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Study Need and Importance: In targeted therapy of
prostate cancer, clinicians aim to treat clinically sig-
nificant disease while minimizing damage to healthy
tissue. However, conventional MRI underestimates
the extent of disease, confounding treatment decisions.
Artificial intelligence (AI) can help overcome this lim-
itation, leveraging multimodal data to map cancer risk
in 3D. This approach can reveal disease invisible to
MRI, potentially improving patient selection, treat-
ment planning, and oncologic efficacy. A multireader
multicase study was conducted to compare physicians’
delineations of tumor extent using AI vs standard-of-
care (SOC; ie, clinical judgement) and to evaluate
AI’s impact on treatment decision-making.

What We Found: Ten physicians (7 urologists and 3
radiologists) trained in urologic oncology each eval-
uated 50 cases using both SOC and AI methods (1000
total evaluations). All patients were diagnosed with
intermediate-risk prostate cancer via MRI-targeted
biopsy then received radical prostatectomy. Whole
mount pathology slides derived from surgical speci-
mens were registered to MRI and used as ground
truth (Figure). AI-assisted contours had significantly
greater balanced accuracy (84.7% vs 67.2%) and
sensitivity (97.4% vs 38.2%) than SOC. AI also ach-
ieved a substantially higher negative margin rate
than SOC (72.8% vs 1.6%) and caused urologists to
alter treatment decisions for 28% of cases.

Limitations: Study data were derived from radical
prostatectomy cases from a single institution. Ground
truth was defined by a single expert pathologist, with
some potential subjectivity in tumor boundary anno-
tation and Gleason grading.

Interpretation for Patient Care: AI cancer estima-
tion is a promising improvement upon current
practice. The enhanced accuracy of AI-derived
tumor delineation could improve therapy planning,
targeting, and oncologic efficacy. AI may even in-
fluence biopsy strategy, with perilesion (penumbra)
cores sampled from higher-risk regions to improve
tumor boundary sampling.

Figure. Exemplary case from reader study showing artificial

intelligence (AI) output (A), standard-of-care (SOC; orange) and

AI-assisted cancer contours (blue; B), with corresponding ground

truth from surgical pathology (C), and reader performance across

all cases demonstrated improvement over SOC in all readers

when using AI (D). PCa indicates prostate cancer.
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Artificial Intelligence Improves the Ability of Physicians to
Identify Prostate Cancer Extent

Sakina Mohammed Mota,1* Alan Priester,1,2* Joshua Shubert,1 Jeremy Bong,1 James Sayre,3

Brittany Berry-Pusey,1 Wayne G. Brisbane,2 and Shyam Natarajan1,2

1Avenda Health, Inc
2Department of Urology, David Geffen School of Medicine, Los Angeles, California
3Department of Radiological Sciences and Biostatistics, University of California, Los Angeles, California

Purpose: Defining prostate cancer contours is a complex task, undermining the
efficacy of interventions such as focal therapy. A multireader multicase study
compared physicians’ performance using artificial intelligence (AI) vs standard-
of-care methods for tumor delineation.

Materials and Methods: Cases were interpreted by 7 urologists and 3 radiologists
from 5 institutions with 2 to 23 years of experience. Each reader evaluated 50 pros-
tatectomy cases retrospectively eligible for focal therapy. Each case included a
T2-weighted MRI, contours of the prostate and region(s) of interest suspicious for
cancer, and a biopsy report. First, readers defined cancer contours cognitively,
manually delineating tumor boundaries to encapsulate all clinically significant dis-
ease. Then, after � 4 weeks, readers contoured the same cases using AI software.
Using tumor boundaries on whole-mount histopathology slides as ground truth,
AI-assisted, cognitively-defined, and hemigland cancer contours were evaluated.
Primary outcome measures were the accuracy and negative margin rate of cancer con-
tours. All statistical analyses were performed using generalized estimating equations.

Results: The balanced accuracy (mean of voxel-wise sensitivity and specificity) of
AI-assisted cancer contours (84.7%) was superior to cognitively-defined (67.2%)
and hemigland contours (75.9%; P < .0001). Cognitively-defined cancer contours
systematically underestimated cancer extent, with a negative margin rate of
1.6% compared to 72.8% for AI-assisted cancer contours (P < .0001).

Conclusions: AI-assisted cancer contours reduce underestimation of prostate
cancer extent, significantly improving contouring accuracy and negative margin
rate achieved by physicians. This technology can potentially improve outcomes,
as accurate contouring informs patient management strategy and underpins the
oncologic efficacy of treatment.

Key Words: artificial intelligence, comparative study, magnetic resonance

imaging, prostatic neoplasms, surgical margins

FOR patients with intermediate-risk
prostate cancer (PCa), focal therapy
(FT) is gaining acceptance as an alter-
native to prostatectomy and radiation
therapy.1 Evidence is growing that FT
can eradicate PCa while preserving
patient quality of life.2-7 However, suc-
cessful FT requires accurate contour-
ing of cancer extent. Unfortunately,

conventional cancer contouring re-
quires surgeons to cognitively merge
imaging, pathology, and clinical fac-
tors. In particular, the interpretation
of MRI systematically underestimates
cancer extentdsometimes severely.8-10

Patient-specific, reproducible assess-
ment of cancer extent is a pressing and
unaddressed need.
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Frequently, instead of precise tumor contouring,
the entire cancer-bearing hemisphere (hemigland)
is treated.2,11-13 Hemigland treatment is rarely
optimal, frequently undertreating cases with bilat-
eral cancer14 while encompassing large volumes of
benign tissue. Artificial intelligence (AI) overcomes
these limitations, improving the identification and
characterization of PCa compared to visual MRI
interpretation alone.15-19 Furthermore, tracked bi-
opsy data derived from MRI-ultrasound fusion de-
vices20 are an underutilized but powerful resource
for cancer contouring.

Software recently cleared by the Food and Drug
Administration (“Unfold AI,” K221624, Avenda
Health, Culver City, California) uses an AI algorithm
to visualize cancer probability based on multimodal
clinical data. In a retrospective study, the AI software
outperformed conventional contouring methods,
including the original radiology-defined region of in-
terest (ROI), a 10-mm margin around the ROI, and
hemigland margins.21 Furthermore, AI software
accurately assessed the likelihood of residual clini-
cally significant prostate cancer (csPCa; defined as
Gleason Grade Group [GG] �2) outside a cancer
contour.21 This study demonstrated the potential of AI
software to improve FT treatment planning. However,
no prior work has characterized the performance of
this AI tool in the hands of physicians.

To that end, we conducted a multireader multicase
study to evaluate the cancer contouring and clinical
decision-making of physicians with and without AI
software. We compared cognitive and hemigland
contouring methodologies to AI-assisted cancer con-
tours. Whole mount (WM) pathology data were used
as ground truth, enabling retrospective comparison of
predictions to the true extent of csPCa.

MATERIALS AND METHODS

Whole Mount Dataset Description and Case
Selection
WM-derived data from an Independent Review Board–
approved study at the University of California, Los
Angeles served as ground truth for the location of csPCa.8

Out of 124 cases accrued from 2011 to 2016, 50 plausibly
eligible FT cases were selected according to the following
inclusion criteria:
c GG 2 or 3
c At least one magnetic resonance–visible ROI with

Prostate Imaging Reporting and Data System version
2 (PI-RADS)22 � 3

c Unilateral csPCa, or csPCa confined to the anterior
zone, based on biopsy and imaging

c No prior prostate cancer treatment
All patients in the study dataset had received presur-

gical multiparametric MRI. The prostate capsule was
segmented using T2-weighted MRI, and cancer-suspicious
ROIs were defined using PI-RADS22 or a Likert-like pre-
cursor with similar performance. Imaging was followed by

radical prostatectomy and WM slide preparation. Patient-
specific 3D-printed molds based on the prostate capsule
segmentation were used to align the excised prostate with
preoperative image slices. The prostate specimen was
sliced, processed into WM slides, and then annotated by an
expert pathologist (>10 years of expertise) to demarcate
tumor boundaries and determine tumor-level GG. A vali-
dated algorithm was used to register WM tumor contours
to corresponding MR images and interpolate them into 3D
surfaces.8

The pathologic stages for these 50 WM cases were pT2
(34%), pT2a (4%), pT2b (6%), pT2c (14%), pT3a (38%), and
pT3b (4%). Extraprostatic extension (EPE) was observed
on WM pathology in 21/50 (42%) cases. Out of these 21
cases, EPE was noted on preoperative imaging in 12 cases
and missed on preoperative imaging in 9 cases. Seminal
vesicle invasion was also observed on 2 out of 21 of EPE
cases. Regardless of EPE presence, assessment of cancer
contours was limited to intraprostatic tissue for this
study.

Study Design
The multireader multicase study design was fully crossed,
with each reader reviewing each case. Ten physicians
(urologists and radiologists) were recruited from 5 in-
stitutions to represent a broad range of clinical oncology
experience (mean 9 years, range 2-23 years). First, after a
chart review of conventional diagnostic data, each reader
produced cognitive standard-of-care (SOC) cancer con-
tours via manual delineation. Then, a 4-week washout
period was imposed to minimize reading order bias (ie,
reader recall of the prior cancer contour). Finally, readers
repeated cancer contouring with the assistance of AI
software. All cases were anonymized, with case identifiers
and read order randomized between contouring sessions.
Following the completion of contouring, task duration was
recorded in a logbook.

The first reader was trained for the first study session
(SOC) on March 22, 2022, and the last reader completed
the second study session (AI) on October 11, 2022. During
both sessions (SOC and AI), readers were instructed pri-
marily to encapsulate all csPCa and secondarily to
exclude non-csPCa tissue. In order to mirror clinical
practice, readers were provided a text report including
pathology diagnoses for each biopsy core and serum PSA
(Figure 1, A). Readers were also provided with ROI con-
tours and PI-RADS scores produced by an expert radiol-
ogist (>10 years of experience).

SOC and AI-assisted contouring methodologies are
described in the following sections. Additionally, a follow-
up SOC session was performed to investigate the influ-
ence of exposure to AI software, ie, a potential “learning
effect.” Details specific to hemigland hemisphere selection
and follow-up SOC contouring are presented in the sup-
plementary materials (https://www.jurology.com).

SOC Cancer Contouring
T2-weighted MRI and contours of the prostate capsule
and ROI(s) were preloaded to open-source medical imag-
ing software (3D Slicer version 5.1.023). Readers were
trained to manually delineate cancer contours with the
“Segmentation Editor” module of 3D Slicer. They could
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Figure 1. Exemplary image showing the prediction of cancer extent using standard-of-care (SOC) methodology. A, Biopsy pathology

summary document. First, a text summary of the case is presented including serum PSA, followed by a table with 1 row per biopsy core.

B, 3D Slicer software showing 3D surfaces (top) and scrollable T2-weighted MRI in axial, coronal, and sagittal views (bottom). The

prostate surface model is shown in white, Prostate Imaging Reporting and Data System (PIRADS) regions of interest suspicious for

prostate cancer are shown in green, and an exemplary manually-drawn SOC cancer contour is shown in yellow.
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freely define lesion geometry in order to best accomplish
the contouring task. An example of preloaded SOC data,
the corresponding biopsy pathology document, and an
SOC cancer contour are shown in Figure 1.

AI-Assisted Cancer Contouring
The same data used for SOC interpretation were pre-
loaded to the AI software, and readers had access to the
same text-based biopsy report. AI software inputs
included T2-weighted MRI, simulated 3D biopsy core
locations, PSA, and biopsy GG. Detailed information
regarding the AI algorithm, its development, and model
parameters are presented in Priester et al.21 AI software
was used to generate a 3D cancer estimation map (CEM),

color-coding each prostate voxel with the estimated
probability of csPCa. The software also displayed an
“encapsulation confidence score,” the estimated proba-
bility that a cancer contour would completely encapsu-
late all csPCa.

A default cancer contour, maximizing encapsulation
confidence while minimizing contour volume, was
selected automatically by the software and initially dis-
played to readers. Then, for each case, readers selected a
threshold using the encapsulation confidence curve to
apply to the CEM (Figure 2). Using this reader-selected
threshold, the AI software produced a 3D cancer con-
tour, converting the CEM into cancer contours compa-
rable to SOC-defined or hemigland contours.

Figure 2. Exemplary image showing the prediction of cancer extent using artificial intelligence software. The central panel shows T2-

weighted MRI overlaid with the cancer estimation map, biopsy cores bearing clinically significant prostate cancer (red circles), biopsy

cores bearing benign tissue (blue circles), Prostate Imaging Reporting and Data System region of interest (red contour), the prostate

capsule (white), and the currently selected cancer contour (pink). The right-hand panel shows the same elements in 3D. The left-hand

panel shows the curve for encapsulation confidence vs cancer contour volume (as a percentage of the prostate), as well as other cancer

contour statistics.

Table 1. Cancer Contour Performance

Study measures

Mean performance Mean differences 95% CIs P values

Mean
coefficients of
variation

SOC AI Hemi AI-SOC AI-hemi AI-SOC AI-hemi AI vs SOC AI vs hemi SOC AI

Sensitivity, % 38.2 97.4 98.4 59.2 �1.0 þ33.4, þ46.4 �1.2, þ2.8 < .0001 .42 0.77 0.04
Specificity, % 96.2 72.1 53.4 �24.2 18.7 �29.8, �23.9 þ8.8, þ17.3 < .0001 < .0001 0.04 0.13
Balanced accuracy, % 67.2 84.7 75.9 17.5 8.8 þ2.9, þ10.2 þ4.8, þ9.0 < .0001 < .0001 0.14 0.05
Negative margin rate, % 1.6 72.8 86.0 71.2 �13.2 þ75.1, þ92.4 �9.4, þ14.0 < .0001 .70 d d
Prediction time, min 3.5 2.0 d �1.5 d �1.0, �3.2 d < .0001 d 0.53 0.56

Abbreviations: AI, artificial intelligence; hemi, hemigland; SOC, standard-of-care.
All P values were derived from generalized estimation equations analysis. The application of a Bonferroni correction for the 5 measures (2 primary and 3 secondary) establishes a
statistical significance threshold of a [ .01.
Bolded text indicates significance.
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Clinical Decision-Making Survey
To investigate changes in clinical decision-making, a
subset of readers (N [ 7) recorded their recommended
treatment strategy after SOC and AI-assisted cancer
contouring. Following SOC contouring, readers
selected a recommended treatment: active surveil-
lance, radical prostatectomy, radiation therapy, or
focal therapy. After the 1-month washout period and
AI-assisted contouring, readers again selected a rec-
ommended treatment.

Postprocessing and Cancer Contour Assessment
The results consisted of N [ 10 sets of 50 matched
cancer contours (SOC, AI-assisted, and hemigland) and
contouring durations (SOC and AI-assisted). Reader
performance was assessed using WM radical prosta-
tectomy as ground truth. Evaluation of reader perfor-
mance was purely objective and carried out through
automated test scripts written in MATLAB 2020b
(MathWorks, Natick, Massachusetts). The overlap be-
tween ground-truth csPCa regions and each cancer

contour was used to compute sensitivity and specificity.
Voxel-wise sensitivity was defined as the proportion of
csPCa-bearing voxels correctly included within the
cancer contour and voxel-wise specificity as the pro-
portion of non-csPCa voxels correctly excluded from the
cancer contour.

The primary outcome measures were voxel-wise
balanced accuracy, defined as (sensitivity D specificity)/2,
and the negative margin rate, ie, the proportion of cases
wherein cancer contours enclosed all csPCa-bearing re-
gions. These measures were selected to represent clinical
priorities, where cancer control is prioritized over sparing
damage to benign prostatic tissue. Secondary measures
consisted of sensitivity, specificity, and time spent con-
touring. Note that all sensitivity, specificity, and balanced
accuracy values reported in this article represent voxel-
wise measures. Changes in the recommended treatment
strategy were computed and compared for significance. All
statistical comparisons were conducted via generalized
estimating equations analysis, and a Bonferroni correction
was applied to adjust for multiple comparisons.

Figure 3. Exemplary images from cases wherein the standard-of-care (SOC) cancer contours had below-average mean sensitivity.

Figure elements include SOC and hemigland cancer contours (A), case displayed using artificial intelligence (AI) software (B), AI-

assisted cancer contours (C), and whole mount ground truth (D). The prostate is always contoured in white; legends and labels

within each figure panel denote other color correspondences. The mean balanced accuracy of SOC, AI, and hemigland contours for

this case (#44) was 55.2%, 82.6%, and 77.4%, respectively. Negative margin rates were 0% for SOC, 100% for AI, and 100% for

hemigland contours. Bx indicates biopsy; csPCa, clinically significant prostate cancer; ROI, region of interest.
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RESULTS

Predictive Performance of Cancer Contours

Results are summarized in Table 1 and illustrated
in Figures 3-6. Performance comparison between
mean SOC (N [ 10 readers), mean AI (N [ 10
readers), and hemigland cancer contours is outlined
for each of the 50 cases in supplementary materials
(Table S1, https://www.jurology.com). Cancer con-
tours produced using AI software had balanced accu-
racy superior to both SOC and hemigland methods
(84.7% vs 67.2% and 75.9%, respectively, P < .001).
AI-assisted cancer contours had greater sensitivity
than SOC (mean 97.4% vs 38.2%, P < .001) and
greater specificity than hemigland (mean 72.1% vs
53.4%, P < .001). The negative margin rate achieved
using AI software was substantially higher than SOC
(mean 72.8% vs 1.6%, P< .001), and the time required
to produce cancer contours was reduced (mean 2.0 vs
3.5 minutes, P < .001). The negative margin rate for

hemigland contours was greater than AI software, but
the difference was statistically insignificant (86.0% vs
72.8%, P [ .7). The mean performance of urologists
(N [ 7) and radiologists (N [ 3) was similar;
balanced accuracy was 68.0% vs 65.4% for SOC con-
tours and 84.6% vs 85.0% for AI-assisted contours.

Figure 6 shows a receiver-operator characteristic
plotting AI-assisted, SOC, and hemigland cancer
contours. AI-assisted cancer contours had higher
volume and more sensitivity than SOC cancer con-
tours, with a greater negative margin rate. AI-
assisted cancer contours were smaller and more
specific than hemigland contours, with a negative
margin rate that differed insignificantly. Further-
more, readers using AI software had less inter-
reader variability than SOC as seen in Figure 6,
and coefficient of variation measures in Table 1.

A distinct learning effect was observed during
follow-up SOC contouring, with exposure to AI

Figure 4. Exemplary images from cases wherein the standard-of-care (SOC) cancer contours had approximately average mean

sensitivity. Figure elements include SOC and hemigland cancer contours (A), case displayed using artificial intelligence (AI)

software (B), AI-assisted cancer contours (C), and whole mount ground truth (D). The prostate is always contoured in white;

legends and labels within each figure panel denote other color correspondences. The mean balanced accuracy of SOC, AI, and

hemigland contours for this case (#22) was 64.0%, 87.5%, and 77.7%, respectively. Negative margin rates were 0% for SOC, 70% for

AI, and 0% for hemigland contours. Bx indicates biopsy; csPCa, clinically significant prostate cancer; ROI, region of interest.
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markedly improving physician performance. Data
pertaining to follow-up SOC contouring are pre-
sented in Supplementary Table 2 and Supplemen-
tary Figure 1 (https://www.jurology.com).

Impact of AI Software on Clinician Decision-

Making for PCa Management

Survey results, completed by N[ 7 readers, were used
to analyze trends in PCa management decision-
making (Table 2). AI software usage led to altered
treatment recommendations in 42% (28% urologists,
61% radiologists) of cases (P < .001). After exposure to
AI software, urologists tended to recommend FT more
frequently (12.5% SOC vs 21.5% AI-assisted) and
radical prostatectomy less frequently (58.0% vs 52.0%);
radiologists tended to recommend Radiation Therapy
(RT) less frequently (38.0% vs 33.3%) and radical
prostatectomy more frequently (11.3% vs 16.7%).

These trends are graphically represented using a
grouped bar chart in Figure 7.

DISCUSSION
Generating cancer contours is a complex cognitive
process requiring a surgeon to consider imaging,
pathology, and clinical features simultaneously. In
the presented study, SOC contours systematically
underestimated csPCa extent. Given access to stan-
dard clinical information, physicians tended to err
toward small “high-specificity” contours that fail to
encapsulate the entire tumor. This likely occurred as
physicians relied on a tumor’s MRI appearance, but
the true extent of prostate cancer is often MRI
invisible. The underestimation of tumor size is
consistent with prior work,8-10,21 and plausibly ac-
counts for the variable rates of residual disease re-
ported during focal treatment trials to date.24

Figure 5. Exemplary images from cases wherein the standard-of-care (SOC) cancer contours had above-average mean sensitivity.

Figure elements include SOC and hemigland cancer contours (A), case displayed using artificial intelligence (AI) software (B), AI-

assisted cancer contours (C), and whole mount ground truth (D). The prostate is always contoured in white; legends and labels

within each figure panel denote other color correspondences. The mean balanced accuracy of SOC, AI, and hemigland contours for

this case (#25) was 75.1%, 88.8%, and 75.7%, respectively. Negative margin rates were 10% for SOC, 90% for AI, and 100% for

hemigland contours. Bx indicates biopsy; csPCa, clinically significant prostate cancer; GG, GleasonGrade Group; ROI, region of interest.
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AI can help resolve this challenging problem. AI
was significantly more accurate than hemigland and
SOC contours, indicating a better balance between
sensitivity and specificity. Furthermore, exposure to
AI software encouraged physicians to define larger
and more patient-specific contours, improving the
negative margin rate. When AI software was used in
our study population, the negative margin rate rose
from 1.6% to 72.8%da 45-fold increase. Though the
sensitivity of AI and hemigland contours were com-
parable, AI contours were smaller and more specific.
It is therefore plausible that AI may facilitate faster

treatment with fewer side effects, particularly
because hemigland ablation entails lethal treatment
in close proximity to the urethra, external sphincter,
and ipsilateral nerve bundle. Avoidance of these
structures, though common in clinical implementa-
tion, would reduce hemigland contour size and likely
compromise their efficacy for a subset of cases.

Understandably, we observed that AI assistance
impacted clinical decision-making, with recom-
mended treatment altered in over a quarter of cases.
The cancer estimation map improved confidence in
recommending focal therapy over whole gland

Figure 6. Receiver-operator characteristic showing mean sensitivity vs 1-specificity measures derived from all (N [ 50) cancer contour

predictions for each reader (N [ 10) and each prediction method: artificial intelligence (AI)–assisted, standard-of-care (SOC), and

hemigland. Note that AI predictions had moderately decreased specificity but substantially improved sensitivity compared to SOC,

leading to greater balanced accuracy and substantial improvements in negative margin rates. Likewise, note that AI predictions

were more closely clustered, indicating lower inter-reader variability than SOC.

Table 2. Recommended Treatment Survey Statistics

Urologist (N [ 4) Radiologist (N [ 3)

Management decision SOC mean AI mean AI-SOC SOC mean AI mean AI-SOC

Active surveillance, % 19.0 16.5 �2.5 9.3 10.0 0.7
Focal therapy, % 12.5 21.5 9.0 38.7 40.0 1.3
Radiation therapy, % 10.5 8.0 �2.5 38.0 33.3 �4.7
Radical prostatectomy, % 58.0 52.0 �6.0 11.3 16.7 5.3
Other, % 0.0 2.0 2.0 2.7 0.0 �2.7

Abbreviations: AI, artificial intelligence; SOC, standard-of-care.
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therapy, with urologists trending towards a more
targeted approach. Clinician reluctance to recom-
mend focal therapy under SOC conditions mirrors
documented shortcomings in patient selection based
on MRI and systematic biopsy alone.14,21,25

This study was subject to several limitations.
First, though the readers were multi-institutional,
the study cases were derived from a single institution
and may not represent performance in broader pop-
ulations. Additionally, the ground truth was set up
for this study by a single expert pathologist and lacks
a method to address observer dependency in tumor
boundary annotation and Gleason grading. The
required elements for robust algorithm validation (WM
data registered to preoperative MRI) are rare, and
future work will entail acquiring and testing data from
a more diverse patient population while using WM
slide annotations verified by more than 1 experienced
pathologist as the truth. Second, the dataset was
derived from radical prostatectomy cases, representing
relatively advanced disease. This limitation was miti-
gated through study inclusion criteria, intended to
select only plausible FT candidates. However, the in-
clusion of only patients with apparently unilateral
cancer in the cohort likely inflated the performance
of hemigland contours relative to AI-assisted con-
tours. Prior work on broader populations suggests a

substantial incidence of undetected bilateral dis-
ease.14,21 Third, the study design lacked a crossed-over
approach, wherein the reading order of AI vs SOC
interpretation would be reversed for half the dataset. A
noncrossed-over study design was selected to prevent
reading order bias, which results from exposure to AI
software and would not have been representative of
true SOC performance. Follow-up SOC data analysis
(supplementary materials, https://www.jurology.com)
confirmed and characterized this effect.

The promising performance of AI-assisted cancer
contours suggests several avenues for future research
efforts. Targeted therapies may benefit from the
prospective usage of AI contours since they dramati-
cally improved negative margin rates relative to
cognitive contours. Similarly, AI has the potential to
aid in patient selection, with focal treatment only
offered to patients when critical structures lie outside
the cancer contour. AI could even potentially influ-
ence biopsy strategy, with perilesion (penumbra)26

cores sampled from higher-risk regions in order to
reduce core count and improve the sampling of tumor
boundaries.

CONCLUSIONS
AI-assisted cancer contouring overcomes many limi-
tations of the current clinical workflow, facilitating

Figure 7. Bar chart showing the survey trends in prostate cancer treatment decision-making after standard-of-care (SOC) vs artificial

intelligence (AI)–predicted cancer contouring, grouped by urologists and radiologists. AI usage led to statistically significant

changes in decision-making (P < .001).

ARTIFICIAL INTELLIGENCE IMPROVES PREDICTION OF PROSTATE CANCER EXTENT 61

https://www.auajournals.org/doi/suppl/10.1097/JU.0000000000003960
https://www.auajournals.org/servlet/linkout?type=rightslink&url=startPage%3D52%26pageCount%3D11%26copyright%3D%26author%3DSakina%2BMohammed%2BMota%252C%2BAlan%2BPriester%252C%2BJoshua%2BShubert%252C%2Bet%2Bal%26orderBeanReset%3Dtrue%26imprint%3DWoltersKluwer%26volumeNum%3D212%26issueNum%3D1%26contentID%3D10.1097%252FJU.0000000000003960%26title%3DArtificial%2BIntelligence%2BImproves%2Bthe%2BAbility%2Bof%2BPhysicians%2Bto%2BIdentify%2BProstate%2BCancer%2BExtent%26numPages%3D11%26pa%3D%26oa%3DCC-BY-NC-ND%26issn%3D0022-5347%26publisherName%3DWoltersKluwer%26publication%3Djuro%26rpt%3Dn%26endPage%3D62%26publicationDate%3D06%252F11%252F2024


patient-specific therapy selection and treatment
planning. The use of AI increased clinician recom-
mendations for focal therapy among patients with
unilateral cancer and reduced variation in accurate

tumor encapsulation. AI-assisted contours are a
promising improvement to the current standard of
care, and their impact in a clinical setting will be the
subject of further validation efforts.
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