UC Berkeley
UC Berkeley Previously Published Works

Title
Towards understanding HPC users and systems: A NERSC case study

Permalink

bttgs:ééescholarshiQ.orgéucéitemg9g63d08g

Authors

Rodrigo, Gonzalo P
Ostberg, P-O
Elmroth, Erik

Publication Date
2018

DOI
10.1016/j.jpdc.2017.09.002

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/9g63d08m
https://escholarship.org/uc/item/9g63d08m#author
https://escholarship.org
http://www.cdlib.org/

J. Parallel Distrib. Comput. 111 (2018) 206-221

journal homepage: www.elsevier.com/locate/jpdc

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

PARALLELAND
DISTRIBUTED
COMPUTING

Towards understanding HPC users and systems: A NERSC case study

CrossMark

Gonzalo P. Rodrigo **1, P.-0. Ostberg?, Erik Elmroth ¢, Katie Antypas P, Richard Gerber?,

Lavanya Ramakrishnan®

2 Department Computing Science, Umed University, SE-901 87, Umed, Sweden
b Lawrence Berkeley National Lab Berkeley, CA 94720, USA

HIGHLIGHTS

o A method to perform analysis of HPC systems’ workloads is proposed including per year detailed and time evolution analyses.

e A method to measure heterogeneity in job geometry is proposed.
e State of workload of three reference HPC systems are presented.

e Job geometry heterogeneity in queue is shown to affect wait time predictability.

ARTICLE INFO ABSTRACT

Article history:

Received 20 April 2017

Received in revised form 18 August 2017
Accepted 4 September 2017

Available online 14 September 2017

High performance computing (HPC) scheduling landscape currently faces new challenges due to the
changes in the workload. Previously, HPC centers were dominated by tightly coupled MPI jobs. HPC
workloads increasingly include high-throughput, data-intensive, and stream-processing applications. As
a consequence, workloads are becoming more diverse at both application and job levels, posing new
challenges to classical HPC schedulers. There is a need to understand the current HPC workloads and
their evolution to facilitate informed future scheduling research and enable efficient scheduling in future

Keywords:

Workload analysis HPC syst'ems. . . .
Supercomputer In this paper, we present a methodology to characterize workloads and assess their heterogeneity,
HPC at a particular time period and its evolution over time. We apply this methodology to the workloads of
Scheduling three systems (Hopper, Edison, and Carver) at the National Energy Research Scientific Computing Center
NERSC (NERSC). We present the resulting characterization of jobs, queues, heterogeneity, and performance that
EEIEFOgEHEity includes detailed information of a year of workload (2014) and evolution through the systems’ lifetime

-means

(2010-2014).

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

High performance computing (HPC) supports scientific research
by providing large-scale resources to run simulations. Such appli-
cations are composed as tightly coupled MPI models, that have
dominated HPC workloads. However, the workload characteristics
on HPC systems has evolved in the last few years. For instance,
some scientific fields like biology or astrophysics increasing rely on
analysis of large datasets. Also, as compute capacity keeps growing,
simulations produce larger datasets that require analysis. Finally,

* Corresponding author at: Lawrence Berkeley National Lab Berkeley, CA 94720,
USA.

E-mail addresses: gprodrigoalvarez@lbl.gov (G.P. Rodrigo), p-o@cs.umu.se
(P.-0. Ostberg), elmroth@cs.umu.se (E. Elmroth), kantypas@Ibl.gov (K. Antypas),
ragerber@lbl.gov (R. Gerber), Iramakrishnan@Ibl.gov (L. Ramakrishnan).

T work performed in part at the Lawrence Berkeley National Lab.

http://dx.doi.org/10.1016/j.jpdc.2017.09.002
0743-7315/© 2017 Elsevier Inc. All rights reserved.

advances in experimental devices enable real experiments to pro-
duce higher resolution data that requires real-time processing.
These trends have resulted in workloads becoming more diverse
necessitating the need to support high-throughput, data-intensive,
and stream-processing applications. It is unclear if current HPC
schedulers produce optimal decisions for these workloads, since
their focus has been on MPI dominated applications.

The evolving diverse workload requires that new scheduling
models are investigated. Such research must be informed by a
characterization of the state, with a focus on diversity, of current
workloads in HPC centers and their evolution. Workload character-
ization efforts are necessary to inform both short-term and long-
term scheduling decisions. For example, workload characterization
has informed the design of a real-time job queue on Cori [20],
the most recent petascale system at the National Energy Research
Scientific Computing Center (NERSC). The characterization showed

http://dx.doi.org/10.1016/j.jpdc.2017.09.002
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2017.09.002&domain=pdf
mailto:gprodrigoalvarez@lbl.gov
mailto:p-o@cs.umu.se
mailto:elmroth@cs.umu.se
mailto:kantypas@lbl.gov
mailto:ragerber@lbl.gov
mailto:lramakrishnan@lbl.gov
http://dx.doi.org/10.1016/j.jpdc.2017.09.002

G.P. Rodrigo et al. /]. Parallel Distrib. Comput. 111 (2018) 206-221 207

that the short run time of debug jobs guarantees frequent liber-
ation of resources. As a consequence, any top priority job sub-
mitted to the debug partition will start within two minutes of its
submission.

Previous efforts on workload modeling [11], while useful, are
not representative of the top recent HPC systems. Also, previous
work did not focus on the system queue configuration or the
workload diversity, a new trait present in recent workloads. Thus,
there is a need to investigate the workloads in current HPC centers
to understand users and applications requirements.

In this paper, we combine and extend previous work on work-
load analysis [2,31]. First, we expand on the methodology to an-
alyze system workloads in detail [2] by including a distribution
analysis on job variables (degree of parallelism, run time, core-
hours, inter-arrival time, and run time estimation accuracy) and
a study on the system utilization estimation. This completes the
characterization of the three systems with all the job related infor-
mation needed to inform future job-scheduling research. We also
detail a method to study the job geometry (allocated resources and
run time) diversity. This method employs k-means clustering to
identify dominating groups of jobs in the workload according to
their geometry (run time and allocated CPU cores). In this work,
we include also the algorithms needed to calculate the minimum
number of job clusters. The extensions presented in this paper are
critical for reproducibility and enables other researchers to apply
these methods. Also, we perform an analysis of the correlation
of queue diversity and wait times for jobs of different sizes. This
analysis attempts to understand if the wait time of jobs matches
the expected values according to priority and system configuration
(i.e., larger jobs should wait longer, higher priority jobs should wait
shorter) or if they deviate due to job heterogeneity. As an addition
to previous work, we add requested run time as another variable in
the analysis. This allows us to perform a complete analysis on wait
times depending on all job-related variables that affect it including
requested CPU cores, run time, job priority, and associated resource
set size.

We also extend a second piece of work that characterizes HPC
systems through their life by analyzing its workload variables
evolution [31]. In this work we add the analysis of geometry
homogeneity evolution. This allows understanding if the changes
on the application landscape run on HPC system have an impact on
the geometry of the jobs.

We apply our complete evaluation methodologies to the work-
loads of three systems (Hopper, Carver, and Edison) at the National
Energy Research Scientific Computing Center (NERSC) [26] that are
representative of current HPC systems. Carver is a terascale IBM
high performance cluster built on commodity hardware supported
by an Infiniband interconnect; Hopper is an early petascale Cray
supercomputer based on AMD processors; and Edison is a recent
and energy efficient petascale Cray supercomputer based on Intel
processors. The results include a detailed analysis on the jobs,
queues, and system behavior in each year over their lifetime for the
Hopper and Carver and in 2014’s for Edison. Our results establish
the foundation necessary to predict future HPC workloads for
designing future resource management models.

Our workload analysis methodology can also be used to inform
short-term and long-term decisions at HPC centers. Periodical
workload analyses can be aggregated in a growing trend analysis
that can reveal changes in the user behavior and system perfor-
mance. Also, the boundary geometries (i.e. run time and degree
of parallelization) in workload’s job clusters might be used as a
starting template to define priority groups (queues) to avoid mixed
queues and minimize discontinuities in expected job wait time
behavior.

Specifically, our contributions in this paper include:

e We present a full description of the methods and algorithms
required to perform workload diversity analysis and mea-
sure the self similarity of the jobs in the workload and their
mapping on to the prioritization queues.

e We define a method to analyze the wait time of jobs de-
pending on their geometry, queue priority, and diversity.
We extend our previous work that did not take into account
the run time of jobs in the analysis.

e We provide a detailed job, queue, performance, and di-
versity characterization of the NERSC workload, and their
evolution over time. The results enable us to understand the
users, system behavior, and the effect of queue heterogene-
ity on job wait time.

e We present a summary of analysis results and compare
them with characterizations of other existing HPC work-
loads.

The rest of the paper is organized as follows. We present
background on HPC systems, scheduling, and workload analysis in
Section 2. A high level description of our method and the analyzed
systems is presented in Section 3. The details of the methodology
and its application to the NERSC workloads are described in Sec-
tions 4 to 7. Finally, we provide our conclusions in Section 9.

2. Background

In this section, we describe the challenges in the HPC commu-
nity that motivate this work, introduce basic concepts on parallel
job scheduling, and review previous work on workload analysis
relevant to understand our methodology and results.

2.1. Challenges in HPC scheduling

The challenges of resource management in HPC are changing.
New application characteristics and technological shifts are bring-
ing new concepts and requirements to scheduling models and
system architectures. In this section, we highlight some workload
changes that stress the importance of our analysis methods.

Stream applications are becoming more present in HPC sys-
tems. Scientists conduct experiments that would benefit from
real-time processing of large amounts of data on HPC systems
(e.g. X-ray Micro-diffraction on Advanced Light Source at LBNL [5]).
Real-time processing could potentially be performed by providing
resources through advance reservations. However, advance reser-
vations have a negative impact on the overall utilization, showing
the need for real-time scheduling (i.e., low-latency allocation of
resources, with no previous reservation as a response to a real-time
event).

Scientific experiments in fields like biology, earth sciences, or
high energy physics are increasingly relying on data analysis to
extract useful information from large experimental datasets, or
results from large simulations [16,33]. These applications increase
the importance of data-intensive computational models in HPC
workloads, or the composition of different applications through
workflows (e.g., simulation followed by results’ analysis). These
changes motivate us to analyze the workloads at supercomputers
to understand their current characteristics.

The importance of stream and data intensive applications point
at an increasing diversity in workloads at HPC centers. Diversity
might affect the performance of the scheduler, which governs
the execution of applications in HPC systems. For example, the
impact of the scheduling decisions is different across applications.
Delaying one job belonging to a workflow may have a significant
impact on its overall run time, while delaying a stream job that has
to be rapidly scheduled might render it useless. Also, schedulers

208 G.P. Rodrigo et al. /]. Parallel Distrib. Comput. 111 (2018) 206-221

Table 1

Edison, Hopper, and Carver characteristics.
System Vendor Model Built Nodes Cores/N Cores Memory Network TFlops/s Service
Hopper Cray XE6 2010 6384 24 154,216 212TB Gemini 1280 Jan'10
Edison Cray XC30 2013 5576 24 133,824 357 TB Aries 2570 Jan'13
Carver IBM iDataPlex 2010 1120 8/12/32 9,984 147 TB Infiniband 106.5 Apr'10

are unaware of the different architecture-related constraints in
applications (e.g. /O bound performance, loosely coupled jobs,
and data locality). However, information about such constraints is
required for the scheduler to perform optimal placement decisions.
Understanding the impact of the application diversity on the sys-
tem at its most basic level - job geometry — motivates our workload
heterogeneity analysis.

2.2. Scheduling

HPC schedulers optimize job placement to achieve the highest
system utilization possible with a reasonable turn-around time
according to the job priority. The most common base technique in
schedulers is FCFS (First-Come, First-Served) [13]. In FCFS, jobs are
selected in order, reserving the associated resources required for
a job. However, with FCFS, the scheduler has to drain the system
in order to schedule a large job, leading to resource fragmentation
that reduces the overall utilization. Thus, backfilling is normally
used to fill resource gaps produced by FCFS. Backfilling provides an
ordered search in the waiting queue to map jobs to empty resource
windows even if they are not at the head of the queue [23].

The quality of the results of the backfilling algorithm depends
on the user’s wall clock time estimation [13]. If a job wall clock
time is overestimated, the scheduler will assign an unnecessary
large resource window, reducing the opportunities to schedule
a job through backfilling. On the contrary, if wall clock time is
underestimated (i.e., runs over its limit), the system will kill the job
resulting in lost work. These effects motivate job wall clock time
accuracy (relationship between estimated and actual wall clock
time) characterization presented in Section 4.2.

Finally, a job’s turnaround time depends on its priority (influ-
encing its progress on the scheduler wait queue in each schedul-
ing pass), geometry (jobs requiring more resources are harder to
schedule), and requested resource load (how many jobs compete
for the same resources). However, job diversity in the queues might
affect this relationship. In Section 6.2 we present an analysis of
the possible impact of these factors (including job diversity) on the
job’s wait time.

2.3. Related work on workload analysis

Comparable traces to the ones analyzed in this work can be
found in the Grid Workloads Archive [19] and the Parallel Work-
load Archive [11]. The archives contain job and performance char-
acteristics (run time, parallelism, inter-arrival time, wait time, disk
space, and memory). However, analyzed systems are either at least
10 years old or significantly smaller than the current top HPC
systems.

Some supercomputing centers provide reports that comple-
ment this work by including insights on the workload applications.
The Blue Waters workloads report [21] describes the workload,
applications, and performance of a petascale university super com-
puter. Workload analysis of Mira [32], a Blue Gene system at Ar-
gonne Leadership Computing Facility, provides insight on the user
behavior in an HPC meant to support the scientific problems that
require extreme parallelism. A previous analysis [4] on the appli-
cations run on Hopper in 2012 characterizes the importance of the
different applications run on the system, with an initial insight on
the job geometry and memory requirements. This study throws the

first insights towards application heterogeneity: e.g., Lattice Quan-
tum Chromodynamics (QCD) applications that support moldable
jobs (i.e., geometry can be decided at submission time), consumed
more than 25% of 2012’s Hopper core-hours.

Our work extends previous analyses and reports by addressing
job heterogeneity and performing a comparative analyses of three
recent systems of different sizes and characteristics: Edison was
deployed in 2014 and still ranks 72 in the Top 500 list in June 2017,
Hopper was a petascale system that was retired in late 2015, and
Carver a commodity-hardware based terascale cluster retired in
2015.

Workload analysis methodologies used in our work are based
on methodologies from Feitelson’s book on workload analysis [12].
We model job variables as empirical distributions [24] and present
them as cumulative distribution functions in Figs. 1 and 2. For the
trend analysis in Section 7, patterns periods were detected by per-
forming a Fourier spectral analysis [17] of the inter-arrival time of
the jobs. However, in this work, user behavior is not modeled [40]
because such analysis is only adequate to recreate workload traces
which depend on the behavior of the scheduler [14] that process
them.

As an important factor for scheduling performance, there is
extensive work on user’s run time estimation accuracy. For in-
stance, users’ accuracy is modeled [35] to support jobs scheduling
research. Also, some research job schedulers use automatic run
time predictions, instead of user provided. [36]. Finally, in previous
work, it has been observed that users do better estimations under
circumstances in which jobs are not killed if they run longer than
requested [22].

Existing work on HPC workload analysis does not address job
heterogeneity. Instead, our workload diversity analysis is inspired
by methods used for industrial workloads [25]. This methodology
introduces k-means as a tool for job similarity clustering and is
extended in this work to include per queue analysis and a new
methodology to compare the degree of heterogeneity across sys-
tems and system states.

3. Methodology

In this section, we describe the three systems analyzed
(their characteristics, workload, scheduling model, and configu-
ration), our data source (size, time span, format), analysis frame-
work (motivation for analyzed variables), and our trend analysis
methodology.

3.1. System descriptions

In this section, we describe the characteristics of the three
systems to understand the context of our results.

3.1.1. System characteristics

NERSC is an HPC center at Lawrence Berkeley National Lab,
that has the mission to provide computing infrastructure and tools
for scientists performing research of relevance to the Department
of Energy (DOE). Our work analyzes job logs from three NERSC
systems — Carver, Hopper, and Edison. These three systems were
selected due to their diverse hardware characteristics and origin
in the timeline of HPC systems evolution (Table 1). Carver is a IBM

G.P. Rodrigo et al. /]. Parallel Distrib. Comput. 111 (2018) 206-221

209

e ’ A T =4 CDF i T
1.00 CDF | T S T | 3
| 1 | | | Y [£
! 1 | = 1 1 1 1Y V .
et A . 0.8 G

L | e I~ 7 .

0.90 1t . L I L "‘ ioLq L»" i v |

1 Pl 1 ' ' i 1 1 1 ‘\ 1 ’ . i

A | | ! t Rl 0.6 — :

0.85 ‘/‘,’ L ! L . 0.6 K T i | ; ! !

I ”. : : ‘r : i | [| ' g | |

ogollil ‘ : | it [A K L ‘

T) : : 04 - - co Ut 7 T ;

i i i i] "] o] ,) i

0.75}— " ! [7 if i |

» | | V ' " ' [L i i

! ! [' : i i . 0.2) L
0701 ' ' ' ' 02 " ' N . / A |[cor edison
0.65h_ s : 1 T Cor edison 5 i 0| corcamer / ! | it
s 1 | | | ‘»« CDF carver 0.0 il I L ' « -+ CF hopper ’ L ! i opper

o i | i + .+ COF hopper] . - ~ S o o N
o060k . ; 3 ~ @ OO O ISR S
01 o N N T A L ® VR RS
W.

(a)

(b) Cores allocated.

(c) Core-hours.

Fig. 1. Job geometry characterization on Hopper, Edison, and Carver. (a) Significant percentage (Edison: 87%, Hopper: 82%, Carver: 87%) of the jobs run for 2h or less. (b) 69%
of Edison, 75% of Hopper and 99% of Carver jobs used 240 cores or fewer. (c) Carver’s jobs use significantly fewer core-hours.

1.0

1.0 v -
CDF

CDF

0.8

0.6

0.4

0.2

+— CDF edison
+—+ CDF edison

— CDF edison
— - CDF carver
+ -+ CDF hopper

CDF carver
CDF hopper

— - CDF carver
« -+ CDF hopper

0.0L2

(a) Inter-arrival time (s.).

(b) Wall clock time accuracy.

SN

VoD
o &S
> oo N

o
(c) Wait time (h.).

Fig. 2. Job characterization on Hopper, Edison, and Carver. (a) Carver receives significantly more job submissions per unit time than the other systems: 40% of jobs are
followed by another job within one second. (b) 11% of Edison and 10% of Hopper jobs run over the requested time. Carver: 92% of the jobs run under 50% of requested wall
clock time. (c) Jobs that wait less than 3h to execute: Edison (67%), Hopper (60%), Carver (79%).

iDataPlex Linux cluster [30] deployed in April 2010. Its configu-
ration is the closest to commodity hardware servers of the three
systems and it is supported by an Infiniband interconnect. Hopper
is a petascale Cray XE supercomputer, based on AMD processors
and a Gemini interconnect [37], and deployed in 2010. Edison is a
newer, more power efficient petascale Cray XC30, constructed with
Intel processors supported by an Aries interconnect and deployed
in 2014. Thus, these systems allow us to capture the workload
characteristics of high-end clusters and supercomputers, belong-
ing to different HPC system generations and optimized for slightly
different applications.

For resource management, all three systems use the Moab
scheduler [8,10,30] running atop the Torque resource manager
[34]. Edison’s workload manager was replaced by Slurm at the end
of 2015.

3.1.2. Workload

Over 5000 users and 700 distinct projects use NERSC resources
[3,4]. The workload is composed of applications from various
scientific fields like Fusion, Chemistry, Material Science, Climate
Research, Lattice Gauge Theory, Accelerator Physics, Astrophysics,
Life Sciences, and Nuclear Physics.

Carver provides a serial queue [28]. The serial queue allows
users to submit and execute jobs that need a single core. Carver
has 80 compute nodes allocated to serial jobs. Serial queues were
added to Hopper and Edison in late 2014. The serial queues on
Edison and Hopper are configured to use the Cluster Compatibility
Mode (CCM). There are 15 compute nodes allocated to run serial
jobs on Edison and Hopper. Serial queues contain jobs running long
time (limited to 48 h) on a single core. The purpose of the serial
queue is to increase resource utilization density. It packs jobs on

the same node that do not benefit from parallelism and where
performance is either not critical or rarely affected by resource
sharing.

Run time characteristics of applications, execution schema, or
other variables were not considered or analyzed in this study.
The conclusions from this work are only from the job related
information of the workload.

3.1.3. Scheduler characteristics

The configuration of a system scheduler has an impact on the
system performance (i.e., utilization, wait time) and the workload
shape. For example, jobs allocation sizes will cluster around al-
lowed values in submission queues. We present the configuration
of the system scheduler to provide context for later analyses.

First, node sharing is only enabled for nodes executing jobs
from the serial queue to avoid performance degradation [39]. In
order to keep the same baseline, we consider cores as the degree
of parallelism unit in our analysis.

In all systems there is a distinction between the queues chosen
at submission time (Torque) and the queues that the scheduler use
for priority calculation (Moab). Users submit jobs to the Torque
submission queues. Moab has its own queue configuration — the
execution queues. Torque translates the queue into Moab’s exe-
cution queues and passes the job to the scheduler. Submission
queues can be mapped to a single or multiple execution queues.
For example, jobs of up to 10 h of run time maybe submitted
to the same submission queue, to be sorted into two execution
queues with ranges of [0, 5), [5, 10) run time hours. Table 2 shows
queue properties that govern the scheduling decisions for our three
systems.

210 G.P. Rodrigo et al. /]. Parallel Distrib. Comput. 111 (2018) 206-221

Table 2

Hopper, Edison, and Carver queue characteristics. Jobs have to be within certain limits to be accepted in a queue: requested run time upper limit (wall clock time) and
accepted number cores range (Cores). Eligibility (E.): Maximum number of jobs from the same user in the same queue which are considered in jobs priority recalculation.

Priority (P.): Queue priority.

Hopper Wall Cores E. P. Edison Wall Cores E. P. Carver Wall Cores E. P.
Queues clock Queues clock Queues clock
bigmem 24h 1-8,856 1 0 matgen_low Unk 1-256 66
ccm_int 30m 1-12,288 2 1 cm_int 30m 1-12,288 2 1 matgen_prior Unk 1-256 66 10
ccm_queue 96 h 1-12,288 16 1 ccm_queue 96 h 1-16,368 16 0 matgen_reg Unk 1-256 66 1
debug 30 m 1-12,288 2 1 debug 30 m 1-12,288 2 1 debug 30 m 1-256 1 2
low 48 h 1-16,392 6 -3 low 48 h 1-16,392 6 -3 low 24h 1-256 3 —2
premium 48 h 1-49,152 1 2 premium 36 h 1-49,152 1 2 xlmem_sm 72h 8 1 0
reg_1h 1h Unk. 8 0 reg_1h 1h Unk. 16 0 xlmem_lg 72 h 32 2 0
reg_big 36h 49,153-98,304 2 1 reg_big 36h 49,153-98304 2 1 reg_big 24h 257-512 1 0
reg_long 96 h 1-1,536 4 0 reg_long 168h 1-128 1 0
reg_med 36h 16,369-49,152 4 1 reg_med 36h 16,369-49,152 8 1 reg_med 36h 129-256 2 0
reg_short 6h 1-16,368 16 0 reg_short 6h 1-16,368 24 0 reg_short 4h 1-128 4 0
reg_small 48 h 1-16,368 6 0 reg_small 48 h 1-16,368 24 0 reg_small 48 h 1-128 30
reg_xbig 12h 98,305- 2 0 reg_xbig 12h 98,305- 2 1 reg_ xlong 504h 1-32 1 0
146,400 131,088 interactive 30m 1-64 1 2
thruput 168 h 1-48 500 0 killable 48 h 1-16,368 8 0 serial 48 h 1 20 -

Maximum wall clock time (Torque): Each queue has an upper
limit for a job’s estimated wall clock time specified by the user
at submission time. If a job’s estimated wall clock time is longer
than this limit, submission fails. If a job runs longer than the user
estimated wall clock time, the job is terminated.

Number of cores (Torque): Each queue has a predefined minimum
and maximum limit of a job’s requested number of cores. Submis-
sion of a job allocating a number of cores outside this range will
fail.

Queue priority (P) (Moab): Each queue in the system is assigned
a priority (represented as an integer where a higher number rep-
resent a higher priority).

Eligible jobs limit per user (E) (Moab): Only the first E jobs of the
same user in the same execution queue are eligible for scheduling.
This can affect a job’s wait time. For example, if a user submits 25
jobs to the serial queue on Carver, only the first 20 jobs will be
considered for scheduling. The last five jobs will only be considered
to be scheduled after the first five jobs have finished. This can
impact wait times for the jobs where the last five jobs may have
significantly higher wait times than the other 20 jobs.

The execution queues do not exist as separate data structures
inside Moab. All jobs are stored in a single queue. When a job is
passed to Moab, it is inserted in its job waiting queue with a job
priority of zero. In every scheduling pass, the job priority is recalcu-
lated by adding a value, which depends on the associated execution
queue priority. If a job is in a higher priority queue, the job priority
will grow faster and it will be eligible for execution more quickly.
The analysis of the impact of the queue characteristics on jobs wait
time is presented in Section 6.2.

3.1.4. Queue configuration

The scheduler re-calculates each job’s priority depending on
the queue selected during its submission. We present the queue
configurations in detail since they affects the job ordering and
overall system behavior.

Table 2 presents the execution queue configuration of Edison,
Hopper, and Carver used in the analysis. It covers each queue’s job
maximum run time (Wall Clock Time), job allowed allocations in
numbers of cores (Cores), number of eligible jobs allowed to be
scheduled simultaneously (E), and the priority of the queue (P).
This information allows us to understand the reasons for different
wait time behaviors between queues.

The batch queue policies influence the execution order of the
jobs. These policies changed slightly through the period of our
study; we present the settings that were most common through
the period of study. Also, some queues were filtered out of this

study as they represented too little of the workload, or were related
to system maintenance and tests.

Edison and Hopper map their queues on a single set of re-
sources (independent for each system). However, Carver queues
are mapped in sets that partly overlap: general set (1080 nodes),
matgen set (64 nodes, subset of the general set), xlmem set (two
nodes with large memory capacity), and serial set (80 nodes, not
overlapping). Different queues have access to different sets: mat-
gen queue jobs can only run on matgen resources (but jobs from
other queues can use the matgen queue when they are available).
xlmem nodes can be only used by xImem jobs. This implies that
different queues may not present the same ratio of job core-hours
requested over resource core-hours available. We study the impact
of this characteristic on job wait time and results are detailed in
Section 6.2.

The serial queue jobs allocate one core per job and are executed
on multi-job nodes (more than one job per node) that are exclusive
to this queue. The wait time behavior of the serial queue is not
compared to other queues since it does not compete on the usage
of its resources.

3.2. Data source

All workload analysis is performed on the job summary entries
from the Torque logs. The data includes 1 year and 1,357,366 jobs
for Edison, 4.5 years and 4,326,870 jobs for Hopper, and 4.5 years
and 9,508,054 jobs for Carver. The raw data size is 45 GB, which,
after filtering and parsing, is reduced to 6 GB of net data.

3.3. Analysis framework

The analysis framework is composed of a set of scripts that
constitute the data pipeline to process the log data. This data
pipeline is divided into three components. First, a data extractor,
which retrieves the log files from the NERSC repository, parses
them, eliminates invalid entries and inserts them in a MySQL
database. Second, a Python API to insert, manipulate, and retrieve
the data from a MySQL database. The MySQL database is indexed to
facilitate the queries based on multiple fields. The analysis toolkit
implements the logic to retrieve, analyze, and visualize the data
for all the analyses. A specific plotting library was developed to
support the graph generation. The code consists of 14K Python
lines using scientific libraries SciPy and NumPy combined with the
plotting library MatPlotLib [18]. All analyses were run on an Intel
i7 Quad core 8 GB RAM desktop computer. The database is hosted
on a department server at Berkeley Lab.

G.P. Rodrigo et al. /]. Parallel Distrib. Comput. 111 (2018) 206-221 211

Our analysis focuses on understanding the variables of the
workload from the user (i.e., job) and system (i.e.,, queues and
performance) perspectives. The variables studied under the job
perspective are:

Job size includes wall clock time (requested and effective), de-
gree of parallelism, and resulting compute time allocation. These
parameters define the system boundary requirements and job
granularity.

Wall clock time accuracy represents the accuracy of the user
estimations on the job run time. The variable measures the quality
of the information used by the scheduler in its job planning.
Inter-arrival time models the time between the submission of two
jobs. It represents the load to be managed by the scheduler and the
overall wait time. For instance, for the same job and system sizes,
a smaller inter-arrival time represents a larger job load and longer
job wait times are expected.

Job diversity measures the difference between the geometries
of jobs in the workload. It includes the analysis of dominant job
geometries in the workload.

The queues and their configuration represent the mapping of
the prioritization policies to the workload job mix. The queue
perspective includes the study of:

Queue significance represents the impact of each queue on the
overall system. It provides insight on the impact of the properties
of each queue to the overall system behavior according to their
importance.

Queue job diversity captures the similarity between the jobs
within each queue in terms of geometry. This analysis is relevant
because the queue-priority system is the mechanism used by
the scheduler to prioritize jobs depending on their geometry and
importance. If this mechanism is not correctly aligned with the
workload characteristics (e.g., the existing queues do not repre-
sent the most significant geometries present in the job mix) the
scheduler might fail to bring the system to the state specified in
its configuration. In our work, we are focused on two objectives (a)
understanding the diversity of the jobs across the entire workload,
and (b) similarity of jobs contained in the same queues.

The performance perspective covers the system utilization and
job wait time. Additionally, the job wait time is studied from
system, queue, and job geometry points of view. This study pro-
vides insight on the effects of the job diversity, job geometry,
and queue configuration on the effectiveness of the queue-priority
mechanism.

3.4. Trend analysis

The workloads of Carver and Hopper were analyzed for each
year of their lifetime but this paper only details the results of
2014. The relevant results of all years were aggregated in the trend
analysis to present the evolution of Carver and Hopper workloads
through their lifetime. Edison’s lifetime was too short at the time
this analysis was performed to capture the trend analysis.

In the trend analysis, the evolution of the system’s workload,
overall performance, and user behavior are presented. As ex-
plained in Section 3.3, workload trend covers the evolution of the
job geometry (wall clock time and degree of parallelism). Overall
performance is analyzed through the evolution of job wait time.
User behavior is analyzed by observing the evolution of the wall
clock time accuracy.

Finally, since the trend is projected by analyzing the workload in
sequential time periods and aggregating the results over a period of
time, an adequate period had to be chosen. The size of the workload
periods is calculated by detecting repeated user patterns in the
workloads through Fourier transform analysis on the number of
tasks submitted per hour [38].

Table 3

Detailed job characteristics distribution analysis.
Job distribution Edison Hopper Carver
%Jobs Wall Clock < 2 h. 88% 86% 87%
%Jobs Width < 240 codes 69% 75% 99%
%Jobs Width < 1 Node 39% 37% 92%
%Jobs Alloc. < 1 core-h. 19% 26% 77%
%Jobs Alloc. > 1K core-h. 7% 8% ~8%

4. Job characterization

In this section, we provide the characterization of job geometry,
user submission patterns, and job diversity on Edison, Hooper, and
Carver in 2014.

4.1. Job geometry

The Cumulative Distribution Function (CDF) analysis of the

job variables provides information on the patterns in resource
allocations and dominant job groups that the scheduler manages.
The absence of smaller jobs can predict low system utilization as
backfilling scheduling requires such jobs to function efficiently. We
present the analysis results for each of the job variables in this
section.
Job wall clock time. Fig. 1a shows the Cumulative Distribution
Function (CDF) of the job wall clock time for the three systems
in 2014, re-framed to show jobs that run up to 40 h. Table 3
summarizes the most relevant values observed in the CDF.

The run time of the jobs is skewed towards short run times. In
the case of Hopper, although we observe jobs running up to 160 h,
a high percentage run for less than two hours (88%). This is not
exclusive to Hopper, in fact, 86-88% of the jobs on all three systems
run for fewer than two hours. In Carver, jobs are even shorter since
numerous run times are shorter than one hour and 60% of them are
shorter than 13 min.

Additionally, all three CDFs present bumps around 30 min and

6, 12, 24, and 36 h. These job durations are similar to some of the
queue wall clock time limits (similar across three machines as seen
in Table 2). These bumps might suggest that a significant group of
jobs are submitted with a run time equal to maximum allowed in
their corresponding queue.
Cores per job. Fig. 1b presents the distribution of cores allocated
to jobs on the three systems. It represents the number of cores
requested and allocated to a certain job, and does not include any
information on the actual usage of the cores. On Hopper and Edi-
son, requests for a single job range from 24 (1 node) to over 100,000
cores (i.e. close to the full capacity of the systems). However, few
cores are requested for most of Hopper’s jobs i.e., 75% allocate
under 240 cores (10 nodes), and 37% of all jobs run on a single node
(Table 3). Edison presents a similar pattern with 69% of the jobs
running on less than 240 cores and 39% on a single node. Carver
shows a different trend from Edison and Hopper, with significantly
smaller allocations. On Carver, many jobs run on few cores i.e., 99%
run on 240 cores or fewer, and 92% of all jobs run on a single node.
Allocated core-hours per job. Fig. 1c shows core-hours allocated
for the jobs in the system. The figure shows that Hopper and Edison
core-hour allocations are similar. Jobs on Hopper and Edison are
significantly larger than those on Carver — 99% of Carver jobs
individually consume less than one core-hour, in comparison with
42% on Edison and 46% on Hopper. On the other extreme, we
observe that nearly 10% of Edison and Hopper jobs consume more
than 1000 core-hours individually.

212 G.P. Rodrigo et al. /]. Parallel Distrib. Comput. 111 (2018) 206-221

4.2. Job characteristics

In this section, we study the relationship of job variables to

user’s submission patterns (inter-arrival time and wall clock time
accuracy) and job’s overall wait time (which depends on the sched-
uler configuration). A more detailed analysis of the job wait time
is presented in Section 6.2.
Inter-arrival time. Fig. 2a represents the CDF for the inter-arrival
times on Edison, Hopper, and Carver. The inter-arrival time mea-
sures the time elapsed between the arrival of consecutive jobs
in a system, which can affect the granularity of scheduling. This
analysis also helps us to understand the load on the schedulers.

Edison and Hopper have very similar distributions: 90% of the

jobs have inter-arrival times under two minutes. The remaining
10% are distributed in the 1500-2000 s (25-33 min) range. On the
other hand, more than 95% of Carver’s inter-arrival times are under
25 s. Thus, when compared to Edison and Hopper, we observe that
more jobs are submitted to Carver queues during the studied time
period.
Wall clock time accuracy. For each job we study the difference
between the actual and the requested wall clock times. The accu-
racy is defined as % where W is the actual wall clock time of a
job and W; is the wall clock time that the user requested for the
job. The accuracy will be close to one when the estimation is good,
and closer to zero when the job running time is overestimated. If
the job runs over the requested time, the job will be preempted.
Values significantly over one correspond to preempted jobs where
run time is small compared to the extra time required to kill them.
The exact time when a job gets preempted is also dependent on the
time between scheduling passes.

Fig. 2b shows the distribution of the wall clock time accuracy
values for the three systems. The initial steep slope of Carver’s
CDF shows that it executes many jobs that use much less than
the requested wall clock time. Edison and Hopper have linear CDF
for values between zero and close to one. However, in all systems
there are numerous jobs with an accuracy slightly above one. The
percentage of such jobs is higher on Edison (11%) and Hopper
(10%) than on Carver (2%). Approximately 60% of Edison and 66%
of Hopper jobs run 50% or less of the requested time. On Carver,
around 93% of the jobs run 50% or less of the requested time.
Wait time. Fig. 2c presents the distribution of job wait times under
24 h (jobs with longer wait times are not included in this graph).
The figure shows that Hopper has jobs with longer wait times
compared to Edison and Carver. Considering all the jobs in the
system, 61% of Hopper jobs, 67% of Edison jobs, and 80% of Carver
jobs support a wait time of less than three hours. Further analysis
of the wait time values is presented in Section 6.2.

4.3. Job diversity

The job diversity analysis is based on a machine learning tech-
nique for data clustering (k-means). We use and extend previous
work on job grouping in cloud workloads [25]. The analysis aims
to calculate the smallest possible number of k-means clusters [15]
among the job geometry tuples with a maximum variation coeffi-
cient (v.c.), that is standard deviation divided by the mean, of 1.1. If
jobs are largely similar, the method will group them in few clusters.
Likewise, jobs from more diverse workloads will be grouped in
numerous clusters.

As an initial step, jobs are transformed into geometry tuples
composed by two real numbers — the job’s actual wall clock time
and the number of cores it allocates. Next, data tuples are normal-
ized or “whitened” [7] to reduce the effect of the magnitudes of
the values on the clustering process. The obtained tuple set is then
analyzed with the minimum clusters search algorithm presented
in Fig. 3.

1: (repetitions, trialsSmaller K') + (10, 10)
2: maxCulsterVar < 1.1
3: minK Found « —1
4: (finalClust, finalCent) < (None, None)
5: normJobs < whiten(all.Jobs)
6: for i < 1, repetitions do
T seed = genRandomSeed()
8: k<« 2
9: cent < genRandomCentroids(k, seed)
10: for j < 1,trialsSmallerK do
11: if &k >= minK Found and minK Found # —1 then
12: break
13: end if
14: Clust, cent < kMeans(norm.Jobs, cent)
15: cvList < calcC'V ForClusters(Clust, cent)
16: newCentroids < ||
17: for | «+ 0,len(cvList) do
18: if cvList[l] <= mazCulsterVar then
19: newCentroids.append(cent|i])
20: else
21: newCentroids.append(splitCentInTwo(cent[i]))
22: end if
23: end for
24: if len(cent) = len(newCentriods) then
25: (finalClust, finalCent) < (clust, cent)
26: if minK Found = len(finalCent) then
27: break
28: end if
29: if minK Found = —1 then
30: minK Found «+ len(finalCent)
31: else
32: minK Found < min(k, len(finalCent))
33: end if
34: end if
35: cent <— newCentroids
36: k < len(newCentroids)
3T end for
38: end for

39: return finalClust, finalCent

Fig. 3. Minimum number of k-means cluster search algorithm for a list of job
geometries.

Minimum clusters search algorithm. The k-means algorithm
receives an input dataset and k centroids used as search starting
conditions to produce k clusters. However, those k clusters are not
guaranteed to be the minimum possible of not dispersed clusters.
As a consequence, k-means must be invoked with different k sizes
and different start conditions to explore the space of possible
clusters in search of the minimum cluster set. Fig. 3 illustrates our
search algorithm that uses a heuristic to calculate k-means initial
conditions from previous clustering results.

First, the algorithm whitens the input job geometry tuples (line
5) to reduce the effect of the value sizes on the clustering. Next,
the process to find the minimum number of k-means cluster (lines
7-37)isrepeated 10 times with two random tuples (different each
time) as initial centroids. In each attempt (lines 10-37), starting at
k = 2, the algorithm calculates k clusters (line 14). Each cluster is
analyzed (lines 15-23) and if it is not dispersed (v.c. < 1.1), it is
left as it is and its centroid is used in the next clustering. If a cluster
is dispersed (v.c. > 1.1), it is split, its centroid is removed, and
two new centroids close the original one are added (line 21) to the
initial condition of the next clustering. After the centroids analysis-
split ends, the clustering is repeated with the new list of centroids
as starting condition. This process is repeated until non dispersed
clusters are found (lines 26, 27) or k is larger than a previously
observed k of a successful search (lines 11,12). This algorithm does
not guarantee that the absolute minimum number of clusters is
found. However, it produces a good enough local minimum.
Diversity analysis results. Fig. 4 shows the results of the clustering
search method for Edison’s jobs in 2014. This graph is a scatter plot
where each job is represented by a colored dot. The x-coordinate
corresponds to the job’s wall clock time and the y-coordinate to

G.P. Rodrigo et al. /]. Parallel Distrib. Comput. 111 (2018) 206-221 213

Edison-Number of cores vs. Wall clock time
Submission Queues

bench
ccm_int
ccm_queue
debug

L killable
low
premium
reg_lhour
| T H reg_big

2 ™ " reg_med
reg_short
I reg_small
» reg_xbig
special

[y

o
[

o

ey
o
rS
3

iy

o
w
3

ad system
= xfer

Number of cores (Log Scale)

=
o
N
]
o

Q D o N RN <
Wall clock time(h.)

— 0 2 4 6 — 8 — 10
3 5 7 — 9

Fig. 4. Result of the job clustering method for Edison 2014 with 11 clusters. Jobs
are mapped on queues and clusters: Each dot is a job and dot color indicates the
queue. Black dots are cluster centroids and color boxes are the surrounding jobs
belonging to the same cluster. Clusters are sets of jobs with similar geometry. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

the number of cores allocated to the job. Note that the y-axis is
in logarithmic scale. The execution queue of the job is identified by
the color of the dot. The centroids of the clusters are represented by
black dots, while the color boxes are the boundary jobs observed in
each cluster (minimum and maximum wall clock time and number
of cores).

Table 6 shows the results of the clustering. Eight clusters were
found for Carver, 11 for Edison and 12 for Hopper. The lower
number of clusters in Carver indicates a more homogeneous job
set than the ones from Edison and Hopper (which are similar in
their diversity). Carver’s homogeneity could be explained by the
significant presence of jobs from the serial queue in its workload
(70% of total jobs). Serial jobs are not very diverse — they allocate a
single core and their run times are all close to the queue run time
limit.

5. Queue characterization

In the considered systems, job priorities and eligible job geome-
tries are defined by the execution queue properties. The queues
configuration settings influence the user submission behavior, the
distribution of job priorities, and the resulting overall system be-
havior. In this section, relationship between queue configuration,
job geometry, and user submission behavior is analyzed.

Analyses in this section focus on the execution-queues and the
interpretation of the obtained results is based on the description of
queues based on Table 2.

5.1. Queue significance

The significance of each queue in the system is analyzed to
understand its impact on the overall behavior. The significance of
a single queue is measured under three criteria: percentage of jobs
and core-hours contributed to the system by the queue and its
overall function. Fig. 5 shows the normalized view (in percent) of
the number of jobs and core-hours contributed by each execution
queue to the workloads of Edison, Hopper, and Carver. The role of
each queue is presented in Section 3.1.3.

On Hopper, the queues reg_small (30%), debug (20%), reg_1hour
(15%), thruput (9%), and reg_short (8%) contribute the largest num-
ber of jobs to the workload. In terms of core-hours, the order

Edison Hopper Carver-Number of jobs and
core hours per queue (Normallzed)

edison
o
intoivt
e

umber of Jobs
ore Hours

) =

% of the total
hopper
8

< »© & Dy D DN NS
& Sed 9 0@‘%&& q@q@ @(v@ \\& &
& T CPE @& S & <
a0 & 5°

[] Numberofjobs
mmm Core Hours

carver
A
S

KU
PO
&

) Ca S %o
@ @ 2 & \\
& S C\Q\ O ‘ (‘vg @
L
&

\9
6@\ é@ﬁ\oé‘

Queues

Fig. 5. Normalized view of the number of jobs and core-hours per queue in Edison,
Hopper, and Carver.

changes slightly, with reg_small (56%) still being the most signifi-
cant queue but followed instead by reg_med (~ 15%), and reg_short
(~ 7%). The shift in the ordering roots in the size and use of
jobs that they contain. For example, debug contains many jobs
that consume few core-hours because it is used to test small job
executions before running larger jobs. The short wait times in the
debug queue are managed by using a pool of debug-only resources,
jobs having higher than average priority (1) while allowing large
CPU allocations, but limiting the maximum run time to 30 min. The
reg_small queue in Hopper is significant because of its contributed
jobs and core-hours. It is followed by debug, which consists of
small but many jobs that are necessary for testing before running
successful larger jobs in other queues.

Edison queues are very similar to Hopper’s. By contributed
jobs, the order of significance is reg_small, debug, reg_1h, low, and
reg_short. In terms of core-hours, the order is reg_small, reg_med,
and reg_big. Similar to Hopper, the two most important queues are
reg_small (many jobs and many core-hours), and debug (many jobs
and important function).

Carver queues present a different significance pattern. By num-
ber of jobs, the serial queue is the most significant (70%) followed
by matgen_reg (~ 10%), and reg_short. From the point of view
of core-hours, the ordering is reg_small, matgen_reg, reg_med, and
serial. There are two special cases in Carver. First, the serial queue
was created to run all the single core, long run time jobs at NERSC,
that are important part of the Carver workload. The serial jobs
run on exclusive resources (80 nodes) and they do not interfere
with other jobs wait time. Second, Carver’s debug queue is not
significant in terms of number of jobs or core-hours. This is an
interesting difference that could be explained by the longer user
experience and confidence with Carver (an older system in 2014)
and possibly simpler hardware configuration. For the rest of the
queues, we can consider reg_small the most important queue since
it contributes ~ 40% of the workload core-hours.

5.2. Queue diversity

The job diversity analysis presented in Section 4 helps us un-
derstand the dominant job groups present in the workload of
Edison, Hopper, and Carver. These groups could be used as queue
templates to do precise prioritization of jobs by their geometry
if workload configuration was known a priori. In this section, we

214 G.P. Rodrigo et al. /]. Parallel Distrib. Comput. 111 (2018) 206-221

Table 4

Queue homogeneity indices for each machine: share of number of jobs belonging
to its dominant cluster. In light green queues with indices in (0.50, 0.75] interval,
in darker green queues with indices (0.75, 1.00].

Edison 11 c. Hopper 12 c. Carver 8 c.
Queue /1 Queue /1 Queue /1
ccm_queue 0.46 bigmem 0.31 debug 0.32
debug 0.63 ccm_queue 0.45 interactive 0.35
killable 0.40 debug 0.70 low 0.99
low 0.53 matgen_low 0.62
premium 0.27 Kkillable 0.45 matgen_prior 0.66
reg_lhour 0.71 low 0.59 matgen_reg 0.68
reg_big 0.96 premium 0.40 reg_big 0.70
reg_med 0.98 reg_lhour 0.69 reg_long 0.31
reg_short 0.42 reg_big 0.66 reg_med 0.82
reg_small 0.42 reg_long 0.50 reg_short 0.62
reg-_xbig 1.00 reg_med 0.86 reg_small 0.26
reg_short 0.39 regxlong 0.55
reg_small 0.36 serial 0.87
reg_xbig 1.00 usplanck 0.54
thruput 0.77 xlmem_lg 0.24
xlmem_sm 0.58

analyze how the detected dominant job groups map on the existing
queues and how they deviate from the ideal queue template.
Individual queue homogeneity. As a first step, we define the
queue dominant cluster as the job cluster which contributes most
jobs to a queue. We define a queue homogeneity index as the per-
centage of queue jobs belong to the queue’s dominant cluster. For
example, a queue sources jobs from three clusters with 20%, 30%,
and 50% shares. The dominant cluster contributes 50% of the jobs
and, as consequence, the queue homogeneity index is 0.50. A higher
metric value indicates that many jobs of the queue are mapped to
the same cluster and thus, the queue contains more self-similar
jobs. A lower metric value indicates that the queue’s jobs are more
heterogeneous, and it is further from the ideal template established
by the clusters. Also, findings presented later in Section 6.2 suggest
that a low homogeneity index might be associated with non uni-
form wait time behaviors within a queue.

Table 4 presents the queue homogeneity indices for all the
queues in Edison, Hopper, and Carver. In the case of Hopper, lowest
queue homogeneity indices appear in bigmem (0.31), followed
by reg_small (0.36), reg_short (0.39), and premium (0.40). These
queues contain diverse jobs and are candidates to subdivide into
smaller, better defined queues. In particular, an analysis needs to
be performed on the reg_small queue. It is Hopper’s most signifi-
cant queue (in contributed core-hours and jobs), and scores a very
low homogeneity index.

Edison queues are slightly more uniform than Hopper's. Al-
though the premium queue scores a smaller homogeneity index
(0.27) than any of Hopper's, all the rest score over 0.40. Like in
Hopper, the reg_small should be studied as its index is low (0.42)
and it is the most significant queue in the system.

Carver queues are numerous and a few have low homogeneity
indices. xImem_Ig (0.24) is the least homogeneous followed by
reg_small (0.26), debug (0.32), and interactive (0.35). Again, the
importance of the reg_small and its low homogeneity index point
to a need to consider dividing the queue. In contrast, Carver’s
debug queue is much less homogeneous (0.32) than the two other
systems (0.63, 0.70). It could be attributed to the small presence
of serial jobs, very different from regular jobs but without the
overwhelming presence and homogeneity of their native queue.
It is necessary to perform further studies on the range of debug
applications run in all systems to fully understand this difference
and significance.

Table 5
Total System Utilization (TSU) and theoretical Total System Utilization (tTSU). tTSU
is under TSU since it does not take into account system maintenance down times.

System Edison Hopper Carver
TSU 0.91 0.90 N/A
tTSU 0.87 0.80 0.88

6. Performance characterization

In this section, we study the performance of the systems from
the perspectives of both resource providers (utilization) and users
(wait time). This study includes a detailed analysis on the jobs’ wait
time with a focus on its relationship with queue organization and
job diversity.

6.1. Utilization

Facilities such as NERSC report the utilization of their resources
periodically. The 2014 NERSC report calculates the Total System
Utilization (TSU) of Hopper and Edison as:

core-hours used in period

TSU = 1
core-hours available in period (1

The available core-hours are calculated subtracting mainte-
nance time (full and partial) and other temporal resource reduc-
tions. Down times are tracked manually and the TSU is calculated
for reporting reasons. The available logs for this work does not
contain system availability information. Thus, we calculate the
theoretical Total System Utilization (tTSU) as:

core-hours used in period

tTSU = — - - - (2)
time period * maximum system capacity

where time period is the number of hours in the studied time period
and maximum system capacity is the total number of CPU cores of
the system. By definition, tTSU will be less than or equal to TSU. We
present the reported TSU and the tTSU in Table 5. Carver’s reported
TSU was not available for 2014.

6.2. Job wait time

Previous analysis in Section 4.2 presents a coarse grained anal-
ysis of job wait time. Such analysis is important but limited, since
it does not analyze the impact of factors such as job geometry and
priority on wait time. Since representing and analyzing the impact
of three job variables (i.e., requested time, requested CPU cores,
and priority) on wait time is complex, we divide this analysis in two
steps. First, we start with the two variables that are observed to be
more significant and calculate the job’s median wait time grouped
by queues (and thus corresponding priority) and requested num-
ber of CPU cores. Second, we calculate the median job’s wait time
grouped by requested CPU cores and run time in each of the queues.
Wait time vs. requested CPU cores and priority. We present job
wait time for the three systems as heat maps in Fig. 6. For each
system, queues appear on the x-axis, ordered by priority. The y-axis
represents a non-linear categorization of the possible numbers of
cores allocated to jobs. Each square contains the wait time median
(in seconds, minutes, hours, or days) for a particular queue that
was allocated the cores specified on the y-axis. White regions
indicate that there were no jobs with the specific queue and cores
combination. A darker tone or red represents longer wait times
(24 h or longer), and a lighter tone or yellow represents shorter
wait times. The priority of each queue is specified above the heat
map and below the bar graph. The bar chart on top shows the
number of jobs and core-hours contributed by each queue to each
system.

G.P. Rodrigo et al. /]. Parallel Distrib. Comput. 111 (2018) 206-221

‘Wait time dian in

215

by ra ed cores

60 a5

Impact

Hom. Idx_59% 31% 69% 50% 39% 36% 100% 77% 82% 45% 70% 66% 86% 40% _ 53% 46% 40% 59% 42%

42% 80% 63% 96% 98% 100% 27%

99% 62% 70% 31% 82% 62% 26% 55% 24% 58% 68% 32% 35% 66% 87%

Priority 3 0 0 0 o o o0 0 1 1 1 1 1 2 -3 0 0 0 0

0

i 1 1 1 1 2 2 0 0 0 0 0 0 0 0 0 1 2 2 10 NA

200000 |

65535

32767

16383 13h

11m 2h an ‘uh 7h 13m 13<
o
2h 6m 4m 3m [9h 6h 6m dm am ug
8 3m 30m 3m 5m 3h 31lm 6h @ 3m 4m 25m+ | "g
= 8
8 . 3m 22m 3m 4m 2m 3h 5h 2m 2m 5m - -2h 6h 10m 2m 46m
-
o 7h 2m 2h 3m 4m 12m 3h 3h 2m 2m 4m 4 |3m 14s 8h 10h| 53s 7h 6m 525 7m 5
e |
a
.E 4h 2h 3m 2h 3m 6m 8m 39my 40m 2h 4h 2m 2m 4m 4 A3m 17s llzh 6h 2h 9h 55s 4m 3h 58s 48s 2m 2
é 3m . 4m 48s. 46s 15m 10s Th 8m 2h 6h 59s 51s 31s 57s 42s 25s 5m 5
2 E 5 2 ¢ 35 28 ¢ 9¢e 9907 g 2 0 @ 5 £ T 2 OO T D g 2T 2 O0ODDT LT DOE DO S
593528835835 ¢35 233532 E 5 g5 g 5 8555285058232 ¢Ez
s (B] 1= £ 2 8 2 (= 2 = =& 9 8 E g o | 1 E c 1 1M oG X g £ ¢ 8 3 ;0
ghgggesEctEgs S:Ugabffggy fEifgggniELtis
@ g g £ a £ o L 9 = =% 2 S Q9 9 9 x E 2 2 &
g g £ £ =g =3
Queues Hopper Edison Carver £

Fig. 6. Job wait time median per queue depending on the requested cores. Aggregated on top: priority per queue, median of the wall clock time of queue jobs, jobs per queue

(normalized), core-hours per queue (normalized).

In all systems, we observe that the graph is darker at the top
left corner and lighter at the bottom right. Thus, jobs in the same
queue with a larger degree of parallelism have longer wait times.
The effect follows from the fact that the wider jobs are harder to
fit during scheduling. Also, jobs with similar number of cores have
shorter wait times in queues with higher priorities. While these
capture the general trend, we look more closely at the anomalies
in the heat map.

On Hopper, the low queue has the lowest priority (—3) and
longer wait times than most of the other queues. The queues with
priority zero, reg_1h, reg_xbig, and reg_short, show the expected
behavior. These priority zero queues have longer wait times than
the ones with priority one and shorter than the one with —3.
Queues bigmem, reg_long, reg_small, and thruput, present wait
times significantly higher. The bigmem queue is the gateway for
the nodes with more memory (384 large memory nodes vs. 6000
regular nodes) and its jobs may be experiencing higher wait times
because they compete to use a smaller resource set. The reg_long
and thruput queues contain longer jobs than the rest with the same
priority (also much longer than the ones in low), and thus might not
be able to take advantage of backfilling. Finally, the reg_small long
wait times may be related to its large contribution of jobs and core-
hours. The queues with higher priorities than zero show shorter
wait times.

Wait time for jobs allocating different number of cores but in the
same queue presented unexpected values (i.e. longer wait times
for smaller number of cores allocated). In some cases, it could be
related to the job wall clock time, as is the case for the big_mem
queue. Its wait time for the 64 to 511 cores range is two days, while
between 512 to 1023 cores is seven hours. We analyzed the median
of wall clock times in those ranges, obtaining one day and three
hours respectively for both the queues.

Edison exhibits a similar behavior to Hopper. The queues killable
and ccm_queue have longer wait times, because the jobs are longer
than the jobs in other queues with similar or lower priority. The
reg_small queue has the maximum jobs and core-hours used on
Edison, resulting in possibly longer wait time for its jobs. The jobs
with higher priorities behave as expected, showing shorter wait
times for similar job sizes.

Carver displays different trends compared to Hopper and Edi-
son. Its serial queue has exclusive resources and a median wait time
of five minutes. The matgen_low, matgen_reg, and matgen_prio
queues have a pool of resources, but those might be used by other
queues. Carver’s xImem queue is similar to Hopper’s bigmem, and

meant to serve jobs with large memory requirements. However,
the resource mapping is different on Hopper. On Hopper the
bigmem jobs can only be executed on nodes with large memory
capacity, but these nodes can also execute jobs from other queues.
In the case of Carver, only the jobs from the xImem queues can
be run on the special nodes. This exclusive access, combined with
xlmem’s low job count and core-hour contribution results in the
median job wait time being under four minutes.

Three queues (reg_big, reg_long, reg_xlong) have priority zero

and longer wait times than the other queues. The reg_small queue
jobs consume more core-hours than any other queue (apart from
serial), which may be the reason for the long wait times in this
queue. Finally, the queues with higher priorities behave as ex-
pected.
Wait time vs. requested CPU cores and run time in each queue.
In this section, we present an analysis of job wait time depending
on requested resources, requested run time, and priority. Although
analyses were performed for all queues in each system, only
the results for six queues of Hopper are presented: low, bigmem,
reg_1lhour, reg_small, debug, and premium. They contain low (low),
medium (bigmem, reg_1hour, reg_small), and high (premium) pri-
ority and have different homogeneity indices (from 27%-premium
to 70%-debug). Our results showed that the queues of Edison and
Carver are equivalent to the ones presented here.

Fig. 7 shows six heat maps that represent the median wait
time of jobs grouped by requested CPU cores and run time in six
queues of Hopper. For each queue, the x-axis represents intervals
of requested run times, adapted to the observed values (e.g., in
big_mem interval size is 60 min since observed run times span from
less than 60 min to 50 h, while in reg_1hour the interval size is
5 min since observed values span from less than 5 min to one hour).
The y-axis represents a non-linear categorization of the possible
number of cores allocated to jobs. The median wait time values are
represented in tones from bright yellow (close to 0) to dark red
(24h or more) like in Fig. 6. Brighter colors (shorter wait times) are
expected in the lower left corner (smaller allocation, shorter run
time) and darker (longer wait times) on the top right of each queue
wait time map (larger allocation, longer run time). Maps of queues
with a higher priority should contain brighter tiles (thus shorter
wait time) for similar requested run times.

The results in Fig. 7 indicate that queues with lower homo-
geneity indices show more discontinuities in their job wait times,
with premium (homogeneity index 27%) presenting the noisiest
heat map. In decreasing noisiness, premium is followed by big_men

216

G.P. Rodrigo et al. /]. Parallel Distrib. Comput. 111 (2018) 206-221

Hopper: Jobs' median wait time classified by queue, allocated CPU Cores, and requested runtime

ow Queue: Priority -3. Hom. Index 59%

200000
65535

32767
16383

bigmem Queue: Priority 0. Hom. Index 31% reg_lﬁour Queule: Pl:iorityl 0. Hlom Ivndexv69%v

8181 11m 22m 41m 49m 2m 57m 2h 2h 2h 2h z
o
4095 2m 2m 3m 12m 6m 22m 3h 4h 25m 2m g
&
§ 1023 555 525 525 4m 8m 26m 29m 29m 30m s
8 s 44s 44s 48s 41s 46s 585 2m 585 595 2m
-
2363 2m 2m 2m 2m 2m 2m 2m 2m 3m 3m
@
-E g 31 1lm 14m 15m 16m 16m 51m 51m 51m 53m 54m
g E 1 2m 32m 32m 32m 32m 32m 32m 32m 32m
S e e e e e T g T e e e e e e e e e e e e e e e e e e 2 w2 v 2 2 2 »w o =»
e 8 3 2 8 8 B &2 8 3 § R &£ 8 3 B 8 8 3 X 8 /8 §8 R Zeo Iy sy o9
°© ¢ & & % T T oF T a g d ° o o & F 7 F G oF4 g g g q “ % 4 R 8 8 8 g ¥ g
S 8 8 & & & & & & & o S 8 8§ ¢ & ¢ & & & & o o
¥ ¢ R § 8 8 8 % 8 8 g I & R 8§ 8 § 8 8 8 8 ¢ 8
:) & & 3 8 § 35 ¢ 2 " . 8 &8 3§ 8 § &2 8§ 3 8 : g
Reg. time (min) =5 L ot = ~ ~ ~ Reg. time (min) - - - - ~ ~ ~ & Req. time (min)
reg_small Queue: Priority 0. Hom. Index 36% debug Queue: Priority 1. Hom. Index 70% premium Queue: Priority 3. Hom. Index 40%
R et : = - - v
200000 +
o 22
19
32767 L |
16383 2m 2m 2m 2m 3m 3m - | 16
8181 2m 7m 2m 2m 15m 2m 4h I 133
3
4095 2m 2m 3m 3m 4m 2m 8m £
! 1=E
9 1023 34s 47s 2m 2m 2m 2m 12h [l §
4
8 511 36s 2m 2m 2m 2m 2m 11h I J
%
°© g6 39s 565 2m 2m 2m 2m 5
M
-E g 31 59s 2m 3m 3m 3m 3m 2
=3
39
zZex ! 17m 0

270-300
540-570
810-840F

1080-1110F

1350-1380 F

1620-1650 F

1890-1920

21602190

24302460

27002730

05
5-10
1015

Reg. time (min) Req. time (min)

15-20

v
ot
)

2025
3035
60-75

120-135}

180-195[

240-255

300-315

360-375

420435

480-495]

540-555

600-615

660-675

720-735

Req. time (min)

Fig. 7. Job wait time median per queue depending on the requested cores and run time in six queues of Hopper including their corresponding priority and homogeneity
indices. Similar analyses were performed also for Edison and Carver. Queues with lower homogeneity index present more disturbances in the color gradient and thus in the

expected wait time depending on a job’s requested CPU Cores, run time, and priority.

(31%), reg_small (36%), and low (59%). The two queues with higher
homogeneity indices present more continuous heat maps. Queue
reg_lhour (69%) presents minor discontinuities in intermediate job
sizes and the upper bound of the job run time. Queue debug (70%)
only presents discontinuities in the longest running jobs in the
queue (around 30 min).

Concerning the comparison across queues and priorities, a more
dominant yellow color (shorter wait times) for similar job geome-
tries is present in heat-maps of higher priority queues. Correspond-
ingly, a darker color (longer wait times) is present for similar jobs
in lower priority queue maps. However, queues with lower ho-
mogeneity indices present multiple discontinuities in this pattern.
For example, the premium queue, with priority of three, presents
many of these discontinuities: jobs requesting 64 to 511 CPU cores
for 135 to 150 min show significant longer run times than in the
reg_small queue (priority 0). Similar discontinuities appear in all
the maps, being more present in the less homogeneous queues like
premium, big_mem, or reg_small.

In summary, the results in Figs. 6 and 7 show that low homo-
geneity disrupts the expected wait time behavior of the jobs in
the three systems. Also, wait time does not increase as expected
as jobs’ allocate more CPU cores, for longer times, or have lower
priority. In the future, it will need to be considered to see if
more predictable wait times are possible by dividing these queues
according to the observed job clusters, increasing the per-queue
homogeneity index.

6.3. Queue homogeneity

Analyses in Section 6.2 show that queues with low queue ho-
mogeneity might present disturbances that make job wait time
hard to predict. In this section, we explore the combined effect
of this phenomena as it might happen across many queues of a
system. For example, if all the queues of a system have very low

homogeneity indices, independently of its geometry or queue, a
job’s wait time will be hard to predict. In the other extreme, if
all the queues are very homogeneous, a job’s wait time should be
very easy to predict according to its geometry and priority. The
following metrics intend to assess the position of a system between
this two example extremes.

We create two overall metrics by combining the queue homo-
geneity indices with the two quantitative queue significance cri-
teria presented in Section 5.1 (queue’s contributed jobs and core-
hours) to measure the overall queue homogeneity. The first metric
is Job homogeneity index, calculated as a linear combination of
all the queue homogeneity indices. The coefficients are the share of
jobs contributed by the corresponding queue. For example, Queuel
has a homogeneity index of 0.6 and contributes 30% of the system’s
jobs. Queue2 has an homogeneity index of 0.4 and contributes
70% of the jobs. The Job homogeneity index is thus calculated as:
0.6-0.34+0.4-0.7 = 0.46. A lower index indicates that many jobs
are in queues with low homogeneity indices and thus many job’s
wait time might be affected. If many jobs are affected, wait time
increase will likely be more noticeable by majority of the users.

The second metric is the Time homogeneity index , also calcu-
lated as a linear combination of the queues homogeneity indices,
but under the core-hours significance perspective. The coefficients
are the shares of core-hours contributed to the system by the cor-
responding queues. In the example of Queue1 and Queue2, Queuel
contributes 30% of the system’s jobs, and represents 80% of the
core-hours of the system. Queue2 contributes 70% of the jobs that
represent 20% of the system’s core-hours. The Time homogeneity
index is thus calculated as: 0.6 - 0.8 + 0.4 - 0.2 = 0.56. The time
homogeneity index is an overall measure of the effect of wait time
disturbance on the core-hours processed in the system. A lower
index indicates that many core-hours correspond to jobs in queues
with low homogeneity indices. This effect could be more notable

G.P. Rodrigo et al. /]. Parallel Distrib. Comput. 111 (2018) 206-221 217

Hopper Carver-Number of submitted jobs per hour
(Fourier Transform, LOG Scale)

2886h 2an
(~3 months)

1.0

— carver
— hopper

0.8+

4357

(~6 monthg 166h

(~1 week) »

0.2

0.0

1073
102
0

Frequency (1.0 = 1 hour)

Fig. 8. Fourier decomposition of the series of the jobs submitted per hour for Hopper
and Carver to detect dominant submission cycle. Note the logarithmic scale for
the frequencies. Most powerful frequencies highlighted with a black arrow and its
corresponding period.

Table 6
Job and queue homogeneity analysis results: for each machine, minimum number
of k-mean clusters discovered in the jobs and overall homogeneity indices.

Edison Hopper Carver
Clusters 11 12 8
Job homogeneity idx. 051 0.57 0.82
Time homogeneity idx. 0.64 0.49 051

to power-users (large job submitters) and system administrators,
specially if the job homogeneity index is high.

Table 6 shows the calculated homogeneity indices for the three
NERSC systems in 2014. Carver presents a high job index, which
indicates that many of its jobs are in uniform queues. This matches
the fact that most of its jobs are in the serial queue, with very sim-
ple uniform wait times. Also, its time index is 0.5, which indicates
that the jobs which belong to heterogeneous queues are large. This
is confirmed by the 0.26 homogeneity index in its most relevant
queue in terms of core-hours (reg_small).

Edison shows the highest time homogeneity index. This sug-
gests that Edison is the system with more core-hours from jobs
in homogeneous queues. This is confirmed by the fact that two of
the largest queues in terms of core-hours(reg_big, and reg_med)
are very homogeneous. Hopper and Edison have the similar job
homogeneity indices in the range of 0.5. However, Hopper time
index is lower, which suggests that its larger jobs are contributed
by heterogeneous jobs, and thus might be subject to wait time
increases.

7. Trend analysis

In this section, we present a lifetime analysis of the various
workloads parameters of Hopper and Carver from Jan 2010 to June
2014. The purpose is to observe if there are any clear evolution
patterns over the life cycle of these HPC systems.

7.1. Time patterns and analysis granularity

First, we choose a time period to slice the data by performing
a pattern analysis of the data to understand the administrative
realities of the system. User behavior patterns were detected by
studying the Fourier spectrum [38] of the number of batch jobs
submitted per hour in two years. The result is presented in Fig. 8,
where black arrows point to the most powerful frequencies that

Hopper Carver -Wall clock time per Job
year evolution

10.0
& 1 L L T
o 1.0} 1 | 1 |
E. '
£y
i o
S
T oo}
,@“’0 ,La“’\' ,,p“’q' ”PO ,19“'“
_ 10.0 == l - l l
5‘ 1
g ~ 1.0} 1 i
= —
x2
88 01
5]
=
= 00
,»0\’0 ,»0\’\ ,»0\”" 'L°\?’ ,Lo\’h

Time Period

Fig. 9. Box-plots of the job wall clock times observed in each workload year. Trend:
Hopper jobs become longer, Carver jobs shorter. Majority of jobs under one hour.

correspond to the periods of 1 day, 1 week, 3 months, and 6
months. The daily and weekly repeating patterns correspond to
user working periods, in which users tend to submit more jobs dur-
ing work hours (daily pattern) and work days (weekly pattern) [6].
The three and six months pattern are related to the allocation rules
set by NERSC. Each project has a number of core-hours to be used
in a year, divided in 4 allocation quarters (three months) in which
the project has to consume (or forfeit) the corresponding allocated
time. The strong pattern around the allocation year led us to choose
one year as the time period for the trend analysis.

7.2. Job geometry

The evolution of the actual job run time variable is presented in
Fig. 9 as a box plot of the values registered for each system in each
year. Hopper shows a significantly low wall clock time median in
2010 (< 1 min), a year in which this system was a smaller testbed.
In 2011, the median increased to ~ 5 min and subsequently
increased to ~ 12 min by 2014. Carver shows a different trend:
the median and upper and lower quartiles decrease effectively over
the period studied. The median decreased from ~ 20 min (2010)
to ~ 6 min (2014). However, during their lifetime the relationship
of the two systems changed. In the first year in production, Carver
ran longer jobs than Hopper. However, this changed in 2014, when
Hopper ran longer jobs that Carver. Overall, Hopper and Carver
present fairly short jobs and the highest upper quartiles in both
systems is around the one-hour value.

The evolution of the job width (number of allocated cores per
job) is presented in Fig. 10. For Hopper, the median decreases
from 100 cores (2010) to under 30 cores (2014). Carver presents
a very different pattern. Except for 2010, its median is one core,
indicating the predominance of single core serial jobs. In 2014,
the upper quartile increased to 8 cores. In 2010, Carver’s jobs are
more parallel than in the rest of the years because its serial queue
did not exist (added in 2011). When the queue was added, Carver
was identified as the system to run serial jobs (allocating a single
CPU core) at NERSC, increasing the presence of such jobs in the
workload.

The core-hours allocated by jobs were also analyzed and the
results are presented in Fig. 11. In the case of Hopper, per job
allocated core-hours remain almost unchanged through time with
a median of ~ 20 core-hours in all years and the upper quartile
slightly under 200 core-hours in most years. In the case of Carver,
it slowly decreases from a median of nearly 1 core-hour to ~ 6 core
minutes (and a last upper quartile of 1 core-hour).

218 G.P. Rodrigo et al. /]. Parallel Distrib. Comput. 111 (2018) 206-221

Hopper Carver -Number of cores per Job
year evolution

10000 | l 1
1000}

1

Number of cores
hopper

> 2 >
Q> N >
® 03 3 »
100F
w §
<4
S]
- & 1
oz 10} J
28
E
+ + +
= + + +
1 i L n L
° 5 2 > 3
S) ! &~ &
0 3 0 0 0

Time Period

Fig. 10. Allocated number of cores for each workload year. Trend: Hopper jobs
allocate fewer cores. In 2011-2013, most Carver jobs used one core.

Hopper Carver -Core hours per Job
year evolution

100000
10000 | 1
£, 1000} il Iy 1
oW -
ﬁ 2 100} 1
S8
e ===
1k 1
0,1F E
0’01 L L L L L
,]9"9 ’19.\’\. ,va"’q' ,LQ\”)) S 2
10000
1000} :
2 g 100} i
] 10} - 4
o -
g 1k .]
ol] _
0,01 ‘ ‘ - ‘
D
’»@9 ,.5?\' qp"q' '\90 i

Time Period

Fig. 11. Allocated core-hours for each workload year. Trend: No changes on Hopper.
Carver jobs become smaller.

In summary, Hopper jobs (shorter jobs, with a higher degree
of parallelism, bigger than Carver’s job) seem to be showing an
increase in their wall clock time. Since the core-hours per job
remain similar, this indicates that jobs request less CPU cores.
Carver jobs (longer jobs, lower degree of parallelism, fewer core-
hours than Hopper’s) have decreasing wall clock time and request
more CPU cores, but the increase is not sufficient to keep the job’s
core hours steady over the years.

7.3. Job wait time

According to Fig. 12, the median wait time of Hopper jobs
steadily increases from under 100 s to over 20 min (a constant
growth also present in the upper and lower quartiles). In Carver,
the wait time increases in a zig-zag pattern from ~ 10 min (2010)
to ~ 20 min (2014). In 2011, Carver has significantly shorter wait
times, which is likely due to an increase in compute resources of
the system. The steady increase of wait time over the lifetime could
be attributed to the growth of the number of users.

7.4. Wall clock time accuracy

As presented in Fig. 13, Hopper does not show a clear trend. On
Hopper, 2011 to 2013 presents a higher accuracy than 2010 and
2014, with a median variation between 0.2 and 0.4. For Carver,
the median decreases over time, with significant changes between

Hopper Carver -Wait time per Job
year evolution

100000 1 I I I *

10000 | '

Wait time (s)
hopper
=
o
o
o

—
o
o

=
o

T
1
,19\\' ,:90 ,‘90
w000] - L X L =S

1 1

1000 ¢]
100}
10} f 4 T

Wait time (s)
carver

1 n 1 n
o o
£ 3y
0 0

3
~
,19

Time Period

T
!
!
1
)
~
D

Fig. 12. Jobs’ wait time evolution for each workload year. Trend: All systems
increase wait time. Carver lower wait time in 2011.

Hopper Carver -Wall clock time accuracy per Job
year evolution

T T T
1 | I
1 | 1
| | |
1 \ 1

hopper
=]
o
T
.

Wall clock time accuracy

0.0 T I I I

S N 2
J > >
»® 3 ®
>
K
,\/Q

Fig. 13. Jobs’ wall clock time accuracy evolution for each workload year. In all
systems wall clock time remains low.

ol
4
,19

[

3
N
,19

carver

0.6} i

w‘&
041 :
02}] I:l
0.0 _—
5

Wall clock time accuracy

‘2

,\9

Time Period

QS >
.3 >
® 3

2010 (~ 0.25) and 2011 (<0.1). In 2014, the median is under
0.1 and the last quartile is under 0.2. For Carver, estimation qual-
ity clearly decreases over time. In general, both systems present
very low values with medians under 0.4. These values indicate
that through the life of both systems, the decisions made by the
backfilling algorithms are based on inaccurate user estimations.

7.5. Job and queue diversity

Following the methodologies presented in Sections 3.3, 4.3,
and 6.3, the diversity analysis was performed for each year and sys-
tem. We studied the evolution of the overall jobs diversity (number
of dominant job groups) and overall queue diversity (time/job
homogeneity indices). Results are presented in Fig. 14.

Hopper shows fewer dominant job groups (clusters) over time,
decreasing from 17 to 12 clusters, implying a reduction in the
job geometry diversity. In the case of Carver, the job mix is fairly
homogeneous (7 clusters) except in the second year (13 clusters), a
year in which hardware updates were performed. Carver presents
a more homogeneous job mix in comparison to Hopper over the
lifetime of the systems.

As presented in Fig. 14, Hopper’s job homogeneity index in-
creases from 0.36 to 0.7 1. This might indicate an evolution towards
significantly more jobs contributed by homogeneous queues,
which could improve the overall wait time. The time homogeneity

G.P. Rodrigo et al. /]. Parallel Distrib. Comput. 111 (2018) 206-221 219

Hopper Carver-Workload diversity analysis
Year evolution

T T T

T
2 carver clusters
carver queues

[
o
N

hopper clusters
hopper queues

12F]
10
18 2

6 n L L L . T T
2010.0 2010.5 2011.0 20115 2012.0 2012.5 2013.0 2013.5 2014.0
Year

0.9 . T
— carver jobs homog. idx
0.8 H — carver time homog. idx
— hopper jobs homog. idx
0.7H — hopper time homog_ idx
0.6} g
0.5}
04}

0.3 . L L L L L L
2010.0 2010.5 2011.0 20115 2012.0 2012.5 2013.0 2013.5 2014.0

Year

Fig. 14. Workload diversity and in queue homogeneity index: Overall workload
becoming less diverse. Job mixes in queues are becoming more uniform.

index increased from 0.33 to 0.46, which points to a small increase
of the homogeneity in queues relevant in terms of contributed
core-hours. However, in 2014, the high job index value combined
with low time index value might indicate significant unpredictabil-
ity in the large job wait times. Caver shows a similar pattern with
a large increase in terms of evolution of the job homogeneity index
(from 0.44 to 0.81) and a smaller increase for the time index (from
0.34t00.54). Also, there is a larger increase in job homogeneity index
in 2011, when the serial queue was added.

As we compare both systems, Carver indices are generally larger
indicating that most relevant queues of this system tend to be more
homogeneous than that of Hopper.

8. Summary
In this section, we summarize our results from our analyses.
8.1. Summary of a year’s workload

We summarize the key results from the detailed analysis per-
formed on the 2014’s workload from Edison, Hopper, and Carver.
We also compare them with preexisting analyses of similar HPC
systems.

e The job wall clock times are short on all three systems: 86%
to 88% of the jobs run less than 2 h.

e OnEdison and Hopper, 37%, 39% of jobs run on one node and
69%,75% run on 10 nodes or fewer. On Carver, 92% of the jobs
run on a single node.

e On Carver, 77% of its jobs allocate one or less core-hours.
Carver jobs use far fewer hours than jobs on Hopper and
Edison.

e 60% of Edison jobs, 66% of Hopper jobs and 95% of Carver jobs
run less than 50% of their requested time. On the other hand,
jobs run over their estimated wall clock time in the case of
10% Hopper’s jobs, 11% of Edison’s and 8% of Carver's.

e Carver has the most homogeneous workload (more similar
jobs, and more homogeneous dominant queues). Hopper
has a diverse workload with a complex job mix in its queues.
Edison sits between the two.

e Carver jobs suffer the longest wait times, although they
allocate significantly fewer core-hours than jobs on Hopper
and Edison.

e On all systems, disturbances in the job’s wait times have
been observed in queues with low homogeneity indices.
This reduced the predictability of the wait time on the
systems. According to the overall time and job homogeneity
indices, Carver should be the more predictable, followed by
Edison and Hopper.

8.2. Comparison with other systems

Although these results represent the state of current systems,
it is important to understand their difference to other similar sys-
tems. In particular, we compare our results to analyses on Intrepid
and Stampede (characteristics summarized in Table 7), one past
and one current HPC system.

Intrepid was a Blue Gene/P supercomputer, with 163,840 cores,
80 TB of memory (512 MB per core), custom interconnect, peak
Linpack performance of 458.6 TFLOPS, and was deployed in 2008
at the Argonne National Laboratory. Intrepid is more similar to
Carver in its configuration. Both are Teraflop systems and closer
in deployment time. However, Intrepid is a Blue Gene/P system,
characterized by providing compute power through smaller but
more numerous CPU cores, which is different from the NERSC
systems that has more powerful cores. We compare with Intrepid
trace of nine months from 2009 [11].

Stampede is a POWEREDGE (8220 high performance cluster
with 462,462 cores, an Infiniband interconnect, that can deliver up
to 8 PFLOPS. It was deployed at the Texas Advanced Computing
Center (Univ. of Texas) in 2012. Stampede could be compared to
Edison or Hopper in terms of capacity, but its architecture differ
from them as its processing units are hybrid. Stampede includes
both Xeon and Phi processors in its compute nodes. For applica-
tions using its Xeon processors, Stampede performs similar to Edi-
son or Hopper. In fact, Edison’s processor are the next generation
(Ivy Bridge) to Stampede’s (Sandy Bridge). We compare our results
with a previous analysis over a trace of three months of Stampede
in2013 [9].

Edison and Hopper’s wall clock time distribution matches the
patterns observed on Intrepid [11]. Carver’s run time CDF is steeper
and similar to Stampede [9]. Jobs on all three systems use fewer
cores than Intrepid. Edison and Hopper jobs are similar to the jobs
on Stampede in terms of cores.

The serial queue jobs on Carver dominate the distribution. Thus,
Carver jobs are very different from Edison and Hopper and other
similar HPC systems. Edison and Hopper share characteristics with
reference systems like Intrepid or Stampede. It is possible that cur-
rent DOE Leadership Computing Facilities exhibit slightly different
workload characteristics [1] which is not considered in the scope
of this paper.

8.3. Workload evolution

Observing the evolution of large scientific infrastructures
through their lifetime provides insight on the evolution of the
systems as their use matures. It also provides data to understand
and extrapolate the characteristics of future workloads.

Fig. 12 shows that the wait time steadily increases as the
systems age. This trend fits with a growing scientific community
using the same system and more advanced applications that re-
quire faster infrastructure. There is one exception, in 2011 Carver
presented significantly smaller wait times possibly due to its ex-
pansion.

As Hopper and Carver are compared in Figs. 9 and 10, the
analysis on the evolution of the job geometry reveals that Hopper
jobs (which had shorter jobs but with a higher degree of parallelism
than Carver) seems to be increasing their wall clock time but using

220 G.P. Rodrigo et al. /]. Parallel Distrib. Comput. 111 (2018) 206-221

Table 7

Intrepid and Stampede characteristics.
System Vendor Model Built Nodes Cores/N Cores Memory Network TFlops/s Processor
Intrepid IBM Blue Gene/P 2008 40,960 4 163,840 80 TB Torus 557.1 Blue Gene
Stampede Dell PowerEdge 2012 6,400 16 + 61 462,462 192 TB Inf. FDR 8,520 Xeon, Phi

fewer CPU cores, while Carver jobs (which had longer jobs but with
a lower degree of parallelism than Hopper) are decreasing their
wall clock time and using more CPU cores.

Fig. 14 shows that Hopper’s workload evolved to a more uni-
form job mix. However, Carver presents a spike in the second
year of its lifetime, to return to values similar to the beginning.
Hopper results capture the natural evolution of systems, where
the scheduler and other machine characteristics are refined based
on the workload characteristics. Carver suffered two significant
changes in 2011 that might have affected its diversity. First, Carver
was expanded in 2011 [27]. Second, the serial batch queue (long-
running, low-degree of parallelization) was added [29]. Carver’s
workload became uniform towards the end of its life.

The diversity analysis study was partly motivated by the need
to understand the effect of application diversity on the workload
jobs, but the results show that jobs became more uniform as the
systems age. The explanation is that new application effects on
diversity are neutralized by the overwhelming presence of classical
HPC application which motivates the existence of the system itself.
For example, as described in site NERSC reports [4], more than
75% of Hopper’s core-hours are consumed by a few algorithms
classical in the HPC world (e.g., fusion simulation, Lattice QCS,
density function theory, climate and Geo simulation, or molecular
dynamics). It is also likely that non-traditional applications face
challenges on the systems that affects their usage patterns. Thus, it
is difficult to predict the exact distribution of the workload patterns
on future HPC systems. Our results will be an important reference
point as HPC systems evolve to accommodate the needs of diverse
workloads including stream processing and high throughput jobs.

9. Conclusions

In this paper, we present methods to analyze NERSC's work-
load. We develop a methodology that includes traditional work-
load analysis techniques (e.g., CDF analysis of job variables) and
incorporates new methods to assess job heterogeneity. The job
heterogeneity analysis includes a novel algorithm that employs
k-means clustering to detect the minimum number of dominant
job geometries in an HPC workload. The method also analyzes
the mapping of dominant job groups on the system prioritization
schema and the resulting job wait times. This enables us to assess
the effect of job heterogeneity on the scheduling performance in
terms of wait time.

Our evaluation establishes a reference of the state of the work-
load in 2014 of three high performance systems (Edison, Hopper,
and Carver). These results can help understand the behavior in
current similar HPC systems, including: (1) The job geometries
are fairly diverse including significant number of smaller jobs
compared to older systems. (2) The low per queue homogeneity
indexes, show that single priority policies are affecting jobs with a
fairly diverse geometry. (3) The wait time analysis shows that stud-
ied queues with low homogeneity indices present poor correlation
between job’s wait time and geometry. (4) Job submission patterns
show that the accuracy of user predictions of their job’s wall clock
time (fundamental for the performance of backfilling functions) is
very low, and does not improve over time. (5) Hopper and Carver
workloads present a clear trend in their four year lifetime, i.e., they
become less diverse, their queues classify better their jobs, and
they become more similar. (6) Also, they experience a heavy load
that increases the overall wait times.

Our results and methodology provide a strong foundation for
future scheduling research and systems operations management.
Scheduling research needs to address present and future work-
loads. Our work provides important insights in understanding
characteristics of future systems (e.g., diverse jobs, smaller jobs, or
low accuracy in run time estimations).

For system management, we highlight a result and an alter-
native application of our methodology. First, low values on wall
clock time accuracy points to further research in finding policies
to encourage users to provide better predictions. Better run time
accuracy will increase the quality of the backfilling in schedulers.
Finally, the dominant job groups produced by the job heterogene-
ity analysis could be a template to define priority groups and
queues. Our results show that diverse queues result in hard to
predict wait times. Queues obtained by subdividing dominant job
groups are expected to show predictable wait times.

Acknowledgments

This material is based upon work supported by the U.S. De-
partment of Energy, Office of Science, Office of Advanced Scientific
Computing Research (ASCR) and the National Energy Research
Scientific Computing Center, a DOE Office of Science User Facility
supported by the Office of Science of the U.S. Department of Energy,
both under Contract No. DE-AC02-05CH11231. Financial support
has been provided in part by the Swedish Government’s strategic
effort eSSENCE, by the European Union’s Seventh Framework Pro-
gramme under grant agreement 610711 (CACTOS), the European
Union’s Framework Programme Horizon 2020 under grant agree-
ment 732667 (RECAP), and the Swedish Research Council (VR)
under contract number C0590801 for the project Cloud Control.
We would like to thank Sophia Pasadis for editing help with the

paper.
References

[1] S. Ahern, S.R. Alam, M.R. Fahey, R.J. Hartman-Baker, R.F. Barrett, R.A. Kendall,

D.B.Kothe, R.T. Mills, R. Sankaran, A.N. Tharrington, et al., Scientific Application

Requirements for Leadership Computing at the Exascale, Tech. Rep., Oak Ridge

National Laboratory (ORNL); Center for Computational Sciences, 2007.

G.P.R. Alvarez, P.-0. Ostberg, E. EImroth, K. Antypas, R. Gerber, L. Ramakrishnan,

Towards understanding job heterogeneity in HPC: A NERSC case study,

in: 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing, CCGrid, IEEE, 2016, pp. 521-526.

K. Antypas, NERSC-6 Workload Analysis and Benchmark Selection Process,

Lawrence Berkeley National Laboratory, 2008.

K. Antypas, B.A. Austin, T.L. Butler, R.A. Gerber, NERSC Workload Analysis on

Hopper, Tech. Rep., LBNL Report: 6804E, 2014.

M.A. Bauer, A. Biem, S. McIntyre, N. Tamura, Y. Xie, High-performance parallel

and stream processing of X-ray microdiffraction data on multicores, in: Journal

of Physics: Conference Series, vol. 341, IOP Publishing, 2012, p. 012025.

N.-C. Chen, S. Poon, L. Ramakrishnan, C.R. Aragon, Considering time in de-

signing large-scale systems for scientific computing, in: Proceedings of the

19th ACM Conference on Computer-Supported Cooperative Work & Social

Computing, ACM, 2016, pp. 1535-1547.

A. Coates, A.Y. Ng, Learning feature representations with k-means, in: Neural

Networks: Tricks of the Trade, Springer, 2012, pp. 561-580.

[8] T.M. Declerck, I. Sakrejda, External Torque/Moab on an XC30 and Fairshare,
Tech. Rep., NERSC, Lawrence Berkeley National Lab, 2013.
[9] J. Emeras, Workload Traces Analysis and Replay in Large Scale Distributed

Systems, (Ph.D. thesis), Grenoble INP, 2014.

[10] Y. Etsion, D. Tsafrir, A Short Survey of Commercial Cluster Batch Schedulers,
Vol. 44221, School of Computer Science and Engineering, the Hebrew Univer-
sity of Jerusalem, 2005.

2

3

[4

[5

[6

[7

http://refhub.elsevier.com/S0743-7315(17)30256-3/sb1
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb1
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb1
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb1
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb1
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb1
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb1
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb2
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb2
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb2
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb2
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb2
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb2
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb2
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb3
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb3
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb3
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb5
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb5
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb5
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb5
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb5
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb6
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb6
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb6
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb6
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb6
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb6
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb6
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb7
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb7
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb7
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb8
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb8
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb8
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb9
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb9
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb9
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb10
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb10
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb10
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb10
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb10

(1]
[12]

(13]

(14]

[15]
[16]

(17]

(18]
[19]
(20]

(21]

(22]

(23]
[24]
(25]
(26]
[27]
(28]
[29]
(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

G.P. Rodrigo et al. /]. Parallel Distrib. Comput. 111 (2018) 206-221 221

D. Feitelson, Parallel workloads archive 71 (86) (2007) 337-360. http://www.
cs.huji.ac.il/labs/parallel/workload.

D.G. Feitelson, Workload Modeling for Computer Systems Performance Evalu-
ation, Cambridge University Press, 2015.

D.G. Feitelson, L. Rudolph, U. Schwiegelshohn, Parallel job scheduling, a status
report, in: Job Scheduling Strategies for Parallel Processing, Springer, 2005,
pp. 1-16.

E. Frachtenberg, D.G. Feitelson, Pitfalls in parallel job scheduling evaluation,
in: Workshop on Job Scheduling Strategies for Parallel Processing, Springer,
2005, pp. 257-282.

J.A. Hartigan, M.A. Wong, Algorithm AS 136: A k-means clustering algorithm,
Appl. Stat. (1979) 100-108.

T. Hey, S. Tansley, KM. Tolle, et al., The Fourth Paradigm: Data-Intensive
Scientific Discovery, Vol. 1, Microsoft Research Redmond, WA, 2009.

N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.-C. Yen, C.C.
Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum
for nonlinear and non-stationary time series analysis, Proc. R. Soc. Lond. Ser. A
Math. Phys. Eng. Sci. 454 (1998) 903-995.

].D. Hunter, Matplotlib: A 2D graphics environment, Comput. Sci. Eng. 9 (3)
(2007) 90-95.

A. lTosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, D. Epema, The grid
workloads archive, Future Gener. Comput. Syst. 24 (7) (2008) 672-686.
D.]Jacobsen, NERSC Site Report, One year of Slurm, in: Slurm User Group, 2016.
https://slurm.schedmd.com/SLUG 16/NERSC.pdf.

M.D. Jones,].P. White, M. Innus, R.L. DeLeon, N. Simakov, J.T. Palmer, S.M.
Gallo, T.R. Furlani, M. Showerman, R. Brunner, et al., Workload analysis of blue
waters, 2017. ArXiv Preprint ArXiv:1703.00924.

C.B. Lee, Y. Schwartzman, J. Hardy, A. Snavely, Are user runtime estimates
inherently inaccurate? in: Job Scheduling Strategies for Parallel Processing,
Springer, 2005, pp. 253-263.

D.A. Lifka, The ANL/IBM SP scheduling system, in: Job Scheduling Strategies for
Parallel Processing, Springer, 1995, pp. 295-303.

U. Lublin, D.G. Feitelson, The workload on parallel supercomputers: modeling
the characteristics of rigid jobs,]J. Parallel Distrib. Comput. 63 (11) (2003)
1105-1122.

AK. Mishra, J.L. Hellerstein, W. Cirne, C.R. Das, Towards characterizing cloud
backend workloads: insights from google compute clusters, ACM SIGMETRICS
Perform. Eval. Rev. 37 (4) (2010) 34-41.

NERSC, 2015-01-18. http://www.nersc.gov.

NERSC, Magellan batch queues on Carver. 2015.01.15. http://www.nersc.gov/
REST/announcements/message_text.php?id=1991.

NERSC, Queues and polices (Carver). 2014.1.15. https://www.nersc.gov/users/
computational-systems/carver/running-jobs/queues-and-policies/.

NERSC, Serial queue on Carver/Magellan. 2015.01.15. http://www.nersc.gov/
REST/announcements/message_text.php?id=2007.

NERSC, Submitting batch jobs (Carver). 2015.1.15. https://www.nersc.gov/
users/computational-systems/carver/running-jobs/batch-jobs/.

G. Rodrigo, P.-0. Ostberg, E. Elmroth, K. Antypass, R. Gerber, L. Ramakrishnan,
HPC system lifetime story: Workload characterization and evolutionary anal-
yses on NERSC systems, in: The 24th International ACM Symposium on High-
Performance Distributed Computing, HPDC, 2015.

S. Schlagkamp, R. Ferreira da Silva, W. Allcock, E. Deelman, U. Schwiegelshohn,
Consecutive job submission behavior at mira supercomputer, in: Proceedings
of the 25th ACM International Symposium on High-Performance Parallel and
Distributed Computing, ACM, 2016, pp. 93-96.

S.N. Srirama, P. Jakovits, E. Vainikko, Adapting scientific computing prob-
lems to clouds using mapreduce, Future Gener. Comput. Syst. 28 (1) (2012)
184-192.

G. Staples, TORQUE resource manager, in: Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, ACM, 2006, p. 8.

D. Tsafrir, Y. Etsion, D.G. Feitelson, Modeling user runtime estimates,
in: Workshop on Job Scheduling Strategies for Parallel Processing, Springer,
2005, pp. 1-35.

D. Tsafrir, Y. Etsion, D.G. Feitelson, Backfilling using system-generated pre-
dictions rather than user runtime estimates, IEEE Trans. Parallel Distrib. Syst.
18 (6) (2007) 789-803.

C. Vaughan, M. Rajan, R. Barrett, D. Doerfler, K. Pedretti, Investigating the
impact of the Cielo Cray XE6 architecture on scientific application codes,
in: 2011 IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum, IPDPSW, IEEE, 2011, pp. 1831-1837.

W.W.-S. Wei, Time Series Analysis, Addison-Wesley Publ, 1994.

[39] J. Weinberg, A. Snavely, Symbiotic space-sharing on sdsc’s datastar system,

[40]

in: Job Scheduling Strategies for Parallel Processing, Springer, 2007, pp. 192-
2009.

N. Zakay, D.G. Feitelson, Preserving user behavior characteristics in
trace-based simulation of parallel job scheduling, in: IEEE 22nd International
Symposium on Modelling, Analysis & Simulation of Computer and Telecom-
munication Systems, MASCOTS, IEEE, 2014, pp. 51-60.

=== Gonzalo P. Rodrigo Alvarez postdoctoral fellow at the

Data Science and Technology Department in the Lawrence
Berkeley National Lab. He completed his Ph.D. in Com-
puting Science in 2017 at the Distributed Systems group
in Umea University (Sweden). At the same time, he was
working as an external affiliate to his current Depart-
ment at the Berkeley Lab. He spends his life understand-
ing how machine learning can help indexing scientific
datasets, solving HPC workflows scheduling problems, un-
derstanding data intensive cloud workflows scheduling
challenges, and implementing simple scheduling tech-

niques (yet powerful) on Slurm. Rodrigo also spent a summer at Google Inc.
Originally from Spain, previously, he worked for almost ten years in the online
gaming, and optical network industries.

Prize.

P.-0. Ostberg is a Research Scientist with a Ph.D. in Com-
puting Science from Umea University and more than half a
decade of both academic research and postgraduate indus-
try experience. He has held Visiting Researcher positions
at Uppsala University, Karolinska Institutet, the University
of Ulm, and the Lawrence Berkeley National Laboratory
(LBNL) at the University of California, Berkeley; and has
worked in the Swedish government’s strategic eScience
research initiative eSSENCE as well as in several projects
funded by the EU and the Swedish national research coun-
cil (VR).

Erik Elmroth s a Full Professor and the Leader of the
Distributed Systems research group at Umead University.
His background covers a broad spectrum of HPC, grid-
, and cloud infrastructure research topics. Prof. ElImroth
has been Chair of the Swedish National Infrastructure for
Computing (SNIC), a member of the Swedish Research
Councils Committee for Research Infrastructures, as well
as Chairman of its expert group on science infrastructures,
and has written two research strategies for the Nordic
Council of Ministers. Recognition for his research includes
the Nordea Scientific Award and the SIAM Linear Algebra

Katie Antypas is the Department Head of Scientific Com-
puting and Data Services at the National Energy Research
Scientific Computing (NERSC) Center. She has served
various roles over the years including NERSC Services
Department Head, Project Lead for the NERSC-8 system
procurement, group leader for User Services at NERSC,
and co-implementation team lead on the Hopper project.
Before coming to NERSC, Katie worked at the ASC Flash
Center at the University of Chicago supporting the FLASH
code, a parallel, adaptive mesh refinement astrophysics
application. She has an M.S. in Computer Science from the

University of Chicago and a B.A in Physics from Wellesley College.

Richard Gerber is Senior Science Advisor and High Perfor-
mance Department Head at the National Energy Research
Scientific Computing Center (NERSC) at Lawrence Berke-
ley National Laboratory in Berkeley, CA. Richard has a Ph.D.
and M.S. in Physics (Computational Astrophysics) from the
University of lllinois at Urbana-Champaign and held a Na-
tional Research Council Postdoctoral Fellowship at NASA
Ames Research Center before jointing NERSC in 1996. He
has more than 30 years experience in high performance
scientific computing.

Lavanya Ramakrishnan is a Staff Scientist at Lawrence
Berkeley National Lab. Her research interests are in soft-
ware tools for computational and data-intensive science.
Ramakrishnan has previously worked as a research staff
member at Renaissance Computing Institute and MCNC in
North Carolina. She has Master’s and Doctoral degrees in
Computer Science from Indiana University and a Bache-
lor’s degree in Computer Engineering from VJTI, University
of Mumbai. She joined LBL as an Alvarez Postdoctoral
Fellow in 2009.

http://www.cs.huji.ac.il/labs/parallel/workload
http://www.cs.huji.ac.il/labs/parallel/workload
http://www.cs.huji.ac.il/labs/parallel/workload
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb12
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb12
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb12
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb13
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb13
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb13
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb13
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb13
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb14
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb14
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb14
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb14
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb14
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb15
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb15
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb15
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb16
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb16
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb16
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb17
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb17
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb17
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb17
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb17
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb17
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb17
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb18
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb18
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb18
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb19
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb19
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb19
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb20
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb20
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb20
https://slurm.schedmd.com/SLUG16/NERSC.pdf
http://arxiv.org/ArXiv:1703.00924
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb22
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb22
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb22
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb22
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb22
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb23
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb23
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb23
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb24
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb24
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb24
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb24
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb24
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb25
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb25
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb25
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb25
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb25
http://www.nersc.gov
http://www.nersc.gov/REST/announcements/message_text.php%3Fid%3D1991
http://www.nersc.gov/REST/announcements/message_text.php%3Fid%3D1991
http://www.nersc.gov/REST/announcements/message_text.php%3Fid%3D1991
https://www.nersc.gov/users/computational-systems/carver/running-jobs/queues-and-policies/
https://www.nersc.gov/users/computational-systems/carver/running-jobs/queues-and-policies/
https://www.nersc.gov/users/computational-systems/carver/running-jobs/queues-and-policies/
http://www.nersc.gov/REST/announcements/message_text.php%3Fid%3D2007
http://www.nersc.gov/REST/announcements/message_text.php%3Fid%3D2007
http://www.nersc.gov/REST/announcements/message_text.php%3Fid%3D2007
https://www.nersc.gov/users/computational-systems/carver/running-jobs/batch-jobs/
https://www.nersc.gov/users/computational-systems/carver/running-jobs/batch-jobs/
https://www.nersc.gov/users/computational-systems/carver/running-jobs/batch-jobs/
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb32
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb32
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb32
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb32
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb32
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb32
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb32
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb33
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb33
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb33
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb33
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb33
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb34
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb34
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb34
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb35
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb35
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb35
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb35
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb35
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb36
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb36
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb36
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb36
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb36
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb37
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb37
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb37
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb37
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb37
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb37
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb37
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb38
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb39
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb39
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb39
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb39
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb39
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb40
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb40
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb40
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb40
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb40
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb40
http://refhub.elsevier.com/S0743-7315(17)30256-3/sb40

	Towards understanding HPC users and systems: A NERSC case study
	Introduction
	Background
	Challenges in HPC scheduling
	Scheduling
	Related work on workload analysis

	Methodology
	System descriptions
	System characteristics
	Workload
	Scheduler characteristics
	Queue configuration

	Data source
	Analysis framework
	Trend analysis

	Job characterization
	Job geometry
	Job characteristics
	Job diversity

	Queue characterization
	Queue significance
	Queue diversity

	Performance characterization
	Utilization
	Job wait time
	Queue homogeneity

	Trend analysis
	Time patterns and analysis granularity
	Job geometry
	Job wait time
	Wall clock time accuracy
	Job and queue diversity

	Summary
	Summary of a year's workload
	Comparison with other systems
	Workload evolution

	Conclusions
	Acknowledgments
	References

