
UC Berkeley
UC Berkeley Previously Published Works

Title
A fast and objective multidimensional kernel density estimation method: 
fastKDE

Permalink
https://escholarship.org/uc/item/9g56181p

Journal
Computational Statistics & Data Analysis, 101(C)

ISSN
0167-9473

Authors
O’Brien, Travis A
Kashinath, Karthik
Cavanaugh, Nicholas R
et al.

Publication Date
2016-09-01

DOI
10.1016/j.csda.2016.02.014
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9g56181p
https://escholarship.org/uc/item/9g56181p#author
https://escholarship.org
http://www.cdlib.org/


Computational Statistics and Data Analysis 101 (2016) 148–160

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

A fast and objective multidimensional kernel density
estimation method: fastKDE
Travis A. O’Brien a,b,∗, Karthik Kashinath a, Nicholas R. Cavanaugh a,
William D. Collins a,c, John P. O’Brien d,a

a Lawrence Berkeley National Lab, Berkeley, CA, USA
b University of Davis, Davis, CA, USA
c University of California, Berkeley, CA, USA
d University of California, Santa Cruz, CA, USA

h i g h l i g h t s

• A multidimensional, fast, and robust kernel density estimation is proposed: fastKDE.
• fastKDE has statistical performance comparable to state-of-the-science kernel density estimate packages in R.
• fastKDE is demonstrably orders of magnitude faster than comparable, state-of-the-science density estimate packages in R.
• A Python-based implementation of fastKDE is available at https://bitbucket.org/lbl-cascade/fastkde.
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a b s t r a c t

Numerous facets of scientific research implicitly or explicitly call for the estimation of prob-
ability densities. Histograms and kernel density estimates (KDEs) are two commonly used
techniques for estimating such information, with the KDE generally providing a higher fi-
delity representation of the probability density function (PDF). Bothmethods require speci-
fication of either a binwidth or a kernel bandwidth.While techniques exist for choosing the
kernel bandwidth optimally and objectively, they are computationally intensive, since they
require repeated calculation of the KDE. A solution for objectively and optimally choosing
both the kernel shape and width has recently been developed by Bernacchia and Pigolotti
(2011). While this solution theoretically applies to multidimensional KDEs, it has not been
clear how to practically do so.

A method for practically extending the Bernacchia–Pigolotti KDE to multidimensions
is introduced. This multidimensional extension is combined with a recently-developed
computational improvement to their method that makes it computationally efficient: a
2D KDE on 105 samples only takes 1 s on a modern workstation. This fast and objective
KDE method, called the fastKDE method, retains the excellent statistical convergence
properties that have been demonstrated for univariate samples. The fastKDE method
exhibits statistical accuracy that is comparable to state-of-the-science KDE methods
publicly available inR, and it produces kernel density estimates several orders ofmagnitude
faster. The fastKDE method does an excellent job of encoding covariance information for
bivariate samples. This property allows for direct calculation of conditional PDFs with
fastKDE. It is demonstrated how this capabilitymight be leveraged for detecting non-trivial
relationships between quantities in physical systems, such as transitional behavior.

© 2016 The Authors and Lawrence Berkeley National Laboratory. Published by Elsevier
B.V. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
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1. Introduction

Numerous facets of scientific research implicitly or explicitly call for the estimation of probability densities. For example,
the ubiquitous histogram is one of the most basic and commonly used tools for displaying information about relative
occurrences of one or more quantities. Univariate histograms are by far the most common, and they are often used to
ascertain or display probabilistic information that is otherwise difficult to encapsulate using simple measures of location or
spread: e.g., Schumacher and Houze (2003) and Bony et al. (2004). Multivariate probability density functions (PDFs), which
encode information about the joint occurrence of two or more related variables, are less commonly analyzed. However,
multivariate PDF analyses expose or encode information that can provide unique insights and open new research pathways:
e.g., Larson et al. (2002), Marchand et al. (2010), Lee et al. (2014) and AghaKouchak et al. (2014).

As with univariate histograms, multivariate histograms are the workhorse for multivariate PDF analysis. More sophisti-
cated methods than the histogram for estimating PDFs, including both parametric and non-parametric methods, are used
less frequently in contemporary scientific research. However, these more sophisticated methods can provide unique and
valuable benefits above what histograms can provide. Parametric methods, such as maximum likelihood parameter estima-
tion, can yield compactly-encoded and high-fidelity quantitative information about the relative distribution of quantities.
For example, if one can assume that two quantities are jointly and normally distributed, then a maximum likelihood es-
timation of the normal distribution parameters will yield 5 parameters corresponding to the means and covariances that
uniquely and completely describe the relationship between the two quantities. Non-parametric methods, such as kernel
density estimation (KDE), can yield an empirical estimate of the true PDF, without assuming any form for the distribution.

These existing PDF analytic methods also have some drawbacks that can be prohibitive in certain situations. Parametric
analysis requires an assumption about the form of the underlying distribution. If the distribution can be isolated to one of a
finite number of forms, then amodel selectionmethod (e.g.,Wit et al., 2012) can be used to choose the best PDFmodel. How-
ever, if such an assumption cannot be made, for example because the PDF may result from a mixture of some large number
of unknown PDFs, then parametric methods may be unsuitable. Non-parametric methods (histograms and KDEs) are less
restrictive, but both methods require selection of either a bin width or a kernel and kernel bandwidth. This choice is not
always straightforward, and it may require some user-intervention for common use cases (Silverman, 1986). The difficulty
of making this choice compounds with the addition of variables; the kernel bandwidth becomes a kernel bandwidth matrix
formultivariate KDE, and there is a similarly complex choice to bemade about bin boundaries for histograms. There are a va-
riety of automatic bandwidth selection methods available, (e.g., smoothed cross validation Duong and Hazelton, 2005), but
these methods have a number of drawbacks, such as poor performance for large sample sizes and/or complex distributions
and high computational expense (Heidenreich et al., 2013). In a review of automatic selection methods, Heidenreich et al.
(2013) recommend a variety of different methods, depending on dataset characteristics (including sample size, distribution
smoothness, and skewness). These drawbacks appear to have inhibited their widespread adoption as a fundamental data
analysis tool.

To get around this difficulty of a potentially subjective choice of kernel shape and kernel bandwidth, Bernacchia and
Pigolotti (2011) derive a method for objectively determining both the kernel shape and the kernel bandwidth (Luedicke
and Bernacchia, 2014 implemented it in Stata). Effectively they define a Fourier-based (and typically low-pass) filter on the
empirical characteristic function (ECF) of a given dataset that yields an empirical kernel that is optimal in the sense that the
integrated, squared difference between the resulting KDE and the true PDF is minimized. They coin this the ‘self-consistent’
density estimate. O’Brien et al. (2014) show that a non-uniform fast Fourier transform (nuFFT) can be used to calculate the
ECF in a computationally efficient and accurate way; they use this new method to automate the estimation of thousands
of univariate PDFs from the output of a climate model. Theoretically, the Bernacchia and Pigolotti (2011) optimal KDE can
be applied to datasets of arbitrary dimensionality, and O’Brien et al. (2014) note that the nuFFT can also be applied to effi-
ciently calculate multidimensional ECFs. However, the Fourier filters implemented in both of these studies are inherently
one dimensional (Bernacchia and Pigolotti, 2011; O’Brien et al., 2014).

In this manuscript we augment the Bernacchia and Pigolotti (2011) KDEmethod such that it can be applied to datasets of
arbitrary dimensionality. We show that when combined with the nuFFT-based ECF calculation of O’Brien et al. (2014), the
resulting multivariate PDF estimation method is optimal, fast, and unencumbered by the need for user-selected parameters
(Section 2). We further demonstrate that this method can be used to directly, rapidly, and accurately infer conditional
probability distributions (Section 3). We apply this method to examine the distribution of precipitation and temperature
in California, USA conditioned on global mean temperature (Section 4), which shows a number of intriguing features that
prompt further investigation.

2. The self-consistent KDE in arbitrary dimensions

In order to describe the way in which we have augmented the KDE method of Bernacchia and Pigolotti (2011), it
is necessary to review some relevant details of the method. Bernacchia and Pigolotti (2011) originally presented their
derivation for a univariate KDE, but a trivial substitution of vector notation into their derivation shows that it applies also
to multivariate KDE. Consider a generic, multivariate kernel density estimate PKDE(x⃗) on D-dimensional multivariate data x⃗j
(for j = 1 . . .N observations of variables x⃗ = (x1, . . . , xD)) using the arbitrarily-shaped kernel K(x⃗), which is equivalent to
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the convolution of the kernel function and the set of delta functions centered on the data:

PKDE(x⃗) ≡
1
N

N
j=1

K(x⃗ − x⃗j)

=
1
N

N
j=1


RD

K(s⃗) · δ(x⃗ − x⃗j − s⃗) ds⃗, (1)

where δ(x⃗) is the Dirac delta function (which can be viewed as the limit of a normal distribution as all elements of the
covariance matrix approach 0).

The KDE can be represented equivalently by its inverse Fourier transform pair φKDE :

φKDE(t⃗) ≡ F−1 
PKDE(x⃗)


= κ(t⃗) · C (t⃗),

where F−1 represents the multidimensional inverse Fourier transform from data coordinates x⃗ to frequency-space
coordinates t⃗ , κ ≡ F−1(K) is the inverse Fourier transform of the kernel, and C is the ECF of the data defined as:

C (t⃗) ≡
1
N

N
j=1

eix⃗j·t⃗ . (2)

Bernacchia and Pigolotti (2011) derive a transform kernel κ̂ that statistically minimizes the mean squared difference
between the true PDF P and the resulting optimal KDE P̂KDE . This optimal transform kernel is defined as:

κ̂(t⃗) ≡
N

2(N − 1)


1 +


1 −

4(N − 1)
N2|C (t⃗)|2

IA⃗(t⃗)


, (3)

where IA⃗(t⃗) represents a frequency filter that is 1 for the set of frequencies A⃗ used in the KDE and 0 otherwise. We use the
nomenclature of Bernacchia and Pigolotti (2011), where the set A⃗ is referred to as the set of ‘accepted’ frequencies.

In extending the Bernacchia and Pigolotti (2011) KDE method to arbitrary dimensions, there are a couple of
considerations. The ECF can be calculated in a computationally efficient manner using a nuFFT as shown by O’Brien et al.
(2014). The nuFFT method naturally extends to arbitrary dimensions (Greengard and Lee, 2004), so a multidimensional ECF
can efficiently be calculated using nuFFT methods. However, the selection of the filter IA⃗ requires special consideration for
multidimensional KDE.

The choice of the filter IA⃗ is critical for the success of this KDE method. Primarily, the filter must be specified such that

|C (t⃗)|2 ≥ C 2
min = 4(N − 1)N−2 for t⃗ ∈ A⃗. (4)

This primary filter threshold Cmin is necessary for stability of the estimation method (i.e., positivity of the argument of the
square root in Eq. (3) for κ̂). Secondarily, the set A⃗ may exclude an additional subset of otherwise acceptable frequencies.
The choice of this secondary set of excluded frequencies is somewhat arbitrary, though it must be bounded and it must grow
with increasing N for P̂KDE to converge to the true distribution as N increases (Bernacchia and Pigolotti, 2011). Bernacchia
and Pigolotti (2011) define the original univariate filter by setting a cutoff frequency t∗ such that half of the ECF values
within [−t∗, t∗] are above |Cmin|. O’Brien et al. (2014) choose a cutoff frequency that is defined by the first occurrence of
three consecutive frequencies below |Cmin|; ECF values at frequencies above this cutoff are set to 0.

Neither of the filters described by Bernacchia and Pigolotti (2011) or O’Brien et al. (2014) extend simply to multiple
dimensions. The natural multidimensional extension of the Bernacchia and Pigolotti (2011) filter would correspond to
choosing a cutoff threshold frequency hypersurface T (which corresponds to a curve in R2 and a surface in R3) such that
approximately half of the ECF values contained within are above |Cmin|. It is not immediately clear how to objectively and
automatically choose such a surface for arbitrary dimensionality. The naturalmultidimensional extension of theO’Brien et al.
(2014) filter would correspond to finding a contiguous and closed hypervolume of below-threshold values (|C |

2 < |Cmin|
2)

and setting values of the ECF outside that hypervolume to 0. For R2 this would correspond to a hypothetical 2D moat of
below-threshold values surrounding the origin in frequency space. If such amoat exists, finding its contiguous hypervolume
objectively and automatically is relatively straightforward using a standard flood-fill search algorithm. A contiguous set of
below-threshold frequencies is guaranteed to separate high and low frequencies in R1; this property allowed its simple
use in determining a cutoff threshold in the filter of O’Brien et al. (2014). Unfortunately however, this property is not
guaranteed to hold in higher dimensions. It is entirely possible that, for example in R2, a contiguous hypervolume (area) of
below-threshold values surrounding the origin does not exist. For a filter to be generically useful for multidimensional KDE,
it should be guaranteed to work in all sensible cases.

Instead of defining the set of accepted frequencies A⃗ such that above-threshold values (|C |
2

≥ |Cmin|
2) within some

hypersurface are accepted and those without the hypersurface are rejected, we have defined a filter based on selecting a
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Fig. 1. The square of the empirical distribution function |C |
2 from 10,000 samples of the ‘mixture distribution’ discussed in Section 3.2 (and shown in

Fig. 4), for |C |
2

≥ |Cmin|
2 . There are two color schemes present in this figure. The predominantly dark, multicolored colored ‘X-shaped’ region in the

center corresponds to values of |C |
2 for the first contiguous hypervolume (the area containing t⃗ = 0⃗); the colorbar at right applies to colors in this

region. The lightly-colored, monotone areas away from the first contiguous hypervolume correspond to additional contiguous hypervolumes (areas) with
|C |

2
≥ |Cmin|

2 . The colors of these areas are arbitrary and only serve to visually differentiate nearby contiguous areas fromone another. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

subset of contiguous hypervolumes of above-threshold values.We assume that themultidimensional ECF consists of a finite
set of contiguous hypervolumes of above-threshold values. At least one such contiguous hypervolume containing the t⃗ = 0⃗
frequency is guaranteed to exist, since C (0⃗) = 1 due to normalization, and |Cmin|

2 < 1. In our Python/Cython-based imple-
mentation of this KDE method, we sort these contiguous hypervolumes based on the distance from their centers-of-mass
to the origin. The user of the method has the option to specify how many of these hypervolumes (as an integer value or a
fraction of the total number), in order of their distance to the origin, are retained in the set A⃗. By default (and throughout
this manuscript), only the single hypervolume centered at t⃗ = 0⃗ is used. Fig. 1 depicts this filter on one of the distributions
discussed in Section 3.2. The colored contours in the center of Fig. 1 show the single hypervolume that is included in the
construction of the KDE; the additional contiguous hypervolumes are ‘discarded’ (set to 0).

This filter satisfies the convergence conditions described by Bernacchia and Pigolotti (2011). The set of frequencies
included in this lowest contiguous hypervolume filter are bounded since they will always be contained within a finite-sized
hypervolume around the origin. Further, for a given number of contiguous hypervolumes included in the set A⃗, this bound
grows as the number of data points increases, since |Cmin|

2
∝ N−1 (meaning the volumes of the contiguous hypervolumes

grow with increasing N). With these two conditions met, this filter should allow the KDE to converge toward the true PDF
as the number of data points increases.

3. Convergence properties in multiple dimensions

3.1. Convergence on multidimensional normal distributions

To demonstrate the efficacy of the lowest hypervolume filter, we examine the convergence properties of our
implementation of the Bernacchia and Pigolotti (2011) KDE method with the nuFFT-based speed improvement of O’Brien
et al. (2014). For simplicity, hereon we refer to this implementation as the fastKDE method. Fig. 2(a) shows the integrated,
squared error (ISE) of the fastKDE as a function of the number of data samples denoted by N . We approximate this integral
using the midpoint rule:

ISE =

i1=M1
i1=1

. . .

iD=MD
iD=1


P̂KDE(x⃗i) − P(x⃗i)

2 D
j=1

∆xj, (5)

where P is the true PDF; M1 and MD are the number of points in the 1st and Dth dimensions (and there is a corresponding
summation symbol for each dimension); x⃗i = (x1i1 , . . . , x

D
iD
) is a regular multidimensional lattice of data samples; and ∆xj

is the spacing of the grid in the jth dimension (which is constant to due the use of regular grids).
For direct comparison with univariate results from Bernacchia and Pigolotti (2011) and O’Brien et al. (2014), we test the

convergence of a univariate standard normal distribution. Fig. 2(a) shows that the ISE decays close to, but slightly slower
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Fig. 2. (a) The integrated, squared error of KDE estimates, as a function of the number of data samples, of samples from several distributions: 1, 2, and
3 dimensional normal distributions, a non-trivial mixture of normal distributions, and a distribution representing transitional behavior (the mixture and
transition PDFs are introduced and discussed in Section 3.2). The solid lines depict the median of 30 simulations, and the shaded swaths depict the 5–95
percentile range. The gray dashed line shows the theoretical maximum convergence rateN−1 for reference. Note that the ISE technically has different units
when calculated from KDE estimates of different dimensionality, so the absolute values of these curves cannot be compared, though it is valid to compare
the curve slopes on a log–log plot. (b) As in (a), but for the time required to perform the KDE. The gray dashed line shows N1 for reference.

than, N−1. This is consistent with theoretical arguments about the convergence rate of the method, and it is consistent with
empirical results (Bernacchia and Pigolotti, 2011; O’Brien et al., 2014).We perform the same tests for bivariate and trivariate
standard normal distributions, and Fig. 2 shows that the method exhibits similarly good performance even for multivariate
data. The convergence rate appears to systematically decrease as dimensionality increases, which is presumably due to the
curse of dimensionality (Scott, 2008). However, the decrease is relatively minor, with the exponent of N in the convergence
rates for the 1, 2, and 3 dimensional KDEs being −0.92 ± 0.03, −0.91 ± 0.01, and −0.89 ± 0.01 respectively.

Fig. 2(b) shows that the time required to compute the KDE asymptotically scales as N1 for all three dimensionalities. This
result is consistent with the complexity analysis of O’Brien et al. (2014), which suggests that the speed of the nuFFT-based
KDE should scale as O(N · qD + MD

· log(MD)), where q is the size of the convolution kernel used in the nuFFT, N is the
number of samples, and MD is the total number of grid points on which the KDE is estimated. For the convergence tests
shown in Fig. 2, we use q = 28 (which yields approximately double precision accuracy for the nuFFT approximation) and
M = 257 for each dimension. Accordingly, for N · qD ≫ MD

· log(MD), the number of operations required for the estimate
(and therefore the time T required) should scale as T ∝ qDN1.

The timing curves in Fig. 2(b) exhibit two intriguing features indicative of additional factors playing important roles in the
computational aspects of themethod: the curvature of the 3D timing curve, and the relative spacing of the timing curves. The
timing curve for the 3D standard normal distribution has aminimumat approximately 104 samples; the 3DKDE for a sample
size of 16 takes more time than for a sample size of 8192. We hypothesize that this is associated with the lowest contiguous
hypervolume filter. The filter relies on an implementation of a classical flood-fill search algorithm, which first searches the
ECF for a new above-threshold value and then recursively searches all neighbors for other above-threshold values.1 Once
the recursive search is exhausted, the algorithm repeats until the entire ECF space has been searched. While this flood-fill
search requires at leastMD floating point comparisons, there are additional overhead costs associatedwith themanagement
of the linked-list structure that we use to track the list of unsearched neighbors. If the ECF space consists of a large number
of relatively small contiguous hypervolumes, then the search will incur a relatively large overhead, which could make the
entire KDE method take more time than would otherwise be expected. The second intriguing feature of Fig. 2 is that the
vertical spacing of the timing curves is smaller than predicted by the complexity analysis. The computational time should
scale like qD, meaning that the ratio of timings for the same number of points in the 3D vs 2D cases (or 2D vs 1D) should be
qD/qD−1

= q = 28. This ratio, as expressed by the vertical spacing of these curves, is roughly the same for the 3D vs 2D and
2D vs 1D cases, in accord with this prediction. But the ratio is approximately 13 instead of 28. This means that the timing of
this KDEmethod scales slower with increasing dimensionality that we would expect based on a simple complexity analysis
of the algorithm. It is not immediately clear why the dimensional scaling of this method is better than we anticipated.

3.2. Convergence on complex distributions

Overall, Fig. 2 demonstrates that the fastKDEmethod exhibits both the excellent convergence properties of the Bernacchia
and Pigolotti (2011) method and the excellent computational efficiency of the O’Brien et al. (2014) method for multivariate
KDE. By design the normal distribution tests have no covariance structure, and so they do not illustrate whether the optimal
kernel used in the fastKDE method can handle input data with non-trivial covariance. In developing this method, we

1 While the algorithm is recursive, we specifically avoid the use of recursive functions in our implementation, since we have found that such an
implementation can result in stack violations for large contiguous volumes.
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anticipated that covariance should not be an issue, since the kernel effectively inherits the covariance properties of the
underlying data. This can be shown theoretically by considering a 2nd-order Taylor expansion of the optimal kernel (Eq. (3))
about t⃗ = 0⃗:

κ̂

t⃗ ≈ 0⃗


≈ 1 +

1
2!

D
k=1

D
j=1

2
N − 2


∂2C

∂tj∂tk
(t⃗ = 0⃗)


tj tk (6)

= 1 −
1

N − 2

D
k=1

D
j=1

σjktjtk. (7)

Eqs. (6) and (7) are relatively simple compared to Eq. (3) because at C (t⃗ = 0⃗) = 1 (normalization), and because derivatives
of the ECF at (t⃗ = 0⃗) are proportional to sample moments: the 1st order derivatives of the ECF are identically 0 at the origin
assuming that the sample mean is removed prior to transformation,2 and the 2nd-order derivatives of the ECF yield the
2nd-order moments (σjk) of the input samples. In comparison, the 2nd-order Taylor expansion of the ECF is

C


t⃗ ≈ 0⃗


= 1 −

1
2

D
k=1

D
j=1

σjktjtk, (8)

which differs from Eq. (7) only by a factor of 2(N − 2)−1 in the second term.
This implies that in the vicinity of the origin, the optimal kernel has the same shape and orientation as the ECF, and

therefore it has the same shape and orientation in real space. The main difference in the two Taylor approximations is that
the optimal kernel has the factor of 2(N − 2)−1 in the second term, which originates from the 2nd-order derivatives of the
kernel. This implies that these derivatives, and therefore the variances and covariances of the optimal kernel, asymptotically
approach 0 asN approaches infinity; the kernel asymptotically approaches amultidimensional delta function asN increases.
For finite N , however, the kernel effectively inherits its main shape and orientation from the underlying data.

We demonstrate that these properties result in convergence even for PDFs with non-trivial covariance structure by
examining the convergence properties of the fastKDEmethod on two additional bivariate PDFs: a PDFwith a relatively subtle
transition in the relationship between two variables, and a complex mixture of normal distributions. The first distribution,
which we label the transition PDF (PT ), is derived as follows: given an abscissa variable, the ordinate variable is sampled by
first transforming the abscissa values by a sigmoid function and then adding samples from a Normal distribution N . The
abscissa variable is sampled from a Gamma distribution Γ , with the abscissa values centered over the transition point of
the sigmoid function. We construct a PDF in this manner to simulate a noisy transition in a bivariate physical system:

PT (x, y) ≡ Γ (x0 − x + kθ |k, θ) · N

y|µ(x), σy


, where (9)

µ(x) ≡ 1y · tanh(x − x0) + y0, and (10)

PT (y|x) = N

y|µ(x), σy


. (11)

Fig. 3(a) shows PT (x, y) along with a fastKDE estimate based on 10,000 samples from PT (x, y) using only the lowest
contiguous hypervolume in the ECF filter. The contours of the fastKDE estimate and PT , which use the same contour interval,
overlap strongly. This is true even in the region near point at x = 305 where the mean of y transitions from a value of
198 to a value of 202, which induces a localized covariance in x and y. To illustrate the degree to which this non-trivial
covariance information is correctly encoded by the fastKDE method, we estimate the conditional distribution PT (y|x) by
dividing the bivariate fastKDE estimate P̂(x, y) by the marginal fastKDE estimate P̂(x). Fig. 3(b) shows that the contours of
constant PT (y|x) from the fastKDE conditional estimate follow those of the true conditional distribution; in particular, the
contours in the fastKDE estimate exhibit the sigmoid transition at x = 305. However, the fastKDE estimate of the conditional
is somewhat noisier: especially in data sparse regions, such as above x = 310. While it may appear that this transition PDF
has hardly any covariance structure, such subtle transitions in real physical systems can result in profound changes in system
behavior. Therefore, the ability to reliably discern such transitions from noisy data can be quite important for explaining the
behavior of physical systems.

Similar to the convergence of the fastKDE estimates of the standard normal distributions in Section 3.1, Fig. 2(a) shows
that the fastKDE estimate of the transition PDF falls as a power law of N . However, in contrast to the standard normal
examples, the error improves at a slower rate: −0.803 ± 0.004. Despite the slower error improvement with increasing N ,
this power law behavior shows that the fastKDE estimate asymptotically approaches the true transition PDF as samples are
added. This suggests that as theoretically predicted above, (a) the kernel is shaped and oriented in such away that it provides
a reasonably good PDF estimate for low N , and (b) the kernel approaches a delta function as N approaches infinity, giving
data points only a very local influence on the PDF. The time required to compute the fastKDE estimate (Fig. 2(b)) is nearly
identical to that required for the bivariate normal distribution: approximately 10 s for 2,000,000 samples.

2 In practice, we remove the sample mean prior to applying the nuFFT, and we add it back to the resulting real-space PDF estimate.
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Fig. 3. The true transition PDF described by Eqs. (9)–(11) (color contours) and the fastKDE estimate (black contours) of 10,000 samples from PT , with
x0 = 305, k = 5, θ = 2, y0 = 200, 1y = 4, and σy = 12. (a) The full joint distribution PT (x, y), and (b) the conditional distribution PT (y|x). The contour
intervals for the true PDF and the fastKDE estimate are the samewithin (a) andwithin (b). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Interestingly, themean ISE of the conditional estimate (calculated as themean of the ISE of the individual P̂(y|x) curves for
each x value) exhibits similar asymptotic convergence for relatively large N . For N lower than approximately 103, the mean
ISE decreases relatively slowly with increasing N . For N greater than approximately 103, the mean ISE of the conditional
estimate decays at a rate almost identical to that of the joint distribution. The additional time required to estimate the
marginal of x is essentially negligible, and so the time required to compute the conditional fastKDE is nearly identical to that
of the joint fastKDE.

From the perspective of data analysis, these are excellent properties for a data analysis tool. Many data analyses
performed in the physical sciences assume a simple (linear) covariance structure: e.g., regression and/or correlation analysis.
While the Spearman rank correlation coefficient deviates from the assumption of linearity inherent in the more common
Pearson correlation coefficient, it still only provides an indication of the degree to which two quantities are related. In the
synthetic example provided in Fig. 3(b), the conditional PDF shows what such analyses cannot: that there is a localized and
relatively subtle transition in the two quantities. The ability to accurately, objectively, and rapidly estimate conditional PDFs
could provide opportunities for physical insight that would be difficult or impossible to obtain using other methods.

The second non-trivial bivariate distribution against which we evaluate the fastKDE method is a mixture of normal
distributions. This mixture-distribution is specifically designed to challenge KDE methods: it has a complex structure that
includes both long- and shortwave components, it has major structures oriented along several axes, and none of these
structures are aligned with axes corresponding to the abscissa or ordinate values. We define this mixture distribution as a
randomsample fromany one of 350 normal distributions. The first 349 distributions are normal distributions,with variances
of 0.3 and no covariance, sampled with equal probability (1/678); and the last distribution is a broader normal distribution,
with its covariance matrix defined by the covariance matrix of the means of the 349 normal distributions, sampled with
probability 349/678.

The locations of the first 349 normal distributions are defined as follows. The logo of the lead author’s home institution
was resized to 54 by 72 pixels, and color intensity values were discretized to either 1 or 0. These values were rendered as
an ASCII text value and hand modified to remove artifacts of the resizing and digitizing processes. The image-space indices
of the non-zero values in the ASCII text, of which there are 349, are chosen as the initial coordinates of the first 349 normal
distributions. These initial coordinates are then transformed such that the coordinates are centered at (0, 0) and they are
rotated by an arbitrary 37° degrees counterclockwise. The location of the last normal distribution is chosen to be centered on
(0, 0) with a width and height that spans the first 349 normal distributions and with principal axes parallel to the abscissa
and ordinate axes. This produces a mixture-distribution with a long-wave feature (the last normal distribution) combined
with a complex structure of relatively shortwave features (the 349 normal distributions) withmajor structures alignedwith
two different axes: along the coordinate axes and along 37° and 127° counterclockwise from the abscissa axis. Fig. 4(a)
shows the resulting PDF.

Fig. 4(b) and (c) show a fastKDE estimate of 106 and 104 samples from the mixture-distribution shown in Fig. 4(a).
The estimate from 104 points shown in Fig. 4(c) represents the general features of the true PDF, with proper orientation,
including the wording at the bottom right of the PDF and the orientation and general form of the building to the upper
left of the wording. However, this estimate lacks many of the fine details, and one can barely discern that the feature in
the lower right indeed corresponds to wording. It appears that the optimal kernel used in the fastKDE estimate of 104

samples contains a bandwidth that provides a compromise between the high variance (high wavelength) of the overall
PDF and the small variance (low wavelength) features. In contrast, the estimate based on 106 points resolves well all of the
high-frequency features. However, it appears that the use of a relatively narrow bandwidth kernel that allows resolution of
these high-frequency features comes at the detriment of the low-frequency (high variance) background normal distribution.
The imprint of individual kernels in the background PDF is evident in Fig. 4(b). Fig. 2 shows that the integrated, squared
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Fig. 4. A non-trivial mixture of normal distributions: (a) the underlying PDF, (b) a fastKDE estimate on 106 samples, and (c) a fastKDE estimate on 104

samples.

Fig. 5. (a) The integrated, squared error of KDE estimates, as a function of the number of data samples, on samples from the mixture and transition
distributions described in Section 3.2. The blue and red lines depict themedian of 30 simulations, and the shaded swaths depict the 5–95 percentile ranges.
Solid curves represent the fastKDE estimate, and the dashed and dash-dotted curves represent KDE estimates from the ‘ks’ package of ‘R’ using the plug-in
(Hpi) and smoothed cross-validation (Hscv) bandwidth selections respectively. The gray dashed line shows the theoreticalmaximum convergence rateN−1

for reference. (b) As in (a), but for the time required to perform the KDE. The gray dashed line shows N1 for reference. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

error of the fastKDE estimate follows a complicated decay as samples are added. Regardless, the error decay suggests that
the fastKDE method asymptotes to the underlying mixture-distribution as the number of samples increases.

3.3. Comparison with existing bandwidth selection methods

To demonstrate the performance of fastKDE relative to a publicly-available KDE package with automatic bandwidth
selection methods, we repeated the convergence and timing tests shown in Fig. 2 using the kernel smoothing, ks, package
from R. We focus on the two complex distributions described in Section 3.2: the transition andmixture distributions.We use
two bandwidth selectionmethods available in the ks package that represent twomainstream, contemporary approaches to
multivariate bandwidth selection: the plug-in selectionmethod (Wand and Jones, 1995), and the smoothed cross validation
selection method (Duong and Hazelton, 2005). Though our implementation of the fastKDE algorithm is written in Python,
we use R for this analysis for two reasons: (1) Python does not presently have such automatic bandwidth selection methods
as part of its core numerical/mathematical libraries, and (2) R is a widely used statistical language that arguably has the
most cutting-edge bandwidth selection methods available.

Fig. 5(a) shows the integrated, squared error (similar to Fig. 2) for the fastKDE and R estimates. For direct comparison, all
KDEs are performed on the same samples, and identical 513 × 513 grids are used for both fastKDE and R (though different
grids are of course used for the transition and mixture distribution samples). The R-based estimates were run only up to
sample-sizes of 16,384 and 8192 (transition and mixture distribution respectively) due to excessive computational time.
The transition distribution exhibits almost identical error convergence characteristics as shown in Fig. 2. In contrast, the
mixture distribution appears to exhibit better convergence for large sample sizes; note the steepening of the fastKDE ISE
curve that occurs near N = 104, which indicates faster convergence. The 513 × 513 grid used in Fig. 5 has finer resolution
than the grid used for Fig. 2, but the fastKDEs are otherwise identical. As a result, the estimates shown in Fig. 5 permit higher
frequencies. It appears that for a PDF with so much structure, permitting high frequency components allows the fastKDE to
continue to improve as points are added. The converse is true, as shown in Fig. 2(a); having too low a resolution effectively
saturates the error in the fastKDE, such that additional points have no impact on the quality of the resulting KDE.

Both the plug-in and smoothed cross-validation bandwidth selection methods offer similar performance in R. For the
transition distribution, both converge at a rate similar to the fastKDE method, although it appears that the error for the
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Fig. 6. A timeseries of global mean temperature (black line, left vertical axis), California (CA) mean temperature (red line, first right vertical axis), and CA
mean precipitation (blue line, second right vertical axis). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

fastKDE is lower for sample sizes larger than approximately 104. For themixture distribution, the convergence rate is similar
to the fastKDE for small sample sizes, but neither method appears to exhibit the sharp jump in convergence rate that occurs
at a sample size of approximately 104. It is not clear what is the origin of this convergence rate discontinuity for the fastKDE
method, nor why neither the plug-in nor smoothed cross validationmethods exhibit this jump in convergence. Examination
of Fig. 1 shows that there are several large, contiguous hypervolumes that are barely detached from the first contiguous
hypervolume. It is possible that the jump in convergence rate is associated with these large hypervolumes abruptly joining
the first contiguous hypervolume as sample size increases and |Cmin|

2 lowers. We recreated a version of Fig. 1 with 20,000
samples instead of 10,000 (not shown), and indeed this results in the first hypervolume joining with the large, previously
disconnected regions.

The main difference between fastKDE and the R-based KDE methods is in both the absolute time required for each KDE,
and in the rate at which that time increases as samples are added; Fig. 5(b) shows the timing for all methods. Both the
fastKDE and R-based KDE estimates were run on Cray XE6 nodes at the National Energy Research Scientific Computing
Center (NERSC; on the machine called ‘hopper’). Each node contains 2 twelve-core AMD ‘MagnyCours’ 2.1-GHz processors
and 32GB of 1333MHzRAMper node. Despite being run on the same computational architecture, the absolute differences in
timings between fastKDE and R should be interpreted cautiously due to large possible differences related to programming
language overhead and to code structure. Regardless, it is notable that fastKDE consistently performs faster than either
R-basedmethod, with fastKDE being approximately 4 orders of magnitude faster for sample sizes of approximately 104. We
note that we ceased testing the R-based methods when the time-per-KDE exceeded approximately 2 h because the total
wall time required for our (admittedly linear) test code to run would exceed the total allowable 96 h wall time for standard
computational jobs on the ‘hopper’ system at NERSC.

The most notable difference between the two methods is that fastKDE asymptotically approaches N1 scaling for large
sample sizes, whereas the R-based methods have a dependence on sample size that is clearly steeper than linear. Therefore,
even if the performance of the R-based KDE methods could be tuned to be absolutely faster than fastKDE for the range
of sample sizes shown, the super-linear dependence of the R methods on sample size would mean that fastKDE would
inevitably be faster at some larger sample size.

4. Joint occurrence of temperature and precipitation

To demonstrate the utility of this method on a real dataset, we apply the fastKDE method to a dataset of 119 values
of global mean temperature, and temperature and precipitation from California, USA. The California data are generated by
spatially averaging station observations within the state and by temporally averaging values within the wet season, taken
here to be the 6-month period beginning in November and ending in April the following calendar year (Karl and Koss, 1984).
The data begin in November, 1895 and extend through April, 2014, which result in 119, semi-annual wet-season data points,
extending from 1896 to 2014. The global mean temperature anomalies (relative to the 20th-century mean) are constructed
as spatiotemporal annual averages of temperature data from the Global Historical ClimatologyNetwork-Monthly (GHCN-M)
data set and the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) (Smith et al., 2008). These data are
publicly available from NOAA’s National Centers for Environmental Information (NCEI) (formerly known as the National
Climatic Data Center (NCDC)). Fig. 6 shows these data.
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Fig. 7. (a) A fastKDE estimate of temperature versus precipitation, calculated as annual spatiotemporal averages over stations within California, USA
(filled contours), and conditioned on the global mean temperature anomaly. The dots show the data points that went into the fastKDE. The colored,
closed contours depict two levels of constant probability (inner and outer contours) from the conditional PDF. The thick colored line depicts the mean
CA temperature and precipitation conditioned on global temperature anomaly. For the points, the closed contours, and the thick line, colors correspond
to global mean temperature anomaly. (b) The survival function of temperature conditioned on global mean temperature anomaly; colors correspond to
global temperature anomaly (c) as in (b), but for the cumulative distribution of precipitation. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

It is well established that the statistics of temperature have not been stationary during the industrial era due to the
effects of greenhouse gas on global temperatures (Pachauri et al., 2014). We hypothesize that the joint PDF of California
temperature and precipitation is correspondingly nonstationary. If this hypothesis is correct, then statistics that treat this
dataset as stationary, such as the return intervals estimated on this dataset by AghaKouchak et al. (2014), may need a more
sophisticated treatment that explicitly accounts for this nonstationarity.

In order to test this hypothesis, we apply the fastKDEmethod to the dataset described above and shown in Fig. 6. We use
the trivariate fastKDE to directly estimate the joint PDF of CA temperature and precipitation conditioned on global mean
temperature. Fig. 7(a) depicts the 3D conditional PDF as a projection onto the CA precipitation–temperature plane, with
contour colors representing the global mean temperature. The blue closed contours, which correspond to the relatively cool
global temperatures from late in the 19th century, are asymmetric with their primary axis oriented from lower-right to
upper-left in the figure. The orientation of these contours indicates a positive correlation between CA temperature and
precipitation, with warm years that tend to be associated with wet years. In contrast, the red closed contours, which
correspond to the relatively warm global temperatures of the present, exhibit a negative correlation; warm years tend to
be associated with dry years. Following the contours from the bottom to the top, the transition from positive to negative
correlation occurs in the vicinity of global mean temperature anomalies of 0.15 °C (yellow contours).

The conditional relationship between CA temperature and precipitation exhibits a similar transition. The thick colored
line in the center of the projected PDF in Fig. 7(a) shows the mean CA temperature and precipitation conditioned on global
mean temperature anomaly (same color coding as the contours). It is clear from this curve that as global mean temperature
increases, so does CA mean temperature. The same is not true for precipitation. In the cooler part of the century (the blue
portion of the curve), mean CA precipitation increases linearly as CA mean temperature increases. This relationship has
the same sign as the positive correlation indicated by the conditional probability contours. However, when global mean
temperature anomalies reach approximately 0.15 °C, the direction of the relationship reverses, such thatmean precipitation
decreases as mean temperature increases. Again, this relationship has the same sign as the negative correlation indicated
by the contours. Fig. 6 shows that global mean temperature anomalies go permanently above 0.15 °C just prior to 1980.
This timeframe is consistent with a well-documented shift in the climate of the north Pacific Ocean that occurred in 1977
(e.g., Deser and Phillips, 2006).Wehypothesize that this change in both the correlation and in the trend in themean indicates
a transition in the nature ofweather systems that transportmoisture to California stemming from the 1977 climate shift.We
will evaluate this hypothesis in a future manuscript. It is notable that the precipitation–temperature relationship appears
to curve toward the left at the end, which may suggest that California is approaching another transition.

The nonstationarity of this dataset is also clearly evident in the conditional distribution of CA mean temperature shown
in Fig. 7(b). As global mean temperatures increase, the distribution of temperatures monotonically shifts toward warmer
temperatures. This shift results in some dramatic changes in the probabilities of extremely warm and extremely cold years.
For global mean temperature anomalies of −0.3 °C, the probability of CA temperatures greater than 10 °C is P ≈ 0.01.
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However, for global mean anomalies of approximately 0.6 °C, such warm years are far more common (P ≈ 0.08).
Likewise, years colder than 7 °C occur with probability P ≈ 0.1 for global mean temperature anomalies of−0.3 °C, whereas
they almost never occur (P < 0.01) for global mean anomalies of 0.6 °C. This nonstationarity is particularly dramatic when
framed in terms of conditional recurrence intervals. What used to be a 1-in-100 year event (CA temperature greater than
10 °C) is now an approximately 1-in-13 year event.

The conditional distribution of CA precipitation, shown in Fig. 7(c), is also quite non-stationary, though it does not exhibit
a monotonic shift like the temperature distribution in Fig. 7(b). Rather than simply shifting, the precipitation distribution
appears to broaden as global mean temperature anomalies increase toward 0.15 °C, and the distribution narrows again
beyond. Similarly, and in accord with Fig. 7(a), the precipitation distribution also appears to shift slightly toward wetter
values as global anomalies approach 0.15 °C, and they rebound toward drier values beyond. It is clear from Fig. 7(a) and (c)
that the relationship between global mean temperature and precipitation is not simple, though it is not immediately clear
why. This non-monotonicity should be investigated in future work.

5. Discussion

We have taken the optimal KDE methodology of Bernacchia and Pigolotti (2011), derived and implemented a multidi-
mensional filter, and extended the non-uniform FFT ECF-calculation technique of O’Brien et al. (2014) to create the fastKDE
method: a fast, objective, and multidimensional KDE technique. The fastKDE method lacks a need to specify parameters
that control the quality of the PDF estimation method (i.e., histogram bin width and kernel bandwidth), which is a limita-
tion inherent in existing non-parametric multidimensional PDF estimation methods. It also has the excellent convergence
properties inherent in the original Bernacchia and Pigolotti (2011) method. Section 3 shows that this convergence property
applies to PDFs with a range of covariance characteristics.

This method does have some subjectivity in terms of the choice of filter used on the ECF. In all of the tests shown in this
manuscript, we use the lowest contiguous hypervolume filter, described in Section 2, with only the hypervolume closest
to t⃗ = 0⃗. Since this single lowest contiguous hypervolume contains only ECF values centered around the 0⃗ frequency, it
effectively acts as a low-pass filter that smooths the resulting KDE. We implemented this filter to be flexible in terms of the
number of contiguous hypervolumes used. Experimentation with the number of included hypervolumes in a PDF estimate
(not shown) demonstrates that if too many hypervolumes are included in the estimate, the resulting PDF is modulated
with high-frequency oscillations that are clearly artificial. Admittedly, we have focused our attention on PDFs that are
essentially smooth and which are therefore well-suited to such a low-pass filter. A low-pass filter may not be a good
choice for distributions that contain a wide range of frequencies, such as distributions with Comb marginals. Bernacchia
and Pigolotti (2011) show that their method is general enough to even work well on a Comb distribution, but the filter must
be constructed to allow a suitably wide range of frequencies. Using only a single lowest contiguous hypervolume would not
likely satisfy this need, but it may suffice to simply use a higher number of hypervolumes. Further development and testing
of this methodology on such broadband distributions may be beneficial.

Fat tailed distributions present another challenge to this method. For example, applying this method directly to samples
from a Pareto distribution yields a very poor representation of the true PDF. This difficulty arises because the fastKDE
bandwidth is fixed for all areas of the data space, but the data samples are spread over a huge range (sometimes multiple
orders ofmagnitude, depending on power law slope and sample size). This inhibitsmultiple kernels fromoverlapping,which
is the essential requirement for a successful KDE. Fortunately, this is a known issue that generally effects KDE methods, and
a good solution is simply to transform the data to a more compressed space prior to the KDE, and then to subsequently
transform the PDF back to the original space (Wand et al., 1991). For example, given samples χi from a Pareto distribution,
the PDF estimate is much better if the fastKDE is computed on log(χi). Transforming the fastKDE back to data space simply
involves exponentiating the values of the fastKDE grid and dividing the fastKDE estimate by the values of the new grid:

ηi ≡ log(χi)

P̂ ′(χ) =
1
χ
P̂KDE (χ = eη) . (12)

This results in a transformed fastKDE P̂ ′ calculated on a grid with log-spacing.
Thismethod is designed to apply to arbitrarily high dimensionality, and our Python-based implementation of thismethod

allows for that generality. However, there are two practical factors thatmay inhibit its use for high dimensional systems, and
both are related to a curse of dimensionality. The first curse of dimensionality is that the effective information density of each
sample is reduced as dimensionality increases. Thismeans, for example, that 10,000 trivariate samples yield less information
for a KDE than 10,000 bivariate samples. This is a general issue for KDEmethods. Recently Nagler and Czado (in preparation)
have proposed an intriguing solution that may solve this issue. Instead of directly performing a full D-dimensional KDE,
they break the problem down using a copula approach. They use a KDE to estimate the marginals separately, and they
assume that the copula can be decomposed into a product of bivariate copulas (a vine copula approach). Estimation of this
copula then only requires estimation of two-dimensional PDFs for an arbitrarily-dimensioned problem, and Nagler and
Czado (in preparation) argue that this allows one to avoid this curse of dimensionality. Such an approach could conceivably
be applied to the fastKDE method to allow higher dimensional KDE estimates.
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Computational storage requirements are the second curse of dimensionality that may inhibit application of this method
to higher dimensional samples. The fastKDE method, and indeed any KDE method, requires that the KDE (and any
intermediate values, such as the ECF) be stored on a D-dimensional grid. Assuming an equal number of points M in each
dimension, this grid then requires thatMD floating point values be stored. If we assumeM = 33 (a relatively coarse grid), a
dimensionality of 20, and floating point values, the resulting storage requirement is S = 32 ·920

≈ 1020 bytes. For reference,
this is approximately the same order of magnitude as all data stored on Earth in 2007 (Hilbert and López, 2011). However,
the vine copula approach of Nagler and Czado (in preparation) might provide a solution to this curse of dimensionality as
well. If the KDE can be constructed as the product of the marginal KDEs and bivariate copula KDEs, then this implies that
all of the information in the full KDE is encoded in the marginal and bivariate KDEs. A D-dimensional KDE using the Nagler
and Czado (in preparation) method requires storage of D marginal densities and D(D − 1)/2 bivariate densities, leading to
an exponentially less stringent storage requirement of S ′

= D ·M +D(D− 1)/2 ·M2. Storing the KDE in this manner would
require some special algorithmic considerations, since the full PDF values would have to be reconstructed on an as-needed
basis by multiplying the marginals and the bivariate copulas.

While the fastKDE method may benefit from some further methodological development in terms of extending to
problemsof high-dimensionality,wehave clearly demonstrated its functionality for lower dimensional problems. The ability
of themethod to encode high-fidelity covariance information is a promising capability from a data analysis point of view. As
Fig. 3(b) shows, the fastKDEmethod can be used to directly estimate conditional distributions. This is a boon to data analysts
looking for non-trivial relationships among variables. The venerable tradition of examining scatter plots, correlations, and
regressions would fail to provide useful information about the transition inherent in the x and y variables of Fig. 3(a). Even
simply looking at the bivariate PDF in Fig. 3(a) shows only the slightest hint that there is a non-trivial relationship between x
and y. In contrast, the conditional distribution immediately shows that the y value exhibits a transition near a specific value
of x. It should be noted that the fastKDE method reliably reproduces this subtle transition (a jump of 1y = 4) despite the
original samples having a spread in y of σy = 12.

6. Summary

We designed the fastKDE method with the intent that it be used as a general-purpose KDE tool. The simplicity of not
having to deal with bandwidth matrix specification, combined with the speed of the method, makes it suitable as such.
We have demonstrated that the fastKDE method is applicable to KDE estimates of at least 3 variables (Sections 3.1 and
4), and we have shown a number of examples of its successful use on bivariate samples (Sections 3.1, 3.2 and 4). It is
particularly encouraging that the fastKDE yields a high-enough fidelity representation of the coupling of two variables that
a good representation of a non-trivial conditional distribution can be directly estimated from the fastKDE (Section 3.2).

It isworth noting that the fastKDEmethod takes approximately 6 s to operate on the trivariate temperature–precipitation
dataset used in Section 4 (in contrast to R, which takes approximately 60 s using either bandwidth selection method on
the same dataset). The bivariate distributions shown in Fig. 4(b) and (c) took only a fraction of a second compute. This is
consistent with the timing values shown in Fig. 2(b). Even for a dataset of 106 points, a bivariate fastKDE calculation only
takes approximately 10 s to calculate, and a trivariate distribution takes less than two minutes. This, along with the simple
interface to our implementation of the fastKDE method, makes its speed and ease of use comparable to that of typical
histogram functions available in Python, R, and other programming languages. The statistical performance of fastKDE is
comparable to the performance of state-of-the-science KDEmethods available in R, with the benefit that the computational
cost is several orders of magnitude smaller. This method has the added benefit that there is no need for user-selected
parameters, such as bin width or kernel bandwidth. These properties make the fastKDE suitable as a general-purpose PDF
estimation tool.

We have implemented the fastKDEmethod in Python and Cython; Cython is used to develop the loop-intensive portions
of the code (e.g., the ECF calculation and the nuFFT). The package includes both an object-oriented interface and a simple
functional interface. The object-oriented interface allows for more complex operations, such as a ‘summation’ operation
that leverages the linearity of the Fourier transform. This allows the fastKDE method to be utilized in a map-reduce
framework that enables parallelization of the KDE calculation. In such a framework, the samples aremapped to participating
computational cores, and the ECF is calculated on each core; the summation operation then reduces the ECF information
from each core into a single ECF, after which the filter operation and the back Fourier transform are applied to yield the
full fastKDE. The simple functional interface, which allows fastKDE estimation of PDFs and conditional PDFs, operates in a
manner similar to the histogram and KDE routines available in the numpy and SciPy Python libraries.

Our Python/Cython-based implementation of the fastKDE method is available under a Berkeley System Distribution
license, and it is free for academic use. The code is hosted at https://bitbucket.org/lbl-cascade/fastkde.
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