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Abstract: TRIMER, Transcription Regulation Integrated with MEtabolic Regulation, is a

genome-scale modeling pipeline targeting at metabolic engineering applications. Using TRIMER,

regulated metabolic reactions can be effectively predicted by integrative modeling of metabolic

reactions with a Transcription Factor (TF)-gene regulatory network (TRN), which is modeled

via a Bayesian network (BN). In this paper, we focus on sensitivity analysis of metabolic flux

prediction considering potential model for uncertainty quantification of BN structures for TRN

modeling in TRIMER. We propose a computational strategy to construct the uncertainty class

of TRN models based on the inferred regulatory order uncertainty given transcriptomic expres-

sion data. With that, we analyze the prediction sensitivity of the TRIMER pipeline for the

metabolite yields of interest. The obtained sensitivity analyses can guide Optimal Experimental

Design (OED) to help acquire new data that can enhance TRN modeling and to achieve specific

metabolic engineering objectives, including metabolite yield alterations. We have performed sim-

ulation experiments to demonstrate the effectiveness of our developed sensitivity analysis strategy
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2 1 INTRODUCTION

and its potential to effectively guide OED. We have performed small- and large-scale simulated

experiments, demonstrating the effectiveness of our developed sensitivity analysis strategy for

BN structure learning to quantify the edge importance in terms of metabolic flux prediction

uncertainty reduction and its potential to effectively guide OED.

1 Introduction

Optimal Experimental Design (OED) and control for complex biological systems have significant impact on

developing new computational strategies in systems and synthetic biology (Balsa-Canto et al., 2021; Zhao

et al., 2020) for targeted biochemical overproduction that may benefit human society, for example, in different

energy-related and pharmaceutical applications (Ohta et al., 1991; Haro and de Lorenzo, 2001; Luengo et al.,

2003; Barrett et al., 2006; Bro et al., 2006; Lü et al., 2011; Esvelt and Wang, 2013). In particular, metabolic

engineering, which genetically redesigns microbial strains by gene or reaction knockouts, aims to optimize

corresponding biological processes with respect to the desired engineering objective(s). Due to the demanding

experimental cost and time to test different microbial strains in vivo, computational methods have been

developed for in silico prediction of useful knockout strategies for beneficial mutants. Mathematical models

to systematically analyze genome-scale metabolic reaction networks have been developed to derive optimal

intervention strategies to achieve the desired metabolic reaction fluxes, the turnover rates of the molecules

through the corresponding metabolic pathways (Varma and Palsson, 1994; Edwards and Palsson, 2000; Segre

et al., 2002). However, many existing computational methods to obtain genetically engineered strains are

based on genome-scale analysis at steady states assuming the static network models (Varma and Palsson,

1994; Edwards and Palsson, 2000; Segre et al., 2002; Burgard et al., 2003; Shlomi et al., 2005; Ren et al.,

2013; Apaydin et al., 2016, 2017). Recent efforts have integrated genetic regulatory relationships involving

transcriptional factors (TFs) that may regulate metabolic reactions to achieve more accurate and robust

prediction of target metabolic behaviors under different conditions or contexts (Covert and Palsson, 2003b;

Shlomi et al., 2007b; Covert et al., 2008b; Chandrasekaran and Price, 2010; Machado and Herrg̊ard, 2014;

Reed, 2017; Motamedian et al., 2017; Yu and Blair, 2019). To generalize these integrated hybrid models,

we have developed Transcription Regulation Integrated with MEtabolic Regulation (TRIMER) (Niu et al.,

2021) as a modeling pipeline targeting at metabolic engineering applications. Using TRIMER, regulated

metabolic reactions can be effectively predicted by integrative modeling of metabolic reactions with a TF-

gene regulatory network (TRN), where the TRN is modeled via a Bayesian network (BN) inferred from

transcriptomic expression data. We have demonstrated promising metabolic flux prediction performances in

both simulated and real-world microbial mutant design applications considering transcription regulation in
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genome-scale metabolic prediction (Niu et al., 2021, 2022).

While all the existing efforts have demonstrated valid performances in selected model organisms with

abundant data and careful manual curation, there is not much investigation on how model uncertainty, due

to incomplete system knowledge and/or limited training data, may affect metabolic predictions. To the

best of our knowledge, most of the existing works assume that the trained models are deterministic without

considering potential model uncertainty. In this paper, we propose to directly analyze how model uncer-

tainty may affect the metabolic engineering performance.Compared to the traditional ways where model

uncertainty is often represented by how well models fit the training data, we propose to analyze how model

uncertainty affects the metabolic engineering performance directly. In particular, we focus on the sensitivity

analysis in our TRIMER framework, by considering an uncertainty class of learned network models instead

of deterministic network models to investigate the metabolic engineering performance under uncertainty.

In particular, we analyze metabolic flux prediction sensitivity with respect to the uncertainty class of BN

structures for TRN modeling as one possible way of uncertainty quantification. Through a mathematical

programming formulation of Bayesian network topological ordering, we construct uncertainty classes of BN

models for TRN and analyze the metabolic prediction sensitivity of our TRIMER modeling pipeline. We

evaluate the sensitivity of the TRIMER pipeline by comparing the ground-truth metabolite yield alterations

with TF knockout mutations based on the BN uncertainty classes with the network edge space ranked by

topological ordering. To be specific, we simulate both gene expression and metabolic flux data from a

predefined ground-truth TRN-regulated metabolic network model, infer models from the simulated data,

construct uncertainty classes, and then check the prediction sensitivity by checking the correlation of the

predicted and ground-truth metabolite yields. The obtained sensitivity analyses can provide useful guidance

for model learning, calibration, and OED for metabolic engineering, allowing biologists to better understand

metabolism under perturbation and to take advantage of high-throughput genetic engineering for desired

microbial strains with reduced cost.

2 Background

In Niu et al. (2021, 2022), we have developed an integrated regulatory-metabolic hybrid network model

and genome-scale metabolic analysis pipeline, Transcription Regulation Integrated with MEtabolic Reg-

ulation (or TRIMER). TRIMER enables condition-dependent genome-scale metabolic behavior modeling

and provides in silico predictions of metabolic engineering tasks, such as knockout phenotype and knock-

out flux predictions. As a hybrid network model, TRIMER has a metabolic network module that predicts

metabolic fluxes based on the classic flux balance analysis (FBA) framework (Covert and Palsson, 2003a;
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Palsson, 2015; Edwards and Palsson, 2000; Lewis et al., 2010; Varma and Palsson, 1994). This well-known

technique adopts Linear Programming (LP) with flux constraints introduced by metabolic regulation rules

(i.e. a metabolic network) of a given organism, to model genome-scale steady-state metabolic status. For

accurate and robust prediction of metabolic behaviors under different conditions, regulatory relationships, in

the corresponding transcription factor regulatory network (TRN) between transcriptional factors (TF) and

their target genes, are integrated with the FBA formulation as additional transcriptional constraints over

fluxes (Shlomi et al., 2005; Jensen et al., 2011; Ren et al., 2013; Apaydin et al., 2017; Covert et al., 2008a;

Shlomi et al., 2007a). Motivated by another genome-scale framework PROM (Probabilistic Regulation of

Metabolism) (Chandrasekaran and Price, 2010), TRIMER adopts a TRN module that integrates the a pri-

ori known TF-gene interaction annotations and available gene/transcriptomic expression profiles to learn a

corresponding Bayesian network (BN) for probabilistically modeling the TRN. The conditional probabilities

Pr(gene(s)|TF(s)) can be inferred from the learned BN and used for the construction of regulatory con-

straints in the FBA formulation, predicting the metabolic behaviors under different conditions, for example,

TF knockouts in metabolic engineering. A typical formulation that predicts the regulated metabolic fluxes

is shown below:

max
v⃗,α,β

biomass(v⃗)− κ(α+ β)

s.t. Sv⃗ = 0;

lb′i − α ≤ vi ≤ ub′i + β, ∀i,

α ≥ 0; β ≥ 0,

where S is the stoichiometric matrix deduced from the given metabolic network, v⃗ is a real-value vector

representing metabolic fluxes, α and β can be considered as slack variables, κ is a hyper-parameter that

controls the penalty of exceeding the fluxes bounds, lb′i and ub′i are regulatory flux upper/lower bounds

computed based on Pr(gene(s)|TF(s)) and Flux Variability Analysis (FVA) (Mahadevan and Schilling,

2003). Readers can refer to Niu et al. (2021) for more details about flux bounds construction and how

TRIMER predicts corresponding metabolic fluxes (Niu et al., 2022). In practice, the Bayesian network

is learned from a gene expression dataset with a limited number of data points, giving rise to potential

uncertainty in BN structures, the estimated conditional probabilities Pr(gene(s)|TF(s)), and consequently,

the metabolic flux predictions. In this paper, we focus on how BN structure uncertainty impacts metabolic

flux predictions and consider sensitivity analysis of metabolic flux predictions with respect to the learned BN

structures as one type of uncertainty quantification. Our goal is to identify the most important edges in terms
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of reducing the metabolic flux prediction uncertainty, which can further guide the OED of BN modeling.

While TRIMER is motivated by PROM, the adopted flux bounds in PROM are based on Pr(gene|TF)

estimated by the relative frequency of the corresponding gene-TF state pairs in the given TF-gene interaction

annotations. As there is no BN modeling involved and network dependency is not considered in PROM,

the conducted sensitivity analysis in PROM was on frequentist estimation of the conditional probabilities

given individual TF knockout (Chandrasekaran and Price, 2010), which is different from the BN structure

uncertainty quantification of metabolic flux predictions in TRIMER investigated in this paper.

3 Materials and Methods

In this section, we first provide a brief overview of our proposed BN structure sensitivity analysis strategy,

followed by detailed descriptions of all the steps of the procedure.

3.1 Overview: Sensitivity analysis of TRIMER

Sensitivity analysis of TRIMER is achieved by evaluating metabolic flux prediction performances based

on the uncertainty classes of BNs modeling TRN. In other wordsIn particular, we focus on the model

uncertainty of BN structures that directly impacts metabolic flux prediction. To construct an uncertainty

class, the key idea is to first infer the BN topological ordering learned from gene expression data. We then

grow various BN structures from the inferred node ordering to construct uncertainty classes at different

perturbation levels. By statistical analysis of metabolic predictions with different uncertainty classes, we can

have better understanding on how TRN modeling may affect the final metabolic predictions in the TRIMER

hybrid model. With such sensitivity analyses due to potential model uncertainty as a way of the BN model

uncertainty quantification, practical guidance can be obtained inform researchers for active learning and

calibrating the modular components in TRIMER via optimal experiment design with the corresponding

uncertainty quantification, for example, defining the iterative structure updating policies for BN to improve

metabolic prediction.

To develop such a sensitivity analysis capability in TRIMER, we first implement a BN topological order

search algorithm to infer the network node ordering of BNs given transcriptomic expression data and the

search space of BN edges. The topological ordering of BNs determines the parenthood of nodes: an ancestor

node must be of higher order than its descendant nodes. Therefore, given node parent sets and a topological

ordering of interest, the global optimal consistent structure can be obtained. To measure the uncertainty of

the corresponding topological ordering, ordering samples are obtained by bootstrapping the adopted order

search algorithms (Friedman et al., 1999). Accordingly, the statistics of bootstrapped ordering samples
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can be computed to help derive the probability distributions and thereafter uncertainty quantification by

constructing BN uncertainty classes.

The next question is how we may capture the potential model uncertainty from bootstrapped BN topo-

logical orderings and derive a rigorous mathematical framework to construct the classes of uncertain BN

models for our proposed metabolic prediction sensitivity analysis. Following Xiao et al. (2018), we adopt a

mathematical programming formulation to rank the pairwise ordering of nodes or directed edges in the BN

modeling TF-gene regulatory relationships. The formulation aims at identifying the critical regulatory rela-

tionships for which reducing the ordering uncertainty can help significantly improve the BN model fitting to

the given training dataset. Solving this problem, all valid edges in the given edge space for the BN are ranked

by their contributions to the uncertainty reduction, where the uncertainty is captured by the corresponding

covariance matrix of ordering scores computed from bootstrapped ordering samples. We then construct the

BN uncertainty class of different sizes, where edges with higher rankings are more likely to be sampled to

form the allowed edge space to derive the best BN structure consistent with the topological ordering. Finally,

transcription-regulated genome-scale metabolic predictions with the BNs in the corresponding uncertainty

class can be done following the TRIMER pipeline to investigate prediction sensitivity. The details of the

TRIMER analysis pipeline can be referred to Niu et al. (2022).

In summary, our proposed strategy is mainly comprised of three steps: 1) BN topological ordering, 2)

uncertainty class construction, and 3) metabolic prediction sensitivity analysis. Figure 1 provides a high-level

overview of the strategy, depicting the main workflow.

3.2 Order-based Tabu search

In the TRIMER pipeline (Niu et al., 2021), Bayesian network structure learning is by fitting the given gene

expression profiles D for the corresponding gene set X = {Xn, n ∈ [1, N ]} and the given TF-gene interaction

list E, whereX and E are interpreted in BN as the set of network nodes and the search space of network edges

respectively. Uncertainty quantification directly by analyzing factorized conditional probability distributions

P (G|D) is challenging as it depends on the BN graph structure G, which is combinatorial. We hence propose

a topological order based uncertainty quantification strategy, for which we here first define the topological

ordering based score, with the uncertainty modeled by a Gaussian distribution as detailed in Section 3.3.

To be specific, to learn the BN topological ordering, denoted by ≺, our implementation follows the same

idea in Teyssier and Koller (2012), where an order-based heuristic search was proposed. For candidate BN
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Algorithm 1: Order-based Tabu search

Input : Dataset D, node set X, edge space E, network in-degree d, initial ordering ≺0, initial
node scores s0, initial node delta-scores by switching orders of adjacent nodes δ0

Output : Local optimal ordering ≺∗

Parameters: Maximal number of failures T , allowable number of failures before restart R, Tabu
length L, score comparison threshold ϵ

1 Procedure Tabu search:
2 t← 0, r ← 0, s, s∗ ← s0, δ ← δ0

3 while t < T do
4 if

∑
i s

∗
i ≤

∑
i si then

5 s∗ ← s
6 end
7 op = Tabu step(≺t, δ, ϵ)//finding the swap operator op with the biggest score improvement//
8 if op = ∅ then
9 r ← r + 1

10 if r ≥ R then
11 r ← 0
12 ≺t← order initialize(D,E) //order initialization//

13 end
14 op← Tabu step(≺t, δ,−∞) //finding the swap operator op with the smallest score

reduction//

15 end
16 ≺t+1← swap(Xtj , Xtj+1

;≺t)
17 //updating node scores for ordering ≺t+1//
18 (sj , sj+1)← (score(Xtj+1

, Pa∗≺t+1(Xtj+1
)), score(Xtj , Pa∗≺t+1(Xtj )))

19 //updating node delta-scores for ordering ≺t+1//
20 (δ1j , δ

2
j )← (−δ2j ,−δ1j )

21 (δ1j+1, δ
2
j+1)← (score(Xtj , Pa∗≺t+1(Xtj ) ∪Xtj+2

)− sj+1, score(Xtj+2
, Pa∗≺t+1(Xtj ))− sj+2)

22 (δ1j−1, δ
2
j−1)← (score(Xtj−1

, Pa∗≺t+1(Xtj−1
)∪Xtj+1

)− sj−1, score(Xtj+1
, Pa∗≺t+1(Xtj−1

))− sj)

23 t← t+ 1

24 end
25 return ≺∗

26 end
27 Function Tabu step(δ, ϵ):
28 // H: a stack with the fixed length L, recording historical order operations//
29 j ← argmax{i|(Xti

,Xti+1
)/∈H}(δ

1
i − δ2i+1)

30 if δ1j − δ2j+1 > ϵ then
31 push (Xtj , Xtj+1

) into stack H
32 return (Xtj , Xtj+1)

33 else
34 return ∅
35 end

36 end
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structures, the score of a given ordering ≺ can be defined as:

score(≺;D;E) ≜ score(G∗
≺;D;E) ≜ max

G≺
score(G≺;D;E),

score(G≺;D;E) ≜
N∑
i

{
score′(Xi;Pa≺(Xi, E);D)

}
,

Pa≺(Xi, E) ∈ {Y : ∀y ∈ Y, y ≺ Xi, (y,Xi) ∈ E; |Y | ≤ d},

(1)

where Xi ∈ X denotes a node with its parent node set Pa≺(Xi, E) consistent with the ordering ≺ in the

given edge space E, y ≺ Xi indicates that the order of y is higher than Xi, d is the predefined upper

bound of node’s in-degree, and score(G≺;D;E) is a decomposable score function used in the BN structure

learning, such as Bayesian Information Criterion (BIC) score or Bayesian Dirichlet (BD) score. In our

implementation, we adopt the BD score. To find the best ordering, we use a heuristic search algorithm–

multi-restart Tabu search—originally proposed in James et al. (2009) based on the decomposed node-wise

score function score
′
(· ; · ; ·). To perform the ordering search, we define a swap operator swap(Xtj , Xtj+1

)

over nodes with the adjacent ordering in the t-th iteration as:

(Xt1 , . . . , Xtj , Xtj+1 , . . . , XtN )→ (Xt1 , . . . , Xtj+1 , Xtj , . . . , XtN ).

The best swapping operation is selected among all n − 1 candidate successors in the t-th iteration. This

simplified search procedure based on the swap operator significantly reduces the computational cost of

ordering comparison. Supposing that ≺t is changed to a new ordering ≺t+1 by swap(Xtj , Xtj+1
), the delta-

score of the induced ordering, difference from the original ordering, only depends on the delta-score ofXtj and

Xtj+1
. In addition, the only new operators deduced from ≺t+1 are swap(Xtj , Xtj+2

) and swap(Xtj−1
, Xtj+1

).

In each iteration, we can find the optimal parent set for any node in O(fmax)=O(Nd) as there are fmax =
(
N
d

)
possible parent sets per node with the maximum in-degree d (Teyssier and Koller, 2012). With c iterations,

the time complexity of the algorithm is O(cNd). The pseudo-code of the implementation is provided in

Algorithm 1.

3.3 Order initialization

Initialization is crucial to guarantee satisfactory performance of heuristic search as the exact optimality is

not ensured due to both the constrained search space and the greedy nature. In this paper, the TF-gene

interaction list is not just used to help define the edge space but also as the prior knowledge of node ordering.

For example, the ordering of the TF nodes cannot be lower than its regulated gene nodes. Otherwise, the
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corresponding TFs cannot be the parent nodes of its regulated genes in BNs. In the following, we will

introduce an order initialization algorithm via extracting the node ordering prior knowledge from a given

TF-gene interaction list.

In the extreme case, the edge space E defined by a given interaction list corresponds to a directed acyclic

graph (DAG), for which the optimal Bayesian network topological ordering is just any ordering consistent

with the graph structure. However, in practice, the edge space almost always corresponds to a directed graph

with cycles. While the optimal node ordering can not be fully determineddirectly read off from the graph

structure, it is still possible to obtain partial prior knowledge about it. For a directed graph G = (X,E), its

strongly connected components (SCCs) denoted as C = {Cm : m ∈ [1,M ]} are defined to be the maximal

sets of nodes such that for each set, every pair of nodes within the set are reachable from each other. A

graph of C can be denoted as Gc = (C,Ec), where an edge exists between two SCCs if there is at least one

edge between two nodes belonging to the two SCCs respectively. By the definition of the SCC, Gc must

be a DAG. Therefore, Gc determines a component-wise ordering ≺c, which provides us partial knowledge

about how to initialize the node ordering ≺0 to inform the following order-based heuristic search algorithm.

The globally optimal node-wise ordering ≺∗ must be consistent with the ≺c ordering while relative orders

among nodes within the same SCC are still undetermined. To obtain an appropriate initial node ordering

≺0, Gc and the corresponding ordering ≺c are first identified from G = (X,E), where SCCs are identified

by Tarjan’s algorithm (Tarjan, 1972) with the computational complexity O(|E|+ |X|). Next, node ordering

≺0 consistent with ≺c can be found easily, where relative orders of nodes belonging to the same SCC are

randomly generated. The pseudo-code of the initialization algorithm is shown in Algorithm 2 and the

corresponding workflow is illustrated in Figure 6.

Algorithm 2: Order initialization from a given edge space

Input : node set X, edge space E
Output: node order ≺0= (X01 , . . . , X0N )

1 Procedure order initialize:
2 // random perm: function to randomly permute a given ordering//
3 Identify C = {Cm : m ∈ [1,M ]} with Cm = {Xmj

: j ∈ [1, |Cm|]} from G = (X,E) by Tarjan’s
algorithm

4 Construct Ec = {(Ci, Cj) : i, j ∈ [1,M ], i ̸= j;∃x ∈ Ci, y ∈ Cj , (x, y) ∈ E} based on E and C
5 Identify an ordering ≺c= (Cs1 , . . . , Csm , . . . , CsM ) consistent with Gc = (C,Ec)
6 i← 0
7 for m ∈ [1,M ] do
8 (X0i+1

, X0i+2
, . . . , X0i+|Csm |)← random perm((X(sm)1 , X(sm)2 ..., X(sm)|Csm |))

9 i← i+ |Csm |
10 end
11 return ≺0

12 end
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3.4 Semidefinite programming formulation for uncertainty class construction

To quantify the uncertainty of topological ordering, we use a multivariate Gaussian random vector ϕ ∈

R|X| ∼ N (µ,Λ−1) as the numerical score representation of an ordering ≺, where each element represents

the score of the corresponding node and the nodes of higher order are supposed to have larger scores in ϕ.

By bootstrapping the previously described order-based search algorithm, we can estimate the corresponding

distribution parameters ofN (µ,Λ−1) by the bootstrapped samples of ϕ. Bootstrapping here means repeatedly

perturbing D and applying the order search algorithm on the perturbed data sets to obtain a set of perturbed

local optimal orderings. To establish the relationship between node-wise orders and edges, we associate edge

Ek = (Xi, Xj), Ek ∈ E with a real-value random variable yk ∼ N (ϕi − ϕj , γ
−1) to represent the pairwise

order difference, where γ is a hyper-parameter. Values of yk can indeed be interpreted as the confidence of

the corresponding pairwise ordering: the larger the value of yk is, the more confident we are to support the

ordering induced by edge Ek. As proposed in Xiao et al. (2018), a binary matrix B ∈ {−1, 0, 1}|E|×|X| can

be used to collectively represent all edges in E, where for Ek = (xi, xj):

Bk,l =


1, if l = i

−1, if l = j

0, otherwise.

In cases when only a subset of E is considered, a binary matrix Diag(v)B is used as the corresponding

matrix representation, where v ∈ {0, 1}|E| is a binary vector, Diag(v) denotes the corresponding diagonal

matrix. Therefore, y ∼ N (Diag(v)Bϕ,Γ−1) represents the pairwise ordering confidence about all the edges

of interest, where Γ is a hyper-parameter covariance matrix. It should be pointed that P (ϕ|µ,Λ−1) is a

conjugate prior of P (y|Diag(v)Bϕ,Γ−1) as they are both Gaussian. Therefore, it can be easily verified

that (Xiao et al., 2018):

P (ϕ|y,B∗) = N(µ′, (Λ′)−1), Λ′ = ((B∗)Tdiag(v)B∗ + Λ), (2)

where B∗ = QB and QTQ is the Cholesky factorization of Γ. It can be observed that Λ′ quantifies the effect

of the edge set of interest over the uncertainty of ordering ϕ. Therefore, a straightforward idea to rank edges

is by their contribution to the uncertainty reduction. To be more specific, the ranking is achieved by solving
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a semidefinite programming problem (SDP) proposed in Xiao et al. (2018), which is defined as:

max
η

λ1

Λ +

|E|∑
i=1

vi(b
T
i bi)


s.t. 1Tv ≤ τ

0 ≤ v ≤ 1.

(3)

In the formulation above, λ1(·) denotes the smallest nonzero eigenvalue of the matrix, bi ∈ {−1, 0, 1}1×|X|

denotes a row vector corresponding to the ith row of B∗, and τ is a scalar representing the size of a selected

edge subset. The values of the elements in the resulting vector v help identify the top τ edges in items of

uncertainty reduction. By solving the SDP repeatedly for |E| times with τ increasing from 1 to |E|, the

growing ordering of selected edges implies a ranking of edges in E. It should be pointed out that v is relaxed

to [0, 1]|X| to guarantee the convexity of the SDP. While this relaxation leads to potential interpretation

ambiguity of the solution as the number of non-zero elements in v can be higher than τ . However, we can

still select the top τ edges based on the magnitudes of values in v. To construct uncertainty classes of BN

models for TRN in TRIMER, ranked edges are assumed to comply with a distribution defined as follows:

p(i) =
2

|E|(|E|+ 1)
(|E| − rank(i)), (4)

where i denotes the index of an edge in E and rank(i) denotes its rank in terms of uncertainty reduction. We

then construct a BN uncertainty class in the following way: By the distribution defined above, we first draw

multiple edge sample sets of the same size, denoted as S = {Sl|l ∈ [1, L]}. For the corresponding sampled

set, the best BN structure is identified by GSl = argmaxG≺µ score(G≺µ ;D;Sl), where ≺µ is deduced from

the numerical mean µ of the ordering samples.

3.5 TRIMER as a simulator

As described in Niu et al. (2021), TRIMER can serve as a simulator of gene expression and metabolic flux

data. Given a ground-truth BN model for TRN with appropriate conditional probability tables for each node

in the BN, gene expression datasets can be simulated by drawing samples from the distribution described by

the BN. Moreover, conditional probabilities with respect to TFs and target genes can be inferred from the BN

and used for constructing regulatory flux constraints for genome-scale metabolic predictions when they are

integrated with the available metabolic reaction network model of the organism under study. Adding these

new constraints into the corresponding FBA formulation for the metabolic network, condition-dependent
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metabolic states of the organism can be simulated and treated as the ground truth.

For sensitivity analysis, we simulate gene expression data for BN uncertainty class construction and

ground-truth metabolic fluxes to estimate the biomass for different TF-knockout E. coli strains as described

in Niu et al. (2021). We investigate the model uncertainty by computing the corresponding Pearson correla-

tion coefficients (PCCs) between ground-truth biomass fluxes and the predicted fluxes by TRIMER based on

BN uncertainty classes, of which the BN structures may significantly deviate from the ground-truth model

that simulates the data.

4 Results

In this section, we present the experimental results based on two simulated datasets to demonstrate the

effectiveness of proposed regulatory order based sensitivity analysis strategy for TRIMER.

4.1 Sensitivity analysis results

In our experiments, simulated ground-truth TRIMER models are used to generate gene expression data

as well as metabolic flux data (Niu et al., 2021), which are used as the training datasets for BN learning

and the ground-truth metabolic flux predictions for sensitivity analysis and performance evaluation. We

focus on biomass prediction under multiple TF-knockouts while the proposed methods can be used for

other metabolite yield predictions based on the problems of interest. We here use the two same simulated

TRIMER models for E. coli with iAF1260 (King et al., 2016) as their genome-scale metabolic network

model as described in Niu et al. (2021). One model is based on a small-scale TRN and the other is based

on a large genome-scale TRN as detailed in the following subsections. More detailed descriptions on the

TRIMER models, data sources, software requirements, hardware setups, as well as run-time statistics of each

TRIMER component can be found in Niu et al. (2021, 2022). All the reported experiments are implemented

on a PC with Intel i7 processor and 16GB RAM.

4.1.1 Small-scale model sensitivity analysis

For the small-scale model, its corresponding TF-gene regulatory network (TRN) contains 50 nodes (12 TFs

and 38 regulated genes) with 118 randomly generated edges. It is assumed that regulated genes can not be

the parents of TFs in the BN model. The ground-truth metabolic fluxes in this model are simulated for

all the 12 TF single-knockout conditions. Besides, we generate a gene expression dataset of 1000 samples

from the ground-truth BN model. In light of experimental results reported in (Niu et al., 2021), a dataset of

1000 training samples is believed to be adequate to guarantee reasonable order learning to achieve desired
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metabolic flux prediction performance. Then we bootstrap the Tabu order-based search for 100 times over

the dataset obtaining 100 ordering samples, which can finish around 8 to 12 hourswhere one time running

of Tabu order-based search typically takes five to eight minutes. The covariance matrix of ordering scores

based on boostrapped ordering samples is shown in Figure 2(a). As shown in the figure, the variances

corresponding to TFs with indices from 1 to 12 are much smaller than the ones for regulated genes indexed

from 13 to 50. This is reasonable as the regulated genes are mostly downstream and their orderings can be

more uncertain compared to TFs.

Next, edges in the predefined edge space based on the available prior knowledge for the TRN are ranked

by their contribution to uncertainty reduction during the ordering posterior covariance updates via the

mathematical programming formulation detailed in Materials and Methods. As the edge space is relatively

small in this small-scale example, the edge ranking can be completed within a few seconds. Ten BN un-

certainty classes, each of which contains ten graph structures consistent with the ordering numerical mean,

are constructed from sampled edge sets of sizes ranging from 10% to the whole edge space. Finally, the

TRIMER model with constructed BN uncertainty classes is built and biomass predictions are made follow-

ing the TRIMER pipeline. In our experiments, we calculate Pearson correlation coefficients (PCCs) between

predictions and simulated ground-truth fluxes to evaluate TRIMER’s performance under a specific BN con-

figuration in the uncertainty class. We have also performed t-tests between the PCC values of metabolic flux

predictions obtained based on the uncertainty class covering the whole edges space and the corresponding

PCC values from the other uncertainty classes. The corresponding p-values are calculated to show the sta-

tistical significance of performance change. The final metabolic prediction performance by TRIMER with

different BN uncertainty classes is illustrated in Figure 3(a) for this experiment.

Increasing the size of edge sample sets from 10% to the whole edge space corresponds to decreasing the

uncertainty of BN classes by extending the edge space. As the edge space is extended by the top regulatory

relationships in terms of BN topological ordering uncertainty reduction, BN classes of high uncertainty can

still maintain essential edges. From the plot, one obvious trend is when the uncertainty class is constructed

with the allowed BN edge space covering more than 70% of the complete edge space, biomass predictions for

TF-knockouts closely approach the simulated ground-truth results with the average PCC higher than 0.95. In

general, the prediction performance improves when considering larger BN structure space as expected. More

critically, the prediction sensitivity due to the model uncertainty decreases with the increasing edge search

space. With the sampled ranked edges, it is clear that the corresponding edges ranked in the lower 30% may

not have much influence on the model prediction and sensitivity performances. On the other hand, when the

constructed BN models miss highly ranked edges, metabolic predictions can be quite sensitive to potential

model uncertainty even if their model predictions are satisfactory, as demonstrated when the uncertainty
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class construction covers the top ranked 40% to 70% edges of the complete edge space.From the plots for

small-scale experiments, the prediction performance improves when considering a larger BN structure space.

The prediction sensitivity due to the model uncertainty decreases as expected. More critically, one obvious

trend is that TRIMER can still achieve relatively good performance when we enforce sparser BN structures,

i.e. the uncertainty class construction covers the 40% to 70% edges of the complete edge space. This is

because the most important edges found by the proposed SDP are assigned with the highest probabilities

for edge sampling to construct the uncertainty class. However, the prediction sensitivity, illustrated by the

quantile bars in the plot, is high as these important edges can be missing during edge sampling. On the other

hand, when the uncertainty class is constructed with the allowed BN edge space covering more than 70% of

the complete edge space, biomass flux predictions for all the TF-knockouts closely approach the simulated

ground-truth results with the average PCC higher than 0.95, showing that the corresponding edges ranked in

the lower 30% may not have much influence in both model prediction and sensitivity performances. All these

trends are further confirmed when we perform t-tests based on the PCC values across different uncertainty

class construction settings as illustrated in the plot.

To further evaluate the prediction sensitivity of BN models for the small-scale TRIMER model, we

conduct an experiment to investigate how its performance varies by changing the size of training gene

expression datasets to construct the BN uncertainty classes. We have generated five expression datasets

with sizes ranging from 200 to 1000. For each dataset, we evaluate the performance of TRIMER with the

uncertainty classes constructed from the corresponding sampled edge sets whose sizes are fixed to the half

of the complete edge space. The experimental results are depicted in Figure 4, where we provide the t-test

p-values based on the corresponding PCC values between the last condition and each of the other conditions.

Overall, with the increasing training samples for BN learning, both the average prediction accuracy, measured

by PCC, and sensitivity, shown in the quantile bar plot, improve in general. The prediction performance may

not improve much in average when we have more than 400 training samples. However, when investigating

prediction sensitivity to the inherent model uncertainty with our regulatory order based uncertainty class

construction, our results indicate that more training samples may need to guarantee the desired robust

predictions. In our experiment, we observe that we require 1000 gene expression samples to achieve accurate

and stable predictions.

We conduct another experiment to further investigate how flux predictions may be affected by the

noise in gene expression data for BN training. We randomly flip the corresponding ON/OFF states of

10%, 20%, · · · , 50% genes in a simulated dataset of 1000 samples, resulting in five perturbed gene expres-

sion datasets at different noise levels. For each dataset, we evaluate the performance of TRIMER with the

uncertainty classes constructed as previously described based on topological ordering derived from the cor-
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responding perturbed gene expression data. For this experiment, we fix the sampled edge set size to be the

half of the complete edge space. The experimental results are shown in Figure 5, where t-tests are performed

between the uncertainty class constructed from non-perturbed dataset and each of the other uncertainty

classes from datasets perturbed at different levels. From the plot, perturbing 10% or 20% of training data

does not affect the performances much. the performance declines significantly when more than 30% of gene

expression states are flipped, with the corresponding p-value equal to 0.0018 showing the statistical signif-

icance of the performance change. As the gene expression noise is reflected in the uncertainty classes of

learned BN models, the observed trends of flux predictions with different gene expression noise levels are

similar as in the sensitivity analysis with different perturbation levels to BN structures directly.

All these experiments with this small-scale ground-truth model have demonstrated that our topological

ordering based sensitivity analysis strategy can appropriately quantify the model uncertainty identify impor-

tant edges that directly impact our objective of reliably predicting metabolic fluxes in the TRIMER pipeline.

When needed, it can help more effectively refine or calibrate the BN model, for example, by growing the BN

edge space based on the ranked edges. optimal experiment design (OED) in the TRIMER pipeline, where

BN can be calibrated and updated iteratively based on the proposed sensitivity analysis. On the contrary,

blind random edge sampling may not give rise to an informative performance plot.

4.1.2 Large-scale model sensitivity analysis

For the large-scale model, we consider a genome-scale TRN with 1509 edges randomly selected from the

edge space containing 3704 edges in the annotated interaction list for E. coli in EcoMAC (Carrera et al.,

2014). When constructing the BN uncertainty classes in this experiment, we only focus on an edge subspace

comprised of 1533 edges, which connect genes directly regulating the reactions involving biomass production

in the iAF1260 metabolic network model. We obtain 100 ordering samples by bootstrapping the order search

over the simulated gene expression dataset of 1000 samples, similarly as described in the small-scale model

experiment. In this set of experiments, the cyclic graph deduced from the interaction list is close to an

acyclic graph with only 20 SCCs containing more than two nodes, for which one time bootstrapping of Tabu

order-based search can be completed within one to two minutes. The corresponding covariance matrix is

shown in Figure 2(b). To construct the BN uncertainty classes, we first fix the BN structure for the genes

that are not associated with biomass-related reactions to the optimal structure consistent with the derived

mean topological ordering. The run-time of edge ranking for this larger graph is around ten minutes. We

then sample different sizes of edge sets from the focused edge subspace. The corresponding BN edge space

for the uncertainty classes also grows from containing 10% of the focused edge subspace to the complete

space under consideration. Figure 3(b) illustrates the performance under uncertainty.
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We observe similar trends as in the small-scale model sensitivity analysis. In general, both metabolic

prediction and sensitivity performances improve with the growing edge space. Due to the integration of

the EcoMAC interaction list as prior knowledge for defining the BN edge space, we can achieve satisfactory

prediction performance, PCC>0.95, when we cover more than 50% of the focused edges. On the other hand,

to achieve stable predictions, we may need to cover more than 70% of the defined edge space. In summary, all

the experimental results again verify the effectiveness of our proposed method in quantifying the metabolic

flux prediction uncertainty with respect to BN structures and identifying important edges that may directly

affect metabolic predictions.

5 Conclusion

From our experimental results, it can be observed that when the BN models deviate more from the optimal

BN by missing highly ranked critical edges, the prediction accuracy, measured by correlation between ground-

truth biomass fluxes and predicted fluxes of the perturbed BN models, does decrease. More critically, when

constructing such uncertainty model classes and investigating prediction sensitivity, our results indicate that

we may need better prior knowledge and more training data to achieve both accurate and stable predictions.

Our sensitivity analyses also indicate that reliable uncertainty quantification may require more data. While

many existing works have reported valid performances in selected experiments, there may still be potential

overfitting risks with predictions not easy to generalize when having slightly perturbed systems.

Our topological ordering based sensitivity analysis also helps identify the set of edges, for which the

corresponding uncertainty reduction can significantly help model prediction and improve sensitivity. Such a

capability can lead to new uncertainty quantification formulations, which may enable optimal experimental

design strategies for active model learning (Zhao et al., 2021a,b,c) and more robust intervention strategies

in metabolic engineering, which we leave for future research.
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1. Figure 1: Schematic illustration of the proposed sensitivity analysis workflow: 1) Gene expression

data with the prior knowledge on regulatory interactions are used to infer the topological orderings

of nodes in Bayesian networks (BNs). 2) The uncertainty class of BNs is constructed based on the

uncertainty of the topological ordering due to incomplete knowledge and/or limited data. 3) TRIMER

pipeline is used with the uncertainty class to analyze the metabolic flux prediction sensitivity.

2. Figure 2: Estimated covariance matrices of topological ordering scores based on bootstrapped samples

for (a) small-scale and (b) large-scale network models to help rank the pairwise TF-gene ordering

corresponds to edges in the BN uncertainty class. Warmer colors indicate higher uncertainty regarding
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the pairwise orderings, hence specifying the corresponding edges may help significantly reduce the

BN model uncertainty.The matrices are then used to inform the Semi-Definite programming (SDP)

formulation to help quantify the Bayesian network edge importance.

3. Figure 3: Box plots of Pearson correlation coefficient (PCC) between the metabolic prediction by

TRIMER with constructed BN uncertainty classes and the ground truth. Results are shown for (a)

small-scale and (b) large-scale BN uncertainty classes as a function of the number of sampled edges

and the average size of the BNs in the uncertainty classes. For both small- and large-scale experiments,

we can see that both the prediction performance and prediction sensitivity of the uncertainty classes

considering more than 70% of the edge space do not have significant difference from the uncertainty

class considering the whole edge space.The p-values of the t-tests based on PCC values between the

last uncertainty class covering the whole edge space and each of the other uncertainty classes are also

shown in the plot to illustrate the statistical significance of the corresponding performance change.

The metabolic prediction performance improves when the uncertainty class is constructed from a

larger edge space. Furthermore, tThe metabolic prediction sensitivity, illustrated by the quantile bars

in the plot, decreases in general as the additional edges included in the edge space are less critical to

achieve robust predictions. It can be observed that in spite of high sensitivity, TRIMER’s performance

can still be relatively high when we enforce sparser BN structures. This demonstrates the effectiveness

of the proposed SDP for edge ranking as the most important edges found by the SDP are assigned

with the highest sampling probabilities for uncertainty class construction. When considering these

edges in constructing the uncertainty classes, metabolic flux prediction performance and sensitivity are

relatively stable.

4. Figure 4: Box plots of Pearson correlation coefficient (PCC) between the metabolic prediction by

TRIMER and the ground truth. Results are shown for uncertainty classes constructed based on

simulated gene expression datasets of different sizes. As statistical supports, the p-values of the t-tests

between the PCCs in the last condition and each PCC set of the other conditions are also shown in the

plot to illustrate the statistical significance of the corresponding performance change. Note that the

prediction performance significantly improves when we have 400 training gene expression data points.

After that, the prediction performance slowly increases with the increasing number of training data

points.

5. Figure 5: Box plots of Pearson correlation coefficient (PCC) between the metabolic flux predictions

by TRIMER and the ground truth. Results are shown for the uncertainty classes constructed based on

gene expression data perturbed at different levels ρ, the flipping probability to perturb gene expression
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states. The p-values of the t-tests between the PCCs from the constructed uncertainty class from the

non-perturbed gene expression dataset and those using the datasets perturbed at different levels are

also shown in the plot to illustrate the statistical significance of the corresponding performance change.

Note that the prediction performance drops significantly at 30%. The p-values of the t-tests performed

between the PCCs of the uncertainty class constructed from the non-perturbed dataset and each PCC

set of the other uncertainty classes from datasets perturbed at different levels are also shown in the

plot to illustrate the statistical significance of the corresponding performance change. Note that the

prediction performance drops significantly at 30%.

6. Figure 6: Illustration of the order initialization workflow. First, the directed acyclic graph (DAG) of

strongly connected components (SCCs) is identified from the given directed graph; then a node-wise

ordering consistent with the SCC ordering is randomly selected.
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Lü, J., Sheahan, C., and Fu, P. Metabolic engineering of algae for fourth generation biofuels production.

Energy & Environmental Science, 4(7):2451–2466, 2011.

Luengo, J. M., Garcia, B., Sandoval, A., Naharro, G., and Olivera, E. R. Bioplastics from microorganisms.

Current Opinion in Microbiology, 6(3):251–260, 2003.

Machado, D. and Herrg̊ard, M. Systematic evaluation of methods for integration of transcriptomic data

into constraint-based models of metabolism. PLOS Computational Biology, 10(4):e1003580, 2014. URL

https://doi.org/10.1371/journal.pcbi.1003580.

Mahadevan, R. and Schilling, C. H. The effects of alternate optimal solutions in constraint-based genome-

scale metabolic models. Metabolic Engineering, 5(4):264–276, 2003. doi: 10.1016/j.ymben.2003.09.002.

URL https://www.sciencedirect.com/science/article/pii/S1096717603000582.

Motamedian, E., Mohammadi, M., Shojaosadati, S. A., and Heydari, M. TRFBA: An algorithm to integrate

genome-scale metabolic and transcriptional regulatory networks with incorporation of expression data.

Bioinformatics, 33(7):1057–1063, 2017.

Niu, P., Soto, M. J., Yoon, B.-J., Dougherty, E. R., Alexander, F. J., Blaby, I., and Qian, X. Trimer:

Transcription regulation integrated with metabolic regulation. Iscience, 24(11):103218, 2021.

Niu, P., Soto, M. J., Yoon, B.-J., Dougherty, E. R., Alexander, F. J., Blaby, I., and Qian, X. Protocol for

condition-dependent metabolite yield prediction using the trimer pipeline. STAR protocols, 3(1):101184,

2022.

Ohta, K., Beall, D., Mejia, J., Shanmugam, K., and Ingram, L. Metabolic engineering of klebsiella oxytoca

m5a1 for ethanol production from xylose and glucose. Applied and Environmental Microbiology, 57(10):

2810–2815, 1991.

https://www.embopress.org/doi/abs/10.1038/msb.2010.47
https://doi.org/10.1371/journal.pcbi.1003580
https://www.sciencedirect.com/science/article/pii/S1096717603000582


22 REFERENCES

Palsson, B. Systems Biology. Cambridge University Press, 2015.

Reed, J. L. Genome-scale metabolic modeling and its application to microbial communities. In The Chemistry

of Microbiomes: Proceedings of a Seminar Series. National Academies Press, 2017.

Ren, S., Zeng, B., and Qian, X. Adaptive bi-level programming for optimal gene knockouts for targeted

overproduction under phenotypic constraints. BMC Bioinformatics, 14(S2):S17, 2013.

Segre, D., Vitkup, D., and Church, G. M. Analysis of optimality in natural and perturbed metabolic

networks. Proceedings of the National Academy of Sciences, 99(23):15112–15117, 2002.

Shlomi, T., Berkman, O., and Ruppin, E. Regulatory on/off minimization of metabolic flux changes after

genetic perturbations. Proceedings of the National Academy of Sciences, 102(21):7695–7700, 2005.

Shlomi, T., Eisenberg, Y., Sharan, R., and Ruppin, E. A genome-scale computational study of the interplay

between transcriptional regulation and metabolism. Molecular systems biology, 3(1):101, 2007a.

Shlomi, T., Eisenberg, Y., Sharan, R., and Ruppin, E. A genome-scale computational study of the

interplay between transcriptional regulation and metabolism. Molecular Systems Biology, 3(1):101,

2007b. doi: https://doi.org/10.1038/msb4100141. URL https://www.embopress.org/doi/abs/10.

1038/msb4100141.

Tarjan, R. Depth-first search and linear graph algorithms. SIAM journal on computing, 1(2):146–160, 1972.

Teyssier, M. and Koller, D. Ordering-based search: A simple and effective algorithm for learning Bayesian

networks. arXiv preprint arXiv:1207.1429, 2012.

Varma, A. and Palsson, B. Ø. Metabolic flux balancing: Basic concepts, scientific and practical use.

Bio/technology, 12(10):994–998, 1994.

Xiao, C., Jin, Y., Liu, J., Zeng, B., and Huang, S. Optimal expert knowledge elicitation for Bayesian network

structure identification. IEEE Transactions on Automation Science and Engineering, 15(3):1163–1177,

2018.

Yu, H. and Blair, R. H. Integration of probabilistic regulatory networks into constraint-based models of

metabolism with applications to Alzheimer’s disease. BMC Bioinformatics, 20(386), 2019.

Zhao, G., Qian, X., Yoon, B.-J., Alexander, F., and Dougherty, E. Model-based robust filtering and exper-

imental design for stochastic differential equation systems. IEEE Transactions on Signal Processing, 68:

3849–3859, 2020.

https://www.embopress.org/doi/abs/10.1038/msb4100141
https://www.embopress.org/doi/abs/10.1038/msb4100141


REFERENCES 23

Zhao, G., Dougherty, E., Yoon, B.-J., Alexander, F., and Qian, X. Efficient active learning for Gaussian pro-

cess classification by error reductiony. In 35th International Conference on Neural Information Processing

Systems (NeurIPS), 2021a.

Zhao, G., Dougherty, E., Yoon, B.-J., Alexander, F., and Qian, X. Bayesian active learning by soft mean

objective cost of uncertainty. In 24th International Conference on Artificial Intelligence and Statistics

(AISTATS), 2021b.

Zhao, G., Dougherty, E., Yoon, B.-J., Alexander, F., and Qian, X. Uncertainty-aware active learning for

optimal Bayesian classifier. In 9th International Conference on Learning Representations (ICLR), 2021c.


	Introduction
	Background
	Materials and Methods
	Overview: Sensitivity analysis of TRIMER
	Order-based Tabu search
	Order initialization
	Semidefinite programming formulation for uncertainty class construction
	TRIMER as a simulator

	Results
	Sensitivity analysis results
	Small-scale model sensitivity analysis
	Large-scale model sensitivity analysis


	Conclusion



