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Abstract. Quantitative characterization of soil organic car-
bon (OC) content is essential due to its significant impacts
on surface–subsurface hydrological–thermal processes and
microbial decomposition of OC, which both in turn are
important for predicting carbon–climate feedbacks. While
such quantification is particularly important in the vulnera-
ble organic-rich Arctic region, it is challenging to achieve
due to the general limitations of conventional core sampling
and analysis methods, and to the extremely dynamic na-
ture of hydrological–thermal processes associated with an-
nual freeze–thaw events. In this study, we develop and test
an inversion scheme that can flexibly use single or multiple
datasets – including soil liquid water content, temperature
and electrical resistivity tomography (ERT) data – to esti-
mate the vertical distribution of OC content. Our approach
relies on the fact that OC content strongly influences soil
hydrological–thermal parameters and, therefore, indirectly
controls the spatiotemporal dynamics of soil liquid water
content, temperature and their correlated electrical resistiv-
ity. We employ the Community Land Model to simulate non-
isothermal surface–subsurface hydrological dynamics from
the bedrock to the top of canopy, with consideration of land
surface processes (e.g., solar radiation balance, evapotranspi-
ration, snow accumulation and melting) and ice–liquid wa-
ter phase transitions. For inversion, we combine a determin-
istic and an adaptive Markov chain Monte Carlo (MCMC)
optimization algorithm to estimate a posteriori distributions
of desired model parameters. For hydrological–thermal-to-
geophysical variable transformation, the simulated subsur-
face temperature, liquid water content and ice content are
explicitly linked to soil electrical resistivity via petrophysical

and geophysical models. We validate the developed scheme
using different numerical experiments and evaluate the influ-
ence of measurement errors and benefit of joint inversion on
the estimation of OC and other parameters. We also quantify
the propagation of uncertainty from the estimated parame-
ters to prediction of hydrological–thermal responses. We find
that, compared to inversion of single dataset (temperature,
liquid water content or apparent resistivity), joint inversion
of these datasets significantly reduces parameter uncertainty.
We find that the joint inversion approach is able to estimate
OC and sand content within the shallow active layer (top
0.3 m of soil) with high reliability. Due to the small vari-
ations of temperature and moisture within the shallow per-
mafrost (here at about 0.6 m depth), the approach is unable
to estimate OC with confidence. However, if the soil poros-
ity is functionally related to the OC and mineral content,
which is often observed in organic-rich Arctic soil, the uncer-
tainty of OC estimate at this depth remarkably decreases. Our
study documents the value of the new surface–subsurface,
deterministic–stochastic inversion approach, as well as the
benefit of including multiple types of data to estimate OC
and associated hydrological–thermal dynamics.

1 Introduction

Soil organic carbon (OC) and its influence on terrestrial
ecosystem feedbacks to global warming in permafrost re-
gions are particularly important for the calculation of global
carbon budget and prediction of future climate variation.
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Warmer air temperature leads to permafrost degradation,
which is expected to enhance decomposition of huge pools of
previously frozen OC, releasing carbon dioxide and methane
to the atmosphere, and enhancing global warming (Koven et
al., 2011; Schaphoff et al., 2013; Schuur et al., 2015). In that
context, accurate estimation of OC content stored in both the
active layer and permafrost is crucial for investigation of car-
bon stocks that expose microbial decomposition.

Predictive understanding of ecosystem feedbacks to cli-
mate in permafrost regions requires quantitative knowl-
edge of surface–subsurface hydrological–thermal dynamics,
which in turn are strongly governed by the hydrological–
thermal properties of soil OC (Jafarov and Schaefer, 2016).
In particular, there are dramatic differences between ther-
mal and hydraulic properties of OC and mineral soil, both
of which typically co-exist in shallow permafrost systems.
OC’s thermal conductivity (e.g., λOC, dry = 0.05 W mK−1) is
significantly lower than that of mineral soil (e.g., λsand =

8.4 W mK−1) (Farouki, 1981). By contrast, its heat capacity
is higher than that of mineral soil. Considering hydrological
properties, the hydraulic conductivity of OC is higher and
its capillary pressure is smaller than mineral soil (Lawrence
and Slater, 2008). In addition, while mineral soil porosity
typically ranges from 0.4 to 0.6, the porosity of OC soil is
usually greater than 0.8. Due to its low thermal conductiv-
ity, a top OC layer can behave as an insulator that reduces
the magnitude of heat and energy exchange between the at-
mosphere and deeper soil (e.g., Hinzman et al., 1991; Rinke
et al., 2008). Nicolsky et al. (2007) and Jafarov and Schae-
fer (2016) reported that inclusion of vertical OC content pro-
file into a land surface model can considerably improve pre-
diction of subsurface moisture, temperature and carbon dy-
namics. However, our ability to measure or estimate the dis-
tribution of OC is currently challenging, which inhibits accu-
rate model prediction.

OC content is usually measured from core samples, which
are collected from field sites and then analyzed in the lab-
oratory (e.g., Kern, 1994). While this method is relatively
accurate, it is labor intensive and typically limited in spatial
coverage. Because OC and mineral content largely influence
hydrological–thermal parameters (i.e., thermal conductivity,
heat capacity, hydraulic conductivity and retention curve; see
Appendix A), they are the main soil properties that control
the subsurface hydrological–thermal dynamics. As a result,
OC and mineral content can be potentially obtained by in-
verting observations of hydrological–thermal state variables
(i.e., soil liquid water content and soil temperature) and their
correlated observables (e.g., electrical resistivity). However,
so far there has been no effort using this approach to indi-
rectly estimate these soil properties.

Geophysical methods hold potential for characterizing the
subsurface in permafrost regions as well as their associated
physical, hydrological and thermal processes. Geophysical
techniques offer an advantage over conventional point mea-
surement techniques because they provide spatially exten-

sive information in a minimally invasive manner (e.g., Hub-
bard and Rubin, 2005). For example, Arcone et al. (1998)
and Chen et al. (2016) used ground-penetrating radar (GPR)
to characterize the depth of the permafrost table. Hinkel et
al. (2001) used GPR to estimate thaw depth, to recognize ice
wedges and ice lenses, and to locate the organic–mineral soil
interface. Schwamborn et al. (2002) combined seismic and
GPR data to investigate the stratigraphy of both frozen and
unfrozen parts of Lake Nikolay. Lewkowicz et al. (2011) and
You et al. (2013) employed electrical resistivity tomography
(ERT), ground temperature monitoring, frost table probing
and coring to detect the permafrost depth. Hauck et al. (2011)
developed a four-phase model of soil matrix, ice, liquid and
air and used it to estimate soil liquid and ice content from
combined ERT and seismic measurements in the Swiss Alps.
Hubbard et al. (2013) combined lidar data with multiple geo-
physical (ERT, GPR, electromagnetic) and point measure-
ments to characterize active-layer thickness and permafrost
variability in a large area.

In spite of the potential benefits offered by geophysical
data for characterizing permafrost systems, geophysical in-
version approaches typically suffer from several challenges.
First, inversion methods are often ill-posed due to the fact
that geophysical observables are sensitive to different soil
properties. Secondly, inversion approaches often typically re-
quire petrophysical models to link the geophysical observ-
ables with the property of interest. Finally, there are differ-
ences between the geophysical support scale and the scale of
the imaging target (Hubbard and Linde, 2011). In order to
take advantage of information inherent in geophysical signa-
tures and minimize the non-uniqueness challenges described
above, many recent studies have explored the value of cou-
pled hydrogeophysical inversion frameworks for estimating
soil properties (e.g., Johnson et al., 2009; Huisman et al.,
2010; Irving and Singha, 2010; Kowalsky et al., 2011; Pol-
lock and Cirpka, 2012; Busch et al., 2013; Herckenrath et
al., 2013; Camporese et al., 2015; Tran et al., 2013, 2016). In
these studies, the hydrological and geophysical models are
coupled together so that geophysical data are used to esti-
mate soil properties that control the subsurface hydrological–
thermal dynamics. Of the geophysical techniques commonly
used for monitoring the shallow subsurface, ERT is increas-
ingly common because it can autonomously provide 2- or 3-
D time-lapse measurements with a relatively high spatial res-
olution, is sensitive to properties influencing hydrological–
thermal dynamics and is particularly suitable for field de-
ployment over a long period of time. As a result, we use ERT
data in this study.

Most coupled hydrogeophysical inversion approaches de-
veloped to date are not adequate for investigating per-
mafrost systems due to several gaps. Developed methods
have only been applied to terrestrial systems without con-
sideration of the significant dynamics associated with the
freeze–thaw transition. Developed coupled hydrogeophys-
ical inversion approaches have also not yet incorporated
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surface–subsurface interactions (e.g., evapotranspiration, en-
ergy balance, plant water uptake). Finally, while a few stud-
ies have used soil–vegetation–atmospheric transfer (SVAT)
models to qualitatively interpret geophysical data (e.g., Mc-
Clymont et al., 2013), to date no study has coupled SVAT and
geophysical models and data to improve property estimation.

Building on recent advances in the use of electrical meth-
ods in the permafrost (e.g., Minsley et al., 2015; Dafflon et
al., 2017) as well as coupled hydrogeophysical inversion ap-
proaches described above, this study focuses on the devel-
opment of an inverse approach that uses single or multiple
datasets (soil liquid water content, soil temperature and elec-
trical resistivity) to estimate OC content, which is a main fac-
tor that governs the subsurface hydrological–thermal dynam-
ics. Our approach advances and couples several algorithms.
We use a SVAT model known as the Community Land Model
(CLM4.5; Oleson et al., 2013) to simulate water, heat and
energy exchange from the bedrock to the top of the canopy.
The model considers most of the land surface processes, ice–
liquid phase change and surface–subsurface hydrological–
thermal dynamics. For parameter estimation, we combined
deterministic and stochastic optimization algorithms to con-
currently obtain the best parameter estimates and their as-
sociated uncertainties. The deterministic optimization algo-
rithm is employed to estimate the initial parameter set and co-
variance matrix of the proposal distribution. For the stochas-
tic optimization, we used an advanced Markov chain Monte
Carlo (MCMC) method known as delayed rejection adaptive
Metropolis (DRAM; Haario et al., 2006). With this imple-
mentation of this adaptive MCMC algorithm, we expect to
obtain the a posteriori probability density function (PDFs)
of the desired model parameters more quickly than with the
traditional MCMC technique. For hydrological–thermal-to-
geophysical transformation, we explicitly consider the de-
pendence of the soil electrical resistivity on the soil ice–
liquid water content and soil temperature via petrophysical
and forward geophysical models.

This study advances capabilities to estimate and under-
stand the controls of OC on hydrological and thermal proper-
ties through developing a hydrological–thermal–geophysical
inversion scheme and through exploring its potential to esti-
mate the vertical distribution of OC and mineral content at
several depths within a representative synthetic Arctic soil
column. Herein, we use synthetic studies to (1) evaluate the
relationship between the measurement error and uncertain-
ties of parameter estimates; (2) examine the improvement in
parameter estimation offered by including various datasets in
the inversion, including apparent resistivity data; (3) inves-
tigate how OC estimation changes if the mineral and petro-
physical parameters are unknown; (4) explore how parameter
estimation changes when soil porosity functionally correlates
with the OC and mineral content; and (5) investigate the un-
certainty propagation from the OC and mineral content to the
hydrological–thermal prediction.

The paper is organized as follows. Section 2 describes the
development of the hydrological–thermal–geophysical inver-
sion scheme. Section 3 analyzes and discusses the results of
different synthetic experiments. Summary and concluding re-
marks are provided in Sect. 4.

2 Methodology

Generally, the joint hydrological–thermal–geophysical in-
version scheme developed in this study (Fig. 1) includes
two main components: (1) a forward coupled hydrological–
thermal–geophysical model that generates the subsurface
state variables (i.e., ice–liquid water content and tempera-
ture) and then uses these variables to infer the apparent re-
sistivity using a set of petrophysical formulas and a forward
electrical resistivity model (Fig. 1a), and (2) a combined
deterministic–stochastic optimization algorithm to estimate
the PDFs of desired model parameters (p) – which include
the soil OC content vertical profile (scenarios 1 to 9), sand
content vertical profile (scenarios 8 and 9) and petrophysical
parameters (scenarios 8 and 9) (see Table 2) – by minimizing
the misfit between measured and simulated data. It is worth
noting that the scheme is developed so that single (e.g., soil
temperature, liquid water content or apparent resistivity) or
multiple datasets can be used for inversion.

2.1 Hydrological–thermal model

In this study, we employed the CLM4.5 model (hereafter
referred to as “CLM”), which can effectively simulate dif-
ferent land surface energy balance and surface–subsurface
hydrological–thermal processes (Oleson et al., 2013). CLM
represents horizontal heterogeneity using multiple parallel
soil and snow columns having different land use and plant
function types. The lateral flow between the soil columns is
not accounted for in CLM. The model simulates the freeze–
thaw dynamics by considering two phases of water: liquid
and ice. The rate of phase change depends on the energy ex-
cess (for the ice-to-liquid transition) or deficit (for the liquid-
to-ice transition) from the soil temperature to the freez-
ing temperature. Given CLM’s ability to simulate different
hydrological–thermal processes in cold regions, we found it
suitable for Arctic soil column simulations. The minimum re-
quirements for the top boundary conditions in CLM include
precipitation, incident solar, air temperature and wind speed.
The land use and plant type information can be provided by
users or extracted from the available model database.

CLM assumes that soil is a mixture of three soil
types, namely, OC, sand and clay. It calculates the
soil hydrological–thermal parameters based on the con-
tent (fraction) of these soil types and their corresponding
hydrological–thermal properties (see Appendix A for more
detailed information on these relationships). In CLM, the
soil OC content (% OC) is defined as % OC= ρOC/ρ

max
OC ,
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Figure 1. (a) Forward coupled hydrological–thermal–geophysical model that considers soil liquid/ice water content, temperature and appar-
ent resistivity. (b) The two-stage inversion scheme combines deterministic and stochastic optimization algorithms to estimate the PDFs of
desired model parameters (p), which include the OC content (scenarios 1–9), sand content (scenarios 8 and 9) and petrophysical parameters
(scenarios 8 and 9) (see Table 2). The scheme permits flexibly using single or multiple types of data for inversion. The forward coupled
hydrological–thermal–geophysical model (a) is iteratively executed in both deterministic and stochastic inversion stages.
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Table 1. Petrophysical parameters and soil properties information used for synthetic simulation. Petrophysical parameters Fc, C+Na, C−1
Cl ,

β+Na and β−Cl are obtained from Minsley et al. (2015). Soil OC and sand content are based on the core sample analysis at the site near Barrow,
AK. The sand content is the percentage of sand in the mineral mixture, which is calculated as 100 minus OC content. The soil porosity is
independent from soil OC and sand content for scenarios 1–8, while it is calculated from these properties in scenario 9.

Petrophysical parameter Soil properties

m 2

Depth (m)

φ φ

n 1.3 (Scenarios (Scenario 9, Soil OC Sand content
σs (Sm−1) 0.005 1–8) calculated from content (in mineral
Fc(Cmol−1) 9.6487× 104 OC and sand (%) mixture)

content) (%)

C+Na = C
−

Cl (mol m−3) 4.28 0.1 0.9 0.86 92.3 70.0

βNa+ (m2 V−1 s−1) 5.8× 10−8 0.3 0.5 0.67 53.8 60.0

βCl− (m2 V−1 s−1) 7.9× 10−8 0.6 0.5 0.57 30.8 50.0
α −0.8 1 0.8 0.47 7.7 40.0

in which ρOC is the soil OC density (kg m−3) and ρmax
OC is

the maximum soil OC density (ρmax
OC = 130 kg m−3), which

is the standard bulk density of peat (Oleson et al., 2013). The
mineral content is determined as % mineral= 100−% OC.
CLM further assumes that mineral includes only sand and
clay. As a result, in the inversion scheme, we only need to
estimate the soil OC content and sand content in mineral
(hereafter referred to as the sand content). The clay content
is obtained by subtracting the sand content from the mineral
content.

For more detailed exploration of the vertical variability of
subsurface properties and associated hydrological–thermal
dynamics, we increased the default number of soil layers in
the CLM from 15 to 32 layers and defined the depth of layer
i (zi) as

zi = 0.025
(
e0.17(i−0.2)

− 1
)
. (1)

Of these 32 layers, CLM assumes that the 5 bottom layers are
bedrock layers. Hydrological dynamics is simulated only in
the top 27 soil layers, while thermal dynamics is simulated in
all 32 layers. Equation (1) was used to ensure that the layer
thicknesses near the soil surface are thinner than those near
the bottom (as shown in Fig. 3) in order to capture the impor-
tant hydrological and thermal dynamics in the topsoil active
layers.

Moreover, in order to explore how the soil porosity influ-
ences the estimation of soil OC and sand content, we mod-
ified the CLM to consider two cases: (1) the soil poros-
ity profile was fixed and independent from the soil OC and
sand content (see scenarios 1–8 in Table 1), and (2) the soil
porosity was calculated from the OC and sand content as
the default in the CLM (see scenario 9 in Table 1) as below
(Lawrence and Slater, 2008):

8=
(100−% OC)8min+% OC8OC

100
, (2)

in which 8 is the soil porosity, and 8min and 8OC are the
porosity of mineral and OC, respectively. In the CLM, the
OC porosity is given as 8OC = 0.9, and the mineral porosity
is calculated from sand fraction as

8min = 0.489− 0.00126(%sand). (3)

The dependencies of soil thermal conductivity, heat capacity
and thermal diffusivity on liquid water saturation, OC and
sand content are shown in Fig. 2. This figure was obtained
from calculations using equations in Appendix A in which
the soil porosity was considered in two cases: (1) fixing at
0.7 (panels a–c) and (2) calculating from the OC and sand
content (panels d–f). The figure shows that the variation of
soil thermal properties with respect to the OC content, sand
content and liquid water saturation is similar for both cases.
When the OC fraction increases from 0 to 100 %, the soil
thermal conductivity decreases, and the soil heat capacity
slightly increases. By contrast, higher sand fraction leads to
higher thermal conductivity and slightly lower heat capacity.
These relationships are expected, given that OC has a con-
siderably smaller thermal conductivity and a slightly higher
heat capacity than sand. The figure also shows that both soil
thermal conductivity and heat capacity significantly increase
with increasing liquid water saturation. This is also reason-
able, as the thermal conductivity and heat capacity of liquid
water are much higher than those of air. The thermal diffu-
sivity is defined as the ratio between the thermal conductivity
and heat capacity. The figure indicates that the diffusivity in-
creases when the OC decreases and sand content increases.

Comparing the two cases shows that, when the soil poros-
ity depends on OC and sand content, the soil thermal prop-
erties change in larger ranges with the variation of OC con-
tent, sand content and liquid water saturation. It is because,
while the soil porosity is fixed at 0.7 in the first case (pan-
els a–c), it varies from 0.36 (when soil is 100 % sand) to 0.9
(when soil is 100 % OC) in the second case (panels d–f). Be-
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Figure 2. Soil thermal conductivity (a, d), heat capacity (b, e) and thermal diffusivity (c, f) as a function of the liquid water saturation,
OC and sand content. The calculation for this figure was based on equations presented in Appendix A. The soil porosity was fixed at 0.7
for (a)–(c) and determined as a function of OC and sand content (Eqs. 2 and 3) for (d)–(f). (a) Thermal conductivity; porosity φ = 0.7.
(b) Volumetric heat capacity; porosity φ = 0.7. (c) Thermal diffusivity; porosity φ = 0.7. (d) Thermal conductivity; porosity is a function
of OC and sand content. (e) Volumetric heat capacity; porosity is a function of OC and sand content. (f) Thermal diffusivity; porosity is a
function of OC and sand content.

cause soil thermal properties strongly depend on soil poros-
ity (see Eqs. A2 and A8 in Appendix A), together with the
OC and sand content, the variation of porosity in the second
case leads to rapid change of the soil thermal properties and,
therefore, of the subsurface hydrological–thermal dynamics.

2.2 Petrophysical and geophysical transformation

In our inverse scheme, we link the output of the
hydrological–thermal simulation described above (soil ice–
liquid water saturation and temperature) to soil electrical
conductivity using Archie’s law (Archie, 1942):

σ = φm(Snwσw+
(
φ−m− 1

)
σs), (4)

in which φ is the porosity; Sw is the liquid water saturation
in the pore space;m and n are the cementation and saturation
indexes, respectively; and σs is the soil electrical conduction,
which was fixed at σs = 0.005 S m−1 in this study (Table 1).
It is worth noting that the reduction of porosity due to ice
content in this study was not considered. How ice content
influences Archie’s equation will be considered in future re-
search.

The water electrical conductivity (σw) is calculated from
the concentration of all ions in water as (Minsley et al., 2015)

σw =

i=nion∑
i=1

Fcβi |zi |Ci, (5)

in which βi and zi are the ionic mobility and valence of the
ith ion, respectively. Similar to Minsley et al. (2015), we as-
sumed that Na+ and Cl− are the two main ions in this syn-
thetic study. Fc is Faraday’s constant. Ci is the concentration
of the ith ion, which depends on the ice / liquid water fraction
as

Ci = Ci(Sfi=0)S
−α
fw , (6)

in which Sfi and Sfw are, respectively, the fraction of ice and
liquid in ice–liquid water (Sfi+ Sfw = 1); α varies from 0 to
1, which is the coefficient accounting for the reduction of
soil water salinity when liquid water saturation decreases.
A larger α implies a larger increasing rate of ion concen-
tration with decreasing liquid water fraction. The concen-
trations of ions in the ice-free water (Ci(Sfi=0)) can be ob-
tained from samples in the summer season. The values of m,
n, σs, φ, Fc, βi , Ci and α used in this synthetic study are
presented in Table 1. Except for m, n and σs, the parameters
were taken from Minsley et al. (2015). Of these parameters,
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α and m are the two most important parameters that con-
trol the relationship between geophysical and hydrological–
thermal variables. We estimated them by inverting soil mois-
ture, temperature and geophysical data in scenarios 8 and 9
(see Table 2).

The effect of soil temperature (T ) on the soil electrical
conductivity is formulated as (Hayley et al., 2007)

σT = σ(0.018× (T − 25)+ 1). (7)

The linkage between soil electrical conductivity and the
apparent resistivity is established by the electrical forward
model. In this study, we used the forward model of the
Boundless Electrical Resistivity Tomography (BERT) pack-
age, developed by Rücker et al. (2006), which numerically
solves Poisson’s equation using the finite-element method in
a three-dimensional arbitrary topography. For more detailed
information on this model, we refer the reader to Rücker et
al. (2006).

2.3 Stochastic and deterministic parameter estimation

In this section, we present a combination approach of deter-
ministic and stochastic optimization algorithms to estimate
the model parameters p and their uncertainties. The stochas-
tic optimization algorithm relies on the Bayesian inference
and DRAM MCMC technique. The deterministic optimiza-
tion algorithm was used to approximate the initial set of
model parameters and initial covariance matrix of the pro-
posal distribution for stochastic optimization. Consequently,
the estimated parameters are more rapidly obtained than only
using a single stochastic algorithm with arbitrary initial pa-
rameters. Moreover, the use of the DRAM stochastic opti-
mization algorithm allows us to sequentially update the pro-
posal covariance matrix and perform multiple tries to im-
prove the acceptance rate. This algorithm has proven to be
more efficient than the commonly used MCMC Metropolis–
Hasting method.

2.3.1 Bayesian inference

In the stochastic parameter estimation, the objective is to find
the a posteriori probability distribution P (p|Y ) of parame-
ters p conditioned on the measurements Y from which we
can extract the best-estimated parameters and their uncer-
tainties. Based on Bayes’ rule, this a posteriori distribution
is formulated as follows:

p(p|Y )∝ p(p)p (Y |p) , (8)

in which p(p) is the a priori parameter distribution of param-
eter p and p(Y |p) is the likelihood function. Assuming that
the error residuals are uncorrelated, the likelihood function
can be written as

p(Y |p)=

n∏
i=1
fyi (yi |p) , (9)

where fyi (yi |p) denotes the PDF of measurement yi at time
ti given the model parameters p. If we further assume the
error residuals (difference between modeling and measure-
ment) to be normally distributed, then fyi (yi |p) can be writ-
ten as

fyi (yi |p)=
1√

2πσ 2
i

exp

−1
2

(
ŷi − yi(p)

σ 2
i

)2
 , (10)

and Eq. (9) becomes

p(Y |p)∝ (11)

p(p)

(
1
√

2π

)n n∏
i=1

1√
σ 2
i

exp

−1
2

(
ŷi − yi(p)

σ 2
i

)2
 ,

in which yi(p) is the model response at time ti and σ 2
i

is the variance of measurement error at time ti . Intuitively,
σ 2
i works as an inverse-weighted factor of the contribution

of measurement ŷi to the a posteriori distribution p(Y |p).
A measurement with a higher variance of measurement er-
ror has a smaller contribution to constructing the parameter
a posteriori distribution. In addition, for joint inversion, σ 2

i

helps to removes the influence of measurement units of dif-
ferent data types.

2.3.2 Delayed rejection adaptive Metropolis Markov
chain Monte Carlo method

Once the a posteriori density distribution p(p|Y ) of the
model parameters is defined, we need to determine its sta-
tistical properties (e.g., mean, covariance). However, due to
the nonlinearity of the dynamic model, it is usually difficult
to analytically obtain these properties. In that respect, the
Monte Carlo methods can be used to generate samples from
this a posteriori distribution and then calculate these prop-
erties. We employed the DRAM method that was improved
from the Metropolis–Hasting MCMC method for this pur-
pose. Basically, this method is a combination of the adaptive
Metropolis and delayed rejection algorithm and briefly pre-
sented as follows:

Metropolis–Hasting: Given the current parameter set pk at
iteration k, the candidate for the next move (p′k+1) from
the current value is generated from a proposal distribu-
tion q1(pk,p

′
k+1). The acceptance ratio is calculated as

below:

α1(p
′
k+1pk)= (12)

min

(
1,
π
(
p′k+1

)
q1
(
p′k+1,pk

)
π
(
pk
)
q1
(
pk,p

′
k+1

) )
,

where π(p) is the target distribution needed to approxi-
mate (p(p|Y )). The next sample moves to the candidate
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p′k+1, pk+1 = p′k+1 if α > u, with u as a random vari-
able generated from uniform distribution U(0,1). Oth-
erwise, the candidate is rejected, and the next sample
stays at the current location, pk+1 = pk .

Delayed rejection: In delayed rejection, once the candidate
is rejected, instead of staying at the current sample, a
second (p′′k+1) try is proposed. The acceptance ratio
for this try is

α2(p
′′
k+1p

′
k+1pk)= (13)

min

(
1,
π
(
p′′k+1

)
q1
(
p′′k+1,θ

′
k+1

)
q2
(
p′′k+1,p

′
k+1,pk

)(
1−α1

(
p′′k+1,p

′
k+1

))
π
(
pk
)
q1
(
pk ,p

′
k+1

)
q2
(
pk ,p

′
k+1,p

′′
k+1

)(
1−α1

(
pk ,p

′
k+1

)) )
,

If the second try is rejected, the third try can be gen-
erated and so on. The number of tries is specified by
users.

Adaptation: One of the key limitations of the MCMC tech-
nique is the selection of the proposal distribution model.
In adaptive Metropolis, the proposal distribution is as-
sumed to be Gaussian centered at the current sample
N(pkCk) with the covariance matrix Ck adapted from
the previous samples as

Ck = sdcov
(
p0, . . .,pk

)
+ sdεId . (14)

In Eq. (14), sd is the scaling parameter, which depends
on the length (d) of the estimated parameter vector p,
which is set to sd = 2.42/d; ε > 0 is a very small con-
stant to inhibit Ck from becoming singular; and Id sig-
nifies the d-dimensional identity matrix.

The assessment of convergence of the MCMC chain is an-
alyzed by Geweke’s criterion, which compares the means and
variances of the beginning and end segments of the chain as
below:

Gi =
pi,a −pi,b√
si,a
na
+
si,b
nb

, (15)

where a denotes the beginning interval, which was selected
as the first 10 % of the chain, and where b denotes the end
interval, which was selected as the last 50 % of the chain.
pi,a and pi,b are, respectively, the mean of the ith parameters
of segments a and b; na and nb are the number of samples
in a and b segments; and si,a and si,b are their correspond-
ing consistent spectral density estimates at zero frequency.
The chain is considered to be converged if the Gi score is
within the 95 % interval of the standard Gaussian distribu-
tion (−1.96≤ zi ≤ 1.96).

2.3.3 Deterministic optimization for approximating
starting parameters and proposal distribution

The speed of convergence of the MCMC optimization algo-
rithm strongly depends on the initial model parameter p0 and

initial proposal distribution q1. In order to reduce the num-
ber of iterations needed to obtain the a posteriori distribution
of model parameters, we used the local optimization Nelder–
Mead simplex method to approximate the starting model pa-
rameter and initial covariance matrix of the proposal distribu-
tion. The starting point of the DRAM is the best-estimated set
of model parameters obtained by the Nelder–Mead method.
The covariance matrix of the proposal distribution is as-
sumed to be similar to that of the model parameters, which
are locally calculated at the optimal solution obtained by the
Nelder–Mead method as below:

C0
q =

1
n−m

(
J′J
)−1

n∑
i=1

(
ŷi − yi(p)

σ 2
i

)2

, (16)

in which C0
q denotes the initial covariance matrix of the pro-

posal distribution q1 and J is the Jacobian matrix, which is
defined as below:

J=


∂y1(p)

∂p1
. . .

∂y1(p)

∂pm
...

. . .
...

∂yn(p)

∂p1
. . .

∂yn(p)

∂pm

 . (17)

The partial derivatives ∂yi (p)
∂pj

(i = 1,2, . . .,m; j = 1,2, . . .,n)
are calculated at the optimal solution of the Nelder–Mead
simplex method. Because these derivatives cannot be solved
using analytical methods, we approximated them using

∂yi(p)

∂pj
≈ (18)

yi
(
p1, . . .,pj +1pj , . . .,pm

)
− yi(p1, . . .,pj , . . .,pm)

1pj
,

in which 1pj was set at 5 % of the parameter pj .

3 Results and discussion

3.1 Synthetic soil column description and boundary
conditions

To test the value of the developed joint inversion approach
under a range of conditions and assumptions, we performed
several synthetic case studies using the numerical soil col-
umn illustrated in Fig. 3. The synthetic column was devel-
oped to mimic typical soil and petrophysical properties as-
sociated with a high-centered polygon at an intensive study
transect (NGEE Arctic, Barrow, Alaska) (Fig. 4). The tran-
sect is 35 m in length and covers three typical topography
types in Barrow, namely, high-centered (HCP), flat-centered
(FCP) and low-centered polygon (LCP). The thawing oc-
curs during the growing season, lasting from the beginning
of June to the end of September. In the growing season

www.the-cryosphere.net/11/2089/2017/ The Cryosphere, 11, 2089–2109, 2017



2098 A. P. Tran et al.: Coupled Land Surface–subsurface hydrogeophysical inverse modeling

Figure 3. Twenty-seven synthetic soil layers and soil properties
(OC, sand content and porosity) for simulating hydrological and
thermal dynamics. The five bottom bedrock layers are not shown
in this figure. We assumed that the vertical profiles of soil proper-
ties are constructed by interpolating their corresponding values at
z= 0.1, 0.3, 0.6 and 1 m. For scenarios 1–8, the soil porosity was
fixed (8= 0.9, 0.5, 0.5 and 0.8 for z= 0.1, 0.3, 0.6 and 1 m, respec-
tively). For scenario 9, the soil porosity was calculated from the OC
and sand content (8= 0.86, 0.67, 0.57 and 0.47 for z= 0.1, 0.3,
0,6 and 1 m, respectively).

while the LCP is fully saturated, the HCP is relatively dry
and unsaturated. The bottom of the thaw layer at the end of
the growing season is located at about 0.3 and 0.5 m depth
at the center of HCP and LCP, respectively. ERT measure-
ments were performed along the transect daily using the
Wenner–Schlumberger configuration with an electrode spac-
ing of 0.5 m. Other measurements and conditions useful for
our synthetic studies – including soil temperature, soil mois-
ture, thaw depth, snow dynamics and climate conditions –
were also measured (Dafflon et al., 2017). These data have
been used here to develop conceptual models and synthetic
columns, while they will be used for real application of the
joint inversion scheme in a subsequent study.

Soil properties and petrophysical information used for the
synthetic studies are provided in Table 1. The “true” soil
properties are based on the core sample analysis at the Bar-
row, AK site (Baptiste Dafflon, personal communication,
2016), and the “true” petrophysical parameters were obtained
from Minsley et al. (2015). It is worth noting that soil is rep-

Figure 4. (a) Image of the intensive ERT transect (dash line) and
pole-mounted cameras, which monitor the land surface variabil-
ity of the whole transect. (b) Aerial view of the ERT transect
(dashed line), which covers different types of polygons, namely,
high-centered polygon (HCP), flat-centered polygon (FCP) and
low-centered polygon (LCP). (c) An example of inversion of ERT
data measured in August 2013. The top layer with low resistivity
represents the active layer. The middle layer with high resistivity
and the underlying less resistive layer correspond to permafrost and
saline permafrost, respectively (see Dafflon et al., 2017, for more
details).

resented in the CLM as a mixture of OC, sand and clay. As
such, in order to estimate the soil mixture, it was sufficient
for us to consider OC and sand content (in sand–clay min-
eral mixture) only.

We assumed that the vertical profiles of soil properties
(porosity, OC and sand content) were constructed by inter-
polating their corresponding values at four depths zk = 0.15,
0.3, 0.6 and 1 m as below:

fz = (19)
f1 if z ≤ z1

fk−1+
z− zk−1

zk − zk−1
if zk−1 ≤ z ≤ zk (k = 2,3,4)

×(fi − fi−1)

f4 if z ≥ z4

,

where fz are the soil properties at depth z and fk are the
soil properties at the corresponding depths zk = 0.15, 0.3, 0.6
and 1 m. These depths were chosen to represent the vertical
variations of OC content and soil porosity in the core samples
collected at the NGEE Arctic Barrow, Alaska, site.

We synthetically explored nine scenarios using the newly
developed inversion procedure (Table 2). The purposes of
these scenarios are as follows:
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Figure 5. General procedure used to perform the synthetic case
studies.

Scenarios 1 and 2: Evaluate the effect of measurement er-
rors on uncertainties of soil OC estimates (using electri-
cal resistivity data as an example).

Scenarios 2, 3, 4, 5, 6 and 7: Investigate the improvement
in OC estimation gained by joint inversion of multi-
ple hydrological, thermal and geophysical datasets com-
pared with inversion of each single dataset.

Scenarios 7 and 8: Study how the parameter estimates and
their associated uncertainties change if, in addition to
OC content, sand content and petrophysical parameters
are unknown.

Scenario 8 and 9: Explore the effect of soil porosity on the
parameter estimation by comparing two cases: (1) soil
porosity profile is fixed and independent from the soil
OC and sand content, and (2) soil porosity is defined as
a function of OC and sand content.

Scenario 8: Analyze the uncertainties, non-uniqueness, cor-
relation and convergence of the inverse problem, and
evaluate the impact of parameter uncertainty on predic-
tion of hydrological–thermal dynamics.

For all scenarios, we used daily time step meteorological
forcing data (including air temperature, wind speed, short-
wave and long-wave radiation, and precipitation) collected at
the Barrow site over a year period from 1 January to 31 De-
cember 2013, which includes a time period over which some
of the soil and electrical datasets were also collected at the
NGEE Arctic site. The plant functional type information was
obtained from the CLM database for the Arctic region. The
general approach that we followed to perform all synthetic
scenarios is presented in Fig. 5.

In order to account for the measurement errors, we as-
sumed that the error distribution was Gaussian and added

error to synthetic data to obtain “noisy” synthetic data (here-
after referred to as observation data) (Table 2). We set the
standard deviation of ERT measurement error to 2 % of syn-
thetic data for scenario 1 (low measurement error) and to 5 %
for the other scenarios. We used a standard deviation of mea-
surement errors of 0.5 ◦C for soil temperature and 0.08 for
soil liquid water content. The standard deviation of liquid
water content was set to be relatively high because we ob-
served that the associated error measurements for this vari-
able at Barrow were quite high. The standard deviation of
temperature measurement was set higher than what is gener-
ally expected for such measurements, while it also includes
some error associated with relating measurements to precise
depths. Observation data for inversion include (1) apparent
resistivity data at the seven most important time points dur-
ing the year, which include events such as thawing (day 163),
summer growing season (days 185, 199 and 234), freeze-up
(day 266) and frozen winter (days 292 and 312); (2) soil tem-
perature data at z= 0.004, 0.16, 0.8, 1 and 2.4 m from day 49
to 365, which are the most varying; and (3) liquid water con-
tent at depths 0.004, 0.05, 0.11 and 0.2 m during the sum-
mer growing season (days 159 to 259). Liquid water in the
winter season was not considered because it approximately
equals zero and, therefore, does not contain any information
for inversion. Meanwhile, soil temperature in the winter sea-
son still exhibits a large spatiotemporal variation, so we used
the temperature data from both winter and summer for inver-
sion.

For inversion, ranges were provided for unknown soil and
petrophysical parameters based on Hubbard et al. (2013) and
Dafflon et al. (2017) (Table 2). To minimize non-uniqueness
in the inversion procedure, we ignored the small OC content
at 1 m and the small sand content at 0.1 m. For scenarios 1–
7, we estimated OC content at z= 0.1, 0.3 and 0.6 m (three
parameters). For scenarios 8 and 9, we estimated OC content
at z= 0.1, 0.3 and 0.6 m; sand content at z= 0.3, 0.6 and
1 m; and petrophysical parameters m and α (eight parame-
ters). We assumed that there is no a priori information on the
estimated parameters. As a result, the a priori distributions of
OC and sand content were uniformly distributed within their
parameter ranges.

3.2 Simulation results

In order to estimate the a posteriori PDF of OC and sand
content as well as petrophysical parameters, we generate
8000 samples for scenarios 1–7 and 15 000 samples for sce-
narios 8 and 9. The number of samples in scenarios 8 and 9
is larger because there is a greater number of estimated pa-
rameters in these scenarios. We selected the last 5000 sam-
ples having a Geweke’s score less than 0.4 to construct the
PDFs of these parameters. Their best estimates and associ-
ated uncertainties are, respectively, represented by the means
and standard deviations of the samples and summarized in
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Table 2. Discussion and comparison of the scenarios are pre-
sented below.

3.2.1 Effect of measurement error on parameter
uncertainty

The influence of measurement error on the parameter uncer-
tainties was considered by comparing scenarios 1 and 2 using
apparent resistivity as an example. Scenario 1 assumed that
the standard deviation of measurement error is 2 % of syn-
thetic apparent resistivity data (small measurement error),
while this value for scenario 2 is 5 % (large measurement
error). For these two scenarios, we estimated the OC con-
tent at z= 0.1, 0.3 and 0.6 m. Figure 6 shows the probability
functions of the OC at these depths. The figures indicate that
the uncertainties of the estimated OC content at z= 0.1 and
0.3 m are considerably higher when the measurement error
is larger. As shown in Table 2, when the measurement error
of apparent resistivity increases from 2 to 5 %, the standard
deviation of the a posteriori OC samples increases by a factor
of 3 from 0.2 to 0.6 at z= 0.1 m and by more than a factor of
2 from 2.6 to 5.5 at z= 0.2 m. At z= 0.6 m, the OC content
cannot be reliably obtained by both scenarios.

In order to investigate the non-uniqueness problem and the
correlation between parameters, we estimated the misfit (sum
of square of absolute differences) between the synthetic and
sampled apparent resistivity data as a function of the OC con-
tent at z= 0.1, 0.3 and 0.6 m for scenario 2 (Fig. 7). While
the OC at z= 0.1 m is well identified, the misfit negligibly
changes when the OC content at z= 0.6 m varies from 20 to
50 %. This indicates that the apparent resistivity data are in-
sensitive to OC content at z= 0.6 m. This is reasonable, be-
cause this depth is within the permafrost (see Fig. 13), where
temperature insignificantly changes over time. Results could
be different if the permafrost were deeper. Indeed, OC con-
tent at depths inside the active layer where a freeze–thaw pro-
cess occurs is expected to be better resolved because of the
stronger temporal changes in properties used in the inversion.
Figure 7 also shows that there is a negative correlation be-
tween the OC content at z= 0.3 and 0.6 m, which increases
the uncertainties of OC estimates at both depths.

3.2.2 Influence of joint inversion of multiple data on
parameter uncertainty

The effectiveness of the joint inversion of multiple datasets
on the OC content estimation (at z= 0.1, 0.3 and 0.6 m)
was investigated by comparing results obtained from six sce-
narios that used (1) single apparent resistivity (scenario 2);
(2) single temperature (scenario 3); (3) single liquid water
content (scenario 4); (4) temperature and apparent resistivity
data (scenario 5); (5) liquid water content and apparent resis-
tivity (scenario 6); and (6) liquid water content, temperature
and apparent resistivity data (scenario 7). Joint inversion of
apparent resistivity with temperature and/or liquid water con-

Figure 6. The a posteriori probability of the soil OC content at z=
0.1, 0.3 and 0.6 m obtained by inverting apparent resistivity data
with relative measurement error of 2 % (a) and 5 % (b). The red
lines represent the “true” OC content.

tent data significantly reduces the uncertainties of OC content
at z= 0.1 and 0.3 m (Fig. 8). For example, compared to us-
ing a single temperature dataset, the uncertainty of OC con-
tent (the standard deviation of the final Markov chain of OC
content) reduces from 0.4 to 0.2 at z= 0.1 m and from 4.6 to
1.9 at z= 0.3 m when jointly using temperature, liquid water
content and apparent resistivity datasets. Finally, we found
that, even when all “observation” data are used, there is no
improvement in the OC content estimate at z= 0.6 m. These
synthetic experiments suggest that, given this depth is lo-
cated within the permafrost (see Fig. 13), the apparent resis-
tivity, liquid water content and temperature data are insensi-
tive to OC content. This is because within the permafrost the
soil temperature and ice–liquid water content exhibit much
smaller variations than in active layer, in both time and space.

3.2.3 Effect of mineral content and petrophysical
parameters

In scenario 8, in addition to the OC content, we assumed
that the sand content and petrophysical parameters m and α
are unknown and estimated these parameters using the ap-
parent resistivity, temperature and liquid water content data.
Similar to the previous scenarios, the OC content at z= 0.1
and 0.3 m was obtained with small uncertainties (σOC(z=

0.1 m)= 0.3, σOC(z= 0.3 m)= 2) (Fig. 9). The sand content
at z= 0.3 and 1 m was also well estimated with uncertain-
ties of 2.4 and 2, respectively. It is worth noting that, regard-
less of deep location, the sand content at 1 m is relatively
well determined because at this depth the sand–clay mineral
(92 %) dominates the OC content (8 %), and therefore the
hydrological–thermal data are relatively sensitive to this pa-
rameter. By contrast, the OC and sand content at z=0.6 m
is unidentifiable with uncertainties up to 6.5 and 8.2, respec-
tively. Finally, both of the petrophysical parameters m and α
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Figure 7. Misfit (sum of square of absolute difference) between
synthetic observations and MCMC sampling apparent resistivity
data as a function of soil OC content at z= 0.1, 0.3 and 0.6 m for
scenario 2.

are well estimated, while the parameter α has lower uncer-
tainty. This implies that α is more sensitive to the apparent
resistivity than to m.

The pairwise relationships between estimated parameters
(Fig. 10) indicate that the OC content at 0.1 m and petro-
physical parameter α are the most reliably estimated param-
eters, followed by the OC content at z= 0.3 m, sand content
at z= 0.3 and 1 m, and cementation index m. As for the cor-
relation between parameters, the figure reveals that there is a
strong positive correlation between the sand and OC content
at z= 0.6 m with a correlation coefficient of 0.86. This cor-
relation and the insensitivity of the observations with their
variations are two main reasons for the non-uniqueness of
these two parameters. The pairs of m–α and the OCz= 0.1 m–
sandz= 0.3 m are also highly correlated, with correlation coef-
ficients of 0.84 and 0.70, respectively.

3.2.4 Effect of porosity dependence on OC and mineral
content

In this section, we evaluate how the parameter uncertainties
change when the porosity is determined as a function of the
OC and mineral content by comparing scenarios 8 and 9.
While the soil porosity in scenario 8 was fixed and indepen-
dent from the OC and sand content, it was calculated from
the OC and sand content in scenario 9 as shown in Eqs. (2)
and (3).

Compared to scenario 8, all uncertainties of sand and OC
content in scenario 9 are smaller (Fig. 11). In particular, the
uncertainties of these parameters at z= 0.6 m significantly
decrease from 6.5 to 3.8 (for OC content) and from 8.2 to
1.8 (for sand content). This can be explained by the fact that,
in addition to thermal parameters (thermal conductivity and
heat capacity), the OC and sand content in scenario 9 con-
trols the soil porosity, which also influences the subsurface
hydrological–thermal dynamics (see Fig. 2). As a result, the
temperature, liquid water and apparent resistivity data in this
scenario are more sensitive to variations of OC and sand con-
tent than those in scenario 8. Consequently, these parameters
are more identifiable. By contrast, the uncertainty of petro-
physical parameters α and m considerably increases from
0.002 to 0.022 (for α) and from 0.042 to 0.066 (for m). This
is because, while it was fixed in scenario 8, the soil porosity
depends on the OC and sand content in scenario 9. There-
fore, the soil porosity in scenario 9 is also uncertain due to
the uncertainties of the OC and sand content. Because the
soil porosity, α and m are closely correlated (see Eq. 4), the
uncertainty of soil porosity causes higher uncertainties of α
and m.

3.2.5 Uncertainty propagation from parameters to the
hydrological–thermal and thaw layer thickness
prediction

In this section, we evaluate the impact of parameter uncer-
tainties on the prediction of hydrological–thermal dynamics.
A posteriori samples of the OC, sand content, and petro-
physical parameters m and α of scenario 8 were used for
this analysis. The synthetic and estimated soil temperature
at z= 0.004, 0.16 and 0.99 m and the liquid water content
at z= 0.004, 0.05 and 0.11 m are compared (Fig. 12). The
uncertainties of these predictions are represented by grey re-
gions with a confidence interval of 95 %. The figure indicates
that the synthetic and estimated soil temperature and liquid
water content agree well with each other. However, the uncer-
tainty of the soil temperature prediction is much smaller than
that of the liquid water content prediction. The average confi-
dence intervals over the simulation period of the soil temper-
ature prediction at z= 0.004, 0.16 and 0.99 m are 2.3, 2.3 and
1.7 % of the “observation”, respectively, while these values
for the soil liquid water content prediction at z= 0.004, 0.05
and 0.11 m are 28.7, 16.1 and 12.9 %, respectively. These dif-
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Figure 8. The a posteriori probability of the soil OC content at z= 0.1, 0.3 and 0.6 m. These probability functions were constructed from
5000 MCMC samples. Measurement errors of apparent resistivity, temperature and liquid water content data are 5 %, 0.5 ◦C and 0.08,
respectively. The red lines represent the “true” soil OC content. (a) Scenario 2: ERT; (b) scenario 3: temperature; (c) scenario 4: liquid water
content; (d) scenario 5: ERT–temperature; (e) scenario 6: ERT–liquid water content; (f) scenario 7: ERT–temperature–liquid water content.

Figure 9. The a posteriori probability of soil OC content at z= 0.1, 0.3 and 0.6 m; sand content at z= 0.3, 0.6 and 1 m; and petrophysical
parameters m and α for scenario 8. The sand content is the fraction of sand in the sand–clay mineral mixture. Soil porosity is fixed and
independent from the OC and sand content. The red line represents the “true” parameter values.

The Cryosphere, 11, 2089–2109, 2017 www.the-cryosphere.net/11/2089/2017/



A. P. Tran et al.: Coupled Land Surface–subsurface hydrogeophysical inverse modeling 2103

Figure 10. Pairwise relationships between estimated parameters. The calculation was based on 3000 MCMC samples of scenario 8.

ferences can be explained by the high sensitivity to the OC
and sand content and the larger measurement errors of liquid
water content than of soil temperature.

The synthetic and estimated thaw depth using results ob-
tained from scenario 8 (Fig. 13) show that soil water thaws
around the middle of June and freezes again around the mid-
dle of September. The thaw depth varies from 0.2 to 0.42 m.
These results are compatible with our field survey data in
Barrow (Dafflon et al., 2017), indicating that, although this is
a synthetic study, its simulation is relatively compatible with

the Arctic tundra field measurements. As for the influence of
parameter uncertainties on the thaw depth estimation, we ob-
served that the parameter uncertainties only cause thaw depth
variations during the warmest period of the year (beginning
of August to middle of September). During other times of
the year, the thaw depths corresponding to different sets of
parameters are quite similar.

The comparison between synthetic and predicted appar-
ent resistivity data (Fig. 14) shows that there is a very good
agreement between them with no bias, which implies that our
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Figure 11. The a posteriori probability of soil OC content at z=
0.1, 0.3 and 0.6 m; sand content at z= 0.3, 0.6 and 1 m; and petro-
physical parameters m and α for scenario 9. The sand content is the
fraction of sand in the sand–clay mineral mixture. Soil porosity is
determined as a function of soil OC and sand content in the CLM.
The red line represents the “true” parameter values.

inversion scheme converges to the lowest misfit region. The
confidence ranges corresponding to a level of 95 % vary from
1.4 to 9.4 % of the “observation” resistivity, which is suitable
with the relative measurement error of 5 %.

4 Summary and conclusions

In this study, we developed and tested a surface–subsurface
coupled hydrogeophysical inversion approach to estimate
OC content and its influence on hydrological–thermal be-
havior under Arctic freeze–thaw conditions. In our inversion
scheme, the CLM model serves as a forward model to simu-
late the land surface energy balance and surface–subsurface
hydrological–thermal processes. The new scheme can jointly
use different types of data for the inversion, including electri-
cal resistivity data. The dependence of soil electrical resistiv-
ity on temperature and ice–liquid water content is explicitly
accounted for within the inversion.

We developed an advanced optimization technique that
combines the deterministic and stochastic optimization al-
gorithms to obtain soil and petrophysical parameters and
their associated uncertainties. The stochastic optimization
estimated the a posteriori distribution of model parameters
by using the Bayesian inference and adaptive MCMC algo-

rithm DRAM. Meanwhile, the deterministic optimization al-
gorithm was used to approximate the starting set of model
parameters and the initial covariance matrix of the proposal
distribution for the stochastic optimization, which helps to
more quickly converge to the parameter a posteriori distribu-
tion.

We tested the inversion scheme using multiple synthetic
experiments in a 1-D soil column representative of the Arc-
tic tundra, where surface–subsurface hydrological and ther-
mal regimes co-interact and are influenced by soil OC and
mineral content. The obtained results show that the new in-
version approach reproduced the synthetic data well in all
experiments. The shallow (upper 0.3 m) active-layer OC and
sand content and the petrophysical parameters can be reli-
ably obtained using soil temperature, soil liquid/ice water
content and ERT data. When the soil porosity is fixed, the
uncertainties of OC and sand content are very high in the
permafrost section (0.6 m), even when soil temperature, liq-
uid water saturation and apparent resistivity data are jointly
used in the estimation procedure. This suggests that, when
the porosity is fixed, the inversion approach is unable to
significantly improve the estimation of OC within the per-
mafrost, due to the small magnitude of temporal variation of
both temperature and soil moisture in that section. However,
if the soil porosity is considered as a function of OC and sand
content, the permafrost parameters can be reliably obtained
because the variation of porosity with OC and sand con-
tent increases the sensitivity to ice–liquid water and temper-
ature. Examining the relationship between measurement er-
rors and parameter uncertainties, we found that the uncertain-
ties of estimated parameters increase with increasing mea-
surement error. We also explored the improvement in param-
eter estimation when jointly using multiple data for the in-
version. Compared to single dataset inversion (temperature,
soil moisture or electrical resistivity), joint inversion signifi-
cantly reduces the uncertainties of estimated parameters, es-
pecially at 0.3 m depth. Finally, we quantified the influence
of parameter uncertainties on the prediction of hydrological–
thermal and thaw depth dynamics. The obtained results show
that the soil liquid water content prediction is more uncertain
than the soil temperature and apparent resistivity predictions,
due to its large measurement error. The uncertainties in OC
and sand content have an impact on the thaw depth estima-
tion only during the warmest months of the year (August and
September).

This study developed and tested a novel approach to es-
timating soil OC content using inverse modeling that can
incorporate diverse hydrological, thermal and ERT datasets.
In addition, the study also permitted exploration of surface–
subsurface hydrological–thermal dynamics and spatiotempo-
ral variations associated with freeze–thaw transitions. Given
the importance of characterizing OC as part of ecosystem
and climate studies, the typical challenges associated with
collecting and analyzing “sufficient” core data to character-
ize the vertical and horizontal variability of OC associated
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Figure 12. Comparison of “observation” and predicted soil temperature at z= 0.004, 0.16 and 0.99 m (a) and liquid water content at z=
0.004, 0.05 and 0.11 m (b). The blue line denotes the synthetic data. The grey region represents the 95 % confidence interval calculated from
the a posteriori MCMC samples of scenario 8. The red line represents the mean of samples.

Figure 13. Comparison between estimated and synthetic thaw depth
over a year for scenario 8. The blue and red lines, respectively,
represent the synthetic and estimated thaw depth. The grey region
shows the confidence interval with a level of 95 %.

Figure 14. Comparison between “observation” and predicted ap-
parent resistivity. The red line denotes the 1 : 1 line. The vertical
error bar on the blue symbols represents the confidence interval of
the predicted apparent resistivity with a confidence level of 95 %.
The comparison was based on a posteriori samples of scenario 8.
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with a field study site, and the increasing use of electrical
resistivity data to characterize vertical, horizontal and tem-
poral variability in shallow systems, the new inversion ap-
proach offers significant potential for improved characteriza-
tion of OC over field-relevant conditions and scales. It also
offers significant potential for improving our understanding
of hydrological–thermal behavior of naturally heterogeneous
permafrost systems. The successful validation of this ap-
proach using 1-D synthetic studies provides a foundation for
extending it to 2-D and applying it to real field data, which is
currently underway.

In this study, we concentrated on the indirect impact of
the OC content on water electrical resistivity via soil wa-
ter and temperature. Recent studies indicated that the soil
OC content largely influences ionic mobility and, therefore,
changes the polarization and relaxation time of soil response
to the applied current, which can be measured by spec-
tral induced polarization (SIP) (e.g., Schwartz and Furman,
2015). As a result, our future study will explore the pos-
sibility of integrating SIP measurements into our coupled
hydrological–thermal–geophysical inversion scheme. In that
case, the OC content is linked to SIP measurements both

by its hydrological–thermal and by its electrical polarization
properties. Hauck et al. (2011) indicated that combination of
ERT and seismic measurements can improve the estimation
of ice and liquid water. We will integrate this approach into
coupled hydrogeophysical inversion to better constrain the
inversion and reduce the non-uniqueness of parameter esti-
mation.

With advancements in data acquisition, the surface–
subsurface hydrological–thermal dynamics now can be mon-
itored in real time at high temporal resolution using multi-
ple above- and below-ground measurements including geo-
physical techniques. Our next step is to expand the inversion
scheme so that it can assimilate these data into hydrological–
thermal models to improve the model prediction in real time.

Data availability. The meteorologial forcing data in Bar-
row that were used as boundary conditions in this study
are provided at https://gcmd.gsfc.nasa.gov/KeywordSearch/
Metadata.do?Portal=saobis&KeywordPath=&OrigMetadataNode=
GCMD&EntryId=Meteorological_Forcing_Barrow_AK_
1985-2013&MetadataView=Full&MetadataType=0&lbnode=
mdlb5.
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Appendix A: Relationship between soil hydrological and
thermal parameters and OC and mineral content

Soil thermal conductivity (λ) is calculated as

λ=

{
Keλsat+ (1−Ke)λdry Sr > 1× 10−7

λdry Sr ≤ 1× 10−7 , (A1)

λsat = λ
1−θsat
s λ

θliq
θliq+θice

θsat

liq λ

(
1−

θliq
θliq+θice

)
θsat

ice , (A2)

λdry = λdry,omfom+ λdry,min(1− fom), (A3)

Ke =


θliq+ θice

θsat
for frozen soil

log
(
θliq+ θice

θsat

)
+ 1 for unfrozen soil

, (A4)

in which Ke is the Kersten number; Sr is the wetness of the
soil with respect to saturation; λsat and λdry are, respectively,
the saturated and dry thermal conductivity; λs,om = 0.25 and
λdry,om = 0.05 Wm−1 K−1 are the saturated and dry thermal
conductivities of OC; θliq and θice are the liquid water and ice
content; and θsat is the soil porosity.
λs is the thermal conductivity of the soil matrix, which is

calculated from OC and mineral content as

λs = λs,omfom+ λs,min (1− fom) , (A5)

in which fom is the OC fraction (i.e., OC content in this
study) in the soil matrix. The saturated (λs,min) and dry ther-
mal conductivity (λdry,min) of minerals is calculated as

λs,min =
8.8(% sand)+ 2.92(% clay)

% sand+% clay
, (A6)

λdry,min =
0.135ρd+ 64.7
2700− 0.947ρd

, (A7)

where ρd = 2700(1−θsat,min) is the bulk density of minerals.
The volumetric heat capacity (c) is defined as

c = cs (1− θsat)+
wice

1z
Cice+

wliq

1z
Cliq, (A8)

with

cs = (1− fom)cs,min+ fomcs,om, (A9)

cs,min =
2.128(% sand)+ 2.385(% clay)

% sand+% clay
× 106,

cs,om = 2.5× 106 Jm−3 K−1,

in which cs is the heat capacity of the soil matrix; 1z is the
soil layer thickness; wice and wliq are the weight of ice and
liquid water in the layer;Cice andCliq are the specific heat ca-
pacities (J kg−1 K−1) of ice and liquid water; and cs,min and
cs,om are the heat capacity of mineral and OC, respectively.

As for soil hydrological characteristics, soil matric poten-
tial (ψ) and hydraulic conductivity (ki) are determined as

ψ = ψsat

(
θ

θsat

)−B
, (A10)

ki =


2ksat,i

[
0.5(θi + θi+1)

0.5
(
θi,sat+ θi+1,sat

)]2Bi+3

2ksat,i

(
θi

θi,sat

)2Bi+3
, (A11)

where ksat,i is the saturated hydraulic conductivity; 2 is the
ice impedance factor; and θi and θi+1 are the liquid water
content at layer i and i+1, respectively. The saturated matric
potential (ψsat) is calculated as

ψsat = (1− fom)ψsat,min+ fomψsat,om, (A12)

in which the saturated matric potential of organic matter
(ψsat,om) is set at−10.3 mm, and the saturated mineral matric
potential (ψsat,min) is calculated as

ψsat,min =−10× 101.88−0.0131(% sand). (A13)

The exponent coefficient (Bi) is calculated from OC and
mineral content as

Bi =
(
1− fom,i

)
Bmin,i + fom,iBom,i, (A14)

with Bom,i = 2.7 and Bmin,i = 2.91+ 0.159%clayi .

www.the-cryosphere.net/11/2089/2017/ The Cryosphere, 11, 2089–2109, 2017



2108 A. P. Tran et al.: Coupled Land Surface–subsurface hydrogeophysical inverse modeling

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. The Next-Generation Ecosystem Experiments
(NGEE Arctic) project is supported by the Office of Biological
and Environmental Research in the DOE Office of Science. This
NGEE Arctic research is supported through contract number
DE-AC02-05CH11231 to Lawrence Berkeley National Laboratory.
The authors would like to thank NGEE Arctic PI Stan Wullschleger
(ORNL) for support and Thomas Günther for providing the BERT
codes.

Edited by: Julia Boike
Reviewed by: two anonymous referees

References

Archie, G. E.: The electrical resistivity log as an aid in determining
some reservoir characteristics, Society of Petroleum Engineers,
T. AIME, 146, 54–62, 1942.

Arcone, S. A., Lawson, D. E., Delaney, A. J., Strasser, J. C., and
Strasser, J. D.: Ground-penetrating radar reflection profiling of
groundwater and bedrock in an area of discontinuous permafrost,
Geophysics, 63, 1573–1584, 1998.

Busch, S., Weihermüller, L., Huisman, J. A., Steelman, C. M., En-
dres, A. L., Vereecken, H., and Kruk, J.: Coupled hydrogeophys-
ical inversion of time-lapse surface GPR data to estimate hy-
draulic properties of a layered subsurface, Water Resour. Res.,
49, 8480–8494, 2013.

Camporese, M., Cassiani, G., Deiana, R., Salandin, P., and Binley,
A.: Coupled and uncoupled hydrogeophysical inversions using
ensemble Kalman filter assimilation of ERT-monitored tracer test
data, Water Resour. Res., 51, 3277–3291, 2015.

Chen, A., Parsekian, A. D., Schaefer, K., Jafarov, E., Panda, S., Liu,
L., Zhang, T., and Zebker, H.: Ground-penetrating radar-derived
measurements of active-layer thickness on the landscape scale
with sparse calibration at toolik and happy valley, Alaska, Geo-
physics, 81, H9–H19, 2016.

Dafflon, B., Oktem, R., Peterson, J., Ulrich, C., Tran, A.
P., Romanovsky, V., and Hubbard, S.: Coincident above-
and below-ground autonomous monitoring strategy: De-
velopment and use to monitor Arctic ecosystem freeze-
thaw dynamics, J. Geophys. Res.-Biogeo., 122, 1321–1342,
https://doi.org/10.1002/2016JG003724, 2017.

Farouki, O. T.: The thermal properties of soils in cold regions, Cold
Reg. Sci. Technol., 5, 67–75, 1981.

Haario, H., Laine, M., Mira, A., and Saksman, E.: DRAM: efficient
adaptive MCMC, Stat. Comput., 16, 339–354, 2006.

Hauck, C., Böttcher, M., and Maurer, H.: A new model for
estimating subsurface ice content based on combined elec-
trical and seismic data sets, The Cryosphere, 5, 453–468,
https://doi.org/10.5194/tc-5-453-2011, 2011.

Hayley, K., Bentley, L. R., Gharibi, M., and Nightingale, M.: Low
temperature dependence of electrical resistivity: Implications for
near surface geophysical monitoring, Geophys. Res. Lett., 34,
L18402, https://doi.org/10.1029/2007GL031124, 2007.

Herckenrath, D., Fiandaca, G., Auken, E., and Bauer-Gottwein, P.:
Sequential and joint hydrogeophysical inversion using a field-
scale groundwater model with ERT and TDEM data, Hydrol.
Earth Syst. Sci., 17, 4043–4060, https://doi.org/10.5194/hess-17-
4043-2013, 2013.

Hinkel, K., Doolittle, J., Bockheim, J., Nelson, F., Paetzold, R.,
Kimble, J., and Travis, R.: Detection of subsurface permafrost
features with ground-penetrating radar, Barrow, Alaska, Per-
mafrost Periglac., 12, 179–190, 2001.

Hinzman, L. D., Kane, D. L., Gieck, R. E., and Everett, K.
R.: Hydrologic and thermal properties of the active layer in
the Alaskan Arctic, Cold Reg. Sci. Technol., 19, 95–110,
https://doi.org/10.1016/0165-232X(91)90001-W, 1991.

Hubbard, S. S. and Linde, N.: Hydrogeophysics, in: Treatise on
Water Science, edited by: Wilderer, P., Elsevier, Oxford, 2011,
401–434, https://doi.org/10.1016/B978-0-444-53199-5.00043-9,
2011.

Hubbard, S. S. and Rubin, Y.: Introduction to hydrogeo-
physics, Hydrogeophysics, Springer Netherlands, 3–21,
https://doi.org/10.1007/1-4020-3102-5_1, 2005.

Hubbard, S. S., Gangodagamage, C., Dafflon, B., Wainwright, H.,
Peterson, J., Gusmeroli, A., Ulrich, C., Wu, Y., Wilson, C., Row-
land, J., and Tweedie, C.: Quantifying and relating land-surface
and subsurface variability in permafrost environments using Li-
DAR and surface geophysical datasets, Hydrogeol. J., 21, 149–
169, 2013.

Huisman, J. A., Rings, J., Vrugt, J. A., Sorg, J., and Vereecken, H.:
Hydraulic properties of a model dike from coupled Bayesian and
multi-criteria hydrogeophysical inversion, J. Hydrol., 380, 62–
73, 2010.

Irving, J. and Singha, K.: Stochastic inversion of tracer
test and electrical geophysical data to estimate hy-
draulic conductivities, Water Resour. Res., 46, W11514,
https://doi.org/10.1029/2009WR008340, 2010.

Jafarov, E. and Schaefer, K.: The importance of a surface or-
ganic layer in simulating permafrost thermal and carbon dynam-
ics, The Cryosphere, 10, 465–475, https://doi.org/10.5194/tc-10-
465-2016, 2016.

Johnson, T. C., Versteeg, R. J., Huang, H., and Routh, P. S.: Data-
domain correlation approach for joint hydrogeologic inversion of
time-lapse hydrogeologic and geophysical data, Geophysics, 74,
F127–F140, 2009.

Kern, J. S.: Spatial Patterns of Soil Organic Carbon in the Contigu-
ous United States, Soil Sci. Soc. Am. J., 58, 439–455, 1994.

Koven, C. D., Ringeval, B., Friedlingstein, P., Ciais, P., Cadule, P.,
Khvorostyanov, D., Krinner, G., and Tarnocai, C.: Permafrost
carbon-climate feedbacks accelerate global warming, P. Natl.
Acad. Sci. USA, 108, 14769–14774, 2011.

Kowalsky, M. B., Gasperikova, E., Finsterle, S., Watson, D., Baker,
G., and Hubbard, S. S.: Coupled modeling of hydrogeochemical
and electrical resistivity data for exploring the impact of recharge
on subsurface contamination, Water Resour. Res., 47, W02509,
https://doi.org/10.1029/2009WR008947, 2011.

Lawrence, D. M. and Slater, A. G.: Incorporating organic soil into
a global climate model, Clim. Dynam., 30, 145–160, 2008.

Lewkowicz, A. G., Etzelmuller, B., and Smith, S. L.: Characteristics
of discontinuous permafrost based on ground temperature mea-
surements and electrical resistivity tomography, southern Yukon,
Canada, Permafrost Periglac., 22, 320–342, 2011.

The Cryosphere, 11, 2089–2109, 2017 www.the-cryosphere.net/11/2089/2017/

https://doi.org/10.1002/2016JG003724
https://doi.org/10.5194/tc-5-453-2011
https://doi.org/10.1029/2007GL031124
https://doi.org/10.5194/hess-17-4043-2013
https://doi.org/10.5194/hess-17-4043-2013
https://doi.org/10.1016/0165-232X(91)90001-W
https://doi.org/10.1016/B978-0-444-53199-5.00043-9
https://doi.org/10.1007/1-4020-3102-5_1
https://doi.org/10.1029/2009WR008340
https://doi.org/10.5194/tc-10-465-2016
https://doi.org/10.5194/tc-10-465-2016
https://doi.org/10.1029/2009WR008947


A. P. Tran et al.: Coupled Land Surface–subsurface hydrogeophysical inverse modeling 2109

McClymont, A. F., Hayashi, M., Bentley, L. R., and Christensen,
B. S.: Geophysical imaging and thermal modeling of subsurface
morphology and thaw evolution of discontinuous permafrost, J.
Geophys. Res.-Earth, 118, 1826–1837, 2013.

Minsley, B. J., Wellman, T. P., Walvoord, M. A., and Revil,
A.: Sensitivity of airborne geophysical data to sublacustrine
and near-surface permafrost thaw, The Cryosphere, 9, 781–794,
https://doi.org/10.5194/tc-9-781-2015, 2015.

Nicolsky, D. J., Romanovsky, V. E., Alexeev, V. A., and Lawrence
D. M.: Improved modeling of permafrost dynamics in a
GCM land-surface scheme, Geophys. Res. Lett., 34, L08501,
https://doi.org/10.1029/2007GL029525, 2007.

Oleson, K. W., Lawrence, D. M., Gordon, B., Bonan, G. B., Drew-
niak, B., Huang, M., Koven, C. D., Levis, S., Li, F., Riley, J.
W., Subin, Z. M., Swenson, S. C., and Thornton, P. E.: Tech-
nical description of version 4.5 of the Community Land Model
(CLM), NCAR Technical Note NCAR/TN-503+STR, 420 pp.,
https://doi.org/10.5065/D6RR1W7M, 2013.

Pollock, D. and Cirpka, O. A.: Fully coupled hydrogeophysical in-
version of a laboratory salt tracer experiment monitored by elec-
trical resistivity tomography, Water Resour. Res., 48, W01505,
https://doi.org/10.1029/2011WR010779, 2012.

Rinke, A., Kuhry, P., and Dethloff, K.: Importance of a
soil organic layer for Arctic climate: A sensitivity study
with an Arctic RCM, Geophys. Res. Lett., 35, L13709,
https://doi.org/10.1029/2008GL034052, 2008

Rücker, C., Günther, T., and Spitzer, K.: Three-dimensional mod-
elling and inversion of DC resistivity data incorporating to-
pography – I. modelling, Geophys. J. Int., 166, 495–505,
https://doi.org/10.1111/j.1365-246X.2006.03010.x, 2006.

Schaphoff, S., Heyder, U., Ostberg, S., Gerten, D., Heinke, J., and
Lucht, W.: Contribution of permafrost soils to the global car-
bon budget, Environ. Res. Lett., 8, 014026, http://stacks.iop.org/
1748-9326/8/i=1/a=014026, 2013.

Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden,
J. W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P.,
Lawrence, D. M., and Natali, S. M.: Climate change and the per-
mafrost carbon feedback, Nature, 520, 171–179, 2015.

Schwamborn, G. J., Dix, J. K., Bull, J. M., and Rachold, V.: High-
resolution seismic and ground penetrating radar–geophysical
profiling of a thermokarst lake in the western Lena Delta, North-
ern Siberia, Permafrost Periglac., 13, 259–269, 2002.

Schwartz, N. and Furman, A.: On the spectral induced polarization
signature of soil organic matter, Geophys. J. Int., 200, 589–595,
2015.

Tran, A. P., Vanclooster, M., and Lambot, S.: Improving soil mois-
ture profile reconstruction from ground-penetrating radar data:
a maximum likelihood ensemble filter approach, Hydrol. Earth
Syst. Sci., 17, 2543–2556, https://doi.org/10.5194/hess-17-2543-
2013, 2013.

Tran, A. P., Dafflon, B., Hubbard, S. S., Kowalsky, M. B., Long,
P., Tokunaga, T. K., and Williams, K. H.: Quantifying shallow
subsurface water and heat dynamics using coupled hydrological-
thermal-geophysical inversion, Hydrol. Earth Syst. Sci., 20,
3477–3491, https://doi.org/10.5194/hess-20-3477-2016, 2016.

You, Y., Yu, Q., Pan, X., Wang, X., and Guo, L.: Ap-
plication of electrical resistivity tomography in investigat-
ing depth Of Permafrost Base And Permafrost Structure
In Tibetan Plateau, Cold Reg. Sci. Technol., 87, 19–26,
https://doi.org/10.1016/j.coldregions.2012.11.004, 2013.

www.the-cryosphere.net/11/2089/2017/ The Cryosphere, 11, 2089–2109, 2017

https://doi.org/10.5194/tc-9-781-2015
https://doi.org/10.1029/2007GL029525
https://doi.org/10.5065/D6RR1W7M
https://doi.org/10.1029/2011WR010779
https://doi.org/10.1029/2008GL034052
https://doi.org/10.1111/j.1365-246X.2006.03010.x
http://stacks.iop.org/1748-9326/8/i=1/a=014026
http://stacks.iop.org/1748-9326/8/i=1/a=014026
https://doi.org/10.5194/hess-17-2543-2013
https://doi.org/10.5194/hess-17-2543-2013
https://doi.org/10.5194/hess-20-3477-2016
https://doi.org/10.1016/j.coldregions.2012.11.004

	Abstract
	Introduction
	Methodology
	Hydrological--thermal model
	Petrophysical and geophysical transformation
	Stochastic and deterministic parameter estimation
	Bayesian inference
	Delayed rejection adaptive Metropolis Markov chain Monte Carlo method
	Deterministic optimization for approximating starting parameters and proposal distribution


	Results and discussion
	Synthetic soil column description and boundary conditions
	Simulation results
	Effect of measurement error on parameter uncertainty
	Influence of joint inversion of multiple data on parameter uncertainty
	Effect of mineral content and petrophysical parameters
	Effect of porosity dependence on OC and mineral content
	Uncertainty propagation from parameters to the hydrological--thermal and thaw layer thickness prediction


	Summary and conclusions
	Data availability
	Appendix A: Relationship between soil hydrological and thermal parameters and OC and mineral content
	Competing interests
	Acknowledgements
	References



