Lawrence Berkeley National Laboratory
Recent Work

Title
STEEL REAR PLATE

Permalink
https://escholarship.org/uc/item/9g37m8dc

Author
Fong, Martin.

Publication Date
1979
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
The material selected is AISI C1008 plate. It is selected for its magnetic property. The C1008 material is non ASME code approved, but the code does not include 15 psig vessels. The code safety factor of four is followed in calculating the plate thickness. The tensile strength of the C1008 is tested by Anamet Laboratory, Inc in Berkeley, California.

TENSILE STRENGTH OF C1008

LONGITUDINAL DIRECTION = 45,300 psi
TRANSVERSE DIRECTION = 45,600 psi

The allowable stress, S_a, is

$$S_a = \frac{45,300}{4} = 11,325 \text{ psi}$$

The flat plate equation from UG-39 (c) 2 on p. 37 (also on p. 16 of M5207) is

$$t = d \sqrt{2 \left(\frac{C P}{S_a E} + \frac{1.9 W_{h_g}}{S_a E} \right)}$$

$d = 90.6 \text{ in}$
$C = 0.3$
$P = 15 \text{ psi}$
$E = 1$
$W_{h_g} = 221,184 \text{ in-lb}$

From p. 15 of M5207
The minimum thickness is

\[t_{\text{min}} = 90.6 \sqrt{2 \left[\frac{(0.3)(15)}{(11,325)(1)} + \frac{(1.9)(221,164)}{(11,325)(1)(90.6)} \right]} \]

= 2.710 in

The plate thickness will be 2.875 in. Plugging the thickness back into the equation and calculate \(S_A \)

\[S_A = 2 \left(\frac{90.6}{2.875} \right)^2 \left[0.3(15) + \frac{(1.9)(221,164)}{(90.6)^3} \right] = 10,060 \text{ psi} \]

\[4S_A = 4(10,060) = 40,240 \text{ psi} \]

This means the 2.875 in C1008 plate can have a 5,000 psi variation in the minimum tensile strength.
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.