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ABSTRACT OF THE DISSERTATION

Robot Learning from Interactions with Physics-realistic Environment:

Constructing Big Task Platform for Training AI Agents

by

Xu Xie

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2021

Professor Song-Chun Zhu, Chair

Robot learning from interactions is a crucial topic in the joint field of computer vision,

robotics, and machine learning. Interactions are ubiquitous in daily life, concrete instances

comprise object-object, robot-object, and robot-robot interactions. Learning from interac-

tions to an intelligent robot system is important because it helps the robot to generate a sense

of physics, meanwhile planning and acting reasonably. To achieve this purpose, one primary

challenge that remains in the community is the absence of dataset that can be leveraged to

study the diverse categories of interactions. To create those datasets, the interaction data

should be realistic such that it reflects the underlying physical process. Further, we argue

that learning interactions through simulations is a promising approach to synthesize and

scale up diverse forms of interactions. This dissertation focuses on robot learning from inter-

actions in Mixed Reality (MR) as well as leveraging the state-of-the-art physical simulation

to construct virtual environments to afford Big Tasks. There are four major contributions

along this pathway:

1. Robot learning object manipulation skills from human demonstrations. Instead of
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directly learning from a robot-object manipulation dataset that is hard to generalize, we

alternatively seek an approach to create a human-object manipulation dataset and let the

robot learn from the demonstration. We claim that the key attribute of building such

dataset embodies the realistic hand-object interaction that involves a setup that can faithfully

capture the fine-grained raw motion signals. This leads us to develop a tactile glove system

and collect informative spatial-temporal sensory data during hand manipulations. An event

parsing pipeline is proposed upon the hand interactions that are transferable to the robot’s

end and learn the manipulation skill.

2. A virtual testbed to construct rich interactive tasks. The major limitation of collecting

real-world interaction data can be summarized as three folds: i) a specific setup is needed to

trace one form of interaction, ii) amount of efforts need to spend on data cleaning and label-

ing, and iii) a single dataset is not capable to capture different modalities of interactions at

the same time. To overcome those issues, we propose and develop a virtual testbed, VRGym

platform, for realistic human-robot interactive tasks (Big Tasks). In VRGym, the pipelines

we developed are able to synthesize diverse photo-realistic 3D scenes that incorporate various

forms of interactions through physics-based simulation. Given available rich interactions, we

expect to grow a general-purpose agent from the interactive tasks and advance the research

areas of robotics, machine learning as well as cognitive science.

3. Robot learning from imperfect demonstrations — small data. In the area of learning

from demonstration, interacting with objects, one essential element is the creation of expert

demonstrations. However, non-trivial efforts are needed when collecting those demonstra-

tions and a large portion of them contains failure cases. We develop the demonstration

setup for learning objects grasping skills upon VRGym platform with VR human interfaces.

Human performers interact with the virtual scene by teleoperating the virtual robot arm.

At the same time, the demonstration is evaluated through physics simulation such that even

a perfect task plan may fail during the execution. Given the sparsity of demonstrations,

we think the failed ones are valuable in addition to the perfect demonstration. This en-
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lightens us to exploit the implicit characteristics of small data in the presence of imperfect

demonstrations.

4. A game platform for large-scale social interactions. Social interactions are another

important branch that goes beyond physical only interactions. To develop a general-purpose

agent, it has to properly infer other agents motion or intentions and applies socially accept-

able behaviors when interacting in the scene. Inspired by those facts, we leverage a popular

computer game platform, Grand Theft Auto (GTA), to automatically construct fruitful re-

alistic social interactions in the simulated urban scenarios. The city transportation system,

including vehicles and pedestrians, can be fully controlled by the developed modding scripts.

The GTA platform is a supplement to VRGym that extends robot learning from interactions

to a larger scale. We utilize it to synthesize multi-vehicle driving scenarios and study the

problem of trajectories prediction as to the basis of intentions inference. We highlight the

safety aspect by predicting collision-free trajectories that accord with the social norm for

vehicle driving.
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CHAPTER 1

Introduction

In the history of computer vision, Marr [Mar82] presents a computational perspective of

addressing “what is where” when looking at the scene. This direction is further developed

by the line of works [Zhu03, TZ02, BZ03, ZM07, WSF07, JQZ18, WGH19] pursuing a statis-

tical framework for image modeling, parsing and generation. The milestones achieved by the

community of computer vision continuously enlighten many close areas. Its concept, method-

ology and toolkit benefit various AI related research such as natural language processing and

robotics learning. In the field of robotics learning, one key building block of a robot system

is the perception module that receives and processes visual information. Computer vision

algorithms and methods equipped on robots enables development of diverse applications in

scene understanding and activity reasoning.

Another aspect can not be neglected for a robot system is the ability of sensing and

processing multimodal information. In real world scenarios, different modalities other than

visual information are equivalently valuable to be leveraged. For example, when robot grasps

a object using its gripper, the tactile information may help decide the status of firm grasp.

Besides, the driving trajectory of an vehicle may reflect its driving behaviors as well as

intentions. On one hand, the robot develop the sense of entity fluents through interactive

motions. It increases the degree of information that visual sensing may not bring. On the

other hand, it is able to affect entity fluents hence induces the change of environment. This

chain reaction indicates interactions is a crucial factor implicitly owned by a robotics system.

Presenting with those evidences, we highlight learning from interactions is the crucial stage

1



to grow the true intelligence of a robot system. Learning through interactions, a robot

gradually broadens its “intelligibility” towards big tasks achievement. In this dissertation,

we are focusing on the topic of robot learning from realistic interactions to serve big tasks

by answering the following questions:

1. What would be the plausible data to realistically describe the robot-object

interaction? Manipulation is the most common category among robot-object interactions.

A typical manipulation model composes multiple stages describing different object fluents

and corresponding motion primitives. Learning a manipulation skill, simply acquiring visual

information is not sufficient. Visual information alone lacks tactile motions to understand

the interactions. For example, the robot gripper motion may be occluded sometimes when

grabbing one object. Moreover, visual data may not reveal adequate knowledge to capture

subtle motions. To resolve this, we propose to capture two crucial forms of data, pose and

force that potentially convey rich information to describe object manipulations.

In literature, there are extensive study on tracing body pose [KB13], estimating force from

vision [ZZC15, PKQ15] and soft-body simulation [WMZ13, ZZM13]. Instead of applying

those existing methods, we develop a glove-based system that is capable of sensing raw

signal during manipulation. For those devices, they have merits of carrying convenient and

integrated solutions that can be natural for collection of ground truth hand data. Tactile

gloves have been presented for various of robotics applications [DSD08] and are still active

in research. Descriptions of our tactile glove design are detailed in the later chapter. The

data collected from our tactile glove provides the robot with a demonstration resource to

learn manipulation skills.

2. What would be the suitable approach generalizing the manipulation events?

The purpose of modeling the manipulation events during objects interaction is to present the

robot an interpretable spatial and temporal understanding for its own acting plan and execu-

tion. To the category of the most state-of-the-art action recognition algorithms, segmenting

or parsing the events of manipulation sequences remains challenge. We investigate this
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problem by studying one typical hand-object manipulation – Open Bottles that a number of

movement primitives were involved: grasp, push, twist and pull. Given this setup, we propose

an fully unsupervised learning method for manipulation event segmentation, recognition and

parsing. To capture the temporal properties during manipulation, we present a temporal

hierarchical structure using a grammar model — temporal And-Or graph (T-AOG).

During the object manipulations, we argue that force information is an indispensable ele-

ment to better understanding manipulation motions. Aiming at force acquisition, we utilize

our developed tactile glove to obtain force readings during manipulations. Data collected us-

ing the tactile glove reliably retrieves the contact forces that could be the limitation of visual

system alone. Given the force exerted on the palm, we learn a “push-down” type of action

as well as a set of motion primitives that form an action sequence. Leveraging the visually

latent force information, our setup is able to see the forces during hand-object interactions.

Another issue we have to tackle with is to transfer the raw signal (poses and forces) collected

from the tactile glove to the robot that has different embodiments. To satisfy this purpose,

we reconstruct the semantic meanings from manipulation motions to action events allowing

the generalization of abstract knowledge. The temporal knowledge of the action sequence

is represented by the learned T-AOG. It captures the hierarchical structure of temporal se-

quences. Our whole pipeline is developed fully unsupervisedly. And the action segmentation

results compared to other baseline methods further prove the effectiveness of our model.

3. What could be the promising direction to scale up diverse forms of physical

realistic interactions pursuing big tasks? For the routine methodology of robot learning

from interactions, researchers are heavily focusing on collecting one source of interactive

demonstrations, and let the robot learns an interactive model from the demonstrated dataset.

However, this typical approach could be limited in the sense that retrieving multimodal

information of interactions remain challenging, even a sophisticated hardware system may

not cover every aspect of sensory information to study the related problems. In addition,

there are always amount of efforts need to be paid on labeling the raw data. It becomes
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especially tough while labeling multiple entity fluents that describing the interactive events.

Facing those issues, we propose a insightful solution by developing a virtual reality testbed

– VRGym which targets on providing physical realistic human and robot interactions by

constructing simulated environments.

Different from the rapidly growing supervised learning using deep learning methods [HS06],

such as object recognition [HZR15], robot grasping [LLS15, LHP16], learning from demon-

strations [ACV09] and board games [SHM16, BS18, MSB17] often requires an intensive

labeling process, task specific setup and lacks of explicit task representations, we in contrast

highlight the task generalization when learning from interactions that an intelligent agent

has to rapidly adapt to new tasks and grow the knowledge to achieve goals in a wide range

of environments (“Big Tasks”). Utilizing the advance of game industry, assets of game con-

tents, scenes and objects, are available for creating the virtual environments. In this period,

mature physics based simulation and graphics rendering enable more realistic simulations

than before. With the support of those characteristics, various forms of interactions are able

to be performed using synthetic data during simulations. Availability of rich interactions

enable the tasks development for the purpose of agent learning. Existing platforms such

as [KMG17, SDL18, XZH18] are pushing towards this direction by making both research

and engineering efforts. However, in terms of the development of interactions, the prior plat-

forms lack involvement of human, another source of performing interactions for high level

tasks. We argue that with human in the loop, social interactions including intention predic-

tions and task collaborations could be performed. In this sense, developing the simulation

environment for big tasks where virtual robots realistically interact with a human would

assist the incremental learning towards robotics deployment in the home environment.

4. What would be a practical approach to study large scale multi-agent in-

teractions in simulated environments? Large scale multi-agent interactions could be

commonly noticed in the daily activities. One exemplar scenario is the urban traffic sys-

tem where vehicles and pedestrians create fruitful interactions through commuting. As for
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simulating those interactions in a physical realistic perspective, it requires the simulation

environment maintains a complete traffic system such as schedule of traffic signal, path

planning of commuting vehicles. Instead of scripting all detailed movements to support the

simulated tasks, we leverage a game platform – “Grand Theft Auto (GTA)” that has exist-

ing game scenarios to study related topics. Majority of the game scenes are modeled on Los

Angeles and its vicinity. The urban area has been carefully designed by gathering footage

from field trips. For layout of road networks, it has been crafted with the help of Google

Map projection.

In the multi-vehicle road driving, an autonomous vehicle needs to have a comprehensive

understanding of the scenes its surrounded by. For example, when driving in an intersection,

the maneuver a driver decides to conduct not only depends on traffic rules but is dynamically

influenced by other vehicles in the same scene. The maneuver decision becomes particularly

important in safety-critical cases. Among different choices of maneuver, each of which has

its own consequence. Some of them may result in serious safety issues, such as crashing.

In this sense, predicting multiple vehicles’ future trajectories in socially interactive context

is becoming remarkably crucial. In GTA platform, where authentic agents activities are

supported by its physically realistic game engine, we develop a modding script hooked up

with game process to generate vehicle interaction scenes. The script is capable of spawning

the vehicles with different attributes meanwhile capturing and manipulating their real-time

states and motions. To tackle with the issue of trajectory prediction under safety-critical

scenarios, we propose an interactive learning approach that decouples the framework of

“Sense-Learn-Reason-Predict”. Using GTA platform, the evaluation of different methods

can be directly simulated in the generated safety-critical scenarios that demonstrates its

potential in conducting automobile research.
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CHAPTER 2

Object Interactions: A Physical Realistic Approach for

Manipulation Skill Learning

In this chapter, we discuss our approach for robot object interaction – learning manipulations

skills. The way we study this problem is under the framework of Learning from Demonstra-

tion (LfD). Concretely, we let human perform the bottle opening task and the robot learns

the corresponding skill from the demonstrated data. The data stream is captured by guar-

anteeing the physical realistic properties. The whole pipeline consists of the following major

components:

• We develop a tactile glove based hardware system for raw data sensing during hand-

object manipulation. The invisible force is incorporated with hand poses for event

segmentation and parsing during fine-grained manipulation tasks.

• We propose an unsupervised learning framework that learns a temporal grammar model

(T-AOG) for hand-object interactions. It composes of automatic clustering, event

segmentation, labeling and grammar induction. This knowledge representation on

actions from heterogeneous sensory data can be generalized to the robot.

• We transfer the learned temporal grammar model for manipulation actions onto a Bax-

ter robot by solving a correspondence problem. The developed embodiment mapping

function enable the robot to reason about its haptic measurements. Together with the

temporal grammar model, they jointly form the manipulation model for robot to learn

object manipulations.

6



2.1 Tactile Glove

(a) (b)

Figure 2.1: Prototype consisting of (a) 15 IMUs on the dorsum of the hand and (b) 6

integrated Velostat force sensor with 26 taxels on the palmar aspects of the hand.

In literature, efforts are made to design tactile glove systems to address limitations such

as cost and portability. Our tactile glove, in particular, jointly senses pose and force informa-

tion. Our thinking reflects the need for capturing the dynamics involved in fine manipulative

actions rather than only considering the kinematics. To achieve this purpose, we create and

demonstrate our developed tactile glove system that integrates both pose and force sensing

over large hand areas. The sensors we adopt provides reliable spatial resolution as well as

non-confined natural hand motions. The profile of our tactile glove is depicted in Fig. 2.1.
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2.1.1 System Design

Figure 2.2: Overall system schematic.

Development of our tactile glove consists of both hardware and software implementation.

The system integrates a glove and a processing unit (Raspberry Pi) for raw data acquisition.

Two sensing networks are integrated to form the schematic which is presented in Fig. 2.2. The

network of 15 IMUs measures the orientations of the hand palm and phalanx for elaborated

hand pose reconstruction. The network of 6 Velostat force sensors are attached to hand palm

and each finger to measure the contact forces.

For pose sensing pipeline, the pose estimation module is composed of 15 Bosch BNO055

9DoF IMUs. Among them, 1 IMU is mounted to the palm center of the glove, 12s are

mounted to three phalanxes on four fingers and 2 IMUs are mounted to the distal and

intermediate phalanges on the thumb. For each IMU, sensor fusion is performed yielding a

global-frame quaternion measuring the orientation for each hand phalanx. All IMU sensors
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are networked over a pair of I2C buses in star configuration, the I2C multiplexer is mounted

on the star center to connect I2C bus interfaces available on a single Raspberry Pi board.

The multiplexer acts as the controller to collect hand poses for the entire glove. In addition,

the IMUs are fixed into small 3D-printed housings which are sewn into the glove fabric.

Those wiring and setup increases the flexibility when performing hand motions.

For force sensing pipeline, the Velostat material is deployed to cover the surface of the

glove. We layer small strips of Velostat between two outer conductive fabric with conductive

thread stitched into it. The braided wire is then soldered to itself and form the circuit

loop that hold the materials in place. Analog multiplexers are mounted and connected

to Raspberry Pi’s GPIO. The voltage signal are converted to force value by conducting

calibrations.

Prototype of our tactile glove is designed in Fig. 2.1. Functionality of the force sensing

is realized by deploying five 2x1 customized Velostat force sensors on each finger / thumb

that each of them detects the contact pressure. And a single 4x4 sensor covers the glove’s

palm area. Sensors arrangement are described in Fig. 2.1. The multiple Velostat sensors are

connected in parallel via a multiplexer that access a each sensor periodically. The on-board

Analog-to-Digital converter (ADC) is extended to integrate with a voltage divider to capture

the voltage readings. This setup enables the force measurement distributed on the hand. On

the other hand, pose sensing is provided by 15 IMUs on each phalanx and the palm. Those

IMUs are controlled by multiplexers mounted on palm and connected to the single-board

computer, Raspberry Pi, for pose acquisition. By setting up the software processing in ROS,

the processed raw data can be accessed remotely and visualized in the real-time on desktop

workstation.

2.1.2 Visualizing the Manipulative Actions

Utilizing the developed tactile glove system, we conduct a series of manipulative actions when

opening three types of medicine bottles. Because of the lock mechanism among the bottles
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(a) Bottle 1, regular twist to open

(b) Bottle 2. pressing the lid to open

(c) Bottle 3, pinching lock to open

Figure 2.3: Action sequences and visualizations of opening three types of bottles

are different, it requires particular actions to open the bottle lid. Fig. 2.3 demonstrates

action sequences of opening three types of bottles when wearing the tactile glove. Bottle

1 is the normal medicine bottle that can be opened by simply twisting the lid. Bottle 2

has the safety lock and needs simultaneously pressing down and twisting to open the lid.

Bottle 3 requires the pinching to open the safety lock. Note that in the presence of the

safety lock, some manipulative actions for Bottle 2 and Bottle 3 are hard to recognize from

the visual sequence. Recovering the force exerted by the hand is the key to capture the
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actions. By leveraging the ROS Unified Robot Description Format (URDF), we reconstruct

the hand motions by creating a hand model with pre-defined structure and connected joints.

Parameters such as phalanx lengths and palm dimensions are measured beforehand. The

first row of Fig. 2.3a, 2.3b and 2.3c are sampled frames when visualizing the manipulative

action sequences using the tactile glove for three types of bottles. The second row provides

the actual sequences captured by RGB camera correspondingly.

Visualization results in the first row of Fig. 2.3 illustrate the additional force information

representing different fine-grained manipulative actions when opening the bottles. For hand

poses, Fig. 2.3b has palm pressing down while Fig. 2.3c is akin to a gripping gesture. Ac-

cording to the responses of force markers, different patterns indicate varying contact points

on human hand. Comparing Fig. 2.3b and 2.3c, the former contains high responses around

palm area, the later has only two responses concentrated on distal thumb and index finger.

Given no existence of force information, motions of opening Bottle 1 and Bottle 3 are not

able to be identified (Fig. 2.3a and 2.3c). This ability of tracing the visually unobservable

forces proves the merit of our proposed design in studying object manipulations.

2.2 Unsupervised Hierarchical Modeling of Hand-Object Interac-

tions

In literature, abundant approaches are proposed to model the actions. One important line of

works propose recognizing the actions in different scenarios. In the community of computer

vision, people demonstrate the capability of 3D poses estimation and action recognition

by learning from RGB-D videos [WZZ13, WLW14, WNX14, WZZ17, QHW17] . However,

those works concentrate on full-body action recognition instead of hand scale manipulations.

Besides visual only information, [BF08, BSF09, ZZM13] estimate contact forces using the

mass-spring system. These works rely on prior knowledge of properties such as physical

and appearance of the manipulated objects. Our approach, instead, uses a tactile glove to
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Figure 2.4: Unsupervised learning pipeline of hand-object motion recognition. After collect-

ing the raw data using a tactile glove, a spatial (HC (S)) and temporal (HC (T)) hierarchical

clustering is performed on both force and pose data. An aligned cluster analysis (ACA) is

adopted to further reduce the noise. Event segmentation (ES (S) and ES (T)) is achieved by

merging motion primitives based on the distance measured by DTAK. Finally, a grammar

is induced (GI) based on the segmented events, forming a T-AOG.

measure the forces does not depend on such assumptions.

To achieve the modeling of hand-object interactions, we incorporate invisible force in ad-

dition to the hand pose based methods for motion segmentation and parsing. The framework

we propose models noisy and heterogeneous sensory data that can be generalized to other

hand-object interaction tasks. Our unsupervised learning pipeline, Fig. 2.4, incorporates

spatial and temporal clustering, event segmentation and grammar induction. A temporal

grammar model (T-AOG) is learned to significantly enhance the motion recognition results

compared to naive clustering strategies.

2.2.1 Temporal Representation

In our proposed method, a structural grammar model Temporal And-Or Graph (T-AOG) [ZM07]

is introduced to represent the temporal task structures. An AOG is a directed graph that

describes the stochastic context free grammar (SCFG). This representation is hierarchical

and compositional. The formal definition of the AOG is a five-tuple G = (S, V,R, P,Σ),

where S is a start symbol; V denotes a set of nodes in terms of non-terminal nodes V NT and
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terminal nodes V T : V = V NT ∪ V T ; R = {r : α→ β} is a set of production rules represent

the top-down sampling from a parent node α to its child nodes β; P : p(r) = p(β|α) is the

probability for each production rule; Σ is the language synthesized by the grammar which

includes all valid sentences.

For all non-terminal nodes in an AOG, they can be categorized into two types V NT =

V AND ∪ V OR. An And-node is used to represent the compositional relations. It can be

decomposed into multiple child nodes. An Or-node is used to represent alternative relations.

It has multiple mutually exclusive child nodes. A terminal node represents an entity that

is not further decomposed or has different configurations. A parse graph (pg) is an instance

of the AOG that contains the decomposed And-nodes and one child node of the Or-nodes.

Particularly, a temporal AOG (T-AOG) represents a set of all possible parse graph to execute

a certain task. Semantically, the start node S represents an event category, ex. opening a

medicine bottle. Terminal nodes V T represents the set of motion primitives that a human

or robot can execute. An And-node is decomposed into sub-tasks or child nodes’ motion

primitives. An Or-node represents alternatives to perform a sub-task. A pg for a task is a

sub-graph of T-AOG that embodies the temporal structure of the task scenario.

Illustrated in Fig. 2.5, raw sensory data is segmented for semantic parsing. Pose and

force sequences Γ are extracted on input sequence I during [1, T ]. Motion primitive at is

labeled on each frame and the whole motion sequence is denoted as A = {at}. Segmentation

of the motion events is defined as T = {γk}, k = 1, · · · , K, where γk = [t1k, t
2
k] represents the

k-th interval where has the same motion label. Formally, we denote aγk as the motion label

for segment Iγk .

2.2.2 Learning Motion Primitives

Our unsupervised learning approach extract motion primitives through spatial and temporal

clustering for hand-object interactions. For spatial clustering, we apply the agglomerative

hierarchical clustering that merges the spatial wise similar features in a bottom-up manner.
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Figure 2.5: Illustration of the T-AOG. The T-AOG is a temporal grammar in which the

terminal nodes are motion primitives of hand-object interactions.

This approach does not require the pre-defined cluster number for the clustering. Specifically,

we adopt Wards agglomerative method and the merging rule is determined by the following

formula in each iteration:
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4(A,B) =
∑

i∈A∪B
||~xi − ~mA∪B||2 −

∑
i∈A
||~xi − ~mA||2

−
∑
i∈B
||~xi − ~mB||2

=
nAnB
nA + nB

||~mA − ~mB||2,

(2.1)

where A, B denote two separate clusters, mA, mB are the cluster centers, and 4(A,B) is

the cost to merge clusters A and B.

Spatially, the Ward agglomerative method hierarchically groups data by measuring the

feature distance which lacks temporal consistency. Given natural temporal constraints on

hand manipulation, we have to alleviate the issue by making the spatial clusters consistent

in temporal domain. To achieve this, we adopt Aligned Cluster Analysis (ACA) [ZTH08] to

reduce the temporal noise by measuring Dynamic Time Alignment Kernel (DTAK) [ZTH13].

ACA is extended upon kernel k-means clustering. It is formulated as an optimization problem

on versatile energy which can be solved using coordinate descent:

s∗ = arg min
s

J(G, s) =
k∑
c=1

m∑
i=1

gciDc(X[si,si+1)), (2.2)

where GT
k×n1k = 1n is the indicator matrix, gci = 1 when sample Xi is assigned to cluster c,

and Dc measures the kernel distance between data point and cluster center. In practice, 2.2

could be solved through dynamic programming. It is equivalent with solving the following

Bellman’s equation [ZTH13]:

J(v) = min
v−nmax<i≤v

(J(i− 1) + min
g

k∑
c=1

gcD
2
ψ(X[i,v], żc)), (2.3)

where D2
ψ(X[i,v], ˙zc) is the squared kernel distance between segment Xi,v and cluster center

c. nmax defines the maximum length of the segment.
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2.2.3 Event Segmentation

To learn a descriptive temporal grammar model, semantic label for each segment is required.

This issue can be easily solved when having a single motion sequence where each segment

corresponds to one semantic meaning. Given multiple sequences performing the same task,

we need to extract the semantic labels across those sequences.

Having two segmented sequences X[S1,S2...Sn] and Y[S1,S2...Sm], the semantic labels are

assigned by merging different segments to clusters where each cluster has segments “close”

in distance. The distance measure on two segments is following DTAK [ZTH13] criterion for

similarity estimation:

D(XSi ,YSj ) = τ[
XSi

,YSj

], (2.4)

where XSi ,YSj are candidate segments, τ[XSi
,YSj

] is the metric on similarity recursively

calculated using DTAK. After grouping the segments, we apply k-means algorithm on groups

of segments such that each cluster corresponds to one semantic label. The motion event labels

are then be represented as the cluster IDs.

2.2.4 Grammar Induction and Inference

For each motion sequence, semantic labels are provided as the motion primitives to learn

a T-AOG grammar model. The grammar is built up from a set of sequence instances,

pgs, by maximizing a posterior probability [TPZ13]. Initially, a grammar is starting from

the root node which is a Or-node, then it branches to the And-nodes. The And-node

contains decomposition to represent instances. At the beginning, the grammar has small

prior probability but the maximal likelihood of the training samples. Then intermediate

non-terminal nodes are generated in a bottom-up way to optimize the posterior probability.

A greedy search strategy is applied to identify good grammar fragments that is added into

the grammar structure.
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Given the learned grammar G, our goal is to seek for the optimal motion label sequence

A∗ that best explains the observation. Denote the manipulating pose and force sequence as

Γ, the objective is to maximize the posterior probability by:

A∗ = arg max
A

p(A|Γ,G) = arg max
A

p(Γ|A)p(A|G), (2.5)

where p(Γ|A) is the likelihood measure given the observed motion label sequence, p(A|G)

is the parsing probability of the parse graph given grammar G. The likelihood is further

expanded as:

p(Γ|A) =
K∏
k=1

p(Γγk |aγk) =
K∏
k=1

t2k∏
t=t1k

p(Γt|aγk), (2.6)

where k is the segment index, γk is the kth segment. We fit a Gaussian distribution to the

learned clusters on training samples. The prior p(A|G) in 2.5 is calculated as the Viterbi

parsing likelihood indicating the best parse of the terminals.

Since it is computational intractable to attain the optimal label sequence, we propose

a Gibbs sampling scheme that can be done in terms of two steps: i) acquire the initial

labeling on motion sequences through our unsupervised learning pipeline, and ii) the labels

are refined pursuing 2.5 through Gibbs sampling with simulated annealing. The semantic

label is assigned to a motion sequence according to 2.5 as:

a′γk ∼ p(Γγk |aγk)p(A′|G), (2.7)

where a′γk is the refined label of segment Γγk , A
′ is the refined label sequence by updating

the label aγk to a′γk . The simulated annealing is applied by tuning the log probability with a

temperature parameter. The temperature is decreasing through the sampling process until

the labeling achieves convergence.
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2.2.5 Performance Evaluation

Our metric to this motion sequence labeling problem is evaluated by measuring the frame-

wise accuracy. The ground truth segmentation is manually labeled by visualizing the raw

data sequence in ROS RVIZ. Three types features are considered for performance comparison:

i) the hand pose feature in terms of Euler angles, ii) the hand force feature in terms of force

magnitude, and iii) the force vector which combines both pose and force feature. Hyper

parameters fixed for comparison are: i) cluster number k = 5 and maximum segment length

nmax = 200.

Figure 2.6: Qualitative evaluation. Event segmentation and recognition of opening Bottle 1,

2, and 3, from left to right, respectively. P denotes pose only feature, F force only feature,

P/F force vector feature, PA with parsing, and GT ground truth. Each segment represents

one type of motion primitive which color is determined by the ground truth sequence.

The segmenting results on motion primitives of opening Bottle 1, 2, 3 are demonstrated

in Fig. 2.6. The corresponding quantitative results are presented in Table 2.1. According

to the rates of accuracy, results using hand pose only has the worst performance than the

other two. It proves our argument that force information is an indispensable element in

modeling hand-object interactions. Besides, feature incorporates both hand pose and force

outperforms the single source of feature.

In addition, we perform semantic parsing using the learned T-AOG and compare the re-

sults with the clustering only ones. Qualitatively, as depicted in Fig. 2.6, the T-AOG parsing

method recovers the noisy and mislabeled segments and obtains more coherent parsing re-
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Table 2.1: Quantitative Evaluation. With clustering only, we use the hand pose, in the forms

of Euler angles of each phalanx; hand force, as scalars; and the combination of pose and

force as force vectors as feature inputs. Including force factor yields higher correspondence

with ground truth sequence. Parsing the events with T-AOG on top of the clustering, the

performance improves significantly.

Clustering only With T-AOG

Pose only Force only Pose and Force Pose and Force

Bottle 1 55.3% 67.5% 70.3% 78.6%

Bottle 2 62.0% 70.9% 76.2% 82.5%

Bottle 3 54.1% 71.1% 72.9% 78.5%

sults. Quantitatively, shown in Table 2.1, the performance enhancement of applying T-AOG

has been remarkably improved. It further verifies the effectiveness of learning a temporal

grammar model for motion events segmenting or parsing than clustering only methods.

2.3 Robot Learning Manipulation Skill from Demonstrations

In the field of robot Learning from demonstration (LfD) [ACV09], one primary purpose is

to exploit the meaningful knowledge in the demonstrations for skill learning. In particular,

Imitation Learning (IL) becomes one popular stream to achieve this purpose. In general,

it can be realized by two frameworks: i) Behavior cloning. The learner directly mimics

the performer’s demonstrated behaviors by pursuing a supervised manner [HD94, MGH09,

PJK16, XSX16, SGR17], and ii) Inverse reinforcement learning [AN04, RA07, ZMB08]. Our

work is categorized to behavior cloning that can handle the non-Markovian cases. [HLD16]

19



(a) (b) (c)

(d) (e) (f)

Figure 2.7: Given a RGB-D-based image sequence (a), although we can infer the skeleton

of hand using vision-based methods (b), such knowledge cannot be easily transferred to a

robot to open a medicine bottle (c), due to the lack of force sensing during human demon-

strations. We utilize the tactile glove (d) and reconstruct both forces and poses from human

demonstrations (e), enabling robot to directly observe forces used in demonstrations so that

the robot can successfully open a medicine bottle (f).

adopts imitation learning approach by using a data glove to open standard bottles. However,

this work is too simplified to cope with the manipulation task – opening medicine bottles.

Opening a medicine bottle requires complex manipulations rather than rotating only. [SSS17]

uncovers haptic components from teleoperation. Compared to the existing works, we collect
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the data using tactile glove which induce more natural and diverse demonstrations. More-

over, instead of applying recurrent neural networks (RNNs) to model the task dynamics, we

adopt an explicit grammar model for motion generation which is capable of planning upon

long term temporal dependencies.

For our problem definition, a real robot, Baxter, learns from human opening the medicine

bottles. Since the robot has different embodiment with human (Fig. 2.7), transfer the learned

knowledge from the human end would be the key to solve this issue. Following the unsuper-

vised approach of learning motion events segmentation, we leverage the temporal grammar

model T-AOG and treat it as the source of top-down process to guide the robot manipula-

tions of an unseen medicine bottle. In addition, a bottom-up process is learned by modeling

the raw signal from the robot end-effector. It executes the task by encoding the transi-

tion between task pre- and post-conditions. We incorporate both processes to learn a robot

manipulation model for opening the medicine bottles.

2.3.1 System Setup and Architecture

Our robot system is a dual-armed 7-DoF Baxter robot invented by Rethink Robotics. To

enable the manipulation ability, we equip a ReFlex TackkTile gripper on the right wrist

(grasping bottles), and a Robotiq S85 parallel gripper on the left (operating bottle lids).

Localization and tracking of object (bottles) are realized by utilizing Simtrack [PK15] with

a Kinect sensor. The backend system runs on ROS and the robot arm motion planning is

realized by using MoveIt! library. To achieve object grasping, we generate the grasping

poses by implementing a geometry based grasping planner.

The system architecture for robot learning the object manipulation skills consists three

major components which are depicted in Fig. 2.8: i) Learning: the learning phase contains

top-down and bottom-up processes. The top-down process builds a temporal representation

T-AOG to incorporate the valid motion sequences. The bottom-up process learns three neural

networks from the raw sensory data. ii) Inference: it is achieved by two stream of parsing.
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Figure 2.8: System architecture. Blue: action planning using fluents as a bottom-up process.

Red: action planning using AOG as a top-down process. Green: action planning. Brown:

robot execution.

The top-down term is calculated by Earley parser [Ear70], while the bottom-up term is

computed through embodiment mapping and motion classification network. iii) Execution:

The robot plans the next atomic action by combining top-down and bottom-up results and

affords execution.

2.3.2 Top-down Planning Using AOG

We denote the top-down term as p(pgk+1|pgk) that plans the next atomic action given the

history of action sequence. It models the long temporal dependencies between all previous

atomic actions and the next one. The planning is fulfilled by adopting Earley parser and

computing the parsing likelihood.

Given the learned T-AOG G on human motion sequences through grammar induction.
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Figure 2.9: T-AOG induced from human demonstrations using 1 example (a), 5 examples

(b), 36 examples (c), and 65 examples (d). (d) also shows an valid parse graph in an AOG,

highlighted in red. Numbers indicate temporal ordering of atomic actions.

Examples for opening the medicine bottles are illustrated in Fig. 2.9. A grammatically

complete parse graph s = (a0, . . . , aK), the parsing likelihood is equivalent with Viterbi

likelihood which can be noted as p(s). As for an incomplete parse graph, pgk = (a0, . . . , ak),

the parsing likelihood can be computed by summing over all possible grammatically complete

parse graph starting from pgk:

p(pgk) =
∑

s∈G,sk=pgk

p(s). (2.8)

The top-down term p(pgk+1|pgk) can be calculated through Bayes’ rule using the Earley

parsing likelihood. For the purpose of atomic action planning, the top-down term encodes

long term temporal context based on T-AOG.
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2.3.3 Bottom-up Planning Using Fluents

Encoding distributions of raw motion signals and corresponding action labels to a fluent

space, the changes in fluent space correspond to fluent changes. Given a fluent function, it

maps the scene configuration, sk, to a scalar, f(sk) 7→ R. A fluent change is then represented

by a transition between two scene configurations, ∇f(si, sj) = f(sj)− f(si). For the action

space, given atomic action performed at step k as ak, scene configurations of the pre-condition

sk and the pos-condition sk+1, the atomic action can be formulated by the fluent change as

∇fak = {∇fi(sk, sk+1), i = 1...n}. Towards the atomic action planning, we denote the

bottom-up term as p(ak+1|ak, fk) which plans the next atomic action on the condition of the

current action and observed fluent. Given the finite set of atomic actions, we convert this

planning task to a classification problem and realize it by learning a neural network to select

next action with highest probability.

To construct the fluent space, we use an auto-encoder to convert the scene configuration

into a low dimensional fluent as shown in Fig. 2.10(a). The fluent space is represented as

a 8 dimensional embedding and is then reconstructed to get the full feature representation.

The objective is to minimizes the L2 loss between the original and the constructed features:

l(θ; xh) =
1

N

N∑
i=1

(xhi − ψ(xhi ; θ))
2, (2.9)

where xhi denotes one demonstration sample made by human and ψ(xi; θ) denotes the auto-

encoder construction.

Planning of the bottom-up term is a multi-class classifier that outputs 1 atomic action

selected from 13 action labels. In Fig. 2.10(b), the classifier takes the embedding encoded in

the fluent space as input and one-hot encoding of the current atomic action. To approximate

the classifying probability, a softmax layer is applied to convert the prediction in terms of

the categorical distribution. The model is implemented in terms of fully connected layers

with sigmoid activation. It is trained by minimizing the cross-entropy loss that is effective

24



Figure 2.10: (a) Autoencoder to project human demonstration into low-dimensional sub-

space. (b) Classifier used to plan the next action using a low-dimensional embedding of

human tactile feedback. (c) Embodiment mapping used to map robot states to equivalent

human demonstration states. Each rectangle represents a vector, and each corresponding

number is the length of the vector. The green rectangle represents the low-dimensional

human embedding vector.

in coping with classification problems. Combining the top-down temporal constrains from

grammar parsing, the bottom-up planning incorporates raw motion signals to guide the

robot’s actual manipulations.

In addition, we bridge state connections during manipulations between human and the

robot by embodiment mapping. The goal is to approximate a function sh = φ̂(sr) that sh
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represents the human state in the demonstration while sr represents the robot state during

execution. Depicted in Fig. 2.10(c), we create a neural network to map robot haptic sensory

signal from the leaned embedding from the human demonstration. we use only a small

fraction of training data points that sampled from the learned T-AOG to guide the robot

executions. It ensures only successful robot states are considered to map to the successful

demonstrated states. Loss function for the embodiment mapping is specified as:

l(θ; xh,xr) =
1

N

N∑
i=1

(φ(xhi )− φ̂(xri ; θ))
2, (2.10)

where xh and xr are human and robot states respectively. φ represents the embedding in

fluent space, and φ̂ denotes the mapping function. During execution, the robot maps its

state to the equivalent counterpart of human’s. Then it uses the human state to plan the

next atomic action by using the bottom-up planner.

2.3.4 Robot Performance on Execution

To evaluate the task performance of opening medicine bottles, an manipulative sequence is

treated as successful if the robot opens the bottle lid at the final step, otherwise is failure.

More than 300 trials are conducted by opening all types of bottles. In some cases, there

are multiple ways to open a medicine bottle. Bottles have no safety lock, for example, can

be opened either by performing action sequence “push and twist” or “pinch and twist”. To

handle those cases, we consider them equivalently and propose two levels evaluation criteria:

i) End results only. See if an action sequence can open a bottle successfully, ii) Efficiency.

See if the successful action sequence can be performed efficiently. The execution results can

be categorized as follow:

leftmirgin=* Success, where the robot successfully executed an action sequence that

exactly matches one of the human demonstrations;

leftmiirgiin=* Success, while using at least one extra or wrong action;
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(a) (b)

(c) (d)

Figure 2.11: (a) Robot opening bottle 3, showing actions approach, push, twist, and pull

from left to right. (b) Robot opening bottle 5, showing actions approach, grasp, twist, and

pull. Force-torque sensor readings while opening bottle 3 (c) and bottle 5 (d), showing clear,

distinguishable differences from raw sensor data.

leftmiiirgiiin=* Failure due to using the wrong action sequence;

leftmivrgivn=* Failure due to execution failure (e.g. low motor execution accuracy or

grasping failure).

The qualitative results can be found in Fig. 2.11 where Fig. 2.11(a) shows the action

sequence having “push” action, and Fig. 2.11(b) shows the action sequence without “push”

action. Three sets of quantitative experiment results are summarized. Table 2.2 illustrates

the execution results only considering top-down planning where the atomic action sequence

is sampled from T-AOG. It captures the underlying ordering of the execution but ignoring

the haptics information during the manipulation. Table 2.3 illustrates the execution results

only using bottom-up planning where the atomic action sequence is sequentially predicted

by neural networks. It incorporates the haptic signal by robot torque sensors while miss-

ing the long temporal dependencies when conducting the planning. Table 2.4 presents the

results integrating both top-down and bottom-up planning. This yields a large performance
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gain compared to either alternatives (Table 2.2 and Table 2.3). The rate of success cases

are drastically improved while the failure rate with wrongly planned action sequence drops

significantly. The results solidly proves our proposed methodology for object manipulations.

Overall, we systematically study the object interactions through the framework of learn-

ing from demonstrations. For human data collection, we develop a glove system to collect

fine-grained tactile information to overcome the existing issue on studying object interac-

tions. Modeling of atomic actions are conducted in an fully unsupervised manner and a

temporal grammar structure T-AOG is learned for manipulation event parsing and infer-

ence. For robot execution, we develop two streams of planning by integrating both top-down

and bottom-up information. Our task performance on opening medicine bottles further verify

the effectiveness of our proposed way of learning object manipulation skills.

Table 2.2: Baseline 1, top-down only planning

Evaluation bot. 1 bot. 2 bot. 3 bot. 4 bot. 5

Success 8.7% 5.6% 4.4% 8.7% 26.1%

Success (extra/wrong) 21.7% 5.6% 34.8% 47.8% 39.1%

Failure (action) 69.6% 77.7% 60.8% 34.8% 30.4%

Failure (execution) 0% 11.1% 0% 8.7% 4.4%

Table 2.3: Baseline 2, bottom-up only planning

Evaluation bot. 1 bot. 2 bot. 3 bot. 4 bot. 5

Success 4.4% 0% 4.4% 0% 4.4%

Success (extra/wrong) 13% 11.8% 30.4% 42.9% 17.4%

Failure (action) 82.6% 76.4% 65.2% 57.1% 78.2%

Failure (execution) 0% 11.8% 0% 0% 0%
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Table 2.4: Proposed, top-down and bottom-up planning

Evaluation bot. 1 bot. 2 bot. 3 bot. 4 bot. 5

Success 8.7% 17.6% 17.4% 20% 60.9%

Success (extra/wrong) 52.2% 17.6% 65.2% 73.3% 17.4%

Failure (action) 39.1% 64.8% 13% 6.7% 21.7%

Failure (execution) 0% 0% 4.4% 0% 0%
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CHAPTER 3

VRGym: Virtual Testbed for Big Tasks Construction

Generally speaking, robot learning from interactions requires a creation of dataset that

dedicates at capturing the signals describe the interactive process. In practice, consummately

building a single dataset to fulfill the purpose is far from promising. In real world interactions,

there could be multimodal data sources that are functioning together on one interactive

task. A sophisticated hardware setup, e.g. tactile glove, needs to be developed to faithfully

captures all aspects of sensory information. Additional efforts and cost have to be paid

to support the ground truth data labeling. Moreover, for real world tasks, diverse form of

interactions are commonly co-existing. For example, when human is collaborating with a

robot for furniture assembling, the robot not only has to interact with furniture parts for

correct object manipulation, but has to properly collaborate with the human on the task

planning to generate reasonable interacting behaviors. Hence, the traditional methodology

is becoming reluctant to study robot interactive tasks.

On the other hand, we propose to construct a testbed that affords big tasks development

by leveraging virtual environments. Inside virtual environments, entities fluents are fully

controlled by the physics based simulations. In addition, abundant forms of interactions are

able to be defined and synthesized in a automatic manner. As for the solution, we deliver a

physical and photo realistic virtual testbed — VRGym for big tasks construction. VRGym

provides functionality to simulate various kinds of interactive tasks for robot learning. There

are three direct advantages VRGym owns over the traditional methodology: i) labeling free

with automatic ground truth generation, ii) generalizable tasks get rid of task specific con-
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figurations, iii) maintaining explicit representation and structure to handle task variations.

Compared to other existing simulation platforms for robot learning, we develop VR inter-

faces for human to interact with the virtual scenes directly. In this sense, VRGym platform

is not simply treated as a simulation platform, but a human-robot co-existing environment

that has more potential in synthesizing interactive tasks.

3.1 System Characteristics

Figure 3.1: (a) VRGym integrates three types of input devices, providing human manipula-

tion in an increasing resolution using Oculus Touch, LeapMotion, and a data glove, from top

to bottom. (b) The VRGym-ROS bridge allows physical human/robot agent meet virtual

agents inside a virtual world, providing the capability of social interactions. (c) The training

of the robot navigation using RL inside VRGym. The robot successfully navigates to the

goal without collisions after about 10,000 episodes. (d) The learning of object manipulation

using human demonstrations (leftmost) and IRL (right three) inside VRGym.

Especially, VRGym is proposed to support the need of robot learning with fruitful in-

teractions combining the advancement of VR technique. We target to address three critical

issues: i) What is the optimal approach to reflect human embodiment in VR? ii) What
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aspects can well-developed algorithms or models be adopted in the simulation? iii) What

level of interactions can VR based simulation afford? To study those questions, VRGym is

pushing the frontier of the state-of-the-art simulators in terms of the following perspectives:

Fine-grained human embodiment Human embodiment in the loop of simulation

is a non-trivial task. The prevalent simulation platforms support limited human control.

the embodiment is usually achieved by scripting or defining a finite motion set for remote

control. In VRGym, whereas, we integrate hardware setups to enable multimodal human

inputs. Those setups are supplementary to traditional VR input devices. Our setup em-

bodies the detailed avatar motions by providing a whole body sensing. During interactions,

the simulation reflects its physical effect on human including both body and hand poses.

Fig. 3.1(a) demonstrates different resolution levels of manipulations realized in VRGym.

High compatibility with existing robotic systems VRGym is developed to be

compatible with the most popular robotics framework, Robot Operating System (ROS). The

data sharing routine between ROS and the virtual environment is achieved by developing an

efficient bi-directional communication interface. Our VRGym-ROS bridge enables robotics

applications that can be performed in the virtual environment. Fig. 3.1(b) plots an instance

of person and robot are interacting in the VRGym. Practically, all ROS compatible packages

or resources can be leveraged by VRGym will little effort for diverse research purposes, such

as model learning, evaluations and benchmarking.

Multiple grandularities of interactions Given the human embodiment and ROS

integration developed in VRGym, fruitful interactions are able to be synthesized for learning

purposes with different grandularities of resolutions. It supports the forms of interactions

as only providing perception information to sophisticated ones as learning complex robot

grasping skills. Fig. 3.1(c) depicts how an virtual robot learns a navigation policy through

visual based Reinforcement Learning (RL), and Fig. 3.1(d) presents a setup of robot Learn-

ing from Demonstration (LfD). Grasping policy is obtained utilizing Inverse Reinforcement

Learning (IRL).
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3.2 System Architecture

Figure 3.2: System architecture of VRGym, consist of three major components: (i) Hardware

modules for human data input. (ii) Scene modules batch import various category of scenes as

well as diverse objects, derived from different resources such as 3D modeling tools, scanned

models, and automatically generated synthetic data. (iii) VR environment serves as an ideal

testbed, where both a human and a robot can perform diverse tasks. The inherent physics-

simulation engine enables realistic human-scene interactions and robot-scene interactions.

Sketch of VRGym’s system architecture is illustrated in Fig. 3.2. For realization of

interactive tasks, VRGym provides diverse realistic scenes and simulations for both human

and robots. The data collection is automatically conducted by logging the ground truth

data during the task performance. To fulfill those purposes we develop and integrate three

modules in VRGym: i) scene module that renders realistic 3D scenes and objects given

configurations, ii) environment module is developed upon UE4 game engine with physical

simulations for rich interactive tasks and iii) VR hardware module imports human inputs to

VRGym for human embodiment.
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3.2.1 Scene Module

Creation of simulation environments requires the building blocks of scenes and objects. They

are the key elements to enhance the diversity for VRGym. To satisfy the goal, we design

and develop several pipelines, both online and offline, to import or generate scenes into

VRGym. The pipeline is customized in the sense that users can specify their needs through

a configuration file. Scene module provided in VRGym largely increases the variety of static

environments. Meanwhile, ground truth information such as RGB, depth and segmentation

frames are automatically captured in real-time. The automatic synthesized data generation

and labeling enables model learning and robotics applications.

In details, VRGym incorporates large scale open source datasets collected from the web

parser [CDF17, SYZ17], or generated automatically from the existing object assets [JQZ18,

QZH18, YYT11] as depicted on the top of Fig. 3.2. VRGym also provides interfaces for

users to manually construct scenes for more specific task requirements. Compared to existing

datasets or platforms, none of those has the capacity to satisfy all the constraints.

For individual objects, the scene module can directly import the standard mesh files

into VRGym. Open source CAD datasets [CWS15, CFG15] provides mesh files that are

convenient to be leveraged by VRGym. In addition, customized complex objects such as 3D

scanned object models using RGB-D sensors can be imported in VRGym for specific task

design. Users can further adjust the static object models by assigning different properties

after the import.

3.2.2 Environment Module

In VRGym, the simulation is conducted by UE4 which is an advanced real-time physics-

based simulation engine. Compared to other simulation environments that only provides

rigid body or symbolic planning typed simulations, the environment module in VRGym

affords a diverse set of physics simulation for interactive tasks. The realistic physical effects
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Figure 3.3: Examples of various physics-based simulation for diverse tasks in VRGym be-

yond merely rigid-body simulation in other 3D virtual environments. (Top) Pouring water.

(Bottom) Folding clothes.

including rigid body, soft body, collision, fluid, cloth, slicing and fracture. Typical examples

are demonstrated at the center of Fig. 3.2 and more concrete ones are presented in Fig. 3.3.

Given the articulated physics simulation in environment module, subtle objects state or fluent

changes are diversify and realistic existing during virtual robot and scene interactions. The

authentic physical effects provide crucial visual experience that minimize the gap between

the simulation and real world tasks.

3.2.3 VR Hardware Module

VRGym has its own unique aspect by realizing human embodiment in 3D virtual environ-

ments compared to existing platforms. Human embodiment in the virtual environment is

achieved by representing the physical human as an avatar in real-time. To achieve this,

one aspect of developing the VR hardware module we highlight is the real-time tracking on

physical human such that the human movements and manipulations would be accurately

reflected in the virtual environment. This results in developing a humanoid mesh which is

able to deform to afford different motions based on the underlying tracked body and hand

skeleton poses.
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Setup for VR hardware module in VRGym contains: i) Kinect RGB-D sensor. It tracks

and maps the human skeleton to the virtual avatar by developing a Kinect plugin for UE4,

ii) Oculus headset. It tracks real-time human head pose and gazing, iii) Dancing pad. It

provides the control panel to navigate the avatar inside the virtual scene, and iv) three types

input interfaces to provide different resolutions of human manipulation. The realization of

human embodiment in virtual environment emphasizes VRGym’s ability of conducting tasks

with rich interactions. The three types of hardware interfaces are specified as follow:

• Oculus Touch Controller. We incorporate Touch controller to enable a direct attach-

ment of virtual objects on avatar hand or gripper if the grasp event is triggered. The

overall grasping effect is akin to the firm grasp with the least realistic level of human-

object interactions. This manipulation style is useful in conducting event level tasks,

e.g. the fine-grained motions is not required.

• LeapMotion. We integrate the off-the-shelf commercial hand pose sensing products

to satisfy real-time visual based hand gesture recognition. The LeapMotion sensor is

mounted on the headset. When integrated into the virtual environment, the tracked

hand poses will be reflected by avatar’s hand model, though sometimes visual occlusions

or sensory failure may result in noisy hand poses.

• VR Glove System. We extend our tactile glove by integrating it into VRGym aiming

at providing the finest-grained manipulation. To track the real-time glove pose, a Vive

Tracker is placed above hand palm to obtain the hand’s global positioning. Rest of the

phalanx orientations are calculated by the IMU network using forward kinematics. The

VR glove system provides reliable hand pose sensing and targets on complex interactive

tasks where subtle hand motions are critical in learning the manipulation skills.
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Figure 3.4: A human agent performs a series of actions in a virtual scene using Oculus Touch

controllers. (Left) Action sequence from a top view of a virtual indoor environment. (Right)

Sequences of the performed actions. Specifically, the human agent starts at the red dot as

shown in the left, (1) pushes a door, (2) navigates along the hall, (3) twists a door to enter

the kitchen, and (4)-(7) makes a cup of coffee. This process involves (i) large movements

using the human embodiment provided in VRGym (navigating along the hallway), (ii) com-

plex operations (operating the coffee maker), (iii) fine-grained manipulations (twisting the

doorknob), and (iv) physics-rich controls (pouring milk).

3.3 Software Development

In VRGym, we develop two software interfaces that provides the testbed to train and bench-

mark various interactive tasks. The first one is the data collection system that is implemented

upon the hardware interfaces. The purpose is to keep tracing of the multimodal informa-

tion during different kinds of interactions between the agents and environment. The second

interface, VRGym-ROS bridge, is developed to extend the virtual environment compatible

with robotics algorithms and methods.

Fig. 3.4 illustrates an virtual environment built in VRGym. The environment itself affords
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semantically diverse interactive tasks for multi-purpose agent. In comparison, conducting

similar tasks in the real world along with data collection would become extremely intractable.

In this environment, an agent or avatar, is initialized at the staring point which is represented

as the red dot in Fig. 3.4. The virtual agent is navigating to the final goal inside the kitchen

meanwhile accomplishing several sub-tasks. Steps to achieve this task including navigations,

for example, go along the corridor and open the kitchen door. And manipulations, e.g. make

a cup of coffee. The operation involves grasping and moving a mug, pushing several buttons

sequentially on coffee machine. The process requires a elaborated task planning that is being

executed by physics simulation.

3.3.1 Agent Data Collection

In VRGym, ground truth labeling is automatically generated when human avatar or robot is

interacting with the scene. There are two typical scenarios we demonstrate VRGym’s data

collection and associated applications.

Grasping Different levels of manipulation are made feasible in VRGym. Among them, the

VR glove device [LZX19] makes finer-grained manipulations feasible. Visualization of the

object manipulations by using the VR glove are illustrated in Fig. 3.5(a). After obtaining

the grasping data on various objects, we merge the data point and form grasping heat maps

on object surfaces to indicate the likelihood of grasping points distribution on object models.

In addition, Fig. 3.5(b) shows the averaging heat maps collected from 10 human subjects.

In an heat map, the hotter area reflects the denser grasping points are, and implies more

likely a human avatar would grasp close to that area.

Odometry VRGym offers functionality to collect agents’ odometry data when performing

the task. Fig. 3.5(c) demonstrated the collected odometry performed by 5 human subjects

with different experience playing with VR. The navigation is achieved by using Oculus
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Figure 3.5: (a) Grasp a mug, a tennis racket, and a bowl. The red area indicates the contact

force between the virtual hands and the object. (b) Visualization of the collected human

grasp data. Top: a set of 3D objects. Bottom: the average grasp heat map generated by

multiple subjects. (c) Visualization of footprint from different subjects.

Touch controller where the buttons are mapped to atomic motion signal for virtual agent

movements.

3.3.2 ROS Interface

The VRGym is introduced to be compatible with the popular open source robotics framework

– ROS. A customized communication bridge is developed for data transferring. Off-the-shelf

robot models and algorithms are able to play inside the virtual environments and vice versa.

For example, the automatically generated virtual scene in VRGym can be exported to Gazebo

simulator and performing a robotics task with different ROS packages.
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(a) (b)

Figure 3.6: VRGym-ROS bridge. (a) The robot navigation in the scene imported into the

Gazebo, exported from the VRGym. The red curve indicates the path planned by the robot’s

global planner. The black curve is the actual trajectory executed by the robot. (b) A Husky-

UR5 robot is imported into VRGym from ROS to guide the way and open the door for a

human agent.

Implementation The ROS interface, VRGym-ROS bridge, is developed under the stan-

dard TCP/IP protocol for the purpose of communicating with the popular robotics algo-

rithms. Given this interface, robot models can be smoothly imported to VR environments.

Control signals can be as well applied to move the virtual robots by the backend ROS pack-

ages. Data stream transferring between the ends are connecting either physical or virtual

robots. Format of the data type we define is by leveraging the JSON format. JSON parsers

for both VRGym and ROS are deployed to further improve the consistency. In the scenarios

where the environment has multiple agents, each will open a port in the protocol to support

a specified data stream. Utilizing the VRGym-ROS bridge, training and evaluating human

robot interactions (HRI) can be conducted seamlessly when playing with VRGym. Com-

pared to the existing robotics simulators, Gazebo or V-Rep, we enable the human in the

loop to study the related problems in the pure virtual environment.

40



Evaluation Performance of our VRGym-ROS bridge is evaluated on a virtual Clearpath

Husky robot, see Fig. 3.6. The robot in a VRGym scene is performing a navigation task. The

3D robot model is imported from ROS and a number of SLAM algorithms and path planning

methods are feasible to be evaluated. In Fig. 3.6(a), the mapping results are acquired by

using the GMapping package provided in ROS. The planned path is plotted in the red curve,

while the ground truth odometry is depicted as the black curve. Fig. 3.6(b) presents the

user’s view while the robot is navigating. As demonstrated in this task, algorithms for virtual

robot performing in the diverse scenes is realized smoothly by leveraging the VRGym-ROS

bridge.

3.4 VRGym Experiments

We conduct set of experiments in VRGym to further demonstrate its capability and usabil-

ity to support learning from interactive tasks. Towards human robot interactions, human

intention prediction and social interaction tasks are performed. VRGym is a multi-purpose

testbed in the sense that prevalent machine learning algorithms are able to be benchmarked

in the VRGym.

3.4.1 Experiment 1: Intention Prediction

Problem such as intention prediction is usually reluctant to be conducted on a physical robot

because of tiny error tolerance. The incorrect intention prediction may result unwanted

behavior for both human and robot. In VRGym, studying intention prediction particularly

becomes suitable due to multimodal data can be utilized for the inference process. Typical

instances include: human trajectories, human body poses, object states, visual information,

etc.. Since tracing and collect those information are available in VRGym, predicting intention

is made possible to be investigated by unique setup.

In this experiment, we conduct different algorithms of human intention prediction and
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Figure 3.7: Intention predictions in a coffee-making task. (a) Grab a cup. (b) Use the coffee

machine. (c) Pour milk. (d) Add sugar. (Right) Visualization of three intention prediction

algorithms. Blue and Red: sampled paths from the grammar model [QHW17]. Green:

straight-line distance. Yellow: prediction by shortest perpendicular distance (dashed lines)

from objects to the ray direction (solid arrow) based on avatar’s location.

analyze the potential of VRGym as a testbed for related tasks. For human data collection,

20 subjects are recruited to play with an interactive task, Fig. 3.7, in a virtual kitchen

scene. The virtual kitchen contains 20 objects that are placed on top of three long tables.

In Fig. 3.7, the agent is required to start from the entrance (red dot) and performs four

steps to finish a coffee making task: grasp the coffee mug, operate the coffee maker, grasp

milk bottle and add milk, grasp sugar can and add sugar. One thing worth to notice is that

this task can be performed in different orders. One example of subject’s task trajectory is

plotted in Fig. 3.7. The task requires all subjects to finish the coffee making task by using

the available objects in the virtual kitchen.

The illustrative results compared among three methods are presented in Fig. 3.7(e).

Qualitative results are shown in Fig. 3.7(a-d). They indicate the human agent’s intention
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in terms of heat maps when interacting with the scene objects. The hotter area on the

images reflect higher probability of the intention. The semantic level prediction is achieved

by learning from full history of the human’s task performance which incorporates navigation

trajectories and grasping data collected using VRGym.

3.4.2 Experiment 2: Social Interaction

Figure 3.8: Human robot interactions in VRGym. A Baxter robot (a) waves hands and (b)

shake hands with a virtual human agent.

Social interactions in addition to physical interactions is another critical form that natu-

rally happens in human-robot co-existing environments. The problem we would study is let

the virtual robot understand the human’s social behaviors, such as hand shaking and waving,

then respond to them reasonably. VRGym provides interface for human embodiment in the

virtual scenes that closes the gap of studying human-robot interactions in the simulation.
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Participants We conduct the experiment with 10 subjects participating in. The algorithm

we implement is following [SGR17] which learns the robot social affordance. More technical

details can be referred to the original work.

Results We demonstrate qualitative results in Fig. 3.8. Specifically, the robot waves its

arm as the response to the human avatar’s hand waving as presented in Fig. 3.8(a). And the

robot stretches out its end-effector and shakes its hand with human avatar. The response

action signals are sent through the VRGym-ROS bridge. The corresponding motion planning

for the robot arm is computed at the ROS end, the planned results are transferring back

to the virtual Baxter robot to reflect its appropriate response to the human avatar’s social

behaviors. By this case study, our VRGym is proposed to push the direction of learning

the human-robot interaction in simulation environments. Safety and cost issue can be avoid

accordingly compared to the real world cases.

3.4.3 Experiment 3: RL Algorithms Benchmark

Figure 3.9: Settings for the RL training inside VRGym environment for an indoor maze

navigation task. (a) First-person view of a virtual robot. (b) The robot collides with a wall,

triggering negative rewards. (c) An eagle view of the indoor navigation task. (d) Rewards

assigned in different color zones (red, yellow, green and blue) from low to high. (e) The

performances of the tested RL algorithms.
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VRGym is introduced as a multi-purpose testbed which offers the playground and learn

robot models by leveraging off-the-shelf algorithms. In Fig. 3.9, a virtual Baxter robot is

aiming at learning a motion policy that enables it to navigate in a 3D maze-like indoor

corridor. During the learning phase, the robot is learning the motion cost by itself when

interacting with the scene. This trial and error training strategy follows the standard Re-

inforcement Learning (RL) framework. The RL algorithms are running backend at ROS,

motion signals are transferred to the robot in the virtual scene.

Compared to other existing platforms, such as OpenAI Gym, the proposed VRGym has

two primary merits conducting benchmarking:

• Sophisticated Interactions. With the integration of articulated physical simulation,

VRGym provides realistic physical interactions to reflect more effective policy learning.

• Physical RL Agent. Enabled by model importing, VRGym is capable of realizing a

virtual but physical robot model interacting inside the virtual scene. This configuration

makes it flexible to transfer the robot model to different environment setups to validate

the learned policy.

The state-of-the-art deep RL algorithms we adopt for benchmarking of the naviga-

tion task are DDPG [DCH16], DQN [MKS15], Actor-Critic [MBM16] and Dueling-

DQN [WSH16]. We extract real-time robot first-person camera view in pixels as the

state input. The quantitative results of the mentioned four algorithms are demonstrated

in Fig. 3.9(e).

Further, VRGym is as well capable of benchmarking algorithms in the category of Learn-

ing from Demonstrations. Trajectories of expert (human) demonstrations are automatically

collected and labeled for robot to imitate. Prevalent Inverse Reinforcement Learning algo-

rithms are performed as well which details can be referred to the next chapter.

45



3.4.4 Experiment 4: Embodied Agent Task Learning

(a) (b) (c)

Figure 3.10: A humanoid robot in the virtual kitchen scene is performing juice making task.

(a)(b) Human-Robot collaborations by giving explanations. (c) Robot task execution.

To achieve the purpose of training a general purpose intelligent agent, learning from a

embodied task that implicitly incorporate multiple steps and elaborated task planning is

crucial to be studied. VRGym offers this ability by setting up the virtual environments for

embodied task learning. We expect to “grow a crow” (agent learning as smart as a crow) by

leveraging the outstanding aspects of VRGym.

Fig. 3.10 demonstrate how the humanoid robot performs the embodied task – making

orange juice while providing explanations to the human collaborator. Fig. 3.10(a) showcases

the robot provides its explanation of “picking up an orange to make juice”. And Fig. 3.10(b)

presents the robot gives the explanation of “getting the orange juice by tacking a cup”. Those

are key steps reasoning that to fulfill the sub-task goals. Fig. 3.10(c) illustrates the frame of

execution at the final step where the robot puts the orange inside the squeezer and grabs a

cup to fetch the juice. The embodied task can be achieved once all sub-tasks pre and post

conditions are all satisfied. It requires the sophisticated physics engine to faithfully evaluate

the execution. Further, explanation is also an important supplementary to the embodied

task such as the robot is required to explain its own behavior to verify the task planning and

execution. VRGym is developed to boost those related facets of research which we think

would be indispensable to grow an general-purpose agent.

46



3.5 Appendix

3.5.1 Simulation Platforms

We summarize simulation platforms with detailed comparisons w.r.t various criterion and

prove the uniqueness of VRGym in Table 3.1.

Robotics simulation platforms The Robotics Operating System (ROS) plays an im-

portant role on open source robotics development. Simulators such as Gazebo and V-Rep

provides advanced software packages for robot modeling and motion planning. As a robotics

framework, however, they lack human embodiment such as virtual reality (VR) to involve

human interactions.

Virtual training platforms This includes OpenAI Gym [BCP16] and MuJoCo [ETT15].

They are developed to evaluate and benchmark various robotics algorithms. Tough those

platforms are easy to setup and integrates compact playground like environments, they are

still insufficient of studying problems such as robot learning from interactions which are

crucial for physical agents.

Physics based simulation In game industry, people are developing game contents by in-

corporating sophisticated physics simulation. For example, CARLA [DRC17] is an open

source project that provides simulation for autonomous driving. AirSim [SDL18] offers

photorealistic rendering of outdoor scenes designed for drone navigation. However, those

two platforms focus on specific tasks, e.g. learning of vehicles or drone navigation. Fur-

ther the more general-purpose platforms are made available to AI community, such as

AI2THOR [KMG17] and Gibson [XZH18]. AI2THOR offers articulated 3D indoor environ-

ments where agents can be controlled to interact with the scenes and objects and perform

tasks. Whereas the symbolic level interactions are not physical realistic and no human em-
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bodiment makes study of robot social interactions not available. Gibson is mainly targeting

on agent indoor navigation problems. Although the agent can interactive with the scenes,

the level of manipulations an agent can afford is not sufficient.

Table 3.1: Comparison with existing 3D virtual environments. Scale: Contains a large

number of scenes. Physics: Supports physics-based simulation on agents and objects. Real:

Provides a life-like rendering. Action: Object states can be changed by actions. Fine-

grained: Enables fine-grained actions and simulates plausible object state changes. Human:

Humanoid agents. Multi: Supports a multi-agent setting.

Environment Scale Physics Real Action Fine-grained Human Multi

SUNCG [SYZ17] X

Matterport3D [CDF17] X

Malmo [JHH16] X X X

DeepMind Lab [BLT16]

VizDoom [KWR16] X

MINOS [SCD17] X X

HoME [BPA17] X X X

Gibson [XZH18] X X X X

House3D [WWG18] X X X

AI2-THOR [KMG17] X X X

VirtualHome [PRB18] X X X X

VRGym X X X X X X X
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Figure 3.11: System performance: GPU (green), memory (blue), and CPU (red) utilization.

3.5.2 System Performance

VRGym is executing the task simulation in real-time (30fps) on a modern desktop equipped

with 8700K CPU, a DDR4 memory set 64GB in total and an EVGA GTA 1080 Ti GPU.

Fig. 3.11 depicts the system performance when running physics simulation of manipulation

tasks with human input devices that basically requires essential software and hardware in-

terfaces. The results reflects VRGym is running efficiently on CPU and memory utilization.

Since physics simulation heavily relies on parallel computing, more GPU power is required

to satisfy the purposes. The performance results verify that VRGym can be deployed on

modern computers or servers without additional dependencies.

3.5.3 Evaluation of Data Communication

Performance of VRGym’s data communication is summarized in Fig. 3.12 where 20 ROS

packages are sent individually for concurrent connection. According to the results, the

49



Figure 3.12: Evaluation of the latency in VRGym-ROS communication bridge. Each con-

nection contains 20 packages, in which 512Kb data was sent. Linear regression is fitted to

the mean of the latency t(9) = 2.9025, p = 0.01, r2 = 0.9998, indicating a strong linear trend

with respect to the increase of the concurrent connections.

communicating latency for VRGym-ROS bridge increases from 0.04s to 0.41s. We apply the

linear regression to fit the parameters of the latency. The results indicate a strong linear

relation between the latency and the concurrent connections.

3.6 Conclusion

As proposed, VRGym is developed as a promising physical and photo realistic simulation

platform that embodied as a virtual testbed for robot learning interactive big tasks. The

testbed can be leveraged for general-purpose agent training and evaluations. The most

innovative aspect of VRGym is the human embodiment which is realized by a virtual avatar

using a wide range of hardware setups for body, hand and manipulative sensing to a fine-

grained level. Popular robotics framework ROS can be integrated to VRGym through the

customized VRGym-ROS bridge. Various evaluations have been conducted in VRGym, and
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the performance indicates the data communication with ROS is robust to support diverse

robotics applications. Demonstrating with four experiments, it further verifies VRGym is

effective in performing different levels of interactive tasks. Along with multimodal sensory

information, VRGym automatically collects ground truth data with generated labels that

shows the merit of studying multiple forms of interactions in simulation environments. In

addition, VRGym is a multi-purpose testbed for physical robot interactive tasks such as

RL and IRL. This capability offers training robot with advanced machine learning methods.

We are confident that VRGym would be potential to boost the development of robotics

applications. It benefits the direction of learning from interactions to ultimately achieve big

tasks.
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CHAPTER 4

Learning from Interactions: Exploiting Small Data

Interactions for robot learning are critical in the sense that a fruitful source of data is

generated during the interaction. Those data includes multimodal sensory information that

is further modeled statistically for a robot to generate the manipulation policy, representation

of knowledge and growth of commonsense. Nowadays, one popular trend of research is to

learn from large scale statistical data. People are making efforts to interpret the robot

interactions by building up machine learning models that heavily rely on the quantity of

data. However, one notable downside of this strategy is “applying huge data while only

achieving a small task”. In contrast, we are exploring the feasibility of achieving the task

learning with reasonable performance by only providing a small portion of data. The angle we

are discussing is to follow the community of Learning from Demonstration (LfD). Specifically,

we are investigating the problem of robot learning grasping skills through IRL framework

with a limited demonstration data.

4.1 Problem Overview

Inverse Reinforcement Learning (IRL) [Rus98] aims to learn a reward function under the

framework of Markov Decision Process (MDP) [Put14]. Reward function will in turn func-

tion as a supervision signal that best explains the observed expert demonstrations. One

crucial assumption made for every IRL problem is: the experts knows the underlying ground

truth reward function when performing the demonstrations. And policy or actions are being

executed on every state in demonstrations are assumed to be optimal. However, this assump-
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Successful Demonstrations

Failed Demonstrations

BIRLF

Motion Planning
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Figure 4.1: Human demonstrators perform a complex grasping task with both successful and

failed demonstrations in the virtual environment. With such demonstrations, the proposed

BIRLF infers the reward function of the observed human demonstrator in a given task. The

robot then learns the policy to achieve the demonstrated task, reproducing the grasping

trajectories with a motion planner.

tion is too strong that results in a hard constraint when human performers are executing the

task on the data collection stage: all failure demonstrations are discarded while only keeps

the successful demonstrations.
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Instead, we think this constraint is unnecessary. We have two folds reasoning: i) failure

demonstrations are more readily available than the successful ones , ii) intelligent agent,

like human, is able to exploit on a finite set of demonstrations even with failure cases.

In addition, comparing the demonstration trajectories between successful and failure ones,

failed demonstrations are highly resemble successful ones. There are only differences existing

at a few critical trajectory points. In learning from interactions, it becomes manifest when

robot is learning the grasping skills where the failed demonstrations are distinctive from the

successful ones in very few lasts steps such that the failed trajectories result in contact points

that are slightly off stable grasps. According to our observations on collected demonstration

trajectories, the failed ones are always not made to be failed intentionally by performers.

Both successful and failed demonstrations are pursuing the same trajectory distributions for

the task.

In literature, some works propose data efficient approaches [ET16, CRK17] to handle

learning with failed demonstrations. Failed demonstrations are usually treated as noise

modeled by [CAN08, SBS08, VGL13, RSB09, MLF10, ZLN14]. However, we argue that failed

demonstrations should be utilized as well for the seek of learning from “small data”: i) it is

both time-consuming and demanding for performers to collect only successful demonstrations

for complex interactive tasks, and ii) failed demonstrations, as described, contain useful

information as well may help gaining of task performance.

To effectively leverage failed demonstrations, people carefully propose algorithms to in-

corporate them to improve IRL learning. [SMW16] introduces an early stage IRLF where a

optimization problem is formulated by adding new constraints in the framework of maximum

causal entropy [Zie10]. It encourages the learned policy to exhibit a different distribution

from failed demonstrations, meanwhile acquiring better convergence property with success-

ful demonstrations only. [LCO16, CLO16] apply Gaussian process, to generate a proficiency

term for both successful and failed demonstrations. The experiment potentially shows the

effectiveness of adopting failed demonstrations on task of GridWorld. On the other hand, RL
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community also proposes approaches in coping with non-optimal demonstrations. [GLY18]

learns the policy from both the optimal and sub-optimal demonstrations. However, those

IRLF methods relies on low dimensional state or action space, some are defining explicit

feature representations. They are reluctantly to be extended to complex interactive tasks

such as robot grasping object will be discussed in the later content.

In our approach, we naturally extend low dimensional representations with complex en-

vironment setup where continuous state and action spaces are adopted for robot manipu-

lation. In addition, our method learns the feature representations in an automatic manner

and composes the learning of reward function by sampling through Markov Chain Monte

Carlo (MCMC) process. Overall, our method alternates between a weight sampling using

a MCMC sampler and feature function learning by policy iteration. This learning strat-

egy assists the model to leverage function approximators to better estimate the true reward

functions. Further, we formulate our method using Bayesian learning, interpreted as BIRLF,

that is achieved by adding geometric convex constraints which is the first attempt to cast

IRLF under Bayesian framework.

The effectiveness of our proposed approach is evaluated on our developed VRGym plat-

form. We setup an environment where an virtual Baxter robot is tasked to grasp various

virtual objects in a distance. For collecting demonstrations, we leverage the human VR

interface to teleoperate robot arm which motion planning is achieved by running Gazebo on

ROS backend. See Fig. 4.1 for task setup. In each trial, the performer is using VR devices to

control the virtual robot to achieve the object grasping. In details, human subjects are try-

ing to move the robot’s end-effector and configure the hand pose as the planned state which

would mostly likely results in a stable grasp. The evaluation of the grasping is performed

by VRGym physics engine. Given those setups, both successful and failed demonstrations

are automatically logged and labeled when performing the task. Efforts in data collection

process are largely reduced.
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4.2 Background and Notations

4.2.1 Markov Decision Process

In Markov decision process (MDP), the learning environment can be defined as a MDP tuple

M = {S,A, T, γ, r} [Put14], where S denotes the sate space, A the action space, T (s′|s, a)

the environment transition probability from state s to s′ by taking action a, γ the discount

factor, and r the reward function. In IRL problem for LfD tasks, the MDP tuple becomes

M\r, while a set of trajectories D = {d1, . . . , dN} are provided from expert demonstrations.

Each trajectory di is represented as a sequence of state-action pairs.

4.2.2 Policy and Value Function

A policy for an learning agent is defined as a mapping function from state space to action

space: π : S 7→ A. Given a policy π, the state value function V π(s) is defined as the

expected accumulative reward gained for an agent start from state s and executes the policy

π thereafter. The value function is mathematically defined as:

V π(s) = Ea∼π

[
∞∑
t=0

γtr(st)|s0 = s

]
. (4.1)

A state-action value function Q could be similarly defined for each state action pair (s, a):

Qπ(s, a) = r(s) + γEs′∼T (·|s,a)[V
π(s′)]. (4.2)

The policy π(s) is the optimal policy under the reward function r(s) if the following inequal-

ities hold for all states and actions [NR00]:
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Es′∼T (·|s,π(s))[V
π(s′)] ≥ Es′∼T (·|s,a)[V

π(s′)]

Qπ(s, π(s)) ≥ Qπ(s, a)

∀a ∈ A, s ∈ S.

(4.3)

4.2.3 Bayesian Inverse Reinforcement Learning and PolicyWalk

BIRL [RA07] presents a statistical view by modeling the uncertainty of reward function

in probability distribution. The performer A executes the task and collects a trajectory

d = {(s0, a0), (s1, a1), ..., (sT , aT )}. Assuming A is maximizing the accumulative reward

while accomplishing the task using a stationary policy, the posterior probability of reward

function r follows Bayes theorem can be formulated as:

P (r|d) =
P (d|r)P (r)

P (d)
=

1

Z
exp(αΣtQ(st, at; r))P (r), (4.4)

where Z is the normalizing constant, α the degree of confidence, and Q(st, at; r) the state-

action value function given reward function r. Estimating the posterior in practice is difficult.

PolicyWalk [RA07] is proposed to resolve the issue by conducting an efficient sampling

procedure. Given a fixed reward function r, the MCMC sampler optimizes on-policy π

to update the estimation of Q function. In the stage of MCMC, it samples r̃ from the

neighborhood of the current r. After jumping to the chain of r̃, the new optimal policy

only requires several update of policy iterations from the previous learned one. [RA07] also

proves the property of rapid mixing of the Markov chain with a uniform reward prior, which

offering a theoretical treatment on convergence.

4.3 Bayesian Inverse Reinforcement Learning with Failure

In this section, we detail our proposed method learning with failure demonstrations. We

formulate our method in Bayesian framework by incorporating the value function, a set of
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inequalities Eq. 4.3. The inequalities of policy optimal condition implicitly define a valid

convex set in terms of halfspaces. We denote the trajectory set of successful and failed

demonstrations as D and F respectively in the following.

4.3.1 Problem Formulation

Based on Eq. 4.4, the posterior probability of reward function r under the full demonstrations

Ψ = D ∪ F can be expressed as:

P (r|Ψ) ∝ P (Ψ|r)P (r). (4.5)

We apply an MCMC chain to sample the reward function from the posterior. The reward

function r not only matches the statistics of trajectories in D but captures the implicit

difference between D and F . To realize this thinking, we decompose the likelihood term in

Eq. 4.5 into:

P (Ψ|r) ∝ exp(αΣd∈Ψ,tQ(sd,t, ad,t; r) + β∆U(D,F ; r)), (4.6)

where the first term is identical with Eq. 4.4, ∆U(D,F ; r) in the second term measures the

potential difference between D and F with a coefficient β.

4.3.2 Halfspace Induced Potential

Further, we characterize ∆U(D,F ; r) on different trajectory sets by utilizing Eq. 4.3. And

we propose the scheme to quantitatively compute the potential term among different solution

spaces. Assume we are parameterizing the reward function r as r(s) = ωTφ(s), where ω is

the feature weights and φ(s) compactly encodes the state features. Given this representation,

the Q function can be reformulated by:
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Figure 4.2: Intersections of halfspaces (dashed area) with normal vectors (red and blue

arrows) at boundaries for (a) successful demonstrations HD and (b) failed demonstrations

HF . (c) Measuring the potential difference among two demonstration sets.

Q(s, a; r) = E

[
∞∑
t=0

γtωTφ(st)|s0 = s, a0 = a

]
= ωTµ(s, a), (4.7)

where µ(s, a) = E[Σ∞t=0γ
tφ(st)|s0 = s, a0 = a] is the function of feature expectation. Plugging

this expression into Eq. 4.3, we derive the following inequity:

ωT (µ(s, π(s))− µ(s, a)) ≥ 0,∀s ∈ S, a ∈ A. (4.8)

The solution of ω in Eq. 4.8 forms the intersection of halfspaces. Following Eq. 4.8, we

constitute the set of halfspaces for the demonstration set. For successful demonstrations, we

denote their halfspaces HD as:

HD : {ω|ωT (µ(st, at)− µ(st, a
′)) ≥ 0,∀st, at ∈ D, a′ ∈ A}, (4.9)
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and HDπ for current policy as:

HDπ : {ω|ωT (µ(st, π(st))− µ(st, a
′)) ≥ 0,∀st ∈ D, a′ ∈ A}. (4.10)

The corresponding definition on failure demonstration set HF and HFπ can be applied in the

same way.

Further, the definitions above have a corresponding set of normal vectors, denoted as

N , w.r.t its boundary faces of halfspaces. For example, the normal vector set of HDπ is

computed by:

NHDπ =

{
µ(st, π(st))− µ(st, a

′)

||µ(st, π(st))− µ(st, a′)||2
,∀st, at ∈ D, a′ ∈ A

}
. (4.11)

Similarly, normal vector sets NHD , NHF , and NHFπ can be obtained as well. The graphical

illustration on those calculations can be referred to Fig. 4.2.

Given the normal vectors, we define the potential term ∆U(D,F ; r) as:

∆U(D,F ; r) = sim(NHD , NHDπ )− sim(NHF , NHFπ ), (4.12)

The sim(·, ·) function over two normal vector sets can be generalized from one over two

normal vectors. For instance, the vector similarity function is defined by:

sim(n1, n2) = (1 + cos(n1, n2))/2, (4.13)

then similarity over two normal vector sets is computed by fulfilling the following steps: i)

Get the most similar vector pair selected from two sets w.r.t Eq. 4.13. ii) Compute the

similarity score and remove them from their own sets. iii) Continue i) and ii) until one of

the two sets is empty. iv) The average of all similarity scores obtained is considered as the

similarity between two normal vector sets.
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4.3.3 Algorithm

Algorithm 1 BIRLF algorithm

1: Collect demonstrations (e.g., trajectory sets for grasping) D and F

2: Initialize network parameters θ

3: Randomly initialize ω as an unit vector ||ω||2 = 1

4: φ(s), µ(s, a), π(a|s) := PolicyIteration(θ, ω)

5: while not done do

6: Randomly sample ω̃ from the neighborhood of ω

7: Compute Q̃Dπ(st, π(st)),∀st, at ∈ D by Eq. 4.7

8: Compute Q̃D(st, at),∀st, at ∈ D by Eq. 4.7

9: if ∃st, at ∈ D, Q̃Dπ(st, at) < Q̃D(st, at) then

10: φ̃(s), µ̃(s, a), ˜π(a|s) := PolicyIteration(θ, ω̃)

11: Compute potential ∆U(D,F ; r)

12: With probability min{1, P (r̃|Ψ)
P (r|Ψ)

}, ω := ω̃, π := π̃

13: else

14: With probability min{1, P (r̃|Ψ)
P (r|Ψ)

}, ω := ω̃

15: end if

16: end while

17: Output θ and ω

Given the proposed Bayesian framework, we apply Eq. 4.4 for MCMC sampling on reward

function. The PolicyWalk algorithm is adopted on sampling feature weights ω given a learned

φ(s). The feature functions φ(s) and feature expectation function µ(s, a), we use function

approximators, deep networks, to estimate the true values. The policy learning is achieved

by using Deep Deterministic Policy Gradient (DDPG) [DCH16]. The network architecture

is depicted in Fig. 4.3, which composes four modules. φ(·) takes input state s and outputs

the state feature. Actor module A(·) outputs the policy distribution from φ(s). In addition
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to the original DDPG, the network also outputs feature expectation µ(s, a) computed by the

critic module C(·) which estimates the value aggregating the action from A(·) and contextual

feature output from the mapping module M(·). The value function Q(s, a) hence can be

obtained by the inner product of ω and µ(s, a). Given fixed feature weights ω, the network

is updated by policy gradient. The process of learning can be regarded as policy iteration

since ω is sampled from the Markov chain. Our proposed BIRLF algorithm is summarized

in Alg. 1.

Figure 4.3: The network architecture for the proposed BIRLF algorithm. φ(·) is the state

feature module, M(·) the mapping module, A(·) the actor module, and C(·) the critic module.

4.3.4 Alternative

Eq. 4.12, in practice, is unstable at the early stage of learning. The difference term ∆U(D,F ; r)

would fluctuate around zero due to limited amount of data, resulting in a biased estimation

of the reward function. We resolve this issue by incorporating an additional term to stabilize

the posterior distribution by ensuring the summation of the potential is above zero, that is:

P (Ψ|r) ∝ exp (Σd∈Ψ,tQ(sd,t, ad,t; r) + β1∆U(D,F ; r) + β2|∆U(D,F ; r)|), (4.14)

62



where an absolute term |∆U(D,F ; r)| is appended to Eq. 4.12. In our evaluation, we initialize

β2 ≥ β1 and apply simulated annealing to let β2 gradually approach β1. In the worst

scenario where the MCMC chain incorrectly treats F as the successful demonstration set

(∆U(D,F ; r) < 0), the last two terms in Eq. 4.14 will cancel each other (β1 = β2) and result

in the original posterior identical with BIRLF in Eq. 4.4. Utilizing this alternative would

guarantee the task performance of our method by incorporating the standard BIRL scheme

as the baseline.

4.4 Task Evaluations

4.4.1 VRGym Experimental Setup

We setup the virtual environment in VRGym for demonstrations collection and task eval-

uation. As shown in Fig. 4.1, the behavior control of the virtual Baxter robot is realized

by running MoveIt motion planning package on ROS backend. The human control of the

robot arm is enabled by teleoperation. The Oculus Rift VR controllers are used for robot

grippers motion. The virtual scene is setup for grasping task where contains a virtual Baxter

robot and a randomly spawned object to be grasped on top of a table. The Baxter robot

is initialized with the untucked pose. When human performer is teleoperating the robot

grippers, the movement of robot arm is confined within a prescribed range of space as long

as the robot’s joint limits are satisfied.

4.4.2 Interactive Grasping Task

The goal of this virtual grasping task is to let the robot generate a stable grasping trajectory

of provided objects. Human performers are put in the loop of virtual robot’s embodiment.

The motion flexibility is constrained by robot’s physical joint limits. The direct benefit of

such design bridges the gap between different embodiments meanwhile results in more chance
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of making failed demonstrations.

4.4.3 Demonstration Data Collection

Figure 4.4: 1st column: target objects: a cuboid and a mug. 2nd column: visualization of

the set SG (in red dots) and the set SD\G (in gray dots); see text for details. 3rd column:

failure cases. 4th column: success cases. Blue trajectories gain less rewards than the red

ones.

Human subjects are tasked in a training phase to get familiar with the teleoperation.

They are equipped with a pair of Oculus Rift controllers and asked to control the virtual

Baxter robot’s gripper from robot’s first person view. VGym physics engine plays the role

of evaluating a performed grasping trajectory. The grasping attempt is successful only if

the object is stably grasped. All grasping trajectories, including both successful and failed

ones, are collected on-the-fly. In summary, 120 demonstrations are collected for grasping of

two types of objects: cuboids (87 successful and 33 failed) and mugs (76 successful and 44

failed). Graphical examples are illustrated in Fig. 4.4.
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4.4.4 Training Routine

After collection human demonstrations, the virtual Baxter robot is spawned in the same

location to perform the grasping while updating its own grasping policy. To satisfy the

purpose, an IRL module is developed on the ROS backend along with the motion planner,

see Fig. 4.1, to autonomously perform the robot grasping.

The state space of the virtual environment is defined as {sw, st1 , st2} = {(xw, yw, zw),

(xt1 , yt1 , zt1), (xt2 , yt2 , zt2)}, a 9-D vector where w, t1 and t2, where w, t1 and t2 are denoting

griper wrist, left tip end, and right tip end respectively. The action space is parameterized

using a 4-D vector (ax, ay, az, at) ∈ [−1.0, 1.0]4: the first three fields denote the normalized

motion along 3D Cartesian axis in the global frame, the last field at is the 1-D motion of

two gripper tips.

In one of training episodes, the robot sends its current state s through VRGym-ROS

bridge received by the IRL module. By estimating the reward value as well as updating the

policy, The IRL module generates an action a from its policy and sends it back to the virtual

robot. Once received the action message, the robot end-effector will execute the action with

assist of motion planning and obtains the next state s′. This training process will continue

until the IRL reaches the convergent status.

For one rollout, it will be terminated if one of the following four conditions are satisfied:

i) a successful grasping, ii) the object target falls down, iii) robot arm touches things other

than the object, or iv) the action sequence is too long, such as more than 100 steps in our

setting. The grasping validation process will be invoked to determine the grasping result.

4.4.5 Experiment Results

The experiment results are detailed by using both cuboid and mug objects. he ground

truth reward function r(s) in the virtual environment is defined for different IRL methods

comparison as:
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(a) Cuboids (b) Mugs

Figure 4.5: Averaged value difference (AVD) for different IRL methods.

r(s) =


0.02, s ∈ ΩG

0.01, s ∈ ΩD\G

−0.01, otherwise,

(4.15)

where ΩG is the convex hull formed by the success frames in the demonstrations, that is the

set SG of {si,Ti : ∀(si,Ti , ai,Ti) ∈ D} depicted as red dots in Fig. 4.4. And ΩD\G is the convex

hull of the set SD\G of {si,j : ∀(si,j, ai,j) ∈ D, ∀j 6= Ti} depicted as gray dots in Fig. 4.4. The

design of the ground truth reward function results in higher accumulated reward for the red

trajectories in Fig. 4.4 while lower ones for blue segments.

Baselines for comparison are state-of-the-art IRL methods:

• BIRL [RA07]. Bayesian IRL presents reward estimation under uncertainties using a

probability distribution.

• MaxEntIRL [ZMB08]. Maximum Entropy IRL is another probabilistic approach

to model the reward function. It provides a well-defined, and globally normalized

distribution by matching the feature expectation. The state visiting frequencies are

empirically estimated from sampled trajectory rollouts.
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• SSIRL [VGL13]. Semi-supervised IRL relaxes the assumption that not requiring

all demonstrations to be made from the expert (allowing failed demonstrations). This

approach is inspired by semi-supervised SVM [BD99] which treats feature expectations

as labels and optimizes the objective following the minimax scheme. The feature

expectations are empirically estimated by leveraging sampled trajectory rollouts.

• GPIRL [LPK11]. Gaussian Process IRL treats the reward as a nonlinear function.

The reward is approximated through Gaussian process. The reward structure is deter-

mined by the kernel function. The state and action visiting frequencies are empirically

estimated from the sampled trajectory rollouts.

The notations for our proposed IRLF method using Eq. 4.12 as BIRLF and the one using

Eq. 4.14 as BIRLF-A. The hyper parameters for evaluation are set as: α = 1.0, β = 102 for

BIRLF, and α = 1.0, β1 = 102, and β2 = 103 for BIRLF-A. The annealing is applied every

50 episodes to linearly decrease β2 from 103 to 102.

As for evaluation metrics on reward function, we adopt the following two measurements

for all IRL methods:

• Average Value Difference (AVD). This metric measures the difference of the aver-

aged returns between successful expert demonstrations and the ones generated by the

IRL methods.

• Mean Squared Error (MSE). This metric calculates relative reward difference.

Each time step of trajectories from the successful expert demonstrations and the IRL

generated ones are calculated.

Fig. 4.5 illustrates the results of the proposed method BIRLF along with other baseline

methods. For methods that consider the failed demonstrations, such as BIRLF and SSIRL,

we create a shared demonstration dataset by setting |D| = 2|F |. For methods that only

adopt the expert demonstrations, such as BIRL, MaxEntIRL and GPIRL, the demonstration
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dataset consists only successful demonstrations. To make fair comparison across different

methods, we use the same size of demonstration dataset for those methods. After finishing

400 training episodes, as indicated in Fig. 4.5, our proposed methods, BIRLF and BIRLF-A

converge and attain the minimum AVD.

In addition, we evaluate the MSE results of different IRL methods on grasping two

objects. The results are summarized in Table 4.1. The MSEs are calculated after 600 episodes

of training to guarantee all the methods could reach the convergence. The performance are

presented by keeping the size of full demonstration set ψ fixed while setting different size

ratio between the successful and failed demonstrations |D| : |F |. For methods only take

expert demonstrations, such as BIRL and MaxEntIRL, only D is provided for training. As

indicated in Table 4.1, our proposed approaches BIRLF and BIRLF-A in general achieve

the lowest MSE compared to other baseline methods. Further, we notice BIRLF-A basically

outperforms BIRLF which verifies the effectiveness of our proposed alternative scheme.

4.5 Conclusion

Given the purpose of learning an interactive skill from human demonstrations. As demon-

strations are usually hard to be obtained, learning an interactive policy from experts demon-

strations becoming the issue of learning from “small data”. Our work incorporates the failed

demonstrations that we argue are valuable for agent to make use of. Our solution is realized

by proposing the Bayesian IRLF for grasping task in continuous state/action spaces. The

halfspaces extracted from policy optimality are leveraged to model the difference between

the successful and failed demonstration set. The proposed BIRLF method is evaluated in

the virtual robot grasping setup. Compared to other existing IRL and IRLF baselines, our

method achieves the state-of-the-art performance and verifies the effectiveness of incorpo-

rating failed demonstrations to exploit “small data”.
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Table 4.1: Quantitative evaluation (MSE) of different IRL methods on grasping cuboids and

mugs. The performance is measured across different ratio configurations |D| : |F |.

Methods

|D| : |F |

1 : 1 2 : 1 4 : 1

Cuboid Mug Cuboid Mug Cuboid Mug

BIRLF-A 0.90% 3.95% 0.72% 2.44% 0.84% 2.53%

BIRLF 1.30% 5.88% 0.78% 3.12% 0.82% 3.93%

BIRL 8.00% 9.67% 7.15% 8.42% 7.20% 9.09%

SSIRL 2.17% 5.98% 1.15% 5.19% 1.18% 5.26%

MaxEntIRL 4.33% 6.10% 3.99% 5.77% 4.13% 6.04%

GPIRL 4.81% 7.20% 3.65% 6.29% 3.79% 6.84%
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CHAPTER 5

Learning from Interactions: Large Scale Behavioral

Predictions

In the previous chapters, we cover the aspects of robot learning physical interactions in both

real world and virtual environments. In addition to physical interactions, learning social

interactions are another crucial category that are indispensable to grow a general purpose

agent. Research of social interactions would potentially solve many existing challenges. For

example, an autonomous vehicle driving on road has to correctly infer other agents (vehicles

and pedestrians) motions or behaviors such that: i) safety requirements could be guaranteed,

ii) more complete reasoning of theory-of-mind (TOM) would be generated, and iii) advanced

sensing of social norms would be derived for cooperative navigation. Hence, we treat robot

learning from the multi-agent social interactions as a corner stone to boost the development

of autonomous agents.

On the other hand, As physical and photo realistic simulation platforms, such as VRGym,

provides the seamless interactive tasks compared to the real world, it would be promising

in studying related issues of social interactions in the simulation environments. Specifically,

the problem we are interested is the behavioral predictions problem in multi-vehicle driving

scenarios. Considering when traffic rules are not explicitly given, correctly predicting vehicles

future trajectory is critical for collision avoidance. To flexibly control and scale the variants

including vehicles behaviors as well as road conditions, we leverage a prevalent computer

game platform — Grand Theft Auto (GTA) to automatically synthesize multiple vehicles

driving scenarios in a urban scale environment.
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5.1 GTA Playground

5.1.1 Urban Environments

(a) (b)

(c) (d)

Figure 5.1: Exemplar GTA game scenes captured in the game process. (a) an Urban highway

traffic system. (b) an Urban local street. (c) a beach ocean scene. (d) a countryside scene.

All the scenes are generated through in-game photo realistic rendering.

The GTA game provides an open world that was modeled on area of Los Angeles. Early

developments of this game are constituted by in-game render and design. To construct photo

realistic 3D urban scenes, field trips are made to collect city photo and video footage. Fig. 5.1

illustrates the typical game scenes which are photo realistic and fully interactive in the large

scale.
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5.1.2 Visual Ground Truth Generation

Figure 5.2: G-Buffer shading results on GTA game. The pixel shader fetches data from

different combination of buffers and compute the final shading value of the pixel in HDR.

Visual ground truth such as depth and instance segmentation are obtained by hooking with

the rendering process.

Given the photo realistic scene, we design and develop a pipeline to collect visual ground

truth information along with the game’s rendering process. The GTA maintains a set of

buffers called G-Buffer which separately draws shading related information to calculate the

meshes shading. Those buffers are eventually combined to compute the final shading of each

pixel. We develop the modding script and hook with the rendering process to obtain various

buffer shading ground truth as follow:

• Diffuse map. It stores intrinsic color of the mesh that depends on the material

property of the mesh rather than influenced by the lighting.

• Normal map. It stores normal vector information for each pixel.

• Specular map. It stores information containing specular and reflections.

• Irradiance map. It stores the irradiance of each pixel receiving from the sun light.
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• Depth map. It stores the distance of each pixel from the camera view. Opposite to

the common used depth map, depth map in GTA game applies the logarithmic Z-buffer

and results in “close white and far dark” rendering.

• Stencil map. It stores information regarding each mesh entity drawn. Different IDs

are assigned to all pixels of one category of meshes.

Fig. 5.2 demonstrates the G-buffer shading results on one game frame. For extraction of

visual information, our developed modding scripts capture the rendered depth and stencil

information from the G-buffer. Along with the RGB stream, those are collected as raw visual

data serves multiple interactive tasks.

5.1.3 Game Control for Interactive Tasks

Figure 5.3: Realistic agent interactive scenes are synthesized in GTA game. By developing

modding scripts, behaviors of game agents are accessible for control hence increases the

diversity of interactions.
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We develop a set of script pluggings utilized to get fully control of them. In GTA game,

two types of agents involved are vehicles and pedestrians. The modding scripts, developed

in C++, are hooked with the main game process. Those scripts are designed in multiple

purposes such as data acquisition, agent motion control and environmental variable control.

Given this flexibility, we are able to extend our study on learning from interactions to a large

scaled simulator, especially highlighting the social aspects.

(a) (b) (c)

Figure 5.4: Sketch of autonomous driving in GTA game. (a) Weather control for road

conditions. (b) 3D bounding boxes information extracted for on-scene agents. (c) Heatmap

predictions for driving maneuvers.

Fig. 5.3 illustrates several examples where all the interactive scenes are synthesized by

executing the modding scripts. Specifically, we spawn and assign the targeted agents with

expected motions to afford certain types of social behaviors. According to Fig. 5.3, the

scripted agents could behave naturally with other scene objects or agents. This verifies

our thinking of leveraging a game platform to investigate realistic social interactions. In

addition, we showcase a autonomous driving scene according to Fig. 5.4. We script a vehicle

agent with fully autonomous ability navigating on roads. The driving policies are derived

according to the ground truth internal game states. While driving on road, there are several

game properties can be modified or monitored. Fig. 5.4(a) illustrates the flexible weather

control to add uncertainty on the driving quality. Fig. 5.4(b) demonstrates the ground truth

context information of extracting agents 3D bounding boxes (in green cuboids). Fig. 5.4(c)

presents an auxiliary information on driving decisions by plotting the driving intentions
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in terms of trajectory heat maps in real-time. Given the modding development on GTA

game platform, we are synthesizing and inspecting multi-vehicle driving scenarios to afford

reasonable navigating interactions.

5.2 Vehicle Driving Interactions — Safety Critical View

5.2.1 Three Streams Modeling Approaches

In vehicle driving, one of the most critical requirements would be safety. Correctly predicting

on-scene vehicles intention would largely solve the safety issues since knowing other vehicles

intentions provides more contextual information for decision making on driving maneuvers.

In our work, we represent the intentions as the form of vehicles future trajectories. And our

primary objective is to accurately predict multi-vehicle future trajectories as well as guar-

antee the safety. However, this problem is challenge due to intricate interactions exhibited

in multi-agent systems, especially when it comes to collision avoidance. To resolve this is-

sue, we propose to unsupervisedly learn an intermediate contextual information denoted as

“congestion pattern” meanwhile devising a novel “Sense-Learn-Reason-Predict” framework

for trajectory predictions. It integrates three modeling approaches [RPH19]

Physics Based Trajectory Prediction The physics based approaches adopt physics

modeling [Zhu91] are defined in “Sense-Predict” framework. The modeling involves direct

forward simulating pre-defined and explicit dynamic models based on Newton’s laws of mo-

tion. However, when face the noisy real-world sensory data, physics based approaches are too

brittle to guarantee descent performance. It becomes more challenge coping with multi-agent

scenarios where different agents may possess different dynamic models [LJ05].

Pattern Based Trajectory Prediction The pattern based approaches [TIT93] learn

function approximators directly from the statistical characteristics of the data, following a
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“Sense-Learn-Predict” framework. The principle of this stream of works provide available

large scale datasets. Whereas those family of methods suffer from poor interpretability and

easy to overfit on a large space of parameters.

Planning Based Trajectory Prediction The planning based approaches [BG04] model

this problem by assuming the rational agents stand and minimizing different forms of costs.

In this family, forward planning and inverse planning are two categories following the “Sense-

Reason-Predict” scheme. However, this normative perspective constrains what agents ought

to do which may not truly reflect read-world scenarios since human decision making often

deviates from extreme rationality [Ste96, KT73].

Those streams of thoughts have been mostly developed individually in literature. On the

other hand, we argue that those works are not conflicting. We are thinking of an appropriate

approach to effectively integrate them and form a new “Sense-Learn-Reason-Predict” frame-

work. Regarding this, we propose to unsupervisedly learn an intermediate representation

that injects a better inductive bias for pattern based approaches. This representation learned

as a contextual information that incorporates both rational agent assumption in planning

based approaches and physical constraints in physics based approaches. In addition, we

would pursue a multi-stage learning process that affords better interpretability and obtain

collision free trajectory predictions.

5.2.2 Approach Overview

In tackling the problem of collision free multi-agent trajectory predictions, the pattern based

approaches aims at regressing the future trajectory directly from the training data by fitting

various contextual cues such as discrete cell [KW98, THK09, KSM13, BCA16, MCK18], con-

tinuous position [JDH11, FLG15, KMS17], and graph based representations [LFH03, VFL09,

CLH16]. Those first order modeling approaches often lack semantic based representations.

The higher order pattern based approaches incorporate some context in terms of relations
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modeling [KKK17, AL17, PKK18, DCS19, DT18b, DT18a, DLL19, LMZ19, TS19, ZXM19,

SAS19], but they present limited ability in emerging collision free trajectory predictions or

related verification. On the contrary, our approach models the collision free trajectories by

incorporating context cues of congestion as well as the simulating verification.

Our proposed approach possess three aspects of merits over prior methods. First, the

way our contextual cues (congestion) is learned via fully unsupervised graph based genera-

tive learning. The graph nodes are vehicles, and graph edges measure the spatial relation

between two vehicles. This scheme subsumes the Social Force (SF) adopted in physics based

approaches. The context is learned through graph modeling toward a holistic view. Further,

the relative distance between two vehicles is implicitly encoded as cost function which char-

acterize the planning based modeling of the environment. The contextual cue we learned is

represented as a Gaussian Mixture Model (GMM). It unsupervisedly captures the various

modes in congestion patterns and reduce parameter space to speed up the training process.

Second, the “Sense-Learn-Reason-Predict” framework is decoupled in terms of two sub-

sequent processes: i) A teacher model senses and learns the contextual patterns, a form of

knowledge, pursuing a pure pattern based approach. ii) A student model, instead of directly

learns from observations, reasons the knowledge by minimizing a cost compared to what the

teacher model learns, pursuing a planning based approach. The student model predicts the

future trajectories simultaneously along with the reasoning process. There are fundamental

differences between our approach and GAN based models [GJF18, SKS19, KSM19]. The

GAN models require both the discriminator and generator focus on predicted trajectory

without explicit context modeling. While in our approach, the student model generates the

future trajectories under the constraints by explicitly matching the contextual cues provided

by the teacher model. The major benefit of this design results in an inductive bias to speed

up the learning on generating the trajectories.

Third, the contextual matching process is achieved by formulating an optimization prob-

lem that bridges the learning of congestion patterns and collision free trajectory predictions.
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The objective is to constrain the generated trajectories by matching a learned congestion

pattern distribution. Utilizing the variational parametrization, an upper bound is derived

to make the optimization problem computational tractable.

Our proposed model is realized as an “encoder-pooling-decoder” architecture which is

compatible with many existing works, e.g. [AGR16, DT18a]. According to our evaluations,

the proposed method is more superior than others on collision trajectory predictions, espe-

cially the synthetic dataset collected on GTA game platform. Further, our method demon-

strates state-of-the-art prediction performance on one public benchmark NGSIM US-101

highway dataset [CH07].

5.3 Collision Free Trajectory Prediction

In this section, we detail our proposed method pursuing congestion aware multi-vehicle tra-

jectory predictions. Fig. 5.5 presents the overview of the method. We first introduce the

problem definition of multi-vehicle trajectory prediction by following [AGR16]. Second, we

bring up the learning of congestion patterns for multi-vehicle driving. It details how the

teacher model learns the contextual cues. Then we formulate an optimization problem of

congestion pattern matching. It helps the student model to reason about teacher model’s con-

textual information. This optimization problem is jointly solved with trajectory generation

by training a generic encoder-pooling-decoder model for collision free trajectory predictions.

5.3.1 Problem Definition

In multi-vehicle trajectory predictions, the goal is to predict the future trajectories of all

vehicles given their observed trajectory histories. {ζm,m = 1, ..., n} is the set of trajectories

for all n vehicles. The position of the mth vehicle at time step t is denoted as a local 2D

coordinates ζmt = (xmt , y
m
t ). In a time span of t = 1 : Th, the observed history trajectories

are ζh = {ζmt=1:Th
}, and the future trajectories to time step Tp is ζp = {ζmt=Th+1:Tp

}. The
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Figure 5.5: The proposed architecture for congestion-aware multi-agent trajectory prediction.

The teacher model (top) is composed of the frame-wise graph construction module, and the

GCN-VAE graph encoder and decoder. The learned latents are passed to a GMM and used

to unsupervisedly learn the multi-modal congestion patterns. The student model (bottom)

makes prediction based on the observed trajectories. It follows the encoder-pooling-decoder

design and uses the CPM module to match the teacher’s congestion patterns. The loss terms

L1 and L2 are defined in 5.6 and 5.9, respectively.

multi-vehicle trajectory prediction then be formulated as estimating the posterior probability

P (ζp|ζh).

5.3.2 Congestion Patterns

Multiple vehicles in the navigation scenarios convey meaningful contextual information to

model the social interactions. We propose an unsupervised way of learning the conges-

tion patterns that not only implicitly comprise vehicle positions and intentions, but pro-

vide contextual cues about safety critical information such as collisions. Congestion pat-

terns [XYL13, XVZ18] are mostly been described as the dynamic equations of the vehicle

spatial relations or clustering that groups the observations into different categories. We
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argue that those conventional definitions are sensitive to agent numbers and physical prop-

erties. It could be non-trivial to exactly identify the congestion patterns by applying a set of

pre-defined rules. On the other hand, we propose to learn the congestion patterns through

graph based generative learning given the trajectory history o = ζh. The congestion patterns

are treated as hidden information that implicitly incorporates various modes by learning a

Gaussian Mixture Model.

Graph Representation We model the congestion patterns by embedding the physical

constraints in the following manner. Given two vehicles u, v ∈ Vt, the graph At = (Vt, Et)

at time frame t ∈ {1, .., Th} is created by their 2D coordinates (xt, yt) and velocities (ẋt, ẏt).

The graph adjacency matrix Et = {Euvt }, u, v = 1, .., n is defined as follow:

Euvt = Evut =


1/tuvc , t

uv
c > 0

0, tuvc = 0

, (5.1)

where tuvc = max(−∆uvx×∆uvẋ+∆uvy×∆uv ẏ
∆uvẋ2+∆uv ẏ2

, 0) is the estimated collision time. By intuition, a

larger weight reflects a higher cost of collision which are all encoded in the graph represen-

tation.

Generative Learning We perform the unsupervised learning of the congestion pattern

by leveraging Variational Auto Encoders (VAEs) [KW13] which learns the latent congestion

pattern z through parametrization. In our case, we adopt the graph VAE method embodied

as Graph Convolution Networks (GCN) [KW16] by reconstructing the graph representation

At.

Gaussian Mixture Model Given the multi-modal nature of congestion patterns, we

utilize a Gaussian Mixture Model (GMM) to account for various modes. To fulfill this, we

treat the congestion pattern z as another random variable [DMG16, JZT16, YCL19] and
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build the following GMM:

Q(z) =

MQ∑
i

λiqi(z), (5.2)

where the mixture component qi(z) is a Gaussian distribution, λi is the mixture weight, and

MQ is the hyperparameter denoting the mixture number. The mixture model is learned by

applying the stochastic EM [Cel85] algorithm. Since congestion pattern z is learned from

the observation o, the mixture model is denoted as Q(o) in the following content.

5.3.3 Matching Congestion Patterns

After learning the congestion patterns by the teacher model, the student model aims to

generate the trajectory simultaneously match the congestion patterns learned by the teacher

model. It is the objective to pursue the collision free trajectory predictions. Noting the

student congestion pattern as P(o), the congestion pattern matching can be formulated as

measuring the difference between two probability distributions:

DKL(P(o)‖Q(o)). (5.3)

Given multiple modalities ofQ(o), P(o) also follows a Gaussian mixture, P(o) =
∑MP

j ωjpj(o),

where the mixture number MP does not have to be same with MQ.

For Eq. 5.3, there is no analytical solution to calculate the KL divergence between two

mixture distributions. We propose to solve this by optimizing a variational upper bound.

Inspired by [HO07, XGN19], our variational parametrization is performed in the following.

We decompose the mixture weights ωj =
∑MQ

i αij and λi =
∑MP

j βij and rewrite the

objective in Eq. 5.3 as:
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DKL(P(o)‖Q(o)) = −
∫
P(o) log

1

P(o)

(∑
i,j

βijqi(o)

)

= −
∫
P(o) log

1

P(o)

(∑
i,j

βijqi(o)αijpj(o)

αijpj(o)

)
.

(5.4)

Applying Jensen’s inequality, Eq. 5.4 can be transformed to:

DKL(P(o)‖Q(o)) ≤ −
∫
P(o)

∑
i,j

αijpj(o)

P(o)
log

βijqi(o)

αijpj(o)

=
∑
i,j

αijDKL(pj(o)‖qi(o)) +DKL(α‖β).

(5.5)

Hence the objective of optimizing Eq. 5.3 is converted to minimize its upper bound:

min
{pj},α,β

L1 =
∑
i,j

αijDKL(pj(o)‖qi(o)) + DKL(α‖β). (5.6)

The convergence of this optimization problem could be guaranteed in [HO07].

To solve Eq. 5.6, the parameters {pj}, α, and β are iteratively optimized. Given fixed α

and β, {pj} can be updated by minimizing:

min
{pj}

∑
i,j

αijDKL(pj(o)‖qi(o))

=
∑
i,j

αij
(
Epj(o)[− log qi(o)]−H[pj(o)]

)
.

(5.7)

With {pj} learned, α and β are updated by the closed form solutions:

αij =
ωjβij exp−DKL(pj(o)‖qi(o))∑
i′ βi′j exp−DKL(pj(o)‖qi′ (o))

, βij =
λiαij∑
j′ αij′

. (5.8)

The overall algorithm for the congestion pattern matching (CPM) is summarized in Alg. 2.
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Algorithm 2 Congestion Pattern Matching (CPM)

1: Input: the learned congestion patterns Q(o)

2: Initialize αij and βij

3: while not convergent do

4: Fix αij and βij and optimize {pj} using 5.7

5: Fix {pj} and update αij and βij using 5.8

6: end while

5.3.4 Trajectory Predictions

The student model jointly predict future trajectories and match the teacher model’s conges-

tion patterns. In Fig. 5.5, the student model comprises an encoder that encodes the observed

trajectories, a pooling module models the vehicle spatial interactions and a decoder that re-

cursively generate the future trajectories. Social features after the pooling module is taken

to performing the congestion pattern matching, in Eq. 5.6, with the teacher model.

The proposed student model can be learned end-to-end by iteratively minimizing the

congestion pattern matching loss in Eq. 5.6 and trajectory prediction loss:

L2 = − 1

m

∑
m

∑
t=Th+1:Tp

logP (ζmpt |ζ
m
h ), (5.9)

where ζmh and ζmp are the observed and predicted trajectories.

Implementation Details The whole model composes of one teacher model and one stu-

dent model. Both of them are implemented using neural networks. For the teacher model,

it adopts the GCN-VAE architecture with latent dimension of 64. Then it is followed by

fully connected layers to learn the congestion patterns in terms of a Gaussian mixture dis-

tribution. The training is performed unsupervisedly with a learning rate of 1 × 10−4. For

the student model, it is compatible with many existing encoder-pooling-decoder architec-

tures [AGR16, DT18a]. The proposed one is implemented following [DT18a]. Both encoder
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and decoder are embodied using LSTMs with fixed hidden dimension of 128. The CPM

module is implemented as another deep Gaussian mixture model in terms of fully connected

layers. We set the mixture number for both teacher and student model as a tunable hyper

parameter. The learning rate for student model is 3 × 10−3. Both models are developed in

PyTorch libraries.

5.4 Method Evaluation

5.4.1 Datasets Specification

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Figure 5.6: Sample top-views of the four scenarios in our GTA dataset.
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GTA Dataset We leverage the GTA game platform to evaluate the collision avoidance

which relies on physical realistic vehicle driving simulations. In this dataset, we collect

vehicle driving trajectories under safety critical scenarios demonstrating rich vehicle interac-

tions. The scenarios created by developing modding scripts can be categorized in four types

(Fig. 5.6): i) highway vehicle driving where vehicles are following the flow, ii) local vehi-

cle driving where vehicles overtaking can frequently happen, iii) intersection vehicle driving

where traffic rules are not given on crowded driving scenes, and iv) crazy vehicle driving

where some vehicles are scripted with aggressive behaviors that almost lead to collisions.

For our experiments, we split the entire dataset including four categories into 3 folds for

training and 1 fold for testing. The time span used for observations are set as 3s for all

trajectories. Statistics of GTA dataset is summarized in Table 5.1.

Table 5.1: GTA dataset statistics.

Total Clips Vehicle Trajectories Highway Trajectories Local Trajectories

3300 27813 18229 9584

Following Events Overtaking Events Collision Events

7055 2300 890

NGSIM Dataset We utilize the public available highway driving dataset NGSIM US-

101 [CH07] to evaluate the accuracy of trajectory predictions. This dataset is presented

as the standard benchmark to showcase the competitiveness of the proposed method. The

NGSIM contains real highway traffic data stream that is often captured more than a time

span of 45 minutes. We set the evaluation protocol similar with GTA dataset to inspect the

performance.
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5.4.2 Baslines and Metrics

We compare our proposed method with a set of state-of-the-art trajectory prediction baseline

methods [DT18a, TS19, ZXM19, GJF18, AGR16, SLV18, DRT18, HE16, BPW18, BPL19]

and inspect the following metric results:

Collision Rate It directly evaluates the performance of safety driving regarding collision

avoidance. On GTA dataset, we calculate the collision rate by counting the collision events

among the predicted trajectories and normalized by the total number to trajectories for all

trials. The ground truth collision events would be automatically acquired by running the

game simulation.

Root Mean Squared Error (RMSE) It estimates the accuracy of the predicted trajec-

tories. For each predicting time horizon, from 1s-5s, we calculate the RMSE across predicted

trajectories. For baseline methods that generate trajectories using GANs [ZXM19, GJF18],

we sample k predicted results and select the “best” one w.r.t L2 norm for evaluation.

5.4.3 Quantitative Results

Results on GTA Dataset Table 5.2 and 5.3 present the quantitative results for trajectory

predictions. Our proposed method, denoted as CF-LSTM, achieves the best performance

regarding both collision rate and RMSE on GTA dataset. The results demonstrate our

method’s strength in multi-vehicle trajectory predictions. In detail, our CF-LSTM shows

the lowest error rates across all given game scenarios in Table 5.2. According to Scenario 4

where the vehicles may not be assumed of rational driving, every method results in the highest

chance of collision in such challenging case. Further, in the cases of intersection driving as

Scenario 3, we notice the collision chance becomes higher in crowded space (vehicles meet

with each other) when no traffic rules are provided. As for RMSE, our CF-LSTM still obtains

the best result across all the baseline methods. According to Table 5.3, the accuracy metric
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Table 5.2: Collision rate (%) on GTA dataset

Methods V-LSTM CS-LSTM S-GAN CF-LSTM (Ours)

Scenario 1 4.219 3.086 3.372 2.909

Scenario 2 5.830 4.345 4.015 4.170

Scenario 3 8.331 6.997 5.805 5.397

Scenario 4 11.676 9.500 8.923 8.766

Avg 7.514 5.982 5.529 5.310

Table 5.3: RMSE on GTA dataset.

Methods V-LSTM CS-LSTM S-GAN CF-LSTM (Ours)

Scenario 1 1.88 1.25 1.40 1.11

Scenario 2 1.91 1.84 1.74 1.76

Scenario 3 2.98 2.55 2.67 2.42

Scenario 4 3.02 2.89 2.96 2.76

Avg 2.45 2.13 2.19 2.01

RMSE alone does not tell apart the difference between Scenario 3 and 4 for all the methods. It

implies the accuracy measure of trajectory prediction would not perfectly reflect the driving

safety. Measure the collision rate, for instance, could effectively support the evaluation in a

more complete perspective.
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Table 5.4: RMSE on NGSIM dataset.

Times(s) CV C-VGMM+VIM V-LSTM S-LSTM CS-LSTM MFP MATF GAN VAE GAIL-GRU PS-GAIL CF-LSTM (Ours)

1s 0.73 0.66 0.66 0.65 0.61 0.54 0.66 0.68 0.69 0.60 0.55

2s 1.78 1.56 1.64 1.31 1.27 1.16 1.34 1.72 1.51 1.83 1.10

3s 3.13 2.75 2.94 2.16 2.09 1.89 2.08 2.77 2.55 3.14 1.78

4s 4.78 4.24 4.59 3.25 3.10 2.75 2.97 3.94 3.65 4.56 2.73

5s 6.68 5.99 6.60 4.55 4.37 3.78 4.13 5.21 4.71 6.48 3.82

Results on NGSIM Dataset Quantitative results on the NGSIM dataset is presented

in Table 5.4. Our proposed CF-LSTM significantly outperforms the deterministic physics

based methods such as C-VGMM+VIM [DRT18], pattern based methods V-LSTM, S-

LSTM [AGR16] and CS-LSTM [DT18a] as well as surpasses the planning based methods

GAIL-GRU [HE16] and PS-GAIL [BPW18, BPL19]. CF-LSTM largely improves the pre-

vious state-of-the-art baselines that comparable with MFP [TS19]. Whereas MFP requires

additional scene semantics for single time step predictions while CF-LSTM does not. Lastly,

CF-LSTM outperforms MATF GAN [ZXM19], one recent generative prediction method.

Those results verify the competitiveness of CF-LSTM on accurate trajectory predictions.

5.4.4 Qualitative Results

Congestion Patterns On GTA dataset, we visualize the learned congestion patterns in

terms of mode weights in Fig. 5.7. The mode weights are illustrated as the categorical

distribution as λi (MQ = 4) of the learned Gaussian Mixture Model Q(o) on two driving

scenarios. Top two rows of Fig. 5.7 shows a driving behavior involves lane changing and

overtaking. When the event of overtaking occurs, the second component becomes more

evident than others compared to the relatively uniform distributions at the start and end

of the driving series. The distributional shift could also be inspected at the bottom two

rows in Fig. 5.7 as well. In this intersection driving scenario, the vehicles must yield to
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Figure 5.7: Mixture weights of congestion patterns learned in the driving scenarios. Top:

the mixture weight distribution during overtaking. Bottom: the mixture weight distribution

in a crowded intersection.

each other for collision avoidance. Some mixture weights are evidently firing as vehicles are

coming closer compared to the start and end frames. The observational results further verify

89



our assumptions that learning congestion patterns indeed reflect the contextual semantics of

safety critical scenes.

Figure 5.8: Four types of scenarios are used to qualitatively demonstrate the trajectory

predictions.

Trajectory Predictions The Qualitative results on predicted vehicle trajectories are de-

picted in Fig. 5.8 and 5.9. The baseline methods we draw compared to our proposed CF-

LSTM are S-GAN and CS-LSTM on four types driving scenarios. For highway driving

scenario, as shown in the first row of Fig. 5.9, our CF-LSTM generates more accurate trajec-

tories compared to other baselines on every time interval. For local driving scenario depicted

in the second row of Fig. 5.9, our CF-LSTM successfully captures the overtaking tendency

of the lane changing vehicle. The predicted trajectory also keeps a relative safe distance

from other vehicles. Other baselines either diverge from the ground truth or fail to keep a

safe driving distance. For intersection driving scenario presented in the third row of Fig. 5.9,
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S-GAN CS-LSTM CF-LSTM (Ours)

Figure 5.9: Qualitative results of trajectory prediction in four types of scenarios in Fig. 5.8

from the proposed CF-LSTM and two baselines. Blue: observed trajectories. Red: ground-

truth future trajectories. Green: predicted future trajectories.

our CF-LSTM shows the tendency of vehicles yielding in the crowded driving situations. It

would be the correct sign to avoid collision when vehicles are getting closer. Compared to

other methods, it exhibits more reasonable vehicle interacting behaviors by learning from

the contextual cues – congestion patterns. The last row in Fig. 5.9 shows an extreme case
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of abnormal driving behaviors where one vehicle is scripted aggressively driving through

the intersection and eventually crashes into another vehicle. Baselines S-GAN or CS-LSTM

fails to be aware of this dangerous situation from the predicted trajectories. Our CF-LSTM

instead, presents the tendency of deceleration and yielding based on the trajectories. Those

qualitative results and analysis verify the efficacy of our proposed method targeting on safety

critical driving scenarios.

5.5 Conclusion

In this chapter, we study the problem of multi-vehicle trajectory prediction which involves

the fruitful contextual information of social interactions. The primary challenge of solving

this issue is to generate future trajectories that afford collision avoidance. Our approach

proposes to explicitly learn congestion patterns as contextual cues in a fully self supervised

manner and decouple the “Sense-Learn-Reason-Predict” framework into a modeling process

of teacher-student learning. The optimization problem then is formulated to alternatively

learn congestion patterns matching and joint trajectory predictions. Our method is evalu-

ated on both public NGSIM US-101 dataset and GTA game scripted multi-vehicle driving

dataset. The GTA game provides physical realistic simulations to evaluate the collision

events. According to the results, our method achieves the best performance compared to the

baselines in the sense of collision free trajectory predictions.
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CHAPTER 6

Conclusion

In this dissertation, we investigate one of the most crucial issues in developing the general-

purpose robot agent through learning from interactions. Learning from interactions intro-

duces an active manner of robot learning that assemble what human is growing. To satisfy

this objective, physics based interactive environments — big tasks are constructed to boost

the study along this direction. In our pathway, we explore and answer four aspects of existing

questions to systematically pursue robot learning from interactions.

1. Physical realistic invisible data describes the robot-object interactions. We

propose to trace two crucial forms of raw data, pose and force that both are not visible

for perception processing. To leverage the tactile information, we develop the tactile glove

equipped with wearable sensors and perform the data collection. The hardware setup keeps

tracking of interactive events during the object manipulations, such as opening medicine

bottles, which reflects underlying physical process.

2. Temporal grammar model generalizes the manipulation skills. We inspect the

event recognition of a raw motion sequence during manipulation by proposing an unsuper-

vised learning framework. To generalize the temporal knowledge from human manipulation

to the robot’s end, a grammar model T-AOG is learned to hierarchically represent the ma-

nipulations for event parsing. The robot obtains the learned temporal knowledge to afford

both top-down and bottom-up planning processes and executes the planned atomic motion

by embodiment mapping. The overall learning and inference pipeline showcase the validity

of our proposed approach of acquiring manipulation skills.
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3. Constructing physical realistic and interactive virtual environments for bit

tasks. Facing the challenges of real world setups, we develop a virtual testbed, VRGym, to

continue the line of robot learning from interactions towards big tasks achievement. Utilizing

the advance of game industry, mature physics based simulation and graphics rendering could

be leveraged to synthesize more realistic and diverse interactions. Human is also embodied

in virtual environments by integrating different VR interfaces. Diverse exemplar tasks such

as intention prediction, human robot collaborations and long horizon embodied planning are

performed to justify the potential of VRGym growing a general-purpose agent realizing the

true intelligence.

4. Simulation environment for large scale multi-agent social interactions. We

utilize the game platform, GTA, to study urban level social interactions. By developing

toolkit of modding scripts, control of game agents, e.g. vehicles, and extraction of ground

truth information could be seamlessly performed in real-time. To afford socially acceptable

driving behaviors, multi-vehicle trajectory predictions is studied for the purpose of collision

avoidance. A decoupled learning framework is proposed to learn social contextual cues in a

self supervised manner. The GTA platform proves its capability in studying safety critical

interactive scenarios.

For future work, we would further expand the topic of robot learning from interactions

into two down stream directions: i) Explainable Intelligence. Along with the increase of

model complexity learning complicated tasks, the agent should derive a sense of explaining

its behavior and decision during task execution. An explainable robot system not only

satisfies the intelligibility, but builds up trust between human agents to attain the stage

of becoming a socially mature agent. ii) Representations for Generalization. To effectively

cope with multiple embodied tasks, ability of generalization is important for an intelligent

agent to quickly adapt to the new task environments. In addition, representation learning

would be a promising strategy to learn meaningful task abstractions. One feasible approach

of learning the representation is self supervised learning based on multimodal information.
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Supported by physical realistic and task rich virtual environments, foundations are erected

to push forward the representation learning for embodied big tasks.
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