
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Designing Hardware Accelerated Systems for Imaging Flow Cytometry

Permalink
https://escholarship.org/uc/item/9g36m78k

Author
Lee, Dajung

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9g36m78k
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Designing Hardware Accelerated Systems for Imaging Flow Cytometry

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Electrical Engineering (Intelligent Systems, Robotics, and Control)

by

Dajung Lee

Committee in charge:

Professor Ryan Kastner, Chair
Professor Truong Nguyen, Co-Chair
Professor Pamela Cosman
Professor Tajana Rosing
Professor Dean Tullsen

2017

Copyright

Dajung Lee, 2017

All rights reserved.

The dissertation of Dajung Lee is approved, and it is accept-

able in quality and form for publication on microfilm and

electronically:

Co-Chair

Chair

University of California, San Diego

2017

iii

DEDICATION

I would like to dedicate this thesis to my family and friends. To my parents who give me

the greatest love and believe in my potential. My brother Junsoo who has seen all my

struggles next to me and truly supported me. He is a big part of my Ph.D. and my life.

To all my friends in my hometown and San Diego. I couldn’t name them all, but without

their support this long journey would not have been possible. Finally, to Sunghwan, Dr.

Bae, he has been my greatest supporter and sent me a strong commitment since 2005.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . viii

List of Tables . xiii

Acknowledgements . xiv

Vita . xvi

Abstract of the Dissertation . xviii

Chapter 1 Introduction . 1

Chapter 2 Imaging Flow Cytometry Research 6
2.1 Cytometry Research . 6

2.1.1 Imaging cytometry 7
2.1.2 Flow cytometry . 8
2.1.3 Imaging flow cytometry 8

2.2 System Goal . 9
2.2.1 Target cellular properties 10
2.2.2 Experimental setup 13

2.3 Related Works . 14

Chapter 3 Hardware Acceleration on FPGAs 17
3.1 Introduction . 17
3.2 FPGA design using High Level Synthesis 19
3.3 High Level Sytnehsis Optimizations 21

3.3.1 Performance Estimation 21
3.3.2 Parallelism . 23
3.3.3 Memory Configuration 25

3.4 Image Processing on an FPGA 27
3.5 Conclusion . 31

Chapter 4 Basic Hardware Accelerated Approaches 33
4.1 Introduction . 33
4.2 Cellular analysis . 35

4.2.1 Blob search . 36

v

4.2.2 Image interpolation and adjustment 37
4.2.3 Find center . 37
4.2.4 Coordinate conversion and radius extraction 38

4.3 FPGA implementation . 38
4.4 GPU implementation . 43
4.5 Experimental results . 44

4.5.1 Experimental setup 44
4.5.2 Results and comparison 44

4.6 Conclusion . 49

Chapter 5 Advanced Morphological Analysis on an FPGA 51
5.1 Introduction . 51
5.2 FPGA Implementation . 53

5.2.1 Overall flow . 53
5.2.2 Image analysis pipeline 55
5.2.3 Hardare modules 58
5.2.4 Bottleneck modules 61

5.3 Experimental Results . 63
5.3.1 System description 63
5.3.2 Test dataset . 64
5.3.3 Target throughput performance 65
5.3.4 Accuracy results 65
5.3.5 Performance results 68
5.3.6 FPGA resource utilization 70

5.4 Conclusion . 71

Chapter 6 Extensional Cellular Analysis based on Image Segmentation . . . 72
6.1 Introduction . 72
6.2 Methods . 74

6.2.1 Thresholding based approaches 74
6.2.2 Data clustering based approaches 77
6.2.3 Convolutional window based approaches 78

6.3 Experimetal Results . 83
6.3.1 Test environments 84
6.3.2 Test results . 84
6.3.3 Design complexity and hardware implementation . . 86

6.4 Conclusion . 87

Chapter 7 Streaming Clustering Algorithm for Image Segmentation 88
7.1 Introduction . 88
7.2 Data Cluatering . 90
7.3 Related Work . 92
7.4 Streaming Clustering . 95

vi

7.4.1 Multilevel clustering 95
7.4.2 Streaming subclustering 96
7.4.3 Reducing . 98
7.4.4 Shuffling data . 99
7.4.5 Design parameters 100

7.5 System Implementation . 100
7.5.1 Heterogeneous system 101
7.5.2 Subclustering module 102
7.5.3 Reducing module 103

7.6 Experimental Results . 104
7.6.1 Test environment 104
7.6.2 Accuracy . 105
7.6.3 Performance and resource utilization 107

7.7 Conclusion . 112

Chapter 8 Conclusion . 114

Bibliography . 116

vii

LIST OF FIGURES

Figure 2.1: Examples of cytometry researches (a) Imaging cytometry assesses
cellular properties based on images. (b) Flow cytometry is able to
analyze cell in high throughput manner using a specialized device. . 7

Figure 2.2: Examples of cellular morphological shape analysis. An image analy-
sis algorithm measures cellular radius in every angle and extract the
cellular morphological feature that can describe cell shape in accurate. 11

Figure 2.3: Examples of cells with different structure. (a) Different types of cells
may have irregular morphological shape or have a separable nucleus
from membrane. (b) A cell may explode within a device by a force
of flowing microfluid depending on its state. 12

Figure 2.4: An imaging flow cytometry system can be used to sort cells by
imaging micro-fluid having cells in a device. It consists of two big
processes, data collection and data analysis. 13

Figure 3.1: Vivado HLS design flow. Vivado HLS is a directive based hardware
design API. It takes C/C++/SystemC codes as input, synthesizes
them as directives defines, and generates an RTL core. 20

Figure 3.2: Metrics for performance estimation, throughput and latency. Latency
is a running time measured from the beginning of a function until
the end of it. Throughput measures the total number of functions or
operations performed within a unit time. 21

Figure 3.3: An example of synthesis report from Vivado HLS. It gives latency
and initiation interval measurements in terms of clock cycles. Initia-
tion interval is used to calculate throughput. 22

Figure 3.4: A latency and initiation interval in a pipelined operation. Initiation
interval lowers after pipelining and give higher throughput. The
throughput for a entire sequence balances for a bottleneck module,
Func1 in this example. 23

Figure 3.5: An example of usage for #pragma HLS pipeline. User can in-
dicate the target interval as II=1. If there is no data dependency
between iterations, it pipelines the loop iteration code lines automat-
ically. 23

Figure 3.6: An example of usage for #pragma HLS UNROLL II=1. It paral-
lelizes independent operations considering input and output data
bandwidth and maximizes the throughput. 24

Figure 3.7: An example of memory partitioning. It splits a large array into
multiple smaller memories. It improves memory bandwidth, and a
core connected can take multiple data simultaneously, one each from
a separate memory. 26

viii

Figure 3.8: An example of memory reshaping. It folds memory block and re-
aligns a data layout as user defined. It improves the memory port
width and minimizes the memory bottleneck to load data. 27

Figure 3.9: A convolutional window operation in image processing. The image
width is W and height H. A K×K convolutional kernel slides over
the image. This sliding window takes pixel values of image and
calculates a convolution with the kernel coefficient. 28

Figure 3.10: An optimized architecture for a sliding window operation using line
buffer and window buffer. A line buffer is a BRAM block to hold
incoming image pixel data in temporal. A window buffer is a set of
registers partitioned to process window operation fast. 29

Figure 4.1: The stages of the image analysis algorithm include: (1) detecting the
cell and cropping the area around it, (2) resizing the cropped image
by 10 times and enhancing its contrast, (3) finding a center of the
cell, (4) extracting morphological features. 35

Figure 4.2: The Blob Search module performs background subtraction, thresh-
olding which converts it into a binary image, and opening to remove
noise. All these modules are based on an image convolution operation. 36

Figure 4.3: The find center module performs binary thresholding on the interpo-
lated image and counts the “positive” cell pixels in both the columns
and rows. The average on both the horizontal and vertical axis
defines the coordinates of the center point. 38

Figure 4.4: The coordinate conversion and radius extraction module. The co-
ordinates of the cell wall are determined by scanning through the
interpolated image to find the cell wall. 39

Figure 4.5: The architecture design for a shifting window operation on FPGA.
New input pixels are stored in line buffer and a window buffer
connected to it is used for window operation. 40

Figure 4.6: The architecture design for a coordinate conversion operation on
FPGA. After pre-processing, an input image is converted into a polar
coordinate based image. 42

Figure 4.7: GPU implementation thread arrangements. The data indexing method
is described using pseudo code. (a) the thread arrangements for win-
dow operation kernel. (b) the thread arrangements for the reduction
kernels. 45

Figure 4.8: The performance of each module using different HLS optimizations
in terms of latency(ms). After optimization in HLS, each functional
module presents a huge performance improvement, more than ×3
up to ×40 faster in terms of latency. 46

Figure 4.9: Sequential and pipelined implementations: (a) the sequential design
(b) the pipelined design using the data flow directive (c) a method to
calculate the total latency required for cell sorting. 47

ix

Figure 4.10: A comparison of the performance of the different implementations :
MATLAB, Serial C, GPU, and FPGA (a) the throughput (b) the total
latency to analyze a series of images for one cell. 48

Figure 5.1: Cell anaysis core; Averaging, detection, and analysis. The averaging
module generates a background image. The detection and analysis
modules start running after that. The detection module passes valid
cell images to the analysis module. 55

Figure 5.2: The cell detection process and the find cell stage in the cell analysis
module (a) cell detection (b) finding cell. 56

Figure 5.3: Find center stage resizes the cropped cell area from the three images
and enhances their contrast. Adaptive thresholding converts the ad-
justed images to binary images. A center point is found by averaging
the number of white pixels in each row and column. 57

Figure 5.4: Trace cellular wall; The input to this module is the contrast-enhanced
input image and the center point from the previous module. Based
on the center point, it converts the cell image into a polar coordinate
image and traces the cellular wall. 58

Figure 5.5: Cell analysis core pipeline block diagram (a) cell detection mod-
ule (b)(c)(d) cell analysis module; (b) find cell, (c) find center, (d)
trace cellular wall. The connections between these stages are noted
alphabetically. 59

Figure 5.6: Hardware optimization for bottleneck modules; Resizing, adjusting,
and get center are the main bottlenecks because they handle the
largest size images. 61

Figure 5.7: System description (a) offline cell analysis system connecting a host
computer and an FPGA. All image analysis is processed on the
FPGA side. (b)(c) input and output data format. 65

Figure 5.8: Trace cellular wall results example (a) polar coordinate images with
the trace of the cellular wall in white lines (b) cell images with
corresponding trace lines. 67

Figure 6.1: Examples of separating interior structure of cells. (a) Original input
and segmentation result for cell membrane area. (b) Original input,
segmentation result for cell nucleus, and nucleus only area (left to
right). 74

Figure 6.2: An algorithm flow of luminance thresholding method. It prepro-
cesses input image and highlights the cell feature. Then, it filters
the feature with Guassian filter and finds a threaholding based on a
mean(µ) and standard deviation value(σ) of pixel values. 76

Figure 6.3: An algorithm flow of iterative selection method. The preprocessing
and Gaussian filtering operations are similar as Luminance thresh-
olding method, but it finds a thresholding value iteratively. 76

x

Figure 6.4: An algorithm flow of k-means based approach. This method par-
titions image pixels using k-means clustering algorithm. Then, it
defines the largest pixel region as a cell membrane area. 78

Figure 6.5: Examples of intermediate image data in k-means based segmentation
approach . 79

Figure 6.6: Examples of preliminary test images for convolutional window based
approach . 81

Figure 6.7: A Z table for normal distribution. A thresholding value can be
estimated by the expected area rate (%) and this table. 82

Figure 6.8: An algorithm flow of convolutional window based approach. (a),(b),(c),
and (d) present intermediate image during the process. 83

Figure 6.9: Examples of test image data. Each row presents for a single cell.
Cells are in different shape, structure, and transparency. 84

Figure 6.10: Accuracy of different segmentation algorithms. It is based on the
number of pixels of cell area difference (vertical axis). Each result
presents an error rate on the top. 85

Figure 6.11: Latency of different segmentation algorithms in software. Lumi-
nance thresholding presents the minimum latency, and convolutional
variance method takes a few minutes to calculate variance values in
sliding convolutional window. 85

Figure 6.12: Examples of complexity analysis in an algorithm flow. The most
complex module is the bottleneck in a pipelined system. (a) lumi-
nance thresholding method is balanced (b) iterative selection method
has a bottleneck in the last stage. 86

Figure 7.1: Our multilevel clustering algorithm in two stages. The first stage
clusters the same set of data multiple times similar to k-means. Then,
it clusters them using an existing clustering algorithm to find a look
up table, L×V , that maps L centroids to the target clusters V 95

Figure 7.2: When a new data point comes in, a center point that locates close
moves toward the new point. This process keeps updating and
moving around this center point as a new data appears. 97

Figure 7.3: Overall system flow of our heterogeneous clustering system. Stream-
ing subclustering is the most computationally intensive function, so
it is accelerated in hardware. The Reducing function can be placed
in hardware or software. 101

Figure 7.4: Hardware design for the multilevel streaming clustering. Streaming
subclustering modules are fully parallelized since they are indepen-
dent from each other. Reducing module merges subcluster centroids
and finds final cluster ID for each point. 101

Figure 7.5: A processing core for streaming subclustering operation. It accepts
d-dimensional inputs, decides on the appropriate cluster, and updates
the corresponding centroid. 102

xi

Figure 7.6: The cost values for different shuffling window sizes. Result becomes
closer to k-means result with a larger shuffling window. 108

Figure 7.7: Throughput results by varying the data dimension. Input bandwidth
is the maximum throughput that we can achieve, which depends on
data dimension. 110

Figure 7.8: Resource utilization by varying the data dimension. Additionaly
registers and BRAMs are required for the larger number of clusters k. 110

Figure 7.9: Throughput and resource utilization results by varying the number
of clusters, k. The throughput result is mainly decided by the data di-
mension, but increasing complexity affects to clock period. Resource
usage linearly increases according to k. 111

xii

LIST OF TABLES

Table 4.1: Performance of modules in the FPGA design: Latencies in both terms
of the number of clock cycles and time (ms) and throughput (FPS). . 44

Table 5.1: Modules grouped based on their computation patterns. 60
Table 5.2: Test video set for accuracy; the number of valid cell frames for cell

detection results. The first 1,000 frames are taken from each video
data. Note that the concentration of cells can be controlled by diluting
the fluid. 64

Table 5.3: Detection results with sensitivity (true positive rate), specificity (true
negative rate), precision (ratio of true positives to number of positive
predictions), and accuracy. 66

Table 5.4: Find cell results representing hit/miss rate within a fixed distance
from a true cell position. 67

Table 5.5: Accuracy results in mean absolute error(MAE) and statistical distribu-
tions of test and ground truth data in terms of mean(µ) and standard
deviation(σ). 68

Table 5.6: Throughput performance in detection and analysis modules of the
hardware design pipeline. 68

Table 5.7: Performance comparison in terms of throughput and latency for dif-
ferent platforms: Matlab, C, and FPGA. 69

Table 5.8: Performance comparison in terms of throughput and latency with our
previous work in [42] . 70

Table 5.9: Resource utilization in hardware design pipeline analysis. Utilization
of detection and analysis modules and total utilization including PCIe
connection. 70

Table 7.1: Test datasets . 105
Table 7.2: 2D synthetic data clustering results. k-means, BIRCH and streamKM++

hardly find right results for non-spherical density shape datasets. Our
method clusters them correctly. 105

Table 7.3: Comparison of cost results . 106
Table 7.4: Comparing segmentation results. (a) Input image is highly noisy and

blurred in low contrast, so it is hard to achieve a good quality of
segmentation result. (b) Our method outperforms other approaches. . 107

Table 7.5: FPGA core performance comparison with other FPGA implementations.109
Table 7.6: System performance analysis and FPGA resource utilization. The

reading module is a main bottleneck in the overall system, which
includes file I/O for our test data. 112

xiii

ACKNOWLEDGEMENTS

I would like to acknowledge Professor Ryan Kastner for all his support during

my graduate study. He supported me from very early stage of my research until the end

and inspired me in research path. I sincerely thank him for all his adviace and guidance

while pursuing my research.

I would like to thank my doctoral committee members. Professor Truong Nguyen,

Professor Pamela Cosman, Professor Tajana Rosing, and Professor Dean Tullsen. All

their comments and feedbacks are essential in my research progress. Especially I thank

Professor Truong Nguyen for his support as a co-chair.

I would like to thank all my collaborators and coauthors. Without their helps,

I couldn’t make this achievement. Dr. Henry Tse and his company gave me a great

motivation to keep me on this research, and it was very enjoyable to collaborate with

him. Dr. Pingfan Meng and Dr. Janarbek Matai gave me valuable tips and feedbacks

over my research project as well as research life. I would also like to acknowledge Nirja

Mehta for her extraordinary work and help in my research project. I would like to thank

all Kaster Research Group members for their precious comments and feedbacks on my

research. All discussions we had are invaluable and significant in my research.

Chapter 4, in full, is a reprint of the material as it appears in International

Conference on Field Programmable Logic and Applications (FPL), Lee, Dajung; Meng,

Pingfan; Jacobsen, Matthew; Tse, Henry; Carlo, Dino Di; Kastner, Ryan, 2013. There

are small changes in format and phrasing as a chapter within this larger paper. The

dissertation author was the primary investigator and author of this paper.

Chapter 5, in full, has been submitted for publication of the material as it may

appear in Journal of Parallel and Distributed Computing (JPDC), Lee, Dajung; Mehta,

Nirja; Shearer, Alexandria; Kastner, Ryan. There are small changes in format and

phrasing as a chapter within this larger paper. The dissertation author was the primary

xiv

investigator and author of this paper.

Chapter 7, in full, has been submitted for publication of the material as it may

appear in International Conference On Computer Aided Design (ICCAD), Lee, Dajung;

Althoff, Alric; Richmond, Dustin; Kastner, Ryan, 2017 (accepted). There are small

changes in format and phrasing as a chapter within this larger paper. The dissertation

author was the primary investigator and author of this paper.

xv

VITA

2010 Bachelor of Science, in Electronic Engineering
Sogang University, Seoul, South Korea

2013 Master of Science, in Electrical Engineering (Intelligent Systems,
Robotics, and Control)
University of California, San Diego

2015 Teaching Assistant, in Electrical and Computer Engineering
University of California, San Diego

2016 Teaching Assistant, in Computer Science and Engineering
University of California, San Diego

2012-2017 Research Assistant, in Computer Science and Engineering
University of California, San Diego

2017 Doctor of Philosophy, in Electrical Engineering (Intelligent Sys-
tems, Robotics, and Control)
University of California, San Diego

PUBLICATIONS

Dajung Lee, Nirja Mehta, Alexandria Shearer, and Ryan Kastner, “A Hardware Accel-
erated System for High Throughput Cellular Image Analysis”, submitted in Journal of
Parallel and Distributed Computing (JPDC) (under revision)

Dajung Lee, Alric Althoff, Dustin Richmond, Ryan Kastner, “A Streaming Clustering Ap-
proach Using a Heterogeneous System for Big Data Analysis”, International Conference
On Computer Aided Design (ICCAD), November 2017 (accepted).

Dajung Lee, Roger Moussalli, Sameh Asaad and Mudhakar Srivatsa, “Spatial Pred-
icates Evaluation in the Geohash Domain Using Reconfigurable Hardware”, Field-
Programmable Custom Computing Machines, IEEE 24th Annual International Sym-
posium on (FCCM), May 2016.

Janarbek Matai, Dajung Lee, Alric Althoff, and Ryan Kastner, “Composable, Parame-
terizable Templates for High Level Synthesis”, Design Automation and Test in Europe
(DATE), March 2016.

Janarbek Matai, Dustin Richmond, Dajung Lee, Zac Blair, Qiongzhi Wu and Ryan Kast-
ner, “Resolve: Generation of High-Performance Sorting Architectures from High-Level
Synthesis”, International Symposium on Field-Programmable Gate Arrays (ISFPGA),
February 2016

xvi

Dajung Lee, Janarbek Matai, Brad Weals, and Ryan Kastner, “High Throughput Channel
Tracking for JTRS Wireless Channel Emulation”, International Conference on Field
Programmable Logic and Applications (FPL), September 2014.

Dajung Lee, Pingfan Meng, Matthew Jacobsen, Henry Tse, Dino Di Carlo, and Ryan
Kastner, “A Hardware Accelerated Approach for Imaging Flow Cytometry”, International
Conference on Field Programmable Logic and Applications (FPL), September 2013.

xvii

ABSTRACT OF THE DISSERTATION

Designing Hardware Accelerated Systems for Imaging Flow Cytometry

by

Dajung Lee

Doctor of Philosophy in Electrical Engineering (Intelligent Systems, Robotics, and
Control)

University of California, San Diego, 2017

Professor Ryan Kastner, Chair
Professor Truong Nguyen, Co-Chair

Creating efficient, accurate approaches to cytometry is an important problem for

clinical diagnostics, biological research, and drug discovery. Cytometry identifies cell

types or cell status, separates mature cells from immature ones, detects cancerous cells

from healthy normal cells, classifies stem cells during differentiation, and screens drugs

based upon how they affect cellular architecture.

Imaging flow cytometry is especially promising since this image-based cell

analysis system is capable of capturing highly sophisticated contents while achieving high-

xviii

throughput analysis. Analyzing cellular images quickly and accurately is a non-trivial

problem. These images are commonly obtained at the microscopic level and therefore

are very sensitive to light, are often plagued by visual noise, and blur easily. Processing

these images is highly data-intensive and computationally demanding. Therefore, even

state-of-art approaches can achieve either high-throughput or profile the cell contents,

but not both. There have consequently been significant demands for a properly designed

algorithmic approach, as well as specialized hardware support for it.

This work presents a hardware-accelerated system design for a real-time imaging

flow cytometry technique. The main algorithmic approaches in this work are two-folds: 1)

morphological feature analysis to describe cellular features and 2) an image segmentation

method to classify irregular cell shapes and separate the cellular membrane and nucleus.

It first describes a high-throughput and low-latency system design solution for extracting

cellular properties from a high frame-rate video. Our system analyzes cell images to

understand their mechanical properties, such as shape, size, circularity, or deformability.

This work suggests hardware-friendly algorithms and carefully optimized hardware

accelerated systems using a reconfigurable hardware, i.e. Field Programmable Gate

Arrays (FPGA). Secondly it describes a streaming data clustering method for image

segmentation. Data clustering is commonly used for data analysis but is also a demanding

process, even in hardware. The segmentation approach in this work achieves a highly

streaming and scalable data clustering solution that runs in the highest throughput in an

FPGA while handling high-dimensional data. We evaluate this method and conclude

that it outperforms other prior state-of-the-art systems. We generalize our streaming data

clustering approach for other clustering problems in various data analysis application

domains.

xix

Chapter 1

Introduction

Cytometry is a quantitative analysis technique for understanding various cellular

properties. These properties include any characteristics that can explain cells in a

biological, chemical, or mechanical way: size, shape, cell count, deformation, DNA

contents, molecule contents, life span, structure or particular reaction to external stresses.

Such analysis can identify cells and give in-depth understanding about them, such as their

behaviors or status. This information can be used for fundamental biological research and

practical applications. We can diagnose diseases such as cancer or AIDS based on sorted

cells derived from this technique, and we can separate stem cells from cancer cells based

on analysis results. There are many other applications that use cytometry techniques,

such as diagnosing disease, screening for cancer, sorting cells, monitoring immune

systems, screening drugs, and developing regenerative medicine. Exploring different

cell properties and characterizing them is a fast-growing research problem with much

potential, and there always has been high demand for an automated cell analysis system

for accurate, fast, and massive analysis. In this thesis, we describe our main contribution:

developing a high-throughput cellular image analysis system on reconfigurable hardware

for an automated image-based cytometry technique.

1

2

Flow cytometry and imaging cytometry are the most conventional methods for cell

analysis. Flow cytometry is capable of analyzing a large amount of cell data in very high

throughput, but the method makes it difficult to extract complicated features. Imaging

cytometry provides sophisticated analytical results but with very limited performance. An

imaging flow cytometry method combines the strengths of both of these methods. It is a

label-free method with no need for biological or chemical markers on cell samples, and is

capable of measuring different cellular parameters while also achieving high throughput

analysis.

On the other hand, the current technology for imaging flow cytometry provides

very limited solutions for a real-time system, and it still must overcome several challenges

before it can beat commercial cytometry devices. First, because it is based on image or

video data, its throughput or accuracy is limited by camera performance. There have been

documented cases where image data has been collected in an ultra-fast way, but these

studies do not include real-time image analysis. Microscopic imaging can present image

quality issues, such as low-resolution data, low contrast, or blurring noise. A proper

image analysis algorithm is necessary to enhance poor image quality and extract cellular

features and characteristics.

Furthermore, a lack of computing power is a big challenge for accurately process-

ing image data. To analyze cellular images for imaging flow cytometry, the processor

must handle a large amount of microscopic image data accurately in high throughput.

One example comes from our experimental setup: a cell sorting system aims to analyze

thousands of cells, which entails processing more than 60,000 frames in a second. The

system must also take into account latency constraints inherent to analyzing tasks and

classifying cells based on the results. These high-throughput and low-latency require-

ments are common system constraints of imaging flow cytometry. So a general imaging

flow cytometry system analyzes cellular data separately after capturing images or video

3

using a high-throughput camera on an experimental setup.

Practical application of an imaging flow cytometry technique requires in-depth

interdisciplinary research in computer science. There are some efforts to analyze these im-

ages and extract cellular figures using highly refined state-of-art computing technologies

in signal processing, image processing, and computer vision. However, more accurate

feature analysis results in higher algorithmic complexity, which hinders a real-time image

analysis.

To overcome these performance constraints and achieve accurate cell analysis,

algorithm development and hardware system design must be accommodated. In general,

even a state-of-art image analysis algorithm is unable to provide faster than a few

milliseconds latency for one frame analysis. Therefore, more robust hardware would

increase the computing power of the system.

A GPU and FPGA are common candidates for hardware acceleration techniques.

GPU gives massive data parallelism based on SIMD (single instruction multi data)

architecture and is able to achieve high throughput by processing input and generating

output within a certain time. However, this device uses DDR memory to have necessary

data, which causes high latency. FPGA is good at pipelined parallelism and is very

friendly for streaming process. It has very limited size of on-chip memories, but has

high memory bandwidth within a chip. A carefully optimized hardware architecture on

the logic level will achieve a high level of pipelining parallelism and will minimize data

access, making it capable of high throughput and low latency constraints simultaneously.

For this research, we propose a novel hardware-accelerated system for a real-time

imaging flow cytometry to achieve high accuracy and meet strict performance constraints

at the same time. More specifically, our target system captures cell images with a very

high-performance camera, processing thousands of cells per second and taking a few

milliseconds for a single cell analysis. Despite the fact that these images have low

4

contrast and are noisy (and therefore blurry) due to the fast movement of the cells, our

system processes these noisy, low-contrast, blurry images with very high throughput

and minimal latency. We are able to achieve this with our image analysis system, which

computes cellular mechanical properties using brightfield imaging on a microfluidic

device. The system images cells using a high-speed optical image sensor, analyzes the

resulting video streams, extracts features from the images, and classifies cells based on

those observed features.

Our research then focuses on extracting mechanical properties from these cell

images. These properties includes morphology and inner cell structures. To achieve

these goals, we carefully develop hardware-friendly algorithms and examine different

computing platforms. We mainly focus on developing an accelerated system on an

CPU-FPGA system of this algorithms.

The remainder of the thesis is organized as follows: In Chapter 2, we explain

the background of this research and introduce a motivative system. We also provide

an overview of cytometry technologies in this chapter and present related works. In

Chapter 3, we introduce the background of hardware acceleration using FPGAs and

describe several hardware optimization methods we used in our system. In Chapter 4,

we discuss a basic hardware-accelerated approach using different platforms. We also

introduce an initial flow of our cellular analysis algorithm and compare our preliminary

FPGA-based design with a GPU-based accelerated system. In Chapter 5, we describe

an advanced accelerated design on an FPGA system. We show an in-depth image

analysis algorithm to extract morphological features and explain its optimized hardware

architecture for a real-time performance. In Chapter 6, we extend our cell analysis

technique to more complicated features. We explore different image segmentation

methods and compare how they would perform in order to achieve efficient hardware

implementation. In Chapter 7, we propose an efficient streaming clustering algorithm for

5

image segmentation on an FPGA-CPU heterogeneous system. Finally, in Chapter 8, we

summarize our contributions and conclude this thesis.

Chapter 2

Imaging Flow Cytometry Research

In this chapter, we discuss the fundamental background of computational cell

analysis research and the motivation for our work in detail. We describe a target imaging

flow cytometry system and clarify a system goal in this research. We review other related

works and discuss different approaches suggested in various domains in Section 2.3.

2.1 Cytometry Research

Cytometry is a quantitative analysis technique that measures the various charac-

teristics of cells. Cytometry research accesses biological, physical, or chemical character-

istics of cells to understand target cells, including cell size, cell count, cell morphology,

shape or structure, cellular lifespan, DNA contents, a certain reaction to a particular

chemical, or the existence of specific proteins, etc. For example, it is used to count blood

cells in common blood tests used in medical diagnostics. Understanding cells has huge

practical advantages, as well as implications for future research. Cytometry technology

is also used in a variety of cell biology and medical research, such as cancer and AIDS

research, as well as in designing regenerative medicines.

Given that cell analysis is a fundamental problem in biological research, cytometry

6

7

Nega%ve	plate	

Posi%ve	plate	

Posi%ve(+)	
charged	cell	

Nega%ve(-)	
charged	cell	

(a) (b)

Figure 2.1: Examples of cytometry researches (a) Imaging cytometry assesses cellular
properties based on images, which enables a sophisticated content analysis. (b) Flow
cytometry is able to analyze cell in high throughput manner using a specialized device.

technology has an extensive history. The two most common methods for cell analysis

are flow cytometry and imaging cytometry, while more recent imaging flow cytometry

techniques combine the advantages of both approaches. In this section, we review these

different cytometry approaches.

2.1.1 Imaging cytometry

Imaging cytometry is the oldest and most fundamental method for analyzing cells.

It is based on visible properties of cells (see in Figure 2.1(a)) and observes cells using a

microscope or optical sensor devices. The method analyzes cells statically and as digital

camera technology introduced in this research, a high resolution microscopic sensor

enables sophisticated high-content screening capable of separating cell features. This

method, however, cannot be performed in a high throughput manner. Moreover, imaging

cells at the microscopic level commonly requires staining them with a fluorochrome,

which binds to a structure within the cell [32, 63]. This labeling process highlights

particular molecules or cellular structures. For example, it can separate out individual cell

features (like the cell membrane or nuclei) and determine interactions between multiple

cells [29]. Accurately extracting cell parameters demands significant effort, making it

8

likewise difficult to perform high throughput analysis [21, 58].

2.1.2 Flow cytometry

Flow cytometry is the most commonly used method for high-throughput and low-

latency systems. It assesses cells using a specialized device aligned with target properties,

making it useful for a broad variety of practical applications. Flow cytometry can use a

laser [57, 56], an optical device [45, 31], or an electrical impedance device [19, 25] to

extract course features from cells suspended in a fluid. It tags cells with a biomarker –

fluorochromes, for example, which activate when targeted with a particular wavelength

of light – and then uses a specialized device to detect this marker. This detector does not

require a complex processing or a huge computational load to analyze, so it is capable

of massive cell analysis. However, feature complexity focusing is limited to a particular

feature or a special cellular functionality, and the detector requires a specialized setup

that requires cells be labeled prior to screening (see Figure 2.1(b)).

2.1.3 Imaging flow cytometry

Imaging flow cytometry combines the strengths of flow cytometry and imaging

cytometry [15, 17, 9]. A modern high-speed camera sensor is able to take complicated

feature images of cells in high throughput and can dynamically see cell features with

high sensitivity in high throughput. For example, the ImageStream by Amnis [2] is a

commercial imaging flow cytometer capable of processing 5,000 cells per second. It

produces 12 images – 10 fluorescent markers in addition to darkfield and light-field

images. The fluorescent images provide higher contrast but require a pre-processing step

to add the fluorochromes. On the other hand, the lightfield and darkfield images have no

pre-processing requirement, but have reduced image clarity.

9

This new technology has clear benefits and high potential to be a state- of-art

cytometry technique. It allows label-free cellular analysis for many different types

of research and can measure different complicated cellular parameters from a single

dataset in high throughput. However, several limitations prevent the technology from

achieving real-time cell analysis in any practical sense . First, it is limited by camera

performance and its imaging quality. Image quality is commonly low-resolution and low-

contrast with considerable noise. Second, it requires a proper image analysis algorithm

to accurately and efficiently extract target cellular information from this noisy image.

Last, it requires an accelerated system in embedded hardware to build an automated

imaging flow cytometer. Because of the massive amount of data and the aforementioned

performance constraints, it is hard to process image analysis and achieve real-time

performance without strong support at the hardware level, so thus far it is commonly

performed offline.

This research, therefore, is highly interdisciplinary and requires further study

in a variety of areas, from fundamental understanding of cell biology to algorithmic

insight for cell image analysis and system level design intuition. In this thesis, we explore

highly refined image processing, computer vision, and machine learning approaches to

designing a cellular analysis algorithm, and high-performance computing and hardware

acceleration approaches for building a real-time imaging flow cytometry system.

2.2 System Goal

In this section, we present the main cellular properties we want to observe in our

cell analysis system, describe our experimental setup for extracting the target features in

detail and discuss the performance constraints inherent to achieving a real-time cellular

image analysis system.

10

2.2.1 Target cellular properties

Our system targets a particular type of imaging flow cytometer that analyzes

cellular mechanical properties based on its morphological feature by way of bright-field

images. Cell morphology is a common and useful biomarker for clinical research of

several diseases. This morphology feature can include size, shape, texture, and nucleus-to-

cytoplasm ratios. For example, during a stem cell maturation process, its morphological

shape or texture can indicate its fully matured cell type, and HIV infected T-cells can

be identified by using their morphological change [54]. In our cytometry system, the

main idea is to generate a force on a cell in a flowing fluid, measure its morphological

feature in depth, and determine its physical response. We can analyze the high speed

images to determine mechanical properties based upon the cell’s shape, size, circularity,

deformability, or its inner structure. And then we can use those features to classify the

cell.

Cell morphology

To extract mechanical properties of cells – such as size, circularity, and deforma-

bility – we first focus on observing a cellular morphological feature within a frame, i.e.

its external shape. If we measure the cellular structure accurately, we can easily estimate

other mechanical cellular properties based on these measurements. Figure 2.2 presents

examples of cellular morphological shape analysis. Figure 2.2 (a) shows an angle versus

radius plot. It converts a regular cartesian coordinate cell shape into a polar coordinate

plot based on a center of cell. It will stretch and unroll a round cell feature and make a

flat plot. It traces cellular wall and measures distance between a center point and it in

every angle between 0 through 360 degree. Figure 2.2 (b) shows cellular wall tracing

results, while a cell changes its shape in a experiment. A cell on the top is round and

presents a flat radius plot, but it changes the shape in the bottom image and shows a

11

different plot.

radius

angle

(a)

(b)

Figure 2.2: Examples of cellular morphological shape analysis. An image analysis
algorithm measures cellular radius in every angle and extract the cellular morphological
feature that can describe cell shape in accurate.

For example, we can determine the deformability of a cell by analyzing its image.

Different cells will deform in different ways. A pluripotent stem cell deforms more

than its differentiated progeny; pleural fluid with metastatic cells will deform more than

fluid with normal cells [28]; cells susceptible to tumor cell invasion have a changing

mechanical behavior [40]; cancerous cells with the highest invasive potential are stiffer

than those with lower migrations [61]; and older cells deform differently than younger

ones [67]. More generally, recent research states that cells mechanical properties “play

12

important roles in the regulation of various biological activities at the molecular and

cellular level” [72]. Thus, a cellular image analysis system for microfluidic deformability

cytometry provides an attractive approach for high throughput cell screening and sorting.

In Chapter 4 and Chapter 5, we focus on observing cell morphological shape analysis.

Cell structure

Here we extend our scope to describe more subtle morphological features, such

as specific outlier cell shapes and inner cell areas, in order to see more detailed cellular

structure. Our approach mainly focuses on morphological shape to obtain an accurate

measurement of a cell shape, but this is limited to cells that are round in shape. However,

other types of cells are extremely deformable or could potentially explode on our device

junction (see in Figure 2.3). To generalize our method for these cells, we explore image

segmentation methods and describe our hardware implementation for it in Chapter 6 and

Chapter 7.

(a)

(b)

Figure 2.3: Examples of cells with different structure. (a) Different types of cells may
have irregular morphological shape or have a separable nucleus from membrane. (b) A
cell may explode within a device by a force of flowing microfluid depending on its state.

13

2.2.2 Experimental setup

This uses a microfluidic channel to deliver a cell into the center of a stretching

extensional flow, which generates a uniform stress on the cell, thereby causing a deforma-

tion. The cells flow quickly through the microfluidic channel, enabling high-throughput

processing. By imaging the cell in the extensional flow with a high-speed image sensor,

we can observe the deformation of large population of cells with a high throughput.

Imaging Flow
Cytometry

System

Microfluidics containing cells

Sorting cells

(a)

25mm

(b)

A camera
operating

End of channel

(c) Time

64 x 64 px

(d)
Initial Diameter(um)

D
ef

or
m

ab
ili

ty

(i) (ii)

(iii) (iv)

(f)

Data Collection

Data Analysis
(Gossett et al.)

(e)

Figure 2.4: (a) An imaging flow cytometry system can be used to sort cells by imaging
micro-fluid having cells in a device. It consists of two big processes, data collection
and data analysis. Data collection: (b) this system has a microfluidic device where the
fluid flows (c) the device is designed to generate uniform pressure to stretch cells. (d)
raw images for one cell event. A cell can appear on 15 frames at most from entering
to exiting a field of view. Data analysis [28]: (e) it analyzes cellular morphological
features, such as initial diameter, circularity, or size. (f) examples of cellular mechanical
property analysis, (i),(ii) and (iii) density scatter plots of the size and deformability of
different cells. (iv) different patterns for different cells in size-deformability map.

Figure 2.4 shows the target system, which is designed to produce cell stretching

in an extensional microfluidic channel. The target system uses a high-speed camera to

14

observe cellular deformation. It applies uniform hydrodynamic force to a single cell

on the channel; meanwhile the fast-flowing fluid enters the field of view of the camera.

High-speed microscopy focuses on the center point, thereby imaging the cells movement

and its deformation. For example, Figure 2.4 (d) shows a sequence of events for a single

cell, from entering the field of view to exiting into an outlet for sorting. The resolution

of this microscopic image is very tiny less than 128 × 128, and one cell stays in this

view only few microseconds or few frames. Because of the high speed of fluid in the

channel, this hydrodynamic approach is able to assess a large number of cells efficiently.

This technique has the potential to process up to 20,000 cells per second. However, it is

limited by the critical bottleneck involved in handling the generated image data.

Our target performance is to analyze 2,000 cells per second while assuming (1)

any frame has no more than one cell; (2) one cell event appears in 7-15 consecutive

frames; and (3) only 50% of frames have valid cell features. That means the system must

process 28,000-60,000 frames in one second. Also, for the practical usage of cell sorting,

it should analyze one cell within a predetermined latency, which is dictated by the time it

takes the cell to arrive at the sorting point or the end of the extensional channel.

2.3 Related Works

In this section, we review other literature pertaining to high-performance hardware-

accelerated cytometry research. High-throughput cell analysis systems are mostly based

on an FPGA, DSP or embedded-sensor system. As we discussed, the most conventional

cytometry research for high throughput analysis is flow cytometry, which reads a particu-

lar reaction signal that varies depending on the experimental setup and cellular properties.

This specialized hardware has been commonly employed in various signal-processing

research and provides an optimized system to meet high throughput and low latency

15

constraints. Thus, flow cytometers for high-throughput cell analysis are, in general,

implemented on an embedded system to maximize their performance.

There are several imaging flow cytometry approaches, but mostly they are limited

to a particular type of image input that still requires the researcher to biotag or attach

fluorescence on a cell or risk limited performance. [15, 26, 27] Our approach is based on

a bright-field image taken by a high-speed phantom camera, which requires no tags on a

cell. We measure cellular morphological features based on this image input enabled by a

high-performance system using an FPGA.

Buschke et al. [15] present a cell analysis system for image cytometry using

a DSP and FPGA. Their system attempts to detect the cell and automatically process

the image in the same way we do. However, our input data are bright field images,

which require more complex processing than their fluorescence images. Moreover, our

requirements are more challenging in terms of throughput and latency compared to their

system, which operates at 2.33 frames per second.

Goda et al. [26, 27] developed a heterogenous hardware accelerated (FPGA and

CPU) image cytometer for cancer cell detection. For this application, the FPGA is

used for data capture and performs only simple low-level processing, which amounts

to coarse size-based classification. The CPU performs the bulk of the analysis on the

filtered images. Our system requires significantly more advanced morphological feature

detection to be performed in real-time on the FPGA.

Some of acceleration approaches use a GPU accelerator. Tse et al. [62] present

a GPU-based approach to analyzing cellular morphological features. It parallelizes

the morphological analysis by mapping a pair of images at two different coordinates

and bottomhat filtering them for contrast enhancement. This approach shows a great

improvement in performance, but only partially accelerates the entire image analysis

pipeline. A GPU basically parallelizes processing operations with a large number of

16

processing elements, but it does use DDR memory and has to keep reading data from it.

This causes inevitably high latency and is not able to meet our latency constraints. Our

basic hardware result shows that an FPGA approach presents 1.9 times faster throughput

with 107 times better latency than a GPU approach in Chapter 4.

Using hardware acceleration for image processing is well known in many other

domains. However, the target throughput is generally less demanding (fewer than 1,000

frames per second) and is focused on processing the larger resolution images [37, 30].

Greisen et al. present a video-processing pipeline for high-definition stereo video in [30].

It utilizes a FPGA-GPU-CPU system for high-speed stereo vision and processes video

streams up to the resolution 1920 × 1080 pixels at 30 frames per second.

There are several works that accelerate a medical imaging system on an FPGA [66,

20]. Coric et al. [20] present a hardware-accelerated parallel-beam backprojection al-

gorithm used in computerized tomography (CT). Xu et al. [66] developed a medical

imaging system for a CT filtered backprojection algorithm. They compared and investi-

gated different hardware designs using C, Impulse C and VHDL. Their work is limited

in that they show their manual design has better performance than Impulse C. Our work

targets a different imaging system and achieves the high performance requirements.

We are aware of several other image processing systems that run at higher frame

rates (thousands of frames per second) [38, 35, 27]. Kagami et al. show a networked

vision system of transferring visual features using ethernet at 1,000 fps in [38]. It handles

a 64×64 pixels image on an FPGA attached to a CMOS vision chip, but it does not

analyze the image itself and only performs on preprocessed vision features, transferring

them through a network. IDP Express is a high-speed vision system that uses an FPGA to

record 512×512 pixels images and operates at 2,000 frames per second [35]. Compared

to these works, our target system has more challenging requirements, as it needs to

perform more complex image analysis to extract the cellular morphology.

Chapter 3

Hardware Acceleration on FPGAs

3.1 Introduction

With the insistent growth of information technology and computer industry in

the domains of IoT (Internet of Things), autonomous driving, wearable healthcare,

data center, and 5G networks, the high performance systems have witnessed notable

popularity and demand in the global market. There are several approaches that aim at

improving their performance at different system levels. Recently, hardware accelerated

approach has received attention from academia and industry as we are facing limits in our

traditional approaches in high level. While a software-based approach on a conventional

general-purpose computer is hard to achieve the demanding system goals, a hardware

acceleration approach provides an application specific system solution with a customized

architecture using hardware, such as FPGA, ASIC, DSP, or GPU. However, the difficulty

level increases with the inclusion of several design constraints in the designing process,

which are related to acquiring high performance for a real-time system, small resources

for the cost, less power for energy efficiency, and small size form factor for mobile

devices.

17

18

An FPGA-based approach is considered to be an efficient method in meeting the

aforementioned constraints. It provides a reconfigurable hardware solution design for a

specific application. The architecture of an FPGA-based approach is highly customized

for certain operations with different level of parallelism, so as to achieve higher through-

put and lower latency when compared to software approaches. It is also renowned for

using smaller amount of power in a single chipset, in contrast to larger full systems. It is

further reprogrammable for different applications in a field at an inexpensive price. Due

to these advantages of FPGA design, it has been adopted in various applications ranging

from digital signal processing [41], communications [50], biomedical imaging [42],

computer vision [48], data analytics [43, 51], to data center [55] and deep learning [13],

etc.

The our research is centered around an FPGA-based acceleration, where the

design constraints are focused on high performance, throughput and latency. As our

system algorithm requires complex computations to handle large amount of image data

for fast cell analysis, it is impossible to achieve the target performance in a CPU-based

system. Also, an end-to-end system on a single chip can be efficiently extended for

a small device such as a camera with an embedded FPGA. Therefore in this research,

we achieve high performance cell analysis system with an FPGA. However, there are

still several difficulties on an FPGA-based acceleration, where design complexity is one

of the most tedious challenges among the others. Achieving an optimized architecture

requires skillful expertise, experience, effort, and time. For easing the complexity,

recent investigations have been conducted, where hardware architecture is synthesized

by using a High Level Synthesis tool. In this chapter, Section 3.2 introduces a High

Level Synthesis; Section 3.3 explores several fundamental optimization methods to

understand our achievement; and Section 3.4 highlights an optimization example by

using the synthesis tool.

19

3.2 FPGA design using High Level Synthesis

FPGA-based hardware acceleration has several benefits in a high performance

system design. It can improve the system computing power and achieve extensive

performance gains over a CPU-based system. A designer can finely customize hardware

architecture on an FPGA with high flexibility; and further, its re-programmability enables

the modification on the architecture without hampering with the system.

Apart from these advantages, when looking into the shortcomings of an FPGA

design, it is essential to note its high complexity. The designer is fully responsible

for exploring a design space, verifying the functionality of cores, and optimizing the

hardware logics considering task scheduling at low level or clock timing issues. Such

design sequence is non-trivial work, for which, several commercial tools can be employed

at each stage to fulfill the above described design requirements. Thus, in-depth knowledge

of hardware and considerable experiences pertaining to system are some of the common

requisites essential for developing and acquiring an optimal quality of design.

In the recent past, several efforts have been put into minimizing the design

complexity and developing an FPGA that can be easily implemented in broad application

areas. The High Level Synthesis (HLS) tool is one of such efforts, which provides an API

for an FPGA design by utilizing a higher level programming language, such as C/C++,

Scala, Haskell or MATLAB. There are several well-known HLS tools; Vivado HLS [7],

OpenCL [4], Catapult High Level Synthesis [1], Synopsys Synphony C Compiler [6],

LegUp [16], and Simulink [3].

Figure 3.1 presents the design flow using a high-level synthesis tool, Xilinx

Vivado HLS, which we mainly use in our research. The HLS tool provides a directive-

based API for hardware designing and FPGA optimization. It rises up its abstraction

level and allows the users to build a hardware using C/C++/SystemC languages. It takes

20

C,	C++,	
SystemC	

Constraints	
Direc2ves	

Test	Bench	

Library	
Vivado HLS

RTL	design	

RTL	Package	IP	

C	simula2on	 C	synthesis	

RTL-C	co-simula2on	

Figure 3.1: Vivado HLS design flow. Vivado HLS is a directive based hardware design
API. It takes C/C++/SystemC codes as input, synthesizes them as directives defines,
and generates an RTL core.

a C-like code as an input for generating an output of RTL design. As described in a

user-defined directive or a constraints file, it synthesizes the input code. The RTL IP

core generated by the tool can then be integrated with the other cores or merged into a

larger system. Other HLS tools accommodate a similar design flow in a hardware design

process.

However, in spite of the higher abstraction of HLS tools, a design process still

requires someone with adequate application domain knowledge with hardware architec-

ture background. It does not only require novice level hardware designers or software

programmers, but also experienced hardware designers to start and execute a system

prototype while exploring the design space in a short time [52]. In the rest of this chapter,

we will introduce some fundamental background of FPGA design using the High Level

Synthesis tool. Though we mainly used Xilinx Vivado HLS, comprehending technical

architectural background of FPGA design could be beneficial for other tools.

21

3.3 High Level Sytnehsis Optimizations

In this section, we will introduce important background of hardware architecture

and present several optimization methods using HLS tool, such as different parallelisms

or memory configurations.

3.3.1 Performance Estimation

We use two metrics to measure performance of a system, throughput and latency.

Figure 3.2 presents basic definitions of them.

Latency Latency is the total amount of time required to perform an operation; from

initiating to finishing it. It is measured in units of time, such as seconds, minutes, or

hours. In hardware design, the number of clock cycles can be used to estimate the total

latency, which will be converted to a timing unit using a clock frequency of the operation.

Throughput Throughput is the total number of operations performed within a fixed

unit time. It is measured in units of format that can estimate amount of operations

performed, such as output data generated, iterations, sample data processed, etc. For

example, we use the number of analyzed cells in a second (cells/sec) in our research, or

it can be the number of frames in a second (FPS) in terms of cell image frames.

Function

Function

Function

Latency

Throughput Running concurrently

time

Figure 3.2: Metrics for performance estimation, throughput and latency. Latency is a
running time measured from the beginning of a function until the end of it. Throughput
measures the total number of functions or operations performed within a unit time.

22

In a single core-based general purpose system, operational functions run on a

processing core in a sequential manner. So the throughput is an inverse of the total

running time, i.e. latency. A shorter latency means a higher throughput in a single core

system. However, in a parallelized system, the latency and throughput are not inversely

correlated. For example, a GPU can add up more processing unit cores for parallel

operations as long as cores are needed and available and can increase the throughput, but

that does not decrease the latency of the operation necessarily.

In Vivado HLS tool, a design synthesis report gives an estimated clock cycles for

a latency of a function (see in Figure 3.3). We can calculate latency and throughput from

this report. The latency is the number of clock cycles to run a function, and initiation

interval (II) is the minimum latency in clock cycles to launch the next operation sequence.

In an example in Figure 3.3, a total latency for a given function is 5 cycles, and it needs 6

cycles to accept data for next process and start it.

Function

Latency = 5 cycles

Initiation interval = 6 cycles

+ Latency (clock cycles):
 * Summary:
 +-----+-----+-----+-----+---------+
 | Latency | Interval | Pipeline|
 | min | max | min | max | Type |
 +-----+-----+-----+-----+---------+
 | 5| 5| 6| 6| none |
 +-----+-----+-----+-----+---------+

Figure 3.3: An example of synthesis report from Vivado HLS. It gives latency and
initiation interval measurements in terms of clock cycles. Initiation interval is used to
calculate throughput.

Initiation interval(II) is used to calculate throughput. In a pipelined operation

as an example in Figure 3.4, it starts a new sequence every 4 cycles. A smaller interval

means that it can launch a new operation sooner and process more data or more functional

operations within the same time window. So a smaller II means a higher throughput. The

optimization process using Vivado HLS mostly focuses on minimizing the number of

clock cycles for initiation interval(II) in different granularity levels.

23

+ Latency (clock cycles):
 * Summary:
 +-----+-----+-----+-----+---------+
 | Latency | Interval | Pipeline|
 | min | max | min | max | Type |
 +-----+-----+-----+-----+---------+
 | 5| 5| 4| 4| dataflow|
 +-----+-----+-----+-----+---------+

Func1

Latency = 5 cycles

Initiation interval = 4 cycles
(LatencyFunc1= 3 cycles)

Func 2

Func 1 Func 2

Figure 3.4: A latency and initiation interval in a pipelined operation. Initiation interval
lowers after pipelining and give higher throughput. The throughput for a entire sequence
balances for a bottleneck module, Func1 in this example.

3.3.2 Parallelism

One of big advantages of hardware design is the high flexibility to cosutomize

every cores in logic level. Hardware designer can finely parallelize their design on an

FPGA and improve the performance. Pipelining is the most important technique that

achieves parallelism in instruction level or operation level. It can be done in a fine level

operation or be a higher functional level pipeline. An HLS tool provides a pragma or

directive for them.

Loop Pipelining

WR RD +

WR RD +

A

B
C+

void foo(BYTE A[N], BYTE B[N], BYTE C[N]){

 for (i=0 ; i < N ; i++){
 #pragma HLS PIPELINE II=1
 C[i] = A[i] + B[i];
 }
}

i

i+1

Figure 3.5: An example of usage for #pragma HLS pipeline. User can indicate the
target interval as II=1. If there is no data dependency between iterations, it pipelines
the loop iteration code lines automatically. In this example, it can process one input or
one operation as input is ready in every cycles (II=1)

Loop pipelining is to achieve pipelining parallelism in an instruction level for an

iterative operation in a loop. Figure 3.5 presents an example. HLS automatically converts

24

this for loop code block into a functional module accepting two input and generating a

single output. A baseline code with no pragma processes the operation sequentially and

wait for the function completes the first iteration. With a pipeline pragma, it will launch

the next iteration as soon as the module is available for accepting a new input.

We can define a desired initiation interval (II), the minimum latency to launch

a next process, with the pipelining pragma. The arguments following with the pragma

tell the HLS tool what II we want to achieve, i.e., the target throughput. In our example

above, a target operation in a loop is processed as soon as a new data is ready (RD), which

is one clock cycle, interval one. The pragma is define with an argument, II=1. A loop

operation in Vivado HLS is a basic programming function used in most of applications.

An iterative pixel-wised operation over an image is one of examples in computer vision.

Unroll

WR RD +

WR RD +

A

B
C+

void foo(BYTE A[N], BYTE B[N], BYTE C[N]){

 for (i=0 ; i < N ; i++){
 #pragma HLS UNROLL
 C[i] = A[i] + B[i];
 }
}

i

i+1

Figure 3.6: An example of usage for #pragma HLS UNROLL II=1. It parallelizes
independent operations considering input and output data bandwidth and maximizes the
throughput.

Figure 3.6 presents an example of loop unrolling. It provides different parallelism

within a functional loop. If there is no data dependency and each iterative operation is

independent from others, the example summation operation can be processed simultane-

ously. Unroll pragma also accepts the user defined unrolling factor, which is presented

II. In our example in Figure3.6, II is two. It can be partiall unrolling or completely

partitioned unrolling. Unrolling makes multiple copies of the operational module and

25

improves throughput, but depends on the data dependency and consumes many resources.

Dataflow

Dataflow pragma is for a task level pipeline. It is usually used in a top function

that calls multiple submodules. It pipelines these submodules and schedules them to start

their operation as soon as the module and data are available. Figure 3.4 in Section 3.3.1

presents the task level pipelining. The overal latency to finish two functions is 5 cycles,

but when they are pipelined, the next function can be launched in 4 cycles before the first

fucntion finishes its job.

This high level pipeline will reduce initiation interval in an overall sequence,

which means higher throughput. The performance is determined by a functional module

that has the most latency, which is a bottleneck; in our example, it is Func1. Other

modules balance out their performance with the bottleneck module. So for higher

performance, splitting submodules into finer functions may give a better performance

result. However, it consumes more memory to hold data between submodules as a

tradeoff.

3.3.3 Memory Configuration

Loop pipelining and unrolling provides directive based hardware optimizations

for an instruction level and a task/data level parallelism. In most of practical cases to

maximize the system performance, they should map memory configuration directives as

well. Even if the operational performance is highly optimized, it is hard to achieve the

most performance with no data fed enough to the core.

An FPGA has small size on-chip memories, block-RAMs(BRAMs), which can

be configured in different ways depending on a desired architecture. It closely locates

with computation logics, so it can be quickly accessed. It takes only two cycles at most

26

to read data point from a BRAM. However, it is very tiny compared with DDR memory.

Especially when entire modules are running in functionally pipelined way, it consumes

a lot of FIFOs between modules. Depending on how to optimize the memory resource,

we can have higher memory bandwidth and achieve better throughput as well. So the

data layout should be carefully considered to optimize the architecture. BRAM resources

in an FPGA can be easily reconfigured in different ways. Two memory configuration

methods we mainly used are partitioning and reshaping.

MEMORY PARTITION block factor = 3

ti ti+1 tt+2

ti ti ti

N-1	N-2	1	0	 2N-1	2N-2	N+1	N	 3N-1	3N-2	2N+1	2N	

3N-1	3N-2	2N+1	2N	2N-1	2N-2	N+1	N	N-1	N-2	1	0	

Figure 3.7: An example of memory partitioning. It splits a large array into multiple
smaller memories. It improves memory bandwidth, and a core connected can take
multiple data simultaneously, one each from a separate memory.

Partitioning Memory partitioning splits a single array data into multiple arrays and

allocates different memory resources. Each memory is accessible independently. So

we can have higher memory bandwidth. Figure 3.7 presents an example of memory

partitioning. Before partitioning the memory, it will take several clock cycles to read

multiple data from a single memory. We can read three data component separately one

by one in Figure 3.7. However after partitioning this array into three different memories,

we can retrieve these data simultaneously.

This memory partitioning is useful when it needs a parallel operation with multiple

data. For example, sliding window operation in image processing needs to read a

convolution kernel coefficient. If memory for coefficient are partitioned, then we can

read these data concurrently and process them in parallel.

27

MEMORY RESHAPE block factor = 3 dim = 1

ti ti+1 tt+2

ti

N-1	N-2	1	0	 2N-1	2N-2	N+1	N	 3N-1	3N-2	2N+1	2N	

3N-1	3N-2	2N+1	2N	

2N-1	2N-2	N+1	N	

N-1	N-2	1	0	

Figure 3.8: An example of memory reshaping. It folds memory block and re-aligns
a data layout as user defined. It improves the memory port width and minimizes the
memory bottleneck to load data.

Reshaping Memory reshaping is another method to maximize memory bandwidth.

Figure 3.8 presents an example of memory reshaping. An on-chip BRAM can be

reconfigured in the different data width. We can use a memory with a broader data width

port for a same data using #pragma HLS array reshape pragma. It partitions an array

into multiple arrays like a memory partition does, but put into a single memory.

3.4 Image Processing on an FPGA

In this section, we will give an example of hardware design using HLS. One of the

most common operations in image processing is sliding window, or image convolution

operation. It is a two dimensional filtering for image matrix with a two dimensional

kernel. Figure 3.9 describes how this operation processes. The input image height is H,

and the width is W . The size of a kernel is defined as K, and in this example, K is 3. As

the kernel window slides over image, it calculates a correlation between image pixels

within the window and kernel coefficients.

A typical software version implementation for a sliding window is presented in

Listing 3.1. It is based on a nested loop and accesses memory space as required. A

HLS tool can synthesize this code as input and generates an RTL design as output. A

28

H
(height)

W (width)

K2 kernel

Window
Operation

Figure 3.9: A convolutional window operation in image processing. The image width is
W and height H. A K×K convolutional kernel slides over the image. This sliding win-
dow takes pixel values of image and calculates a convolution with the kernel coefficient.
In this example, K = 3.

synthesized design with this code would hold input data and kernel values in a BRAM as

long as the memory size is available. However, this type of nested loop implementation is

not efficiently converted into a logic design. Pointing a target data space in a memory and

taking data from it consume two clock cycles per data, and as the kernel slides over rows

and columns, the for loop code should keep reloading data that is used in the past. In an

FPGA design, we can arrange data and logic more efficiently and remove this redundant

data access to memory.

1 void sliding_window_sw(dtype input[H][W], dtype output[H][W], dtype kernel[K][K])

2 {

3 ...

4 for(int j = 0; j < H ; j++){

5 for(int i = 0 ; i < W ; i++){

6 dtype sum = 0;

7 for(int s = -K/2 ; s < K/2 ; s++){

8 for(int t = -K/2 ; t < K/2 ; t++){

9 sum += kernel[s][t]*input[j+s][i+t];

10 }

11 }

12 output[j][i] = sum;

13 }

29

14 }

15 ...

16 }

Listing 3.1: A pseudocode for a convolutional sliding window operation in software
implementation

We can easily observe the computational pattern of this operation. Window

filtering operation takes neighbor pixel data points around a current point. So we have

to utilize a temporal and spatial locality. Figure 3.10 presents an optimized architecture

in hardware for the sliding window function. It uses line buffer and window buffer. A

new input data firstly goes into line buffers temporally and shifts as data coming in. A

window buffer is basically a set of registers that is fast accessible. The window buffer

takes input image data pixels within a window and a user-defined kernel processes these

data. The line buffer should be large enough to cache input pixels, and the window buffer

is a kernel size number of registers.

Line buffer Window buffer

top

bot

mid Window
Operation

Figure 3.10: An optimized architecture for a sliding window operation using line buffer
and window buffer. A line buffer is a BRAM block to hold incoming image pixel data in
temporal. A window buffer is a set of registers partitioned to process window operation
fast.

Listing 3.2 is a pseudocode of an optimized HLS implementation for the same

window operation. As we described in Figure 3.10, it uses a line buffer and a window

buffer. These line buffer and window buffer are defined as a single array for each in a code

line 4 and 5. They are optimized using memory pragma, reshaping and partitioning

30

in line 6 and 7 respectively. In this example, K is 3, so the line buffer is reshaped by

factor of 3 to fold the data array. The window buffer is completely partitioned, and all

elements in this buffer are synthesized as independent registers. Outer and inner for

loops scan the image pixel by pixel. While a new input pixel comes (line 24), the window

buffer shifts over the line buffer. A user defined kernel operation processes window

data in line 26. At line 12, the pragma for pipeline operation pushes the design to run

in pipelined way. When we synthesize this code block using Vivado HLS, a generated

core can produce one pixel output pixel per one pixel input and achieve the maximum

throughput (II=1).

1 #define K 3

2 void sliding_window_hw(dtype input[H][W], dtype output[H][W], dtype kernel[K][K])

3 {

4 dtype line[K][W];

5 dtype window[K][K];

6 #pragma HLS ARRAY_RESHAPE variable = line_buffer block factor = 3 dim = 1

7 #pragma HLS ARRAY_PARTITION variable = filter_window complete dim = 0

8 ...

9 for(int j = 0; j < H ; j++){

10 ...

11 for(int i = 0 ; i < W ; i++){

12 #pragma HLS PIPELINE II=1

13 ...

14 window [0][0] = window [0][1];

15 window [1][0] = window [1][1];

16 window [2][0] = window [2][1];

18 window [0][1] = window [0][2];

19 window [1][1] = window [1][2];

20 window [2][1] = window [2][2];

22 window [0][2]= line[top][x];

23 window [1][2]= line[mid][x];

24 window [2][2]= line[bot][x] = input[j][i];

31

26 output[j][i] = kernel_filtering(window , kernel);

27 ...

28 }

29 ...

30 }

31 }

Listing 3.2: A pseudocode for a convolutional sliding window operation in hardware
implementation

Again, the sliding window operation is a fundamental operation in image process-

ing. For example, an interpolation for image resizing has a similar computation pattern

except for the size of window and kernel operation. In our research in this thesis, we

implemented different sliding window core modules and examined them. One of our

module block, blob search, in Chapter 4 cascades several stages of sliding window with

different kernels and input types.

As an example in Figure 3.10 and Listing 3.2, to build an efficiently optimized

core design, an HLS code should describe an optimized hardware architecture and its

behavior precisely using C syntax and pragma directives. We analyze patterns of other

function modules and optimize them to achieve maximum throughput, or minimum

interval in a system.

3.5 Conclusion

In this chapter, we briefly introduced an FPGA-based acceleration for our system

design. Low-level hardware optimization on an FPGA is a non-trivial work. The design

complexity is very high, and it requires in-depth background in logic architecture and

design skills in system design. We presented optimization methods using High Level

Synthesis tool. HLS enables designers focus on a behavior level optimization by rising

32

the abstraction level in a system design. It hides all complicated process of low level

optimization process and handles design constraints using a directive based API. However,

it still needs some background for hardware design with application domain knowledge.

So we introduced several key optimization methods on Xilinx Vivado HLS that we mainly

utilized in our work in this thesis.

Chapter 4

Basic Hardware Accelerated

Approaches

4.1 Introduction

Imaging flow cytometry is a high throughput cell analysis technique that can

observe various cell characteristics. It uses a microfluidic approach to uniformly deliver

cells into an extensional flow region which causes high strain rates on the cell. Cell

deformation provides information that can determine cell states or properties. These

properties can be used for clinical diagnostics, stem cell characterization, and single-cell

biophysics [28]. They are also useful for classification and sorting, e.g., mature stem

cells can be separated from immature ones.

For this purpose, we introduced our target experimental setup in Chapter 2. It is

designed to observe cellular deformability under a pressure generated by flowing fluid

in a micro device, and a microscope-mounted high speed camera captures images at

very high throughput. It processes more than 140,000 frames per second depending on a

system setup.

33

34

The primary goal is to perform the entire cell series analysis within a latency of

less than 10ms to enable real-time sorting, while the camera operates at such high frame

rate. The sorting mechanism is performed later in the process after the cells have been

imaged, e.g., it will be done in a channel connected to the outlets in Figure 2.4. The

length of a channel and the rate of flow determine the target latency to support real-time

sorting. Our target is 10 ms. This is a good tradeoff between computational feasibility

and channel length.

A general purpose CPU will not support this level of performance. In our

experiment, the algorithm takes 10 seconds in MATLAB software to analyze a single

image. The same algorithm modified for higher performance and implemented in C takes

0.4 seconds. Thus, a hardware accelerated approach for this image analysis is necessary.

In this chapter, we target to analyze these cell images in different hardware accelerator

platforms, GPU and FPGA, and evaluate their performances comparing with the original

CPU implementation. The target cell image in this experiment is very small, 32 × 208

pixel resolution.

Our primary contributions in this chapter are:

• Design space analysis of the image analysis technique.

• A high throughput, low latency hardware architecture implemented on an FPGA

using the Xilinx Vivado high level synthesis tool.

• A comparison of the FPGA design with the code running on a GPU.

The remainder of this chapter is organized as follows. We explain our image

analysis algorithm in Section 4.2. Section 4.3 presents hardware architecture optimization

methods on an FPGA. Section 4.4 explains our GPU architecture. Section 4.5 presents

our evaluation results, and we will conclude this chapter in Section 4.6

35

4.2 Cellular analysis

In this section, we will explain our basic cell image analysis algorithm and provide

a high level understanding of it. There are four steps to perform the morphological

analysis required for cell sorting. These are shown in Figure 4.1, and described at a high

level in the following.

Input video

Blob Search
& Image Cropping

Image Interpolation
& Adjustment

Find Center

Coordinate Conversion
& Cellular Wall Detection

Post-processing

Input
Image

Average
Image

20 X 20 pixels

200 X 200 pixels

140000 frames/sec

(1)

(2)

(3)

(4)

Figure 4.1: The stages of the image analysis algorithm include: (1) detecting the cell
and cropping the area around it, (2) resizing the 20 × 20 cropped image into the 200
× 200 image and enhancing its contrast, (3) finding a center of the cell, (4) extracting
morphological features by converting the image into polar coordinates based on the
cell’s center and cell walls.

36

Each module must be carefully designed in order to achieve our performance

targets. In many cases, we must tradeoff accuracy for performance. For example,

histogram equalization works better than image adjustment for contrast enhancement.

However, it is a two-pass algorithm. One pass to make the histogram and another to

equalize the image. This incurs too much latency for our design.

4.2.1 Blob search

Image	 subtrac-ng	
and	 filtering	

Thresholding	

Binary	 opening	

Original	 Image	

Figure 4.2: The Blob Search module performs background subtraction, thresholding
which converts it into a binary image, and opening to remove noise. All these modules
are based on an image convolution operation.

The Blob Search module detects the cell area in the input image and converts the

grayscale image into a binary image with only the cell pixels active. It proceeds by first

subtracting the background from the input grayscale image to retain only cell features.

Then, it converts this grayscale image into a binary image using a threshold on the pixel

values. Additional random noise in the binary image is removed through dilation and

erosion, i.e. opening. The final result has only cell area pixels active (see Figure 4.2).

Using the binary image, the system detects the presence of a cell and its location.

It creates a histogram from the image on both axes. Averaging non-zero column indices

37

provides the approximate location of the cell. Based on this result, it crops a 20×20 sized

region around the cell. The entire blob search process requires a single pass per image.

4.2.2 Image interpolation and adjustment

To improve the fidelity of the analysis, the selected cell area from the Blob Search

module is resized by a factor of 10. This Interpolation step also generates a higher

contrast image by linearly adjusting the brightness level. This resized 200 × 200 image

is the input to the the Find Center module. The outputs of this module are two images,

the initial image interpolated, and the linearly adjusted image after interpolation.

4.2.3 Find center

The Blob Search module finds the approximate location of the cell, but the center

of this window is typically not the exact center of the cell; it is often shifted slightly in

the x and/or y direction. Therefore, the Find Center module attempts to more accurately

locate the cell’s center. It finds the center of the cell by converting input images into

binary image and counting the number of non-zero pixels in each row and column (see

Figure 4.3). The module processes the two output images from the Interpolation module

and averages both to identify the center point. This is done to improve accuracy as

specular noise can affect the results of either input. The Find Center module transforms

these images into binary images by adaptively thresholding at different intensity values

to separate the inner cell area and cell wall. It derives the candidate points for the center

from four binary features, and determines the location of the cell center by averaging

these points while excluding outliers.

38

200	

200	

Interes*ng	
cell	 area	

Noise	

the	 number	 of	 non-‐zero	 pixel	 values	 in	
each	 column.	

Small	 number	 of	 pixels	
by	 noise	

Figure 4.3: The Find Center module performs binary thresholding on the interpolated
(200 × 200) image. It then counts the “positive” cell pixels in both the columns and
rows restricting them to a contiguous range to avoid spurious noise. The average on
both the horizontal and vertical axis defines the coordinates of the center point.

4.2.4 Coordinate conversion and radius extraction

Finally, the system determines morphological properties of the cell using the

interpolated image and its corresponding center point. It converts the resized image from

Cartesian coordinates into polar coordinates. The darkest pixels found on a line from

the cell center at each angle are considered the cell wall. Figure 4.6 shows this process.

It splits the image into four quadrants. In each quadrant, the pixels on the cell wall are

determined by averaging the darkest pixels in each row. Two lookup tables provide the

corresponding angle (θ) and radius of pixel for averaging.

4.3 FPGA implementation

In order to achieve the required performance, we performed design space explo-

ration using the Vivado HLS tool. We carefully analyzed each stage in the algorithm and

39

Preprocessed Image

θ

θ -LUT r -LUT

Ω2
Ω3

Ω1
Ω4

θ

r
Ω2 Ω3 Ω1 Ω4

Cell wall

Figure 4.4: The coordinate conversion and radius extraction module. The coordinates of
the cell wall are determined by scanning through the interpolated image to find the cell
wall. This coordinate is then feed into two lookup tables that provide the corresponding
angle and radius.

implemented an architecture targeting the highest throughput and lowest latency. All

the steps in the algorithm are designed to finish its process in one pass with minimum

memory access. The remainder of this section describes the critical optimizations that

we performed to achieve the highest throughput, lowest latency FPGA implementation.

Shifting window optimizations

A Shifting Window operation iteratively generates a consecutive window from

the input image, and performs an operation across the pixels in this window. Figure 4.5

shows a typical windowing architecture. Here we are generating a 3×3 window. This

architectures uses line buffers which are typically implemented in BRAMs. Each cycle, a

read and write operation is performed on each line buffer. The incoming pixel is written

into the bottom line buffer, while a 3×3 pixel array window is generated by reading the

line buffers. When the current bottom line buffer fills, the top line buffer will be the new

40

bottom. The use of the line buffers will shift in a circular fashion, as will the use of the

pixel data in the 3×3 window. Pixel values are read from the window during processing.

These memory cells are implemented as registers.

Generating the window can be done once per cycle. However, the window

operation may take longer. For example, the Gaussian Filter and Image Erosion modules

work at the rate of clock cycle per pixel. However, the Interpolation module takes longer

primarily because the output is read into another line buffer for consumption by the next

module. Since the output is larger than the input (e.g., 10× in our case), these line buffer

reads are serialized.

Line buffers

of pixels in row

3 x 3 window

Window-based
operation

: Output image pixel

top

bottom

Line #1

Line #2

Line #3

: Input image pixel

Figure 4.5: The architecture design for a shifting window operation on FPGA. New
input pixels are stored in line buffer and a window buffer connected to it is used for
window operation.

Searching optimizations

The Find Cell module is a searching operation that determines the approximate

location of a cell in the image. It uses the Image Dilate module which generates a

histogram array to count the number of active pixels for cell in row and column. Then

41

the Find Cell module thoroughly searches this array and decides which locations should

be averaged as an available cell area. The Find Center module works in a similar fashion;

it also generates histograms for each row and column while it is performing binary

thresholding on the pixel to determine if it should be considered as a cell.

The optimizations performed in these modules are mostly algorithmic. This

involves changing the algorithm itself so that the operations are done in a single pass.

For example, the provided MATLAB code for the Find Center module would first iterate

across the entire image to perform thresholding. And then it would iterate over this binary

image to generate the histograms. Combining these two iterations together (essentially a

form of loop merging) is a simple yet extremely effective way to create a better hardware

architecture.

Conversion optimizations

We focus the discussion on Coordinate Conversion module since it is a major

part of the image analysis algorithm. This module takes as input an image containing the

cell, its center, and pixels denoting the cell walls. It converts this into polar coordinates

with radius information for each angle.

We implemented this module by iterating over each pixel in the input image. We

performed the Cartesian to Polar conversion for the current pixel using a lookup table

while checking to determine if that pixel was denoted as a cell wall. In the case where the

pixel is a cell wall, we wrote the radius value into an output memory at the appropriate

angle location. Figure 4.6 shows this architecture.

This architecture operates in a streaming and pipelined fashion. Furthermore it

can be parallelized. We used four Coordinate Conversion modules in our final implemen-

tations; one for each of the four quadrants in the Cartesian plane.

42

Pre-processing

LUT
(x,y) à (r, θ)

Input : x,y

Processor

(r, θ) address

Pixel : Image(x,y) Cell wall

θ

r

Cell wall

Figure 4.6: The architecture design for a coordinate conversion operation on FPGA.
After pre-processing, an input image is converted into a polar coordinate based image.

HLS optimizations

Vivado HLS allows for design optimization using specialized directives. Using C

like syntax, we describe the basic architecture. Additional pragmas allow the architecture

to be adjusted for hardware execution. Our design primarily uses the partition, pipeline

and dataflow directives.

By default, Vivado HLS uses BRAM for each array. The partition directive allows

arrays to be split across BRAMs and/or implemented entirely as registers. Serialized

BRAM memory accesses can limit the parallelism. This directive is applied in almost all

modules in our design.

Our image processing algorithm often performs iterative operations across pixels

and/or windows in the image. In these cases, pipelining is an effective method to increase

the throughput of the design. The pipeline directive tells the Vivado HLS tool to create a

pipelined version of the indicated code. You can supply the desired initiation interval (II).

We typically set II = 1, yielding output data every clock cycle.

Lastly, the dataflow directive allows for more coarse grain pipelining. We used it

to pipeline five modules in our design (see Figure 4.9(c)).

43

4.4 GPU implementation

In our GPU implementation, we implemented pixel and frame level parallelism

over all the algorithm stages. Since there is no dependency between frames, the GPU

can process multiple frames concurrently by simply replicating thread assignment for

multiple instances. We developed three sets of CUDA kernels to accelerate the three types

of operations corresponding to the FPGA implementation: shifting window, searching,

and conversion operations. Filtering, Dilation, Erosion, and Interpolation is the first

kernel group. Find Cell, and Find Center are in second group, and subtraction and

Coordinate Conversion are in the last group. Each kernel is implemented in similar

manner.

The first set of kernels accelerate window operations. The hierarchy of the

parallelism is demonstrated in Figure 4.7 (a). We divide each frame into multiple sub-

frames, suitably sized for a single thread block. Then we assign each thread to a single

window computation within each sub-frame. We exploit the memory locality of the

window operations due to two features of the algorithm: the overlapping pixels between

neighbor windows and the data dependency from previous operations. Thus, we store

the pixels of each sub-frame in the shared memory to avoid unnecessary GPU global

memory accesses.

Our second set of kernels use the parallel reduction method for thresholding,

finding maxima, and summation. These operations are used when the algorithm searches

for the cell location and when locating the center of the cell (Figure 4.7 (b)). The array

lengths of the reduction operations are less than the maximum number of threads per

block thread. Therefore, one complete reduction operation can be processed within a

single GPU streaming multiprocessor (SM). The intermediate data is stored in shared

memory since the reduction operation is conducted within a single SM.

44

The third set of kernels conducts fully independent operations on each pixel for

subtracting two images and converting image coordinates. These kernels are highly

parallel. Thus, global memory coalescence becomes the most significant factor for their

performance. We ensure that the global memory accesses are coalesced by assigning the

appropriate thread block dimensions for the kernels.

4.5 Experimental results

4.5.1 Experimental setup

Our experiments use a 2.4 GHz Intel Quad Core Q6600 workstation for the

MATLAB and C results. For the FPGA implementation, we targeted a Xilinx Virtex 6

(XC6VLX240T) using Vivado Synthesis Suite (Version 2012.2). The GPU implementa-

tion was tested using a NVIDIA GTX590 GPU with the CUDA 5.0 framework.

4.5.2 Results and comparison

Figure 4.8 shows the latency of the modules in the FPGA implementation. The

latency is defined as the number of clock cycles × the clock period in terms of number

Table 4.1: Performance of modules in the FPGA design: Latencies in both terms of the
number of clock cycles and time (ms) and throughput (FPS).

Latency
(cycles)

Latency
(ms)

Throughput
(FPS)

Gaussian Filter 6661 0.067 14925
Image Erosion 6661 0.067 14925
Image Dilation 7394 0.074 13513

Interpolation 43890 0.442 2262
Find Center 41753 0.421 2375

Image Partitioning 16386 0.165 6061
Coordinate Conversion 8462 0.085 11764

45

x_indx=blockIdx.x*blockDim.x+threadIdx.x;

y_indx=blockIdx.y*blockDim.y+threadIdx.y;

frame_indx=blockIdx.z;

data_indx=frame_indx*FR_SIZE+ROW_SIZE*y_indx

+x_indx;

window sub-frame

multi-frame

parallelism

SM

0

SM

1

SM

2

shared mem

… …

… …

Reduction

instances

SM

0

SM

1

SM

2

shared mem

in_indx1=frame_indx*FR_SIZE

+ROW_SIZE*in_y_indx

+in_x_indx;

in_indx2=frame_indx*FR_SIZE

+ROW_SIZE*in_y_indx

+in_x_indx+ROW_SIZE/2;

(a)

(b)

multi-frame

parallelism

… …

Threads

Threads

… …

Figure 4.7: GPU implementation thread arrangements. The data indexing method
is described using pseudo code. Part (a) shows the thread arrangements for window
operation kernel: each sub-frame is assigned to a streaming multiprocessor (SM) and
stored on its shared memory; each window operation is assigned to a thread. Part (b)
shows thread arrangements for the reduction kernels: each instance of reduction method
is assigned to a SM; the intermediate data is stored on the shared memory.

of clock cycles and absolute time (ms). The first bar provides the baseline results

(without directives) and the second shows the results the using pipelining and partitioning

directives in Vivado HLS and performing bit width optimizations on the variables.

Table 4.1 shows the same optimized latency results including the number of clock

46

!"!#$!"%&$

'"!($

&&")$

!"'*$
'"*'$ '"+*$

'"',$ '"',$ '"')$

'"%%$ '"%!$
'"&)$ '"'($

'"''&$

'"'&$

'"&$

&$

&'$

&''$

-./001.2$314567$ 89.:6$;7<01<2$ 89.:6$=14.><2$ 82567?<4.><2$$ 312@$A62567$ 89.:6$B.7>><212:$$ A<<7@12.56$

A<2C6701<2$$

!"
#$
%
&'
()
*
+,
(

DE<$<?>91F.><2$ G15HD1@5IJ?1?641212:J?.7>><212:$

Figure 4.8: The performance of each module using different HLS optimizations in
terms of latency(ms). After optimization in HLS, each functional module presents a
huge performance improvement, more than ×3 up to ×40 faster in terms of latency.

cycles for each module which factors into the overall latency. Additionally, it provides

the throughput in frames per second (FPS). Again this is for each module in the FPGA

implementation. The Interpolation has largest latency and the lowest throughput and

hence is the bottleneck. In a pipelined architecture, this module dictates the overall

throughput which is 2,262 frames per second.

Figure 4.9(a) compares sequential and pipelined FPGA designs. The total latency

is 1.4 ms to detect a cell and extract radius information in one frame. If the system starts

to process a new image after finishing one image, its throughput performance will be 714

FPS (see Figure 4.9(a)). However, we can perform function level pipelining using the

dataflow pragma. This causes the design to be pipelined across the five major parts of the

image analysis as depicted in Figure 4.9(b). In this design, the total latency is 140,900

cycles and a new frame image can start every 43,890 cycles. That means the latency to

process one image is 1.4 ms and the system throughput is 2,262 FPS.

Cell analysis is based upon the deformation as the cell moves through the flow

region. In a typical experiment, a cell will appear in approximately 25 consecutive frames

in the flow region. The decision on how to sort the cell must occur in under 10 ms in

order to be done in real time. The actual calculation that performs the sorting depends on

the experiment being performed, but extracting the radius information is by far the most

computationally intensive part. For example, the cell sorting could be performed using a

47

threshold based on the maximum deformation of the cell in the channel. Therefore our

latency calculation only includes the time to extracting the cell radius information. The

total latency to process a single cell across 25 frames takes 0.44 × (25 - 1) + 1.4 = 11.94

ms as shown in Figure 4.9(c).

��.�
,1����� ��1�9����4���)4�0�(1��1�� ���1�

����4�4��4��� (�� 1��4���

����	����������������� �

��.�

,1����� !�

(a)

)��0�
.3��1�� ,9!3�����!��9� ��9��39!3�� ,8�43�

���!�!��9�94� �9"3� ��9�

�	��(������� �����	��� �

	��
(������ ��
���		��� ��

)��0�
.3��1�� ,9!3�����!��9� ��9��39!3�� ,8�43�

���!�!��9�94� �9"3� ��9�

(b)

����� �

�34��.���3�1���	���02�0���	����

 ����� �
��
��.���3�1���	���02�0���	����

 ����� �
�2
��.���3�1���	���02�0���	����

 ����� �
�4���.���3�1���	���02�0���	����

Total&Latency&for&4&image&sequences&=&0.44&x&3&+&1.4&(ms)%

Total&Latency&for&N&image&sequences&=&0.44&x&(N>1)&+&1.4&(ms)%

(c)

Figure 4.9: Sequential and pipelined implementations: (a) the sequential design (latency
for one image: 1.4 ms, throughput: 714 FPS), (b) the pipelined design using the data
flow directive (latency for one image: 1.4 ms, throughput: 2,262 FPS), (c) a method to
calculate the total latency required for cell sorting.

The target FPGA was a Virtex 6 (XC6VLX240T). The entire design utilizes

40.07% of the slices (15327 of 37680), 25.84% of the LUTs (38941 of 150720), 6.07

% of the FFs (18303 of 301440), 6.37% of the DSP48Es (49 of 768), and 33.29% of

BRAMs (277 of 832).

Using Vivado HLS shortened our implementation time considerable as compared

48

!"##$
%&#$

!"!'($

!!')%$

!$

!#$

!##$

!###$

!####$

*+,-+.$ /01234$5$ 678$90:2;<$ =76+$90:2;<$

!"
#$
%&
'(
)*

+,
(

!"#"$
%&#%$

!'!(#)$ **"*$

!$

!+$

!++$

!+++$

!++++$

,-./-0$ 123456$7$ 89:$;2<4=>$?98-$;2<4=>$
!"

#$
%&
"'

%(
)*+
,-
.)

(a)

(b)

Figure 4.10: A comparison of the performance of the different implementations :
MATLAB, Serial C, GPU, and FPGA (a) the throughput (b) the total latency to analyze
a series of images for one cell.

to handwritten HDL. It is easy to describe the intended architecture using their C like

syntax and pragmas for hardware control. This also allows us easily expand our design

and add complexity after optimizing and reaching optimal performance in each module.

We feel there is great potential to explore further designs with the FPGA and Vivado

HLS.

Figure 4.10(a) compares the MATLAB, Serial C, GPU, and FPGA designs in

terms of latency and throughput. Our FPGA design has approximately 38× more

throughput (FPS) and 35× lower latency than the Serial C version. Our GPU has

approximately 22× and 2.8× better throughput and latency, respectively. The latency

results also show that the FPGA is more suitable than the GPU for this application. Here,

the total latency is the duration from the first appearance of a cell to getting the result of

the last image for it. The total latency for one cell analysis is 11.94 ms with the FPGA and

49

151.7 ms with the GPU (see Figure 4.10(b)). The target latency is 10 ms. and therefore

further work is required to meet this requirement.

The GPU latency essentially eliminates the potential to use the GPU as a hardware

acceleration platform if we wish to perform real time cell sorting which necessitates a

latency around 10 ms. The GPU latency is unlikely to decrease significantly even if with

a larger GPU. This is due to the fact that the GPU works through the CPU to transfer

data from the camera to the GPU for acceleration. So while additional optimizations

may increase the GPU throughput, the latency is largely a function of the transfer time

between the CPU and GPU. Therefore, the FPGA is much more attractive option because

it can directly connect to the camera, receive the image data at pixel rate, and operate on

it in a streaming pixel by pixel manner.

4.6 Conclusion

In this Chapter, we have examined our basic cellular image analysis method

using different hardware accelerators, GPU and FPGA, and compared their performances.

Our experimental results show that both architectures provide considerable performance

improvement over a software-only design. And the FPGA design achieves a throughput

rate twice as high as the GPU design, 2,262 frames per second(FPS) and 1,317 FPS,

respectively. The GPU design also suffers from significantly higher latency, 151.7 ms as

compared to 11.9 ms for the FPGA.

A GPU has been adopted in image analysis applications frequently, because it

has high parallel computing power using many cores. In our experiment, it presets a

good improvement in terms of throughput. However, an FPGA based acceleration is able

to achieve better performance than the GPU design in terms of throughput as well as

latency. A latency actually can be a critical issue for such a real-time system design. In

50

the next chapter, we will present more advanced and optimized architecture on an FPGA

for our target system.

This chapter, in full, is a reprint of the material as it appears in International

Conference on Field Programmable Logic and Applications (FPL), Lee, Dajung; Meng,

Pingfan; Jacobsen, Matthew; Tse, Henry; Carlo, Dino Di; Kastner, Ryan, 2013. There

are small changes in format and phrasing as a chapter within this larger paper. The

dissertation author was the primary investigator and author of this paper.

Chapter 5

Advanced Morphological Analysis on

an FPGA

5.1 Introduction

Quantitative analysis of cellular properties, such as size, shape, structure, life

span, and molecular contents, can characterize cell function, give insight into how it

behaves, and provide a technique for cell screening and/or sorting. However, there are

strict performance constraints to achieve real-time cellular analysis; the system must have

enough processing power to handle a very high cell throughput, and must performance

cell feature analysis with a sub-millisecond latency to facilitate sorting. Our cytometry

system is capable of analyzing thousand of cells per second based on image based

technology, which corresponds to work at over 60,000 frames per second; this is a

common goal in imaging flow cytometry [28, 2, 23].

A general purpose computer is not capable of achieving these performance, so

an efficient computing support from hardware accelerators as coprocessor is necessary.

GPUs and FPGAs are frequently suggested as a solution for such a high performance

51

52

computing. They provide parallel or pipelined architecture in different granularity, and

boost the performance utilizing processing elements in hardware level.

In the previous chapter, we evaluated different architectural approaches for our

image analysis system on a GPU and an FPGA. Both approaches present considerable

performance improvement over software implementation in terms of throughput and

latency. However, in spite of a great improvement, a GPU-based approach does have a

critical bottleneck in latency, which is one of main performance constraints, because of

its memory bandwidth.

In this chapter, we explore more in-depth optimization on an FPGA and present

an advanced cellular morphological analysis system. We target to achieve 60,000 frames

per second throughput performance, corresponding to 2,000 cells analysis per second,

and less than 1 ms for a single frame analysis performance. We adjust our target cellular

image for 64 × 64 pixels per frame similarly tiny as our initial dataset. At same time, we

expand our algorithm for more various datasets in different brightness level. They are

still noisy and blurred, but different levels, so it is non-trivial to develop a system with

high efficiency as well as accuracy.

We carefully develop a cellular analysis algorithm to extract their morphological

features from microscopic images and build a real-time system using an FPGA device.

There are various image analysis approaches for feature detection over low contrast

images. However, these approaches are too computationally intensive and hard to achieve

such high performance even with a hardware implementation. Most of them have iterative

solution to refine analysis results or use spatial and temporal signatures to estimate target

features accurately, which causes longer latency and lower throughput. Our method

does not have iterative process to find a solution and minimizes data dependency for

independent operations. It processes input and intermediate data in streaming way, which

is intended for efficient hardware implementation in terms of performance and resources.

53

Our major contributions in this chapter are:

• Extend accurate image analysis algorithms for high speed cell morphological

analysis.

• Hardware architectural optimizations using high-level synthesis (HLS) code.

• Developing a hardware accelerated system for microfluidic deformability cytome-

try.

• An in-depth evaluation and end-to-end demonstration of our system using a hetero-

geneous (CPU-FPGA) compute platform.

The remainder of this chapter is organized as follows. We explain our image

analysis algorithms and hardware architecture optimization methods in Section 5.2.

Section 5.3 presents the system description and experimental results in terms of accuracy

and performance. We conclude in Section 5.4.

5.2 FPGA Implementation

In this section, we introduce our cell image analysis algorithm and its hardware

accelerated architecture on an FPGA. To ease the design space exploration process, we

design and optimize the hardware architecture using a high level synthesis tool, Xilinx

Vivado HLS 2015.2. It allows us to focus on behavior level synthesis, data access patterns,

pipelining, connections between modules, and so on, rather than low-level hardware

debugging.

5.2.1 Overall flow

The imaging flow cytometry system is not only computationally intensive for

image analysis algorithm, but it is highly data intensive. Our method processes these

54

image data in streaming and fully pipelined manner in finer level as well as functional

level for high performance and low resource usage. It has to handle massive amount of

cellular images that are coming in the analysis pipeline in streaming way pixel by pixel

initially. It can process incoming data when it is ready and forwarding it to next module

right away with no storage required. It does not have iteration or feed data backward in

its data flow, which prevents a faster pipelining operation. Our streaming data processing

approach minimizes delay of analysis results and on-chip memory for caching data.

Also, modules do not have iterations. All functional modules can be implemented

in one-pass processing, and input and intermediate data in the algorithm pipeline are

delivered only forward. That enables us to create a hardware architecture that works on

streaming images with a pipelined structure. The cell image analysis algorithm has two

major parts: cell detection and cell analysis.

Figure 5.1 shows a cell analysis core architecture at a high level, corresponding

to the algorithm flow. The averaging module generates a background image as a prepro-

cessing step. It takes the first 256 frames and averages them. The averaged background

is stored to a BRAM and persists in memory while the system is running. All incoming

input images after the first 256 frames are directly connected to the detection module.

The detection module is relatively smaller and simpler than the analysis module. It

quickly checks if the current frame has a cell or not. The background image will be used

in this process. Only valid cell frames are passed to the analysis module. The analysis

module processes the rest of the major operations; deformation/morphological analysis.

It consists of three stages; find cell, find center, and trace cellular wall. We synthesize

these big modules separately and integrate them manually to generate a bitstream in

Vivado 2015.2.

55

Cell analysis core

Averaging

Detection Analysis
AXIS AXIS

BRAM

FIFO

Figure 5.1: Cell anaysis core; Averaging, detection, and analysis. The averaging
module takes the first 256 frames to generate a background image. The detection and
analysis modules start running after that. The averaging module generates a background
image and stores it using a BRAM, which is read by the detection module. The detection
module passes intermediate images to the analysis module using FIFOs, and, if a current
frame has no cell, it discards it.

5.2.2 Image analysis pipeline

Figure 5.5 shows a detailed block diagram of our hardware design including all

modules and the connections between them. The box (a) in the figure is cell detection,

and the rest of them, (a), (b), and(d), are substages of cell analysis, find cell, find center,

and trace cellular wall, respectively.

Detection module

The detection module detects the presence of a cell quickly from incoming frames

and passes only valid cell frames to the next stages, rejecting empty ones. We minimize

the complexity of the detection module for a fast detection process. This rejecting process

is based on a binary image, where it represents the cell area as white (or 1 in binary)

pixel values (see in Figure 5.2 (a)).

In Figure 5.5 (a), when an input frame (C) comes in, it subtracts (B) the back-

ground image acquired by averaging the first 256 input frames in the averaging module.

Then, it considers the bins in its histogram with the lowest intensity as background and

56

selects a gray level value to separate the cell area from background. The binary image

generated from this process may have noise in the background, so it applies a binary

morphology operation, erosion-only, to leave only big particles, which is likely to be a

cell. The number of valid true pixels in this frame is used to determine frames with a cell.

An one-bit iscell flag indicates this frame has a cell (A).

Subtracting background and
thresholding

E
rosion

Find cell

Valid cell

Non-valid

Figure 5.2: The cell detection process and the find cell stage in the cell analysis
module (a)cell detection; it subtracts background from a given input image using
thresholding. Then based on a converted binary image, it determines valid/non-valid
cell frames.(b)finding cell; similar to cell detection, it finds a location of the cell from a
denoised binary image, which is more accurate.

Find cell stage

The find cell stage needs a more accurate cell location than the cell detection

stage. The input is the background subtracted image (B) from the detection module.

Then, a Gaussian filter is used to denoise the input (E), and the thresholding module

converts it (E) into a binary image. To remove extra particles from the background, it

does a binary morphology operation, opening, i.e. dilation after erosion. The resulting

binary image has a white blob on a plain black background representing the cell area as

shown in Figure 5.2 (b). Averaging the number of these white pixels in each row and

column gives an exact location of cell (D).

57

Find center stage

Based on the location of the cell (D), it crops a 24×24 cell area from three images

(B,C, and E). The resizing module interpolates them 5 times and the adjusting module

enhances its contrast. It converts the contrast-enhanced images to binary images to find

the center point of a cell. In the binary images, white pixels represent the inner cell

area or cellular walls as shown in Figure 5.3. It finds a center point (F) by averaging

the number of these pixels in each row and column similarly to the find cell module.

Averaging the 3 images also confers the benefit of reducing the noise since the errors in

one are compensated for in the other images. The center point will be the input for the

next stage.

R
esizing and contrast-adjustm

ent

G
et center

A
daptive threshoding

Figure 5.3: Find center stage; this stage resizes the cropped cell area from the three
images based on the cell location found in the find cell module. Then, it resizes the
cropped images 5 times and enhances their contrast. Adaptive thresholding converts the
adjusted images to binary images. A center point is found by averaging the number of
white pixels in each row and column.

Trace cellular wall stage

In this stage, the conversion module converts cartesian coordinate cell images into

a polar coordinate images based on the center point (F). The horizontal axis represents

58

the angle from the x axis in the original image, 0 to 360 degrees, and the vertical axis

represents the distance from the center of the cell, or the radius. It uses the contrast-

enhanced input image (G) as the module input and the darkest pixel in every single angle

is considered the cellular wall. Finding the minimum intensity value at a particular angle

is the simplest way to determine the distance to the cellular wall, but this method is likely

to produce noisy results. So the conversion module extracts the distance to the cellular

wall using several different methods and takes the median value of of the results for each

angle.

Tracing cellular wall

Cellular wall trace

angle

ra
di

us
 Integration

C
onverting coordinate

Tracing starts

Tracing starts

min gray value

Figure 5.4: Trace cellular wall; The input to this module is the contrast-enhanced input
image and the center point from the previous module. Based on the center point, it
converts the cell image into a polar coordinate image and traces the cellular wall. The
horizontal axis represents 0 to 360 degree angles. The vertical axis represents the radius,
the distance from the center point to cellular wall in terms of the number of pixels. The
lowest intensity values are considered to be cellular wall.

5.2.3 Hardare modules

Some modules in Figure 5.5 share some common patterns of computation or data

access, like templates[49, 12]. While [49, 12] identify general computation or data access

patterns, our work is more specific to image processing. The sliding window pattern is the

59

	
	

Thresholding Find cell

Erosion
#1

Erosion
#1

Dilation
#1

Dilation
#2

AND Gaussian
Filtering

Thresholding
(Otsu’s)

D
E

B

	
	 Iscell

-

Thresholdi
ng #1

Thresholding

Erosion

Input
image

average image

A
B
C

Image

Histogram

Radius

Location value

	
	

(a)
	
	

(b)
	
	

(c)

Crop #1 Resize #1 Adjust #1 Thresholding
#1

Thresholding
(Otsu’s)

Find
center #1

Crop #2 Resize #2 Adjust #2 Thresholding
#2

Thresholding
(Otsu’s)

Find
center #2

Crop #3 Resize #3 Adjust #3 Thresholding
#3

Thresholding
(Otsu’s)

Find
center #3

	
	

E

B

C

D

G
et center

F

G

Output
cell shape

	
	

Integration

Crop Coordinate
Conversion

Extraction#2
(Trace forward)

Extraction#3
(Trace reverse)

Extraction#1
(Min)

G

F

	
	

(d)

Figure 5.5: Cell analysis core pipeline block diagram (a) cell detection module (b)(c)(d)
cell analysis module; (b) find cell, (c) find center, (d) trace cellular wall. The connections
between these stages are noted alphabetically.

60

most frequently used pattern in this domain. Gaussian filtering, erosion, and dilation are

sliding window kernel operations. Scaling is similar except it changes the size of output

image. Thresholding and adjusting are matching a pixel value to another pixel value,

and these are not dependent on neighboring pixels. The find cell and get center modules

are group detection operations, which find a point by averaging the number of white

pixels in a binary image in each row and column. Coordinate conversion transforms a

geometrical shape of image, like warping, but also changes the size. Modules in each

group are optimized in a similar way, and optimized modules are used to compose larger

modules, such as cell detection, find cell, find center, or trace cellular wall in Figure 5.5.

Table 5.1: Modules grouped based on their computation patterns.

Groups Modules

Sliding
window

kernel operation Gaussian filtering, erosion, dilation.
scaling Bicubic interpolation, cropping

pixel-matching Adjusting, thresholding
Detection Find cell, get center

Geometry transformation Coordinate conversion

Others
Generating histogram,

Otsu’s method

This hardware design method combined with image analysis algorithm flow lets

us estimate a deterministic performance result overall and gives a stable throughput in

spite of probable algorithm flow update. Because they are divided into small modules

and fully pipelined, only a bottleneck module decides the entire throughput. That means,

even if the algorithm flow adds more modules for further extensive analysis, it does not

affect to latency or throughput performance that much as long as additional modules are

optimized to meet the similar condition within similar patterns, II in one clock cycle with

a pipeline directive.

61

3 4

1 2

(c) (d)

1 2
3 4

Counting-pixel histogram
for finding operation

1 2

3 4

overlapped boundaries

(b)

1 2

3 4

Processing
unit

Processing
unit

Processing
unit

Processing
unit

(a)

Figure 5.6: Hardware optimization for bottleneck modules; Resizing, adjusting, and
get center are the main bottlenecks because they handle the largest size images. (a) To
balance the overall performance, they are partitioned into four quadrants and parallelized.
(b) The bicubic interpolation operation has weak data dependency on the overlapped
boundaries region. If we ignore this, it can cause artifacts at the partitioned edges. (c)
Generating a histogram has a data dependency on the entire scanned image. It generates
a histogram for each partitioned image and reduces them. (d) The get center module
also needs to scan the image by rows and columns. This process is also partitioned and
reduced similar to (c).

5.2.4 Bottleneck modules

Our hardware implementation is fully pipelined at a fine-grained level (intra-

modules) as well as a coarse-grained level (inter-modules). Most of the optimized

modules achieve Initiation Interval (II) in one clock cycle using the pipeline directive. All

submodules inside of two big modules run in a functionally pipelined way by applying

the dataflow directive in HLS.

In a pipelined design, it is important to balance throughput performance by

improving main bottlenecks since they are the critical path of the entire system. In our

62

hardware design, the latency of each module depends on the size of image. The main

bottleneck modules in the system pipeline are find center since it handles the largest

frame after resizing; resizing (bicubic interpolation), adjusting, thresholding, and get

center.

To achieve the higher performance, these modules should balance their per-

formance with different modules. There are two ways to achieve that: scaling and

partitioning. Scaling is simply replicating bottleneck modules multiple times and maxi-

mizing bandwidth, and partitioning breaks a bottleneck module down into submodules.

Scaling is relatively simple to implement but it uses more resources to hold data for

multiple frames. Partitioning should be done carefully considering data dependencies

between submodules, which can introduce more complexity. But processing units in

partitioning are smaller and use less resources. So we partition the bottleneck modules,

resizing (bicubic interpolation), adjusting, thresholding, and get center, to multiple

submodules that can run in parallel (see Figure 5.6 (a)). Each module operation and its

data are divided and sent to four quadrants.

Bicubic interpolation

The interpolation module is basically a sliding window operation. Line buffers

hold pixel data while a sliding window moves over them. It uses a 4 × 4 sized window

for the bicubic operation. No temporal dependency between frames is needed, but there

is a spatial dependency in one frame for neighboring window pixels. Ignoring this

dependency can cause aliasing at cut boundaries (see in Figure 5.6 (b).) To minimize

this error, line buffers should contain pixel values from the overlapping region. Cropped

images are delivered to BRAMs and the line buffers can be filled from the cropped

images.

63

Image adjustment

The image adjustment operation stretches an image histogram and matches each

pixel to another pixel value. Generating the histogram requires checking every pixel

value in a given image and therefore there exists a strong data dependency. To generate

the histogram of the partitioned image without sacrificing throughput performance, it

calculates small histograms for each quadrant first and then reduces them into one later

(Figure 5.6 (c)). The histogram reduction is a one pass operation with a small input size,

so it does not decrease the throughput performance.

Get center

The get center module is similar to the image adjustment operation. It also needs

to scan the entire image counting-pixel histograms by rows and columns and has a strong

data dependency (see in Figure 5.6 (d)). For partitioned images, each processing unit

generates multiple histograms independently, then reduces them into one.

5.3 Experimental Results

In this section, we describe our experimental system and present the accuracy

and performance results that we achieved.

5.3.1 System description

We tested our method on 3 different platforms: Matlab, C, and FPGA. The

software implementations used a 2.3GHz Intel Core i5 with 8GB DDR3. The target

FPGA board for hardware implementation is the Xilinx VC707, which has a Xilinx

Virtex 7 FPGA device, xc7cx485tffg1761-2. We demonstrate an end-to-end system by

connecting the FPGA board with a host computer communicating through PCIe. The

64

control PC has Windows 7 or Ubuntu Linux and runs with the latest RIFFA 2.1 driver

for FPGA communication [36]. On the software side, the host is responsible for reading

data, streaming the data to the FPGA, and receiving the results (see Figure 5.7 (a).) The

analysis core of the FPGA design uses the AXI-stream interface. This system is for

offline analysis, and the connection can be replaced with any streaming interface for an

online system.

5.3.2 Test dataset

The test data are organized in four different sets, which each have 5,000 frames.

The frames are 64 × 64 in resolution, 4096-pixels, and stored in an unsigned 8-bit data

type. The raw data are taken by a phantom camera [5]. Since this setup is very sensitive

to light-level, the contrast level of the test video varies slightly. For accuracy testing, we

take the first 1,000 frames and generate ground truth data. Then we compare our results

to them (see Table 5.2.) The hit/miss ground truth data are manually produced, but others

are from an initial work, which are also estimated results.

Table 5.2: Test video set for accuracy; the number of valid cell frames for cell de-
tection results. The first 1,000 frames are taken from each video data. Note that the
concentration of cells can be controlled by diluting the fluid.

Set 1 Set 2 Set 3 Set 4
Cell 135 170 148 150

No-cell 865 830 852 850

The format of the input test data sent to the FPGA is in Figure 5.7 (b). The output

data consists of the frame number, iscell signal, the location of the cell, the location of

the cell center in the resized image, and 360-radius values (see in Figure 5.7 (c)). If the

detection module decides a current frame has no cell, the analysis module doesn’t start

and generates no output. The first four bytes of the output, i.e. the frame number, help to

synchronize an input frame and the output data by counting the number of frames sent to

65

the FPGA.

pixel[0]

pixel[1]

pixel[2]

…

pixel[4093]

pixel[4094]

pixel[4095]

frame number (0:7)

frame number (8:15)

frame number (16:23)

frame number (24:31)

iscell

cell[x]

cell[y]

center[x]

center[y]

radius[0]

radius[1]

…

radius[359]

8-bit

(b) (c)

Disk

Host

Cell analysis
core

FPGA

PCIe

8-bit

(a)

Figure 5.7: System description (a) offline cell analysis system connecting a host
computer and an FPGA. The host reads raw data from a disk and sends them to the
hardware using RIFFA for PCIe. All image analysis is processed on the FPGA side.
(b)(c) input and output data format. Input data are streamed as 4096 pixel values and
output data for a single frame consists of the frame number, valid cell flag (iscell), cell
location from raw data, center point found, and 360 radius values in every angle.

5.3.3 Target throughput performance

Our initial target performance is to analyze 2,000 cells per second. If one cell

event appears in 7∼15 frames and the event happens in 50% of frames, the system has to

be capable of processing 28∼ 60K f rames/sec at the front end.

2000 (cells/sec)×7∼ 15 (f rames/cell)
0.5 (valid f rames/total f rames)

= 28 ∼ 60K f ps

5.3.4 Accuracy results

For accuracy results, we use several metrics: (1) detection result (hit/miss) (2)

find cell result (hit/miss) (3) size of cell (average radius) (4) respective ratio (ratio of

66

long/short axis of cell.)

The detection output represents the result of determining cell/no-cell frames. The

results in Table 5.3 show the true positive rate (sensitivity), true negative rate (specificity),

ratio of true positives to number of positive predictions (precision), and true value rate

(accuracy). They can be calculated as below.

• Sensitivity

= (true positive)/(condition positive, or true positive+false negative)

• Specificity

= (true negative)/(condition negative, or false positive+true negative)

• Precision

= (true positive)/(test outcome positive)

• Accuracy

= (true positive+true negative)/(total)

Table 5.3: Detection results with sensitivity (true positive rate), specificity (true negative
rate), precision (ratio of true positives to number of positive predictions), and accuracy.

Set 1 Set 2 Set 3 Set 4
Sensitivity (%) 55.31 66.47 64.86 75.33
Specificity(%) 99.88 99.64 100 99.29
Precision(%) 98.73 97.41 100 94.96
Accuracy (%) 93.60 94.00 94.8 95.7

Sensitivity means how many valid frames the system can detect out of true valid

cell frames, and specificity means the number of empty frames the system can find out of

true no-cell frames. And high precision represents that there is a high probability that

most of the correctly predicted frames have real cell features. Our system ignores some

frames at the edges or cell blobs that are too blurry, and effectively screens unnecessary

67

frames and assures the validity of cell frames. A high precision result here indicates more

efficient performance with fewer wasted operations.

Table 5.4: Find cell results representing hit/miss rate within a fixed distance from a true
cell position.

Set 1 Set 2 Set 3 Set 4
Cell location (%) 97.36 100 97.92 98.23

The Find cell result presents the correctness of cell location found. The next

stage, cropping, cuts off cell focusing area based on this result. Table 5.4 shows the

findcell result. It decides hit if a cell location is found within a certain boundary from a

ground truth point, which is 5-pixels in Euclidean distance in this test.

(a)

1 2 3 7 6 5 4

(b)

1

2

3

7

6

5

4

angle
radius

Cellular wall
trace

Figure 5.8: Trace cellular wall results example (a) polar coordinate images with the
trace of the cellular wall in white lines (b) cell images with corresponding trace lines.

We check the size of cells and respective ratios to evaluate tracing cellular wall

results. Figure 5.8 visualizes the tracing result examples using test cell images, and Table

5.5 shows mean absolute error (MAE), mean(µ) and standard deviation(σ) of cell size

and respective ratios in each data set.

68

Table 5.5: Accuracy results in mean absolute error(MAE) and statistical distributions
of test and ground truth data in terms of mean(µ) and standard deviation(σ).

Set 1 Set 2 Set 3 Set 4

Size

MAE 1.31 1.37 6.88 1.74

True
µ 15.03 14.73 14.20 12.43
σ 2.52 2.71 3.26 2.98

Test
µ 16.11 15.72 20.47 13.25
σ 2.24 1.99 4.13 4.03

Ratio

MAE 0.22 0.17 0.26 0.21

True
µ 1.04 1.03 1.19 1.00
σ 0.29 0.29 0.36 0.35

Test
µ 1.06 0.98 1.21 0.84
σ 0.30 0.25 0.18 0.36

5.3.5 Performance results

In this section, we show our performance results on an FPGA and compare them

to other design platforms. We have three different test platforms: Matlab, C, and FPGA.

Table 5.6: Throughput performance in detection and analysis modules of the hardware
design pipeline.

Detection Analysis
Bottleneck latency (cycles) 4102 8287

Max clock frequency (MHz) 268 255
Max frame rate (FPS) 65.3 K 30.8 K

In the FPGA design, we build two main processes which run independently:

detecion and analysis. Table 5.6 shows the maximum achievable frame rate of each

module. The detection module deals with smaller images, so it spends less clock cycles

than a bottleneck module and runs at a higher clock frequency. The analysis module

consists of more submodules and processes more complex operations. The image size is

larger in this module and the critical path is longer. Even though the maximum frame

rate is less than detection, it doesn’t affect the system performance since it is handling

less frame data.

The performance of the entire design in terms of throughput and latency is

69

Table 5.7: Performance comparison in terms of throughput and latency for different
platforms: Matlab, C, and FPGA.

Matlab C FPGA
Throughput (FPS) 43.73 230.76 60.9 K

Speed up ×1392 ×263.9 N/A
Latency (ms) 22.87 4.33 0.068

Speed up ×335.6 ×63.6 N/A

represented in Table 5.7 across platforms. Latency is an average time to process one

frame. Throughput is an inverse of latency and means the amount of frames processed

in a second. The performance result of hardware is deterministic and predicable, which

depends on the size of image, but software is not. Performance can differ across varying

input. Our result is evaluated using the dataset introduced in Section 5.3.2.

When the FPGA design runs at a 250 MHz unified clock frequency, it is able

to process 60.9 K frames per second at the front end. This is a ×1392 speed up when

compared to the Matlab design and is ×263.9 faster than the C-based software design.

The latency result also shows a significant speed up. The hardware design takes 0.068 ms

to process one frame on average, which is ×335.6 faster than Matlab and ×63.6 than the

C-design.

We compare our performance achievement with our previous work [42] in Ta-

ble 5.8.. Even though the new image analysis process is enhanced and more complicated

covering broader cellular image sets, it presents much faster throughput and latency

performance against both FPGA and GPU implementations. Our new architecture filters

valid cell frames quickly at the front end, and all bottleneck modules are balanced to

achieve the target throughput as in Section 5.2.4. The new design results in about 30

times faster than an FPGA design in [42]. GPU design has a critical bottleneck in terms

of latency because of data load operation. We utilize only on-chip memories for minimal

latency, which is tiny but provides great memory bandwidth.

70

Table 5.8: Performance comparison in terms of throughput and latency with our previ-
ous work in [42]

Previous works [8]
This work

GPU FPGA
Throughput

(FPS) 1.32 K 2.26 K 60.9 K

Latency
(ms) 151.7 1.4 0.068

Frequency
(MHz) - 100 250

5.3.6 FPGA resource utilization

Table 5.9 shows the resource utilization results of our hardware design. The

detection module consumes less than 1% of FPGA resources; 0.8% of LUTs and 0.3%

of FFs. The analysis module uses 16.6% of BRAMs, 18.8% of LUTs, 7.72% of FFs, and

10.14% of DSPs. The entire design, including the PCIe API, consumes less than 20% of

the resources overall.

Since the image analysis process runs with no dependency between frames, it

can be scaled as much as the resource are available. The current design uses only 20%

of resource on a target FPGA device, it is possible to add more processing element

pipeline. If it scales the procedure multiple times, the frame rate could be more than the

current 60K FPS up to few hundreds thousand frames per second. Our current goal in the

algorithm is estimating the cellular feature accurately, but if the rest of resources could

be also used for post processing after measuring cellular feature if necessary.

Table 5.9: Resource utilization in hardware design pipeline analysis. Utilization of
detection and analysis modules and total utilization including PCIe connection.

Detection Analysis Total
BRAM 0 328 390 (19.0%)

LUT 2653 45242 58533 (19.3%)
FF 1683 45338 60587 (9.98%)

DSP 0 299 299 (10.7%)

71

5.4 Conclusion

In this chapter, we developed and demonstrated a hardware accelerated cellular

image analysis system. We designed an algorithm to analyze low resolution microscopic

videos, and we created a custom hardware architecture to implement the algorithm on an

FPGA. Our target setup is designed to extract cellular morphological features from a high

speed camera. Our system meets the challenging performance requirements in terms of

throughput as well as latency. Our system can handle video streams up to 60,900 frames

per second and process each image with a 0.068 ms average latency. This provides the

capability to perform real-time analysis and sorting of 2,000 cells per second.

This chapter, in full, has been submitted for publication of the material as it

may appear in Journal of Parallel and Distributed Computing (JPDC), Lee, Dajung;

Mehta, Nirja; Shearer, Alexandria; Kastner, Ryan. There are small changes in format and

phrasing as a chapter within this larger paper. The dissertation author was the primary

investigator and author of this paper.

Chapter 6

Extensional Cellular Analysis based on

Image Segmentation

6.1 Introduction

Image based cytometry technique enables sophisticated high contents cell analysis,

and is capable of understanding complicated cell features that appears in a cell image.

In the previous chapter we have used an efficient and accurate image analysis algorithm

to determine the cellular morphological features such as size, shape, circularity, and

deformability. In addition, this system can achieve high accuracy and throughput.

In the recent past, research works were focused on measuring physical shape of

cells, however in this chapter, we would like to expand the cell analysis approach to

understand different types of cell and its complex features. It includes observing the

interior structure of the cell, such as membrane and nucleus. The cells can be irregularly

shaped or extremely deformable, potentially exploding status in a device junction. We

have explored several image segmentation approaches to evaluate these advanced features

and different types of cells in detail.

72

73

Image segmentation approaches are commonly used in many application domains

to understand objects in a scene. It basically partitions the image into chunks of the

pixels, each of which represents an object or background. There are many image

segmentation approaches in the literature. among which the simplest and easiest method

is a binary thresholding approach. In this image based method, an object is separated

from background depending on its threshold value and hence finding a proper threshold

value is very important For more sophisticated advanced partitioning, clustering method

based on classical machine learning algorithms is also well known. For example, k-means

algorithm clusters the n number of one-dimensional pixel values into k clusters, and each

cluster presents one object.

The primary motivation of this work is to analyze cell membrane and nuclei part

or detect an irregularly shaped cells using image segmentation. We have explored several

image segmentation algorithms in different categories. The first category is a binary

thresholding based approach. The input cell data had very low contrast and was blurred,

therefore it was non-trivial to find a proper thresholding value. We evaluated several

algorithms to find a thresholding value accurately. In the second category, we used a

data clustering based algorithm and k-means is the most commonly used algorithm for

image segmentation. In our system, it clusters pixel values in an image into k-groups,

each of clusters present cell nuclei, cell membrane, or inner cell architecture. In the third

approach, we suggested the convolutional operation based segmentation in which we

estimated the basic statistical property, mean or variance, in a convolutional window and

cluster the pixel based on them.

74

(a) (b)

Figure 6.1: Examples of separating interior structure of cells. (a) Original input and
segmentation result for cell membrane area. (b) Original input, segmentation result for
cell nucleus, and nucleus only area (left to right).

6.2 Methods

In this section, we have described several image segmentation algorithms that has

been explored for cell image analysis. In general, we have examined various algorithms

and picked five among them that presented desirable accuracy, performance, and hardware

profiling results. We have categorized these five methods into three types based on their

computation patterns. All the algorithms are carefully designed and modified to achieve

our goal.

6.2.1 Thresholding based approaches

In general, the binary threshold based approach is considered as the simplest

and easiest method for image segmentation that is used to separate a target object from

its background depending on a threshold value. Technically, a current pixel presents

an object, if it is greater than the thresholding value, otherwise, it is considered as a

background pixel hence, it is very important to find a proper thresholding value. The

value may be fixed and globally used for the entire image. The obtained value has to be

75

adjusted based on spatial or temporal information for better segmentation results. The

cell data that is obtained in our setup is very sensitive to light level and contains a lot

of noise, so it requires an algorithm to adjust threshold operation. This research has

explored various methods to determine the threshold value and to detect the target cell

accurately.

out(x) =

ob ject, if in(x)≥ thresholding

background, otherwise
(6.1)

Lumiance

According to the research works that have been explored, Luminance threshold

method is the simplest method as it decides the thresholding value from a histogram

of an image which can be described by probability density function. After the initial

stages of preprocessing, such as enhancing contrast and removing noise, it calculates

a histogram over intensity values of an entire image and finds a thresholding value to

separate cell area. Figure 6.2 presents a process for luminance thresholding method. A

thresholding value (µ +σ) is a sum of a mean (µ) and standard deviation (σ) of pixel

values in the current image and this value depends only on a current image, with no

dependency between frames. Accordingly, each submodule can be processed by a single

scan of the image.

Iterative selection

Iterative selection approach iteratively determines a thresholding value while

scanning a current image. A thresholding value is initialized to a mean of image intensity

values, and then it separates the cell area. Furthermore, it calculates a mean of background

area Tb and cell area Tc separately and re-estimating a thresholding value as Tb +Tc/2.

76

input Output Image	
condi,oning	

Luminance	
thresholding	

Gaussian	
filter	

Figure 6.2: An algorithm flow of luminance thresholding method. It preprocesses input
image and highlights the cell feature. Then, it filters the feature with Guassian filter
and finds a threaholding based on a mean(µ) and standard deviation value(σ) of pixel
values.

This process of re-estimating a threshold value is repeated until the preceding and the

successive values converge. This gradual updating process refines a thresholding value

and improves the final accuracy. Figure 6.3 presents an overall process for iterative

selection method and its intermediate images between submodules. This method does

not have a dependency between frames, that is temporal information. However, it does

provide an iterative optimization solution to determine an absolute value. As shown in

Figure 6.3, the final stage for iterative selection is a 2N passing process. N is the number

of iteration to refine the value until it converges.

input Output Image	
condi,oning	

Itera,ve	
selec,on	

Gaussian	
filter	

Figure 6.3: An algorithm flow of iterative selection method. The preprocessing and
Gaussian filtering operations are similar as Luminance thresholding method, but it finds
a thresholding value iteratively.

77

Hysteresis with a temporal signature

6.2.2 Data clustering based approaches

Data clustering is one of the fundamental problems in data analytics [60, 70],

pattern recognition [65, 69], data compression [39], image analysis [59, 53], and machine

learning [14]. It groups data objects into several subsets known as clusters, based on

either their similarities or dissimilarities, where data items with distinct features are

categorized in separate clusters. It is widely used to analyze given data set and understand

its general features.

In computer vision or image analysis domains, it is generally used to understand

visual information and extract object features from images such as segmentation, object

detection, or object recognition. It considers a single pixel, a chunk of pixels, or an

entire image as input and infers what a data object unit represents in the image. We

have examined the cellular image data set using k-means, which is most frequently used

algorithms for image segmentation.

k-means algorithm

In this section, we have tested k-means clustering algorithm. k-means partitions

n input data, xi’s, into k groups, {X1,X2, ...Xk}. Each of them is presented using a single

center point, ci. The algorithm assumes that data points from d-dimensional spherical

density shape are centered on this mean point. k-means algorithm finds an optimal set of

center points that minimizes an objective function in (6.2). It is defined as the sum of

distances over centroids and data points associated.

argmin
X

k

∑
i=1

∑
x∈Xi

||x− ci||L (6.2)

To find an optimal solution, k-means uses an iterative refinement process that

78

performs an assignment of the data objects to clusters and subsequently updates the

centroids. The centroid update would result in a new assignment of the data objects.

i.e., This process continues until the assignments converge, The clustering problem is

NP-hard, and this algorithm does not guarantee an optimal solution. Nevertheless, its

simplicity and intuitive nature have led to a widespread use of partitioning across a wide

number of applications domains.

input Output Image	
condi,oning	 k-means	Gaussian	

filter	 Binary	mask	

Figure 6.4: An algorithm flow of k-means based approach. This method partitions
image pixels using k-means clustering algorithm. Then, it defines the largest pixel
region as a cell membrane area.

Figure 6.4 presents the k-means based image segmentation approach. In our test,

we have initially applied image conditioning and Gaussian filtering for preprocessing and

k-means algorithm is used to cluster pixel points.. The number of clusters, k, is set for

10 in this test. If k value is larger, it can cluster finer data finer, that is higher clustering

resolution but would take more time to find a solution. After the process of clustering, the

average intensity of the pixels in each cluster is verified and a binary mask is created to

select cell area based on the total number of pixels present within in each cluster. Figure

6.5 shows an intermediate image data for different frames in a single cell event.

6.2.3 Convolutional window based approaches

Convolutional window process, or sliding window process, is the most frequently

used data processing pattern in image analysis application. It is employed in filtering,

79

Figure 6.5: Examples of intermediate image data in k-means based segmentation
approach

denoising, edge detection, correlation, compression, deconvolution, simulation, and in

many other applications. A kernel operation within a convolution window is diverse.

A kernel is a (usually) small matrix of numbers that are used in image convolutions.

Differently sized kernels containing different patterns of numbers produce different

results under convolution and size of a kernel is arbitrary but 3×3 is often used. Most

of our module operations in Chapter 5 are similar. A convolutional window based

operation is one-pass processing algorithm and very hardware friendly. It can be easily

implemented in a hardware using line buffers ,window registers and is able to achieve

high throughput with a low latency.

This operation takes a chunk of pixels area within a window and uses neighboring

data properties, not only by pixel-by-pixel. We consider statistical values, mean and

variance within a convolutional window. This convolutional approach started from an

idea that a window near the cell area has brighter intensity (mean) or higher complexity

80

(variance) than the background.

Convolutional mean

The Convolutional mean method is same as a 3×3 mean filter. and is commonly

used for noise removal. In our cell data set, the pixel data is a low intensity , bright pixels

along with cell edge or nuclei. So, this mean filter smoothes out the cell image except for

nuclei and cell edges as shown in Figure 6.6 (b).

Convolutional variance

Convolutional variance method calculates the variance of a 3×3 sliding window.

Background pixels are highly noisy and blurred, but very consistently. It does not have

much difference with the neighbor pixels. However, cell area has a higher complexity

that is high variance. In this method, it is possible to catch a transparent cell within

the fluid, which would have a similar level of intensity range to that of the background

having only subtle noises in a fine level (shown in Figure 6.6 (c)).

Choosing thresholding value

In both methods, we have chosen a threshold value over convolutional mean or

variance image to decide whether a pixel is a cell or background. From the data set it

can be noticed that the characteristic, size, and features of a cell varies over frames and

making it difficult to pack a single parameter value for thresholding. Therefore, we have

combined convolutional mean and variance method and utilized distribution property to

choose the parameter for cell area.

We have used a standard normal table, called Z table, which represents the

cumulative distribution function of the normal distribution. The thresholding value was

determined based on the anticipated cell size. For example, if the cell size is large enough

81

(a) (b) (c) (d) (e)

Figure 6.6: Examples of preliminary test images for convolutional window based
approach (a) input images (c) thresholded images after applying a convolutional mean
operation, (c) images after applying a convolutional variance operation (d) thresholding
of (c), (e) cell-only images by applying a binary mask in (d).

82

to cover more than 20% of pixels, we can mathematically estimate the thresholding value

that presents a top 20% point in pixels distribution, i.e. histogram, of a convolutional

variance image.

Parameter estimation from a standard normal distribution

A parameter from standard normal distribution has to be estimated. Every normal

distribution is a version of the standard normal distribution whose domain has been

stretched by a factor σ (the standard deviation) and then translated by by µ (the mean

value). In addition, any normal distribution f (x|µ,σ) or standard normal distribution

f (z|0,1) can be converted vice versa.

Figure 6.7: A Z table for normal distribution. A thresholding value can be estimated by
the expected area rate (%) and this table.

For example, to find a threshold value cutting off upper 20% in a given data set,

which is assumed to be in a normal distribution, f (x|µ,σ), can be estimated from the

standard normal distribution, f (z|0,1). The point of the threshold value for upper 20%

in a standard normal distribution is already defined in a standard normal table, which is

about 0.84(as shown below). From the fact, P(z > 0.84) = P(x > α) From a conversion

equation above, we can find the thresholding value (α−µ)/σ = 0.84, α = 0.84σ +µ .

The procedure to find the parameter 0.84 from the table given below. This kind of table

consist all z values and a probability of P(z < Z) for each z. From a left column, 0.8, and

83

from a top row, 0.04, a cross section, which makes 0.84, has 0.7995. This indicates the

probability of an area below 0.84 is 0.7995 in the standard normal distribution.

Advanced convolutional mean and variance method

Figure 6.8 presents an algorithm flow of our convolutional segmentation approach.

It consists the following steps: (1) generating a convolutional mean and variance images

by using a 3×3 convolutional kernel. (2) estimating a cell size in a simple method. We

set upper and lower bounds in a noise removed image and count the number of active

pixels roughly expected to be a cell area. (3) Based on the expected size, thresholding

parameter in variance image can be estimated and a standard normal distribution is used

at this stage. (4) It separates the cell area and background based on these parameters.

Output input
Convolu'onal	

mean	 Thresholding	Gaussian	
filter	

Closing	and	
opening	

Convolu'onal	
variance	

Pixel-wise	
summa'on	

Thresholding	 Closing	and	
opening	

(a) (b) (c) (d)

(a)
(b)

(c) (d)

Figure 6.8: An algorithm flow of convolutional window based approach. (a),(b),(c),
and (d) present intermediate image during the process.

6.3 Experimetal Results

In this section, we evaluate different image segmentation approaches in terms of

accuracy and performance.

84

6.3.1 Test environments

Our test image data examples are in Figure 6.9. Size, shape, structure, deforma-

bility, and its transparency are various. We have 319 cell images with 27 different cells.

The estimated cell area is measured by the number of pixels within a cell region and

compare to our ground truth data. We test the accuracy and computing performance in

python software.

Figure 6.9: Examples of test image data. Each row presents for a single cell. Cells are
in different shape, structure, and transparency.

6.3.2 Test results

Figure 6.10 shows accuracy of different algorithms. It presents the number of

error pixels in each segmentation result and an error rate on the top. All of them show less

than 4% of error rate. Luminance thresholding method presents the most error (3.44%),

which is the simplest approach. And iterative selection method gives the best accuracy

result (2.86%).

Figure 6.11 presents a comparison of computing time in software. As we dis-

cussed, the simplest luminance thresholding method gives the minimum computing

time (0.8 sec). k-means algorithm contains iterative process, so it gives high latency

85

3.19%	

2.86%	

3.44%	

3.09%	

2.94%	

400	

450	

500	

550	

600	

K-means	 Itera7ve	Selec7on	 Luminance	
Thresholding	

Hysteresis			 Sliding	variance	

Figure 6.10: Accuracy of different segmentation algorithms. It is based on the number
of pixels of cell area difference (vertical axis). Each result presents an error rate on the
top.

(6.3 sec). Hysteresis with temporal signiture method gives also high computing time

(5.1 sec) because it refers extra frames before and after the current one. Convolutional

method gives the highest latency overall. It moves a convoultion window over image

pixel by pixel and calculates variance within the window. It takes up to several minutes

to calculate a mean and standard deviation for every convolutional window.

6.3

1.3	
0.8	

5.1	

>	8.0	

0.0	

1.0	

2.0	

3.0	

4.0	

5.0	

6.0	

7.0	

8.0	

K-means	 Itera7ve	Selec7on	 Luminance	
Thresholding	

Hysteresis			 Sliding	variance	

Figure 6.11: Latency of different segmentation algorithms in software. Luminance
thresholding presents the minimum latency, and convolutional variance method takes a
few minutes to calculate variance values in sliding convolutional window.

86

6.3.3 Design complexity and hardware implementation

Since we are targeting a highly pipelined hardware implementation mostly run-

ning in streaming, the data bandwidth is a main bottleneck and decides the overall

performance. Therefore, a module that handles the biggest image is a bottleneck in gen-

eral. We estimate the most achievable performance based on the algorithm complexity in

their bottleneck module (see Figure 6.12).

When the size of image handling is n, luminance thresholding method has O(n)

complexity. Iterative selection has O(nm) complexity when m is the number of iteration

to converge results. k-means algorithm is already known as NP-hard problem. When

the number of iteration is fixed to i for a simpler case and k is the number of clusters,

it is O(ikn). Convolutional variance is O(n). Based on this fact, the algorithm that can

be implemented the most efficiently on hardware is luminance thresholding method or

convolutional variance.

input Output Image	
condi,oning	

Luminance	
thresholding	

Gaussian	
filter	

O(n) O(n) O(n)

input Output Image	
condi,oning	

Itera,ve	
selec,on	

Gaussian	
filter	

O(n) O(n) O(nm)

(a)

(b)

Figure 6.12: Examples of complexity analysis in an algorithm flow. The most complex
module is the bottleneck in a pipelined system. (a) luminance thresholding method is
balanced (b) iterative selection method has a bottleneck in the last stage.

87

6.4 Conclusion

In this chapter, we have discussed different image segmentation approaches for

cellular image analysis and have explored thresholding based approach, data clustering

based approach, and convolutional window-based approach by using luminance, iterative

selection, hysteresis with temporal signature, k-means clustering, and convolutional

window based methods. Luminance thresholding is the simplest method that presents

the minimum performance overhead in software and is hardware friendly. However, it

tradeoffs the accuracy and does not provide an absolute thresholding value per frame.

The Iterative selection consists of a refining process to find a thresholding value and

provides more accurate segmentation result but hinders high throughput performance.

Hysteresis method with a temporal signature does generate a good estimation of the

cell area, while the frame dependency causes a longer latency, which is not suitable

for hardware implementation. Convolutional window based approach provides a good

estimation for cell area and has a promising performance for high throughput analysis in

a pipelined way on a hardware. However, regarding our primary goal to observe more

detailed inner cell information, we can conclude that a data clustering based approach is

the best choice for that. In the next chapter, we will present our work about the streaming

data clustering algorithm.

Chapter 7

Streaming Clustering Algorithm for

Image Segmentation

7.1 Introduction

Microfluidic cellular images provides indepth information of cells. We can

observe cellular features in detial and extract complicated parameters from images in

high throughput. In our previous works, we measure cellular morphological features, i.e.

external shape of cell membrane [42], and observe physical structure and deformability

under stress in a device. We want to extend our system’s capability for more functionality.

Cell has more complicated inner structure, such as separable cell nuclei and membrane,

or sometimes its shape is highly irregular to define. For this purpose, we need more

sophisticated method than a binary thresholding or measuring its shape. Data clustering

based image segmentation approach helps us to analyze and understand cell images with

these details.

Image segmentation is one of the most common and classical problems used to

detect objects and understand scenes in computer vision area. It partitions an image

88

89

into multiple regions, each of which may presents an object or a background. There are

many practical application using this method and research works as well to find a general

solution for that. Data clustering based segmentation is one of well-known solution. It

takes an image pixel value or a set of pixels as an input data point and generates sets of

pixels as a clustering result. In our cell analysis system, it enables accurate and detailed

analysis of cells.

However, finding a solution has a complicated optimization process, which is

commonly very iterative to refine the solution. This iteration holds strong data depen-

dency, and it hinders designing a high performance segmentation applications. In our

system, we have two critical performance constraints in throughput and latency. Even us-

ing a state-of-art accelerator hardware, achieving these performance goals is a non-trivial

problem.

In this chapter, we present our effort of designing an accelerated data clustering

system on hardware for image segmentation. We develop a novel hardware friendly

data clustering method and accelerate the algorithm on a CPU-FPGA heterogeneous

system. Our final hardware design achieves high throughput performance with reasonable

resource utilization, which enables it to scale towards large and high dimensional data

sets. We evaluate our system for image segmentation with our cellular data set as well

as other open sourced bigdata sets for broader applications. Our clustering method

outperforms the state of the art clustering algorithms in software system [10] and FPGA

implementations of heterogeneous systems [46, 64, 8].

Our primary contributions of this research are:

• Suggesting a high throughput image segmentation method for analyzing more

detailed cell analysis

• A hardware friendly, multilevel, streaming clustering algorithm that can handle

large, high dimensional data sets

90

• A hardware/software codesign method for streaming clustering architecture that

achieves high throughput and low resource utilization across a wide set of algorith-

mic and system parameters

• Characterizing our system performance on a wide range of applications including

image segmentation and big data analysis of real world datasets

The remainder of the paper is organized as follows. Section 7.2 presents more

background of data clustering algorithms in general and the fundamental problems.

Section 7.4 introduces our streaming data clustering algorithm. We explain our hardware

design and optimization methods in Section 7.5, and show our experimental results in

Section 7.6. We conclude in Section 7.7.

7.2 Data Cluatering

Data clustering is one of the fundamental problems in data analytics, pattern

recognition, data compression, image analysis, and machine learning [53, 70, 60, 39]. Its

goal is to group data objects that most resemble one another into the same cluster based

upon some metric of similarity, or equivalently to separate data items that are relatively

distinct into separate clusters.

Clustering algorithms can exhibit vastly different performance depending on the

application, thus one must employ the algorithm that best matches the characteristics of

the data set. For example, k-means is one of the oldest and simplest clustering algorithm.

It partitions input observations into k groups, each of which is represented by a single

mean point of the cluster. It is frequently used, likely due to its simplicity, but its basic

assumption limits the separability of the data. Furthermore, it uses an iterative approach

that does not scale well. There are many variations of the k-means algorithm e.g., [10, 11],

91

and other algorithmic approaches, such as BIRCH or DBSCAN [71, 24] developed to

provide better performance or work with datasets with different properties.

Increasing amounts of data are created in our daily life. These “big data” sets

can be large, high-dimensional, diverse, variable, and delivered at high rates. More

importantly, they are commonly time sensitive. The data must be analyzed quickly to

extract actionable knowledge. In order to improve our ability to extract knowledge and

insight from such complex and large data sets, we must develop efficient and scalable

techniques to analyze these massive data sets being delivered at high rates.

Online data clustering algorithms handle unbounded streaming data without using

a significant amount of storage. Thus, they provide a fast technique that maps well to

hardware. However, online clustering has its drawbacks. Generally online algorithms

look at the data only once. While this limits the storage, and thus allows for scalability

and more efficient hardware implementations, it can reduce the accuracy compared to

other iterative approaches that perform multiple passes over the data. For example, if

the data characteristics evolve over time, the online algorithms can get stuck in a local

optimum. These issues make it non-trivial to perform an accurate clustering using online

algorithms. Yet these algorithms have good scalability and map efficiently into hardware.

We propose a multilevel, online data clustering method that is accurate while

providing a scalable hardware architecture that is suitable for implementation in a het-

erogenous systems. Our method approximates multiple subclusters from streaming data

first, then applies a problem specific clustering algorithm to these subclusters. Each

subcluster is represented using a set of centroids which are estimated with different

parameters independently. Each subcluster module accepts streaming input data and

keeps updating the centroids set based upon the new data object. The next step to cluster

these approximated points maps centroids to clusters, which is determined by the dataset

properties. In our method, one cluster can have more than one center points unlike the

92

k-means algorithm which has a single representative point per one cluster.

We carefully profile the algorithm and partition the workload across hardware

and software. The subclustering process handles a massive amount of data and is a very

demanding operation. Therefore we optimize its hardware implementation to perform a

one-pass process while minimizing computation and space complexity. The next module

deals with a relatively small set of data, so it can be processed either in software or

hardware depending on a system goals.

7.3 Related Work

There are many clustering algorithm that target different data set properties.

Generally it is up to the user to choose the “best” algorithm. Clustering algorithms can

be largely divided into several groups, and, in this paper, we consider three popular

clustering groups: partitioning, hierarchical, and density-based. We will focus on three

algorithms – one from each group (k-means, BIRCH, and DBSCAN). And we specifically

compare our work to existing hardware accelerated approaches.

k-means is the most used partitioning method, which is commonly known as

Lloyd’s algorithm. It finds a set of centroids that represents data clusters. It is the simplest

method that is frequently used in practical applications. There exist many variation of

k-means algorithm, such as k-median, k-medoids, or k-means++. However, its inherent

iterative solution for an optimal centroid set is highly compute and data intensive. As

such, there have been many efforts to improve its computing performance [10, 11].

Hierarchical approaches build a hierarchy of clusters based on their similarity, and split

down or merge up close clusters. The BIRCH algorithm is a well-known hierarchical

algorithm [71]. It minimizes the number of processing passes and is capable of handling

large datasets in a limited memory. DBSCAN algorithm is a density-based clustering

93

method [24]. It scans dataset iteratively and finds a data group packed in high density. It

can cluster an arbitrarily density shape dataset and has a notion of noise, which makes it

robust to outliers.

Each algorithm has limitations. The quality of k-means is highly dependent on

the initial seed, and it is limited to clusters separable by d-dimensional spherical densities.

Its objective function is sensitive to outliers, and its iterative operation makes it hard

to scale. BIRCH uses a two-pass process to reduce these issues, but it is sensitive to

parameters. And it uses a CF-tree data structure which is difficult to implement efficiently

in hardware. DBSCAN is also very sensitive to parameters in terms of accuracy. This

algorithm requires iterative operation and needs data to stay in a memory, which makes

hard to map to hardware.

There are several projects aimed to accelerate clustering algorithms using a

custom hardware or heterogeneous system. Hussain et al. [34, 33] accelerate k-means

on an FPGA to perform gene analysis. They compare their FPGA implementation

with a GPU implementation, and demonstrate speedup and improved energy efficiency

on the FPGA. However, the on-chip memory capacity limits the size of data set to a

small number of dimensions and a small number of centroids. Lin et al. [46] present a

k-means hardware accelerator that uses a triangle inequality to reduce the computational

complexity. The accelerator can handle 1024-dimensional data from an external DDR

memory, but can only handle a small number (1024) of data points. More recently,

Abdelrahman et al. [8] explores k-means on a shared memory processor-FPGA system.

They partition the k-means workload across CPU and FPGA. They achieve 2.9× speed

up against CPU only implementation and 1.9× faster than an accelerator alone design.

However, their work does not support high dimensional data clustering and presents

limited results for small numbers of clusters.

Some approaches merge hardware acceleration and data structure optimizations.

94

Chen et al. [18] implements a hierarchical binary tree on an FPGA. The tree is generated

by splitting the data set recursively. Similarly, Winterstein et al. [64] use a kd-tree

and with on-chip dynamic memory allocation in an attempt to efficiently use memory

resources. While the accelerator traverses the tree, it updates a set of centroids. This

process reduces the computational load, however, their design requires preprocessing to

build a tree, and it does not handle a high dimensional data. In general, larger trees do

not fit on an on-chip FPGA memory, and traversing the tree requires frequent irregular

data accesses that limit performance. Our solution does not have these limitations.

As a demand for clustering big data analysis increases, streaming clustering

algorithms have gotten more attention as they are more easily scaled to larger data sets.

StreamKM++[10] uses a non-uniformly adaptive sampling approach for k-means to

handle streaming data. It uses a coreset tree data structure to bound the data set size

while streaming in data. Ailon et al. [11] suggests a streaming approximation of k-means

by expanding k-means clustering algorithm in hierarchical manner. These streaming

methods provide a good approximation of k-means and improves its performance by min-

imizing memory accesses. However, these methods still have significant computational

complexity, which hinders their efficiency when mapped to hardware. For example, the

coreset tree data structure used in StreamKM++ is hard to implemented in hardware.

And the approximation algorithm in [11] still has iteration within its process. Our method

approximates input data into centroids more efficiently in a streaming way. We use

vector quantization [47] to build a streaming clustering architecture on an FPGA. The

approximation algorithm minimizes the computation and space complexity, which yields

higher performance with less memory space needed. Our architecture is described in

more detail the next section.

95

Subcluster1 Subcluster2 Subcluster3

.
. . .

. .
. . .

. c0	

c1	

c2	
c3	

.
. . .

.
. .

. .

c|L|-1	

c|L|-2	

c|L|-3	

.

L	 V	

c0	 0	

c1	 0	

c2	 1	

…	 …	

c|L|-3	 0	

c|L|-2	 1	

c|L|-1	 1	

.

. . .

.

.

.

.

.

. .

.
.

.

.

.
.

.

.

. .
.

. .

. .

. . .

.

Cluster 1

Cluster 0

Centroids generated
from subclustering

Figure 7.1: Our multilevel clustering algorithm in two stages. The first stage clusters
the same set of data multiple times (three subcluster modules in this example) similar
to k-means. It generates |L| = l centroids representing l subclusters that is more than
target clusters. Then, it clusters them using an existing clustering algorithm to find
a look up table, L×V , that maps L centroids to the target clusters V . Data points in
subcluster c0 are clustered to cluster 0.

7.4 Streaming Clustering

In this section, we introduce our streaming clustering algorithm that handles an

unlimited amount of data while achieving high accuracy and suitable for a wide range of

applications.

7.4.1 Multilevel clustering

Our clustering method sets multiple representations for each cluster (see in Figure

7.1). The algorithm is divided into two main stages. We call the first stage subclustering.

In this stage, n input data are clustered into l subclusters (k < l < n) in a similar manner

to the k-means algorithm. In the second stage, some of these centroids are grouped

96

together into a larger cluster. We call this reduction stage. Each subcluster is generated

from the same set of input data, but use different parameters.

For example, three subcluster modules in Figure 7.1 consider the same data and

generate k center points from each. These center points sets compose the l centroids.

These l centroids, L = {c0,c1, ...,cl−2,cl−1}, are clustered in reduction stage using a

problem specific clustering algorithm. Clustering algorithms are sometimes very sensitive

on choosing right parameters or initial seeding points. Our method can reduce the

dependency on a particular parameter by using these different subclustering results. The

final result is a single lookup table that maps a set of centroids, {c0,c1, ...,cl−2,cl−1},

and corresponding cluster ID, {0,1}. We have the final result clustered 0 or 1 either.

For example, based on this look up table, all data having c0 for the nearest centroid are

assigned cluster 0, and other data closer to c2 are clustered to cluster 1.

7.4.2 Streaming subclustering

Subclustering and reduction are key operations in our method. Subclustering

stage processes a large size input data and generates centroids. Reducing handles a smaller

set of approximated centroids. Subclustering is very data intensive and computationally

demanding process while reduction is much lighter. To minimize overall computation

and space complexity for big data analysis, we focus making the subclustering operation

into a hardware friendly streaming algorithm. It is based on a streaming version of vector

quantization, which is also closely related competitive learning or a leader-follower

clustering algorithm [22].

Vector quantization is used for data compression in signal processing. It partitions

the data into subsets (clusters), which are modeled as probability density functions

represented by a prototype vector (centroid). The simplest version for vector quantization

picks data vector randomly from a given dataset. Then, it determines its appropriate

97

Data points

Current center

New point
coming

New center

At time t At time t+1

Figure 7.2: When a new data point comes in, a center point that locates close moves
toward the new point. This process keeps updating and moving around this center point
as a new data appears.

centroid, and updates the quantization vector centroid based upon that new data object.

This vector moves to the current input points and it continues this process for the entire

dataset. These steps can be done in one pass and easily implemented in a hardware

architecture.

Our subclustering hardware module is built upon this streaming vector quantiza-

tion technique. We assume that the input data is randomly ordered and stationary. Figure

7.2 shows an example of how our subclustering module works. If a new data point ap-

pears, the closest center point to the new data moves slightly towards it. It keeps updating

and moving around this center point. Algorithm 1 presents the streaming subclustering

algorithm. Input x is a d-dimensional streaming data point, and C is a current centroids

of k clusters. The output is the new set of centroids, C. First, a processing core accepts

input data, and it calculates distance from this current input to each centroid of k clusters.

This point will be assigned to the closest cluster, and that cluster’s center point is updated

to consider the new input using the following equation:

cmt+1 = (1−α) · cmt +α · xt (7.1)

The step size for this update is decided by the current input, the center point, and a

learning rate, α . The learning rate is a weight of the current input data where xt is a

current input at time t, cmt is a clustered center point for xt−1, and cmt+1 is an updated

98

Algorithm 1: Streaming subclustering (x,C)

Input :x is a streaming input in d dimension,
C is a current set of centroids

Output :C is the latest set of centroids
1 Accept a new input x
2 Calculate distance between each center point c ∈C and the current input x
3 Get a center point of the nearest cluster, cm.
4 Move cm closer to x
5 Return the current C

center point.

The initial seeding problem is an important issue for clustering algorithms, such

as k-means or vector quantization, to find a global optimum. k-means++ defines the pre-

condition problem in k-means and suggests a solution for better accuracy. In other works,

initial centroids are randomly chosen in general. Our method accepts an unbounded input

stream, so we can feed subclustering modules a random points or use a precalculated

set from software side with a small subset of data in first part of data sequence using

k-means.

7.4.3 Reducing

The reducing stage is defined at a high level in Equation (7.2). Its input is K =
m⋃

i=1
Ki such that Ki = subclusteri(input) where m is the number of subcluster modules;

there are three subclusters in Figure 7.1, for example. The output is L×V , a lookup table

that maps centroids to assigned cluster IDs.

Reduction : K→ L×V (7.2)

A reduction stage can use any clustering algorithm depending on applications

or dataset properties. In this paper, we demonstrate our system with three clustering

methods for this stage: minimum cost pick, DBSCAN, and BIRCH. Minimum cost pick is

99

the simplest method. Each subclustering module calculates a cost, an averaged sum of

distances between a centroid and data points within the cluster. It compares cost values

from every subclustering modules and chooses a single set that has the minimum cost.

In this case, L = {Ki} and V = {1,2, ..., |V |} such that DBSCAN and BIRCH algorithms

cluster these centroids as input. DBSCAN keeps scanning these points multiple times and

finds associated data points within a fixed distance. The distance is defined as a parameter,

epsilon, and if a cluster does not have enough number of elements, minpts, it considers

the cluster as a noise. In this method, L = K and V = dbscan(K,epsilon,minpts). BIRCH

generates a tree structure based on two different distance metrics while scanning input

data, called CFtree. Then, it scans the initial CFtree and rebuilds a smaller one, and it

applies a clustering algorithm to all the tree leaf entries. For BIRCH algorithm, L = K

and V = birch(K, threshold).

7.4.4 Shuffling data

Our streaming subclustering module runs based on an assumption that the order

of incoming data is random and stationary. However, it does not necessarily hold for

all applications. Therefore we add the ability to randomize the dataset. In a streaming

process, the processor does not have a control over input sequence coming that is

unbounded. To make this practical, we shuffle a data array within a fixed window. This

randomness makes our method more robust and improves accuracy in final results.

Randomization also helps the streaming approach better approximate a non-

streaming algorithm. For example, k-means keeps revisiting input data until a solution

converges into an optimal point. Instead of scanning the entire dataset multiple times,

which is expensive in hardware, we divide the input dataset into several windows. The

algorithm scans each window only once, which approximates scanning the original data

iteratively. We can vary the size of the window. A larger shuffling window provides

100

a result that closer to an offline method though it requires more hardware resources.

Our experiment shows a fully sorted dataset results in a higher error, which can be

significantly reduced through randomization to provide similar accuracy as k-means.

7.4.5 Design parameters

Data clustering is employed in all kind of different data sets that vary in dimension,

the number of clusters, data size, data type, or other attributes. For example, multimedia

data commonly has RGB 3-dimensional data, but other data can have significantly more

features [44]. Our proposed system accommodates different clustering parameters for

various applications.

We have several parameters to build a streaming subclustering core on a hardware:

dimension d, the number of clusters k, and learning rate α . A streaming system does

not have a limitation on data size. So the dimension and the number of clusters mainly

determine throughput performance and resource utilization. Therefore, we focus on

optimizing a hardware core to handle different dimensions and different numbers of

clusters while retaining the maximum throughput. The learning rate α affects the updating

centroids operation. We set different subclustering modules to run with different learning

rates. Clustering algorithms in reduction stage also has important parameters, e.g. epsilon

and minpts for DBSCAN. However, they are highly application-specific and depend on

data set properties, so we do not discuss them. We present our experimental results with

different design parameters in Section 7.6.

7.5 System Implementation

In this section, we describe our CPU-FPGA heterogeneous system design. The

input is an unbounded data stream, and output is a lookup table that describes the

101

Software Hardware

Shuffling	

input

Processing	
centroids	

Streaming	
subclustering	

Reducing	

centroids

FIFO
Shuffling	 <	5%	

Streaming	
subclustering	 >	90%	

Reducing	 <	7%	

< software latency >

Figure 7.3: Overall system flow of our heterogeneous clustering system. Streaming
subclustering is the most computationally intensive function, so it is accelerated in
hardware. The Reducing function can be placed in hardware or software.

L	 V	
c10	 0	
c11	 0	
c12	 1	
…	 …	
c57	 0	
c58	 1	
c59	 1	

L	
<key,		value>	

V	

Reduce	

K1	

K3	

Subcluster1	

Subcluster3	

Subcluster2	

{K1,	cost1}=	subcluster1(input)	

{K3,	cost3}=	subcluster3(input)	

{K2,	cost2}=	subcluster2(input)	 K2	

K	

Figure 7.4: Hardware design for the multilevel streaming clustering. Streaming sub-
clustering modules are fully parallelized since they are independent from each other.
Reducing module merges subcluster centroids and finds final cluster ID for each point.

centroids and clusters.

7.5.1 Heterogeneous system

The overall system flow consists of shuffling, streaming subclustering, and re-

duction (see in Figure 7.3). According to our software profiling results using example

datasets, subclustering stage takes almost 90% of total latency on average. Shuffling is

less than 5%, and reduction is around 7%.

We focus on accelerating the main bottleneck module, streaming subclustering

stage, and additionally implement minimum cost pick and DBSCAN methods in reduction

102

stage on an FPGA. Figure 7.4 presents an accelerated core on an FPGA. Shuffling is

implemented in software because it is not a compute intensive module, and its frequent

data accesses limit it’s acceleration capabilities on the FPGA. To communicate between

CPU and FPGA, we employ RIFFA framework [36] and connect our FPGA core to

RIFFA with the AXIS streaming interface.

Input

D

Centers
[m]	

Copy

Update

Subclustering Core

…

…

m	

Cluster …

…

dK-2	

dK-1	

[K-2]	

[K-1]	

d0	

d1	

[0]	

[1]	

Figure 7.5: A processing core for streaming subclustering operation. It accepts d-
dimensional inputs, decides on the appropriate cluster, and updates the corresponding
centroid.

7.5.2 Subclustering module

The Subclustering module processes the same input sequence with different

parameters multiple times. Each process is totally independent, so they are highly

scalable in hardware. Our streaming approach minimizes computation complexity as

well as hardware resources and we parallelize these independent operations.

Figure 7.5 presents the subclustering core. The accelerator core starts by calcu-

lating the distance between the current input data object and the centroid for each of

the k clusters. We used L1 norm (i.e., Manhattan distance) for our distance metric. This

exposes significant instruction level parallelism as the calculation performs an absolute

103

difference operation on the dimension of input data object and elements of the centroid

vector, and then sums these differences. More precisely it performs a sum of absolute

differences which maps in a very efficient and scalable manner to an FPGA. The distance

calculation is done in a fully parallel manner. We perform complete memory partitioning

on the centroid points, i.e., they are stored in registers that can all be accessed in one

cycle to allow for high bandwidth accesses.

The entire core is parametrized. A user defines parameters, d, k, α , and data type

of the data objects. A data clustering core is automatically synthesized based upon these

parameters. The entire process is fully pipelined. Every time a new input arrives, the

core continues processing and generates one output per input. It takes d clock cycles

(dimension of the data objects) to accept d data objects. So the optimal pipeline initiation

interval (II), i.e., our target performance, is d clock cycles.

7.5.3 Reducing module

We implement the minimum cost pick and DBSCAN methods on an FPGA for the

reduction stage. The BIRCH algorithm uses a tree based data structure that is non-trivial

to be implemented on hardware, so we leave that in software. Minimum cost pick simply

compares cost values from every subclustering modules and chooses the one set that

has the minimum cost value. This module is easily implementable in hardware. The

DBSCAN algorithm scans the dataset multiple times. This iterative scanning operation

causes high latency for a large size datasets and uses many resources. To achieve high

performance, it requires intensive hardware optimization. However, since we handle

much smaller size data in reduction module than in the subclustering module, it does not

need high performance.

We utilize an open source code for DBSCAN [68] to synthesize a hardware

architecture using a high level synthesis tool. We optimize the code to use a FIFO module

104

to keep the associated candidate data point for a cluster, instead of a linked list data

structure originally used in software.

7.6 Experimental Results

7.6.1 Test environment

We evaluated our proposed design on a CPU-FPGA heterogeneous system. Our

test system has Intel i7 core 4 GHz and 16 GB DDR in software and a Xilinx Virtex

7 FPGA device, XC7VX485T-2FFG1761C, in hardware. We built an accelerator core

using Xilinx Vivado HLS 2016.4. We integrated the FPGA core with RIFFA [36] to

connect to a CPU and used the Vivado 2016.4 to generate a bitstream file.

We verify our approach using several different application datasets with different

parameters. Table 7.1 presents eight example datasets: synthetic datasets of different

shapes in 2D and 3D dimensions – blobs, moons, circles, and 3D clouds, datasets from

from UCI Machine Learning Repository (spambase and census 1990) [44], and image

segmentation examples in biomedical research – cell images in 1D and 9D dimensions

[42]. Note that 3D clouds is a same synthetic dataset used in [64], which is open source.

The 9-dimensional cell images data is generated by 3×3 convolutional windowing over

1-dimensional frame, and this convolutional segmentation method clusters the image

based on its local variance in neighbor.

We apply different clustering algorithms in the reduction stage depending on the

application. We use DBSCAN for blobs, moons, and circles dataset, BIRCH for image

segmentations, and minimum cost pick for 3D clouds and high dimensional real world

applications.

105

Table 7.1: Test datasets

data set data size dimension (d) clusters (k) datatype
blobs 1,500 2 3 float

moons 1,500 2 2 float
circles 1,500 2 2 float

3D clouds 16,384 3 128 int
spambase 4,601 57 10 int, float

census 1990 2,458,285 68 10 int
cell image (1D) 131,072 1 10 int
cell image (9D) 131,072 9 10 int

7.6.2 Accuracy

We compare our clustering results for the example datasets to other clustering

algorithms: k-means, BIRCH, DBSCAN, and streamKM++. Table 7.2 presents the clus-

tering results for 2-dimensional synthetic datasets. k-means and streamKM++ methods

group data points centered around a single center point for each cluster, so they cannot

find true clusters in moons and circles. On the other hand, DBSCAN is good at clustering

these datasets. We choose this algorithm for our reduction process, and it clusters these

datasets correctly.

Table 7.2: 2D synthetic data clustering results. k-means, BIRCH and streamKM++
hardly find right results for non-spherical density shape datasets. Our method clusters
them correctly.

k-means BIRCH DBSCAN StreamKM Ours

blobs

moons

circles

We compare clustering costs – the mean of distances between each centroid and

106

Table 7.3: Comparison of cost results

Kmeans StreamKM++ Ours
3D clouds 159.85 158.28 164.21
spambase 97.79 113.92 103.24

census 1990 37.36 37.47 37.41

data points in a cluster. The cost value is estimated from an objective function value in

(7.3) as k-means algorithm does. x’s are n input data, {X1,X2, ...Xk} present k clusters,

and each of them is represented using a single center point, ci. The cost value is estimated

from an objective function value in Equation (7.3) that we have to minimize. A cost

value is available only for minimum cost pick method. Our clustering method shows

comparable results to k-means or streamKM++ in Table 7.3.

argmin
X

k

∑
i=1

∑
x∈Xi

||x− ci||L (7.3)

We test our clustering method on image segmentation application. The segmenta-

tion results are presented in Table 7.4. Input image in this application is extremely noisy,

and the image contrast is very low. Since the input is blurred in low intensity, it is non-

trivial to separate particular pixel area and hard to achieve a good quality of segmentation

results. DBSCAN hardly finds cell area since it is oversensitive to parameters. We use

BIRCH algorithm in our reduction stage.

Data Shuffling

We observe that shuffled data gives a better approximation (close to k-means);

the sorted data stream draws centroids off from the optimal locations. Figure 7.6 shows

how data shuffling process changes the final cost value. 3D clouds data is fully-sorted set

with some initial clustering. Without shuffling, its streaming clustering results in a high

cost value. We add the data shuffling module and increases the window size gradually.

The cost value becomes lower and closer to k-means result. If the dataset is already

107

Table 7.4: Comparing segmentation results. (a) Input image is highly noisy and blurred
in low contrast, so it is hard to achieve a good quality of segmentation result. (b) For
example, DBSCAN does not recognize the difference between cell and background in a
frame. Our method sees cell area clearly.

Input Segmentation Cell area

k-means BIRCH DBSCAN StreamKM Ours

cell
image
(1D)

cell
image
(9D)

(a)

(b)

in random, it does not have much effect on the result, but if it is sorted, then shuffling

operation is necessary. Thus sorting can be used depending upon the characteristics of

the dataset.

7.6.3 Performance and resource utilization

FPGA Core Design

A generated hardware core is fully pipelined and runs in streaming manner. We

set our target throughput as input bandwidth, which is determined by the data dimension

d and the clock frequency. Each generated architecture can process data at line rate, i.e.,

one new datum per cycle.

Resource utilization increases almost linearly with respect to the data dimension

108

150.0	

160.0	

170.0	

180.0	

190.0	

200.0	

210.0	

32	 64	 128	 256	 512	 1K	 2K	 4K	 8K	 16K	

Shuffling+streaming	
Kmeans	
Streaming	only	

36.2	

36.4	

36.6	

36.8	

37.0	

37.2	

37.4	

37.6	

32	 64	 128	 256	 512	 1K	 2K	 4K	 8K	

Shuffling+streaming	
Kmeans	
Streaming	only	

Shuffling window size Shuffling window size

cost cost 3D cloud dataset Census dataset

Figure 7.6: The cost values for different shuffling window sizes. Result becomes closer
to k-means result with a larger shuffling window.

or the number of target clusters. We test our design with a maximum of 70 dimensional

data. Targeting 10 clusters, it consumes 50.73% of BRAMs, 0 DSPs, 23.73% FFs, and

44.08% LUTs. To cluster 3-dimensional data into 128 clusters, it consumes 5.05% of

BRAMs, 0 DSPs, 20.48% FFs, and 45.08% LUTs. We vary the learning rate at powers

of two (e.g., α = 1/8 through 1/64), which is synthesized to a right shift operation; thus

the hardware module uses 0 DSPs. If we switch the parameter to an non power of tow, it

consumes a few DSPs.

Table 7.5 compares our FPGA core performance results to other hardware ac-

celerated works for k-means clustering algorithm [46, 64]. Our hardware core is highly

optimized for pipelining and provides deterministic performance results decided by the

data dimension d. It achieves more than 40 Msamples/s for 3-dimensional streaming

data running at 125 MHz. It shows higher FPGA throughput than the results presented in

[46, 64]. Considering the result in [64] does not include a latency from preprocessing,

our clustering method outperforms their results, and can operate on unlimited size of

data.

109

Table 7.5: FPGA core performance comparison with other FPGA implementations.

Lin et al. Winterstein et al. Ours
Data size (N) 1024 16384 Streaming

Dimension (D) 1024 3 3 3 70
Clusters (K) 10 128 10 128 10

data type
8 bit

unsigned int
16 bit

unsigned int
16 bit

unsigned int
Max. capable

data size 10000 65536 Infinite

Throughput
(Samples/s) 200 K

1.21 M
(p = 1)

4.96M
(p = 4) 45.93 M 41.83 M 1.83 M

Resources

LUTs 44194 - 14167 12785 133817 136872
Registers 22521 - 24486 9156 14416 124383
BRAMs 198 - 240 97 1045 104

DSPs - - 186 0 0 0

Subclustering Module Analysis

The Subclustering stage is the most computationally intensive and data demanding

module in our algorithm. We accelerate this module on an FPGA and evaluate our design

with varying parameters: the dimension of data d, and the number of clusters k. It is

based on a streaming approach, and performance and resource results do not depend on

the dataset size. For the subclustering core analysis, we set a target clock frequency at

250MHz to evaluate its maximum performance.

Figure 7.7 and Figure 7.8 present the throughput and resource utilization results

of a single subclustering core with different input data dimension size. We increase the

dimension gradually from 1 up to 70. The number of clusters, k, is 16 in this experiment.

The target throughput is determined by the input bandwidth, which is presented in Figure

7.7. High dimensional data needs more clock cycles to get input point, so input bandwidth

is inversely proportional to its dimension. The processing core is able to achieve the

target throughput in terms of clock cycles. It can produce output in every input, but

the design complexity increases in higher dimensions. It results in running at a lower

clock frequency, so the throughput result is less than the performance goal with higher

110

dimensional data.

1.00	

10.00	

100.00	

1000.00	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 20	 30	 40	 50	 60	 70	

Data	 dimension	

Throughput	 (Msamples/sec)	

Processing	 Unit	

Input	 Bandwidth	

Figure 7.7: Throughput results by varying the data dimension. Input bandwidth is the
maximum throughput that we can achieve, which depends on data dimension.

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 20	 30	 40	 50	 60	 70	

BR
AM

s	

Re
gi
st
er
s	 (
Hu

nd
re
ds
)	

Data	 dimension	

Resource	 uAlizaAon	

Registers	 (X100)	

BRAMs	

Figure 7.8: Resource utilization by varying the data dimension. Additionaly registers
and BRAMs are required for the larger number of clusters k.

Figure 7.9 presents throughput and resource results by varying the number of

clusters k. The data dimension in this experiment is fixed to 3. Ideally, the throughput

result is determined by the data dimension, so the throughput result should be same.

However, as k grows larger, the design complexity increases sharply and clock frequency

gets lower. BRAMs used in the core module are partitioned completely. So the k value

111

mostly decides BRAM usage, which is shown to be linear in Figure 7.9.

0.0	

20.0	

40.0	

60.0	

80.0	

100.0	

120.0	

140.0	

1	

10	

100	

1000	

2	 4	 8	 16	 32	 64	 128	

Th
ro
ug
hp

ut
	 (M

sa
m
pl
es
/s
)	

Re
so
ur
ce
	 u
=l
iz
a=

on
s(
Hu

nd
re
ds
)	

The	 target	 number	 of	 clusters	

Registers	 (x100)	
BRAM	
Throughput	

Figure 7.9: Throughput and resource utilization results by varying the number of
clusters, k. The throughput result is mainly decided by the data dimension, but increasing
complexity affects to clock period. Resource usage linearly increases according to k.

System performance

Table 7.6 presents overall system performance and resource utilization. The

latency is measured for a window data, and the system throughput is based on the

total latency. This includes data reading, which is the main bottleneck in the system

performance. The data reading operation is basically a file I/O process to feed the system

with a new data from external storage. It has much potential to be improved in software

side, but we do not discuss an optimization as it is outside the scope of this paper. In spite

of this software latency, our system performance is 1.39 Msamples/s for 3-dimensional

data and much higher throughput up to 6.06 Msamples/s when ignoring the read latency.

We compare the system performance with StreamKM++ which is one of state-of-

art software approaches for large data set and presents the best throughput performance

in software. For 9D cell image dataset, it runs 21× faster with our end-to-end system,

and the core performance is up to 361× faster. For 68-dimensional census 1990 dataset,

the system performance results in 131×, faster and the core performance is 420× faster.

112

Table 7.6: System performance analysis and FPGA resource utilization. The reading
module is a main bottleneck in the overall system, which includes file I/O for our test
data.

cell image 3d cloud census 1990

Parameters
dimension (D) 9 3 68

clusters (K) 10 128 10
window size 16384 16384 8192

Latency
(ms)

reading 13.76 10.66 28.49
shuffling 0.99 0.63 3.82
sending 5.01 1.82 13.57

receiving 0.15 0.25 0.12
total 19.94 13.42 465.03

Throughput
(samples/s)

FPGA 13.89 M 41.67 M 1.84 M
system 0.83 M (2.65 M) 1.39 M (6.06 M) 0.18 M (0.47 M)

Resources
LUTs 44389 (14.62%) 142593 (46.97%) 140027 (46.12%)
FFs 58409 (9.62%) 156735 (25.81%) 134913 (22.22%)

BRAMs 161 (8.0%) 1090 (52.91%) 149 (7.23%)

7.7 Conclusion

We develop a hardware oriented streaming clustering algorithm based on a mul-

tilevel clustering approach and its accelerated design on a CPU-FPGA heterogeneous

system. Our clustering algorithm is able to process unbounded high dimensional stream-

ing data while presenting comparable clustering results to existing algorithms. The

proposed method approximates subclusters from a massive amount of data based using a

streaming vector quantization, and then applies a problem specific clustering algorithm to

these subclusters. We add an array shuffling module in the streaming process, which gives

a better approximation to existing offline algorithms, such as k-means. We partition sys-

tem workloads into a software and hardware to build a heterogenous hardware accelerated

system. The experimental results show that our generated FPGA core processes more

than 40 Msamples/s for 3-dimensional data and 1.78 Msamples/s for 70-dimensional

data. The end-to-end system including all software processes achieves 1.39 Msamples

for the same 3-dimensional dataset, which is 21× faster than a state-of-art software

approach. Our hardware core is highly parameterized, so it can be easily extended for

113

other applications.

This chapter, in full, has been submitted for publication of the material as it may

appear in International Conference On Computer Aided Design (ICCAD), Lee, Dajung;

Althoff, Alric; Richmond, Dustin; Kastner, Ryan, 2017 (accepted). There are small

changes in format and phrasing as a chapter within this larger paper. The dissertation

author was the primary investigator and author of this paper.

Chapter 8

Conclusion

Image based cell analysis system is promising for accurate cell analysis and its

characterization. It is capable of providing sophisticated information for various cellular

properties. However, extracting cellular features from low-resolution microscopic images

is compute-intensive, and it commonly requires a high-throughput and low-latency

solution for massive cell analysis, so building a real-time imaging flow cytometry system

is a non-trivial problem. In this work, we designed a hardware accelerated system to

achieve these performance goals while capable of capturing advanced cellular contents

from high frame rate camera video. This paper describes a novel hardware accelerated

system for imaging flow cytometry.

We introduced a hardware-friendly image analysis algorithm to extract cellular

morphological features from microscopic images and its accelerated designs in different

architectures: GPU and FPGA. We demonstrated we can achieve considerable perfor-

mance improvement in both hardware platforms. However, we concluded that the GPU

design is not a good fit for this type of applications because of the strict latency con-

straints and the inherent high latency bottleneck of GPU architecture. In an advanced

morphological feature analysis system on an FPGA, we achieved the high-throughput

114

115

and low-latency performance goals and demonstrated the system running with sets of

real microscopic images accurately. We measured morphological information in our

system, which can be used to estimate mechanical properties, such as cell circularity

or deformability. Our work focused on extracting the external shape of cell, but this

information can be used to sort cells in the post processing,

We extended our system to observe more complicated cell features or irregular

cell shapes. It is based on image segmentation approach. We explored different image

segmentation methods. They include luminance thresholding, iterative selection, hys-

teresis with temporal signature, k-means clustering, and convolutional window based

methods. We carefully profiled these algorithms in terms of accuracy and efficiency in

hardware design. Data clustering based segmentation algorithm is commonly used for

such an applications and gave us one of the best results and the biggest potential for

general applications.

We extended this segmentation approach into a general data clustering problem,

mostly focusing on streaming data analysis. We designed a hardware oriented streaming

data clustering approach based on a multilevel clustering approach. We accelerated our

new approach on a CPU-FPGA heterogeneous system and suggested a parameterizable

hardware designing method for various datasets. It is capable of handling unbounded

high dimensional streaming data and presents comparable clustering results to existing

algorithms. On a hardware accelerated system, we demonstrated our data clustering

system outperforms other state-of-art clustering software and hardware approaches.

Bibliography

[1] Catapult high level synthesis, https://www.mentor.com/.

[2] The imagestreamx by amnis.

[3] Matlab fpga design and soc codesign, https://www.mathworks.com/solutions/fpga-
design.html.

[4] Opencl fpga, https://www.altera.com/products/design-software/embedded-software-
developers/opencl/overview.html.

[5] Phantomcamera, https://www.phantomhighspeed.com/products/phantom-camera-
products.

[6] Synopsys synphony c compiler, https://www.synopsys.com/implementation-and-
signoff/rtl-synthesis-test/synphony-c-compiler.html.

[7] Vivado high-level synthesis, https://www.xilinx.com/products/design-
tools/vivado/integration/esl-design.html.

[8] Tarek S Abdelrahman. Accelerating k-means clustering on a tightly-coupled
processor-fpga heterogeneous system. In Application-specific Systems, Architec-
tures and Processors (ASAP), 2016 IEEE 27th International Conference on, pages
176–181. IEEE, 2016.

[9] Manouk Abkarian, Magalie Faivre, and Howard A Stone. High-speed microflu-
idic differential manometer for cellular-scale hydrodynamics. Proceedings of the
National Academy of Sciences of the United States of America, 103(3):538–542,
2006.

[10] Marcel R Ackermann, Marcus Märtens, Christoph Raupach, Kamil Swierkot, Chris-
tiane Lammersen, and Christian Sohler. StreamKM++. Journal of Experimental
Algorithmics, 17(1):2.1–30, July 2012.

[11] Nir Ailon, Ragesh Jaiswal, and Claire Monteleoni. Streaming k-means approx-
imation. In Advances in Neural Information Processing Systems, pages 10–18,
2009.

116

117

[12] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,
Parry Husbands, Kurt Keutzer, David A Patterson, William Lester Plishker, John
Shalf, Samuel Webb Williams, and Katherine A Yelick. The landscape of parallel
computing research: A view from berkeley. Technical report, Technical Report
UCB/EECS-2006-183, EECS Department, University of California, Berkeley, 2006.

[13] Utku Aydonat, Shane O’Connell, Davor Capalija, Andrew C Ling, and Gordon R
Chiu. An opencl (tm) deep learning accelerator on arria 10. arXiv preprint
arXiv:1701.03534, 2017.

[14] Sugato Basu, Arindam Banerjee, and Raymond Mooney. Semi-supervised cluster-
ing by seeding. In In Proceedings of 19th International Conference on Machine
Learning (ICML-2002. Citeseer, 2002.

[15] David G Buschke, Jayne M Squirrell, Hidayath Ansari, Michael A Smith, Curtis T
Rueden, Justin C Williams, Gary E Lyons, Timothy J Kamp, Kevin W Eliceiri,
and Brenda M Ogle. Multiphoton flow cytometry to assess intrinsic and extrinsic
fluorescence in cellular aggregates: applications to stem cells. Microscopy and
Microanalysis, 17(04):540–554, 2011.

[16] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,
Jason H Anderson, Stephen Brown, and Tomasz Czajkowski. Legup: high-level
synthesis for fpga-based processor/accelerator systems. In Proceedings of the 19th
ACM/SIGDA international symposium on Field programmable gate arrays, pages
33–36. ACM, 2011.

[17] James Che, Victor Yu, Manjima Dhar, Corinne Renier, Melissa Matsumoto, Kyra
Heirich, Edward B Garon, Jonathan Goldman, Jianyu Rao, George W Sledge,
Mark D Pegram, Shruti Sheth, Stefanie Jeffrey, Rajan P Kulkarni, Elodie Sollier,
and Dino Di Carlo. Classification of large circulating tumor cells isolated with ultra-
high throughput microfluidic vortex technology. Oncotarget, 7(11):12748–12760,
2016.

[18] Tse-Wei Chen and Shao-Yi Chien. Flexible hardware architecture of hierarchical
k-means clustering for large cluster number. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 19(8):1336–1345, 2011.

[19] Karen Cheung, Shady Gawad, and Philippe Renaud. Impedance spectroscopy flow
cytometry: On-chip label-free cell differentiation. Cytometry Part A, 65(2):124–132,
2005.

[20] Srdjan Coric, Miriam Leeser, Eric Miller, and Marc Trepanier. Parallel-beam back-
projection: an fpga implementation optimized for medical imaging. In Proceedings
of the 2002 ACM/SIGDA tenth international symposium on Field-programmable
gate arrays, pages 217–226. ACM, 2002.

118

[21] Alden A Dima, John T Elliott, James J Filliben, Michael Halter, Adele Peskin,
Javier Bernal, Marcin Kociolek, Mary C Brady, Hai C Tang, and Anne L Plant.
Comparison of segmentation algorithms for fluorescence microscopy images of
cells. Cytometry Part A, 79(7):545–559, 2011.

[22] Richard O Duda, Peter E Hart, and David G Stork. Pattern classification. John
Wiley & Sons, 2012.

[23] Jaideep S Dudani, Daniel R Gossett, TK Henry, and Dino Di Carlo. Pinched-flow
hydrodynamic stretching of single-cells. Lab on a Chip, 13(18):3728–3734, 2013.

[24] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Kdd,
volume 96, pages 226–231, 1996.

[25] Shady Gawad, Laurent Schild, and Ph Renaud. Micromachined impedance spec-
troscopy flow cytometer for cell analysis and particle sizing. Lab on a Chip,
1(1):76–82, 2001.

[26] Keisuke Goda, Ali Ayazi, Daniel R Gossett, Jagannath Sadasivam, Cejo K Lonap-
pan, Elodie Sollier, Ali M Fard, Soojung Claire Hur, Jost Adam, Coleman Murray,
Chao Wang, Nora Brackbill, Dino Di Carlo, and Bahram Jalali. High-throughput
single-microparticle imaging flow analyzer. Proceedings of the National Academy
of Sciences, 109(29):11630–11635, 2012.

[27] Keisuke Goda, Dino Di Carlo, and Bahram Jalali. Ultrafast automated image
cytometry for cancer detection. In Engineering in Medicine and Biology Society
(EMBC), 2013 35th Annual International Conference of the IEEE, pages 129–132.
IEEE, 2013.

[28] Daniel R Gossett, TK Henry, Serena A Lee, Yong Ying, Anne G Lindgren, Otto O
Yang, Jianyu Rao, Amander T Clark, and Dino Di Carlo. Hydrodynamic stretching
of single cells for large population mechanical phenotyping. Proceedings of the
National Academy of Sciences, 109(20):7630–7635, 2012.

[29] Hernán E Grecco, Sarah Imtiaz, and Eli Zamir. Multiplexed imaging of intracellular
protein networks. Cytometry Part A, 2016.

[30] Pierre Greisen, Simon Heinzle, Markus Gross, and Andreas P Burg. An fpga-based
processing pipeline for high-definition stereo video. EURASIP Journal on Image
and Video Processing, 2011(1):1–13, 2011.

[31] Jochen Guck, Stefan Schinkinger, Bryan Lincoln, Falk Wottawah, Susanne Ebert,
Maren Romeyke, Dominik Lenz, Harold M Erickson, Revathi Ananthakrishnan,
Daniel Mitchell, Josef Käs, Sydney Ulvick, and Curt Bilby. Optical deformability
as an inherent cell marker for testing malignant transformation and metastatic
competence. Biophysical journal, 88(5):3689–3698, 2005.

119

[32] J El Hobbie, R Jasper Daley, and STTI977 Jasper. Use of nuclepore filters for count-
ing bacteria by fluorescence microscopy. Applied and environmental microbiology,
33(5):1225–1228, 1977.

[33] Hanaa M Hussain, Khaled Benkrid, Ahmet T Erdogan, and Huseyin Seker. Highly
parameterized k-means clustering on fpgas: Comparative results with gpps and
gpus. In 2011 International Conference on Reconfigurable Computing and FPGAs,
pages 475–480. IEEE, 2011.

[34] Hanaa M Hussain, Khaled Benkrid, Huseyin Seker, and Ahmet T Erdogan. Fpga
implementation of k-means algorithm for bioinformatics application: An acceler-
ated approach to clustering microarray data. In Adaptive Hardware and Systems
(AHS), 2011 NASA/ESA Conference on, pages 248–255. IEEE, 2011.

[35] Idaku Ishii, Tetsuro Tatebe, Qingyi Gu, Yuta Moriue, Takeshi Takaki, and Kenji
Tajima. 2000 fps real-time vision system with high-frame-rate video recording. In
Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages
1536–1541. IEEE, 2010.

[36] Matthew Jacobsen, Dustin Richmond, Matthew Hogains, and Ryan Kastner. Riffa
2.1: A reusable integration framework for fpga accelerators. ACM Transactions on
Reconfigurable Technology and Systems (TRETS), 8(4):22, 2015.

[37] Seunghun Jin, Junguk Cho, Xuan Dai Pham, Kyoung Mu Lee, Sung-Kee Park,
Munsang Kim, and Jae Wook Jeon. Fpga design and implementation of a real-
time stereo vision system. IEEE transactions on circuits and systems for video
technology, 20(1):15–26, 2010.

[38] Shingo Kagami, Shoichiro Saito, Takashi Komuro, and Masatoshi Ishikawa. A
networked high-speed vision system for 1,000-fps visual feature communication.
In 2007 First ACM/IEEE International Conference on Distributed Smart Cameras,
pages 95–100. IEEE, 2007.

[39] Mehmet Koyuturk, Ananth Grama, and Naren Ramakrishnan. Compression, clus-
tering, and pattern discovery in very high-dimensional discrete-attribute data sets.
IEEE Transactions on Knowledge and Data Engineering, 17(4):447–461, 2005.

[40] Sanjay Kumar and Valerie M Weaver. Mechanics, malignancy, and metastasis: the
force journey of a tumor cell. Cancer and Metastasis Reviews, 28(1-2):113–127,
2009.

[41] Dajung Lee, Janarbek Matai, Brad Weals, and Ryan Kastner. High throughput
channel tracking for jtrs wireless channel emulation. In Field Programmable Logic
and Applications (FPL), 2014 24th International Conference on, pages 1–4. IEEE,
2014.

120

[42] Dajung Lee, Pingfan Meng, Matthew Jacobsen, Hayson Tse, Dino Di Carlo, and
Ryan Kastner. A hardware accelerated approach for imaging flow cytometry.
In Field Programmable Logic and Applications (FPL), 2013 23rd International
Conference on, pages 1–8. IEEE, 2013.

[43] Dajung Lee, Roger Moussalli, Sameh Asaad, and Mudhakar Srivatsa. Spatial
predicates evaluation in the geohash domain using reconfigurable hardware. In Field-
Programmable Custom Computing Machines (FCCM), 2016 IEEE 24th Annual
International Symposium on, pages 176–183. IEEE, 2016.

[44] M. Lichman. UCI machine learning repository, 2013.

[45] Yen-Heng Lin and Gwo-Bin Lee. Optically induced flow cytometry for continuous
microparticle counting and sorting. Biosensors and Bioelectronics, 24(4):572–578,
2008.

[46] Zhongduo Lin, Charles Lo, and Paul Chow. K-means implementation on fpga for
high-dimensional data using triangle inequality. In 22nd International Conference
on Field Programmable Logic and Applications (FPL), pages 437–442. IEEE, 2012.

[47] Yoseph Linde, Andres Buzo, and Robert Gray. An algorithm for vector quantizer
design. IEEE Transactions on communications, 28(1):84–95, 1980.

[48] Janarbek Matai, Ali Irturk, and Ryan Kastner. Design and implementation of an
fpga-based real-time face recognition system. In Field-Programmable Custom
Computing Machines (FCCM), 2011 IEEE 19th Annual International Symposium
on, pages 97–100. IEEE, 2011.

[49] Janarbek Matai, Dajung Lee, Alric Althoff, and Ryan Kastner. Composable, param-
eterizable templates for high level synthesis. In Proceedings of the Conference on
Design, Automation and Test in Europe. EDA Consortium, 2016.

[50] Janarbek Matai, Pingfan Meng, Lingjuan Wu, Brad Weals, and Ryan Kastner.
Designing a hardware in the loop wireless digital channel emulator for software
defined radio. In Field-Programmable Technology (FPT), 2012 International
Conference on, pages 206–214. IEEE, 2012.

[51] Janarbek Matai, Dustin Richmond, Dajung Lee, Zac Blair, Qiongzhi Wu, Amin
Abazari, and Ryan Kastner. Resolve: Generation of high-performance sorting
architectures from high-level synthesis. In Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pages 195–204.
ACM, 2016.

[52] Janarbek Matai, Dustin Richmond, Dajung Lee, and Ryan Kastner. Enabling fpgas
for the masses. arXiv preprint arXiv:1408.5870, 2014.

121

[53] HP Ng, SH Ong, KWC Foong, PS Goh, and WL Nowinski. Medical image
segmentation using k-means clustering and improved watershed algorithm. In 2006
IEEE Southwest Symposium on Image Analysis and Interpretation, pages 61–65.
IEEE, 2006.

[54] Cinzia Nobile, Dominika Rudnicka, Milena Hasan, Nathalie Aulner, Françoise
Porrot, Christophe Machu, Olivier Renaud, Marie-Christine Prévost, Claire Hivroz,
Olivier Schwartz, and Nathalie Sol-Foulon. Hiv-1 nef inhibits ruffles, induces
filopodia, and modulates migration of infected lymphocytes. Journal of virology,
84(5):2282–2293, 2010.

[55] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou, Kypros Con-
stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Hormati. Amir,
Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Smith.
Aaron, Jason Thong, Phillip Yi Xiao, and Doug Burger. A reconfigurable fabric for
accelerating large-scale datacenter services. In 2014 ACM/IEEE 41st International
Symposium on Computer Architecture (ISCA), pages 13–24. IEEE, 2014.

[56] Ingrid Schmid, Wanda J Krall, Christel H Uittenbogaart, Jonathan Braun, and
Janis V Giorgi. Dead cell discrimination with 7-amino-actinomcin d in combination
with dual color immunofluorescence in single laser flow cytometry. Cytometry,
13(2):204–208, 1992.

[57] Ingrid Schmid, Christel H Uittenbogaart, Birgitte Keld, and Janis V Giorgi. A rapid
method for measuring apoptosis and dual-color immunofluorescence by single laser
flow cytometry. Journal of immunological methods, 170(2):145–157, 1994.

[58] Roger A Schultz, Thomas Nielsen, Jeff R Zavaleta, Raynal Ruch, Robert Wyatt,
and Harold R Garner. Hyperspectral imaging: a novel approach for microscopic
analysis. Cytometry, 43(4):239–247, 2001.

[59] Neeraj Sharma and Lalit M Aggarwal. Automated medical image segmentation
techniques. Journal of medical physics, 35(1):3, 2010.

[60] Andriy Shepitsen, Jonathan Gemmell, Bamshad Mobasher, and Robin Burke. Per-
sonalized recommendation in social tagging systems using hierarchical clustering.
In Proceedings of the 2008 ACM conference on Recommender systems, pages
259–266. ACM, 2008.

[61] Vinay Swaminathan, Karthikeyan Mythreye, E Tim O’Brien, Andrew Berchuck,
Gerard C Blobe, and Richard Superfine. Mechanical stiffness grades metastatic po-
tential in patient tumor cells and in cancer cell lines. Cancer research, 71(15):5075–
5080, 2011.

122

[62] Henry Tat Kwong Tse, Pingfan Meng, Daniel R Gossett, Ali Irturk, Ryan Kastner,
and Dino Di Carlo. Strategies for implementing hardware-assisted high-throughput
cellular image analysis. Journal of the Association for Laboratory Automation,
16(6):422–430, 2011.

[63] RY Tsien, TJ Rink, and M Poenie. Measurement of cytosolic free ca 2+ in individual
small cells using fluorescence microscopy with dual excitation wavelengths. Cell
calcium, 6(1):145–157, 1985.

[64] Felix Winterstein, Samuel Bayliss, and George A Constantinides. FPGA-based
k-means clustering using tree-based data structure. In 2013 23rd International
Conference on Field Programmable Logic and Applications (FPL), pages 1–6, June
2013.

[65] Zhenyu Wu and Richard Leahy. An optimal graph theoretic approach to data
clustering: Theory and its application to image segmentation. IEEE transactions on
pattern analysis and machine intelligence, 15(11):1101–1113, 1993.

[66] Jimmy Xu, Nikhil Subramanian, Adam Alessio, and Scott Hauck. Impulse c vs.
vhdl for accelerating tomographic reconstruction. In Field-Programmable Custom
Computing Machines (FCCM), 2010 18th IEEE Annual International Symposium
on, pages 171–174. IEEE, 2010.

[67] Feng Xue, Alex B Lennon, Katey K McKayed, Veronica A Campbell, and Patrick J
Prendergast. Effect of membrane stiffness and cytoskeletal element density on
mechanical stimuli within cells: an analysis of the consequences of ageing in cells.
Computer methods in biomechanics and biomedical engineering, 18(5):468–476,
2015.

[68] Gagarin Yaikhom. Implementing the dbscan clustering algorithm, 2015.

[69] Minerva Yeung, Boon-Lock Yeo, and Bede Liu. Segmentation of video by clustering
and graph analysis. Computer vision and image understanding, 71(1):94–109, 1998.

[70] Shihua Zhang, Rui-Sheng Wang, and Xiang-Sun Zhang. Identification of overlap-
ping community structure in complex networks using fuzzy c-means clustering.
Physica A: Statistical Mechanics and its Applications, 374(1):483–490, 2007.

[71] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: A new data clustering
algorithm and its applications. Data Mining and Knowledge Discovery, 1(2):141–
182, 1997.

[72] Yi Zheng, John Nguyen, Yuan Wei, and Yu Sun. Recent advances in microfluidic
techniques for single-cell biophysical characterization. Lab on a Chip, 13(13):2464–
2483, 2013.

