality B′n(h,x) = Bn−1(hn,x) for x ∈ [0,1− (n−1)−1],

|Bn−1(hn,x)−hn(x)| ≤ (n−1)|(Bn−1(h,x+(n−1)−1)−h(x+(n−1)−1))

− (Bn−1(h,x)−h(x))|

≤ (n−1)
∣∣∣∣max

{
1− x− (n−1)−1

n−1
,

1− x
n−1

}∣∣∣∣
≤ 1,

where the second inequality follows by Lemma 8.
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4.C.2 Approximating the Derivative Function

Denote the degree-d min-max polynomial of h over [0,1] by

h̃(x) :=
d

∑
j=0

b jx j.

As shown in [WY16], the coefficients of h̃(x) satisfy

|b j|. 23d,

and the error of h̃(x) in approximating h(x) admits

max
x∈[0,1]

|h(x)− h̃(x)|. 1
log2 n

.

By a change of variables, the degree-d min-max polynomial of h over In = [0,cl logn/n] is

h̃1(x) :=
d

∑
j=0

b j

(
n

cl logn

) j−1

x j +

(
log

n
cl logn

)
x.

Correspondingly, for any x ∈ In, we have

max
x∈In
|h(x)− h̃1(x)|.

1
n logn

.

To approximate hna(x), we approximate h(x) by h̃1(x), and h(x+(na− 1)−1) by h̃1(x+(na−

1)−1). Then, the resulting polynomial is

h̃na(x) :=− log
na−1

na
+(na−1)

(
h̃1(x+(na−1)−1)− h̃1(x)

)
=− log

na−1
cla logn

+(na−1)

(
d

∑
j=0

b j

(
n

cl logn

) j−1
((

x+
1

na−1

) j

− x j

))
.
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By the above reasoning, the error of h̃na in approximating hna over In satisfies

max
x∈In
|hna(x)− h̃na(x)|.

na
n logn

. ε.

Moreover, by an application of Corollary 2,

max
x∈[0,1/2]

|B′na(h,x)−hna(x)|= max
x∈[0,1/2]

|Bna−1(hna,x)−hna(x)| ≤ 1.

The triangle inequality combines the above two inequalities and yields

max
x∈In
|B′na(h,x)− h̃na(x)| ≤ 1+O (ε) .

Therefore, denoting

H̃na(x) :=
∫ x

0
h̃na(t)dt,

and noting that Bna(h,0) = 0, we have

Lemma 9. For any x ∈ In,

|Bna(h,x)− H̃na(x)| ≤
∫ x

0
|B′na(h, t)− h̃na(t)|dt ≤ x(1+O (ε)) .

4.D A Competitive Entropy Estimator

In this section, we design an explicit entropy estimator Ĥ based on H̃na and the empirical

estimator. Note that H̃na(x) is a polynomial with a zero constant term. For t ≥ 1, denote

gt :=
d

∑
j=t

b j

j+1

(
n

cl logn

) j−1( 1
na−1

) j−t( j+1
j− t +1

)
.

Setting b′t = gt for t ≥ 2 and b′1 = g1− log na−1
cla logn , we have the following lemma.
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Lemma 10. The function H̃na(x) can be written as

H̃na(x) =
d

∑
t=1

b′tx
t .

In addition, its coefficients satisfy

|b′t |. 24d
(

n
cl logn

)t−1

.

The proof of the above lemma is postponed to the end of this section.

To simplify our analysis and remove the dependency between symbol counts, we use the

conventional Poisson sampling technique [WY16, ADOS17]. Specifically, instead of drawing

exactly n samples, we make the sample size an independent Poisson random variable N with mean

n. This does not change the statistical nature of the problem as N ∼ Poi(n) highly concentrates

around its mean (see Lemma 6). We still define Ni as the count of symbol i in XN . Due to Poisson

sampling, these counts are now mutually independent and satisfy Ni ∼ Poi(npi), ∀i ∈ [k].

For each i ∈ [k], let Nt
i := ∏

t−1
m=0(Ni−m) be the t-th order falling factorial of Ni. The

following identity is well-known:

E[Nt
i ] = (npi)

t , ∀t ≤ n.

Note that for sufficiently small cs or sufficiently large n, the degree parameter d = cs logn≤ n,∀n.

By the linearity of expectation, the unbiased estimator of H̃na(pi) is

Ĥna(Ni) :=
d

∑
t=1

b′t
Nt

i
nt .

Let N′ be an independent Poisson variable with mean n, and XN′ be an independent length-N′

sample sequence drawn from p. Analogously, we denote by N′i the number of times that symbol
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i ∈ [k] appears. Depending on whether N′i > ε−1 or not, we classify pi, i ∈ [k], into two categories:

small- and large- probabilities. For small probabilities, we apply a simple variant of Ĥna(Ni); for

large probabilities, we estimate h(pi) by an empirical-estimator variant.

Specifically, for each i ∈ [k], we estimate h(pi) by

ĥ(Ni,N′i ) := Ĥna(Ni) ·1Ni≤cl logn ·1N′i≤ε−1 +h
(

Ni

n

)
·1N′i>ε−1.

Consequently, we approximate H(p) by

Ĥ(XN ,XN′) := ∑
i∈[k]

ĥ(Ni,N′i ).

For the simplicity of illustration, we will refer to

ĤS(XN ,XN′) := ∑
i∈[k]

Ĥna(Ni) ·1Ni≤cl logn ·1N′i≤ε−1

as the small-probability estimator, and

ĤL(XN ,XN′) := ∑
i∈[k]

h
(

Ni

n

)
·1N′i>ε−1

as the large-probability estimator. Then, Ĥ is the sum of these two estimators.

In the next two sections, we analyze the bias and mean absolute deviation of Ĥ. In

Section 4.E, we show that for any p, the absolute bias of Ĥ satisfies

∣∣∣E[Ĥ(XN ,XN′)]−H(p)
∣∣∣≤ ∣∣Bias(ĤE ,na)

∣∣+(1+O (ε))

(
1∧ (ε−1 +1)

Sp

n

)
.

158



In Section 4.F, we further show that the mean absolute deviation of Ĥ satisfies

E
∣∣∣Ĥ(XN ,XN′)−E[Ĥ(XN ,XN′)]

∣∣∣. 1
n1−Θ(cs)

.

For sufficiently small cs, the triangle inequality combines the above inequalities and yields

E
∣∣∣Ĥ(XN ,XN′)−H(p)

∣∣∣≤ Bias(ĤE ,na)+(1+ c · ε)∧
(

Sp

εn
+

1
n0.49

)
.

This basically completes the proof of Theorem 6.

Proof of Lemma 10

We begin by proving the first claim:

H̃na(x) =−
d

∑
t=1

b′tx
t .

By definition, H̃na(x) satisfies

H̃na(x)+
(

log
na−1

cla logn

)
x

= (na−1)

(
d

∑
j=1

b j

j+1

(
n

cl logn

) j−1
((

x+
1

na−1

) j+1

−
(

1
na−1

) j+1

− x j+1

))

=
d

∑
j=1

b j

j+1

(
n

cl logn

) j−1
(

j−1

∑
m=0

(
1

na−1

)m

x j−m
(

j+1
m+1

))

=
d

∑
t=1

xt

(
d

∑
j=t

b j

j+1

(
n

cl logn

) j−1( 1
na−1

) j−t( j+1
j− t +1

))
,

where the last step follows by reorganizing the indices.
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Next we establish the second claim. Recall that d = cs logn, thus,

log
na−1

cla logn
. 24d.

Since b′t = gt for t ≥ 2 and b′1 = g1− log na−1
cla logn , it suffices to bound the magnitude of gt :

|gt | ≤
d

∑
j=t

∣∣b j
∣∣

j+1

(
n

cl logn

) j−1( 1
na−1

) j−t( j+1
j− t +1

)

≤
d

∑
j=t

∣∣b j
∣∣( 1

cl logn

) j−1

nt−1
(

j
t

)

≤
(

n
cl logn

)t−1 d

∑
j=t

∣∣b j
∣∣( j

t

)

≤
(

n
cl logn

)t−1 d

∑
j=t

∣∣b j
∣∣( d

j− t

)

. 24d
(

n
cl logn

)t−1

.

4.E Bounding the Bias of Ĥ

By the triangle inequality, the absolute bias of Ĥ in estimating H(p) satisfies

∣∣∣∣∣∑
i∈[k]

(E[ĥ(Ni,N′i )]−h(pi))

∣∣∣∣∣≤
∣∣∣∣∣∑
i∈[k]

(Bna(h, pi)−h(pi))

∣∣∣∣∣
+

∣∣∣∣∣∑
i∈[k]

(E[ĥ(Ni,N′i )]−Bna(h, pi))

∣∣∣∣∣ .
Note that the first term on the right-hand side is the absolute bias of the empirical estimator

with sample size na = εn logn, that is,

Biasna(ĤE, p) =

∣∣∣∣∣∑
i∈[k]

(Bna(h, pi)−h(pi))

∣∣∣∣∣ .
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Hence, we need to consider only the second term on the right-hand side, which admits

∣∣∣∣∣∑
i∈[k]

(E[ĥ(Ni,N′i )]−Bna(h, pi))

∣∣∣∣∣≤ BiasS +BiasL,

where

BiasS :=

∣∣∣∣∣∑
i∈[k]

E
[(

Ĥna(Ni) ·1Ni≤cl logn−Bna(h, pi)
)
·1N′i≤ε−1

]∣∣∣∣∣
is the absolute bias of the small-probability estimator, and

BiasL :=

∣∣∣∣∣∑
i∈[k]

E
[(

h
(

Ni

n

)
−Bna(h, pi)

)
·1N′i>ε−1

]∣∣∣∣∣
is the absolute bias of the large-probability estimator.

Assume that cl is sufficiently large. In Section 4.E.1, we bound the small-probability bias

by

BiasS ≤ (1+O (ε))

(
1∧ (ε−1 +1)

Sp

n

)
.

In Section 4.E.2, we bound the large-probability bias by

BiasL ≤ 2
(

ε∧
Sp

n

)
.

4.E.1 Bias of the Small-Probability Estimator

We first consider and analyze BiasS. By the triangle inequality,

BiasS ≤ ∑
i:pi 6∈In

∣∣E[Ĥna(Ni) ·1Ni≤cl logn]−Bna(h, pi)
∣∣ ·E[1N′i≤ε−1]

+ ∑
i:pi∈In

∣∣E[Ĥna(Ni)
]
−Bna(h, pi)

∣∣ ·E[1N′i≤ε−1 ]

+ ∑
i:pi∈In

∣∣∣E[Ĥna(Ni) ·1Ni>cl logn
]
·E
[
1N′i≤ε−1

]∣∣∣ .
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Let us assume ε logn ≥ 1 and consider the first sum on the right-hand side. By the general

reasoning in the proof of Lemma 11, we can show that

Ĥna(Ni) ·1Ni≤cl logn . 25d · log2 n
n

.

Further assume that cs and cl are sufficiently small and large, respectively. For large enough n,

the above inequality bounds the first sum by

∑
i:pi 6∈In

∣∣Ĥna(Ni) ·1Ni≤cl logn−Bna(h, pi)
∣∣ ·E[1N′i≤ε−1]≤ ∑

i:pi 6∈In

E[1N′i≤ε−1]≤
1
n5 ·

n
cl logn

≤ 1
n4 .

For the second sum on the right-hand side, by Lemma 9,

∑
i:pi∈In

∣∣E[Ĥna(Ni)
]
−Bna(h, pi)

∣∣ ·E[1N′i≤ε−1]≤ ∑
i:pi∈In

∣∣E[Ĥna(Ni)
]
−Bna(h, pi)

∣∣ ·E[1N′i≤ε−1]

= ∑
i:pi∈In

∣∣H̃na(pi)−Bna(h, pi)
∣∣ ·E[1N′i≤ε−1]

≤ ∑
i:pi∈In

(1+O (ε)) pi ·E[1N′i≤ε−1]

≤ (1+O (ε))

(
1∧ (ε−1 +1)

Sp

n

)
.

The following lemma bounds the last sum and completes our argument.

Lemma 11. For sufficiently large cl ,

∑
i∈[k]

∣∣∣E[Ĥna(Ni) ·1Ni>cl logn
]
·E
[
1N′i≤ε−1

]∣∣∣≤ 1
n5 .
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Proof. For simplicity, we assume that cl ≥ 4 and ε logn≥ 1. By the triangle inequality,

∣∣∣E[Ĥna(Ni) ·1Ni>cl logn
]
·E
[
1N′i≤ε−1

]∣∣∣
≤

∞

∑
j=1

∣∣∣E[Ĥna(Ni) ·1cl( j+1) logn≥Ni>cl j logn
]
·E
[
1N′i≤ε−1

]∣∣∣ .
To bound the last term, we rely on the following result: For any j ≥ 1,

∣∣∣E[1cl( j+1) logn≥Ni>cl j logn
]
·E
[
1N′i≤ε−1

]∣∣∣≤ (1+ ε
−1)npi · e−Θ(cl j logn).

To prove this inequality, we apply Lemma 6 and consider two cases:

Case 1: If npi < (3cl/8) j logn, then

E
[
1cl( j+1) logn≥Ni>cl j logn

]
≤ npi · e−Θ(cl j logn).

Case 2: If npi ≥ (3cl/8) j logn, then

E
[
1N′i≤ε−1

]
≤ npiε

−1 · e−Θ(cl j logn).

This essentially completes the proof. Next, we bound Ĥna(Ni) for Ni ∈ [cl j logn,cl( j+1) logn]:

|Ĥna(Ni)|=

∣∣∣∣∣
(

log
na−1

cla logn

)
Ni

n
+

d

∑
t=1

b′t
Nt

i
nt

∣∣∣∣∣
. 24d ·

cs logn

∑
t=1

(
n

cl logn

)t−1 (cl( j+1) logn)t

nt

. 25d · cl j logn
n

cs logn

∑
t=1

jt−1

. 25d · cl j logn
n

( jcs logn + cs logn).

163



Hence, for sufficiently large cl ,

∣∣∣E[Ĥna(Ni) ·1Ni>cl logn
]
·E
[
1N′i≤ε−1

]∣∣∣
≤

∞

∑
j=1

∣∣∣E[Ĥna(Ni) ·1cl( j+1) logn≥Ni>cl j logn
]
·E
[
1N′i≤ε−1

]∣∣∣
≤

∞

∑
j=1

O(25d) · cl j logn( jcs logn + cs logn) ·E
[
1cl( j+1) logn≥Ni>cl j logn

]
·E
[
1N′i≤ε−1

]
. 25d ·

∞

∑
j=1

(
1+ ε

−1) pi · e−Θ(cl j logn) · cl j logn( jcs logn + cs logn)

≤ pi

∞

∑
j=1

1
2n5 j

≤ pi

n5 .

Summing the right-hand side over i ∈ [k] yields the desired result.

4.E.2 Bias of the Large-Probability Estimator

This section proves the bias bound BiasL ≤ 2(ε∧ (Sp/n)). By the triangle inequality,

BiasL ≤ ∑
i∈[k]

∣∣∣∣E[h
(

Ni

n

)
−Bna(h, pi)

]∣∣∣∣ ·E[1N′i>ε−1

]
≤ ∑

i∈[k]
|h(pi)−Bna(h, pi)| ·E

[
1N′i>ε−1

]
+ ∑

i∈[k]

∣∣∣∣E[h
(

Ni

n

)
−h(pi)

]∣∣∣∣ ·E[1N′i>ε−1

]
.

We need the following inequality to bound the right-hand side.

0≤ x logx− (x−1)≤ (x−1)2, ∀x ∈ [0,1].

164



For simplicity, denote p̂i := Ni/n. Then,

∣∣∣∣E[h
(

Ni

n

)
−h(pi)

]∣∣∣∣= |E[pi log pi− p̂i log p̂i]|

≤ |E[pi log pi− p̂i log pi]|+ |E[p̂i log pi− p̂i log p̂i]|

= pi ·
∣∣∣∣E[ p̂i

pi
log

p̂i

pi

]∣∣∣∣
≤ pi ·

∣∣∣∣∣E
[(

p̂i

pi
−1
)
+

(
p̂i

pi
−1
)2
]∣∣∣∣∣

=
1
n
.

Replacing n by na in the above argument yields

|h(pi)−Bna(h, pi)| ≤
1
na

.

Consider the first term on the right-hand side. By the last bound and Markov’s inequality,

∑
i∈[k]
|h(pi)−Bna(h, pi)| ·E

[
1N′i>ε−1

]
≤ 1

na ∑
i∈[k]

E
[
1N′i>ε−1

]
≤ 1

na ∑
i∈[k]

(1pi>0∧ εnpi)

≤ ε∧
Sp

n
.

For the second term, an analogous argument yields

∑
i∈[k]

∣∣∣∣E[h
(

Ni

n

)
−h(pi)

]∣∣∣∣ ·E[1N′i>ε

]
≤ ε∧

Sp

n
.

165



4.F Bounding the Mean Absolute Deviation of Ĥ

By Jensen’s inequality,

E|Ĥ(XN ,XN′)−E[Ĥ(XN ,XN′)]| ≤
√

Var(Ĥ(XN ,XN′)).

Hence, to bound the mean absolute deviation of Ĥ, it suffices to bound its variance. Note

that the symbol counts are mutually independent. The inequality Var(X +Y ) ≤ 2(Var(X) +

Var(Y )) implies

Var(Ĥ(XN ,XN′)) = ∑
i∈[k]

Var(ĥ(Ni,N′i ))≤ 2VarS +2VarL,

where

VarS := ∑
i∈[k]

Var
(

Ĥna(Ni) ·1Ni≤cl logn ·1N′i≤ε−1

)
is the variance of the small-probability estimator, and

VarL := ∑
i∈[k]

Var
(

h
(

Ni

n

)
·1N′i>ε−1

)

is the variance of the large-probability estimator. Assume that cl and cs are sufficiently large and

small absolute constants. In Section 4.F.1 and 4.F.2, we will respectively establish

VarS .
1

n1−Θ(cs)
and VarL .

(logn)3

n
.

166



4.F.1 Variance of the Small-Probability Estimator

First we bound the small-probability variance VarS and prove VarS ≤ O
(

1/n1−Θ(cs)
)

.

Following the sequence of derivations in Section 4.E.1,

VarS ≤ 2 ∑
i∈[k]

Var
(

Ĥna(Ni) ·1Ni>cl logn ·1N′i≤ε−1

)
+2 ∑

i∈[k]
Var
(

Ĥna(Ni) ·1N′i≤ε−1

)
≤ 2 ∑

i∈[k]
E[(Ĥna(Ni))

2 ·1Ni>cl logn] ·E[1N′i≤ε−1]

+2 ∑
i∈[k]

Var
(
Ĥna(Ni)

)
·E[1N′i≤ε−1]+2 ∑

i∈[k]
(E[Ĥna(Ni)])

2 ·Var(1N′i≤ε−1)

≤ 2 ∑
i∈[k]

E[(Ĥna(Ni))
2 ·1Ni>cl logn] ·E[1N′i≤ε−1]

+2 ∑
i∈[k]

Var
(
Ĥna(Ni)

)
·E[1N′i≤ε−1]+2 ∑

i∈[k]
(H̃na(pi))

2 ·Var(1N′i≤ε−1),

where the first step follows by Var(X−Y )≤ 2(Var(X)+Var(Y )), the second step follows from

Var(A ·B) = E[A2]Var(B)+Var(A)(E[B])2 for any independent random variables A and B, and

the last step follows from our construction, which satisfies E[Ĥna(Ni)] = H̃na(pi).

Similar to the proof of Lemma 11, for the first term on the right-hand side and sufficiently

large cl ,

∑
i∈[k]

∣∣∣E[(Ĥna(Ni))
2 ·1Ni>cl logn

]
·E
[
1N′i≤ε−1

]∣∣∣≤ ∑
i∈[k]

pi

n3 =
1
n3 .
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As for the second term on the right-hand side,

RHS2 := ∑
i∈[k]

Var
(
Ĥna
)
·E[1N′i≤ε−1]

. 28d · ∑
i∈[k]

d
d

∑
t=1

(
n

cl logn

)2(t−1) Var(Nt
i )

n2t ·E[1N′i≤ε−1 ]

≤ 28d · d
n2 ∑

i∈[k]

d

∑
t=1

(
1

cl logn

)2(t−1)

Var(Nt
i ) ·E[1N′i≤ε−1]

≤ 28d · d
n2 ∑

i∈[k]

d

∑
t=1

(
1

cl logn

)2(t−1)

(npi)
t

t−1

∑
j=0

(
t
j

)
(npi)

j t!
j!
·E[1N′i≤ε−1]

≤ 28d · d
n2 ∑

i∈[k]

d

∑
t=1

(
1

cl logn

)2(t−1)

(npi)
t(t +npi)

t ·E[1N′i≤ε−1]

≤ 28d · d
n2 ∑

i∈[k]

d

∑
t=1

(
1

cl logn

)2(t−1)

2t((npi)
2t +(npi)

ttt) ·Pr(N′i ≤ ε
−1)

≤ 28d · d
n ∑

i∈[k]
pi

d

∑
t=1

(
1

cl logn

)2(t−1)

2t ((ε−1 +2t)2t−1 ·Pr(N′i ≤ ε
−1 +2t)

+ (ε−1 + t)t−1tt ·Pr(N′i ≤ ε
−1 + t)

)
. 29d · d

n
.
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It remains to bound the third term. Leveraging |H̃na(pi)|. pi25d shows that

∑
i∈[k]

(H̃na(pi))
2 ·Var(1N′i≤ε−1)

. 28d · ∑
i∈[k]

d

∑
t=1

(
n

cl logn

)2(t−1)

p2t
i ·Var(1N′i≤ε−1)

≤ 28d · ∑
i∈[k]

d

∑
t=1

(
n

cl logn

)2(t−1)

p2t
i ·Pr(N′i ≤ ε

−1)

= 28d · ∑
i∈[k]

pi

d

∑
t=1

(
n

cl logn

)2(t−1)

p2t−1
i ·

ε−1

∑
m=0

e−npi
(npi)

m

m!

≤ 28d · ∑
i∈[k]

pi

d

∑
t=1

(
n

cl logn

)2(t−1)(2t−1+ ε−1

n

)2t−1

Pr(Ni ≤ 2t−1+ ε
−1)

≤ 28d · ∑
i∈[k]

pi · cs logn · cl logn
n

.
29d

n
.

Consolidating all the three bounds above yields

VarS ≤
2
n3 +O(29d) · d

n
+O

(
29d

n

)
≤ 1

n1−Θ(cs)
,

where the last step follows by d = cs logn.

4.F.2 Variance of the Large-Probability Estimator

In this section we bound the quantity VarL and establish VarL . (logn)3/n. Due to

independence,

VarL = ∑
i∈[k]

Var
(

h
(

Ni

n

)
·1N′i>ε−1

)
.

The following lemma bounds the right-hand-side summation.
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Lemma 12. For any integer s≥ 1,

∑
i∈[k]

Var
(

h
(

Ni

n

)
·1N′i>s

)
≤ (logn)2 4s

n
.

Proof. First, we effectively decompose the variances:

∑
i∈[k]

Var
(

h
(

Ni

n

)
1N′i>s

)
= Var(1N′i>s)E

[
h2
(

Ni

n

)]
+ ∑

i∈[k]

(
E[1N′i>s]

)2
Var
(

h
(

Ni

n

))
≤ Var(1N′i>s)E

[
h2
(

Ni

n

)]
+ ∑

i∈[k]
Var
(

h
(

Ni

n

))
.

To bound the first term on the right-hand side, note that

Var(1N′i>s)E
[

h2
(

Ni

n

)]
≤ Var(1N′i>s)E

[
(logn)2

(
Ni

n

)2
]

≤ (logn)2 pi

n

(
1+npiVar(1N′i>s)

)
,

where the term in the parentheses further admits

pi Var(1N′i>s)≤ pi ·P[N′i ≤ s]

= e−npi
s

∑
j=0

(npi)
j+1

( j+1)!
j+1

n

≤ s+1
n

e−npi
s

∑
j=0

(npi)
j+1

( j+1)!

=
s+1

n
P(1≤ N′x ≤ s+1)

≤ s+1
n

.
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To bound the second term, let N̂i be an i.i.d. copy of Ni for each i,

2Var
(

h
(

Ni

n

))
= Var

(
h
(

Ni

n

)
−h
(

N̂i

n

))
= E

(
h
(

Ni

n

)
−h
(

N̂i

n

))2

≤ (logn)2E
(

Ni

n
− N̂i

n

)2

= 2(logn)2 · pi

n
.

A simple combination of these bounds yields the lemma.

Setting s = ε−1 in Lemma 12 and assuming ε logn≥ 1, we obtain

VarL = ∑
i∈[k]

Var
(

h
(

Ni

n

)
·1N′i>ε−1

)
≤ 4(logn)3

n
.

4.G Computational Complexity

The dominant computation step is finding the min-max polynomial of B′m(h,x), in which

we use the well-known Remez algorithm [PT09, Tre13]. Below, we shall argue that the algorithm

takes only Õ(n) time (number of bit operations) to well approximate B′m(h,x).

4.G.1 Remez Algorithm

The algorithm named after [Rem34] is an efficient iterative algorithm that numerically

computes the minimax polynomial. For a valid domain [a,b], set our objective to well approxi-

mating the function f (x) : [a,b]→ R by a degree-d real polynomial P(x), in the min-max sense.

We briefly illustrate a simple version of the algorithm below.

1. There are several different ways to initialize the algorithm. A popular initialization is to
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use the Chebyshev nodes. Specifically, we compute d +2 points x0,x1, . . .xd+1 as

xi :=
1
2
(a+b)+

1
2
(b−a)cos

(
2i+1

2(d +2)
π

)
, i = 0,1, . . . ,d +1.

2. For x0,x1, ...xd+1, solve the linear system of d +2 equations

b0 +b1 · xi + ...+bd · xd
i +E · (−1)i = f (xi) (where i = 0,1, . . .d +1),

for the unknowns b0,b1, ...bd, and E.

3. (Re)form the polynomial P(x) as

P(x) := b0 +b1 · x+ ...+bd · xd.

4. Compute the d +2 local extrema of the error function

E(x) := P(x)− f (x)

over the sign-invariant regions, and denote them by x∗0, . . .x
∗
d+1, sorted in descending order.

5. Replace xi by x∗i for i = 0,1, . . .d +1 and go back to Step 2 until quantity E converges.

Next, we analyze the time complexity of the Remez algorithm when applied to our setting.

4.G.2 Complexity of Evaluating f (x)

To compute our estimator, the function to approximate is the degree-Θ̃(n) polynomial

f (x) := Bm(hm,τn · x) with m = na−1 (different from the prior version to simply the notation),

a ∈ [1, logn], and τn = cl(logn)/n for a properly chosen absolute constant cl ≥ 1. The degree

and interval for the approximation are d = dn = Θ(logn) and [0,1], respectively.
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For our purpose, it suffices to approximate f (x) to an order-1/n error.

First-level truncation of f (x) First, we show that only the lower-order part of f (x)

matters in the computation. By the definition of Bernstein polynomials and |hm+1(y)|. 1,∀y ∈

[0,1],

Bm(hm+1,τn · x) = E
Y∼bin(m,τn·x)

[
hm+1

(
Y
m

)]
=

m

∑
t=0

hm+1

( t
m

)
·Pr(bin(m,τn · x) = t)

=

4cl log2 n

∑
t=0

hm+1

( t
m

)
·Pr(bin(m,τnx)= t)

+O(Pr(bin(m,τnx)>4cl log2n)).

Note that mτn · x ≤ cl log2 n for x ∈ [0,1]. Then, by standard binomial tail bounds, e.g,

Lemma 6,

Pr(bin(m,τn · x)>4cl log2 n)≤ e−cl(log2 n) ≤ 1
nlogn ≤

1
n
.

Hence, we can redefine the function to approximate as

f (x) =
4cl log2 n

∑
t=0

hm+1

( t
m

)
·Pr(bin(m,τnx)= t) =

4cl log2 n

∑
t=0

hm+1

( t
m

)
·
(

m
t

)
(τnx)t(1− τnx)m−t .

A natural step to take is expending the polynomial function into its standard form.

f (x) =
4cl log2 n

∑
t=0

hm+1

( t
m

)
·
(

m
t

)
(τnx)t(1− τnx)m−t

=
4cl log2 n

∑
t=0

hm+1

( t
m

)
·
(

m
t

)
(τnx)t

m−t

∑
j=0

(
m− t

j

)
(−τnx)m−t− j

=
m

∑
s=0

xs ·

τ
s
n

min{s,4cl log2n}

∑
t=0

hm+1

( t
m

)
·
(

m
t

)(
m− t
s− t

)
(−1)s−t

 .

For simplicity, let us denote the coefficient of xs in f (x) by Cs. Below, we bound the magnitude of
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Cs for s = 0,1, . . . ,m. Recall that a . b represents a = O(b) which hides only absolute constants,

|hm+1(y)|. 1 for all y ∈ [0,1], and τn = cl(logn)/n for an absolute constant cl . Then,

|Cs|=

∣∣∣∣∣∣τs
n

min{s,4cl log2n}

∑
t=0

hm+1

( t
m

)
·
(

m
t

)(
m− t
s− t

)
(−1)s−t

∣∣∣∣∣∣
.

(
cl logn

n

)s s

∑
t=0

(
m
t

)(
m− t
s− t

)
≤
(

cl logn
n

)s

(2m)s

≤
(

cl logn
n

)s

(2n logn)s

= exp(Θ(s log logn)).

Second-level truncation of f (x) Following the above derivations, we can derive an

alternative upper bound on Cs. This bound basically shows that for large s, the term corresponding

to Cs is negligible. Specifically, consider any s≥ 2(cle)2 log4 n≥ (cle)2 log4 n+8cl log2 n where
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cl > 1,

|Cs|=

∣∣∣∣∣∣τs
n

min{s,4cl log2n}

∑
t=0

hm+1

( t
m

)
·
(

m
t

)(
m− t
s− t

)
(−1)s−t

∣∣∣∣∣∣
.

(
cl logn

n

)s 4cl log2n

∑
t=0

(
m
t

)(
m− t
s− t

)

≤
(

cl logn
n

)s 4cl log2n

∑
t=0

mt · ms−t

(s− t)!

≤
(

cl logn
n

)s

(n logn)s
4cl log2n

∑
t=0

1
(s− t)!

.
(cl log2 n)s

(s−4cl log2n)!
.

(cle log2 n)s

(s−4cl log2n)s−4cl log2n

≤ ((cle)2 log4 n)s/2

(s−4cl log2n)s−4cl log2n

≤ 1

((cle)2 log4 n)3log4 n

≤ 1
n2 logn

≤ 1
mn

.

Since x ∈ [0,1], we can truncate f (x) at degree d?
n := 2(cle)2 log4 n and redefine it as

f (x) =
d?

n

∑
s=0

xs ·Cs,

where Cs, as specified above, satisfies |Cs|. exp(Θ̃(log4 n)) and

Cs = τ
s
n

min{s,4cl log2n}

∑
t=0

hm+1

( t
m

)
·
(

m
t

)(
m− t
s− t

)
(−1)s−t .

This modification changes the value of f (x) by at most 1/n, for all x ∈ [0,1].

Third-level truncation of f (x) Now we evaluate each coefficient Cs to an error of

1/(nd?
n), so that we can compute f (x) to an error of 1/n, for all x ∈ [0,1]. This can be accom-
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plished by computing every

Cs,t := hm+1

( t
m

)
· τs

n

(
m
t

)(
m− t
s− t

)
(−1)s−t

to an O(1/(nsd?
n)) absolute error. Note that Cs,t is a product of five terms, with each of them

bounded by ms ≤ exp(Θ(log5 n)) in magnitude. Simple algebra further reduces our objective to

approximating every term in the product to an exp(−Θ(log5 n)) error.

We analyze each term as follows: 1) computing (−1)s−t takes O(max{logs, log t}) =

O(log logn) time; 2) computing the product of A integers of magnitude ≤ B takes O((A logB)2)

time, which can be achieved by recursively calculating the pairwise products 2; 3) point 2)

shows that we can compute
(m

t

)
,
(m−t

s−t

)
, and ns exactly in ploylog(n) time; 4) now consider

evaluating (nτn)
s = (cl logn)s: since |as− bs| ≤ |a− b| · smax{|a|, |b|}s−1 ≤ |a− b| ·O(log5 n)

if |a|, |b| ≤ O(logn), it suffices to compute cl logn to an exp(−Θ(log5 n)) error, which can be

performed in ploylog(n) time; 5) it remains to compute

hm+1

( t
m

)
= log(m+1)− (t +1) log(t +1)+ t log t,

to an exp(−Θ(log5 n)) error, which again takes ploylog(n) time.

Therefore, we can evaluate each Cs,t , and their sum Cs, to an error of 1/(nd?
n) in time

ploylog(n). We can further define C?
s as the closest integer multiple of 1/(nd?

n)
3 to Cs, and

redefine

f (x) =
d?

n

∑
s=0

xs ·C?
s .

2We assume that computing the product two integers ≤ B takes O(log2 B) time, achievable through the standard
schoolbook “long multiplication”. A more efficient integer-multiplication algorithm is the Harvey-Hoeven that takes
only Õ(logB) time, yielding an Õ(A logB) complexity for the problem considered here.

3Assume that d?
n is an integer. Otherwise, replace it by dd?

ne.
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4.G.3 Lagrange Interpolation with Chebyshev Nodes

Recall that the degree of the min-max approximation polynomial is d = dn = Θ(logn).

We initialize the Remez Algorithm by the Chebyshev nodes:

xi :=
1
2
+

1
2

cos
(

2i+1
2(d +2)

π

)
, i = 0,1, . . . ,dn +1.

Then, for any integers i 6= j ∈ [0,d +1],

|xi− x j|=
1
2

∣∣∣∣cos
(

2i+1
2(d +2)

π

)
− cos

(
2 j+1

2(d +2)
π

)∣∣∣∣
=

∣∣∣∣sin
(

i+ j+1
2(d +2)

π

)
· sin

(
i− j

2(d +2)
π

)∣∣∣∣
≥ sin2

(
π

2(d +2)

)
≥ 1

(d +2)2 .

Now, consider the following function relating to the i-th Lagrange basis polynomial:

`i(x) := ∏
j 6=i

(x− x j).

For any τ > 0 and approximation sequence {x′j}
d+1
j=0 in [0,1] satisfying |x j− x′j| ≤ τ, denote by

˜̀i(x) the corresponding product ∏ j 6=i(x− x′j). Then, for any x ∈ [0,1],

|`i(x)− ˜̀i(x)| ≤ |∏
j 6=i

(x− x j)−∏
j 6=i

(x− x′j)|

≤∑
j 6=i
|(x− x j)− (x− x′j)| ∏

j′< j, j′ 6=i
|x− x j′| ∏

j′> j, j′ 6=i
|x− x′j′|

≤ (d +1)τ.
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Under the same setting with τ < 1/(4(d + 2)2), the i-th Lagrange basis polynomial Li(x) :=

`i(x)/`i(xi) and its approximation L̃i(x) := ˜̀i(x)/ ˜̀i(xi) differ by

∣∣Li(x)− L̃i(x)
∣∣≤ ∣∣∣∣ `i(x)

`i(xi)
−

˜̀i(x)
˜̀i(xi)

∣∣∣∣
=

∣∣∣∣`i(x) ˜̀i(xi)− ˜̀i(x)`i(xi)

`i(xi) ˜̀i(xi)

∣∣∣∣
≤
∣∣∣∣( ˜̀i(xi)− `i(xi))

`i(x)
`i(xi) ˜̀i(xi)

∣∣∣∣+ ∣∣∣∣(`i(x)− ˜̀i(x))
`i(xi)

`i(xi) ˜̀i(xi)

∣∣∣∣
≤ τ · exp(Θ̃(logn)).

Denote by L and L̃ the Lagrange interpolation operator associated with {x j}d+1
j=0 and {x′j}

d+1
j=0 ,

respectively. Then for any x ∈ [0,1], the interpolation polynomials of f differ by

|L [ f ](x)− L̃ [ f ](x)| ≤∑
i
| f (xi)Li(x)− f (x′i)L̃i(x)|

≤∑
i
|( f (xi)− f (x′i))Li(x)+ f (x′i)(Li(x)− L̃i(x))|

≤∑
i
|Li(x) ·

d?
n

∑
s=0

(xs
i − x′si ) ·C?

s |+∑
i
| f (x′i)(Li(x)− L̃i(x))|

≤ τ · exp(Θ̃(log4 n)).

Set τ = exp(−Θ̃(log4 n))/n and recall that Ed[g] denotes the best approximation error of

the degree-d min-max polynomial over [0,1]. By the previous derivations and result of [HO20a],
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for Td := 2+ 2
π

log(d +1) and any x ∈ [0,1],

|L̃ [ f ](x)−B′m(h,x)| ≤
1
n
+ |L [ f ](x)−B′m(h,x)|

≤ 1
n
+ |L [ f ](x)−L [B′m(h, ·)](x)+L [B′m(h, ·)](x)−B′m(h,x)|

≤ 1
n
+Td · (Ed[B′m(h, ·)]+Ed[ f ]+Ed[B′m(h, ·)])+ | f (x)−B′m(h,x)|

≤ 1
n
+3Td ·Ed[B′m(h, ·)]+(Td +1) max

x∈[0,1]
| f (x)−B′m(h,x)|

. Td

(
1
n
+Ed[B′m(h, ·)]

)
. ε · log logn.

Therefore, if we compute each x j to an exp(−Θ̃(log4 n)) error, the resulting polynomial L̃ [ f ](x)

approximates B′m(h,x) to an error of O (ε · log logn), for any x ∈ [0,1]. This yields a result only

slightly weaker than that in Theorem 1, with the inequality being

LĤ(p,n)−LĤE (p,εn logn). ε · log logn∧
(

Sp

n
+

1
n0.49

)
.

Choose the approximation nodes x′j ∈ [0,1] to be integer multiples of exp(−Θ̃(log4 n)). Finally,

we consider the time complexity of expanding L̃ [ f ](x) into its standard form, which basically

characterizes the time required for constructing the estimator. Note that

L̃ [ f ](x) = ∑
i

f (x′i) ·
∏ j 6=i(x− x′j)

∏ j 6=i(x′i− x′j)
.

Since x′j exp(Θ̃(log4 n))∈N for any j and f (x) = ∑
d?

n
s=0 xs ·C?

s with C?
s being multiples of 1/(nd?

n),

it takes polylog(n) time to evaluate f (x′i) and ∏ j 6=i(x′i− x′j) exactly, with results expressed as

rational numbers. In addition, computing each coefficient in the standard form of ∏ j 6=i(x− x′j)

takes O(2d · s2) = Õ(
√

n) 4 time. Hence, finding the explicit expression of the standard form of

4Recall that d = cs logn. Here we choose cs ≤ 1/2.
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L̃ [ f ](x) takes Õ(
√

n log2 n) = Õ(
√

n) time. Let us denote this standard form by

L̃ [ f ](x) :=
d+1

∑
t=0

bt · xt .

The small probability estimator is thus

V̂S := ∑
i∈[k]

(
d+2

∑
t=1

bt−1

t
·

Nt
i

nt

)
·1N′i≤

1
ε

·1Ni.logn,

where Ni and N′i are sample symbol counts in [0,n]. Note that computing each Nt
i or nt takes

O(log2 n) time, and there are at most O(
√

n) distinct (Ni,N′i . 1/ε) pairs. Hence, we can evaluate

the small-probability estimator in Õ(n) time. In addition, the evaluation of the large-probability

estimator is essentially the same as that of the empirical plug-in estimator. Consolidating these

facts yields the desired near-linear-time computability.

4.G.4 Remez Algorithm with High Precision

Note that the first step of the Remez algorithm is initialization and will be executed only

once. The last step of the algorithm serves as the initialization step for the next round of iteration.

Exact evaluation of the initial nodes is not required in each round for convergence.

As shown by our previous discussion, it suffices to approximate the initial nodes to

an accuracy of exp(−polylog(n)), which takes polylog(n) time for the first step. Denote by

x′0, . . .x
′
d+1 ∈ [0,1] the initial nodes for a particular iteration and assume that x′i/δn ∈ N, i =

0, . . . ,d +1.

We proceed to analyzing the second step of the Remez algorithm. According to Sec-

tion 4.G.2, we will approximate the polynomial

f (x) =
d?

n

∑
s=0

xs ·C?
s ,
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where d?
n = Θ(log4 n) and C?

s ’s are integer multiples of 1/(nd?
n) satisfying |C?

s | ≤ exp(Θ̃(log4 n)).

Computing the sequence of f (x) values exactly for x′i’s takes polylog(n) time. We can express each

f (x′i) as a rational number with both its nominator and denominator being at most exp(polylog(n)).

These claims clearly also hold for the evaluation of xt at each x′i with t, j < d + 2 = Θ(logn).

Denote by Vb,E := (b0, . . . ,bd,E)T the vector of unknown variables. Multiplying both sides of

each equation

b0 +b1 · x′i + ...+bd · x′di +E · (−1)i = f (x′i)

by the least common multiple of the denominators of x′di and f (x′i), we transform the second

step to solving a system of linear equations in the form AVb,E = y, where A ∈ Z(d+2)×(d+2)
+ and

y ∈ Z(d+2)×1
+ are matrices with entries bounded by exp(polylog(n)). If the initial nodes x′j’s are

distinct and sorted accordingly, the system AVb,E = y has a unique solution. Utilizing the algorithm

proposed by [Dix82], we can solve this system in time Õ((d +2)3 log(‖A‖+‖y‖)) = polylog(n)

where ‖·‖ represents the maximum entry in absolute value.

Once we obtain the coefficient vector Vb,E , Step 3 of the algorithm takes polylog(n) time

to form the approximation polynomial

P(x) := b0 +b1 · x+ ...+bd · xd.

The fourth step of the Remez algorithm calls for computing the local extrema of the error function

E(x) := P(x)− f (x)

over the d +2 sign-invariant regions. Noting that E(x) is a degree d?
n polynomial, it suffices to

approximate all the real roots of its derivative E ′(x) to an exp(−polylog(n)) accuracy.

To do this, we first transform E ′(x) to a polynomial with integer coefficients of size

exp(polylog(n)). Then, we apply the quadratic interval refinement algorithm [Abb14] to ap-
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proximate the real roots of the transformed polynomial. Shown in the paper of [Ker09], for a

degree-d square-free polynomial with integer coefficients bounded by 2σ in absolute value, an

ε-accuracy approximation of the real roots using this algorithm requires a time complexity of

Õ(d4σ2 +d3 log(1/ε)). For the task considered here, this again converts to a time complexity of

polylog(n).

Finally, we can view Step 5 as the initialization step in the next iteration, implying a

per-iteration complexity of polylog(n) for the Remez algorithm. Note that quantity E corresponds

to a lower bound on the max approximation error of each iteration. As for the number of iterations,

[Vei60] essentially shows that under differentiability, this process has a quadratic convergence.

More specifically, let Eν denote the error bound E of the the ν-th iteration, then {Eν}ν≥1 converges

to the optimal degree-d approximation error Ed[ f ] with

|Ed[ f ]−Eν|. (Ed[ f ]−Eν−1)
2.

It takes only polylog(n) iterations for E to converge to the exp(−polylog(n))-neighborhood of

its limit Ed[ f ]. Therefore, the total time required for computing the approximation polynomial

with Remez algorithm is O(polylog(n)). Consolidating this with the reasoning in the last section

shows that our estimator can be evaluated in time near-linear in n. On the practical side, see [PT09,

Tre13] for an optimized Matlab implementation of the Remez algorithm.

4.H A Refined Estimator for Shannon Entropy

In this section, we replacing the function hn(x) employed in Section 4.C by a much finer

approximation of Bn(h,x). Through this refinement, we establish the full version of Theorem 1.
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To begin with, we define the following two f -functions for z ∈ [0,∞]:

f1(z) := E
X∼Poi(z)

[h(X)] =−e−z
∞

∑
j=1

z j

j!
j log j

and

f2(z) := E
X∼Poi(z)

[h(X +1)] =−e−z
∞

∑
j=1

z j

j!
( j+1) log( j+1).

4.H.1 Relating f -functions to Bernstein Approximation Errors

For x ∈ [0,1], set z = z(x) := nx. The following lemma relates f1(z) and f2(z) to the

Bernstein approximation error of hn+1, that is, hn+1(x)−Bn(hn+1,x).

Lemma 13. For any x ∈ [0, log4 n/n],

hn+1(x)−Bn(hn+1,x) = (h(z+1)− f2(z))− (h(z)− f1(z))+ Õ
(

1
n

)
.

As a corollary, for any sufficiently large n and x ∈ In = [0,τn := cl(logn)/n],

hna(x)−Bna−1(hna,x) = (h(z+1)− f2(z))− (h(z)− f1(z))+ Õ
(

1
na−1

)
.

Since 1/(na−1)≤min{1/ logn,Sp/n}, the last term on the right-hand side is negligible. These

results, together with the function-wise triangle inequality on w2
ϕ, further reduce the desired

inequality

w2
ϕ(Bna−1(hna,τn · x),d−1

n ). ε

to bounds in the form of

w2
ϕ(g(x),d

−1
n ). ε,

for function g(x) being hna(τn · x), h(z(x)), h(z(x)+1), f1(z(x)), and f2(z(x)), respectively.
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Proof. Let h−1(x) := h(x+n−1). By the linearity of expectation,

hn+1(x)−Bn(hn+1,x) = n(h−1(x)−h(x)−Bn(h−1,x)+Bn(h,x))

= n(h−1(x)−Bn(h−1,x))−n(h(x)−Bn(h,x)) .

Note that z = nx implies z ∈ [0, log4 n]. Hence, we have

n(h−1(x)−Bn(h1,x)) =−(nx+1) log
(

nx+1
n

)
+

n

∑
j=0

( j+1) log
(

j+1
n

)(
n
j

)
x j(1− x)n− j

=−(z+1) log
(

z+1
n

)
+

n

∑
j=0

( j+1) log
(

j+1
n

)(
n
j

)
z j (n− z)n− j

nn

=−(z+1) log(z+1)+
(

1− z
n

)n n

∑
j=0

( j+1) log( j+1)
(

n
j

)
z j(n− z)− j

=−(z+1) log(z+1)+
(

1− z
n

)n n

∑
j=0

( j+1) log( j+1)
n j

n j
z j

j!

(
1− z

n

)− j

=−(z+1) log(z+1)+ e−z
∞

∑
j=0

z j

j!
( j+1) log( j+1)+ Õ

(
1
n

)
= h(z+1)− f2(z)+ Õ

(
1
n

)
.

The second last equality is the most non-trivial step. In order to establish this equality, we will

need the following three inequalities (assume z ∈ [0, log4 n] and n� 1).
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Inequality 1:

0≤
(

1− z
n

)n n

∑
j=log5 n+1

( j+1) log( j+1)
n j

n j
z j

j!

(
1− z

n

)− j

=
(

1− z
n

)n n

∑
j=log5 n+1

( j+1) log( j+1)
n j

2 j(n− z) j
(2z) j

j!

≤ e−z
n

∑
j=log5 n+1

( j+1) log( j+1)
(2z) j

j!

≤ e−z
n

∑
j=log5 n+1

2 j( j−1)
(2z) j

j!

≤ 8z2e−z
n

∑
j=log5 n−1

(2z) j

j!

≤ 8(log8 n)Pr(Poi(2z)≥ log5 n−1)

≤ 1
n
.

Inequality 2:

0≤e−z
∞

∑
j=log5 n+1

z j

j!
( j+1) log( j+1) = 2(log8 n)Pr(Poi(2z)≥ log5 n−1)≤ 1

n
.
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Inequality 3: For any j ≤ log5 n,

∣∣∣∣e−z−
(

1− z
n

)n n j

n j

(
1− z

n

)− j
∣∣∣∣= ∣∣∣∣e−z−

(
1− z

n

)n n j

(n− z) j

∣∣∣∣
≤
∣∣∣e−z−

(
1− z

n

)n∣∣∣+(1− z
n

)n
∣∣∣∣1− n j

(n− z) j

∣∣∣∣
≤ e−z z2

n
+ e−z

∣∣∣∣1− n j

(n− z) j

∣∣∣∣
≤ e−z z2

n
+ e−z

(∣∣∣∣1− n j

(n− z) j

∣∣∣∣∨
∣∣∣∣∣1− (n− log5 n) j

(n− z) j

∣∣∣∣∣
)

≤ e−z z2

n
+ e−z

(∣∣∣∣ z j
n− z( j+1)

∣∣∣∣∨
∣∣∣∣∣(log5 n) j

n− z

∣∣∣∣∣
)

≤ e−z 2log10 n
n

.

Note that Inequality 3 further implies

∣∣∣∣∣∣e−z
log5 n

∑
j=0

z j

j!
( j+1) log( j+1)−

(
1− z

n

)n log5 n

∑
j=0

( j+1) log( j+1)
n j

n j
z j

j!

(
1− z

n

)− j

∣∣∣∣∣∣
≤ 2log10 n

n
· e−z

log5 n

∑
j=0

z j

j!
(2 j( j−1))

≤ 2log10 n
n

·2z2

≤ 4log18 n
n

.

This, together with Inequality 1 and 2, proves the desired equality. The same reasoning also gives

n(h(x)−Bn(h,x)) =−z logz+ e−z
∞

∑
j=1

z j

j!
j log j+ Õ

(
1
n

)
,

which completes the proof.
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For any x ∈ In, let z1 = (na−1)x, then z1 ∈ I′n := [0,acl logn]. Therefore, by Lemma 13,

hna(x)−Bna−1(hna,x) = (h(z1 +1)− f2(z1))− (h(z1)− f1(z1))+ Õ
(

1
n

)
.

In the next section, we approximate function f1(z) over I′n with a degree-d polynomial.

4.H.2 Approximating f1(z)

Consider the first function

f1(z) =−e−z
∞

∑
j=1

z j

j!
j log j.

We want to approximate f1 with a low-degree polynomial and bound the corresponding error. For

this purpose, we establish some basic properties of f1(z) as follows.

Properties of f1(z)

Property 1: The function f1(z) is a continuous function over [0,∞), and f1(0) = 0.

Property 2: For all z≥ 0, the value of f1(z) is non-negative.

Property 3: Denote u(y) := (y+2) log(y+2)+ y logy−2(y+1) log(y+1). Then, for

any z≥ 0,

f1
′′(z) =−e−z

∞

∑
t=0

zt

t!
·u(t) and − log4≤ f1

′′(z)< 0.

Proof. We begin by establishing the equality.

− f1
′′(z) = e−z

∞

∑
t=1

(t−1)t2zt−2 log(t)
t!

−2e−z
∞

∑
t=1

t2zt−1 log(t)
t!

+ e−z
∞

∑
t=1

tzt log(t)
t!

= e−z
∞

∑
t=0

zt(t +2) log(t +2)
t!

−2e−z
∞

∑
t=0

zt(t +1) log(t +1)
t!

+ e−z
∞

∑
t=0

tzt log(t)
t!

= e−z
∞

∑
t=0

zt

t!
·u(t).
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To prove the inequality, we utilize the following lemma.

Lemma 14. For any t ≥ 0,
log4
t +1

≥ u(t)≥ 1
t +1

.

By Lemma 14, we obtain

0 < e−z
∞

∑
t=0

zt

t!
· 1
t +1

≤ e−z
∞

∑
t=0

zt

t!
·u(t) =− f1

′′(z)≤ e−z
∞

∑
t=0

zt

t!
· log4
t +1

= (log4)
1−e−z

z
≤ log4.

The proof of the lemma follows by standard algebraic calculations and is omitted.

Property 4: For z > 0,

0≤ f1
′′(z)

h′′(z)
≤ log4.

Proof. Recall that h(z) =−z logz. Therefore, h′′(z) =−1/z and

0≤ f1
′′(z)

h′′(z)

= e−z
∞

∑
t=0

zt+1

t!
·u(t)

≤ e−z
∞

∑
t=0

zt+1

t!
· log4
t +1

≤ (log4)(1− e−z)

≤ log4,

where the third step follows by Lemma 14.

Moduli of Smoothness

In this section, we introduce some notable results in approximation theory [DT12] that

are crucial for our simplification of the problem. Let ϕ(x) :=
√

x(1− x). For any function
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f : [0,1]→ R, the first- and second- order Ditzian-Totik moduli of smoothness quantities of f are

w1
ϕ( f , t) := sup

{
| f (u)− f (v)| : 0≤ u,v≤ 1, |u− v| ≤ t ·ϕ

(
u+ v

2

)}
,

and

w2
ϕ( f , t) := sup

{∣∣∣∣ f (u)+ f (v)−2 f
(

u+ v
2

)∣∣∣∣ : 0≤ u,v≤ 1, |u− v| ≤ 2t ·ϕ
(

u+ v
2

)}
,

respectively. Let Pd denote the collection of polynomials with real coefficients and degree at most

d. For any d ∈ Z+, interval I ⊂ R, and function f : I→ R, denote by

Ed[ f , I] := min
f̃∈Pd

max
x∈I
| f (x)− f̃ (x)|

the best approximation error of the degree-d min-max polynomial of f over I. For a bounded

domain I, we can always shift and rescale f to make it a real function over [0,1]. Hence, without

loss of generality, it suffices to consider and analyze Ed[ f ] := Ed[ f , [0,1]].

The connection between the best polynomial-approximation error Ed[ f ] of a continuous

function f and the second order Ditzian-Totik moduli of smoothness w2
ϕ( f , t) is established in the

following lemma [DT12].

Lemma 15. There are absolute constants C1 and C2 such that for any continuous function f over

[0,1] and d > 2,

Ed[ f ]≤C1w2
ϕ( f ,d−1),

and
1
d2

d

∑
t=0

(t +1)Et [ f ]≥C2w2
ϕ( f ,d−1).

The above lemma shows that the second order smoothness quantity w2
ϕ( f , ·) essentially
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characterizes E·[ f ], and thus transforms the problem of showing

|h̃m(x)−Bm−1(hm,x)|. ε, ∀x ∈ In,

to that of establishing

w2
ϕ(Bm−1(hm,τn · x),d−1

n ). ε,

where τn = Θ(logn/n) and dn = Θ(logn) by definition.

Bounding Errors in Approximating f1(x)

For simplicity, define x′ := (acl logn) · x and consider the function

f1′(x) := f1((acl logn) · x).

Under proper scaling, approximating f1(x′) over I′n = [0,acl logn] is equivalent to approximating

f1′(x) over [0,1]. By Lemma 15, it suffices to bound w2
ϕ( f1′, ·) for our purpose.

In particular, we know that

min
g∈Pd

max
x∈I′n
| f1(x)−g(x)|= Ed[ f1′]≤C1w2

ϕ( f1′,d
−1).

By definition, w2
ϕ( f1′,d−1) is the solution to the following optimization problem.

sup
u,v

∣∣∣∣ f1′(u)+ f1′(v)−2 f1′

(
u+ v

2

)∣∣∣∣
subject to

0≤ u,v≤ 1, |u− v| ≤ 2
d
·ϕ
(

u+ v
2

)
.

First, consider the optimization constraints. Analogous to the arguments in [JVHW15], we define
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M := (u+ v)/2 and δ := d−1
√

1/M−1. The feasible region can be expressed as

[M−d−1
√

M(1−M),M+d−1
√

M(1−M)]∩ [0,1] = [M−δM,M+δM]∩ [0,1].

By Property 3 in Section 4.H.2, f1(x′), or equivalently f1′(x), is a strictly concave function.

Therefore, the maximum of | f (u)+ f (v)−2 f (u+ v/2)| is attained at the boundary of the feasible

region.

Note that

M−d−1
√

M(1−M)≥ 0 ⇐⇒ M ≥ 1
d2 +1

and

M+d−1
√

M(1−M)≤ 1 ⇐⇒ M ≤ d2

d2 +1
.

We need to consider only three cases:

Case 1:

u = 0,v = 2M,M ∈ [0,1/(d2 +1)].

Case 2:

u = 2M−1,v = 1,M ∈ [d2/(d2 +1),1].

Case 3:

u = M−δM,v = M+δM,M ∈ [1/(d2 +1),d2/(d2 +1)].

To facilitate the discussions, we utilize the following lemma.

Lemma 16. Let f ∈C1([a,b]) have second order derivative in (a,b). There exists c ∈ (a,b) such
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that

f (a)+ f (b)−2 f
(

a+b
2

)
=

1
4
(b−a)2 · f ′′(c).

We begin with Case 1. By the Lemma 16, there exists c ∈ (0,2/(d2 +1)) satisfying

∣∣∣∣ f1′(0)+ f1′

(
2

d2 +1

)
−2 f1′

(
1

d2 +1

)∣∣∣∣≤ 1
4
·
(

2
d2 +1

)2 ∣∣ f1′
′′(c)

∣∣= ( 1
d2 +1

)2 ∣∣ f1′
′′(c)

∣∣ .
By the definition of function f1′ ,

| f1′
′′(x)|= |(acl logn)2g′′1((acl logn) · x)| ≤ (log4)(acl logn)2.

Therefore, we obtain (
1

d2 +1

)2 ∣∣ f1′
′′(c)

∣∣. ε
2.

This, together with an analogous argument on Case 2, implies that the objective value is bounded

by O(ε2) in both cases. It remains to analyze Case 3. We proceed by considering two regimes:

Regime 1: If M ≤ 4/(d2 + 1), then |u− v| = 2d−1
√

M(1−M) ≤ 4/d2. The above

reasoning again shows that

∣∣∣∣ f1′(u)+ f1′(v)−2 f1′

(
u+ v

2

)∣∣∣∣. ε
2.

Regime 2: If 4/(d2 +1)≤M ≤ d2/(d2 +1),

M−δM = M

(
1−
√

M−1−1
d

)
≥M

(
1−

√
(d2 +1)−4

2d

)
≥ M

2
.
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By Lemma 16, there exists c ∈ (M−δM,M+δM)⊆ (M/2,3M/2) satisfying

∣∣∣∣ f1′(u)+ f1′(v)−2 f1′

(
u+ v

2

)∣∣∣∣≤ 1
4
·
(

2
1
d

√
M(1−M)

)2 ∣∣ f1′
′′(c)

∣∣ .
Then, by Property 4 in Section 4.H.2,

| f1′
′′(c)|= |(acl logn)2 f ′′1 ((acl logn) ·c)| ≤ (acl logn)2(log4) · 1

(acl logn) · c
≤ (log8) · acl logn

M
.

This bound immediately implies

1
4
·
(

2
d

√
M(1−M)

)2

·
∣∣ f1′
′′(c)

∣∣≤ 1
d2 M(1−M) · (log8) · acl logn

M
≤ (log8) · clε

c2
s
.

Consolidating the previous results yields

min
g∈Pd

max
x∈I′n
| f1(x)−g(x)|. ε.

For function f2, an analogous argument shows that

min
g∈Pd

max
x∈I′n
| f2(x)−g(x)|. ε.

In the next section, we apply these inequalities to analyze our refined entropy estimator.

4.H.3 Proving Theorem 1: A Refined Entropy Estimator

We aim to approximate Bna−1(hna,x)− hna(x) over In = [0,cl logn/n] by a degree-d

polynomial. By Lemma 13, for any x ∈ In and z1 := (na−1)x ∈ I′n = [0,acl logn],

hna(x)−Bna−1(hna,x) = (h(z1 +1)− f2(z1))− (h(z1)− f1(z1))+ Õ
(

1
n

)
.
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By the results in [Kor91],

min
g∈Pd

max
x∈I′n
|h(x)−g(x)|= (acl logn)min

g∈Pd
max

x∈[0,1]
|h(x)−g(x)|. acl logn

(cs logn)2 . ε

and

min
g∈Pd

max
x∈I′n
|h(x+1)−g(x)|. ε.

Combining these bounds with the last two inequalities in the previous section, we obtain

min
g∈Pd−1

max
x∈In
|(hna(x)−Bna−1(hna,x))−g(x)|. ε.

Denote by g̃(x) the min-max polynomial that achieves this minimal error. By the derivations in

Section 4.C.2, the degree-(d−1) polynomial h̃na(x) satisfies

max
x∈In
|hna(x)− h̃na(x)|. ε.

Denote h̃∗(x) :=−g̃(x)+ h̃na(x), and note that by definition, B′na(h,x) = Bna−1(hna,x). Then, the

triangle inequality implies

max
x∈In
|B′na(h,x)− h̃∗(x)|= max

x∈In
|Bna−1(hna,x)− h̃∗(x)|. ε.

By the triangle inequality of integrals, the degree-d polynomial

H̃∗(x) :=
∫ x

0
h̃∗(t)dt

approximating Bna(h,x) possesses the following pointwise error guarantee.

Lemma 17. For any x ∈ In,

|Bna(h,x)− H̃∗(x)|. xε.
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Hence, H̃∗(x) is a degree-d polynomial that well approximates Bna(h,x) pointwisely.

Next, we argue that the coefficients of H̃∗(x) can not be too large. For notational conve-

nience, write h̃∗(x) := ∑
d−1
v=0 avxv. By Corollary 2, for any x ∈ In,

|hna(x)−Bna−1(hna,x)| ≤ 1.

Furthermore, hna(x) is an increasing function over In, and thus

|hna(x)|= max
{
|hna(0)|,hna

(
cl(logn)

n

)}
. logn.

Therefore, for any x ∈ In,

|h̃∗(x)|. logn.

The boundedness of h̃∗(x) implies that its coefficients cannot be too large:

|av|.
(

24.5d logn
)( n

cl logn

)v

.

Write H̃∗(x) as H̃∗(x) = ∑
d
t=1 a′tx

t . Then, by H̃∗(x) =
∫ x

0 h̃∗(t)dt and the bound on |av|,

|a′t |. 24.5d
(

n
cl logn

)t−1

.

The construction of the new entropy estimator follows by replacing H̃na(x) by H̃∗(x) in Sec-

tion 4.D. The rest of the proof is also similar to that in the main paper and thus omitted.
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4.I Competitive Estimators for General Additive Properties

Consider an arbitrary real function f : [0,1]→ R. Without loss of generality, we will

assume that f (0) = 0. According to the derivations in Section 4.C, we can write B′n( f ,x) as

B′n( f ,x) :=
n−1

∑
j=0

n
(

f
(

j+1
n

)
− f

(
j
n

))(
n−1

j

)
x j(1− x)(n−1)− j.

Our aim to approximate B′na( f ,x) with a low degree polynomial. For simplicity, we assume that

f is a 1-Lipschitz function. For x ∈ [0,1], set z = nx, and define gn+1( j) := (n+1) f
(

j
n+1

)
,

f1,n+1(z) := e−z
∞

∑
j=0

gn+1( j+1)
z j

j!
,

and

f2,n+1(z) := e−z
∞

∑
j=0

gn+1( j)
z j

j!
.

The following lemma relates f1,n+1(z) and f2,n+1(z) to B′n+1( f ,x).

Lemma 18. For any x ∈ [0, log4 n/n] and z = nx,

B′n+1( f ,x) = f1,n+1(z)− f2,n+1(z)+ Õ
(

1
n

)
.
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Proof. Note that z = nx implies z ∈ [0, log4 n]. Hence, we have

n

∑
j=0

(n+1) f
(

j+1
n+1

)(
n
j

)
x j(1− x)n− j =

n

∑
j=0

gn+1( j+1)
(

n
j

)
z j (n− z)n− j

nn

=
(

1− z
n

)n n

∑
j=0

gn+1( j+1)
(

n
j

)
z j(n− z)− j

=
(

1− z
n

)n n

∑
j=0

gn+1( j+1)
n j

n j
z j

j!

(
1− z

n

)− j

= e−z
∞

∑
j=0

gn+1( j+1)
z j

j!
+ Õ

(
1
n

)
= f1,n+1(z)+ Õ

(
1
n

)
.

The second last equality is the most non-trivial step. In order to establish this equality, we will

need the following three inequalities (assume z ∈ [0, log4 n] and n� 1).

Inequality 1:

0≤
(

1− z
n

)n n

∑
j=log5 n+1

|gn+1( j+1)|n
j

n j
z j

j!

(
1− z

n

)− j

=
(

1− z
n

)n n

∑
j=log5 n+1

( j+1)
n j

2 j(n− z) j
(2z) j

j!

≤ e−z
n

∑
j=log5 n+1

( j+1)
(2z) j

j!

≤ e−z
n

∑
j=log5 n+1

2 j( j−1)
(2z) j

j!

≤ 8z2e−z
n

∑
j=log5 n−1

(2z) j

j!

≤ 8(log8 n)Pr(Poi(2z)≥ log5 n−1)

≤ 1
n
.
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Inequality 2:

0≤e−z
∞

∑
j=log5 n+1

|gn+1( j+1)|z
j

j!
≤ e−z

∞

∑
j=log5 n+1

( j+1)
z j

j!
≤ 1

n
.

Inequality 3: For any j ≤ log5 n,

∣∣∣∣e−z−
(

1− z
n

)n n j

n j

(
1− z

n

)− j
∣∣∣∣= ∣∣∣∣e−z−

(
1− z

n

)n n j

(n− z) j

∣∣∣∣
≤
∣∣∣e−z−

(
1− z

n

)n∣∣∣+(1− z
n

)n
∣∣∣∣1− n j

(n− z) j

∣∣∣∣
≤ e−z z2

n
+ e−z

∣∣∣∣1− n j

(n− z) j

∣∣∣∣
≤ e−z z2

n
+ e−z

(∣∣∣∣1− n j

(n− z) j

∣∣∣∣∨
∣∣∣∣∣1− (n− log5 n) j

(n− z) j

∣∣∣∣∣
)

≤ e−z z2

n
+ e−z

(∣∣∣∣exp
(

z j
n− z

)
−1
∣∣∣∣∨
∣∣∣∣∣(log5 n− z) j

n− z

∣∣∣∣∣
)

≤ e−z z2

n
+ e−z

(∣∣∣∣ z j
n− z( j+1)

∣∣∣∣∨
∣∣∣∣∣(log5 n) j

n− z

∣∣∣∣∣
)

≤ e−z 2log10 n
n

.

Note that Inequality 3 further implies

∣∣∣∣∣∣e−z
log5 n

∑
j=0

z j

j!
gn+1( j+1)−

(
1− z

n

)n log5 n

∑
j=0

gn+1( j+1)
n j

n j
z j

j!

(
1− z

n

)− j

∣∣∣∣∣∣
≤ 2log10 n

n
· e−z

log5 n

∑
j=0

z j

j!
( j+1)

≤ 2log10 n
n

· (1+2z)

≤ 5log14 n
n

.
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This, together with Inequality 1 and 2, proves the desired equality. The same reasoning also gives

n

∑
j=0

(n+1) f
(

j
n+1

)(
n
j

)
x j(1− x)n− j = f2,n+1(z)+ Õ

(
1
n

)
,

which completes the proof.

By slightly abusing the notation, we redefine z := (na− 1)x. Lemma 18 immediately

implies that for any x ∈ In = [0,cl(logn)/n]⊆ [0,(log4(na−1))/(na−1)],

B′na( f ,x) = f1,na(z)− f2,na(z)+ Õ
(

1
na

)
.

Note that z ∈ I′n = [0,acl logn] in this case. Define tna(z) := f1,na(z)− f2,na(z) and rna( j) :=

gna( j+2)+gna( j)−2gna( j+1). Then, direct calculation yields

t ′′na(z) = e−z
∞

∑
j=0

rna( j+1)
z j

j!
− e−z

∞

∑
j=0

rna( j)
z j

j!

= e−z
∞

∑
j=0

rna( j+1)
z j

j!
− e−zrna(0)−

∞

∑
j=0

rna( j+1)
z j+1

( j+1)!

= e−z
∞

∑
j=0

rna( j+1)
(

z j

j!
− z j+1

( j+1)!

)
− e−zrna(0).

Since f is 1-Lipschitz, we obtain |rna( j)| ≤ 2. Therefore, for any z ∈ I′n,

|t ′′na(z)| ≤ e−z
∞

∑
j=0
|rna( j+1)|

(
z j

j!
+

z j+1

( j+1)!

)
+ e−z|rna(0)| ≤ 6.

We can bound each summand in the expression of t ′′na by the following lemma.

Lemma 19. For any j ≥ 1 and z≥ 0, we have

∣∣∣∣e−z
(

z j

j!
− z j+1

( j+1)!

)∣∣∣∣≤ 1√
2π(( j+1)−

√
j+1)
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and ∣∣∣∣e−z
(

z j

j!
− z j+1

( j+1)!

)∣∣∣∣≤ 5
z
.

Proof. For the ease of exposition, denote

q1(z) := e−z
(

z j

j!
− z j+1

( j+1)!

)
.

Then, the derivative of q1(z) is

q′1(z) =−e−z z j

j!
+ e−z z j−1

( j−1)!
+ e−z z j+1

( j+1)!
− e−z z j

j!

= e−z z j−1

( j+1)!
(
−2( j+1)z+ j( j+1)+ z2) .

Set q′1(z) = 0 and note that q1(0) = limz→∞ q1(z) = 0. Hence, the maximum of |q1(z)| is attained

at either z1 := ( j+1)−
√

j+1 or z2 := ( j+1)+
√

j+1. We first consider the function value at

z1:

|q1(z1)|= e−z1
z j+1

1
( j+1)!

∣∣∣∣ j+1
z1
−1
∣∣∣∣

≤ e−( j+1)+
√

j+1(( j+1)−
√

j+1) j+1 e j+1
√

2π( j+1) j+1+1/2

1√
j+1−1

≤ e
√

j+1
(

1− 1√
j+1

) j+1 1√
2π
√

j+1
1√

j+1−1

≤ 1√
2π(( j+1)−

√
j+1)

.

By the same reasoning, we also have |q1(z2)| ≤ 1/(
√

2π(( j+1)+
√

j+1)) for z2. Analogously,

to establish the second inequality, we first denote

q2(z) := e−z
(

z j+1

j!
− z j+2

( j+1)!

)
.
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Then, the derivative of q2(z) is

q′2(z) = e−z z j

( j+1)!
(
−(2 j+3)z+( j+1)2 + z2) .

Set q′2(z) = 0 and note that q2(0) = limz→∞ q2(z) = 0. Hence, the maximum of |q2(z)| is attained

at either z3 := ((2 j+3)−
√

4 j+5)/2 or z4 := ((2 j+3)+
√

4 j+5)/2. Furthermore, note that

both |z3|, |z4| ≤ 2( j+2). Therefore, we obtain

|q2(z3)|= |z3||q1(z3)| ≤ 2( j+2)max
z
|q1(z)| ≤

2( j+2)√
2π(( j+1)−

√
j+1)

≤ 5,∀ j ≥ 1.

Finally, the same proof also shows that |q2(z4)| ≤ 5.

4.I.1 Proving Theorem 2: The L1 Distance

Now, let us focus on the problem of estimating the L1 distance between the unknown

distribution p ∈ ∆k and a given distribution q ∈ ∆k. Since our estimator is constructed symbol by

symbol, it suffices to consider the problem of approximating `q(x) := |x−q|−q.

Let gn+1( j) := (n+1)`q

(
j

n+1

)
. We note that rna( j) equals 0 for all but at most two dif-

ferent values of j. Therefore, by Lemma 19, for all z ∈ I′n, we have |t ′′na(z)|. 1, and |t ′′na(z)|. z−1,

where the first and second inequalities resemble Property 3 and 4 in Section 4.H.2, respectively.

Using arguments similar to those in Section 4.H.2 and 4.H.3, we can construct an estimator for

Dq(p) that provides the guarantees stated in Theorem 2. Note that concavity/convexity is actually

not crucial for establishing the final result in Section 4.H.2. Also note that we need to replace

our analysis in Section 4.E.2 and 4.F.2 for the corresponding large-probability estimator by that

in [HOSW18].
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4.I.2 Proving Theorem 3: General Additive Properties

More generally, our result on L1 distance extends to any additive property F(p) =

∑i∈[k] fi(pi) that satisfies the simple condition: fi is O(1)-Lipschitz, for all i. Without loss

of generality, assume that all functions fi’s are 1-Lipschitz and satisfy fi(0) = 0. By the previous

derivations, we immediately have |t ′′na(z)| ≤ 6, which recovers Property 3 in Section 4.H.2. Again,

concavity/convexity is actually unnecessary for establishing the final result in Section 4.H.2. The

proof will be complete if we also recover Property 4 in that section. In other words, we only need

to show |t ′′na(z)z|. 1, where

t ′′na(z)z = e−z
∞

∑
j=0

rna( j+1)
(

z j+1

j!
− z j+2

( j+1)!

)
− e−zz · rna(0).

Fix z ∈ I′n and treat it as a constant. Let b j := rna( j + 1) and a j := e−z
(

z j+1

j! −
z j+2

( j+1)!

)
. By

Lemma 19, we have |a j| ≤ 5,∀ j ≥ 1. Note that there is need to worry about the slack term

e−zzrna(0) and the first term in the sum which corresponds to j = 0, because both terms contribute

at most O(1) in absolute value to the above expression for any z ≥ 0. The key observation is

that any consecutive partial sum of sequence {b j} j≥1 is also bounded by O(1) in magnitude.

Specifically, for any n1,n2 ∈ Z+ satisfying the inequality n1 +2≤ n2,

∣∣∣∣∣ n2

∑
j=n1

b j

∣∣∣∣∣=
∣∣∣∣∣ n2

∑
j=n1

rna( j+1)

∣∣∣∣∣
=

∣∣∣∣∣ n2

∑
j=n1

(gna( j+3)+gna( j+1)−2gna( j+2))

∣∣∣∣∣
=

∣∣∣∣∣ n2+3

∑
j=n1+3

gna( j)+
n2+1

∑
j=n1+1

gna( j)−2
n2+2

∑
j=n1+2

gna( j)

∣∣∣∣∣
= |(gna(n2 +3)−gna(n2 +2))+(gna(n1 +1)−gna(n1 +2))|

≤ 2.
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Furthermore, the sequence {a j} j≥1 can change its monotonicity at most two times, which can be

proved by considering the sign of a j−a j−1. More concretely,

sign
(
a j−a j−1

)
= sign

(
e−z
(

z j+1

j!
− z j+2

( j+1)!

)
− e−z

(
z j

( j−1)!
− z j+1

j!

))
= sign

(
2( j+1)z− z2− ( j+1) j

)
= sign

(
− j2 + j(2z−1)+(2z− z2)

)
.

Since z is fixed, the last expression can change its value at most two times as j increases from 0 to

infinity. The last piece of the proof is the following corollary of the well-known Abel’s inequality.

Lemma 20. Let {a′j}m
j=1 be a sequence of real numbers that is either increasing or decreasing,

and let {b′j}m
j=1 be a sequence of real or complex numbers. Then, for B′t := ∑

t
j=1 b′t ,

|
m

∑
j=1

a′jb
′
j| ≤ max

t=1,...,m
|B′t |(2|a′n|+ |a′1|).

By the previous discussions, we can find two indices j1 and j2, such that {a j} j1
j=1,

{a j} j2
j= j1+1, and {a j} j≥ j2+1 are all monotone subsequences.

Then, we apply Lemma 20 to each subsequence and further bound the resulting quantity

by the inequalities established above:
∣∣∣∑n2

j=n1
b j

∣∣∣ . 1 and |a j| ≤ 6,∀ j ≥ 1. This concludes the

proof.

Finally, we point out that the above argument applies to a much broader class of additive

properties beyond the Lipschitz ones, which is not addressed here for the sake of clarity and

simplicity.
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4.J A Competitive Estimator for Support Size

4.J.1 Estimator Construction

Denote by p and Sp an unknown distribution and its support size, respectively. For ε≤ e−2,

redefine the amplification parameter as a := | log−2
ε| · logSp. Let Xna be an i.i.d. sample sequence

drawn from p, and N′′i be the number of times symbol i appears empirically.

The na-sample empirical estimator approximates the support size Sp = ∑i∈[k]1pi>0 by

ŜE(Xna) := ∑
i∈[k]

1N′′i >0.

Taking expectation, we have

E[ŜE(Xna)] := ∑
i∈[k]

E[1N′′i >0] = ∑
i∈[k]

(1− (1− pi)
na).

For a length-Poi(n) sample sequence XN , denote by φ j the number of symbols that appear j times.

Following [ADOS17, OSW16], we can estimate E[ŜE(Xna)] by

Ŝ(XN) :=
∞

∑
j=1

φ j(1− (−(a−1)) j Pr(Z ≥ j)),

where Z ∼ Poi(r) for some smoothing parameter r. Similar to the previous notation, we define Ni

as the number of times symbol i appears in XN . Then, all the Ni’s are mutually independent.

4.J.2 Bounding the Bias

The following lemma bounds the bias of Ŝ(XN) in estimating E[ŜE(Xna)].
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Lemma 21. For any a≥ 1,

|E[Ŝ(XN)]−E[ŜE(Xna)]| ≤min
{

na,Sp
}

e−r +2.

Proof. Note that for any m≥ 0 and p ∈ [0,1],

0≤ e−mp− (1− p)m ≤ 2p.

Hence, we obtain

|E[Ŝ(XN)]−E[ŜE(Xna)]|

=

∣∣∣∣∣E
[

∞

∑
j

φ j

]
−E

[
∞

∑
j

φ j(−(a−1)) j Pr(Z ≥ j)

]
− ∑

i∈[k]
(1− (1− pi)

na)

∣∣∣∣∣
=

∣∣∣∣∣∑
i∈[k]

(1− e−npi)−E

[
∞

∑
j

φ j(−(a−1)) j Pr(Z ≥ j)

]
− ∑

i∈[k]
(1− (1− pi)

na)

∣∣∣∣∣
≤

∣∣∣∣∣∑
i∈[k]

(−e−npi)−E

[
∞

∑
j

φ j(−(a−1)) j Pr(Z ≥ j)

]
− ∑

i∈[k]
(−e−napi)

∣∣∣∣∣+2 ∑
i∈[k]

pi

=

∣∣∣∣∣∑
i∈[k]

e−npi(e−n(a−1)pi−1)−E

[
∞

∑
j

φ j(−(a−1)) j Pr(Z ≥ j)

]∣∣∣∣∣+2

≤min
{

na,Sp
}

e−r +2,

where the last step follows by Lemma 7 and Corollary 2 in [OSW16].

4.J.3 Bounding the Mean Absolute Deviation

Bounds for Ŝ(XN)

In this section, we analyze the mean absolute deviation of Ŝ(XN). To do this, we need the

following two lemmas. The first lemma bounds the coefficients of this estimator.

205



Lemma 22 ([ADOS17]). For any j ≥ 1 and a≥ 1,

|1− (−(a−1)) j Pr(Z ≥ j)| ≤ 1+ er(a−1).

The second lemma is the well-known McDiarmid’s inequality.

Lemma 23. Let Y1, . . . ,Ym be independent variables taking values in ranges R1, . . . ,Rm, and

let F : R1× . . .×Rm → C with the property that if one freezes all but the wth coordinate of

F(y1, . . . ,ym) for some 1≤ w≤ m, then F fluctuates by only most cw > 0, thus

|F(y1, . . . ,yw−1,yw,yw+1, . . . ,ym)−F(y1, . . . ,yw−1,y′w,yw+1, . . . ,ym)| ≤ cw

for all y j ∈ R j and y′w ∈ Rw for 1≤ j ≤ m. Then for any λ > 0, one has Pr(|F(Y )−E[F(Y )]| ≥

λσ)≤C exp(−cλ
2) for some absolute constants C,c > 0, where σ2 := ∑

m
j=1 c2

j .

Note that Ŝ(XN), viewed as a function of Ni’s with indexes i satisfying pi 6= 0, fulfills

the conditions described in Lemma 23, with parameter m = Sp and cw = 2+ 2er(a−1) for all

1≤ w≤ m. Therefore, for σ2 := 4Sp(1+ er(a−1))2,

Pr(|Ŝ(XN)−E[Ŝ(XN)]| ≥ λσ)≤C exp(−cλ
2).

This inequality further implies

E
∣∣Ŝ(XN)−E[Ŝ(XN)]

∣∣= ∫
∞

0
Pr(|Ŝ(XN)−E[Ŝ(XN)]| ≥ t) dt

= σ

∫
∞

0
Pr(|Ŝ(XN)−E[Ŝ(XN)]| ≥ λσ) dλ

≤Cσ

∫
∞

0
exp(−cλ

2)dλ

.
√

Sp(1+ er(a−1)).
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Analogously, treating Ŝ(XN) as a function of Xi’s yields

E
∣∣Ŝ(XN)−E[Ŝ(XN)]

∣∣.√n(1+ er(a−1)).

Consolidating the previous results, we obtain

E
∣∣Ŝ(XN)−E[Ŝ(XN)]

∣∣.√min
{

Sp,n
}
(1+ er(a−1)).

Bounds for ŜE(Xna)

The following lemma bounds the variance of ŜE(Xna) in terms of Sp.

Lemma 24. For m≥ 1 and Xm ∼ p,

Var(ŜE(Xm)). Sp.

Proof. In this proof, we slightly abuse the notation and denote by Ni the number of times symbol

i appears in Xm. Incorporating the definition,

Var(ŜE(Xm)) = Var

(
∑

i:pi>0
1Ni>0

)
= E

(
∑

i:pi>0
1Ni>0

)2

−

(
E

[
∑

i:pi>0
1Ni>0

])2

.

Let Y M be an independent length-Poi(m) sample sequence from p, and N′i be the number of times
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symbol i appearing in XM. Then,

E

(
∑

i:pi>0
1Ni>0

)2

= E

[
∑

i:pi>0
1Ni>0 + ∑

i 6= j:pi>0,p j>0
1Ni>01N j>0

]

= ∑
i:pi>0

(1−E[1Ni=0])+ ∑
i6= j:pi>0,p j>0

E[(1−1Ni=0)(1−1N j=0)]

= ∑
i:pi>0

(1− (1− pi)
m)

+ ∑
i6= j:pi>0,p j>0

(
1−(1− pi)

m−(1− p j)
m+(1− pi− p j)

m) .
Note that for any m≥ 0 and p ∈ [0,1],

0≤ e−mp− (1− p)m ≤ 2p.

Then, we must have both

|(1− (1− pi)
m)− (1− e−mpi)| ≤ 2pi

and

|(1−(1− pi)
m−(1− p j)

m+(1− pi− p j)
m)− (1−e−mpi−e−mp j+e−m(pi+p j))| ≤ 4(pi + p j).

Therefore,

∣∣∣∣∣∣E
(

∑
i:pi>0

1Ni>0

)2

−E

(
∑

i:pi>0
1N′i>0

)2
∣∣∣∣∣∣≤ ∑

i:pi>0
2pi + ∑

i6= j:pi>0,p j>0
4(pi + p j)

≤ 4 ∑
i:pi>0

∑
j:p j>0

(pi + p j)

≤ 8Sp.
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Similarly,

∣∣∣∣∣∣
(
E

[
∑

i:pi>0
1Ni>0

])2

−

(
E

[
∑

i:pi>0
1N′i>0

])2
∣∣∣∣∣∣

=

∣∣∣∣∣E
[

∑
i:pi>0

1Ni>0

]
−E

[
∑

i:pi>0
1N′i>0

]∣∣∣∣∣
∣∣∣∣∣E
[

∑
i:pi>0

1Ni>0

]
+E

[
∑

i:pi>0
1N′i>0

]∣∣∣∣∣
≤ ( ∑

i:pi>0
2pi) ·2Sp

≤ 4Sp.

Finally, note that changing the value of a single observation changes the value of ∑i:pi>01N′i>0 by

at most one. Hence, by McDiarmid’s inequality,

Var

(
∑

i:pi>0
1N′i>0

)
. Sp.

The triangle inequality combines the previous inequalities and yields

Var

(
∑

i:pi>0
1Ni>0

)
. Sp.

By Jensen’s inequality, the above lemma implies that

E
∣∣ŜE(Xna)−E[ŜE(Xna)]

∣∣≤√Var(ŜE(Xna)).
√

Sp.

4.J.4 Proving Theorem 4

Setting r = | logε|, we obtain

er(a−1) ≤ S| log−1
ε|

p
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and

e−r = e−| logε| = ε.

Therefore, by the previous results,

E
∣∣Ŝ(XN)− ŜE(Xna)

∣∣≤ E
∣∣Ŝ(XN)−E[ŜE(Xna)]

∣∣+E
∣∣E[ŜE(Xna)]− ŜE(Xna)

∣∣
. S

| log−1
ε|+ 1

2
p +Sp · ε.

Normalize both sides by Sp. Then,

E
∣∣∣∣ Ŝ(XN)

Sp
− ŜE(Xna)

Sp

∣∣∣∣. S
| log−1

ε|− 1
2

p + ε.

4.K A Competitive Estimator for Support Coverage

4.K.1 Estimator Construction

Recall that c(p) = 1− (1− pi)
m, where m is a given parameter. For ε ≤ e−2, redefine

the amplification parameter as a := | log−2
ε| · logCp. Similar to the last section, let Xna be an

independent length-na sample sequence drawn from p, and N′′i be the number of times symbol i

appears empirically.

The na-sample empirical estimator estimates the m-sample support coverage Cp =

∑i∈[k] c(pi) by

ĈE(Xna) := ∑
i∈[k]

c
(

N′′i
na

)
= ∑

i∈[k]

(
1−
(

1− N′′i
na

)m)
.

Taking expectation, we obtain

E[ĈE(Xna)] = ∑
i∈[k]

E
[

1−
(

1− N′′i
na

)m]
.
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For the ease of exposition, let us denote

T (p) := ∑
i∈[k]

E
[

1− e−m
N′′i
na

]
.

Noting that for any t ≥ 1 and p ∈ [0,1],

|e−t p− (1− p)t | ≤ 2p,

hence, we have

|E[ĈE(Xna)]−T (p)| ≤ ∑
i∈[k]

E
[

2 · N
′′
i

na

]
= 2.

Then, it suffices to estimate T (p), which satisfies

T (p) = ∑
i∈[k]

(
1−E

[
e−m

N′′i
na

])

= ∑
i∈[k]

(
1−

na

∑
j=0

(
na
j

)
p j

i (1− pi)
na− je−m j

na

)

= ∑
i∈[k]

(
1−

na

∑
j=0

(
na
j

)(
pi · e−

m
na

) j
(1− pi)

na− j

)

= ∑
i∈[k]

(
1−
(

1− pi(1− e−
m
na )
)na)

.

Analogous to the definition of T (p), let us denote

T1(p) := ∑
i∈[k]

(
1− exp

(
−na(1− e−

m
na )pi

))
.

Since (1− e−
m
na ) · pi ∈ [0,1], we must have

|T (p)−T1(p)| ≤ ∑
i∈[k]

2(1− e−
m
na )pi ≤ 2.
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Define a new amplification parameter a′ := a(1− e−
m
na ). Then, we can express T1(p) as

T1(p) := ∑
i∈[k]

(
1− exp

(
−na′pi

))
.

For simplicity, we will assume that m≥ 1.5n and a > 1.8, ensuring

a′ = a(1− e−
m
na )≥ a(1− e−

1.5
a )> 1.

Analogous to case of support size estimation, we draw a length-Poi(n) sample sequence XN and

estimate E[ĈE(Xna)] by the estimator

Ĉ(XN) :=
∞

∑
j=1

φ j(1− (−(a′−1)) j Pr(Poi(r)≥ j)),

where φ j denotes the number of symbols appearing j times.

4.K.2 Bounding the Bias

We bound the bias of Ĉ(XN) in estimating E[ĈE(Xna)] as follows.

|E[Ĉ(XN)]−E[ĈE(Xna)]| ≤ |E[Ĉ(XN)]−T1(p)|+ |T1(p)−E[ĈE(Xna)]|

≤ |E[Ĉ(XN)]−T1(p)|+4

=

∣∣∣∣∣∑
i∈[k]

e−npi(e−n(a′−1)pi−1)

− ∑
i∈[k]

e−npi
∞

∑
j=1

(−(a′−1)npi)
j

j!
Pr(Poi(r)≥ j)

∣∣∣∣∣+4

≤

∣∣∣∣∣∑
i∈[k]

e−npi

(
∞

∑
j=1

(−(a′−1)npi)
j

j!
Pr(Poi(r)< j)

)∣∣∣∣∣+4.

To bound the last sum, we need the following lemma.
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Lemma 25. For any y,r ≥ 0,

∣∣∣∣∣ ∞

∑
j=1

(−y) j

j!
Pr(Poi(r)< j)

∣∣∣∣∣≤ e−r(1− e−y).

Proof. By Lemma 6 of [OSW16],

∣∣∣∣∣ ∞

∑
j=1

(−y) j

j!
Pr(Poi(r)< j)

∣∣∣∣∣≤max
s≤y

∣∣∣∣EL∼Poi(r)

[
(−s)L

L!

]∣∣∣∣(1− e−y)

= max
s≤y

∣∣J0(2
√

sr)
∣∣e−r(1− e−y)

≤ e−r(1− e−y),

where J0 is the first-order Bessel function of the first kind, and satisfies the elegant inequality

|J0(x)| ≤ 1,∀x≥ 0 [AS65].

Leveraging the above lemma, we obtain

|E[Ĉ(XN)]−E[ĈE(Xna)]| ≤

∣∣∣∣∣∑
i∈[k]

e−npi

(
∞

∑
j=1

(−(a′−1)npi)
j

j!
Pr(Poi(r)< j)

)∣∣∣∣∣+4

≤ e−r
∑

i∈[k]
e−npi(1− e−(a

′−1)npi)+4

≤ e−r
∑

i∈[k]
(1− e−na′pi)+4.

Note that na′ = na(1− e−
m
na )≤ m. Therefore,

|E[Ĉ(XN)]−E[ĈE(Xna)]| ≤ e−r
∑

i∈[k]
(1− e−mpi)+4 = e−rCp +4.
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4.K.3 Bounding the Mean Absolute Deviation

Bounds for Ĉ(XN)

First, we bound the mean absolute deviation of Ĉ(XN) in terms of Cp. By Jensen’s

inequality,

E
∣∣Ĉ(XN)−E[Ĉ(XN)]

∣∣≤√Var
(
Ĉ(XN)

)
=

√√√√
∑
i∈k

Var

(
∞

∑
j=1
1Ni= j(1− (−(a′−1)) j Pr(Poi(r)≥ j))

)

≤

√√√√√∑
i∈k

E

( ∞

∑
j=1
1Ni= j(1− (−(a′−1)) j Pr(Poi(r)≥ j))

)2


=

√
∑
i∈k

∞

∑
j=1

E
[
1Ni= j

]
(1− (−(a′−1)) j Pr(Poi(r)≥ j))2

≤ (1+ er(a′−1))
√

∑
i∈k

(1− e−npi).

By our assumption that m≥ 1.5n,

E[|Ĉ(XN)−E[Ĉ(XN)]|]≤ (1+ er(a′−1))
√

∑
i∈k

(1− e−npi)

≤ (1+ er(a′−1))
√

∑
i∈k

(1− e−mpi)

≤ (1+ er(a′−1))
√

∑
i∈k

(1− (1− pi)m)

= (1+ er(a′−1))
√

Cp.

Bounds for ĈE(Xna)

Next, we bound the mean absolute deviation of the na-sample empirical estimator. To

deal with the dependence among the counts N′′i ’s, we need the following lemma [JDP83].
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Definition 1. Random variables X1, . . . ,XS are said to be negatively associated if for any pair of

disjoint subsets A1,A2 of 1,2, . . . ,S, and any component-wise increasing functions f1, f2,

Cov( f1(Xi, i ∈ A1), f2(X j, j ∈ A2))≤ 0.

The next result can be used to check whether random variables are negatively associated.

Lemma 26. Let X1, . . . ,XS be S independent random variables with log-concave densities. Then

the joint conditional distribution of X1, . . . ,XS given ∑
S
i=1 Xi is negatively associated.

Lemma 26 shows that N′′i ’s are negatively correlated. Furthermore, note that

c∗(x) := 1−
(

1− x
na

)m

is an increasing function, and we can write the quantity of interest as

ĈE(Xna) := ∑
i∈[k]

c∗(N′′i ).

Hence, for any i, j ∈ [k] such that i 6= j, Cov(c∗(N′′i ),c
∗(N′′j ))≤ 0. Consequently,

Var
(
ĈE(Xna)

)
= ∑

i∈[k]
Var(c∗(N′′i ))+2 ∑

i, j∈[k],i6= j
Cov(c∗(N′′i ),c

∗(N′′j ))

≤ ∑
i∈[k]

Var(c∗(N′′i ))≤ ∑
i∈[k]

E(c∗(N′′i ))2

= ∑
i∈[k]

E

[
na

∑
j=0
1Ni= j(C∗( j))2

]
≤ ∑

i∈[k]

na

∑
j=1

E
[
1Ni= j

]
= ∑

i∈[k]
(1− (1− pi)

na).
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Without loss of generality, we will assume that a is a positive integer. Then,

∑
i∈[k]

(1− (1− pi)
na) = ∑

i∈[k]
(1− (1− pi)

n)(
a−1

∑
j=0

(1− pi)
n j)

≤ a ∑
i∈[k]

(1− (1− pi)
n)

≤ a ∑
i∈[k]

(1− (1− pi)
m)

= aCp.

Finally, Jensen’s inequality implies

E
∣∣ĈE(Xna)−E[ĈE(Xna)]

∣∣≤√Var(ĈE(Xna))≤
√

aCp.

4.K.4 Proving Theorem 5

The triangle inequality consolidates the major inequalities in the previous sections and

yields

E
∣∣Ĉ(XN)−ĈE(Xna)

∣∣. e−rCp +4+
√

aCp +(1+ er(a′−1))
√

Cp.

By the fact that a′ < a = | log−2
ε| · logCp, we set r = | logε| and obtain

E
∣∣Ĉ(XN)−ĈE(Xna)

∣∣. εCp +4+(1+C| log−1
ε|

p +
√

logCp)
√

Cp.

Then, normalizing both sides by Cp gives

E
∣∣∣∣Ĉ(XN)

Cp
− ĈE(Xna)

Cp

∣∣∣∣.C
| log−1

ε|− 1
2

p + ε.
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Chapter 5

Profile Entropy: A Fundamental Measure

for the Learnability and Compressibility of

Distributions

5.1 Introduction

Recent research in statistical machine learning, ranging from neural-network training

and online learning, to density estimation and property testing, has advanced evaluation criteria

beyond worst-case analysis. New performance measures apply more refined metrics relating the

algorithm’s accuracy and efficiency to the problem’s inherent structure.

Consider for example learning an unknown discrete distribution from its i.i.d.samples (see

also Section 5.2.2). The classical worst-case analysis states that in the worst case, the number

of samples required to estimate a distribution to a given KL-divergence grows linearly in the

alphabet size.

However, this formulation is pessimistic, since distributions are rarely the worst possible,

and many practical distributions can be estimated with significantly smaller samples. Furthermore,
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once the sample is drawn, it reveals the distribution’s complexity and hence the hardness of the

learning task.

Going beyond worst-case analysis, one can design an adaptive learning algorithm whose

theoretical guarantees vary according to the problem’s simplicity. For example, [OS15] recently

proposed an estimator that instance-by-instance achieves nearly the same performance as a genie

algorithm designed with prior knowledge of the underlying distribution.

We introduce profile entropy, a fundamental measure for the complexity of discrete

distributions, and show that it connects three vital scientific tasks: estimation, inference, and

compression. The resulting algorithms have guarantees directly relating to the sample profile

entropy, hence also adapt to the intrinsic simplicity of the tasks at hand.

The next subsection formalizes relevant concepts and useful notation.

Sample Profiles and Their Entropy

Consider an arbitrary sequence xn over a finite or countably infinite alphabet X . The

multiplicity µy(xn) of a symbol y ∈ X is the number of times y appears in xn. The prevalence of

an integer µ is the number ϕµ(xn) of symbols in xn with multiplicity µ. The profile of xn is the

multiset ϕ(xn) of multiplicities of the symbols in xn. We refer to it as a profile of length n. For

example, consider the sequence x7 = bananas, in which a appears thrice, n appears twice, and b

and s each appears once. Then, the profile of the sequence is multiset ϕ(x7) = {3,2,1,1}.

The number D(S) of distinct elements in a multiset S is its dimension. For convenience, we

also write D(xn) for profile dimension. In the above example, we have D(x7) = D(ϕ(x7)) = 3,

corresponding to values 1,2, and 3. The dimension of a length-n profile over X is at most

min{
√

2n, |X |}. In general, the profile entropy Hn(p) is no more than 3
√

n.

Let ∆ be the collection of all discrete distributions, and ∆X be the collection of those over

X . Draw a size-n sample Xn from an arbitrary distribution in p ∈ ∆. Then, the profile Φn of Xn is

a random multiset whose distribution depends on only p and n. We therefore write Φn ∼ p, and
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call Hn(p) := H(Φn) the profile entropy with respect to (p,n). For example, if we draw a sample

of size n = 3 from p = (1
2 ,

1
2), then profiles {1,1,1}, {2,1}, and {3} appear with probabilities 0,

3
4 , and 1

4 , respectively. And the profile entropy is thus H3(
1
2 ,

1
2) = H(0, 3

4 ,
1
4)≈ 0.56.

Analogously, we call Dn := D(Φn), the profile dimension associated with (p,n), and

write Dn ∼ p.

For notational simplicity, we will assume that Hn(p) ≥ 1 throughout the paper, and

respectively write a' b, a & b, and a . b instead of a = Θ̃(b), a = Ω̃(b), and a = Õ(b), where

the asymptotic notation hides logarithmic factors of n.

Applications of Sample Profiles

Sample profiles have essential applications in numerous aspects of scientific research,

ranging from property inference to the study of degree distributions of networks/graphs.

Property inference As Section 5.2.3 shows, profiles are sufficient for inferring all

symmetric properties, such as entropy, Rényi entropy, and support size, not only in the sense of

sufficient statistics, but also in the sense of Theorem 3, stating that profile-based estimators are as

good as any others.

Distribution learning The entropy of a sample profile, equaling its dimension in order

with high probability (Theorem 1), directly characterizes how well we can estimate a distribution

and approach the performance of the best human-designed estimator (Theorem 2), for every

distribution.

Theory of long tail The notable long tail theory in economics [And06] describes the

strategy of selling a large number of different items that each sells in relatively small quantities.

The profile of the product selling data, and the induced (PML) probability multiset estimate

(Section 5.2.3), accurately characterize the tail shape of the data, and that of the underlying

distribution, respectively.

Password frequency lists In the research of password defense, it is vital to understand
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the distribution of passwords. Due to security concerns, organizations typically do not publish the

complete data displaying each password and its frequency. Instead, they reveal the anonymized

list of password frequencies, with each password hashed or replaced by some dummy string,

which is equivalent to showing the password data’s profile.

Degree distributions of networks Degree distribution is one of the most widely studied

attributes of networks (and graphs) that describes the fractions of nodes with different degrees.

As the degree distribution ignores symbol labeling and focuses only on the frequency of each

degree, it is equivalent to the profile of the node degree data.

5.2 Main Results

This paper aims to provide a thorough theory of profile entropy. Most of the results either

are the first of their kind or significantly improve the state-of-the-art.

Specifically, Section 5.2.1 presents the fundamental equivalence relation between profile

dimension and entropy (Thm. 1). Building on the equivalence, we respectively establish essential

connections between profile entropy and the estimation of discrete distributions (Section 5.2.2;

Thm. 2), inference of their properties (Section 5.2.3; Thm. 4), and compression of sample profiles

(Section 5.2.4; Thm. 5). These results characterize how well one can compete with an instance-

optimal algorithm for each task, over every single distribution. For a real sense of how profile

entropy behaves, Section 5.2.5 ultimately determines its magnitude for three prominent structural

distribution families, log-concave (Thm. 6), power-law (Thm. 7), and histogram (Thm. 8). Going

even further, Section 5.3 presents several additional applications and extensions of our theory and

results, including robust learning under domain symbol permutations, profile entropy for mixture

models, competitive property estimation, adaptive testing and classification, and connection to

the method of types.

For space considerations, we relegate detailed reviews on related work, most technical
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proofs, and numerical experiments to the supplementary material.

5.2.1 Dimension-Entropy Equivalence of Profiles

The following theorem shows that for every distribution and sampling parameter n, the

induced profile entropy and dimension are of the same order, with high probability.

Theorem 1 (Entropy-dimension equivalence). For any distribution p ∈ ∆ and Dn ∼ p,

Pr(Dn 'Hn(p))≥ 1− 1√
n
.

We briefly comment on Theorem 1.

First, the theorem reveals a novel and fundamental relation between profile dimension and

entropy. The relation also yields an intrinsic method to approximate the entropy of the sample’s

profile, a fairly involved functional, by only counting its dimension. In general, the number of

possible length-n profiles of a distribution could be as large the number of partitions of integer n,

and grows with n at a sub-exponential speed. Hence, even if p is known, computing the exact

value of Hn(p) could be hard. On the other hand, if one applies our theorem to approximate

Hn(p), we only need to draw a sample Xn∼ p, and find its profile dimension, which is computable

in linear time through counting. Appendix 5.A.4 further illustrates how to estimate Hn with

m� n observations.

Second, the theorem serves as an essential building block for the subsequent results on

distribution estimation, property inference, and profile compression, and enables us to establish

their optimality. For example, in the process of deriving the optimal profile compression scheme

and proving Theorem 5, we reason with Dn to bound the space of storing the profile, and utilize

Hn(p) as an essential lower bound for lossless compression.

Third, despite the simple form of the theorem, the proof of this result is highly nontrivial,

and relies on a recent breakthrough in solving the Shepp-Olkin monotonicity conjecture [HJ19],
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which asserts that the entropy of a Poisson-binomial random variable is monotone in the defining

success probabilities, over a hypercube near the origin.

5.2.2 Competitive (Instance-Optimal) Distribution Estimation

Estimating distributions from their samples is a statistical-inference cornerstone, and has

numerous applications, ranging from biological studies [AIS+08] to language modeling [CG99].

A learning algorithm p̂ in this setting is called a distribution estimator, which associates with

every sequence xn a distribution p̂(xn)∈ ∆. Given a sample Xn ∼ p, we measure the performance

of p̂ in estimating distribution p by the Kullback-Leibler (KL) divergence D(p ‖ p̂(Xn)).

Let rn(p, p̂) := min{r : Pr(D(p ‖ p̂(Xn))≤ r)≥9/10} be the minimal KL error p̂ could

achieve with probability at least 9/10. Then, the worst-case error of estimator p̂ over P ⊆ ∆

is rn(P, p̂) := maxp∈P rn(p, p̂), and the lowest worst-case error for P, achieved by the optimal

estimator, is the minimax error rn(P) := minp̂′ rn(P, p̂′). The most widely studied distribution set

P is simply ∆X . With X being finite, it has become a classical result that rn(∆X ) = Θ(|X |/n),

which is achievable, up to constant factors, by an add-constant estimator [BS04, KOPS15].

Beyond minimax Despite being minimax optimal, the |X |/n-result and the algorithm,

are not satisfiable from a practical point of view. The reason is that the formulation puts much of its

emphasis on the worst-case performance, and ignores the intrinsic simplicity of p in a pessimistic

fashion. Hence, the desire to design more efficient estimators for practical distributions, like

power-law, or Poisson, has led to algorithms that possess adaptive estimation guarantees.

Concretely, the minimax formulation has two modifiable components – the collection P

and the error function D. A common approach to specifying P is adding structural assumptions,

such as monotonicity, m-modality, and log-concavity, which, in many cases, makes algorithm

refinement possible by leveraging structural simplicity. An orthogonal approach to encouraging

adaptability without imposing structures is to replace absolute error by relative error, which we

illustrate below.
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Competitive estimation Without strong prior knowledge on the underlying distribution,

a reasonable estimator should naturally assign the same probability to symbols appearing an equal

number of times. Competitive estimation calls for finding a universally near-optimal estimator

that learns every distribution as well as the best natural estimator that knows the true distribution.

Denote by N the collection of all natural estimators. For any distribution p ∈ ∆ and

sample Xn ∼ p, a given estimator p̂ incurs, with respect to the best natural estimator knowing p,

an instance-by-instance relative KL error of

Dnat(p ‖ p̂(Xn)) := D(p ‖ p̂(Xn))−min
q̂∈N

D(p ‖ q̂(Xn)).

Analogous to the minimax formulation, we denote by

rnat
n (p, p̂) := min{r : Pr(Dnat(p ‖ p̂(Xn))≤ r)≥ 9/10}

the minimal relative error p̂ achieves with probability at least 9/10, by rnat
n (P, p̂) the worst-case

relative error of p̂ over P⊆ ∆, and by rnat
n (P) the minimax relative error.

Old and new results Initiating the competitive formulation, [OS15] show that a sim-

ple variant of the well-known Good-Turing estimator achieves rnat
n (∆) . 1/n1/3, and a more

involved estimator in [AJOS13b] attains the optimal rnat
n (∆)' 1/

√
n. For a fully adaptive guar-

antee, [HO19b] further refine the bound and design an estimator p̂? achieving rnat
n (p, p̂?) .

EDn∼p[Dn/n]. rnat
n (∆), for every p ∈ ∆, but provide no lower bounds.

In this work, we completely characterize rnat
n (p, ·) with essentially matching lower and

upper bounds. Surprisingly, we show that for nearly every sample size n, the quantity behaves

like Hn(p)/n.

Theorem 2 (Optimal competitive error). There is a near-linear-time computable estimator p̂?,

such that for any distribution p and n,
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rnat
n (p, p̂?).

Hn(p)
n

,

where p̂? is the near linear-time computable estimator in [HO19b] mentioned above. On the

other hand, for any H ∈ [0,
√

n),

min
p̂

max
p:Hn(p).H

rnat
n (p, p̂)&

H
n
.

First, we comment on the lower bound. Due to the classical minimax formulation, one

might expect a lower bound in one of the following two forms – for every p̂, rnat
n (p, p̂)& Hn(p)/n

for 1) some p or 2) every p. Form 1) turns out to be weak under the competitive formulation.

Specifically, let p be a trivial distribution that assigns probability 1 to some symbol. Then, both

the profile entropy and the error of the best natural estimator are zero, and the inequality trivially

holds for every p̂. Form 2), on the other hand, is purely impossible. Specifically, for every

distribution p, one can set p̂ to be best natural estimator, which leads to a relative error of zero,

greater than Hn(p)/n unless p is trivial.

Second, we illustrate the significance of the result. The notable work of [HR18] shows

that the number of integer partitions of n, which equals the number of length-n profiles, is at most

exp(3
√

n), implying that Hn(p)≤ 3
√

n for any p ∈ ∆. Therefore, the Hn(p)/n upper and lower

bounds in the theorem yields rnat
n (∆)' 1/

√
n, recovering the main result of [OS15]. Besides set

∆, the theorem and its proof also imply nearly tight minimax relative-error bounds on numerous

distribution sets P. Below, we present two results that fall into this category. In both cases, the

minimax relative error is much lower than 1/
√

n if the parameter involved is o(
√

n).

The first example addresses set ∆H of distributions whose n-sample profile entropy is H.

Corollary 1. For any H & 1, the minimax relative error over ∆H is rnat
n (∆H)' H/n.

For a more concrete example, denote by Lσ the collection of log-concave distributions

over Z whose variance is σ2. Theorem 2 and the profile entropy bounds in Theorem 6 imply
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Corollary 2. For any 1 . σ≤
√

n, the minimax relative error over Lσ is rnat
n (Lσ)' σ/n.

5.2.3 Competitive-Optimal Property Inference

Numerous practical applications call for inferring property values of an unknown distri-

bution from its samples, including entropy for graphical modeling [KF09], Rényi entropy for

sequential decoding [Ari96], and support size for species richness estimation [Mag13]. Therefore,

property inference has attracted considerable attention over the past few decades. For inter-

ested readers, please refer to Appendix 5.B.3 for a detailed two-page review of prior works and

discussions about relevant methods.

Property inference Formally, a distribution property over some collection P⊆ ∆ is a

functional f : P→ R that associates with each distribution a real value. Given a sample Xn from

an unknown distribution p ∈ P, the problem of interest is to infer the value of f (p). For this

purpose, we employ another functional f̂ : X ∗→ R, an estimator mapping every sample to a real

value. We measure the statistical efficiency of f̂ in approximating f over P by its absolute error

| f̂ (Xn)− f (p)|.

Given Xn ∼ p ∈ P, the minimal absolute error rate, or simply error, that f̂ achieves

with probability at least 9/10 is rn(p, f̂ ) := min{r : Pr(| f̂ (Xn)− f (p)| ≤ r)≥ 9/10}, where the

dependence on f is implicit. While p is often unknown, the worst-case error of an estimator f̂

over all distributions in P is rn(P, f̂ ) := maxp∈P rn(p, f̂ ), and the lowest worst-case error for P,

achieved by the optimal estimator, is the minimax error rn(P) := min f̂ ′ rn(P, f̂ ′).

Profile maximum likelihood An important class of properties is the collection of

symmetric ones, which encompasses numerous well-known distribution characteristics, such

as Shannon entropy, Rényi entropy, support size, and `1 distance to the uniform distribution.

Symmetry connects the estimation of such property to the sample profile, a sufficient statistic for

the task in hand. The general principle of maximum likelihood then provides an intuitive estimator,

profile maximum likelihood (PML) [OSVZ04], that maximizes the probability of observing the
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profile.

Naturally and generally, we study symmetric property inference over a distribution collec-

tion P⊆ ∆ that is also symmetric, i.e., if p ∈ P, then P as well contains all the symbol-permuted

versions of p. For every sample xn ∈ X n and symmetric P, the PML estimator over P maps xn to

a distribution

Pϕ(xn) := argmax
p∈P

Pr
Xn∼p

(ϕ(Xn) = ϕ(xn)) .

Given a sample Xn ∼ p ∈ P and a symmetric property p, the PML plug-in estimator uses

f ◦P (Xn) to estimate f (p). The PML estimator often behaves differently from the classical

empirical distribution estimator. For example, if P = ∆ and ϕ = {2,1,1}, the PML estimate turns

out to be Pϕ = (1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5), deviating from the empirical distribution (1

2 ,
1
4 ,

1
4) by 0.8 in (sorted)

L1 distance.

Recent researches [ADOS17, HO19a] show that for an extensive family of symmetric

properties, including the previously mentioned four, the PML plug-in estimator universally

achieves minimax error in the large-alphabet regime, up to constant factors.

The formulation of PML makes it part of two estimator classes, the maximum-likelihood

and the profile-based, where the latter corresponds to estimators whose values depend on only

the profile. The theorem below shows that profile-based estimators are sufficient for inferring

symmetric properties.

Theorem 3 (Sufficiency of profiles). For any symmetric property f and set P⊆ ∆, and estimator

f̂ , we can construct an explicit estimator F̂ over length-n profiles satisfying

rn(p, f̂ ) = rn(P, F̂ ◦ϕ),

where both estimators can have independent randomness.

The next result shows that the PML estimator is adaptive to the simplicity of underlying

distributions in inferring all symmetric properties, over any symmetric P. Specifically, the theorem
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states that the n-sample PML plug-in essentially performs as well as the optimal n/Hn(p)-sample

estimator, which approaches the performance of the optimal n-sample estimator if p has a small

Hn(p). Furthermore, for any property and estimator, there is a symmetric set P′ for which this

1/Hn(p) ratio is optimal.

Theorem 4 (Competitiveness of PML). For any symmetric property f and set P⊆ ∆, and every

distribution p ∈ P, the PML plug-in estimator satisfies

rn
(

p, f ◦Pϕ

)
≤ 2rnp(P),

where np :' n/Hn(p). On the other hand, for any estimator f̂ and symmetric property f , there

exists a symmetric set P′ ⊆ ∆ such that for some p ∈ P′,

rn(p, f̂ )≥ 2rnp

(
P′
)
.

We provide some brief comments here and more in Section 5.3. First, the above theorem

holds for a polynomial-time PML approximation [ACSS20], and for any symmetric property,

while nearly all previous works require the property to possess certain forms and be smooth. In

particular, the algorithm in [ACSS20] achieves the best-known guarantees for approximating PML,

requires no additional assumptions on the distribution/property’s structure, and works universally

on all symmetric properties and adaptively on all profiles (hence distributions). Second, the

result holds for any symmetric distribution set P⊆ ∆, which covers numerous domains of interest

that appeared in the literature, such as the widely studied ∆, and its subset ∆1/|X | for the study of

support size estimation, where each distribution’s positive probabilities are at least 1/|X |. Third,

the result trivially implies a weaker version in [ADOS17] where Hn(p) is replaced by
√

n, which,

as we show in Section 5.2.5, can be significantly larger.
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5.2.4 Optimal Compression of Profiles

None of the scientific applications in Section 5.1 is possible without first storing the

sample profile.

Hence, we focus on the task of lossless profile compression in this section. Besides

the theoretical fundamentality and numerous applications, the task is essential as storing a

sample’s profile, compared with storing the entire sample sequence, often takes much less space.

Specifically, Shannon entropy is the measure of limit of lossless compression, which, for sample

Xn ∼ p ∈ ∆, is nH(p), and for the sample’s profile, is Hn(p). In particular, the sample entropy

grows as Ω(n) whenever p has an entropy of at least one, while the profile entropy is at most

3
√

n by our argument in Section 5.2.2.

While the n-to-
√

n improvement is already significant, the compression schemes we

propose under the standard block and sequential settings surely take profile compression to the next

level. Specifically, for every distribution p and sample size n, both schemes essentially compress

the sample profile ϕ(Xn) to its entropy Hn(p), the information-theoretic limit, in expectation.

In other words, our algorithms are instance-by-instance optimal and essentially unimprovable.

Furthermore, we achieve this instance optimality with near-optimal time complexity – both

algorithms have a running time near-linear in the sample size n.

Block compression We propose an intuitive and easy-to-implement block compression

algorithm.

Recall that the profile of a sequence xn is the multiset ϕ(xn) of multiplicities associated

with symbols in xn. The ordering of elements in a multiset is not informative. Hence equivalently,

we can compress ϕ(xn) into the set C (ϕ(xn)) of corresponding multiplicity-prevalence pairs, i.e.,

C (ϕ(xn)) := {(µ,ϕµ(xn)) : µ ∈ ϕ(xn)}.

The number of pairs in C (ϕ(xn)) is equal to the profile dimension D(ϕ(xn)). Besides, both
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prevalence and its multiplicity are integers in [0,n], and storing the pair takes 2 logn nats. Hence,

it takes at most 2(logn) ·D(ϕ(xn)) nats to store the compressed profile. By Theorem 1, for any

distribution p ∈ ∆ and sample Xn ∼ p,

E[2(logn) ·D(Xn)]'Hn(p).

We have shown that storing a profile ϕ as C (ϕ) is a near-optimal block compression scheme.

Sequential compression For any sequence xn, the setting for sequential profile com-

pression is that at time step t ∈ [n], the compression algorithm knows only ϕ(xt) and sequentially

encodes the new information. This process is equivalent to providing the algorithm µxt (x
t−1) at

time step t.

Suppress x,xt in the expressions for the ease of illustration. For efficient compression,

we sequentially encode the profile ϕ into a self-balancing binary search tree T , with each

node storing a multiplicity-prevalence pair (µ,ϕµ) and µ being the search key. We present the

compression scheme as Algorithm 1, and establish the following guarantee.

Theorem 5. Algorithm 1 runs for exactly n iterations, with an O(logn) per-iteration time com-

plexity. For an i.i.d.sample Xn ∼ p, the expected space complexity is Θ̃(Hn(p)). On the other

hand, any algorithm that compresses the profile losslessly has an expected space complexity of at

least Hn(p).

5.2.5 Optimal Characterization for Structured Families

In this section, we characterize the profile entropy of several important structured distribu-

tion families, including log-concave, power-law, histogram, and their mixtures. All the matching

lower bounds are entirely new, and all the upper bounds, with the exception of that in Theorem 8,

are much stronger than those induced by the prior work [HO19b] via Theorem 1. For interested

readers, see Appendix 5.D for a detailed comparison.
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Algorithm 1 Sequential Profile Compression

input sequence (µxt (x
t−1))n

t=1, tree T =∅
output tree T that encodes the input sequence
for t = 1 to n do

if µ := µxt (x
t−1) ∈ T then

if µ+1 ∈ T then
ϕµ+1 := T (µ+1)← T (µ+1)+1

else
add (µ+1,1) to T

end if
if ϕµ = 1 then delete (µ,ϕµ) from T
else ϕµ := T (µ)← T (µ)−1 endif

else
if 1 6∈ T then add (1,1) to T
else T (1)← T (1)+1 endif

end if
end for

Log-concave The log-concave family encompasses a broad range of discrete distri-

butions, such as Poisson, hyper-Poisson, Poisson binomial, binomial, negative binomial, and

geometric, and hyper-geometric, with broad applications to statistics [SW14], computer sci-

ence [LV07], economics [An97], and geometry [Sta89].

Formally, a distribution p ∈ ∆Z is log-concave if p has a contiguous support and p2
x ≥

px−1 · px+1 for all x ∈ Z. The next result bounds the profile entropy of this family, and is tight up

to logarithmic factors. For simplicity, henceforth we write a∧b for min{a,b} (and ∨ for max),

and slightly abuse the notation and write a' b for a+1 = Θ̃(b+1), which does not change the

nature of the results.

Theorem 6. Let Lσ ⊆ ∆Z denote the collection of log-concave distributions with variance σ2.

Then,

max
p∈Lσ

Hn(p)' σ∧ n
σ
.

In particular, if we discretize a Gaussian variable X ∼ N (µ,σ2) by rounding it to the nearest

integer, the distribution of the resulting variable achieves the maximum, up to logarithmic factors.
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Moreover, such a discretization procedure preserves log-concavity for any continuous distribution

over R.

Power-law Power-law is a ubiquitous structure appearing in many situations of scientific

interest, ranging from natural phenomena such as the initial mass function of stars [Kro01],

species and genera [HQD+10], rainfall [MR93], population dynamics [Tay61], and brain surface

electric potential [MSODN09], to human-made circumstances such as the word frequencies in a

text [Baa02], income rankings [DY01], company sizes [Axt01], and internet topology [FFF99].

Formally, a discrete distribution p∈ ∆Z is a power-law with power α≥ 0 if p has a support

of [k] := {1, . . . ,k} for some k ∈ Z+∪{∞} and px ∝ x−α for all x ∈ [k]. Note that if α ∈ [0,1],

the distribution is well-defined for only finite k. The next result fully characterizes the profile

entropy of power-laws over all α,n, and k ranges, and significantly improves that in [HO19b].

Theorem 7. Let p ∈ ∆[k] be a power-law distribution with power α. Then,

Hn(p)'



k if α > k1+α

n ∨1 or 1≥ α > k2

n ,

n
1

α+1 if k1+α

n ≥ α > 1,(
n

k1−α

) 1
1+α

if k2

n ∧1≥ α > k1−α

n ,

n
k1−α − n

k if k1−α

n ∧1≥ α and α≥ 2logk

(
7
√

k
n +1

)
,

k∧
√

n
k1−α if k1−α

n ∧1≥ α and 2logk

(
7
√

k
n +1

)
> α.

In particular, as α→ 0, the bound degenerates to k∧
√n

k , which is at most n
1
3 .

Since a power-law sample profile is completely specified by α, k, and n, the above theorem

directly applies to model parameter estimation. Specifically, we first compute Dn ∼ p, which is a

simple function of the symbol counts. By Theorem 1, we can then use it to approximate Hn(p).

Finally, we utilize the characterization theorem and find the parameter relations (testing might be

necessary).
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Histogram While histogram is among the most widely studied representations, histogram

distributions’ importance also rises with the rapid growth of data sizes in modern scientific

applications. For example, subsampling, a generic strategy to handle large datasets, naturally

induces a histogram distribution over different categories of the data. This induced distribution

often summarizes vital data statistics, leveraging which yields efficient and flexible inference

procedures.

Formally, a discrete distribution p ∈ ∆Z is a t-histogram if we can partition its support

into at most t pieces such that p takes the same probability value over each piece. The theorem

below provides near-optimal bounds on the profile entropy of the t-histogram distributions.

Theorem 8. Denote by It ⊆ ∆Z the collection of t-histogram distributions. Then,

max
p∈It

Hn(p)' (nt2)
1
3 ∧
√

n.

In practical settings, the value of t is often poly-logarithmic in n, and the bound reduces to

Õ(n1/3). For the particular case of t = 1, distribution p is uniform over some unknown contiguous

support. This result overlaps with Theorem 7 with α = 0, yielding the following bound.

Corollary 3. For any uniform distribution p with support size k, we have Hn(p)' k∧
√n

k .

5.3 Applications and Extensions

Robust learning The profile of any sequence is invariant to domain-symbol permutations.

Since entropy is a symmetric property, the profile entropy of an i.i.d.sample is also permutation

invariant. Consequently, a result in this paper that holds for a distribution will also hold for any

distributions possessing the same probability multiset. For numerous practical applications, this

robustness to symbol permutation is a desirable and novel notion of robustness that particularly

resides in discrete domains, as samples often come as categorical data, while the alphabet ordering

for the underlying distribution to exhibit certain structure is frequently unknown [HO19b].
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For example, the sample may consist of different fruits, not integers. But suppose there is

a hidden mapping from the fruit domain to integers that makes the distribution log-concave over Z.

Then, all our results such as Theorem 2, 4, 5, and 6 are in effect. For another example, in natural

language processing, we observe words and punctuation marks. Even we know that observations

come from a power-law distribution [Mit04], it is often unclear how to order the alphabet to

realize such a condition. The robustness of our approach again enables us to achieve a variety

of learning objectives, such as understanding the relation between different model parameters

(Theorem 7).
Mixture models The results in Section 5.2.5 provide optimal characterization for simple

structured families. A standard extension to incorporate more complex structures in the model

is spanning a distribution family by including (weighted) mixtures. A typical example is the

Gaussian mixture model, which is among the most widely studied probabilistic models.

In the supplementary material, we present such results for all three families in Sec-

tion 5.2.5, and for mixtures of discretized high-dimensional Gaussians. In fact, we obtain a simple

and intuitive profile-entropy characterization for all distributions. Partition the unit interval into

a sequence of ranges, I j :=
(
( j−1)2 logn

n , j2 logn
n

]
,1 ≤ j ≤

√
n

logn , and for any distribution p,

denote by pI j the number of probabilities in I j. Then,

Lemma 1. For any n ∈ Z+ and p ∈ ∆, we have Hn(p)' ∑ j≥1 min
{

pI j , j·logn
}
.

Competitive property estimation Theorem 2 on PML holds for every distribution, any

symmetric property, and distribution collection, such as a finite-dimensional simplex, regardless

of other parameters such as the alphabet size. To the best of our knowledge, this is one of the

most general results in the field. Below we provide a basic example for its applications.

For an arbitrary β > 0, let f be the order-β Rényi entropy, and P be the set of distributions

whose probability multisets correspond to power-laws with power α ≥ 3. The minimax error

rate rm(P) is unknown for this problem as recent works (e.g., [AOST16]) mainly focused on the

standard simplexes. On the other hand, Theorem 4, together with Theorem 7, shows that the
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n-sample PML plug-in estimator essentially performs as well as the best n3/4-sample estimator.

Note that while the guarantee of PML uniformly holds for all β, the best estimator can optimize its

performance for every β. Following the same rationale, we can derive such nontrivial competitive

estimation results for numerous properties and distribution families without having to analyze

them in detail.
Adaptive testing and classification Profile entropy also directly connects to adap-

tive testing and classification. Such a connection arises from computing the profile proba-

bility [ADJ+11, ADJ+12b], the probability of observing the sample’s profile under the same

sampling process.

Specifically, the first paper designs an algorithm that distinguishes two unknown distribu-

tions using near-optimal sample sizes whenever the optimal algorithm has an exponentially small

error probability. In addition, the algorithm is simply a ratio test between the probabilities of two

profiles. Given sample Xn ∼ p over a finite domain, we can compute its profile probability in

exp(Θ̃(Hn(p)) operations. For example, if the underlying distribution is a 4-histogram, then by

Theorem 8, the running time exponent is of order n1/3. The result follows by the equivalence of

the problem and computing the permanent of a rank-Dn matrix [Bar96, Von12, Von14, Bar16].
Method of types We connect our approach to the method of types, an important technical

tool in Shannon theory and many other fields [CK11, Wol12]. In the notation of this paper, the

type of a sequence xn over some finite domain X is the ordered list of multiplicities µy(xn), which

associates symbol y with its number of appearances in xn. For this multiplicity list, the method

of types associates each µy(xn) with the number of symbols having this multiplicity, which is

precisely ϕµy(xn)(xn). Hence, the profile of a sequence is the type of its type.

Given the above arguments, understanding the deep connection between profile-based

algorithms and the method of types is a meaningful future research direction to explore.
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5.4 Conclusion and Broader Impact

Classical information theory states that an i.i.d.sample contains H(Xn∼ p) = nH(p)

information, which provides little insight for statistical applications. We present a different view

by decomposing the sample information into three parts: the labeling of the profile elements,

ordering of them, and profile entropy. With no bias towards any symbols, the profile entropy rises

as a fundamental measure unifying the concepts of estimation, inference, and compression. We

believe this view could help researchers in information theory, statistical learning theory, and

computer science communities better understand the information composition of i.i.d.samples

over discrete domains.

The results established in this work are general and fundamental, and have numerous

applications in privacy, economics, data storage, supervised learning, etc. A potential downside is

that the theoretical guarantees of the associated algorithms rely on the assumption correctness, e.g.,

the domain should be discrete and the sampling process should be i.i.d.. In other words, it will be

better if users can confirm these assumptions by prior knowledge, experiences, or statistical testing

procedures. Taking a different perspective, we think a potential research direction following

this work is to extend these results to Markovian models, making them more robust to model

misspecification.
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Appendix organization In the appendix, we order the results and proofs according to

their logical priority. In other words, the proof of a theorem or lemma mainly relies on preceding

results. For the ease of reference, the numbering of the theorems is consistent with that in the
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main paper.

5.A Entropy and Dimension of Sample Profiles

Consider an arbitrary sequence xn over a finite or countably infinite alphabet X . The

multiplicity µy(xn) of a symbol y ∈ X is the number of times y appears in xn. The prevalence of

an integer µ is the number ϕµ(xn) of symbols in xn with multiplicity µ. The profile of xn is the

multiset ϕ(xn) of multiplicities of the symbols in xn. We refer to it as a profile of length n.

The number D(S) of distinct elements in a multiset S is its dimension. For convenience,

we also write D(xn) for profile dimension. The dimension of a length-n profile over X is at most

min{
√

2n, |X |}.

Let ∆ be the collection of all discrete distributions, and ∆ be the collection of those over

X . Draw a size-n sample Xn from an arbitrary distribution in p ∈ ∆. Then, the profile Φn of Xn is

a random multiset whose distribution depends on only p and n. We therefore write Φn ∼ p, and

call Hn(p) := Hn(p) the profile entropy with respect to (p,n). Analogously, we call Dn := Dn,

the profile dimension associated with (p,n), and write Dn ∼ p.

Consider an arbitrary sequence xn over a finite or countably infinite alphabet X . The

multiplicity µy(xn) of a symbol y ∈ X is the frequency of y in xn. The prevalence of an integer µ

is the number ϕµ(xn) of symbols in xn with multiplicity µ. The profile of xn is the multiset ϕ(xn)

of multiplicities of the symbols in xn, which we describe as a profile of length n.

5.A.1 Concentration of Profile Dimension

First we express the dimension of a sample profile in terms of the symbol multiplicities.

Denote by
∨

the logical OR operator. For any distribution p and Xn ∼ p,

Dn =
n

∑
µ=1

∨
x∈X

1µx(Xn)=µ.
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The statistical dependency landscape of terms in the summation is rather complex, since µx(Xn)

and µy(Xn) are dependent for every (x,y) pair due to the fixed sample size; and so are 1µx(Xn)=µ1

and 1µx(Xn)=µ2 for every pair of distinct µ1 and µ2. To simplify the derivations, we relate this

quantity to its variant under the Poisson sampling scheme, i.e., making the sample size an

independent N ∼ Poi(n). Specifically, define

D̃N := D̃(XN) :=
n

∑
U=1

∨
x∈X

1µx(XN)=U .

Note that this is not the same as DN since the summation index goes up only to n.

Denote the expected value of D̃N by En(p), which will frequently appear in the rest

discussions. Our first result shows that the original Dn satisfies a Chernoff-Hoeffding type bound

centered at En(p).

Theorem 9. Under the above conditions and for any n ∈ Z+, p ∈ ∆, and γ > 0,

Pr
(

Dn

1+ γ
≥ En(p)

)
≤ 3
√

ne−min{γ2,γ}En(p)/3,

and for any γ ∈ (0,1),

Pr
(

Dn

1− γ
≤ En(p)

)
≤ 3
√

ne−γ2En(p)/2.

Proof. A nice attribute of Poisson sampling is that all the multiplicities µy(Xn) are independent

of each other. We will first consider DN and relate it to the fixed-sample-size version later.

For simplicity and clarity, we suppress Xn in µy(Xn) and write νy instead of µy when

the multiplicity is obtained through Poisson sampling. For any i ∈ [n], denote Gi({νx}x) :=∨
x∈X 1νx=i. As mentioned previously, instead of analyzing DN , we consider

D̃N =
n

∑
i=1

∨
x∈X

1νx=i =
n

∑
i=1

Gi({νx}x).
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Note that for any disjoint I,J ⊆ [n], the functions ∑i∈I Gi({νx}x) and ∑ j∈J G j({νx}x) are discor-

dant monotone by each argument, namely, when we increase the value of each νx, the increase in

the value of one function implies the non-increase of the other. Then, by the results in [Leh66],

the values of the two functions, when viewed as random variables, are negatively associated.

Next we show that quantity D̃N satisfies a Chernoff-type bound.

Let γ be an arbitrary positive number. Note that Gi is a Bernoulli random variable with

parameter qi := E [Gi({νx}x)] . Then for the expected value of D̃N , we have

En(p) := E
[
D̃N
]
= E

[
n

∑
i=1

Gi({νx}x)

]
= ∑

i
qi.

For simplicity, temporally write Y := D̃N and µ := En(p). Then, by Markov’s inequality and the

monotonicity of function ety over t > 0,

Pr(Y ≥ (1+ γ)µ) = Pr
(

etY ≥ et(1+γ)µ
)
≤ E[etY ]

et(1+γ)µ
.

It suffices to bound E[etY ] by a function of other parameters.

E[etY ]
(a)
= E

[
exp

(
t

(
n

∑
i=1

Gi({Mx}x)

))]
(b)
= E

[
exp(tG1({Mx}x)) · exp

(
t

(
n

∑
i=2

Gi({Mx}x)

))]
(c)
≤ E [exp(tG1({Mx}x))] ·E

[
exp

(
t

(
n

∑
i=2

Gi({Mx}x)

))]
(d)
≤

n

∏
i=1

E [exp(tGi({Mx}x))]
(e)
=

n

∏
i=1

(
1+qi(et−1)

)
( f )
≤

n

∏
i=1

(
exp
(
qi(et−1)

)) (g)
= exp

(
n

∑
i=1

qi(et−1)

)
(h)
= exp

(
(et−1)µ

)
,
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where (a) follows by the definition of Y ; (b) follows by ea+b = ea · eb; (c) follows by the fact

that G1 is negatively associated with ∑
n
i=2 Gi; (d) follows by an induction argument via negative

association; (e) follows by the fact that Gi is a Bernoulli random variable with mean qi; ( f )

follows by the inequality 1+ x ≤ ex,∀x ≥ 0; (g) follows by ea · eb = ea+b; and (h) follows by

µ = ∑i qi.

Applying standard simplifications, we obtain

Pr(Y ≥ (1+ γ)µ)≤ e−min{γ2,γ}µ/3, ∀γ > 0,

and

Pr(Y ≤ (1− γ)µ)≤ e−γ2µ/2, ∀γ ∈ (0,1).

The proof will be complete upon noting that: 1) the probability that N = n is at least 1/(3
√

n);

2) conditioning on N = n transforms the sampling model to that with a fixed sample size n.

As a corollary, the value of Dn is often close to En(p).

Corollary 4. Under the same conditions as above and for any n ∈ Z+, p ∈ ∆, with probability at

least 1−6/
√

n,
1
2

En(p)−4logn≤Dn ≤ 2En(p)+3logn.

Proof. To establish the lower bound, note that if En(p) ≥ 3logn, setting γ = 1 in Theorem 9

yields

Pr(Dn ≥ 2En(p)+3logn)≤ Pr(Dn ≥ 2En(p))≤ 3
√

ne−En(p)/3 ≤ 3√
n
,

else if En(p)< 3logn, setting γ = (3logn)/En(p) yields

Pr(Dn ≥ 2En(p)+3logn)≤ Pr(Dn ≥ En(p)+3logn)≤ 3
√

ne−(3logn)/3 =
3√
n
.
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As for the upper bound, if En(p)≥ 8logn,

Pr
(

Dn +4logn≤
(

1− 1
2

)
En(p)

)
≤ Pr

(
Dn ≤

(
1− 1

2

)
En(p)

)
≤ 3
√

ne−µ/8 ≤ 3√
n
,

and for any En(p)< 8logn,

Pr
(

Dn +4logn≤
(

1− 1
2

)
En(p)

)
≤ Pr(Dn < 0) = 0≤ 3√

n
.

Combining these tail bounds through the union bound completes the proof.

In addition to the above, we establish an Efron-Stein type inequality.

Theorem 10. For any distribution p and Dn ∼ p,

Var(Dn)≤ E[Dn].

Proof. First, note that for any j, t ∈ [n] and j 6= t,

C j,t := Cov
(
1ϕ j(Xn)>0,1ϕt(Xn)>0

)
= Pr

(
ϕ j(Xn),ϕt(Xn)> 0

)
−Pr

(
ϕ j(Xn)> 0

)
·Pr(ϕt(Xn)> 0)

=
(
Pr
(
ϕ j(Xn)> 0|ϕt(Xn)> 0

)
−Pr

(
ϕ j(Xn)> 0

))
·Pr(ϕt(Xn)> 0)

=
(
Pr
(
ϕ j(Xn)> 0|ϕt(Xn)> 0

)
−Pr

(
ϕ j(Xn)> 0|ϕt(Xn) = 0

))
×Pr(ϕt(Xn) = 0) ·Pr(ϕt(Xn)> 0)

≤ 0
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Therefore, the variance of the profile dimension Dn satisfies

Var(Dn) = Var

(
n

∑
i=1
1ϕi(Xn)>0

)

≤∑
i=1

Var
(
1ϕi(Xn)>0

)
+∑

j 6=t
Cov

(
1ϕ j(Xn)>0,1ϕt(Xn)>0

)
≤∑

i=1
E
[
1ϕi(Xn)>0

]
+∑

j 6=t
C j,t

≤∑
i=1

E
[
1ϕi(Xn)>0

]
= E [Dn] .

5.A.2 Theorem 1: Dimension-Entropy Equivalence

The following theorem shows that for every distribution and sampling parameter n, the

induced profile entropy and dimension are of the same order, with high probability.

Theorem 1 (Entropy-dimension equivalence). For any distribution p ∈ ∆ and Dn ∼ p,

Pr(Dn 'Hn(p))≥ 1− 1√
n
.

5.A.3 Proof of Theorem 1

Proof outline We decompose the proof of the theorem into three steps.

First, we show Hn(p). Dn with high probability, which is a consequence of Theorem 9

(which shows that Dn highly concentrates around its expectation) and Shannon’s source coding

theorem. Second, we introduce a simple quantity H S
n (p) that approximates the expectation of

Dn to within logarithmic factors of n. Finally, leveraging this approximation guarantee, we

establish the other direction of the theorem. This step is more involved due to the aforementioned

complications.
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Step 1: Bounding Profile Entropy by Its Dimension

By the tail bounds (Theorem 9) and trivial lower bound of 1 on the profile dimension,

with probability at least 1−1/
√

n, the expectation of Dn satisfies

E[Dn]. Dn.

By our result on block profile compression (Section 5.2.4), storing profile Φn ∼ p losslessly takes

O(logn) ·E[Dn]+O
(

1√
n

)
· logP(n). E[Dn]

nats space in expectation. By Shannon’s source coding theorem, the expected space to losslessly

storing a random variable is at least its entropy. Hence, with probability at least 1−O(1/
√

n),

Hn(p). E[Dn]. Dn.

Applying Dn ≥ 1 completes the proof.

Step 2: Simple Approximation Formula for Profile Dimension

Next, we show that Hn(p)& Dn, with high probability. Note that Dn ∼ p is often close

to En(p), the expectation of its Poissonized version D̃N , with an exponentially small deviation

probability. Hence, to approximate Dn, it suffices to accurately compute En(p).

By independence and the linearity of expectations,

En(p) = E[D̃N ] =
n

∑
i=1

(
1−∏

x∈X

(
1− e−npx

(npx)
i

i!

))
.

The expression is exact but does not relate to p in a simple manner. For an intuitive approximation,
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we partition the unit interval into a sequence of ranges,

I j :=
(
( j−1)2 logn

n
, j2 logn

n

]
,1≤ j ≤

√
n

logn
,

denote by pI j the number of probabilities px belonging to I j, and relate En(p) to an induced

shape-reflecting quantity,

H S
n (p) := ∑

j≥1
min

{
pI j , j · logn

}
,

the sum of the effective number of probabilities lying within each range [HO19b]. To compute

H S
n (p), we simply count the number of probabilities in each I j. Our main result shows that H S

n (p)

well approximates En(p) over the entire ∆, up to logarithmic factors of n.

Theorem 11. For any n ∈ Z+ and p ∈ ∆,

1√
logn

·Ω(H S
n (p))≤ En(p)≤ O(H S

n (p)).

Proof. The fact that O(HS
n (p)) upperly bounds E[D̃N ] simply follows by the concentration of

Poisson variables, and is established in [HO19b]. Below we show that the quantity also serves as

a lower bound. By construction, for any given sampling parameter n, index j, and symbol x with

probability px ∈ I j, the corresponding symbol multiplicity µx ∼ Poi(npx). Hence, we can express

the expectation of D̃N as

E
[
D̃N
]
= E

[
n

∑
i=1

∨
x
1µx=i

]

=
n

∑
i=1

E

[
1−

∧
x
1µx 6=i

]

=
n

∑
i=1

(
1−∏

x
E
[
1µx 6=i

])
=

n

∑
i=1

(
1−∏

x

(
1− e−npx

(npx)
i

i!

))
.
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This proves the aforementioned formula. Then, for every sufficiently large index j and i ∈ S j :=

[( j−1)2, j2] logn, define a sequence of intervals,

Ii
j :=

i
n
+[− j, j]

√
logn
n

.

Then for any i ∈ S j and px ∈ Ii
j∩ I j, the corresponding Poisson probability satisfies

e−npx
(npx)

i

i!
= e−i ii

i!
·
(

ei−npx · (npx)
i

ii

)
= e−i ii

i!
·

(
e−(npx−i) ·

(
1+

npx− i
i

)i
)

= e−i ii

i!
· exp

(
−(npx− i)+ i · log

(
1+

npx− i
i

))
≥ 1

3
√

i
· exp

(
−2i

3
·
(

npx− i
i

)2
)

≥ 1
9
√

i
≥ 1

9 j
√

logn
.

Now we analyze the contribution of indices i ∈ S j to the expected value of D̃N . For clarity, we

divide our analysis into two cases: pI j ≥ j logn and pI j < j logn.

Consider the collection P j of probabilities px ∈ I j, and the collection I j of intervals Ii
j, i ∈

S j. By construction, each probability in P j is contained in at least j
√

logn many intervals in I j.

Hence the total number of probabilities (repeatedly counted) included in I j is at least pI j · j
√

logn.

Note that the number of intervals in I j is less than 2 j logn. We claim that there exists one (or

more) interval Ii′
j ∈ I j containing at least pI j/(2

√
logn) probabilities. By construction, there are

at least j
√

logn/2 neighboring intervals of Ii′
j that contain at least pI j/(4

√
logn) probabilities.
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The contribution of these these intervals to the expected value of D̃N is at least j
√

logn/2 times

1−
(

1− 1
9 j
√

logn

) pI j
4
√

logn
≥ 1− exp

(
pI j

4
√

logn
log
(

1− 1
9 j
√

logn

))
≥ 1− exp

(
−

pI j

40 j logn

)
≥Θ

(
pI j

j logn

)
,

where the last step holds if pI j ≤ j logn. This yields a lower bound of Θ(pI j/
√

logn).

It remains to consider the pI j > j logn case. Again, the total number of probabilities

included in I j is at least pI j · j
√

logn. Furthermore, each interval Ii
j contains at most pI j proba-

bilities and there are less than 2 j logn intervals. Therefore, the number of intervals that contain

at least j
√

logn/4 probabilities is at least j
√

logn/2. Otherwise, the number of probabilities

included in I j is less than

j
√

logn
4

·2 j logn+ pI j ·
j
√

logn
2

≤ pI j · j
√

logn,

which leads to a contradiction. Analogously, the contribution of these these intervals to the

expected value of D̃N is at least j
√

logn/2 times

1−
(

1− 1
9 j
√

logn

) j
√

logn
4

≥ 1− exp
(

j
√

logn
4

log
(

1− 1
9 j
√

logn

))
≥ 1− exp

(
− 1

40

)
= Θ(1) ,

which yields a lower bound of Θ( j
√

logn) on the expected value of D̃N .
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Consolidating the previous results shows that

E
[
D̃N
]
≥ 1√

logn
·Ω(∑

j≥1
min

{
pI j , j · logn

}
).

Step 3: Bounding Profile Dimension by Its Entropy

Next, we establish that for any distribution p ∈ ∆, Φn ∼ p, with probability at least

1−1/
√

n,

Hn(p)& Dn.

Let p be an arbitrary distribution in ∆. Recall that we partition the interval (0,1] into a sequence

of sub-intervals,

I j :=
(
( j−1)2 logn

n
, j2 logn

n

]
, 1≤ j ≤

√
n

logn
,

and denote by pI j the number of probabilities px in I j.

Our current objective is to bound H(Φn ∼ p) from below by a nontrivial multiple of

HS
n (p). For simplicity of derivations, we will adopt the standard Poisson sampling scheme and

make the sample size an independent Poisson variable N ∼ Poi(n). For notational simplicity,

we suppress XN in all the expressions and write the profile as ϕ := ΦN by slightly abusing

the notation.

Note that the profile can be equivalently expressed as a length-n vector

ϕ = (ϕ1, . . . ,ϕn),

where ϕi denotes the number of symbols appearing exactly i times.

For a sufficiently large absolute constant c, decompose ϕ into c parts according to I j

such that the t-th part (t = 1, . . . ,c) consists of ϕi’s satisfying i ∈ nI j with j ≡ t mod c. Since by
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definition,

HS
n (p) = ∑

j≥1
min{pI j , j · logn},

one of the c parts corresponds to a partial sum of at least HS
n (p)/c. Without loss of generality, we

assume that it is the second part, i.e.,

∑
j≡1 mod c

min{pI j , j · logn} ≥ HS
n (p)
c

.

Apply standard Poisson tail probability bounds. For example,

Lemma 2. Let Y be a Poisson or binomial random variable with mean value λ. Then,

Pr(X ≤ λ(1−δ))≤ exp
(
−δ2λ

2
λ

)
, ∀δ ∈ [0,1],

and

Pr(X ≥ λ(1+δ))≤ exp
(
− δ2λ

2+2δ/3

)
, ∀δ≥ 0.

For any j ≡ 1 mod c and with probability at least 1−1/n4, one can express the truncated

profile (ϕi)i∈nI j over I j as a function of µx for x satisfying npx ∈ I j′, j′ ∈ ( j− c/2, j+ c/2).

Basically, this says that for every x, the number of its appearance is not too far away from

the expected value. By the union bound, this is true for all j ≡ 1 mod c with probability at least

1−1/n3, as j can take only n possible values. Denote the last event by A.

To proceed, we recall the formula of [HR18] on the number P(n) of integer partitions of

n, which happens to equal to the number of length-n profiles:

logP(n) = 2π

√
n
6
(1+o(1)).
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Below, we will use a weaker version that works for any n:

logP(n)≤
√

3n.

Then, conditioning on A, the truncated profiles (ϕi)i∈nI j for j ≡ 1 mod c are independent.

Since conditioning reduces entropy,

H(ϕ)≥ H((ϕi)i∈nI j, j≡1 modc)

≥ H((ϕi)i∈nI j, j≡1 modc|1A)

≥ H((ϕi)i∈nI j, j≡1 modc|1A = 1) ·Pr(A)

= ∑
j≡1 modc

H((ϕi)i∈nI j |1A = 1) ·Pr(A)

= ∑
j≡1 modc

H((ϕi)i∈nI j |1A)− ∑
j≡1 modc

H((ϕi)i∈nI j |1A = 0) · (1−Pr(A))

≥ ∑
j≡1 modc

(H((ϕi)i∈nI j)−H(1A))−
1
n3 ∑

j≡1 modc
H((ϕi)i∈nI j |1A = 0)

≥−nH(1A)+ ∑
j≡1 modc

H((ϕi)i∈nI j)−
1
n3 ·n · log(exp(Θ(

√
n)))

=−O
(

1√
n

)
+ ∑

j≡1 modc
H((ϕi)i∈nI j),

where the third last step follows by

H(X |Y ) = H(X)− I(X ,Y ) = H(X)−H(Y )+H(Y |X)≥ H(X)−H(Y );

the second last follows by H(X)≤ logk for any X with a support size of k, and the fact that there

are at most exp(3
√

m) many profiles of length m, as we explained above; and the last step follows

by the elementary inequality

H(Bern(θ))≤ 2(log2)
√

θ(1−θ), ∀θ ∈ [0,1].
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Our new objective is to bound H((ϕi)i∈nI j) from below. We will find a sub-interval Is
j of I j and

bound H((ϕi)i∈nIs
j
) in the rest of the section, since

H((ϕi)i∈nI j)≥ H((ϕi)i∈nIs
j
).

For all j ≡ 1 mod c, our lower bound is simply

H((ϕi)i∈nIs
j
)≥Ω

(
1√

logn
min

{
pI j , j · logn

})
,

which, together with ∑ j≡1 mod c min{pI j , j · logn} ≥ HS
n (p)/c, implies that

H(ϕ)≥−O
(

1√
n

)
+ ∑

j≡1 modc
H((ϕi)i∈nI j)≥Ω

(
1√

logn

)
·Tn.

Henceforth, we assume that j is sufficiently large and denote L j := j
√

logn.

For any j and every integer i ∈ S j := [( j−1)2, j2] logn, define a sequence of intervals,

Ii
j :=

i
n
+

L j

n
[−1,1] .

Then for any i ∈ S j and px ∈ Ii
j∩ I j, the corresponding Poisson probability satisfies

e−npx
(npx)

i

i!
= e−i ii

i!
· exp

(
−(npx− i)+ i · log

(
1+

npx− i
i

))
≥ 1

3
√

i
· exp

(
−2i

3
·
(

npx− i
i

)2
)

≥ 1
9
√

i
≥ 1

9L j
.
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On the other hand, the following upper bound holds.

e−npx
(npx)

i

i!
= e−i ii

i!
· exp

(
−(npx− i)+ i · log

(
1+

npx− i
i

))
≤ e−i ii

i!
≤ 1√

2πi
≤ 1

2L j
.

In other words, for any px, i/n ∈ I j that differ by at most L j/n,

Pr(Poi(npx) = i) ∈ 1
L j

[
1
9
,
1
2

]
.

Partition I j into sub-intervals of equal length L j/n. The partition has a size of at most 2
√

logn.

Assign each probability px ∈ I j a length-L j/n interval Ipx centered at px. Then, each interval Ipx

covers at least one of the sub-intervals in the partition. Since there are exactly pI j intervals Ipx ,

one can find a partition sub-interval Is
j contained in at least pI j/(2

√
logn) of them. Denote by Xs

the collection of symbols corresponding to these intervals.

Next, we bound from below the entropy of the truncated profile (ϕi)i∈nIs
j

over nIs
j . Denote

by js the left end point of nIs
j . By the chain rule of entropy for multiple random variables,

H((ϕi)i∈nIs
j
) =

js+L j−1

∑
i= js

H(ϕi|ϕ js , . . . ,ϕi−1).

Consider a particular term on the right-hand side with i ∈ [ js, js +L j− 1]. By the conditional

independence and fact that conditioning reduces entropy,

H(ϕi|ϕ js, . . . ,ϕi−1)≥ H(ϕi|ϕ js, . . . ,ϕi−1;1 js≤µx≤i−1,x ∈ X )

= H(ϕi|1 js≤µx≤i−1,x ∈ X )

= H(ϕi|1 js≤µx≤i−1,x ∈ Xs;1 js≤µx≤i−1,x 6∈ Xs)
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To characterize the condition, we define a random variable

Ks
i := ∑

x∈Xs

1 js≤µx≤i−1.

Note that E[1 js≤µx≤i−1] = ∑
i−1
t= js Pr(Poi(npx) = t) ≤ (i− js)/(2L j), which is at most 1/10 for

i≤ js +L j/5. The following lemma transforms this into a high-probability statement.

Lemma 3. Let Yi, i ∈ [1,m] be independent indicator random variables. Let Y := ∑iYi denote

their sum and λ := E[Y ] denote the expected sum. Then for c > 0, we have

Pr(Y ≥ λ(1+ c))≤ exp(−λc2/(2+2c/3)).

Below we consider only i≤ js +L j/5. Note that c/(2+2c/3) is increasing for c > 0.

Since E[Ks
i ] = ∑x∈Xs E[1 js≤µx≤i−1]≤ |Xs|/10,

Pr(Ks
i ≥ |Xs|/2)≤ exp(−36/35)< 1/2.

where we set c = 4 in the above lemma and assume that |Xs| ≥ 3 (assuming only |Xs| ≥ 1, the

upper bound becomes 3/4). Recall that

H(ϕi|ϕ js, . . . ,ϕi−1)≥ H(ϕi|1 js≤µx≤i−1,x ∈ Xs;1 js≤µx≤i−1,x 6∈ Xs)

= ∑
(cx)x∈X∈{0,1}X

H(ϕi|1 js≤µx≤i−1 = cx,x ∈ Xs)

×Pr(1 js≤µx≤i−1 = cx,x ∈ Xs).

Denote by Vs ⊆ {0,1}X the collection of (cx)x∈X satisfying ∑x∈Xs cx < |Xs|/2. The above deriva-

tion shows that

∑
(cx)x∈X∈Vs

Pr(1 js≤µx≤i−1 = cx,x ∈ Xs)≥
1
2
.
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By independence, for any (cx)x∈X ∈Vs, we have

(ϕi|1 js≤µx≤i−1 = cx,x ∈ Xs) = ∑
x∈X :cx=0

(1µx=i|1 js≤µx≤i−1 = 0)

= ∑
x∈Xs:cx=0

(1µx=i|1 js≤µx≤i−1 = 0)

+ ∑
x 6∈Xs:cx=0

(1µx=i|1 js≤µx≤i−1 = 0).

For any x ∈ Xs with cx = 0, the corresponding indicator variable satisfies

E[1µx=i|1 js≤µx≤i−1 = 0] =
Pr(1µx=i and µx 6∈ [ js, i−1])

Pr(µx 6∈ [ js, i−1])

=
Pr(1µx=i)

1−Pr(µx ∈ [ js, i−1])

=

1
L j

[1
9 ,

1
2

]
1−
[
0, L j

5

]
· 1

L j

[1
9 ,

1
2

]
=

1
L j

[
1
9
,
5
9

]
.

On the other hand, for any x 6∈ Xs,

e−npx
(npx)

i

i!
≤ e−i ii

i!
≤ 1√

2πi
≤ 1

2L j
.

Therefore, the corresponding indicator variable satisfies

E[1µx=i|1 js≤µx≤i−1 = 0] =
Pr(1µx=i)

1−Pr(µx ∈ [ js, i−1])
≤

1
L j

[
0, 1

2

]
1−
[
0, L j

5

]
· 1

L j

[
0, 1

2

] ≤ 5
9
· 1

L j
.

To summarize, we have shown that (ϕi|1 js≤µx≤i−1 = cx,x ∈ Xs) is the sum of |X | independent

Bernoulli random variables. Among these Bernoulli variables, at least |Xs|/2≥ pI j/(2
√

logn)

have a bias of 1
L j

[1
9 ,

5
9

]
, while others have a bias of at most 5

9 ·
1
L j

.

252



The following lemma, recently established by [HJ19], shows the relation among the

entropy values of sums of independent Bernoulli random variables with different bias parameters.

Lemma 4. Let Xt ,Yt , t ∈ [m] be independent indicator random variables. Denote by X and Y the

sums of Xt’s and Yt’s, respectively. If E[Xt ]≤ E[Yt ]≤ 1/2,∀t ∈ [m],

H(∑
t

Xt)≤ H(∑
t

Yt).

This lemma, together with the previous results, shows that

H(ϕi|1 js≤µx≤i−1 = cx,x ∈ Xs)≥ H(bin(pI j/(2
√

logn),1/(9L j)).

The next lemma further bounds the entropy of a binomial random variable.

Lemma 5. For any m > 1 and q ∈ [1/m,1−1/m],

H(bin(m,q))≥ 1
2

log
(
(2π)1−(1−q)m−qm

mq(1−q)
)
− 1

12m
.

Proof. By definition, the left-hand side satisfies

H(bin(m,q)) =−
m

∑
t=0

(
m
t

)
qt(1−q)m−t log

((
m
t

)
qt(1−q)m−t

)
=−

m

∑
t=0

(
m
t

)
qt(1−q)m−t(t logq+(m− t) log(1−q)

+ logm!− log t!− log(m− t)!)

= mH(Bern(q))− logm!+
m

∑
t=0

(
m
t

)
qt(1−q)m−t(log t!+ log(m− t)!).

By Stirling’s formula, for any t ≥ 1,

log t!≥
(

t +
1
2

)
log t +

1
2

log(2π)− t.
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Substituting the right-hand side into the above equation yields

Sm(q) :=
m

∑
t=0

(
m
t

)
qt(1−q)m−t log t!≥ 1

2
(1− (1−q)m) log(2π)−mq

+
m

∑
t=1

(
m
t

)
qt(1−q)m−t

(
t +

1
2

)
log t.

Let g(x) := 0 for x ∈ [0,1) and g(x) := (x+1/2) logx for x≥ 1. Simple calculus shows that the

function is concave. Applying the concavity of g to the last sum yields

m

∑
t=1

(
m
t

)
qt(1−q)m−t

(
t +

1
2

)
log t ≥ g

(
m

∑
t=0

(
m
t

)
qt(1−q)m−t · t

)
=

(
mq+

1
2

)
log(mq),

where the last step follows by the fact that mq≥ 1. A similar inequality holds for the weighted

sum of log(m− t)!. Consolidating these inequalities, we obtain

Sm(q)+Sm(1−q)≥
(

mq+
1
2

)
log(mq)+

(
m(1−q)+

1
2

)
log(m(1−q))

+
1
2
(1− (1−q)m) log(2π)−mq+

1
2
(1−qm) log(2π)−m(1−q)

= (m+1) logm−mH(Bern(q))+
1
2

log(q(1−q))

+
1
2
(2− (1−q)m−qm) log(2π)−m.

On the other hand, for the logm! term,

logm!≤
(

m+
1
2

)
logm+

1
2

log(2π)−m+
1

12m
.

Substituting the previous term bounds into the H(bin(m,q)) expression yields

H(bin(m,q)) = mH(Bern(q))− logm!+Sm(q)+Sm(1−q)

≥ 1
2

log
(
(2π)1−(1−q)m−qm

mq(1−q)
)
− 1

12m
.
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Before continuing, we remark that the bound in the above lemma has the right depen-

dence on mq(1−q) in the sense that if we fix q and increase m, the lower bound converges to

1
2 log(Θ(mq(1−q))). Another point to mention is that the above bound covers q∈ [1/m,1−1/m],

while Lemma 6 appearing later in this section covers q 6∈ [1/m,1−1/m]. Note that the dependence

on mq(1−q) changes from logarithmic to linear, showing an “elbow effect” around 1/m.

Assume that pI j/(2
√

logn)≥ 9L j, then for any (cx)x∈X ∈Vs,

H(ϕi|1 js≤µx≤i−1 = cx,x ∈ Xs)≥ H(bin(pI j/(2
√

logn),1/(9L j))≥
1
2
.

Consolidating this with the previous results yields that

H(ϕi|ϕ js, . . . ,ϕi−1)≥ ∑
(cx)x∈X∈Vs

1
2
·Pr(1 js≤µx≤i−1 = cx,x ∈ Xs)≥

1
2
· 1

2
=

1
4
,

where we utilize pI j/(2
√

logn)≥ 9L j ≥ 9 and (1−q)m +qm < 1/e for ∀m≥ 3,q ∈ [1/m,1/2].

We can then bound the quantity of interest as follows.

H((ϕi)i∈nIs
j
) =

js+L j−1

∑
i= js

H(ϕi|ϕ js, . . . ,ϕi−1)

≥
js+L j/5

∑
i= js

H(ϕi|ϕ js, . . . ,ϕi−1)

≥
L j

5
· 1

4
=

L j

20

=
1

20
√

logn
min

{
pI j , j · logn

}
.

On the other hand, if 9L j ≥ pI j/(2
√

logn)� 1, we can further “compress” the truncated profile

(ϕi)i∈nIs
j

over nIs
j to reduce the effective value of L j. Specifically, for any integer t < L j, we define
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the t-compressed version of (ϕi)i∈nIs
j

as

(ϕi)
t
i∈nIs

j
:=

(
js+`t−1

∑
i= js+(`−1)t

ϕi

)
`∈[L j/t]

.

Note that for each t, the length of (ϕi)
t
i∈nIs

j
is Lt

j := L j/t. For each entry in the compressed version,

we can again express the entry as the sum of independent indicator random variables. Specifically,

js+`t−1

∑
i= js+(`−1)t

ϕi = ∑
x∈X

1µx∈[ js+(`−1)t, js+`t−1].

Furthermore, for any x ∈ Xs, the expectation of each indicator variable satisfies

E[1µx∈[ js+(`−1)t, js+`t−1]] =
js+`t−1

∑
i= js+(`−1)t

e−npx
(npx)

i

i!

=
t

L j

[
1
9
,
1
2

]
=

1
Lt

j

[
1
9
,
1
2

]
.

Similarly, for any x ∈ X , we have E[1µx∈[ js+(`−1)t, js+`t−1]]≤ 1/(2Lt
j).

Now, choose t large enough so that 18Lt
j ≥ pI j/(2

√
logn)≥ 9Lt

j. Following the reasoning

in the previous case shows that

H((ϕi)i∈nIs
j
)≥ H((ϕi)

t
i∈nIs

j
)≥Ω

(
1√

logn
min

{
pI j , j · logn

})
.

It remains to consider the case of O(
√

logn)≥ pI j ≥ 1, for which we adopt our previous analysis.

Again, partition I j into sub-intervals of equal length L j/n. Then, assign each probability

px ∈ I j a length-L j/n interval Ipx centered at px. By construction, each interval Ipx covers at least

one of the sub-intervals in the partition. Redefine any of these covered sub-intervals as Is
j . Denote

by Xs the collection of symbols corresponding to the covering intervals.

Note that O(
√

logn) ≥ pI j ≥ |Xs| ≥ 1. For any i ∈ [ js, js+L j/5], the previous analysis
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shows that

H(ϕi|ϕ js, . . . ,ϕi−1)≥ H(bin(|Xs|,1/(9L j)) · (1−3/4) .

We bound the right-hand side with the following lemma.

Lemma 6. For any m≥ 1, and q≤min{1/2,1/m} or q≥max{1/2,1−1/m},

H(bin(m,q))≥ m
4

min{q,1−q} ≥ 1
4

mq(1−q).

Proof. By symmetry, we need to consider only the case of q ∈ [0,1/m].

H(bin(m,q))≥ H(1bin(m,q)≥1)

= H(((1−q)m,1− (1−q)m))

≥−(1−q)m(m log(1−q))

≥−m
4

log(1−q)

≥ m
4
·q.

Consolidating the lemma and the chain rule of entropy yields,

H((ϕi)i∈nIs
j
) =

js+L j−1

∑
i= js

H(ϕi|ϕ js, . . . ,ϕi−1)

≥
js+L j/5

∑
i= js

H(ϕi|ϕ js, . . . ,ϕi−1)

≥
L j

5
· |Xs|

4 ·9 ·L j
·
(

1− 3
4

)
=
|Xs|
720

= Ω

(
1√

logn
min

{
pI j , j · logn

})
.

Alternatively, we can use the fact that adding independent random variables does not
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decrease entropy, i.e., H(Y +Z)≥ H(Y ) for any independent variables Y and Z. Note that

(ϕi)
t
i∈nIs

j
= ∑

x∈X
(1µx=i)i∈Is

j
.

Let y be an arbitrary symbol that belongs to Xs. Then,

H((ϕi)i∈nIs
j
)≥ H((ϕi)

t
i∈nIs

j
)≥ H((1µy=i)i∈Is

j
)≥ H((1µy= js,1µy= js+1)).

By the previous derivations, both Pr(µy = js) and Pr(µy = js +1) belong to 1
L j
[1/9,1/2]. Hence,

H((ϕi)i∈nIs
j
)≥ H

(
Bern

(
2

11

))
≥ 2

5
= Ω

(
1√

logn
min

{
pI j , j · logn

})
.

Note that this argument does not apply to other cases, since

H((1µy=i)i∈Is
j
) = O(logL j) = O(logn),

while min
{

pI j , j · logn
}

can be as large as Θ̃(n1/3) in general.

The proof is complete upon noting that indices with j = O(1) corresponds to a total

contribution of at most O(1) to HS
n (p) and HS

n (p) = Θ̃(E[D(ϕ)]) = Θ̃(D(ϕ)), with probability

at least 1−O(1/
√

n).

Summary The simple expression shows that H S
n (p) characterizes the variability of

ranges that the actual probabilities spread over. As Theorem 1 shows, H S
n (p) closely approximates

En(p), the value around which Dn ∼ p concentrates (Theorem 9) and Hn(p) lies (Thoerem 1).

Henceforth, we use H S
n (p) as a proxy for both Hn(p) and Dn, and study its attributes and values.

Let p ∈ ∆ be an arbitrary discrete distribution. Recall that in Section 5.A, we partition the
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unit interval into a sequence of ranges,

I j :=
(
( j−1)2 logn

n
, j2 logn

n

]
,1≤ j ≤

√
n

logn
,

denote by pI j the number of probabilities px belonging to I j, and relate En(p) to an induced

shape-reflecting quantity,

H S
n (p) := ∑

j≥1
min

{
pI j , j · logn

}
,

the sum of the effective number of probabilities lying within each range.

The simple expression of H S
n (p) shows that it characterizes the variability of ranges the

actual probabilities spread over. As Theorem 1 shows, H S
n (p) closely approximates En(p), the

value around which Dn ∼ p concentrates (Theorem 9) and Hn(p) lies (Thoerem 1). In this section,

we use H S
n (p) as a proxy for both Hn(p) and Dn, and study its attributes and values.

To further our understanding of profile entropy and dimension, in the next two sections,

we investigate the analytical attributes of H S
n (p) concerning monotonicity and Lipschitzness.

5.A.4 Extension: Profile Entropy Estimation via Monotonicity

Among the many attributes that H S
n (p) possesses, monotonicity is perhaps most intuitive.

One may expect a larger value of H S
n (p) as the sample size n increases, since additional obser-

vations reveal more information about the variability of probabilities. Below we confirm this

intuition.

Theorem 12. For any n≥ m� 1 and p ∈ ∆,

H S
n (p)≥ HS

m(p).

The above result that lowerly bounds H S
n (p) with HS

m(p) for m ≤ n. Besides this, a

more desirable result is to upperly bound H S
n (p) with some function of HS

m(p). Such a result
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will enable us to draw a sample of size m ≤ n, obtain an estimate of HS
m(p) from Dm (by the

entropy-dimension equivalence), and use it to bound the value of H S
n (p) for a much larger sample

size n.

With such an estimate, we can perform numerous tasks such as predicting the performance

of PML when more observations are available, or the space needed for storing the profile of a

longer sample sequence. These applications are closely related to the recent works on learnability

estimation by [KV18, KVB19], namely, one wish to know how many (additional) observations

are required for a learning algorithm to achieve a certain level of performance.

The next theorem provides a simple and tight upper bound on H S
n (p) in terms of HS

m(p).

Theorem 13. For any n≥ m� 1 and p ∈ ∆,

H S
n (p)≤

√
n logn
m logm

·HS
m(p).

Estimation Before continuing to the proof, we present some direct implications.

1. If for m = Ω(n0.01), we have HS
m(p)�

√
m, then HS

n (p)�
√

n.

2. For any two integers m≤ n and distribution p,

HS
m(p)√

m logm
≥ HS

n (p)√
n logn

.

In other words, the sequence Am := HS
m(p)/

√
m logm, m≤ n, is monotonically decreasing

and converges to An. As we increase the value of m, (
√

n logn ·Am), which can be viewed

as our estimate of HS
n (p), is getting more and more accurate. For the purpose of adaptive

estimation, if n = 2t , we can choose m = 20,21, . . . ,2t .

Proof. Below we prove both the lower and upper bounds. For clarity, denote by p(m, j) the value

of pI j corresponding to HS
m(p), and p(n, j) the value of pI j corresponding to HS

n (p). Furthermore,
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denote r :=
√

(n/m)((logm)/ logn), which is treated as an integer. Then, by the definition of HS
· ,

rHS
m(p) = r ∑

j≥1
min{p(m, j), j · logm}

= ∑
j≥1

min

{
r ·

r j

∑
i=r j−r+1

p(n, i), r j · logm

}

≥ ∑
j≥1

r−1

∑
t=0

min

{
r j

∑
i=r j−r+1

p(n, i), (r j− t) · logm

}

≥ ∑
j≥1

r−1

∑
t=0

min{p(n,r j− t), (r j− t) · logm}

= ∑
i≥1

min{p(n, i), i · logm}

≥ logm
logn

·HS
n (p).

The lower-bound part basically follows by reversing the above inequalities.

HS
n (p) = ∑

i≥1
min{p(n, i), i · logn}

= ∑
j≥1

r−1

∑
t=0

min{p(n,r j− t), (r j− t) · logn}

≥ ∑
j≥1

r−1

∑
t=0

min{p(n,r j− t), (r j− r+1) · logn}

≥ ∑
j≥1

min

{
r−1

∑
t=0

p(n,r j− t), (r j− r+1) · logn

}

= ∑
j≥1

min{p(m, j),(r j− r+1) · logm}

≥ HS
m(p).

This completes the proof of the theorem.
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5.A.5 Extension: Lipschitzness of Profile Entropy

Note that we can view H S
n (p) as a distribution property. In this section, we establish

the Lipschitzness of H S
n (p) under a weighted Hamming distance and the `1 distance between

distributions. Precisely, given two distributions p,q ∈ ∆, the vanilla Hamming distance is

h(p,q) := ∑
x
1px 6=qx .

This may not be suitable for the purpose of statistical inference since the two distributions could

differ at many symbols, while these symbols account for only a negligible total probability and

has little effects on most induced statistics. To address this, we propose a weighted Hamming

distance

hW(p,q) := ∑
x∈X

max{px,qx} ·1px 6=qx .

The next result measures the Lipschitzness of HS
n under hW .

Theorem 14. For any integer n, and distributions p and q, if hW(p,q)≤ ε for some ε≥ 1/n,

∣∣∣H S
n (p)−HS

n (q)
∣∣∣≤ Õ(

√
εn).

Proof. Recall that the quantity of interest is

H S
n (p) := ∑

j≥1
min

{
pI j , j · logn

}
.

Given the bound of hW(p,q)≤ ε, we denote by Y the collection of symbols x at which

px 6= qx. By definition, we have both ∑x∈Y px ≤ ε and ∑x∈Y qx ≤ ε. Below, we show that these

symbols modify the value of H S
n (p) by at most Õ(

√
εn). By symmetry, the same claim also holds

for the distribution q. Combining the two claims yields the desired result.

First, we consider x∈Y satisfying px = 0 or px ∈ I1 = (0,(logn)/n]. Such a symbol either
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does not contribute the value of H S
n (p), or affects only the value of the first term min{pI1, logn},

which is at most logn. Hence the claim holds for this case.

Next, consider symbols x ∈ Y satisfying px ∈ I j = (( j−1)2 logn
n , j2 logn

n ] for some j ≥ 2

and denote the collection of them by Z ⊆ Y . By the above assumption, we have ∑x∈Z px ≤ ε. To

maximize their impact on H S
n (p) under this constraint, we should set their values to be

p j := ( j−1)2 logn
n

, j = 2, . . .J,

for some J to be determined, where each p j repeats exactly j logn times. Then, the symbols in Z

contributes at most ∑
J
j=2 j logn = (logn)(J−1)(J+2)/2 to H S

n (p), and the above constraint on

the total probability mass bounds transforms to

ε≥ ∑
x∈Z

px ≥
J

∑
j=2

( j logn) · ( j−1)2 logn
n
≥ (logn)2

12n
J(J2−1)(−2+3J).

Therefore in this case, the contribution is again Õ(
√

εn), which completes the proof.

Replacing max{px,qx} with |px − qx| induces a common similarity measure, the `1

distance. The next theorem is an analog to Theorem 14 under this classical distance.

Theorem 15. For any integer n, and distributions p and q, if `1(p,q)≤ ε for some ε≥ 0,

∣∣∣H S
n (p)− cHS

n (q)
∣∣∣≤ O((εn)2/3),

where c is a constant in [1/3,3]. Note that the inequality is significant iff ε≤ Θ̃(1/n1/4), since

the value of H S
n (p) is at most O(

√
n logn) for all p.

By symmetry, it suffices to prove that under the conditions in Theorem 15,

HS
n (p)≤ 3HS

n (q)+O((εn)2/3).
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Proof. Consider the optimization problem of modifying p by at most ε and maximizing the

increase in HS
n (p). For each j and each probability px ∈ j, denote by p′x the modified value.

Depending on the location of p′x, there are three types of possible modifications, as illustrated

below.

• For the first type, we still have p′x ∈ I j. This does not change the value of pI j and hence

does not increase HS
n (p).

• For the second type, we have p′x ∈ I j−1 or p′x ∈ I j+1. If pI j ≤ j · logn, this will decrease

the value of min{pI j , j · logn} by 1 and increase the value of min{pI j−1,( j−1) · logn} or

min{pI j+1,( j+1) · logn} by at most one. Hence in this case, the value of HS
n (p) can only

decrease. If pI j > j · logn, then min{pI j , j · logn} = j · logn. For a particular j, all such

modifications can increase the value of HS
n (p) by at most ( j− 1) logn+( j+ 1) logn =

2 j logn, which is twice the value of min{pI j , j · logn}. Hence, all such modifications, when

combined, increase the value of HS
n (p) by at most 2HS

n (p).

• For the third type, we have p′x ∈ Ii and |i− j| ≥ 2. If i < j, we require a probability mass

of at least (( j− 1)2 logn− i2 logn)/n ≥ (i logn)/n, where j ≥ 3. If i > j, we require a

probability mass of at least ((i−1)2 logn− j2 logn)/n≥ (i logn)/n. The number of such

modifications that could lead to an increase in the value of HS
n (p) is at most i logn. For

each i, let ci denote the number of such modifications that will lead to an increase of HS
n (p).

Then, the total increase is ∑i ci, each ci is at most i logn, and the total required probability

mass required is at least ∑i ci · (i logn)/n≤ ε.

Let {ci} be the optimal solution that maximizes ∑i ci. Assume that there are two indices

i < j satisfying ci < i logn and c j > 0. Then, if we replace ci and c j by ci +1 and c j−1,

respectively, ∑i ci will not change and ∑i ci ·(i logn)/n will decrease. Hence, we can assume

that there exists i′ satisfying ci = i logn,∀i < i′ and ci = 0,∀i > i′. In addition, assuming
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εn≥ logn implies that i′ ≥ 2. Hence, we have ∑i ci ≤ (logn)i′(i′+1)/2 and

∑
i

ci ≤ 3.5 ·
(

nε√
logn

)2/3

.

5.B Competitive-Optimal Property Inference

5.B.1 Theorem 3: Sufficiency of Profiles

Numerous practical applications call for inferring property values of an unknown dis-

tribution from its samples, such as entropy for graphical modeling [KF09], Rényi entropy for

sequential decoding [Ari96], and support size for species richness estimation [Mag13]. Therefore,

property inference has attracted considerable attention over the past few decades.

Property inference Formally, a distribution property over some collection P⊆ ∆ is a

functional f : P→ R that associates with each distribution a real value. Given a sample Xn from

an unknown distribution p ∈ P, the problem of interest is to infer the value of f (p). For this

purpose, we employ another functional f̂ : X ∗→ R, an estimator mapping every sample to a real

value. We measure the statistical efficiency of f̂ in approximating f over P by its absolute error

| f̂ (Xn)− f (p)|.

Given Xn ∼ p ∈ P, the minimal absolute error rate, or simply error, that f̂ achieves

with probability at least 9/10 is rn(p, f̂ ) := min{r : Pr(| f̂ (Xn)− f (p)| ≤ r)≥ 9/10}, where the

dependence on f is implicit. While p is often unknown, the worst-case error of an estimator f̂

over all distributions in P is rn(P, f̂ ) := maxp∈P rn(p, f̂ ), and the lowest worst-case error for P,

achieved by the optimal estimator, is the minimax error rn(P) := min f̂ ′ rn(P, f̂ ′).

Symmetric properties An important class of properties is the collection of symmetric

ones, which encompasses numerous well-known distribution characteristics, such as Shannon

entropy, Rényi entropy, support size, and `1 distance to the uniform distribution. Symmetry

connects the estimation of such property to the sample profile, a sufficient statistic for the task in
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hand. The general principle of maximum likelihood then provides an intuitive estimator, profile

maximum likelihood (PML) [OSVZ04], that maximizes the probability of observing the profile.

An estimator is profile-based if its values depends on only the profile. The theorem below

shows that profile-based estimators are sufficient for inferring symmetric properties.

Theorem 3 (Sufficiency of profiles). For any symmetric property f and set P⊆ ∆, and estimator

f̂ , we can construct an explicit estimator F̂ over length-n profiles satisfying

rn(p, f̂ ) = rn(P, F̂ ◦ϕ),

where both estimators can have independent randomness.

Proof. First we show that given estimator f̂ , there is an estimator f̂s which is symmetric, i.e.,

invariant with respect to domain-symbol permutations, and achieves the same guarantee. To

see this, consider a random permutation σ̃ chosen uniformly randomly from the collection of

permutations over the underlying alphabet. Let f̂s := f̂ ◦ σ̃. Then for any p ∈ P ,

Pr
Xn∼p

(∣∣ f̂s(Xn)− f (p)
∣∣> ε

) (a)
= Pr

Xn∼p

(∣∣ f̂ ◦ σ̃(Xn)− f (p)
∣∣> ε

)
(b)
= ∑

σ

Pr
Xn∼p

(∣∣ f̂ ◦σ(Xn)− f (p)
∣∣> ε

∣∣ σ̃ = σ
)
·Pr(σ̃ = σ)

(c)
= ∑

σ

Pr
Xn∼p

(∣∣ f̂ ◦σ(Xn)− f (p)
∣∣> ε

)
·Pr(σ̃ = σ)

(d)
= ∑

σ

Pr
Xn∼σ(p)

(∣∣ f̂ (Xn)− f (σ(p))
∣∣> ε

)
·Pr(σ̃ = σ)

(e)
< ∑

σ

δ ·Pr(σ̃ = σ)

( f )
= δ,

where (a) follows by the definition of f̂s; (b) follows by the law of total probability; (c) follows

by the independence between σ̃ and Xn; (d) follows by the symmetry of f and the equivalence of
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applying σ to Xn and to p; (e) follows by the fact that σ(p) ∈ P and the guarantee satisfied by

the estimator f̂ ; and ( f ) follows by the law of total probability.

Before we proceed further, we introduce the following definitions. For any sequence xn,

the sketch of a symbol x in xn is the set of indices i ∈ [n] for which xi = x. The type of a sequence

xn is the set τ(xn) of sketches of symbols appearing in xn.

Since f̂s is symmetric, there exists a mapping f̂τ over types satisfying f̂s = f̂τ ◦ τ. Due to

the i.i.d.assumption on the sample generation process, given the profile of a sample sequence,

all the different types corresponding to this profile are equally likely. Let Λ be a mapping that

recovers this relation, i.e., Λ maps each profile uniformly randomly to a type having this profile.

Then, for any p ∈ P and Xn ∼ p,

f̂s(Xn) = f̂τ ◦ τ(Xn) = f̂τ ◦Λ◦ϕ(Xn).

Consequently, the mapping F̂ := f̂τ ◦Λ is a profile-based estimator that satisfies

Pr
Xn∼p

(∣∣F̂(ϕ(Xn))− f (p)
∣∣> ε

)
= Pr

Xn∼p

(∣∣ f̂s(Xn)− f (p)
∣∣> ε

)
< δ, ∀p ∈ P .

5.B.2 Theorem 4: Competitiveness of PML

Naturally and generally, we study symmetric property inference over a distribution collec-

tion P⊆ ∆ that is also symmetric, i.e., if p ∈ P, then P as well contains all the symbol-permuted

versions of p. For every sample xn ∈ X n and symmetric P, the PML estimator over P maps xn to

a distribution

Pϕ(xn) := argmax
p∈P

Pr
Xn∼p

(ϕ(Xn) = ϕ(xn)) .

Given a sample Xn ∼ p ∈ P and a symmetric property p, the PML plug-in estimator uses

f ◦P (Xn) to estimate f (p). Recent researches [ADOS17, HO19a] show that for an extensive

family of symmetric properties, including the previously mentioned four, the PML plug-in
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estimator universally achieves minimax error in the large-alphabet regime, up to constant factors.

The next result shows that the PML estimator is adaptive to the simplicity of underlying

distributions in inferring all symmetric properties, over any symmetric P. Specifically, the theorem

states that the n-sample PML plug-in essentially performs as well as the optimal n/Hn(p)-sample

estimator, which approaches the performance of the optimal n-sample estimator if p has a small

Hn(p). Furthermore, for any property and estimator, there is a symmetric set P′ for which this

1/Hn(p) ratio is optimal.

Theorem 4 (Competitiveness of PML). For any symmetric property f and set P⊆ ∆, and every

distribution p ∈ P, the PML plug-in estimator satisfies

rn
(

p, f ◦Pϕ

)
≤ 2rnp(P),

where np :' n/Hn(p). On the other hand, for any estimator f̂ and symmetric property f , there

exists a symmetric set P′ ⊆ ∆ such that for some p ∈ P′,

rn(p, f̂ )≥ 2rnp

(
P′
)
.

5.B.3 Prior Work and Discussions

Results Recent years have shown interests in determining the limits of inferring sym-

metric distribution properties. Building upon worst-case analysis, the major contribution of these

works is showing that for several specific properties, one can design more involved estimators

whose worst-case performance is better than the empirical-distribution plug-in estimators (em-

pirical estimators), over ∆X for some finite alphabet X . Note that ∆X is a special symmetric

distribution collection.

For example, the empirical estimator for Shannon entropy has a worst-case error rate of

Θ(|X |/n), whereas the minimax error rate is Θ(|X |/(n logn)) [VV11a, VV13, JVHW15, WY16,
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ADOS17, HO19a, HO19c, HO20a]. Similar results also hold for support size and `1 distance to

the uniform distribution over X (See [VV11a, VV13, ADOS17, JHW16, WY19, HO19a, HO19c,

HO20a]). One observation is that all these properties are in the form of ∑x fr(px), where fr is a

relative smooth real function (for support size, one needs a lower bound like 1/|X | on the positive

probabilities, which effectively smoothes the function).

It is apparent that most symmetric properties are not in the ∑x fr(px) form. A simple

example is Rényi entropy, for which the learning error rates exhibit a significantly different

behavior. Specifically, for a power parameter α > 1,α ∈ N, the minimax error of inferring Rényi

entropy varies according to |X | and n as follows [AOST16].

If n . |X |1−1/α (sample-sparse regime), then rn(∆X )& maxp f (p) (consistent estimation

is impossible); if n & |X |1+1/α (large-sample regime), then rn(∆X ) ' (|X |1−1/α/n)1/2, which

is achieved by the empirical estimator (trivial regime); if |X |1−1/α . n . |X |1+1/α, then the

empirical estimator has an order max{|X |/n,1} worst-case error, whereas the minimax error is

(|X |1−1/α/n)1/2 (potentially much lower than that of empirical).

The recent work of [HO19a] significantly extends our understanding of symmetric prop-

erty estimation by showing that the PML estimator is sample optimal for all ∑x fr(px) properties

that are approximately Lipschitz, and is as good as the best known estimators for Rényi entropy

of power α > 3/4. The paper also presents resulting on other tasks such as testing.

Given the special structures, even the combination of all the properties mentioned above

corresponds to only an extremely small subclass of symmetric properties. The general landscape

for how the worst-case error rate behaves when we consider either the empirical or the minimax

estimator is far from understood, even for just ∆X . In fact, even for Rényi entropy, a simple and

widely studied property, the minimax rates are not fully characterized – the lower and upper

bounds in [AOST16] for non-integer powers do not match in all parameter regimes. Ideally, there

should be a set of formulas such that once the explicit form of f is available, the respective error

rates can be computed, and more importantly, an explicit algorithm can be derived.
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Our result pushes forward the general understanding of symmetric property estimation.

It leverages the method of PML to derive competitive learning guarantees for all symmetric

properties and distribution collections. The theorem even adapts itself to individual distributions,

leading to numerous nontrivial estimation results without introducing sophisticated analysis or

additional algorithms.

Methods As the task involves two components, the property and distribution (probability

multiset), the design of statistical methods also advances in two veins.

The first vein concerns constructing a universal plug-in estimator for all symmetric

properties. A symmetric property is invariant under symbol permutations, hence it suffices to

obtain an accurate estimate of the probability multiset.

One method is PML, the approach that our theorem adopts. Recently, following the papers

by [Das12, ADOS17], the work of [HO19a] shows that for any symmetric property that is in the

form of ∑x fr(px) and appropriately Lipschitz, both the profile maximum likelihood [OSVZ04]

and its near-linear-time computable variant in [CSS19b] achieve the optimal sample complexity

up to small constant factors.

Another method is moment matching via linear programming (LP). In typical works using

LP, such as [VV11a, VV13, VV16, HJW18], one first estimates the (lower-order) moments of

the underlying distributions (e.g., ∑x pi
x for i≤ logn), which are also symmetric properties, and

then finds a distribution through an LP method (up to domain-symbol permutations), whose lower

order moments match with the estimates. These methods are known to achieve the minimax error

rates over ∆X for only a few specific properties, such as entropy, support size (also assume a

1/|X | lower bound on the positive probabilities), and `1-distance to the uniform distribution.

The second vein of methods addresses the bias of empirical estimators and (often partially)

replaces the given property by a bias-corrected polynomial, for which we can efficiently construct

a near-unbiased estimator. There are mainly three different types of constructions for the bias-

corrected polynomial: using classical minimax approximation [JVHW15, JHW16, WY16, WY19,
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HO19c], applying smoothing techniques to the coefficients of the unbiased estimator [OSW16,

HOSW18, HL20a], and computing the derivative of the (property’s) Bernstein polynomial and

employing the integral of its minimax approximation [HO20a].

Early works in this direction address specific properties, such as entropy [JVHW15,

WY16], support size [WY19], support coverage [OSW16], and `1-distance to the uniform dis-

tribution [JHW16], and determine their respective minimax error rates. Recent works consider

broader families of properties [HOSW18, HO19c, HO20a, HL20a], in particular those in the

∑x fr(px) form and appropriately Lipschitz. Besides these results, some state-of-the-art Rényi

entropy estimators [AOST16] also use polynomial approximation. Excluding properties in these

special forms, it is unknown whether these techniques/methods work for the large amount of

symmetric properties in general, even just over ∆X .

Outline The rest of Appendix 5.B presents the proof of the our result on PML. For

clarity, we divide the full proof into three parts: a) the sufficiency of profiles for estimating

symmetric properties (already established above); b) the standard “median trick” often used to

boost the confidence of learning algorithms; c) the PML method and its competitiveness to the

min-max estimators. As one may expect, the proof utilizes several previously established results.

5.B.4 Proof of Theorem 4

Proof outline We begin with a proof sketch on the high level. While our theorem

states only a constant-error-probability result for the vanilla PML, the guarantee holds for

approximations of PML and any general error probability bound δ, and this outline corresponds

to the general setting.

1 For simplicity, let k denote the (expected or high-probability) dimension of a length-n profile

from an unknown p ∈ ∆, and refer to the actual random quantity Dn ∼ p as “dimension”.

2 Let’s say p ∈ P (which is symmetric), and we have an m-sample estimator over P with an
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(ε,δ) guarantee, i.e., for every distribution in P , the estimator learns its property value up

to an ε error, with probability at least 1−δ. In addition, we assume that m� n with the

ratio r := n/m to be determined.

3 Now, assume that r has been properly chosen, and we could utilize at most r copies of

the m-sample estimator to construct an n-sample (ε,δ · exp(−2k)) estimator (the existence

of r follows by the standard “median trick”). Furthermore, by the sufficiency of profiles

(Theorem 3), there is a profile-based estimator that achieves the same guaranty.

4 Divide all length-n profiles into two groups: one group with dimension at most of order k

(hiding logarithmic factors), the other with dimension much larger than k.

5 By the concentration of sample profile dimensions (e.g., Theorem 9), the profile of an

arbitrary sample from p belongs to the first group with high probability (say at least 1−1/n),

we can safely ignore the second group.

6.1 Pick a profile from “the first group”, if its probability is� δ · exp(−k), the approximate

PML (APML) will have a probability of� δ · exp(−2k). Here, the definition of APML

is based on profile probabilities – for every length-n sample, its profile probability under

the true distribution and the APML estimate should differ by a factor of at most exp(k)

(more generally, a fixed factor of at least 1, which covers the vanilla PML). This definition

is analogous to those in [ADOS17] and [CSS19a, CSS19b].

6.2 So, the profile-based estimator must work properly on both distributions, the original and

the APML. Triangle inequality then relates the property values of these distributions (by

eliminating the estimator’s value) and yields a 2ε estimation guarantee for the APML.

7.1 On the other hand, if the profile we picked has a probability at most δ · exp(−k), then the

APML may fail, i.e., not produce a reasonable estimate.
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7.2 However, there are at most (ignore logarithmic factors in the exponent) exp(k) such profiles,

hence by the union bound, the total probability of failing is at most δ+1/n.

8 Finally, we tune parameter r, which becomes something like k, up to logarithmic factors.

Utilizing our entropy-dimension equivalence (Theorem 1) completes the proof.

Median Trick The following argument is standard method for boosting the confidence

of learning algorithms, commonly known as the median trick.

Lemma 7 (Median trick). Let α,β ∈ (0,1) be real parameters satisfying 1/10≥ α > β. For an

accuracy ε > 0 and a distribution set P ⊆ ∆, if there exists an estimator f̂A such that

Pr
Xn∼p

(∣∣ f̂A(Xn)− f (p)
∣∣> ε

)
< α, ∀p ∈ P ,

we can construct another estimator f̂B that takes a sample of size m :=
⌈

4n
log 1

2α

log 1
β

⌉
and achieves

Pr
Y m∼p

(∣∣ f̂B(Y m)− f (p)
∣∣> ε

)
< β, ∀p ∈ P .

Proof. Given t ∈ N i.i.d.copies of f̂A(Xn), the probability that less than half of them satisfy the

inequality in the parentheses is at least

Pr

(
t

∑
i=1
1Ai <

t
2

for Ai’s satisfying Pr(Ai)< α

)
≥ Pr

(
bin(t,α)<

t
2

)
.

By the law of total probability, the right-hand side equals to

1−Pr
(

bin(t,α)≥ t
2

)
≥ 1− exp

(((
1

2α
−1
)
− 1

2α
log

1
2α

)
·αt
)

≥ 1− exp
(
− t

4
log

1
2α

)
,

where the first step follows by the Chernoff bound of binomial random variables, and the second
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step follows by α≤ 1/10 and the inequality c−1− c
2 logc > 0,∀c≥ 5.

Set t :=
⌈

4
log 1

2α

log 1
β

⌉
, the right-hand side is at least 1−β.

Therefore, given a sample of size m = t · n, we can partition it into t sub-samples of

equal size, apply the estimator f̂A to each subsample, and define the median of the corresponding

estimates as f̂B.

By the previous reasoning, this estimator satisfies

Pr
Y m∼p

(∣∣ f̂B(Y m)− f (p)
∣∣> ε

)
< β, ∀p ∈ P .

Proof of the theorem. For any tolerance δ ∈ (0,1) and distribution p ∈ ∆, define the (δ,n)-typical

cardinality of profiles with respect to p as the smallest cardinality Cδ,n(p) of a set of length-n

profiles such that the probability of observing a sample from p with a profile in this set is at least

1−δ. The following lemma provides a tight characterization of Cδ,n(p) in terms of the dimension

of Φn ∼ p.

Lemma 8. For any p ∈ ∆ and Φn ∼ p, with probability at least 1−6/
√

n,

C 6√
n ,n

(p)≤ n8(Dn+20logn).

The proof of the lemma follows by recursively applying Theorem 9. Specifically, let

d := 2En(p)+3logn, which is at least Dn ∼ p, with probability at least 1−6/
√

n. Then,

C 6√
n ,n

(p)≤
(

n
d

)(
n+d−1

d−1

)
≤ n2d−1 ≤ n2(2En(p)+3logn) ≤ n8D(Φn)+20logn,

where the last inequality holds with with probability at least 1−6/
√

n.

Now, let f be a symmetric property over P . For simplicity, we will establish the theorem

for the vanilla PML, since as our proof outline shows, the proof for any approximate PML (APML)

is essentially the same. In addition, for a sequence xn with profile φ := ϕ(xn), we write Pφ for the
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PML estimate Pϕ(xn). According to Theorem 3, for any parameters ε > 0 and δ ∈ (0,1), if there

exists an estimator f̂ such that

Pr
Xn∼p

(∣∣ f̂ (Xn)− f (p)
∣∣> ε

)
< δ, ∀p ∈ P ,

there is an estimator f̂ϕ over profiles satisfying

Pr
Xn∼p

(∣∣ f̂ϕ(ϕ(Xn))− f (p)
∣∣> ε

)
< δ, ∀p ∈ P .

For an arbitrary length-n profile φ that satisfies PrΦn∼p(Φ
n = φ)≥ 2δ, these error bounds yield

Pr(| f̂ϕ(φ)− f (p)|> ε)< 1
2 , and since PrΦn∼Pφ

(Φn = φ)≥ PrΦn∼p(Φ
n = φ)≥ 2δ by the definition

of PML (as we take the distribution that maximizes the probability),

Pr
(∣∣ f̂ϕ(φ)− f (Pφ)

∣∣> ε
)
<

1
2
.

By the union bound and triangle inequality,

Pr
(∣∣ f (p)− f (Pφ)

∣∣> 2ε
)
< 1 ⇐⇒

∣∣ f (p)− f (Pφ)
∣∣≤ 2ε surely.

Furthermore, by Lemma 8, with probability at least 1−6/
√

n, the total probability of length-n

profiles φ satisfying PrΦn∼p(Φ
n = φ)< 2δ is at most

2δ ·C 6√
n ,n

(p)+
6√
n
≤ 2δ ·n8Dn+20logn +

6√
n
,

which basically upperly bounds the probability that | f (p)− f (PΦn)|> 2ε . Next we will assume

that there exists an estimator f̂ satisfying PrXm∼p(| f̂ (Xm)− f (p)|> ε)< δ, ∀p∈ P . By Lemma 7,

if δ≤ 1/10, we can construct another estimator f̂ ′ that takes a sample of size n = 4m
log 1

2δ

log 1
δ′ (n
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is assumed to be an integer here) and achieves a higher-confidence guarantee

Pr
Xn∼p

(∣∣ f̂ ′(Xn)− f (p)
∣∣> ε

)
< δ
′, ∀p ∈ P .

Then by the above reasoning, with probability at least 1−6/
√

n,

Pr
Φn∼p

(| f (p)− f (PΦn)|> 2ε)≤ 2δ
′ ·n8Dn+20logn +

6√
n

= 2exp
(
− n

4m
log

1
2δ

+(8Dn +20logn) logn
)
+

6√
n
.

For the first term on the right hand side to vanish as quickly as 1/
√

n, it suffices to have

n
4m

log
1
2δ
≥ 20 ·Dn logn and

n
4m

log
1
2δ
≥ 40 · log2 n.

Simplifying the expressions and applying the union bound yield that | f (p)− f (PΦn)| ≤ 2ε with

probability at least 1−1/
√

n, given both

n
Dn

&
m

log 1
δ

and n≥ 8m.

5.B.5 Experiments

Prior works such as [HO19a, PJW17] have experimentally demonstrated the efficiency

of PML on estimating several classical properties, including the Shannon and Rényi entropy,

support size, and `1 distance to the uniform distribution. Our result further extends and establishes

the efficiency of PML for numerous symmetric properties that are under-explored. Given the

broadness of this property class, the potential applications are countless.

Consider a variant of Shannon entropy, f (p) := ∑x px log2 px, that mildly puts more

emphasis on small probabilities. As the property is relatively new and non-Lipschitz, prior works
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and approaches do not easily yield a satisfiable learning guarantee. Our result hence comes into

play, because f is symmetric, which suffices for Theorem 4 to take effect. Below, we will estimate

this property by an n-sample PML plug-in, and compare its performance to two estimators: the

n-sample empirical estimator that evaluates the entropy of the empirical distribution, serving as a

baseline, and the 10n-sample empirical estimator whose sample size is larger than others by an

order of magnitude.

We considered six natural distributions: uniform, Zipf(1/2), Zipf(2), Dirichlet(1)-drawn-,

Dirichlet(2)-drawn-, and geometric, all having support size k = 5,000. The plots are presented in

Figure 5.1, with both vertical and horizontal axes showing in log-scale (base 10). The sample

size n ranges from 103 to 105, and every data point represents the average absolute error over 20

independent simulations.

Specifically, the geometric distribution has a success probability of (k−1)/k; the Zipf(1/2)

and Zipf(2) distributions have probability pi ∝ i−1/2 and pi ∝ i−2 for i≥ 1, both being truncated

at k and re-normalized; drawing a distribution from the Dirichlet(1) prior is equivalent to drawing

one uniformly from the k-dimensional standard simplex.

As the experiments demonstrate, the PML plug-in estimator significantly improves over

the empirical estimator (note that the axes are in log-scale) and is as good as an estimator having

access to samples larger by order of magnitudes. There are multiple PML implementations and

we have used the one by [HO19a] (Section 4 of that paper presents a list of PML computation

algorithms). Code is included in the supplementary material. For instructions on how to use

the code, please refer to the inline comments and Section 4.1 in the supplementary material

of [HO19a].
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Figure 5.1: Inferring property f via the PML plug-in.

5.C Competitive Estimation of Distributions and Entropy

5.C.1 Theorem 2: Competitive Distribution Estimation

Estimating distributions from their samples is a statistical-inference cornerstone, and has

numerous applications, ranging from biological studies [AIS+08] to language modeling [CG99].

A learning algorithm p̂ in this setting is called a distribution estimator, which associates with

every sequence xn a distribution p̂(xn)∈ ∆. Given a sample Xn ∼ p, we measure the performance

of p̂ in estimating distribution p by the Kullback-Leibler (KL) divergence D(p ‖ p̂(Xn)).

Let rn(p, p̂) := min{r : Pr(D(p ‖ p̂(Xn))≤ r)≥9/10} be the minimal KL error p̂ could

achieve with probability at least 9/10. Then, the worst-case error of estimator p̂ over P ⊆ ∆

is rn(P, p̂) := maxp∈P rn(p, p̂), and the lowest worst-case error for P, achieved by the optimal

estimator, is the minimax error rn(P) := minp̂′ rn(P, p̂′). The most widely studied distribution set

P is simply ∆X . With X being finite, it has become a classical result that rn(∆X ) = Θ(|X |/n),

which is achievable, up to constant factors, by an add-constant estimator [BS04, KOPS15].
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Beyond minimax Despite being minimax optimal, the |X |/n-result and the algorithm,

are not satisfiable from a practical point of view. The reason is that the formulation puts much of its

emphasis on the worst-case performance, and ignores the intrinsic simplicity of p in a pessimistic

fashion. Hence, the desire to design more efficient estimators for practical distributions, like

power-law, or Poisson, has led to algorithms that possess adaptive estimation guarantees.

Concretely, the minimax formulation has two modifiable components – the collection P

and the error function D. A common approach to specifying P is adding structural assumptions,

such as monotonicity, m-modality, and log-concavity, which, in many cases, makes algorithm

refinement possible by leveraging structural simplicity. An orthogonal approach to encouraging

adaptability without imposing structures is to replace absolute error by relative error, which we

illustrate below.

Competitive estimation Without strong prior knowledge on the underlying distribution,

a reasonable estimator should naturally assign the same probability to symbols appearing an equal

number of times. Competitive estimation calls for finding a universally near-optimal estimator

that learns every distribution as well as the best natural estimator that knows the true distribution.

Denote by N the collection of all natural estimators. For any distribution p ∈ ∆ and

sample Xn ∼ p, a given estimator p̂ incurs, with respect to the best natural estimator knowing p,

an instance-by-instance relative KL error of

Dnat(p ‖ p̂(Xn)) := D(p ‖ p̂(Xn))−min
q̂∈N

D(p ‖ q̂(Xn)).

Analogous to the minimax formulation, we denote by

rnat
n (p, p̂) := min{r : Pr(Dnat(p ‖ p̂(Xn))≤ r)≥ 9/10}

the minimal relative error p̂ achieves with probability at least 9/10, by rnat
n (P, p̂) the worst-case

relative error of p̂ over P⊆ ∆, and by rnat
n (P) the minimax relative error.
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Old and new results Initiating the competitive formulation, [OS15] show that a sim-

ple variant of the well-known Good-Turing estimator achieves rnat
n (∆) . 1/n1/3, and a more

involved estimator in [AJOS13b] attains the optimal rnat
n (∆)' 1/

√
n. For a fully adaptive guar-

antee, [HO19b] further refine the bound and design an estimator p̂? achieving rnat
n (p, p̂?) .

EDn∼p[Dn/n]. rnat
n (∆), for every p ∈ ∆, but provide no lower bounds.

In this work, we completely characterize rnat
n (p, ·) with essentially matching lower and

upper bounds. Surprisingly, we show that for nearly every sample size n, the quantity behaves

like Hn(p)/n.

Theorem 2 (Optimal competitive error). There is a near-linear-time computable estimator p̂?,

such that for any distribution p and n,

rnat
n (p, p̂?).

Hn(p)
n

.

where p̂? is the near linear-time computable estimator in [HO19b] mentioned above. On the

other hand, for any H ∈ [0,
√

n),

min
p̂

max
p:Hn(p).H

rnat
n (p, p̂)&

H
n
.

5.C.2 Proof of Theorem 2

Proof. The upper bound follows by the main result of [HO19b] and Theorem 1 asserting the

entropy-dimension equivalence. To establish the lower bound, denote s := (H/ logn)1/2, I :=

{s,s+1, . . . ,2s}, and P := ∪i∈IPi := ∪i∈IUi/n where

U :=
⋃
i∈I

Ui :=
⋃
i∈I

{i2 log2 n, i2 log2 n+1, . . . , i2 log2 n+ i logn},

280



where H .
√

n/ logn for the total to be at most n. Let A · {B} denote the length-A constant

sequence of value B. Let C be the set of distributions in the form of

p := L ·
{

1
n2

}⋃(⋃
i

(i logn) ·
{

qi or q′i : nqi = i2 log2 n,nq′i = i2 log2 n+ i logn
})

.

where the probability values are sorted according to the ordering they appear above, L is a proper

variable that makes the probabilities sum to 1, and the range of support of distribution p is

irrelevant for our purpose and hence unspecified. Equip a uniform prior over C (equivalently,

construct a random distribution). We have several claims in order:

• For any i ∈ I and µ ∈Ui, by the construction and independence,

Pr(ϕµ = 1|qi is chosen)≈ (i logn) ·
(

Pr(Poi(nqi) = µ) · (Pr(Poi(nqi) 6= µ))i logn−1
)

≈ (i logn) ·

(
1
√

nqi
·
(

1− 1
√

nqi

)i logn−1
)

≥Ω(1).

Similarly, we have Pr(ϕµ = 1|q′i is chosen)≥Ω(1). Hence,

Pr(ϕµ = 1)≥Ω(1).

• For any i ∈ I and µ ∈Ui, by Bayes’ rule,

Pr(qi is chosen|ϕµ = 1) =
Pr(ϕµ = 1|qi is chosen) ·0.5

Pr(ϕµ = 1)
≥Ω(1).

Similarly, we have Pr(q′i is chosen|ϕµ = 1)≥Ω(1).

• For any i ∈ I and µ ∈Ui, the value of Mµ, the total probability of symbols appearing µ times,

is qi if ϕµ = 1 and qi is chosen; and is q′i if ϕµ = 1 and qi is chosen. Any estimator Eµ will
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incur an expected absolute error of Ω(i(logn)/n) in estimating Mµ given ϕµ = 1.

• Note that for any α ∈ [0,1] and x,y > 0,

α(y− z)2 +(1−α)(z− x)2 ≥ α(1−α)(x− y)2.

• Therefore, the expected squared Hellinger distance H2(·, ·) of any estimator Eµ in estimating

(Mµ)µ≥0 satisfies, by the linearity of expectation,

1
2 ∑

µ≥0
E
(√

Eµ−
√

Mµ
)2 ≥ 1

2 ∑
i∈I

∑
µ∈Ui

E
[(√

Eµ−
√

Mµ
)2 ∣∣ϕµ = 1

]
Pr(ϕµ = 1)

=
1
2 ∑

i∈I
∑

µ∈Ui

E

( Eµ−Mµ√
Eµ +

√
Mµ

)2 ∣∣∣∣ϕµ = 1

Pr(ϕµ = 1)

≥∑
i∈I

(i logn) ·Ω

 (i logn)/n√
i2(log2 n)/n

2

≥ s ·Ω
(

s logn
n

)
= Ω

(
H
n

)
.

• Consequently, by the inequality D(P ‖ Q)≥ 2H2(P,Q),

E [D(E ‖M)]≥ E
[
2H2(E,M)

]
≥Ω

(
H
n

)
.

• Finally, combining Theorem 1, 9 and 1 yields that, with high probability,

Hn(p)'Dn ' En(p)'H S
n (p) = ∑ j≥1 min

{
pI j , j · logn

}
,

which, by our definition, is at most O(logn+ s(s logn)) = O(logn+H).
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5.C.3 Extension: Competitive Entropy Estimation

Recall that a distribution estimator is natural if it assigns the same probability to symbols

of equal multiplicity, and a property estimator is plug-in if it first finds an estimate of the

distribution and then evaluates the property at this estimate. As an off-the-shelf method, the

plug-in approach is widely used in estimating distribution properties.

As we mentioned in Appendix 5.B.3, to estimate a symmetric property, an accurate

estimate of the probability multiset of the underlying distribution suffices. Intuitively, it should

be easier in terms of statistical efficiency to recover just the probability mutiset than to learn the

entire distribution. For example, over distribution collection ∆X , the PML plug-in estimator is

minimax optimal for learning entropy, while the empirical distribution, being minimax optimal

for distribution estimation, is suboptimal as a plug-in entropy estimator.

However, the analysis and computation (though efficient) of such multiset-based estima-

tion methods are often involved [VV11a, VV13, VV16, HJW18, CSS19b, ADOS17, HO19a].

For this reason, plug-in estimators that first estimate the true distribution are still popular in

practice, and often, the distribution component is natural.

For example, several notable and widely used entropy estimators are natural plug-in,

including the empirical estimator that simply uses the empirical distribution, James-Stein shrink-

age [HS09] that shrinks the distribution estimate towards uniform, and Dirichlet-smoothed [SG96]

that imposes a Dirichlet prior over ∆X .

The logic behind these estimators is simple – if two distributions (e.g., the true distribution

and our estimate) are close, the same is expected for their entropy values. The next theorem shows

that for every distribution and among all plug-in entropy estimators, the distribution estimator

in [HO19b] is as good as the one that performs best in estimating the actual distribution.

Denote by N the collection of all natural estimators, and write |H(p)−H(q)| as `H(p,q).

Theorem 13 (Competitive entropy estimation). For any distribution p, sample Xn ∼ p, and the
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respective best natural estimator p̂N
Xn := argmin p̂∈N D(p ‖ p̂Xn ), with probability at least 1−1/n,

`H(p, p̂?
Xn )−`H(p, p̂N

Xn )≤ Õ

(√
Hn(p)

n

)
.

Proof. Given any natural estimator and a sample Xn ∼ p, we denote by q the distribution estimate.

The entropy of q differs from the true entropy by

H(q)−H(p) =−∑
x

qx logqx +∑
x

px log px

= ∑
x

px log px−∑
x

px logqx +∑
x

px logqx−∑
x

qx logqx

= ∑
x

px log
px

qx
+∑

x
(px−qx) logqx

= D(p ‖ q)+∑
x
(px−qx) logqx.

Denote by Pµ(Xn) and Qµ(Xn) the total probability that distributions p and q assign to symbols

with multiplicity µ. Since q is induced by a natural estimator, we also write qµ(Xn) for the

probability that q assigns to each symbol with multiplicity µ in Xn. Recall that prevalence ϕµ(Xn)

denotes the number of symbols with multiplicity µ in Xn. Therefore, Qµ(Xn) = ϕµ(Xn) ·qµ(Xn).

Henceforth, whenever it is clear from the context, we suppress Xn in related expressions.

Then, the second term on the right-hand side satisfies

∑
x
(px−qx) logqx = ∑

x
(∑

µ
1µx=µ · px−∑

µ
1µx=µ ·qµ) log(∑

µ
1Nx=µ ·qµ)

= ∑
x

∑
µ
1µx=µ · (px−qµ) logqµ

= ∑
µ
(∑

x
1µx=µ · px−∑

x
1µx=µ ·qµ) logqµ

= ∑
µ

(
Pµ−Qµ

)
logqµ.

Let qmin be the smallest nonzero probability of q. By the triangle inequality and Pinsker’s
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inequality,

∣∣∣∣∣∑µ

(
Pµ−Qµ

)
logqµ

∣∣∣∣∣≤∑
µ

∣∣(Pµ−Qµ
)

logqµ
∣∣

≤ | logqmin|∑
µ

∣∣Pµ−Qµ
∣∣

≤ | logqmin|
√

2D(P ‖ Q).

For simplicity, suppress the subscript Xn from all estimators, e.g., write p̂N := p̂N
Xn . Now we show

that if a symbol x has multiplicity µ, the estimator p̂N will assign a probability mass of Pµ/ϕµ. In

other words, P̂N
µ = Pµ since pN ∈N . Indeed, the corresponding KL-divergence values differ by

∑
x

px log
px

qx
−∑

x
∑
µ
1µx=µ · px log

px

Pµ/ϕµ
= ∑

x
px log

1
qx
−∑

x
∑
µ
1µx=µ · px log

ϕµ

Pµ

= ∑
x

∑
µ
1µx=µ · px log

Pµ

ϕµqµ

= ∑
µ

Pµ log
Pµ

Qµ
= D(P ‖ Q)≥ 0.

Then, the above equalities yield that,

H(p̂N )−H(p) = D(p ‖ p̂N )+∑
µ

(
Pµ− P̂N

µ

)
log pN

µ = D(p ‖ p̂N ).

Next consider the other estimator p̂?, which is also natural. Let Dn = Dn be the profile dimension

of Xn. By the results in [HO19b], estimator p̂? achieves a Dn/n excess loss, i.e.,

D(p ‖ p̂?
Xn )−min

p̂∈N
D(p ‖ p̂Xn ) = D(P ‖ P̂?)≤ Õ

(
Dn

n

)
,

for every p and Xn ∼ p, with probability at least 1−O(1/n). In addition, by its construction, the
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minimum probability of p̂Xn is at least 1/n4. Therefore, with probability at least 1−O(1/n),

∣∣∣∣∑
x
(px− p̂?x) log p̂?x

∣∣∣∣=
∣∣∣∣∣∑µ

(
Pµ− P̂?

µ
)

log p̂?µ

∣∣∣∣∣≤ | log p̂?min| ·
√

2D(P ‖ P̂?)≤ Õ

(√
Dn

n

)
.

Finally, the triangle inequality combines the above results and yields

`H(p, p̂?)− `H(p, p̂N ) = |H(p)−H(p̂?)|− |H(p)−H(p̂N )|

=

∣∣∣∣D(p ‖ p̂?x)+∑
x
(px− p̂?x) log p̂?x

∣∣∣∣− ∣∣∣∣min
p̂∈N

D(p ‖ p̂)
∣∣∣∣

≤
∣∣∣∣D(p ‖ p̂?x)−min

p̂∈N
D(p ‖ p̂)

∣∣∣∣+ ∣∣∣∣∑
x
(px− p̂?x) log p̂?x

∣∣∣∣
= D(P ‖ P̂?

µ )+ Õ

(√
Dn

n

)

≤ Õ

(√
Dn

n

)
.

This together with Theorem 1 completes the proof.

5.C.4 Experiments

The experiments in [HO19b] have demonstrated the efficiency of p̂?, showing that the

estimator frequently and uniformly outperforms an improved version of the well-known Good-

Turing estimation scheme [OS15], for numerous distributions and parameter settings. Our results

confirmed the optimality of estimator p? from a theoretical point of view, and moves forward

considerably our understanding of how well one can approach the performance of a genie having

the full knowledge of the true distribution, but restricted to be natural as all human beings.

In the following, we do not repeat the experiments in [OS15] (see Section 2 of its

supplementary), and instead, investigate a novel and highly related task – employing p̂? as a

plug-in estimator for Shannon entropy. By Theorem 13 and its proof, we already see that the
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resulting plug-in estimator H ◦ p̂? is as good as any plug-in estimator with a natural distribution

component, and how well it performs, to a certain extent, depends on how well it approximates

the true distribution under the KL divergence. But is this plug-in estimator still competitive when

compared to estimators having observed samples of much larger sizes, or to the state-of-the-art

estimators that are designed just for entropy estimation? The following experiments answered

this question in the affirmative.

Below we demonstrate the efficiency of p̂? when used as a plug-in entropy estimator. We

will compare its performance with a size-n sample to three estimators: the n-sample empirical

estimator that evaluates the entropy of the empirical distribution, the n logn-sample empirical

estimator that has access to much more information, and a state-of-the-art entropy estimator

in [WY16] based on minimax polynomial approximations (which we refer to as WY). Shown by

the experiments in [WY16], under numerous settings, the WY estimator frequently outperformed

several classical estimators and other minimax estimators such as [VV11a, VV13, JVHW15].

Hence, we maintain simplicity and do not compare our approach to the latter ones.

We considered six natural distributions: uniform, two-steps-, Zipf(1/2), binomial, geo-

metric, and Dirichlet(1)-drawn-, all having support size k = 5,000. The plots are presented in

Figure 5.2, with both vertical and horizontal axes showing in log-scale (base 10). The sample

size n ranges from 103 to 105, and every data point represents the average absolute error over 20

independent simulations. We refer to the plug-in estimator using p̂? as HO.

Specifically, 10% probability values of the two-steps distribution ∝ 9/k, and the rest

∝ 1/k; the binomial and geometric distributions have success probabilities of 10/k and (k−1)/k,

respectively; the Zipf(1/2) distribution has probability pi ∝ i−1/2 for i≥ 1, and is truncated at k

and re-normalized.

We see that the performance of the WY estimator and our plug-in approach are essentially

the same. In particular, for Dirichlet(1)-drawn-, WY is better, but for binomial, WY is worse; for

all other cases, the two error curves basically follow the same trend and lie in the same region.
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This is somewhat surprising since intuitively, p̂? is a distribution estimator and its design has no

consideration about entropy estimation, while WY is geared towards this task. On the other hand,

the performance of the induced plug-in estimator should be both efficient and competitive, as

guaranteed by Theorem 13.

Figure 5.2: Competitive entropy estimation

5.D Optimal Characterization for Structured Families

Following the previous discussions, we will derive nearly tight bounds on Hn(p) for three

important structured families – log-concave, power-law, and histogram. These bounds clearly

demonstrate the power of profile entropy in charactering natural shape constraints.

For the subsections below, we adopt the convention of specifying structured distributions

over X = Z.
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5.D.1 Theorem 6: Log-Concave Family

The log-concave family encompasses a broad range of discrete distributions, such as

Poisson, hyper-Poisson, Poisson binomial, binomial, negative binomial, and geometric, and

hyper-geometric, with broad applications to statistics [SW14], computer science [LV07], eco-

nomics [An97], and geometry [Sta89].

Formally, a distribution p ∈ ∆Z is log-concave if p has a contiguous support and p2
x ≥

px−1 · px+1 for all x ∈ Z. The next result bounds the profile entropy of this family, and is tight up

to logarithmic factors. For simplicity, henceforth we write a∧b for min{a,b} (and ∨ for max),

and slightly abuse the notation and write a' b for a+1 = Θ̃(b+1), which does not change the

nature of the results.

Theorem 6. Let Lσ ⊆ ∆Z denote the collection of log-concave distributions with variance σ2.

Then,

max
p∈Lσ

Hn(p)' σ∧ n
σ
.

In particular, if we discretize a Gaussian variable X ∼ N (µ,σ2) by rounding it to the nearest

integer, the distribution of the resulting variable achieves the maximum, up to logarithmic factors.

Moreover, such a discretization procedure preserves log-concavity for any continuous distribution

over R.

A similar bound holds for t-mixtures of log-concave distributions. More concretely,

Theorem 14. For any t-mixture p ∈ ∆Z of log-concave distributions with variances σ2
i ,1≤ i≤ t,

Hn(p).

(
∑

i
σi

)
∧max

i

{
n
σi

}
,

where the right-hand side is assumed to be at least t since otherwise Hn(p). t, and in practice, t

is often a small quantity, e.g. a constant.
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5.D.2 Proof of Theorem 6 and 14

We start by showing the Hn(p)& σ∧n/σ lower bound. A requirement is that p must be a

discrete log-concave distribution. We show that one can take p as a discretized Gaussian N (µ,σ2).

In addition, the discretization procedure works for any continuous distribution and preserves

log-concavity and essentially also the variance. We will start by introducing the discretization

procedure.

Proof. Log-concavity is a generic structure exhibited by numerous classical distributions, both

those discrete (introduced above) and continuous ones, such as Gaussian, exponential, uniform,

logistic, and Laplace distributions. Below, we present a discretization procedure that preserves

distribution shapes such as monotonicity, modality, and log-concavity. Applying this procedure

to a Gaussian distribution N (µ,σ2) yields the lower bound in Theorem 6.

Let X be a continuous random variable with density function f (x). For any x ∈ R, denote

by dxc the closest integer z such that x ∈ (z−1/2,z+1/2]. The distribution of dXc is over Z and

satisfies

p(z) :=
∫ z+ 1

2

z− 1
2

f (x)dx, ∀z ∈ Z.

We refer to the random variable dXc as the discretized version of X .

Shape Preservation By the definition of dxc, one can readily verify that the above

procedure preserves several important shape characteristics of distributions, such as monotonicity,

modality, and k-modality (possibly yields a smaller k). The following theorem further covers

log-concavity.

Lemma 9. For any continuous random variable X over R with a log-concave density f , the

distribution p ∈ ∆Z associated with dXc is also log-concave.

To show this, we need the following basic lemma about concave functions.

290



Lemma 10. If f is a real concave distribution, for any real numbers x1,x2,y1, and y2 satisfying

x1 ≤ x2, y1 ≤ y2, x1 < y1, and x2 < y2,

f (y1)− f (x1)

y1− x1
≥ f (y2)− f (x2)

y2− x2
.

By the above lemma, for any x,y ∈ R such that |x− y| ≤ 1, and any function f that is

log-concave, log f (x+1)− log f (x)≤ log f (y)− log f (y−1) ⇐⇒ f (x+1) f (y−1)≤ f (x) f (y).

Proof of Lemma 9. By definition, distribution p is log-concave if p has a consecutive support and

p(z)2 ≥ p(z+1)p(z−1),∀z. The first condition holds for dXc since X is has a continuous support

on R, and p(z) is positive as long as f (x)> 0 for a non-empty sub-interval of (z−1/2,z+1/2].

Below we show that p also satisfies the second condition. Specifically, for any z ∈ Z,

p(z−1)p(z+1) =

(∫ z− 1
2

z− 3
2

f (x)dx

)(∫ z+ 3
2

z+ 1
2

f (x)dx

)

=

(∫ z+ 1
2

z− 1
2

f (x−1)dx

)(∫ z+ 1
2

z− 1
2

f (x+1)dx

)

=
∫ z+ 1

2

z− 1
2

∫ z+ 1
2

z− 1
2

f (x−1) f (y+1)dxdy

≤
∫ z+ 1

2

z− 1
2

∫ z+ 1
2

z− 1
2

f (x) f (y)dxdy

=

(∫ z+ 1
2

z− 1
2

f (x)dx

)2

= p(z)2,

where the inequality follows by Lemma 10 and its implication.

Moment preservation Denote by p the distribution of dXc for X ∼ f . Let µ and σ2

be the mean and variance of density f , given that they exist. The theorem below shows that

distribution p has, within small additive absolute constants, a mean of µ and variance of Θ(σ2).
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Lemma 11. Under the aforementioned conditions, the mean of dXc satisfies

EdXc= µ± 1
2
,

and the variance of dXc satisfies

(σ−1)2 ≤ E(dXc−EdXc)2 ≤ (σ+1)2.

Proof of Lemma 11. First consider the mean value of dXc for X ∼ f . We have

EdXc= E[dXc−X ]+E[X ] = µ± 1
2
.

Consider the variance of dXc and apply inequality (a+b)2 ≤ a2(1+1/t)+b2(1+ t),∀t > 0.

E(dXc−EdXc)2 =
∫

∞

−∞

(dxc−EdXc)2 · f (x)dx

=
∫

∞

−∞

(dxc− x+(x−EX)+EX−EdXc)2 · f (x)dx

≤
∫

∞

−∞

(
(dxc− x+EX−EdXc)2

(
1+

1
t

)
+(x−EX)2 (1+ t)

)
f (x)dx

≤
∫

∞

−∞

((
1+

1
t

)
+(x−EX)2 (1+ t)

)
f (x)dx

= 1+
1
t
+ tσ2 +σ

2

= (σ+1)2.

By a different inequality, (a+b)2 ≥ a2(1−1/t)+b2(1− t),∀t > 0, we also have

E(dXc−EdXc)2 ≥ (σ−1)2.

By the above lemma, for almost any σ ≥ 1, we can construct a discrete log-concave

distribution of variance σ2 if there is a continuous one with roughly the same variance.

292



Next, letting pG denote the distribution of dXc for X ∼N (µ,σ2), we lower bound H S
n (pG)

(effectively, the profile entropy Hn(pG)). By definition, this discretized Gaussian, which we write

as
⌈
N
⌋
(µ,σ2), has a distribution in the form of

pG(z) :=
1√
2πσ

∫ z+ 1
2

z− 1
2

exp
(
−(x−µ)2

2σ2

)
dx, ∀z ∈ Z.

Through the subsequent analysis, we show that

Lemma 12. Under the aforementioned conditions,

HS
n (pG)≥Ω

(
1

logn

)(
σ∧ n

σ

)
.

The lower bound in Theorem 6 follows by these inequalities.

Proof. At it is clear from the context, we write p instead of pG . Recall that

HS
n (p) = ∑

j≥1
min

{
pI j , j · logn

}
,

where pI j denotes the number of probabilities belonging to I j = (( j−1)2, j2] · (logn)/n. Com-

puting the quantity for part of the distribution can only reduce the value of HS
n (p). Hence, we

will focus on symbols in the (µ+1,∞)∩Z range, over which the probability mass function p(z)

is monotone.

We will further assume that n/ logn� σ� logn, since otherwise the right-hand side of

the inequality reduces to O(1), and the result follows by HS
n (p)≥ 1 for all n and p. In addition, we

focus on j� 1 in the following argument, as the contribution from j = O(1) is relatively small.
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Given these assumptions, we have

p(z) ∈ I j ⇐⇒
1√
2πσ

exp
(
−(z±1/2−µ)2

2σ2

)
∈
(
( j−1)2 logn

n
, j2 logn

n

]
⇐⇒ z±1/2−µ ∈

√
2σ

[√
c(σ,n)−2log j,

√
c(σ,n)−2log( j−1)

)
,

where c(σ,n) := log
(
n/(
√

2πσ logn)
)

and the interval is well-defined iff

c(σ,n)≥ 2log j ⇐⇒ n√
2πσ logn

≥ j2 ⇐⇒
√

n√
2πσ logn

≥ j ⇐=
√

n
σ logn

≥ 2 j.

For clarity, we divide our analysis into two cases:
√

n≥ σ� logn and n/ logn� σ >
√

n.

For the first case and j ≤
√

σ/ logn/2 ≤
√

n/(σ logn)/2, the length L j of the above

interval, which equals to pI j up to an additive slack of 2, satisfies

L j√
2σ

=
√

c(σ,n)−2log( j−1)−
√

c(σ,n)−2log j

=
2log( j/( j−1))

(c(σ,n)−2log( j−1))+(c(σ,n)−2log j)

=
log( j/( j−1))

log
(
n/(
√

2π j( j−1)σ logn)
)

= Ω

(
1

logn
log
(

1+
1

j−1

))
= Ω

(
1

j logn

)
.

Therefore, we have L j = Ω(σ/( j logn)). Since σ� logn ensures L j ≥ 3 and j ≤
√

σ/ logn/2

is equivalent to σ≥ 4 j2 logn, the lower bound on L j transforms into pI j ≥Ω( j). Hence in this

case, HS
n (p) admits the following bound

HS
n (p) = ∑

j≥1
min

{
pI j , j · logn

}
≥

√
σ/ logn/2

∑
j=O(1)

Ω( j) = Ω

(
σ

logn

)
.
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In the n/ logn� σ >
√

n case, we have
√

σ/ logn >
√

n/(σ logn). Repeating the previous

reasoning for j ≤
√

n/(σ logn)/2, we again obtain L j = Ω(σ/( j logn)) and pI j ≥Ω( j).

Therefore,

HS
n (p) = ∑

j≥1
min

{
pI j , j · logn

}
≥

√
n/(σ logn)/2

∑
j=O(1)

Ω( j) = Ω

(
n

σ logn

)
.

Finally, note that in the first case, min{σ,n/σ}= σ, and in the second, min{σ,n/σ}= n/σ.

Consolidating these results yields the desired lower bound

O(logn) ·HS
n (p)≥ σ∧ n

σ
.

Next we proceed to the upper bound.

For any sample Xn ∼ p, the profile dimension D(Xn) is at most the number of distinct

symbols in the sample. It is well known that the tail probability of a log-concave distribution

decays exponentially fast. Hence, the effective support size of p with respect to Xn is Õ(σ+1),

beyond which the tail probabilities can be as small as 1/n3 (the asymptotic notation hides

logarithmic factors of n). Given this, even we sample from p for n times, the probability that

we get only Õ(σ+ 1) distinct symbols is at least (1− 1/n3)n ≥ 1− 1/n. Therefore, we have

Hn(p)'D(Xn). σ+1.

Now, we extend this argument to a t-mixture of log-concave distributions with variances

σ2
i , i ∈ [t]. For a length-n sample from this a distribution, the number of sample points from each

mixture component is is at most n. Hence, with high probability, the number of distinct symbols

in a length-n sample is at most ∑σi + t, up to logarithmic factors of n.

For the other part of the upper bound, we can assume that σ≥
√

n (otherwise we need to

consider only the above case) and n is larger than some absolute constant. Then by a concentration

inequality in [DKS16a], the maximum probability pmax of p belongs to [1/(8σ),1/σ]. Hence,
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the last index J for which pIJ 6= 0 satisfies

(J−1)2 logn
n
≤ 1

σ
⇐⇒ J ≤

√
n

σ logn
+1.

Therefore, we have

H S
n (p) = ∑

j≥1
min

{
pI j , j · logn

}
≤ logn+

√
n/(σ logn)+1

∑
j=1

j · logn≤ O(logn)
(

1+
n
σ

)
.

Our upper bound is uniformly better than the min{σ,(n2/σ)1/3} bound in [HO19b], which is

derived for Dn ∼ p. More importantly, we actually provide a complete characterization of the

profile entropy value that is optimal up to logarithmic factors.

Next, we extend the n/σ bound to the mixture model. Write the mixture distribution as

p := ∑i wi · pi, with wi’s being the mixing weights and pi’s being log-concave distributions with

variances σ2
i , respectively for 1≤ i≤ t. It is clear that pmax in this case is at most the maximum

probability of some pi, which at most maxi 1/σi. The rest of the proof is the same as above.

5.D.3 Theorem 7: Power-Law Family

Power-law Power-law is a ubiquitous structure appearing in many situations of scientific

interest, ranging from natural phenomena such as the initial mass function of stars [Kro01],

species and genera [HQD+10], rainfall [MR93], population dynamics [Tay61], and brain surface

electric potential [MSODN09], to human-made circumstances such as the word frequencies in a

text [Baa02], income rankings [DY01], company sizes [Axt01], and internet topology [FFF99].

Formally, a discrete distribution p∈ ∆Z is a power-law with power α≥ 0 if p has a support

of [k] := {1, . . . ,k} for some k ∈ Z+∪{∞} and px ∝ x−α for all x ∈ [k]. Note that if α ∈ [0,1],

the distribution is well-defined for only finite k. The next result fully characterizes the profile

entropy of power-laws over the entire ranges of α,n, and k.
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Theorem 7. Let p ∈ ∆[k] be a power-law distribution with power α. Then,

Hn(p)'



k if α > k1+α

n ∨1 or 1≥ α > k2

n ,

n
1

α+1 if k1+α

n ≥ α > 1,(
n

k1−α

) 1
1+α

if k2

n ∧1≥ α > k1−α

n ,

n
k1−α − n

k if k1−α

n ∧1≥ α and α≥ 2logk

(
7
√

k
n +1

)
,

k∧
√

n
k1−α if k1−α

n ∧1≥ α and 2logk

(
7
√

k
n +1

)
> α.

In particular, as α→ 0, the bound degenerates to k∧
√n

k , which is at most n
1
3 .

Since a power-law sample profile is completely specified by α, k, and n, the above theorem

directly applies to model parameter estimation. Specifically, we first compute Dn ∼ p, which is a

simple function of the symbol counts. By Theorem 1, we can then use it to approximate Hn(p).

Finally, we utilize the characterization theorem and find the parameter relations (testing might be

necessary).

The theorem fully characterizes the profile entropy of power-laws and is significantly

better than the basic {k,
√

n logn} bound for both k�
√

n and k�
√

n. We can see how different

parameter interplay with each other and leverage these relations in applications such as parameter

estimation. In comparison, a result in [HO19b], when combined with our entropy-dimension

equivalence theorem, yields only an n1/(1+α) upper bound (and no lower bounds nor the right

dependence on k), which is clearly suboptimal and provides no improvement over
√

n logn

for α < 1.
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5.D.4 Proof of Theorem 7

Proof. For the ease of exposition, write the probability of symbol i assigned by distribution p as

pi := c−1
α · i−α, where cα is a normalizing constant that implicitly depends on k. Note that

k1−α

1−α
+

α

1−α
≥ 1+

∫ k

1
x−αdx≥ cα =

k

∑
i=1

i−α ≥
∫ k+1

1
x−αdx =

(k+1)1−α

1−α
− 1

1−α
.

By basic calculus and up to logarithmic factors, we can approximate the normalizing constant by

cα =
k

∑
i=1

1
iα
' k1−α∨1,

Recall that the quantity of interest is essentially

HS
n (p) = ∑

j≥1
min

{
pI j , j · logn

}
.

It will be convenient to denote c := c(α,k,n) := (cα logn)/n' (k1−α∨1)/n. First, consider pI j

for a sufficiently large j (i.e., j� 1) and note that

pi ∈ I j ⇐⇒
1

cαiα
∈
(
( j−1)2 logn

n
, j2 logn

n

]
⇐⇒ i ∈ I′j :=

[(
j2c
)− 1

α ,
(
( j−1)2c

)− 1
α

)
.

Observe that the length L j of interval I′j, which differs from the value of pI j by at most 2, is

proportional to ( j−1)−2/α− j−2/α, and hence is a decreasing function of j. Furthermore, each

term min{pI j , j · logn} ≈ min{L j, j · logn} is basically the minimum between this decreasing

function and j logn, an increasing function of j. This naturally calls for determining the value of
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j at which the two functions are equal. Concretely,

(
( j−1)2c

)− 1
α −
(

j2c
)− 1

α = j logn =⇒ j ' J :=
(

1
ααc

) 1
2+2α

,

where J implicitly depends on α and n. In addition, since probability pi vanishes if i 6∈ [1,k], we

need to consider only
√

1/(ckα)+1≤ j ≤
√

1/c.

We can decompose the summation HS
n (p) into two parts. The first part consists of indices

j ≤ J,

HS
n,1(p) :=

J∧
√

1/c

∑
j=
√

1/(ckα)+1

min
{

pI j , j · logn
}
'

J∧
√

1/c

∑
j=
√

1/(ckα)+1

j.

Correspondingly, the second part consists of indices j ≥ J. For these indices j, we have L j ≤

j · logn. Recall that I′j specifies the range of i satisfying pi ∈ I j. Then the second part satisfies

HS
n,2(p) :=

√
1/c

∑
j=J∨(
√

1/(ckα)+1)

min
{

pI j , j · logn
}
'

√
1/c

∑
j=J∨(
√

1/(ckα)+1)

L j,

where the inequality follows by the fact that the intervals I′j are consecutive. In addition, note that

the left end point of I′j equals (J2c)−
1
α = (α/c)

1
1+α .

The rest of the proof follows by dividing the analysis into several cases according to

whether α > 1 and the relative magnitude of J,
√

1/c, and (
√

1/(ckα)+1).

For a concrete example, if α > 1, then our approximation of cα becomes cα ' 1, hence

c' 1/n, and it is also clear that J = 1/(ααc)
1

2α+2 ≤
√

1/c. Therefore,

HS
n,1(p)'

J

∑
j=
√

1/(ckα)+1

j.

Now, consider the relation between J and
√

1/(ckα). By the continuity of profile entropy, we

can treat c as 1/n. If α≥ k1+α/n, then J ≤
√

1/(ckα) and our upper bound for HS
n,1(p) vanishes.
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The quantity of interest hence becomes HS
n,1(p), which equals to

HS
n (p) = HS

n,2(p)'

√
1/c

∑
j=
√

1/(ckα)+1

L j = k.

On the other hand, if α < k1+α/n, then J ≥
√

1/(ckα)+1 and HS
n,1(p) satisfies

HS
n,1(p)'

J

∑
j=
√

1/(ckα)+1

j ≤ J2 '
( n

αα

) 1
α+1

.

Our approximation of HS
n,2(p) reduces to

HS
n,2(p)'

√
1/c

∑
j=J

L j ≈ (J2c)−
1
α =

(
α

c

) 1
α ' (αn)

1
α+1 ' n

1
α+1 .

Consolidating these bounds and noting α
1

α+1 ∈ (1,2) yield that HS
n (p)' n

1
α+1 . The expressions

for α < 1 can be derived in the similar manner.

5.D.5 Theorem 8: Histogram Family

Histogram While histogram is among the most widely studied representations, histogram

distributions’ importance also rises with the rapid growth of data sizes in modern scientific

applications. For example, subsampling, a generic strategy to handle large datasets, naturally

induces a histogram distribution over different categories of the data. This induced distribution

often summarizes vital data statistics, leveraging which yields efficient and flexible inference

procedures.

Formally, a discrete distribution p ∈ ∆Z is a t-histogram if we can partition its support

into at most t pieces such that p takes the same probability value over each piece. The theorem

below provides near-optimal bounds on the profile entropy of the t-histogram distributions.
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Theorem 8. Denote by It ⊆ ∆Z the collection of t-histogram distributions. Then,

max
p∈It

Hn(p)' (nt2)
1
3∧
√

n.

In practical settings, the value of t is often poly-logarithmic in n, and the bound reduces to

Õ(n1/3). For the particular case of t = 1, distribution p is uniform over some unknown contiguous

support. This result overlaps with Theorem 7 with α = 0, yielding the following bound.

Corollary 5. For any uniform distribution p with support size k, we have Hn(p)' k∧
√n

k .

Next we consider mixtures of histogram distributions.

Theorem 9. Let T be the positive integer sequence {ti}s
i=1. Denote by ST the sum ∑i ti, and by

IT the s-mixture of t-histograms with parameters specified by T . Then,

max
p∈IT

Hn(p)' (nS2
T )

1
3∧
√

n.

Proof. The proof follows by Theorem 8, which holds for any t, and the fact that IT coincides

with the collection of all ST -histogram distributions.

5.D.6 Proof of Theorem 8

Proof. First we establish the lower bound. Recall that the quantity of interest is essentially

HS
n (p) = ∑

j≥1
min

{
pI j , j · logn

}
.

Our construction depends on the value of t as follows. Let A · {B} denote the length-A constant

sequence with value B. If t = 1, distribution p has the following form

p := Θ̃(n1/3) · {p0 ∈ In1/3},
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where p0 is a properly chosen probability in In1/3 so that p is well-defined, and the range of support

of distribution p is irrelevant for our purpose and hence unspecified. If 2≤ t < n1/4/(2
√

logn),

then for some parameter s≥ 0 to be determined, the distribution p has the following form

p := L ·
{

1
n2

}⋃(
s+t−1⋃
j=s+1

(
( j logn) ·

{
j2 logn

n

}))
,

where the probability values are sorted according to the ordering they appear above, and L is a

properly chosen to make the probabilities sum to 1. For the distribution to be well-defined, we

require

s+t−1

∑
j=s+1

( j logn) ·
(

j2 logn
n

)
≤ 1 ⇐= t(s+ t)3 ≤ n

log2 n
⇐= s≤

(
n

t log2 n

)1/3

− t.

Note that the last inequality is valid if t < n1/4/(2
√

logn). Let s be the maximum integer

satisfying the above inequality. Then, HS
n (p) admits the lower bound

HS
n (p)≥

s+t−1

∑
j=s+1

( j logn)≥ (2s+ t)(t−1)
2

logn≥ 1
4

(
n

t log2 n

)1/3

t logn = Ω((nt2 logn)1/3).

Finally, if t ≥ n0 := n1/4/(2
√

logn), distribution p has the following form

p := (t−n0 +1) · {p0}
⋃(

n0−1⋃
j=1

(
( j logn) ·

{
j2 logn

n

}))
,

where p0 is a properly chosen to make the probabilities sum to 1. According to the previous

reasoning, distribution p is well-defined and quantity HS
n (p) satisfies

HS
n (p)≥

n0−1

∑
j=1

( j logn)≥ n0(n0−1)
2

logn≥Ω(
√

n).

Consolidating these results yields the desired lower bound.
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Regarding the upper bound, the work of [HO19b] studies the profile dimension for

distributions p ∈ It and shows that

E[Dn]. (nt2)
1
3 ∧
√

n.

Consolidating this inequality with Theorem 1 (dimension-entropy equivalence) and Corollary 4

(dimension concentration) yields the desired upper bound.

5.E Extensions

5.E.1 Multi-Dimensional Profiles

As we elaborate below, the notion of profile generalizes to the multi-sequence setting.

Let X be a finite or countably infinite alphabet. For every vector~n := (n1, . . . ,nd) ∈ Nd

and tuple x~n := (xn1
1 , . . . ,xnd

d ) of sequences in X ∗, the multiplicity µy(x~n) of a symbol y ∈ X is

the vector of its frequencies in the tuple of sequences. The profile of x~n is the multiset ϕ(x~n)

of multiplicities of the observed symbols [ADO+10, Das12, CSS19b], and its dimension is the

number D(x~n) of distinct elements in the multiset. Drawing independent samples from each

distribution in ~p := (p1, . . . , pd) ∈ ∆d , the profile entropy is the entropy of the joint-sample profile.

Many of the previous results potentially generalize to this multi-dimensional setting. For

example, the
√

2n bound on D(x~n) in the 1-dimensional case becomes

Theorem 20. For any X ,~n, and x~n ∈ X~n, there exists r > 0 such that

∑
i

ni ≥
(r+1)(r+2)

d +1

(
d + r+1

d−1

)
and

(
d + r

d

)
−1≥D(x~n).

Note that this recovers the
√

2n bound for d = 1.

Proof. For simplicity, we suppress x~n in D(x~n). Let ∆d denote the standard d-dimensional
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simplex. As each multiplicity corresponds to a vector in Nd , in the ideal case, the profile that has

the maximum dimension D corresponds to the integer points in the scaled simplex (r ·∆d), for

some properly chosen parameter r > 0. For a valid choice of r, we have

∑
i

ni ≥
r+1

∑
t=0

(
t +d−1

d−1

)
· t = (r+1)(r+2)

d +1

(
d + r+1

d−1

)

and

D ≤
r

∑
t=1

(
t +d−1

t

)
=

(
d + r

d

)
−1.

Consolidating these two inequalities yields the desired result.

5.E.2 Discrete Multivariate Gaussian Mixtures

Let Σ be a d× d symmetric matrix with eigenvalues σ2
d ≥ . . . ≥ σ2

d ≥ 1 and µ be a d-

dimensional integer vector. The discrete d-dimensional Gaussian induced by (µ,Σ) is specified

by its probability mass function

p(x) :=
1
C

exp
(
−1

2
(x−µ)T

Σ
−1 (x−µ)

)
,∀x ∈ Zd.

where CΣ :=C(n,d,Σ)> 0 is a normalizing constant. In this section, we show that for d ≥ 9,

Hn(p).
n
C
∧C

(
γd exp

(
6d

σ2
d

σ2
1

)(
2logn

d

)d/2
)
,

where γd is a constant that appears in Lemma 14 and depends only on d. The bound resembles

that in Theorem 6 for log-concave distributions. For d = 1 with Σ = σ2, the normalizing factor is

CΣ =
√

2πσ, and the right-hand side reduces to Õ(σ∧n/σ) in Theorem 6.

Let us denote the multiplicative factor in the parentheses by FΣ := F(n,d,Σ). Just like The-

304



orem 6 generalizes to 14, the above result generalizes to also mixtures of discrete d-dimensional

Gaussians.

Theorem 21. For a t-mixture p ∈ ∆Zd of discrete d-dimensional Gaussians with covariance

matrices Σi, where 1≤ i≤ t, its profile entropy satisfies

Hn(p).

(
∑

i
CiFΣi

)
∧max

i

{
n
Ci

}
,

where the right-hand side is assumed to be at least t since otherwise Hn(p). t, and in practice, t

is often a small quantity, e.g. a constant.

Proof. Below we establish Theorem 21 for t = 1. The proof of the general case follows by the

subsequent reasoning and the arguments in Appendix 5.D.2.

Lower bound on C First, we bound CΣ from below in terms of the eigenvalues and other

parameters. By symmetry, we can decompose the covariance matrix Σ as

Σ =V ΛV T ,

where Λ is a diagonal matrix with Λii = σ2
i , and V is an orthonormal matrix whose i-th column is

the eigenvector vi associated with σ2
i .

Next, partition the real space Rd into unit cubes whose vertices belong to Zd . For any

two vectors ã, b̃ ∈ Rd that belong to the same unit cube, we will bound the ratio between p(ã)

and p(b̃). Denote a := ã− µ and b := b̃− µ, and express a and b as linear combinations of

eigenvectors,

a :=
d

∑
i=1

xi · vi and b :=
d

∑
i=1

yi · vi.
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The log-ratio between the induced probabilities satisfies

−2log
p(ã)
p(b̃)

= aT
Σ
−1a−bT

Σ
−1b

= (a+b)T
Σ
−1(a−b)

=

(
∑

i
(xi + yi) · vT

i

)
V Λ
−1V T

(
∑

i
(xi− yi) · vi

)

=

(
∑

i
(xi + yi) · eT

i

)
Λ
−1

(
∑

i
(xi− yi) · ei

)

= ∑
i

σ
−2
i (x2

i − y2
i ).

Since by construction, ã− b̃ = a−b and ã, b̃ belong to the same unit cube, hence ∑i(xi− yi)
2 =

‖a−b‖2
2 = ∑i(ãi− b̃i)

2 ≤ d. Consequently, we bound the absolute value of the ratio by

2
∣∣∣∣log

p(ã)
p(b̃)

∣∣∣∣=
∣∣∣∣∣∑i

σ
−2
i (x2

i − y2
i )

∣∣∣∣∣
≤∑

i
σ
−2
i

∣∣x2
i − (xi− (xi− yi))

2∣∣
≤ 2∑

i
σ
−2
i
(
x2

i +(xi− yi)
2)

≤ 2σ
−2
1

(
∑

i
x2

i +d

)

= 2σ
−2
1

(
‖ã−µ‖2

2 +d
)
.

Now, consider the hyper-ellipse E associated with

(x−µ)T
Σ
−1 (x−µ)≤ d.

For any x ∈ E, simple algebra shows that ‖x−µ‖2
2 ≤ dσ2

d . Hence by the previous discussion, for
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any unit cube U with vertices in Zd , there exists a vertex vU (of U) such that for any x ∈U ∩E,

∣∣∣∣log
p(x)

p(vU)

∣∣∣∣≤ σ
−2
1

(
‖x−µ‖2

2 +d
)
≤ σ

−2
1
(
dσ

2
d +d

)
≤ 2d

(
σd

σ1

)2

.

Note that x ∈ E is equivalent to p(x)≥ exp(−d/2)/C. Then, the probability mass over E is at

least

∫
x∈E

p(x)dx≥
∫

x∈E

exp(−d/2)
C

=
exp(−d/2)

C
·Vol(E) =

exp(−d/2)
C

· (πd)d/2

Γ(d/2+1)

d

∏
i=1

σi.

On the other hand, this probability mass is at most

∫
x∈E

p(x)dx = ∑
U

∫
x

p(x) ·1x∈E∩U dx ≤∑
U

p(vU) · exp

(
2d
(

σd

σ1

)2
)
≤ exp

(
3d
(

σd

σ1

)2
)
.

Consolidating the lower and upper bounds and multiplying both sides by C yield

C ≥ exp

(
−3d

(
σd

σ1

)2
)

exp
(
−d

2

)
· (πd)d/2

Γ(d/2+1)

d

∏
i=1

σi

=⇒C ≥ exp

(
−3d

(
σd

σ1

)2
)
· (πd/e)d/2√

eπ(d/2)(d/(2e))d/2

d

∏
i=1

σi

=⇒C ≥ exp

(
−3d

(
σd

σ1

)2
)
· (2π)d/2√

eπ(d/2)

d

∏
i=1

σi

=⇒C ≥ exp

(
−3d

(
σd

σ1

)2
)

d

∏
i=1

σi.

where the first step follows by the lemma below.

Lemma 13. For any integer or semi-integer x≥ 1/2,

√
2πx

(x
e

)x
≤ Γ(x+1)≤

√
eπx
(x

e

)x
.
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Upper bound We proceed to bound H S
n (p) = ∑ j≥1 min

{
pI j , j · logn

}
.

Below we assume that C < n/ logn, since otherwise p(x) ≤ (logn)/n,∀x, yielding an

O(logn) upper bound on H S
n (p). Then, by definition, the last index j for which pI j > 0 satisfies

( j−1)2 logn
n
≤ 1

C
=⇒ j ≤ 1+

√
1
C

n
logn

≤ 2

√
1
C

n
logn

.

Denote by J the quantity on the right-hand side. Then,

∑
j≥1

min
{

pI j , j · logn
}
≤

J

∑
j=1

j logn≤ J2 logn≤ 4n
C
.

Furthermore, by a reasoning similar to the above, the collection of points x ∈ Zd satisfying

p(x) ≤ 1/(Cn) = p(µ)/n ≤ 1/n contributes at most O(logn) to H S
n (p). Hence we need to

analyze only points x satisfying p(x)> 1/(Cn). Equivalently, those in

E? :=
{

x ∈ Zd : (x−µ)T
Σ
−1 (x−µ)≤ 2logn

}
.

Clearly, these points contribute at most |E?| to the sum. Noting that E? is a discrete hyper-ellipse,

we can bound its cardinality by the following lemma in [BG97].

Lemma 14. Let µ∈Rd be a mean vector, and Σ∈Rd×d be a real covariance matrix with nonzero

eigenvalues σ2
1 ≤ . . .σ2

d . For any d ≥ 9 and t ≥ σ2
d , the discrete ellipsoid

E(t) :=
{

x ∈ Zd : (x−µ)T
Σ
−1 (x−µ)≤ t

}

admits the following inequality on its cardinality,

|E(t)| ≤

(
1+

γd

t
1

σ2
d

(
σd

σ1

)2d+4
)

(πt)d/2

Γ(d/2+1)

d

∏
i=1

σi,
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where γd > 1 is a constant that depends only on d.

Applying the above lemma to bound |E?| (where t = 2logn) and combining the result

with our lower bound on C yield

|E(2logn)| ≤

(
1+

γd

2logn
1

σ2
d

(
σd

σ1

)2d+4
)

(2π logn)d/2

Γ(d/2+1)
exp

(
3d
(

σd

σ1

)2
)

C

≤

(
1+

γd

2logn
1

σ2
d

(
σd

σ1

)2d+4
)

1√
πd

(
4eπ

logn
d

)d/2

e3d(σd/σ1)
2
C

≤

(
1+

γd

2logn

(
σd

σ1

)3d
)(

2logn
d

)d/2

e5d(σd/σ1)
2
C

≤ γd

(
σd

σ1

)3d(2logn
d

)d/2

e5d(σd/σ1)
2
C

≤ γd

(
2logn

d

)d/2

e6d(σd/σ1)
2
C,

where the second step follows by Lemma 13.

To summarize, we have established the desired bound

H S
n (p)≤ O(logn)

(
1+min

{ n
C
,γd(αΣ ·βd,n)

d ·C
})

.
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Estimating Rényi entropy of discrete distributions. IEEE Transactions on Informa-
tion Theory, 63(1):38–56, 2016.

[Ari96] Erdal Arikan. An inequality on guessing and its application to sequential decoding.
IEEE Transactions on Information Theory, 42(1):99–105, 1996.

[AS65] Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions
with formulas, graphs, and mathematical table. In US Department of Commerce.
National Bureau of Standards Applied Mathematics series 55, 1965.

311



[Axt01] Robert L Axtell. Zipf distribution of US firm sizes. science, 293(5536):1818–1820,
2001.

[Baa02] R Harald Baayen. Word frequency distributions, volume 18. Springer Science &
Business Media, 2002.

[Bar96] Alexander I Barvinok. Two algorithmic results for the traveling salesman problem.
Mathematics of Operations Research, 21(1):65–84, 1996.

[Bar16] Alexander I Barvinok. Computing the permanent of (some) complex matrices.
Foundations of Computational Mathematics, 16(2):329–342, 2016.

[BC17] Tugkan Batu and Clément L Canonne. Generalized uniformity testing. In 2017
IEEE 58th Annual Symposium on Foundations of Computer Science, pages 880–
889. IEEE, 2017.

[BFF+01] Tugkan Batu, Eldar Fischer, Lance Fortnow, Ravi Kumar, Ronitt Rubinfeld, and
Patrick White. Testing random variables for independence and identity. In Proceed-
ings 2001 IEEE International Conference on Cluster Computing, pages 442–451.
IEEE, 2001.

[BFR+00] Tugkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D Smith, and Patrick
White. Testing that distributions are close. In Proceedings 41st Annual Symposium
on Foundations of Computer Science, pages 259–269. IEEE, 2000.

[BFSS02] Dietrich Braess, Jürgen Forster, Tomas Sauer, and Hans U Simon. How to achieve
minimax expected Kullback-Leibler distance from an unknown finite distribution.
In International Conference on Algorithmic Learning Theory, pages 380–394,
Berlin, Heidelberg, 2002. Springer.

[BG97] Vidmantas Bentkus and Friedrich Götze. On the lattice point problem for ellipsoids.
Acta Arithmetica, 80(2):101–125, 1997.
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