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Abstract

Experimental data about gene functions curated from the primary literature have enormous

value for research scientists in understanding biology. Using the Gene Ontology (GO), man-

ual curation by experts has provided an important resource for studying gene function, espe-

cially within model organisms. Unprecedented expansion of the scientific literature and

validation of the predicted proteins have increased both data value and the challenges of

keeping pace. Capturing literature-based functional annotations is limited by the ability of

biocurators to handle the massive and rapidly growing scientific literature. Within the com-

munity-oriented wiki framework for GO annotation called the Gene Ontology Normal Usage

Tracking System (GONUTS), we describe an approach to expand biocuration through

crowdsourcing with undergraduates. This multiplies the number of high-quality annotations

in international databases, enriches our coverage of the literature on normal gene function,

and pushes the field in new directions. From an intercollegiate competition judged by experi-

enced biocurators, Community Assessment of Community Annotation with Ontologies

(CACAO), we have contributed nearly 5,000 literature-based annotations. Many of those

annotations are to organisms not currently well-represented within GO. Over a 10-year his-

tory, our community contributors have spurred changes to the ontology not traditionally cov-

ered by professional biocurators. The CACAO principle of relying on community members

to participate in and shape the future of biocuration in GO is a powerful and scalable model

used to promote the scientific enterprise. It also provides undergraduate students with a

unique and enriching introduction to critical reading of primary literature and acquisition of

marketable skills.
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Author summary

The primary scientific literature catalogs the results from publicly funded scientific

research about gene function in human-readable format. Information captured from

those studies in a widely adopted, machine-readable standard format comes in the form

of Gene Ontology (GO) annotations about gene functions from all domains of life. Man-

ual annotations based on inferences directly from the scientific literature, including the

evidence used to make such inferences, represent the best return on investment by

improving data accessibility across the biological sciences and allowing novel insights

between evolutionarily related organisms. To supplement professional curation, our

Community Assessment of Community Annotation with Ontologies (CACAO) project

enabled annotation of the scientific literature by community annotators, in this case

undergraduates, which resulted in the contribution of thousands of unique, validated

entries to public resources. Importantly, the annotations described here initiated by non-

experts often deal with topics not typically covered by the experts. These annotations are

now being used by scientists worldwide in their research efforts.

Introduction

Biocuration captures information from the primary literature in a computationally accessible

fashion. The biocuration process generates annotations connecting experimental data with

unique identifiers representing precisely defined ontology terms and logical relationships.

While the majority of existing annotations are computational predictions built on knowledge

from human biocuration, manually curated annotations from published experimental data are

still the gold standard for functional annotations [1]. Universal access to well-curated data-

bases, such as UniProt and those maintained by model organism consortia, allows scientists

worldwide to leverage computational approaches to solve pressing biological problems. New

insights on complex cellular processes such as autophagy, cell polarity, and division can be

clarified after assessing relationships in curated data [2–4]. The Gene Ontology (GO; http://

geneontology.org/) is an evolving biocuration resource that provides the framework for cap-

turing attributes of gene products within 3 aspects or main branches: biological process,

molecular function, and cellular component [5,6]. Importantly, connections can be made

between model organism genes and human genes with comprehensive GO coverage [7]. Addi-

tionally, using GO data generates testable hypotheses in areas with little direct experimentation

[8–10]. Application to high-throughput and systems biology, for instance, has led to insights

and better methods for identification and analysis of the genes involved in cardiac and Alzhei-

mer disease [11,12].

Without question, GO is a critical scientific resource, but manual annotation is an

extremely labor-intensive process [13,14]. The pace at which the information is generated in

the literature exceeds the capacity of professional biocurators to perform manual curation and

the willingness of funding agencies to pay for a larger biocurator labor force [15]. Although the

general Swiss-Prot protein database (https://www.uniprot.org/) model is one example of a scal-

able process for targeted manual and automated annotations from the (annotatable) literature,

most fields are limited by low numbers of trained personnel and minimal participation from

trained scientists [16,17]. The problem is most severe for communities studying organisms

without a funded model organism database. Nevertheless, curation of the experimental litera-

ture from as many species as possible strengthens inference of function when there is substan-

tial evolutionary conservation [18,19]. Several groups are developing tools to facilitate
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community engagement, such as the Gene Ontology Normal Usage Tracking System

(GONUTS) site described here. These efforts stem from the realization that, while most scien-

tists acknowledge the importance of data curation, it is hard to motivate individuals to volun-

teer their knowledge [20,21]. Spectacular crowdsourcing successes include the analysis of

Shiga toxin–producing Escherichia coli [22], the solution of the structure of an HIV protease

by the FoldIt player community [23], and science content within Wikipedia [24–27]. In other

cases, high-profile community annotation efforts have been less successful [28], which we attri-

bute to the disconnect between traditional incentives for funding and promotion in academia

[29].

Here, we describe the successful implementation over nearly a decade of a university

instruction-based model resulting in nearly 5,000 high-quality community annotations added

to the GO database. This effort was motivated by the clear parallels between the foundational

skills used by professional biocurators and the well-defined goals for undergraduate training

[30]. A professional GO biocurator creates gene annotations by finding relevant primary liter-

ature, extracting information about normal gene function from it, and entering that informa-

tion using the controlled GO vocabulary into online databases [31]. We demonstrate that

university students, guided by their instructors, could accomplish similar tasks and perform

community GO annotation while developing strong critical reading skills in a templated anno-

tation task requiring rigorous reading of primary scientific literature.

Results

Sustainable community member contribution via an online intercollegiate

competition

To address the need for broader participation and expansion beyond model organism data-

bases, we initiated an intercollegiate competition based at Texas A&M University mainly for

undergraduate students, called Community Assessment of Community Annotation with

Ontologies (CACAO). Here, we limit the discussion to details of the competition that are rele-

vant to annotation as the specifics of teaching practice were previously reported [32]. Leverag-

ing the GONUTS wiki platform (https://gowiki.tamu.edu/), a framework for experts not

familiar with GO to annotate from literature in their field, teams of students (competitors) par-

ticipate in the CACAO competition (Fig 1) [33]. Instructors (also called judges) assess all

annotations entered by competitors for accuracy and completeness, then give feedback. Peer

review by the competitors is incentivized by awarding points for challenges that correct an

entry. Teams earn points only for correct annotations and challenges. The team with the high-

est points accumulated over the competition period wins. Vetted, high-quality annotations are

then submitted to the GO Consortium database. CACAO quickly expanded, hosting 39 com-

petitions over 8 years including 23 colleges and universities, with 792 community annotators

and 50 judges. After reading 2,879 peer-reviewed journal articles, community members sub-

mitted 11,123 annotations to GONUTS (Fig 1). Following careful review through 2018, 4,913

diverse annotations were added to the GO Consortium database (Fig 1). Those annotations

are maintained as mandated by updates or changes in the ontology.

Annotations generated through CACAO are diverse, novel, and specific

The 4,913 annotations contributed through GONUTS have spanned all domains of life plus

viruses, with the majority being skewed toward eukaryotes, in particular model organisms

among the chordates (human, mouse, rat, etc.), Streptophyta (plants including Arabidopsis),
and Ascomycota (such as budding yeast) (Fig 2A). As only unique annotations are accepted,
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Fig 1. CACAO competitors contribute a large number of GO annotations. Overall CACAO contributions are summarized in the context of the workflow for

quality control and submission to the GO Consortium. CACAO users consume the primary literature, collect information about normal gene functions from

the paper study subjects, and capture the evidence and conclusions using the GO. Those annotations are reviewed by trained judges and marked as unacceptable

(red X), requiring changes (yellow!, or purple? flagged for further review), or acceptable (green check, or blue check after correction) within the GONUTS

framework. Competitors challenge entries and engage in peer review until an annotation is corrected or marked unacceptable. Fully vetted annotations are

deposited into the public GO database maintained by professional biocurators and used by scientists worldwide. As required, CACAO-submitted annotations

will be updated to reflect rearrangements and changes in GO. CACAO, Community Assessment of Community Annotation with Ontologies; GO, Gene

Ontology; GONUTS, Gene Ontology Normal Usage Tracking System.

https://doi.org/10.1371/journal.pcbi.1009463.g001
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this demonstrates that community members can help fill gaps left by professional biocurators

working for model organism databases. CACAO annotations also go beyond model organ-

isms. The 614 annotations to viral genes made by CACAO participants represented 285

eukaryotic viruses and 384 viruses that infect bacteria (bacteriophages). Nearly half of the

approximately 1,000 annotations listed for bacteriophages in QuickGO list CACAO as the

source. Annotations for bacterial proteins make up only 5% of total GO annotations, but 30%

of CACAO annotations. At the order level, the top 5 bacterial categories (Enterobacterales,

Bacillales, Lactobacillales, Pseudomonales, and Vibrionales) are heavily studied Gram-negative

and Gram-positive organisms of importance to microbiology research and the medical com-

munity. The microbial (virus and bacteria) entities herein described represent high genetic

diversity and often serve as the basis for significant automated propagation to eukaryotic gene

products. Thus, we conclude that not only do CACAO annotators fill gaps for model organ-

isms, but also expand coverage to a wide array of otherwise poorly curated species.

CACAO participants annotate to a wide variety of specific terms (Fig 2B). The top 3 most

used terms within each aspect, approximately 5% for biological process and molecular func-

tion or approximately 24% for cellular component, are only a small proportion of the total for

that branch. While the cellular component terms used are relatively general (i.e., nucleus), the

top process and function terms are near leaf-level and more specific, having few to no child

terms. To better understand the level of detail captured in annotations made by CACAO users,

we used GOATOOLS, a Python package for representing where terms fall within the ontology

hierarchical graph [34]. Based on the variety of annotation types in our set (e.g., aspects and

species), we selected a measure that counts the number of descendants (dcnt), or child terms,

for each entry. Higher level terms will have a larger score and are considered general or global.

More descriptive terms with no descendants, or leaf-level terms, are more precise or detailed

and receive the lowest dcnt value. The dcnt analysis quantitatively demonstrates that CACAO

annotations are made to specific terms (Fig 2C). That pattern is consistent with the way anno-

tations were reviewed, where only the most specific term that could be chosen based on the

details reported in the paper was counted correct. For comparison, we performed the same

dcnt analysis on all manual GO annotations available through 2019. The distributions of dcnt
values for GO annotations are broader and statistically different from CACAO within each

aspect (Fig 2C). These data demonstrate that community users can contribute high-quality,

precise, and scientifically relevant annotations to GO.

CACAO community curators enrich ontology development

The GO changes over time to reflect research progress and improve the representation of bio-

logical knowledge [35]. The GO Consortium tracks requests to change the ontology via their

GitHub repository accessible on the Helpdesk (http://help.geneontology.org/). CACAO users

have submitted >50 tickets via this system, resulting in the creation of 49 new GO terms,

Fig 2. The GO annotations contributed by CACAO users are diverse and specific. (A) Proteins annotated by CACAO users

are depicted by species domain. The organisms most highly represented in each domain are displayed on the outer ring of the

chart divided by the following rank: phylum for eukaryotes and archaea, order for bacteria, and family for viruses. The number

of GO annotations in each category is indicated in brackets. (B) The distribution of GO terms used for CACAO annotations

are graphed by aspect within the ontology. The top 3 terms within each aspect are labeled on the outer ring. For clarity,

“activity” was dropped from each function term, and the process terms were abbreviated from “positive/negative regulation of

transcription, DNA-templated” to “transcript. reg., positive or negative.” The number of GO annotations for each term is

indicated in brackets. (C) The descendant counts, corresponding to depth within the ontology, for CACAO annotations

(n = 4,913) and all other manual GO annotations in UniProt through 2019 (n = 255,958) are graphed. Significant differences

measured by the Mann–Whitney test with p<0.001 are marked with an �. CACAO, Community Assessment of Community

Annotation with Ontologies; GO, Gene Ontology.

https://doi.org/10.1371/journal.pcbi.1009463.g002
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many of which now have child terms added by others. Given the diverse literature areas read

by community curators, many of these terms are breaking new ground in the ontology. At

time of writing, the new terms added based on CACAO feedback had been used>650 times

by curators. In addition, at least 14 nonterm changes, such as clarified definitions and relation-

ships for current terms, have also occurred. A beneficial, unintended consequence of CACAO

is that curators are compelled to resolve issues within the ontology and incorporate new

knowledge from areas that are not traditionally covered by model organism databases.

Discussion

Community member annotations through CACAO add long-term value to

GO

The GO resource is among the computational tools most cited by biologists [6]. Automatically

inferred annotations, those made without curator intervention, are temporary but make up a sig-

nificant dynamic proportion of the total GO annotations at any given time. However, the quality

of computationally assigned annotations relies on a solid undergirding of manual annotations

where the data are reviewed and then annotations are created by a dedicated biocuration com-

munity [36]. Of the>6 million manual annotations in the July 2021 release of GO files, approxi-

mately one-sixth of the human-curated manual annotations come from traditional experimental

evidence, and most of the rest of them come from sequence similarity and phylogenetic similar-

ity evidence [19]. The efforts described here are not meant to rival the volume produced by dedi-

cated biocurators, nor to replace that organized effort. Instead, we demonstrate how small

contributions from many individual community members over time accumulate into a unique

and valuable resource. By virtue of its decoupling from the traditional funding model, commu-

nity curation supplements professional biocuration, especially in underfunded areas [17].

Targeted crowdsourcing with attribution makes CACAO annotation

sustainable

Recognizing the need to pull expertise from diverse bench scientists, various other initiatives

have been implemented to encourage community participation with lower cost [37,38]. For

example, the PomBase community curation project called Canto has garnered up to an

impressive 50% response rate for co-annotation from authors within their community [38].

Another natural by-product of crowdsourcing is the diversification of the biocuration work-

force. Such introduction of new expertise and perspectives is analogous to the workplace

observation that diverse teams innovate and produce more than homogenous ones [39]. While

the majority in the “crowd” may be unlikely to participate [40], the CACAO implementation

of GONUTS is a sustainable model for community contribution of vetted GO annotations in

areas of current interest because it caters to a nonrandom crowd, primarily students in an aca-

demic course setting.

In a resource-limited environment, the need to incentivize data curation has been creatively

approached with different methods such as the micropublication format [41–43]. Yet, motivat-

ing researchers to weigh in on ontology structure is a long-standing challenge [20]. Recogniz-

ing the need to credit individuals for their annotation efforts, UniProt now offers a portal for

submitting literature-based curation linked to an ORCiD (https://community.uniprot.org/

bbsub/bbsub.html) [44], as does the new Generic Online Annotation Tool built for the plant

community (http://goat.phoenixbioinformatics.org/). Importantly, the GONUTS wiki pro-

vides a web-based public record of CACAO contributions, allowing individuals to cite their

efforts.
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CACAO contributions are valuable because they are unique

On the one hand, community curators can spend the time to read and extract information

from redundant papers (those with information highly similar to already curated literature

and conclusions) to enhance model organism annotation depth and increase confidence in

existing annotations. On the other hand, community curators sample from a vast literature

space outside the typical biocurator’s expertise, expanding overall organism coverage, such as

shown for microbial organisms here [45–49]. Because microbial genomes are typically smaller,

groups of students can make a major contribution. A significant instance is adding approxi-

mately 50% of all phage GO annotations available in the GO annotation files. CACAO has also

spurred updates to ontology relationships. For example, a large rearrangement of biofilm GO

terms occurred after CACAO users initiated discussion about their parentage and definitions.

Community curation through CACAO meets modern open-source

research and education goals

With online education thrust to the forefront during the global Coronavirus Disease 2019

(COVID-19) pandemic, sustainable and authentic education-driven engagement solutions are

critically needed [30,50,51]. Community-driven skills-based classroom research in any num-

ber of formats (e.g., CACAO, genome annotation [52–54]) serves the scientific community.

From an educational perspective, the competition aspect is an engaging format that models

real-world scientific skill development with regard to critical reading, iterative editing of a

product, and peer review. We hypothesize that this mini biocurator experience may have simi-

lar benefits for recruitment, retention, and graduation observed with undergraduate research

[55,56]. The biocuration model is highly applicable to scientists and trainees worldwide and

complies with Findable, Accessible, Interoperable, and Reusable (FAIR) [57] data principles,

making its results accessible to all. GO annotation for Severe Acute Respiratory Syndrome

Coronavirus 2 (SARS-CoV-2) and its infection of human cells was immediately pursued to aid

strategic planning of the pandemic response (http://geneontology.org/covid-19.html). We

appeal to scientists to participate in biocuration efforts through GONUTS, UniProt, or a

model organism database/the Alliance of Genome Resources where users can contribute from

the comfort of any computer [58].

Materials and methods

CACAO competitions for intercollegiate teams are hosted on GONUTS (https://gowiki.tamu.

edu/). Raw data for all users and every annotation history are maintained by custom exten-

sions to the MediaWiki software used by GONUTS [33]. Additional information about com-

petition rules can be found at https://gowiki.tamu.edu/wiki/index.php/Category:CACAO. The

data presented here encompass annotations generated from 2010 to 2018, with expanded

taxon information retrieved using the UniProt application programming interface (API) as

well as the ETE (v3.1.1) module and various tools from BioPython (v1.74) [59,60]. Summary

statistics for CACAO annotations given in Fig 1 were mined from our local database storage.

Fully correct annotation data are transferred from GONUTS regularly via the current Gene

Association File (GAF) or Gene Product Association Data (GPAD) file format, as outlined in

GO requirements, directly to the European Bioinformatics Institute’s Protein2GO for incorpo-

ration into the complete GO annotation files. All currently included annotations are accessible

on GONUTS or via the search engine QuickGO (https://www.ebi.ac.uk/QuickGO/

annotations) by filtering for parameter “assigned by” CACAO and are also provided as a Sup-

porting information dataset in GPAD format (S1 File) [61].
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The 01-01-2020 non IEA GAF (goa_uniprot_all_noiea.gaf.gz) and ontology file (go.obo)

were downloaded from http://release.geneontology.org/ for the dcnt analysis. Values for dcnt
were calculated according to GOATOOLS on all manual annotations not assigned by CACAO

[34]. The Mann–Whitney test with a 2-sided p-value was used to compare GO and CACAO

dcnt distributions within each aspect using SciPy [62,63].

For the phage analyses, the GAF was filtered into a subset using the following TaxIDs from

the NCBI Taxonomy browser: 12333 (unclassified bacterial viruses), 1714267 (Gammasphaer-

olipovirus), 10656 (Tectiviridae), 10472 (Plasmaviridae), 10659 (Corticoviridae), 10841

(Microviridae), 10860 (Inoviridae), 28883 (Caudovirales), 11989 (Leviviridae), and 10877

(Cystoviridae).

Changes to the ontology initiated by CACAO users were tallied by searching through the

GO issue tracker at GitHub (https://github.com/geneontology/go-ontology/issues) for user

handles: @jimhu-tamu, @suzialeksander, @sandyl27, @jrr-cpt, @ivanerill, and/or the query

text “CACAO” for open and closed issues, then manually reviewed for accuracy. Matplotlib

(v3.1.1) and Seaborn (v0.9.0) were used to generate pie charts, box plots, and bar graphs

[64,65]. Figures were compiled and rendered with the open-source program Inkscape 0.92.2.

Supporting information

S1 File. CACAO GPAD data. The full GPAD format file (in an Excel workbook) with all

annotations used for the analysis presented. CACAO, Community Assessment of Community

Annotation with Ontologies; GPAD, Gene Product Association Data.

(XLSX)

Acknowledgments

Support for teaching space was provided by the Department of Biochemistry & Biophysics at

Texas A&M University. Annotators from across the globe have participated in CACAO com-

petitions, including teams from University College London, University of North Texas, Miami

University (Ohio), Penn State University, Michigan State University, North Dakota State Uni-

versity, Hofstra University, Swarthmore College, Houston Baptist University, Mississippi State

University, University of Wisconsin-Madison, University of Wisconsin-Parkside, University

of Central Florida, Otterbein University, Centenary College of Louisiana, Harvard University,

John Brown University, Minnesota State-Morehead, Suffolk University, University of Califor-

nia-Davis, Stanford University, Doane University, Drexel University, James Madison Univer-

sity, Oakland University, Radford University, University of Cincinnati, University of

Maryland, Baltimore County, and Virginia Commonwealth University. The contributions of

hundreds of student users are proudly acknowledged. We are thankful to colleagues in the

Gene Ontology Consortium for their active support and collaboration on this community

annotation project. The authors extend an apology to any contributors not named here; how-

ever, their participation was foundational to the work and is deeply appreciated as well. This

manuscript is dedicated to our beloved coauthor, the late Dr. James “Jim” C. Hu, a committed

educator, microbial advocate, and invaluable scientific community member.

References
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