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Abstract

Detection, Quantification, and Mitigation of Network Side Channels

by

İsmet Burak Kadron

Modern software systems such as web clients and Internet of Things (IoT) devices regularly

access and transmit private and sensitive data such as location information or user actions.

Although these systems use secure and encrypted communications to transmit this information,

the information can be recovered by observing the side effects of the communication such as

packet sizes, timings and source and destination information which is public to any eavesdropper.

These side effects can be obfuscated by delaying packet timings, padding packet contents or

injecting dummy packets. These obfuscations also impact the quality of transmission, therefore

a balance between user privacy and network overhead is needed.

In this dissertation, we provide methods for (1) detecting and quantifying network side-channel

information leakages, (2) input generation for automating analysis of network side-channels, (3)

automating side-channel mitigation with user constraints. Firstly, we present how the network

side-channels can be detected and quantified by identifying relevant features with trace analysis.

Our approach quantifies the information leakage of each feature using Shannon entropy and

probability estimation methods, and provides a ranking of features based on the amount of leakage.

Secondly, we discuss how the detection and quantification can be improved by dynamically

generating inputs based on user provided mutators and seed inputs. Our method determines

which features are affecting the information leakage and picks the mutators that influence those

features or the secret. Thirdly, we present approaches on measuring the amount of information

leakage using upper and lower bounds on the estimates. We also present techniques that

synthesize side-channel attacks using classifiers and provide upper bounds on classifier accuracy.

vii



Then, we present a search-based method to generate mitigation strategies to information leakages

based on user constraints to balance network overhead and leakage amount. Our approach

iterates over the top ranking features and tries to reduce the information leakage of each feature

by searching a padding and delaying strategy that minimizes an objective function based on the

amount of leakage and network overhead, stopping when no further improvement is found. Lastly,

we present the tool we developed which unifies the described approaches in a single workflow.

For all approaches, we demonstrate their effectiveness on a set of experimental benchmarks.
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Chapter 1

Introduction

Our world’s professional, commercial, governmental, and personal activities are quickly migrating

to networked software systems. Standalone systems are an artifact of the past: most modern

applications are network enabled. As computer systems become increasingly interconnected and

more information circulates over the network, information leaks with tangible and disturbing

consequences on our daily lives have become a recurrent section in the news. Effects of information

leakage from computer systems range from influencing the US presidential elections (e.g., the

Clinton and Podesta emails published by Wikileaks [1] in 2016) to revealing personal and financial

information of billions of people (e.g., the Equifax [2] and Yahoo! [3] leaks announced in 2016

and 2017). Especially in consumer applications, networked systems such as web services, mobile

applications, and Internet of Things devices allow users to perform their personal banking

operations, control lights and locks in their house, and many other things. While these services

are helpful to users, they also carry the risk of being vulnerable to malicious actors. Any

information leakage, such as location of the user, their application usage information, such as

when they turn on their lights or coffee machine, compromises the privacy of the user. Hence,

detection of information leaks in networked applications has become a significant and urgent

problem in software development.

1



Introduction Chapter 1

In side-channel information leakages, private information can be extracted by a passive

attacker who observes and analyzes visible side effects of the computation. This type of

information leakages are becoming more common as the side effects such as power usage,

network usage and execution time are optimized to suit different situations. Well-known side

channel attacks include those based on power consumption [4], electromagnetic radiation [5],

cache timing [6], and CPU-level branch prediction and race conditions, such as Spectre [7] and

Meltdown [8] attacks.

To mitigate information leakage on network traffic, most top-100 online services are now

using SSL/TLS encryption, and its adoption by smaller websites and services is growing at a

fast pace [9]. This is a positive step toward avoiding trivial leaks, however encryption can also

provide a false sense of security. This kind of encryption only hides the content of TCP/IP packet

payloads. There is still a plethora of visible metadata (such as packet size, timing, direction,

flags, etc.) that can be obtained from message headers and searched for patterns that may be

exploitable as side channels. Side-channel analysis of encrypted network traffic has been used,

for example, to gain knowledge about user keystrokes during SSH connections [10], to identify

medical conditions of a patient from the encrypted traffic generated by a healthcare website [11],

to identify which app, among a known set of fingerprinted apps, is being used by a mobile phone

user [12], and to learn about sleeping habits of users by monitoring IoT sensor traffic [13].

Detecting these types of information leakages require novel analysis tools and methods. There

has been prior work on white-box side-channel analysis techniques [14–17] but they are difficult to

apply to network applications. White-box tools require access to source code, which is typically

not public for mobile applications or commercial IoT devices. Moreover, these applications do not

lend themselves to white-box analysis due to their multi-component nature, consisting of client

and server components, which could all be written using different languages and frameworks.

Black-box methods like network traffic analysis tools are more suitable for these applications

because they do not require source code access, and they can be applied to heterogeneous,

2



Introduction Chapter 1

multi-component systems. Black-box techniques only require access to the system under test in

order to run the system multiple times to gather data and analyze the system’s behavior using

the data gathered by profiling [18–20].

This dissertation focuses on the problem of detection, quantification and mitigation of network

side-channels. This dissertation is concerned with understanding;

• How do side channels arise in network traffic?

• How to measure the amount of information leaked via network side channels?

• How to automate the network side-channel analysis problem?

• How to mitigate network side channels?

Side-channel Analysis and Quantification. To address the first point of how the side

channels arise, in Chapter 2, we present a black-box side-channel analysis technique, Profit, which

detects and quantifies side-channels in networked applications [18]. Profit takes a profiling-input

suite and runs the system with the provided inputs to produce a set of network packet traces of

varying length. These packet traces give rise to an enormous feature space that includes sizes

and timing of all packets and their aggregations. In order to identify the features that leak

information and to quantify the amount of information leaked, Profit uses techniques such as

multiple sequence alignment developed for bio-informatics to align packets of network traces

and extracts phases where the packet sequences are similar. This alignment helps us identify

features that leak information in smaller subtraces. To address the second point of measuring the

side-channels, Profit uses information-theoretic metrics, such as Shannon entropy, to quantify the

amount of information leaked by network observations, based on the features identified during

phase detection and feature selection, and the automatically inferred probability distributions

for features. Profit presents the user with a ranking of the features that are the most worth

looking into, sorted by the amount of information leakage.
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Automating Analysis with Mutation Based Input Generation. One difficulty in using

Profit is profiling. The users need to profile the system with different inputs extensively and

repeatedly to cover all possible behaviors of the system, capture the encrypted network traces

and label the data with the information leakage source the user wants to check. An example of

this is a smart light bulb device in which the user would want to check if the certain user actions

(e.g. turning the light on or off) are leaking over the network traces. To find the leakage, the

user would need to turn on and off the lightbulb at different luminosities, different times if they

want an extensive input suite.

To address the problem of automating the analysis, in Chapter 3, we present an approach

for side-channel analysis using a mutation based input generation, called AutoFeed [21]. Instead

of using a large set of user-provided inputs (which requires either manually writing the inputs or

writing a generator for random inputs), AutoFeed uses a small set of seed inputs and mutators

provided by the user. These mutators can be used to generate a larger input set. To explore a

variety of behaviors that correlate with the secret information, we need to choose mutators that

modify the fields that are related to the secret. We perform this by testing each mutator on the

seed set and adjusting the weights of the mutators based on its ability to provide the inputs that

generate different traces or secret values compared to the original inputs.

Upper and Lower Bound Estimates for Leakage. Measuring the amount of information

leakage accurately is important in determining the impact of the network side-channel on the

user privacy. Measuring the information leakage for individual features may not reveal the total

amount of information leakage obtained by all features. There may be cases where individual

features do not fully correlate with the secret information but combined features do. One

problem is that increasing the number of features increases the time complexity of the leakage

computation exponentially. Therefore, we need to use approximate methods that can compute

the information leakage in a timely manner. To do so, we explore methods that give bounds
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on the amount of information leakage using neural networks and other statistical methods. In

Chapter 4, we describe techniques for obtaining bounds on information leakage for network side

channels.

Side-Channel Leakage Mitigation. As we mentioned before, network side-channels hurt

user’s privacy with the vulnerabilities in smart home systems, smartphone applications, websites

because of the network traffic metadata such as packet sizes, timings. Prevention of these

information leakages is important and these information leakages can be prevented by obfuscating

the correlation between the traffic metadata and the secret information. This requires modifying

the traffic by padding packet contents to change their sizes, delaying packets to change their

timings and injecting dummy packets which can change overall timing and confuse attackers.

One critical problem is that balancing these modifications impact the quality of service of the

network applications. Delaying packets or increasing bandwidth for a video streaming service

may disrupt the quality of streaming and cause the application to lose users. Therefore, a

mitigation method should achieve a balance between the user’s privacy and quality of service.

To address the problem of mitigating side channel information leakages, in Chapter 5, we

present Shark!, a technique for synthesizing mitigation strategies. Shark! works by collecting

encrypted network traces and labeling them with the secret value of the corresponding trace

(which can be user actions or a device state such as a motion sensor’s status at the time of the

trace capture). Shark! analyzes the traces by extracting features such as packet sizes and

timings, and quantifies the information leakage. Using the information leakage quantification,

Shark! prioritizes which features to target and iteratively develop a mitigation strategy with

respect to a tunable objective function balancing the information leakage reduction and overhead.

The tunable objective function can be customized by the user by changing the parameter that

controls the trade-off between information leakage and mitigation overhead. This enables Shark!

to synthesize a set of Pareto optimal [22] mitigation strategies corresponding to different trade-offs
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between privacy and performance.

1.1 Contributions

This thesis contributes the following:

• A black-box dynamic network analysis technique to detect and quantify side channels on

encrypted network traffic.

• A mutation-based input generation technique to improve automation in testing and analysis

of networked applications.

• A mitigation strategy synthesis method that finds the best strategy based on privacy and

quality of service constraints.

• A tool which combines the aforementioned methods into a single workflow that researchers

and developers can use.

These contributions address the problem of detection, quantification and mitigation of

network side-channel information leakages and understanding how side channels arise in network

traffic, how to measure the amount of information leaked, how to automate this problem, and

how can side channels be obfuscated or mitigated.

1.2 Dissertation Outline

The rest of the dissertation is structured as follows.

In Chapter 2, we discuss the work on network side-channel detection and quantification,

Profit. we cover the details on the system model, feature extraction using trace alignment,

various quantification methods and go over the experimental evaluation using DARPA STAC

benchmarks.
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In Chapter 3, we cover the work on test input generation for network side channels, AutoFeed,

explain how input generation works to achieve a feedback driven side-channel analysis framework,

go over experimental results and implementation details on DARPA STAC benchmarks.

In Chapter 4, we cover the work on finding bounds on information leakages using statistical

methods, describe how the information leakage attack can be demonstrated using classifiers and

describe our experimental results on IoT benchmarks.

In Chapter 5, we cover the work on finding a mitigation strategy that balances the trade-off

between information leakage and network overhead. We describe the search-based approach that

develops packet padding, delaying and injection strategies targeting the most leaking features

and synthesizes the mitigation strategy. We go over the experimental evaluation results on

multiple IoT benchmarks.

In Chapter 6, we describe the tool for detecting and quantifying side-channel information

leakages, TSA (Tool for Side-channel Analysis) which unifies the previous approaches. We

describe the architecture and usage of TSA, and give case studies demonstrating the usefulness

of the tool.

In Chapter 7, we summarize the prior works in the fields of software side-channel analysis,

input generation and side-channel mitigation.

In Chapter 8, we present our final remarks, cover the possible future directions and conclude

the dissertation.
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Chapter 2

Detection and Quantification of

Network Side Channels

Identification of network side channels for a software system requires searching for correlations

between sensitive information that the system accesses (i.e., secret inputs to the software system)

and the outputs of the system that are observable over the network. Network packet traces are a

complex form of output. Each trace contains a large, variable number of observables, resulting

in an intractable number of potential features to investigate for information leakage. Selecting

the features to analyze, and quantifying the amount of information leaked from different features

are challenging problems. In this chapter, we present a tool called Profit that, given a software

application and a profiling input suite, determines whether and how much information leakage

occurs through a network side-channel for a particular secret of interest [18].

Given a profiling-input suite, Profit uses black-box network profiling to produce a set of

network packet traces of varying length. These packet traces give rise to an enormous feature

space that includes sizes and timing of all packets and their aggregations. In order to identify

the features that leak information and to quantify the amount of information leaked, Profit uses

a three-step approach:
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(a) Traces as captured. (b) After alignment. (c) After splitting into phases.

Figure 2.1: Trace alignment and phase detection (50 traces shown) for GabFeed. Colors
represent different packet sizes.

(a) Total duration of the
whole trace.

(b) Total duration of the
fifth phase.

(c) Time difference between
the third and fourth packets
within the fifth phase.

Figure 2.2: Probability densities for different feature values for GabFeed. Colors represent
different secrets. X-axis is time (sec).

1. Alignment and Phase Detection: We apply techniques developed for gene alignment to align

packets of network traces. Then, by studying the variations across traces, we identify phases

of application behavior as either constant-length patterns or variable-length exchanges

between such patterns.

2. Feature Extraction and Selection: We define a feature space that covers observations about

individual packets as well as observations about sequences of packets (such as the time

difference between two packets, or the total size over all packets). Trace alignment and

phase detection enable us to identify new features that we would not consider otherwise,

and to do so in a modular way, by focusing on features of each phase separately. We also

extract features from the unmodified, full-length original traces.
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3. Information Leakage Quantification: We use information-theoretic metrics, such as Shannon

entropy, to quantify the amount of information leaked by network observations, based on

the features identified during phase detection and feature selection, and the automatically

inferred probability distributions for features. We present the user with a ranking of the

features that are most worth looking into, sorted by the amount of information leakage.

When combined, these three steps provide a black-box approach for detecting information

leakage from applications that is due to network communication. We experimentally evaluate

Profit using benchmark applications from the DARPA Space/Time Analysis for Cybersecurity

(STAC) program [23]. The STAC benchmark is developed by DARPA to evaluate the effectiveness

of side-channel detection techniques, and consists of a variety of realistic networked applications

that often contain side-channel vulnerabilities. Our experiments with the DARPA STAC

benchmark show that Profit is able to automatically identify features associated with the side-

channel vulnerabilities in these applications and quantify the amount of information leaked

by each feature, providing crucial insight about the existence and severity of side-channel

vulnerabilities.

The rest of the chapter is organized as follows. In Section 2.1 we give an overview of our

approach. In Section 2.2 we discuss the system model we use. In Section 2.3 we present the

trace alignment and phase detection techniques. In Section 2.4 we present the feature extraction

and leakage quantification techniques. In Section 2.5 we discuss the experimental evaluation of

our approach using the DARPA STAC benchmark. In Section 2.6 we discuss the limitations of

our approach. In Section 2.7, we provide a summary of the chapter.
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2.1 Motivation and Overview

(1)
Phase

detection

(2)
Feature

extraction

(3)
Leakage 

quantification

< v1, v1, v1, …, vnf >
< v1, v1, v1, …, vnf >
< v1, v1, v1, …, vnf >
< v1, v1, v1, …, vnf >

Captured packet traces
for each input in suite.

Split-traces enriched
with phase information.

Value of each feature
for each secret.

i1
i2
i3
i4

• Profile-input suite:
    a  different secrets
    b  inputs per secret
    c  samples per input
    n = a∙b∙c inputs

Black-box
system

execution

i1
i2
i3
i4

s1

s2

s3

s4

Ranking of the most-leaking
features, sorted by leakage.

Total size A->B Phase 3100%

• Secret function !
• Time or space.

Packet #17 B->A Phase 272%

Packet #5 A->B Full trace71%

Total size B->A Full trace4%
… … ……

Figure 2.3: Profit workflow.

Let us consider GabFeed, an application from the DARPA STAC benchmark, as a motivating

example. GabFeed is a Web-based forum. Users can post messages, search the posted messages,

consult a database on special issues, and engage in direct chat. Besides the typical user login

form, it also offers a challenge-response mechanism for the user to confirm the server’s identity.

This mechanism has a timing side channel—the small delay between two of the network packets

spawned by this action is proportional to the number of 1s in the binary representation of the

server’s private key.

Consider the following interaction: A user performs a search, then checks the identity of

the server before performing another more sensitive search. This is repeated many times, for

profiling purposes, using different server private keys with varying numbers of 1s. Suppose that

we captured the network traffic for many different inputs and painstakingly inspected it using

WireShark [24]. Even if we knew where to look, it would still take nontrivial amount of effort to

confirm that those two specific packets indeed leak sensitive information. If we did not know

where to look, attempting this manually would be a truly daunting endeavor.

An automated tool that can assist in such a search would need to examine a vast feature

space—not just the size of each packet, its flags, its direction, but also all possible time differences

(deltas) and sums over all possible subsets of packets. Since this is infeasible to do for network

traces generated by realistic applications, a well-chosen feature space needs to be selected for

consideration.
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Figure 2.1a shows the network traffic captured by Profit for the GabFeed application for 50

repeated interactions, using many different server private keys with 12 different numbers of 1s in

the key, and different search queries. Each row represents a complete interaction (a trace) as a

sequence of packet sizes. Colors represent packet sizes. To keep variations visible, the palette is

not a gradient.

In this example, the fact that both search operations introduce variable amounts of space and

time utilization before and after the leaky event makes the crucial feature harder to characterize.

In fact, even naming the feature in terms of the captured traffic is not trivial (e.g., it is not “the

n-th packet” for any consistent value of n).

Figures 2.1b and 2.1c show the same 50 traces after being globally aligned and then separated

into phases, respectively, by Profit. This process enables Profit to synthesize the crucial feature

that successfully captures this side channel. Figure 2.2 shows the probability density functions

(for each value of the secret, i.e., for each number of 1s in the private key) for a few of the

numerous features that were considered by Profit during the leakage quantification step.

Without alignment or phase detection, the best (i.e., most-leaking) feature that Profit

reported was the time difference between the first and the last packets in each whole trace—that

is, the duration of each trace. Note that since there are 12 different values of the secret (number

of 1s in the key), there is log2 12 = 3.58 bits of secret information. Profit quantified the leakage

of this feature as roughly 40% of the secret information (1.44 of 3.58 bits). Figure 2.2a shows

the probability density functions inferred by Profit. Each curve represents one possible value

of the secret. Intuitively, the leakage of 40% is much less than 100% because of the significant

overlap between the distributions, yet well above 0% because there is some degree of certainty

(note that the first and last curves, for instance, are almost completely non-overlapping).

With phase knowledge, Profit can consider more refined features, like the time difference

between the first and last packets of the fifth phase. Figure 2.2b shows the probability densities

for this feature, for which Profit computed 99% leakage (3.56 of 3.58 bits). Note that the total
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duration of phase 5 also includes some noise from other packets in the phase, and this entails

some minor overlap.

As it turns out, the top-ranking feature reported by Profit was the time difference between

packets #3 and #4 of the fifth phase. As illustrated in Figure 2.2c, this even more specific

feature has maximal separation between the distributions of each secret’s probability given an

observation. Not surprisingly, it is the only feature that yields 100% leakage (3.58 of 3.58 bits)

for this example.

Figure 2.3 shows the three main steps of our approach implemented in our tool Profit. Given

a profiling suite, we first generate network traces that correspond to each input value. We run

each input value multiple times in order to capture variations due to noise. Next, we align

network traces and divide them to phases after alignment. After alignment and phase detection,

each network trace is divided to a fixed number of sub-traces where each sub-trace corresponds

to a phase. Next, using our feature library we identify the set of features for each phase. We,

then quantify the amount of information leaked via each feature in terms of entropy using the

automatically inferred probability distributions for features. At the end, Profit produces a ranked

list of features, sorted with respect to the amount of information leaked via that feature. Profit

also reports the amount of information leaked via each feature in terms of number of bits using

Shannon entropy.

2.2 System Model

We present a simple formalization of the system model and definitions for some of the

concepts used in our approach.
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Inputs and secrets

We target networked applications, such as client-server and peer-to-peer systems, that

communicate through an encrypted network channel (typically TCP encrypted using SSL/TLS).

Our target systems often require complex, structured inputs. For a particular system of choice,

let the input domain I be the set of all valid inputs, and let ζ : I −→ S be a function which, given

an input, projects the secret—a piece of confidential information that the user wants to make

sure that the system does not leak. We will call ζ the secret function (i.e., the secret-projecting

function), and S the secret domain (i.e., the domain of the secret).

Packets

A packet is an abstraction of a network packet. Real-world packets contain many details,

including nested payloads and headers with many fields and options. We assume that payloads

are encrypted, and attacks trying to break the encryption is outside the scope of this work.

We limit our abstraction of packets to a core subset of metadata from the highest-level header

that is particularly relevant for side-channel analysis: the size of the encrypted payload in bytes

(p.size), the time at which the packet was captured (p.time), and the source and destination

addresses (p.src, p.dst) of the packet. We represent each packet p as a tuple that consists of

packet meta-data:

p = (p.time, p.size, p.src, p.dst, p.sport, p.dport)

Traces

Running a certain input i ∈ I through the system while capturing network traffic yields a

trace, which is a sequence of packets t = ⟨ p1, p2, . . . , p|t|⟩. Let T be the set of all possible traces.
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Input set and secret set

Generally, it is not be feasible to run all possible inputs exhaustively through the system.

Therefore, the user typically needs to select a subset of I that she wants to profile, i.e., a profiling

input suite. Let the input set I ⊆ I denote this set of distinct inputs that will be fed into the

system during the analysis.

As explained above, each input i ∈ I has an associated secret value ζ(i). By choosing a set

of inputs, the user is also choosing a set of secrets. Let the secret set (i.e., the set of secrets)

S ⊆ S be the set of distinct secrets fed into the system during the analysis.

Input list, secret list, captured trace list

Due to system nondeterminism (e.g., network noise, randomized padding), two runs with the

same input i ∈ I may yield different traces. The user may find it desirable to run each input

multiple times. We thus introduce input lists, which may include multiple appearances of each

input.

When conducting a Profit analysis, the user generates a list of n inputs ⟨ i1, i2, . . . , in⟩, which

implies a list of n secrets ⟨ s(1), s(2), . . . , s(n)⟩ that can be obtained via ζ(ij). Running all the

inputs through the system while capturing network traffic yields a list of traces ⟨ t(1), t(2), . . . , t(n)⟩.

We will call these lists the input list, the secret list, and the captured trace list, respectively.

Features

A feature is a function f : T −→ R that projects some measurable aspect of a network trace.

Some examples of possible features are: the size of the first packet in the trace, the time of the

last packet in the trace, the maximum of all sizes of odd-numbered packets in the trace, etc.

There is an infinite number of possible features, ranging from very simple to arbitrarily complex

ones.
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Profiles

By running a Profit analysis, a profile of the system is obtained, which maps each feature

name to the profile for that feature. The profile of the system for a feature f is the list of

(ζ(ij), f(tj)) tuples for j ∈ [1 . . . n], i.e., ⟨ (s1, f(t1)), (s2, f(t2)), . . . , (sn, f(tn))⟩. In other words,

the system profile for a feature f associates the secret value of each trace with the value of f for

that trace. To summarize the results of the profiling, we can represent the trace list obtained

from profiling as

T = (t(1), t(2), ..., t(|T |))

and the corresponding secrets as a vector

y = (y(1), y(2), ..., y(|T |)).

Direction-induced subtraces

If t ∈ T is a trace, let t↑ and t↓ be the traces induced by keeping only the packets from t

whose attributes p.src and p.dst are consistent with the specified direction, respectively. For

instance, suppose t = ⟨ p1, p2, p3, p4⟩ where p1 and p4 were sent from client to server, and p2

and p3 were sent from server to client. Then t↑ = ⟨ p1, p4⟩ and t↓ = ⟨ p2, p3⟩. For peer-to-peer

systems, the left side denotes a designated peer that runs on the client machine, and the right

side denotes all other peers.

Split traces

A trace-splitting function ϕ is a function that, given a trace t ∈ T, splits t into subtraces

(which are themselves traces) whose concatenation is the original t. A split trace is a sequence of

traces obtained by splitting a trace.
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2.3 Alignment and Phase Detection

In this section we describe our heuristics for trace alignment and phase detection. The former

leverages well-known tools from molecular biology, and the latter is based on the output of the

former.

2.3.1 Trace alignment

Given a list of captured traces ⟨ t1, t2, . . . , tn⟩, where each ti may have a different length, we

would like to detect stable patterns that appear in nearly identical form across nearly all of the ti,

and then use them to identify the variable parts in between which, despite varying significantly

across traces, could be semantically related in a meaningful way. This is essentially multiple

sequence alignment (MSA), a well-studied problem in computational biology [25] where sequences

of nucleic acids need to be aligned in a similar fashion. Many crucial analyses in biology (e.g.,

determining the evolutionary history of a family of proteins) depend on MSA. However, obtaining

an optimal alignment is an NP-hard problem [26,27]. Many heuristic approaches exist, typically

based on progressive methods [28] or iterative refinement [29,30]. Some popular heuristic toolkits

that yield a good compromise between accuracy and execution time are the CLUSTAL [31] family,

T-COFFEE [32], and MAFFT [33]. They are often limited to strings over small alphabets, give

each character a specific biological meaning, and rely heavily on precomputed tables for common

character combinations from the biology domain. We use MAFFT, which offers a generic mode

with a large alphabet and no special meaning for each character.

We align traces based on their packet size sequences, i.e., for t = ⟨ p1, p2, . . . , p|t|⟩ we consider

⟨ p1.size, p2.size, . . . , p|t|.size⟩. We also incorporate some information about packet direction into

the sequence of sizes by encoding the direction of each packet into the sign of its size. Considering

packet timestamps could also provide useful insight for alignment, but we found it difficult

to leverage size and time information simultaneously in a consistent way. For the purpose
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of alignment, and for our benchmark, sequences of (directed) packet sizes proved to be a far

more useful characterization than sequences of timestamps. Nevertheless, note that a size-based

alignment can serve as a source of new features not just in space but also in time, as we saw in

Section 2.1.

Recall Figure 2.1 from Section 2.1, which shows 50 traces captured from GabFeed before

alignment, after alignment, and after phase splitting. Colors represent packet sizes. White

represents the absence of a packet. To improve readability of slight differences in packet sizes,

the palette is intentionally not a gradient.

The alignment tool yields a list of sequences of packet sizes, but each sequence may contain

gaps (shown in white). Gaps are inserted so as to try and maximize the alignment of patterns

that are recurrent across traces. As a consequence, stable patterns become aligned columns, and

variable patterns can emerge which are visibly related across traces, but were hard to detect

before alignment.

Figures 2.4 and 2.5 are analogous to Figures 2.1a and 2.1b, respectively, but show a much

smaller set of shorter sequences.

2 5 8 8 9 -4 -3 1 1 1
0 5 8 7 -4 -3 1 1
2 5 8 8 8 6 -4 -3 1 1 1
2 3 8 8 4 -4 -6 1 1 1 1

Figure 2.4: An example of unaligned sequences of values.

2 5 8 8 9 – -4 -3 1 1 1 –
0 5 8 7 – – -4 -3 1 1 – –
2 5 8 8 8 6 -4 -3 1 1 1 –
2 3 8 8 4 – -4 -6 1 1 1 1

Figure 2.5: An example of aligned sequences of values (with inserted gaps).
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2.3.2 Phase detection

As exemplified by Figure 2.1 (b), thanks to the inserted gaps, the aligned sequences present

a new horizontal axis that is better suited for splitting the traces into meaningful subtraces.

This eases the detection of stable regions, which we will call stable phases, and as a consequence,

of the variable regions that appear before, in between or after them, which we will call variable

phases. Note that the word phase applies to both kinds of regions.

We now need a heuristic method to find stable phases and select cut-points along the

horizontal axis of the matrix. Let M be an aligned matrix with n rows and m columns. Let Cj

be the j-th column, and #Gj the number of gaps in it. The density of the j-th column is the

ratio Cj/n, and its diversity is the variance of the (n−#Gj) values in Cj that are not gaps. We

characterize stable regions using two thresholds: the maximum diversity (ψ) that a column may

have in order to be part of a stable phase, and the minimum width (ω), in columns, that may

constitute a stable phase.

Hence, a stable phase is a maximally wide run of adjacent columns that are fully dense and

that satisfy both thresholds: (i) the run is at least ω columns wide, and (ii) each column within

the run has at most ψ diversity. Using this characterization, we synthesize a regular pattern that

can parse all sequences of values. The pattern is akin to a regular expression, but with arbitrary

integer values instead of characters. For the simple example shown in Figure 2.5, assuming ω = 3

and ψ = 0.25, the synthesized pattern would be

(int*)((2|0)(5|3)(8)(8|7))(int*)((−4)(−3| − 6)(1)(1)(int*))

where int stands for “any integer” and * is the Kleene star.

The pattern demands that the stable parts be present, accounts for some amount of diversity

in them, and allows for freedom before, after, and in between the stable parts. In general,
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assuming k > 0 stable regions are found, we build a pattern of the form

(V1)(S1)(V2)(S2) . . . (Vk)(Sk)(Vk+1)

Each Si represents a stable region. For the i-th stable region with length l, Si = d1d2 . . . dl,

where each of the dj is either a constant integer (if position j within Si always had the exact

same value for all traces), or a union of integers dj = (x1|x2| . . . |xr) if that position exhibited r

different values within the allowed threshold. Each Vi represents a variable region and consists

of a free pattern (any sequence of integers). All regions are named and then used to extract the

corresponding groups. Thus, the synthesized expression indeed becomes a parser for sequences

of directed packet sizes.

If the number of available captured traces is so large that the MSA tool would take too long

to find an alignment, we can still apply the tool to a reasonably large random subset of the

traces. We then detect phases as explained above, and use the synthesized expression to parse

the rest of the traces. Some traces could fail to parse if their stable parts include extraneous

values that were not present in any of the aligned traces. If the traces that fail to parse are less

than 1% of the total number of traces, we consider them outliers and ignore them. If they exceed

1%, we add them to the initial subset and realign. For all the examples in our benchmark, using

a subset of at least 500 traces, we have never encountered a case where more than 1% of the

traces have failed to parse.

2.4 Leakage Quantification

Once the traces have been separated into phases, we employ a set of feature extraction

functions. For any particular feature, we use Shannon entropy to estimate the amount of

information an attacker can gain by making side-channel observations about that feature in
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network traces. We find the features that leak information about a benign user’s secret values,

and rank them to identify the most informative trace features.

2.4.1 Feature extraction

Feature extraction is commonly used in leakage quantification and machine learning to

extract information from data [12]. In our approach, we process network traces and subtraces

obtained through phase alignment to extract features of interest. Each trace t is converted to

three subtraces t↑, t↓ and t↕ according to the direction of packets as explained in Section 2.2. We

define a feature set F = {f1, f2, . . . , fn} such that each feature function f j extracts a statistic

from a packet or all packets from a subtrace.

We define aggregate features, which compute the sum of packet sizes and sum of timing

differences between the first and last packets in a subtrace. We define fine-grained packet-level

features, consisting of the size of packet pi and timing differences between consecutive packets pi

and pi+1. To ensure that we have same number of features for each sampled trace, we align each

subtrace left and remove packets that are not fully aligned when computing per-packet features.

Aggregate features are not affected by this change and use the entire subtrace. The features are

summarized in Table 5.1. Applying a feature function f j to each packet series obtained from

traces results in a feature profile P i = ⟨ (s1, vj1), (s2, v
j
2), . . . , (sn, v

j
n)⟩, which is used to compute

information leakage.

Table 2.1: Definition of network trace features.

Feature Function Definition Description
f sum−size(t)

∑
p∈t p.size Sum of sizes of packets

in sub-trace t.
f size(⟨ p1, . . . , pn⟩, i) pi.size Size of packet i.
f total−time(⟨ p1, . . . , pn⟩, i) pn.time− p1.time Total time duration of

packets in subtrace.
f∆time(⟨ p1, . . . , pn⟩, i) pi+1.time− pi.time Time difference between

packets i and i+ 1.
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2.4.2 Leakage Quantification

In our threat model, an attacker who is observing the network communication can record a

network trace, extract features from that trace, and make an inference about the value of an

unknown secret. Our goal in this section is to describe how to measure the strength of this

inference process. The ultimate goal is to compare and rank individual features in terms of their

usefulness in determining the value of the secret. Here, we fix our attention on the relationship

between secrets and a single particular feature of interest, f j , and so we omit the superscript j

for the current discussion and refer simply to f as the feature of interest, and vi as the ith value

of feature f in the given feature profile.

Quantitative information flow Before observing a run of the system, an outside observer

has some amount of initial uncertainty about the value of the secret. Benign users of the system

perform interactions and, meanwhile, an attacker observes the network traces and computes

the value of feature f . In our scenario, observing a trace feature results in some amount of

information gain. In other words, measuring f reduces an observer’s remaining uncertainty

about the secret s. Our goal is to measure the strength of flow of information from s to f , which

is called the mutual information between the feature and the secret. This intuitive concept

can be formalized in the language of quantitative information flow (QIF) using information

theory [34]. Specifically, we make use of Shannon’s information entropy which can be considered

a measurement of uncertainty [35,36].

Given a random variable S which can take values in S with probability function p(s), the

information entropy of S, denoted H(S), which we interpret as the observer’s initial uncertainty,

is given by

H(S) = −
∑
s∈S

p(s) log2 p(s) (2.1)

Given another random variable, V , denoting the value of the feature of interest, and a conditional
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distribution for the probability of a secret given the observed feature value, p(s|v), the conditional

entropy of S given V , which we interpret as the observer’s remaining uncertainty about S, is

H(S|V ) = −
∑
v∈V

p(v)
∑
s∈S

p(s|v) log2 p(s|v) (2.2)

Given these two definitions, we can compute the expected amount of information gained about

S by observing V . The mutual information between V and S, denoted I(S;V ) is defined as the

difference between the initial entropy of S and the conditional entropy of S given V :

I(S;V ) = H(S)−H(S|V ) (2.3)

Probability estimation via profile samples The preceding discussion assumes that the

probabilistic relationships between the secret and the feature values are known, i.e. p(s|v).

However, since we do not know this relationship in advance, we estimate the conditional

probability distribution using the samples generated via profiling.

We begin with a generic discussion of estimating probability distributions from a finite

sample set. Let V be a sample space, V be a random variable that ranges over V, v represent

a particular element of V, and v = ⟨v1, . . . , vn⟩ be a finite list of n random samples from V.

We estimate the probability of any v ∈ V in two ways. Each method relies on a choice of

“resolution” parameter, which we make explicit in the following descriptions. The reader may

refer to Figure 2.6.

Histogram estimation. We choose a discretization which partitions the sample set v into m

intervals or “bins” where ci is the count of the samples in bin i. The bins are represented by

intervals of length ∆v = m/(maxv −minv). Then for any v, p(v) is estimated by the number

of samples that are contained in the same interval as v divided by the total number of samples.

The resolution parameter is m and the probability estimator for v which falls in bin i is given by
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p̂(v) = ci/n. This estimation of probability is straightforward and commonly used. However,

our experiments indicate that, due to the huge search space, our sampling is extremely sparse.

Hence, histogram-based probability estimation fails to generalize well to predict the probability

of unseen samples.

Gaussian estimation. We can estimate the probability of any v ∈ V by assuming the sample

set comes from a Gaussian distribution. We compute the mean, µ, and standard deviation σ

from the set of samples v. We then have an estimate p̂(v) assuming v comes from the normal

distribution N(µ, σ). This allows us to more smoothly interpolate the probability of feature

values for any v that was not observed during profiling.
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Figure 2.6: Estimating a probability distribution from samples using histograms or Gaussian
estimates.

Information gain estimation via profile. We make use of the profile for the current feature of

interest f to estimate the expected information gain. We consider a profile P that consists of n

pairs of secrets and feature values, P = ⟨(s1, v1), (s2, v2), . . . , (sn, vn)⟩.

For any particular secret s ∈ S let vs = ⟨vi : si = s⟩ be the list of feature value samples that

correspond to s. We use vs to estimate the probability distribution of the feature value given

the secret, p̂(v|s), using either the histogram- or Gaussian-based method. We then compute the

probability of a secret value given a feature value, p̂(s|v), using a straightforward application of

Bayes’ rule. We assume a uniform probability distribution for p(s) and using p̂(s|v), we apply

equations 2.1, 2.2, and 2.3, to compute Î(S, V ), the estimated information gain (leakage) for the

secret given the current feature of interest.
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Example. Consider a scenario in which we have two possible equally likely secrets, s1 and s2.

Thus, we have 1 bit of secret information. After conducting profiling for a feature f , we can

compute the estimate for the probability of the feature values given the secret values p̂(v|s1) and

p̂(v|s2) using either histogram-based estimation or Gaussian estimation as depicted in Figure 2.6.

Using histogram-based estimation with the bin-width of ∆x = 0.5 as shown, we observe that

the only sample collisions occur at v = 17 and v = 20.5. Since we observe very few collisions

this way, we expect that histogram-based estimation will tell us that there is a high degree of

information leakage since most observable feature values correspond to distinct secrets. Indeed,

the estimated information gain is 0.8145 bits out of 1 bit.

On the other hand, we have sparsely sampled the feature value space, and if we were able to

perform more sampling, we would “fill in” the gaps in the histogram. Hence, using Gaussian

distributions to interpolate the density, as show in Figure 2.6, we see that we are much better able

to capture the probability of observable feature value collisions. Using the Gaussian probability

estimates, we compute that the expected information leakage is 0.4150 bits out of 1 bit, much

less than when estimating with the histogram method. We say that the histogram overfits

the sampled data. Estimating probabilities from a sparse set of features without overfitting is

addressed in multiple works [37–40]. Our experimental evaluation (Section 6.2) indicates that

Gaussian fitting works well for estimating entropy in network traffic features.

2.5 Experimental Evaluation

In this section we present the experimental evaluation of Profit on the DARPA STAC

benchmark.
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2.5.1 DARPA STAC Systems and Vulnerabilities

The applications in our benchmark are from the DARPA Space/Time Analysis for Cy-

bersecurity program [41], which seeks to push the state of the art in both side-channel and

algorithmic-complexity vulnerability detection. Algorithmic complexity attacks are beyond

the scope of this work; we focus on STAC’s side-channel-related applications. These STAC

applications [23] include a collection of realistic Java systems, many of which contain side-channel

leaks in time or in space, and certain secrets of interest. Some of the systems come in multiple

variants, some of which may leak more than others, or have a particular vulnerability added or

removed. All the systems are network-based (web-based, client-server, peer-to-peer), and most

of the vulnerabilities are based on profiling network traffic and eavesdropping. We have omitted

some applications whose side channels are based on other media, such as interception of file I/O,

or whose vulnerabilities are exclusively about cryptography.

Airplan is a Web-based client-server system for airlines. It allows uploading, editing, and

analyzing flight routes by metrics like cost, flight time, passenger and crew capacities. One

secret of interest is the number of cities in a route map uploaded by a user; the challenge is

to guess this using a side channel in space. Airplan 2 has a vulnerability by which the cells

of the table shown on the View passenger capacity matrix page are padded with spaces to a

fixed width. Thus, the HTML code for the table looks neatly laid out. This is easily overlooked

by the end-user, as multiple spaces are rendered as one space by Web browsers, but it does

influence the number of bytes transmitted. Thus, the download size of this particular page

becomes proportional to the number of cities squared. In Airplan 5, the HTML cell padding is

randomized rather than fixed, which dilutes the leakage but does not eliminate it. Airplan 3

does not pad the cells, and is thus much more resilient to this kind of attack; there is still a

correlation, but it’s a much weaker one.

Another secret of interest in Airplan is the strong connectivity of a route map uploaded
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by an airline. Both Airplan 3 and Airplan 4 have a Get properties page that shows various

attributes of a route map. Airplan 3 has a vulnerability that causes a slight variation in the

byte size of this page depending on whether the route map in question, viewed as a graph, is

strongly connected. Airplan 4 does not have this vulnerability. The fault can be exploited to

fully leak the secret in the former, while the latter does not leak at all.

Bidpal is a peer-to-peer system that allows users to buy and sell items via a single-round,

highest-bidder-wins auction with secret bids. It allows users to create auctions, bid on an auction,

find auctions, etc. The secret of interest is the value of the secret bid placed by a user. Bidpal 2

contains a timing vulnerability whereby a certain loop is executed a number of times proportional

to the maximum possible bid, and a counter is increased; after the counter exceeds the victim

power plant’s offered amount, a different action is performed per iteration which takes slightly

longer. Thus, the total execution time of the loop correlates with the secret.

GabFeed, as explained in Section 2.1, is a Web-based forum where users can post messages,

search posted messages, consult special issues, and chat. Users can log in, but may also confirm

the server’s identity through a challenge-response form. In GabFeed 2, this mechanism is

affected by a timing vulnerability in a modPow() method, where a branch is only taken when the

i-th bit of the server’s private key is 1. Thus, a small delay between two network packets in the

challenge-response authentication is proportional to the number of 1s in the binary representation

of the private key. In GabFeed 1, the modPow() method is securely implemented and the

vulnerability is not present.

SnapBuddy is a Web application for image sharing; it allows users to upload photos from

different locations, share them with friends, and find out who is online nearby. The secret is the

physical location of the victim user. During the execution of the Change user location operation,

a few network messages are sent, including one whose size correlates with the destination location.

By careful manual inspection one can confirm that each one of the 294 known locations has a

unique associated message size, thus providing a unique signature for each location. However, the
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crucial message may impact the size of one, two, three, or up to four adjacent packets depending

on its total size. Thus, one should pay attention to the sum of those packets.

PowerBroker is a peer-to-peer system used by power suppliers to exchange power. Power

plants with excess supply try to sell power, whereas those with a shortfall try to purchase it. The

secret of interest is the value offered by one of the participating power plants. PowerBroker 1

has a vulnerability in time whereby a certain loop is executed a number of times that is

proportional to the amount of the price, in dollars, offered for the power. This induces a

time execution difference that ends up affecting network traces. In PowerBroker 2 and

PowerBroker 4, this loop is always executed a constant number of times, which removes

the vulnerability. In addition to this, in PowerBroker 2 as in Bidpal 2, the behavior

of the program changes when loop counter reaches the bid. However unlike Bidpal 2, this

change in behavior does not impact the time taken for a loop iteration so the program remains

non-vulnerable.

TourPlanner is a client-server system that, given a list of places that the user would like

to visit, calculates a tour plan that is optimal with respect to certain travel costs. It is essentially

a variation of the traveling salesman problem. The secret of interest is the user-given list of

places. The TourPlanner system has a subtle timing vulnerability. The computation can take

a while, so the server sends periodic progress-report packets to the client. Their precise timing

exposes the duration of certain internal stages of the computation. There are five consecutive

packets of which the four time-deltas in between (i.e., the time differences between each packet

and the following one) are particularly relevant. Each of these deltas, by itself, leaks just a little

information about the secret. Their sum leaks more information than each of them separately.

And when interpreted as a vector in R4, they constitute a signature for the secret list of places

with a high level of leakage.
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2.5.2 Experimental setup

Profiling-input suite generation

In many real-world contexts, one can leverage existing input suites and/or existing input

generators that might be available for the system.

If no input suite or input-generating script is available, we will need to generate inputs to

run the system. Generating complex structured inputs for black-box execution of a system is a

nontrivial task, and its full automation is beyond the scope of this work.

Manually designing a profiling-input suite generator compels us to consider the following

goals:

1. Secret domain coverage: We want to exercise the system for many different secrets, i.e.,

choose a secret set S that is reasonably representative of the secret domain S.

2. Input domain coverage: We want to choose an input set I that is reasonably representative

of the input domain I. Typically, for each secret s ∈ S we may need many different inputs

i ∈ I such that ζ(i) = s. Since such inputs may differ from each other in various different

ways, we may want to sweep several dimensions to capture a representative subset.

3. Sampling for noise resilience: We want to run each input i ∈ I multiple times so that

system noise can be modeled and accounted for, especially if we know or suspect that the

system may have a strong degree of nondeterminism.

4. Cost of execution: The product of the above can spawn a large set of inputs. Depending

on the system, executing them may be costly. Cost and coverage is a classic trade-off.

For all the experiments presented in this work, the inputs were created by generalizing the

example interaction scripts that were included with the documentation of each system. Based on

the available scripts and documentation, we identified the main degrees of freedom and strived
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to sweep each of those dimensions as uniformly as possible, all while keeping the total execution

time of the Cartesian product within our resource availability.

The size of our input suites varies from one application to another because some applications

take up to two orders of magnitude longer than others to execute each interaction. The number

of parameters also varied from one application to another because different applications’ inputs

involve different orthogonal degrees of freedom. Whenever multiple applications were executed

for the same secret, we used the same input suite for all of the applications.

Trace alignment parameters

When aligning biological sequences, MSA tools are sensitive to parameter tuning. Aligning

network packet sizes, however, seems to be an easier task. Our data often contains arbitrarily

long unalignable regions, so we set MAFFT to the mode recommended for that purpose by its

developers, and left all other parameters untouched at their default values.

Phase detection parameters

We used ω = 3 (minimum stable phase width), ψ = 0.25 (maximum stable column diversity),

and a maximum size of up to 1000 traces for the subset that we sent to MAFFT for alignment.

For the input suites that consist of less than 1000 traces (see Table 2.2), external alignment

sufficed. For input suites with more than 1000 traces, the traces that did not parse due to

anomalies (see Section 2.3.2) were always less than 1%.

2.5.3 Experimental results

In this section, we are going to discuss our results and explain our findings on DARPA STAC

benchmark.
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Confirmation of limitations of the histogram approach

Figure 2.7 shows the leakage results over three Airplan applications with both Gaussian

and histogram-based estimation with various bin sizes. In this figure, we can see that Gaussian

estimation is estimating 100%, 25% and 79% for three Airplan applications. The leakage results

of histogram estimation vary with different the bin sizes with overfitting in lowest bin size and

underfitting in largest bin size. Assuming the feature is sampled from a Gaussian distribution, if

we fix the bin size according to one application, it either overestimates or underestimates the

leakage for other applications.

Example of Profit output

Table 2.4 shows the results we get from Profit where we obtain leakage for each extracted

feature ranked according to leakage percentage in decreasing order.

Results for vulnerable applications

Table 2.2 summarizes the results returned by Profit for applications with a known side-channel

vulnerability. For each application we show the secret leaked by the known vulnerability and the

type of the vulnerability (in space or in time). We also report the number of distinct secrets,

distinct inputs, and executions per input that were used during profiling. On the right side, we

show the results returned by Profit. The Best feature column shows, among the features that

were present in Profit’s output ranking, the one that most specifically and closely captures the

leakage induced by the known vulnerability. The Rank column indicates the position within

Profit’s output ranking in which said feature appeared. The Leak column shows the percentage

of information leakage computed by Profit.

In 6 out of 7 cases, the best feature that most closely leads to the vulnerability appeared at

the very top of Profit’s ranking. In all cases, it appeared within the top-five. In all cases where

the vulnerability fully leaks the secret, Profit computed a leakage of 95% or more, except in the
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cases of Bidpal, PowerBroker 1, and TourPlanner. For Bidpal and PowerBroker 1,

a larger number of samples per input would be needed in order to compensate for the noise, but

this was hard to obtain because both applications take several minutes per execution. In the case

of TourPlanner, where each sample takes very little time, Profit actually identified all four

relevant time-deltas, which appeared within the top-10 with leakages of about 14% to 16% each.

As mentioned in Section 2.5.1, an even higher leakage (by no means 100%, but probably above

50%) can be achieved by considering all four deltas together as a multi-dimensional feature,

but, as explained in Section 2.6, this is beyond the abilities of the current version of Profit.

Remarkably, although it only handles one feature at a time, Profit correctly inferred that the

sum of the four deltas (i.e., the total duration of the phase that isolated them) yielded a greater

leakage than any of the four separately, and reported that feature at the top of the ranking. It is

also worth noting, when looking at the Best feature column, that the phase detection mechanism

allowed Profit to be very specific about the location of the features listed at the top of its

rankings. Even in cases where the data was insufficient to reach a fully accurate quantification

of the leakage, Profit was able to point the user to the right features.

Results for groups of vulnerable and non-vulnerable applications

Table 2.3 summarizes the results returned by Profit for each group of applications associated

with a particular side-channel vulnerability. Each group begins with the vulnerable application

that was shown in Table 2.2, followed by other applications in which the vulnerability has

been mitigated or eliminated. For each application we show the secret leaked by the known

vulnerability and the type of the vulnerability (in space or in time). We also show whether the

vulnerability is present or not. On the right side, we show the results returned by Profit. For

the first application of each group, the Best feature and Leak columns show the same values

as Table 2.2. For the other applications in the group, the Best feature column shows the same

feature and the Leak column shows the percentage of information leakage computed by Profit for
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# Unique # Runs
Application Secret # Secs. inputs per input Type Best feature Rank Leak
Airplan 2 Number of cities 13 500 5 Space Sum ↓ phase 4 1 100%
Airplan 3 Strong connectivity 2 500 5 Space Pkt 10 ↓ phase 3 1 100%
SnapBuddy 1 Location of user 294 294 10 Space Sum ↑ phase 2 1 95%
Bidpal Secret bid value 49 49 4 Time ∆ 19-20 ↓ full trace 1 59%
GabFeed 1 No. of 1s in key 12 60 5 Time ∆ 4-5 ↓ phase 2 1 100%
PowerBroker 1 Price offered 49 49 4 Time ∆ 9-10 ↑ full trace 4 60%
TourPlanner Places to visit 250 250 20 Time Total time ↓ phase 3 1 30%

Table 2.2: Profit results on vulnerable applications.

Application Secret Type Vulnerable? Best feature Leak Top feature Leak
Airplan 2 Number of cities Space Yes Sum ↓ phase 4 100% Sum ↓ phase 4 100%
Airplan 5 Number of cities Space Partially Sum ↓ phase 4 79% Sum ↓ phase 4 79%
Airplan 3 Number of cities Space No Sum ↓ phase 4 25% Packet 20 ↓ full trace 36%
Airplan 3 Strong connectivity Space Yes Packet 10 ↓ phase 3 100% Packet 10 ↓ phase 3 100%
Airplan 4 Strong connectivity Space No Packet 10 ↓ phase 3 0% Packet 1 ↑ phase 2 4%
Bidpal 2 Secret bid value Time Yes ∆ 19-20 ↓ full trace 59% ∆ 19-20 ↓ full trace 59%
Bidpal 1 Secret bid value Time No ∆ 19-20 ↓ full trace 9% ∆ 16-17 ↑ full trace 19%
GabFeed 1 No. of 1s in key Time Yes ∆ 6-7 ↓ full trace 100% ∆ 6-7 ↓ full trace 100%
GabFeed 5 No. of 1s in key Space No ∆ 6-7 ↓ full trace 24% ∆ 6-7 ↓ full trace 24%
GabFeed 2 No. of 1s in key Time No ∆ 6-7 ↓ full trace 19% ∆ 11-12 ↕ full trace 20%
PowerBroker 1 Price offered Time Yes ∆ 9-10 ↑ full trace 60% Total time ↕ full trace 60%
PowerBroker 2 Price offered Time No ∆ 9-10 ↑ full trace 13% Total time ↕ full trace 13%
PowerBroker 4 Price offered Time No ∆ 9-10 ↑ full trace 9% ∆ 16-17 ↑ full trace 18%

Table 2.3: Profit results on vulnerable vs. non-vulnerable apps.

that feature. Finally, for all applications, the Top feature column shows the feature that appears

at the top of Profit’s ranking (or the most specific one, in the event of a tie between features

that subsume each other).

For all application groups we can see that, as the vulnerability is mitigated or removed, the

leakage computed by Profit decreases significantly and in the correct relative proportion. While

we have no firm guarantee that the computed leakages are exact (since, as stated in Section 2.6,

they depend on the input suite), we can observe that they are always consistent with the known

facts about the different DARPA STAC applications and their present and absent vulnerabilities.

Lastly, in 8 out of 13 cases, the top feature reported by Profit is indeed the best feature, and in

all other cases, the top feature reported was not significantly higher (in rank or in leakage) than

the best one.
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Figure 2.7: Information leakage comparison of Gaussian and histogram-based entropy estimation
for changing bin sizes for three versions of the Airplan application.

Rank Feature Dir. Subtrace Leak (%) Leak (bits)
1 Total size ↓ Phase 4 79% 2.94 of 3.70
1 Total size ↕ Phase 4 79% 2.94 of 3.70
1 Total size ↓ Full trace 79% 2.94 of 3.70
4 Packet 20 size ↓ Full trace 59% 2.16 of 3.70
5 Packet 27 size ↓ Full trace 56% 2.10 of 3.70
6 Packet 24 size ↓ Full trace 53% 1.97 of 3.70
6 Packet 28 size ↓ Full trace 53% 1.97 of 3.70
8 Packet 21 size ↓ Full trace 50% 1.86 of 3.70

Table 2.4: Feature ranking returned by Profit for Airplan 2.

2.6 Limitations

Quality of the profiling-input suite

The most important limitation of our approach to keep in mind is that the quality of the

leakage quantifications computed by Profit depends on the quality of the profiling-input suite.

Our ability to accurately quantify leakage is strongly linked to our ability to accurately estimate

the likelihood of collisions between observations from different secrets. Ideally, we would like to

increase the size and diversity of our input set I to be as close as possible to the input domain I,

so that the probability distribution of collisions would approach the one that we would see if we

could afford to execute all of I. If I is so small that it hardly ever causes any of those collisions,

leakage could be overestimated. On the other hand, if the suite is too large, it may be unfeasible

to execute it due to resource constraints.
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Normal distribution of feature values

We assume that, for a given feature, and for each secret, the probability of the feature given

the secret follows an approximately normal distribution. We thus model the probability density

function for each secret with a Gaussian curve. If the user expects different distributions, or

a chi-squared test reveals that these distributions are far from being normal, one may want to

model the probability density functions using a different kind of distribution.

One-dimensionality of features

The feature space that we consider in this work is intentionally limited to one-dimensional

features. We compute the leakage for many features, but consider them one at a time. As

exemplified by the TourPlanner vulnerability explained in Section 2.5.1, when several features

are combined in just the right way, they can leak more than each one of them separately (or

than all of them combined in a trivial way). Quantifying the joint leakage of combined features

is simple when one can assume that all the features are independent, but in this context, that is

almost never the case. Quantifying the joint leakage (that is, the correlation with the secret) of

multiple features that are partially correlated between themselves is a complex matter, which is

beyond the scope of this article and we will address in future work. Nevertheless, in many cases

Profit will still report partial leakage for one or more of the combinable features, which can at

least point the user in the right direction (see Section 2.5.3).

2.7 Chapter Summary

In this chapter, we presented Profit. Profit combines network trace alignment, phase detection,

feature selection, feature probability distribution estimation and entropy computation to quantify

the amount of information leakage that is due to network traffic. Our experimental evaluation

on DARPA STAC benchmark demonstrates that Profit is able to identify the features that
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leak information for the vulnerable applications. Moreover, Profit is able to correctly order the

amount of leakage in different variants of the same application.
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Chapter 3

Test Input Generation for Network Side

Channel Analysis

In this chapter, we present AutoFeed, a tool for feedback-driven black-box profiling of software

systems that detects and quantifies side-channel leakage automatically. [21] The user provides

some seed inputs for the target system, and a set of mutators which, given a valid input, return

another one. The user chooses a secret of interest—some aspect of the input that they consider

sensitive, whose leakage they want to detect and quantify. AutoFeed then repeatedly executes

the target system, generates new inputs, captures network traffic, and adjusts input generation

and system execution strategies based on the feedback it obtains by analyzing captured traffic.

Modern systems use encryption. AutoFeed analyzes side channels in network traffic—the

visible aspects of traffic that eavesdroppers can easily capture despite encryption, such as the

size, timing, and direction of network packets. AutoFeed extracts meaningful features from these

visible characteristics, and uses conditional entropy to find features that maximize information

gain about the secret of interest. For example, it may find that the time elapsed between certain

packets leaks some amount of information about the secret. The final output from AutoFeed

is an automatically generated ranking of the top n most-leaking features, sorted by how much
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information they each leak about the secret of interest.

There has been prior work on quantifying leakage in network traces in particular [18,42] and

in program traces in general [20, 43]. However, all of them rely on manually generated input

suites and do not address the problem of the quality of the input suite. AutoFeed automates

the manual effort of providing inputs. Instead, the user writes mutators to explore the input

space. An automated feedback loop progressively generates and runs more inputs and improves

accuracy of leakage estimation. AutoFeed also automates the assessment of usefulness of different

mutators and the stop criterion that determines when the leakage estimation and the output

feature ranking become stable, avoiding diminishing returns of computational effort. Compared

to prior work, AutoFeed enhances the degree of automation significantly, reduces the amount of

wasted profiling effort, and improves the reliability of the results.

My contribution in this chapter is to present a feedback-driven, black-box technique to detect

and quantify side channels using mutator-based input generation, statistical modeling of the

observed data, and a stop criterion to detect convergence of leakage estimation. AutoFeed runs

incrementally, generates more inputs as needed, caches inputs to avoid repetitions, and stops

running when its iterative leakage quantification stabilizes. In particular we present:

1. An automated search mechanism to determine crucial hyperparameter values dynamically

based on feedback, in order to estimate probability distributions for modeling the observed

data, and a comparative study of techniques to model the observed data using histograms,

Gaussian distributions, and kernel density estimation (KDE).

2. A mechanism to focus input space exploration on dimensions that provide more information

about the leakage. AutoFeed lets users model the input space using mutators, and relate them

to different dimensions of the input space. AutoFeed automatically explores each dimension

and assigns weights to the mutators. The effort invested in exploring each dimension is

proportional to how much each dimension fosters changes in leakage estimation.
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3. An automated stop criterion that halts the input generation process once the leakage estimate

stabilizes. This allows convergence of the leakage estimation to a value close to the ground

truth independent of the starting input set.

4. Experimental evaluation of the effectiveness of AutoFeed on handcrafted examples with

known quantitative ground truths and on the DARPA Space/Time Analysis for Cybersecurity

(STAC) benchmark [23], which consists of realistic-sized software systems (Web, client-server,

and peer-to-peer) developed by DARPA, in both controlled, low latency and less controlled,

high latency network conditions in order to evaluate side-channel vulnerability detection

techniques.

The rest of the chapter is organized as follows. In Section 3.1 we provide motivation and

an overview of our approach. In Section 3.2 we describe the core techniques and heuristics we

developed for AutoFeed. In Section 3.3 we present an experimental evaluation of AutoFeed. In

Section 3.4 we provide a summary of this chapter.

3.1 Motivation and Overview

Generating a set of profiling inputs to quantify information leakage presents unique challenges.

The problem is quite different from generating an input suite for testing. In traditional testing,

the goal is to find inputs that violate assertions or crash the system. In side-channel profiling,

the goal is to characterize the relationship between a certain secret (i.e., some private or sensitive

variable) and the publicly observable output of the system, such as the timing and sizes of

encrypted network packets. Many new issues arise. We do not know how inputs and outputs

are related. We do not know how outputs and secrets are related. Each observable feature may

reveal very little or very much about a secret. For each secret, there is an immense space of

output features that could leak information about it—the timing of a particular network packet,
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the time elapsed between two packets, the size of a packet, the sum of sizes of a subset of the

packets, etc. Given an observable output feature, it is hard to figure out how its value relates to

the value of the secret.

Challenge: Foster collisions. Suppose a secret is picked. Given a set of inputs, each with

a different value of the secret, suppose we run each input through the target system. If the set is

small, we will find some feature (say, the time of a certain network packet) that takes a unique

value for each secret value. Based on such observations, one might be misled into concluding

that the feature fully leaks the value of the secret. But the actual leakage could be much lower,

or even none, because: (1) If we generate more inputs, we may observe the same value of the

feature for two inputs with different secrets. We call these collisions. (2) If we run the same

input twice, due to system noise, we may see different feature values for the exact same input.

These two phenomena, collisions and noise, create complex relationships between secrets and

features.

It is desirable to find inputs that foster collisions between secrets in each of the system’s

observable output features. Imagine that we probe a medical system to see how much information

it leaks about a patient’s age when a patient’s record is accessed by medical staff through the

network. If we profile the system with a small sample (e.g., fetch 10 patient records), we may

observe that the size of a certain packet changes with the age of the patient. But the size of the

packet could have taken a unique value for each of the 10 executions by coincidence. A collision

occurs when we fetch the records of two patients with different ages (say, 18 and 57) for which

that packet has the same size (say, 215 bytes). This introduces uncertainty: an eavesdropper

that captures an interaction with a 215-byte packet cannot tell if the patient is 18 or 57 years

old. Thus, the feature does not fully leak the secret. As we fetch more records, if the observed

collision rate progressively approaches the actual rate, our quantification of information leakage

will progressively approach the actual amount of information leaked. An input set with an overly

low collision rate (w.r.t. the full input space) will result in overestimating the leakage. Finding
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inputs that foster collisions in the most-leaking features improves the estimation.

Now consider time features, such as the time elapsed between the third and fourth packets

of each interaction. We want to quantify how much information this feature leaks about patient

age. Since time is continuous, the probability of seeing the exact same value for two inputs is

zero. Even if we run the exact same input multiple times, we will see slightly different values.

This is due to system noise, such as variance in network latency. By running each input multiple

times, we can model the noise as a probability distribution. Collisions occur when distributions

overlap. The greater the overlap, the more uncertainty about the secret value, resulting in a

lower estimation of the amount of information leaked.

Note that the relationships between inputs, outputs and secrets are arbitrary: they depend

on the behavior of the target system. The same is true of noise, and software pseudo-randomness

can add arbitrary extra noise. Hence, there are no general rules to build an adequate black-box

input suite before the analysis. Statically crafted input suites can always lead to incorrect results.

Challenge: Explore a vast input space. To compute the exact amount of information

leaked by a system about a secret when performing an action, we would need to execute the

action for every input, which is generally not feasible. How many inputs we are willing to execute

depends on how long it takes to run each one and how long we are willing to wait for the analysis

to complete.

System inputs can be complex and may include structured data. For example, the Airplan

system from the DARPA STAC benchmark (see Section 3.3.3) takes as input an arbitrary graph

of airports and flight routes, and each edge is decorated with six different weights. Inputs to

DARPA’s Railyard system involve different kinds of train cars, different types and quantities of

cargo, crew members, train routes, stops, schedules, and more. The possibilities are endless and

depend on the system. Each output feature can be affected by any part of the input—including

those that are related to the secret of interest, and those that are not.

Prior work [18,20,42,43] requires the user to provide the full input suite before the analysis
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begins. Thus, the user must sample the input space in some way that covers all its dimensions

adequately. But, even for one feature, the user cannot know in advance which input dimensions

will foster changes in the leakage estimation of that feature. To make things worse, there is an

enormous space of observable features. If the user tries to be conservative and cover all bases,

combinatorial explosion results in a prohibitive number of inputs. If the user tries to reduce the

input set to keep the analysis time feasible, leakage estimation results may be incorrect.

Challenge: Quantify the leakage. Extracting probability distributions from observable

features is nontrivial. Histograms can overfit the data and lead to false positives. Gaussian

fitting can over-abstract the data: if it is not normally distributed, the model will be wrong. For

example, when a feature is multi-modal, Gaussian fitting will produce a unimodal approximation,

and false overlaps will underestimate the leakage. Kernel density estimation [44] offers greater

flexibility and is well-suited for a wide variety of data, but heavily depends on the window size

or bandwidth; too small a value leads to similar problems as with histograms, whereas too large

a value can lead to similar problems as with Gaussian fitting.

Overview of our approach. As said above, crafting an input suite before the analysis

is tedious and risky. Different input suites can lead to different leakage quantification results.

AutoFeed offers a mutation-based mechanism to specify the space of valid inputs. It automatically

generates new inputs on demand using a feedback loop. Manual user effort is limited to writing

the mutators, providing a small set of initial seeds, and choosing the secret of interest. (The

mutators, once written, can be reused for many secrets.) AutoFeed automates everything else. It

iteratively mutates inputs and periodically quantifies the leakage to update its belief about which

features leak the greatest amount of information about that secret. In doing so, it automates

both the exploration of the output feature space and the exploration of the input space. Since

the user cannot know which mutators will be most important for a secret, AutoFeed measures

the effect of different mutators on leakage estimation, and weighs them accordingly (see 3.2.3) in

a feedback-driven way. By focusing the computational effort on those mutators that have greater
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effect on the leakage estimation of the most promising features, the input space is explored

efficiently.

Quantification computation is nontrivial. We conducted a comparative analysis of different

approaches (see 3.3.5). AutoFeed automatically discovers the distribution of observed data using

KDE and automatically finds a suitable bandwidth parameter (see 3.2.4).

By enforcing a stop criterion, AutoFeed automates evaluating whether the leakage estimation

is stable enough (see 3.2.5). This reduces the risks associated with having to manually decide

when to stop. It also allows AutoFeed to run analyses batches unattended.

3.2 Feedback-driven Side-Channel Analysis

In this section we provide some basic definitions and explain the main algorithms and

heuristics used in AutoFeed.

3.2.1 System Model

Assume that a software system, use case, and secret of interest are selected by the user. We

reuse the following definitions from the system model in Section 2.2 and recap it in this section.

The input domain I is the set of all valid inputs for the use case. The secret domain S is the set

of all values that the secret of interest can take. Given an input, the secret function ζ : I −→ S

projects its secret value. Running every input in I is usually not feasible: the input set I ⊆ I is

the set of distinct inputs that are executed during an analysis. Since the secret is a function of

the input, by choosing a set of inputs, we are also choosing a set of secrets. The secret set S ⊆ S

is the set of distinct secrets that appear in some input during an AutoFeed analysis. Assuming a

generalized ζ : P(I) −→ P(S), we can say that ζ(I) = S. A packet is an abstraction of a real

network packet. We assume packets are encrypted. Decrypting them is beyond the scope of this

work. We consider side-channel characteristics of each packet: its size, time, and direction in
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which it flows. Each time we execute an input i ∈ I through the system, we capture a network

trace, which is a sequence of packets. We also add the following definitions. A seed is an input

i ∈ I provided by the user. A mutator is a function m : I −→ I ∪ {None} that, given a valid

input, returns another valid input, or None if the input cannot be mutated by m. For instance,

in our Airplan example, the RemoveFlight mutator removes one of the direct flights between

two airports. This mutator cannot be applied to a map in which all direct flights have been

removed. Lastly, an initial set of inputs D ⊆ I is a set of inputs obtained by applying some

amount of random mutation to the seeds.

Procedure 1 AutoFeed(App, I,M,RPI , C) Given an application App, an initial set of inputs I, a set of
mutators M , a repetition per input value RPI , and a time budget per iteration C, AutoFeed quantifies the
leakage using a feedback loop.

1: Traces ←Execute(App, I,RPI )
2: N ← C/(AvgTime(Traces)× RPI ) ▷ Calculate the number of inputs (N) to generate per iteration, given C

seconds of time budget per iteration
3: I ′ ← Mutate(I,M,N, W⃗uniform) ▷ Generate new inputs using mutators where each partition of mutators

has equal weight
4: Traces ′ ←Execute(App, I ′,RPI ) ▷ Generate corresponding traces
5: I ← I ∪ I ′

6: Traces ← Traces ∪ Traces ′

7: Leak ′ ← QuantifyLeakage(Traces)
8: ⟨W⃗ ⟩ ← GetWeights(App, I,M,N) ▷ Compute the weights for the mutators
9: repeat ▷ Main loop for feedback-driven exploration

10: Leak ← Leak ′

11: I ′ ← Mutate(I,M,N, W⃗ ) ▷ Generate new inputs using mutators
12: Traces ′ ← Execute(App, I ′,RPI ) ▷ Generate corresponding traces
13: I ← I ∪ I ′

14: Traces ← Traces ∪ Traces ′

15: Leak ′ ← QuantifyLeakage(Traces)
16: until |Leak ′ − Leak | < ϵ ▷ Stop criterion check convergence of leakage value
17: return Leak ′

3.2.2 AutoFeed Workflow

The high level algorithm demonstrating the workflow of the AutoFeed tool is shown in

Procedure 1. AutoFeed requires the following inputs from the user: an application to run App,

initial seed inputs I, a set of mutators M , value for repetitions per input RPI, and a time

budget per iteration C. First, AutoFeed executes the App with the initial seed inputs to generate
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Procedure 2 GetWeights(App, I,M,N) Given an application App, a set of inputs I, a set of mutators M
and a partition, and number of inputs to generate N , GetWeights computes weights for subsets of mutators.

1: Traces ← Execute(App, I,RPI ) ▷ Generate corresponding traces
2: F ← ExtractFeatures(Traces) ▷ Extract features over traces of original inputs
3: for each subset Mi of M do ▷ where the Mi are a partition of M
4: Ii ← Mutate(I,Mi, N) ▷ Generate inputs using a subset of mutators
5: Traces ′ ← Execute(App, Ii,RPI )
6: F ′ ← ExtractFeatures(Traces ′) ▷ Extract features over traces of mutated inputs to estimate weight of

Mi

7: W⃗ [i]←
∑

j | F
′
j − Fj |/(Fmax − Fmin) + [Sec′j ̸= Secj ] ▷ Weight of the current subset of mutators is

proportional to number of mutated inputs with a different feature value or secret
8: Wsum ←

∑
i W [i]

9: for each W⃗ [i] do ▷ Normalize the mutator weights
10: W⃗ [i]← W⃗ [i]/Wsum

11: return ⟨W⃗ ⟩

Procedure 3 Mutate(I,M,N, W⃗ ) Given a set of inputs I, a set of mutators M , number of inputs to generate
N , and mutator weights W⃗ , Mutate generates new unique inputs using the mutators.

1: Inew ← ∅
2: while |Inew | < N ∧ |I| > 0 do
3: i← RandomSelect(I) ▷ Select a random input
4: M ′ ←M
5: done ← false
6: while M ′ ̸= ∅ ∧ ¬done do
7: m← RandomSelect(M ′, W⃗ ) ▷ From set M ′ according to weights W⃗
8: inew ← m(i)
9: if inew ∈ I ∨ inew = None then

10: M ′ ←M ′ − {m} ▷ If a mutator does not create a new input, drop it
11: else
12: Inew ← Inew ∪ {inew}
13: done ← true
14: if ¬done then
15: I ← I − {i} ▷ If no mutator yields a new input, drop it
16: return Inew
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an initial set of traces. Based on these initial traces, it calculates the number of inputs to

generate per iteration (N) that corresponds to the given input time budget per iteration (C).

Then, it applies the mutators on the seed inputs to get new inputs, executes the App on these

inputs, and uses the traces obtained from these executions to obtain an initial estimation of

the information leakage. Using the initial leakage results, AutoFeed uses heuristics to compute

weights for mutators, where the weight of each mutator corresponds to the likelihood of applying

that mutator during input generation. After these initialization steps, AutoFeed starts executing

its main loop for feedback-driven exploration of the input state space for obtaining an accurate

estimation of information leakage. In each loop iteration, AutoFeed uses mutators to generate

new inputs, executes the App on new inputs to generate corresponding traces, and updates the

leakage estimation using all the traces captured so far. When the change in the leakage estimate

falls below a small value (ϵ), AutoFeed terminates execution and reports the computed leakage.

In the main workflow of the AutoFeed tool shown in Procedure 1 we use two other procedures

that we discuss below: GetWeights, and Mutate. For the sake of readability and clarity

of presentation, we present all these procedures from the perspective of a single feature (the

top feature) corresponding to the feature that leaks the most amount of information. In actual

implementation of AutoFeed, a large set of features are taken into account and their leakage is

estimated until termination. After the initial input generation step and initial leakage estimation,

only for GetWeights top k features are selected as we believe mutators that discover more

behaviors on those features will impact the leakage results.

3.2.3 Assigning Weights to Subsets of Mutators

AutoFeed uses the user-provided mutators to generate new inputs and explore the input space.

It is not possible to know in advance which mutators would be more effective in exploration of the

information leakage. Some mutators may generate new secret values which may help our analysis
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by improving the information leakage estimation. Some mutators may generate inputs with the

same secret value but different feature values which can again help our analysis by improving

the information leakage estimation. On the other hand, some mutators may generate inputs

that do not provide any new insight to the relationship between the secret and the observable

features. For example, some mutators may change the input without modifying the secret or any

of the observable features. Such mutators will not help our analysis in improving the information

leakage estimation. AutoFeed evaluates the influence of mutators on the leakage estimation based

on changes in top feature or secret and computes weights for mutators which are proportional

to their likelihood of changing secret value or perturbing feature values. These weights are

then used to bias the random selection of the mutators where each mutator is selected with a

probability that is proportional to its weight. Hence, the mutators that influence the leakage

estimation less are chosen less frequently and the mutators that influence the leakage estimation

significantly are chosen more frequently.

To do this analysis, the user groups the mutators into subsets. We call these subsets of

mutators dimensions. Mutators can be grouped by the attribute they are modifying. For

instance, in the Railyard system, mutators that add/remove stops from the train schedule

are one dimension, whereas those that add/remove personnel from the train crew are another

dimension. Mutators can also be grouped by the magnitude of the change that they cause on

the input: if a mutator increases an input field by 1, and another mutator increases it by 1000,

we may want them to be weighted separately.

We assume that the user provides a partition of the set of mutators, so that each mutator

belongs to a single dimension, and each dimension is a subset of the set of mutators. To assess

the impact of each subset of mutators on the leakage estimation, for each subset, we generate

and run inputs generated only using mutators in that particular subset. Using the traces of

these runs and previous traces, we quantify the leakage and record the amount of change in

the leakage between this step and the previous step. After we do this test for each subset of
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mutators, we weigh each subset proportionally to the amount of change in leakage we recorded

for that subset of mutators. Psuedocode for this process is given in Procedure 2.

3.2.4 Leakage Quantification

This section describes how QuantifyLeakage function in Procedure 1 works. To quantify

information leakage, we start from a set of captured traces, each one labeled with the secret value

associated with that trace, and we align packets using markers inserted at runtime which denote

different stages of the interaction. We then extract the related packet based features (such as

packet timing and size) and aggregated features (such as total duration, total size, etc.) obtained

using alignment. After obtaining the features, we can estimate the probability distribution of

features per secret using multiple methods and compute the mutual information between the

secret and feature using the estimated probability distribution for each feature. We use Shannon

entropy [45] to calculate the mutual information I(S;V) and it is derived as

I(S;V) = −
∑
s∈S

p(s) log2 p(s)−

(
−
∑
v∈V

p(v)
∑
s∈S

p(s|v) log2 p(s|v)

)

where S and V are the sets of secret and feature values and we estimate p(v|s) for each secret,

p(s) is assumed to be uniform and p(s|v) and p(v) are estimated using Bayes’ rule. The first

term represents the initial amount of information about the secret. The second represents the

remaining uncertainty after observing the feature. The difference is the amount of information

gained by observing that feature. For more details, see [18,45].

The simplest way of estimating the shape of the data distribution is by modeling it as a

histogram. This method puts the data in discrete bins where the ratio of elements determine the

probability. One problem with this method is that its results are dependent on the bin size and

determining an ideal bin size is difficult. If we conservatively choose the smallest bin size we can,

then collisions will go undetected unless a huge number of samples is used.
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Another method is modeling the data distribution as a Gaussian distribution where the

mean µ̂ and standard deviation σ̂ of the data is obtained and p̂(x) is estimated as N(x; µ̂, σ̂).

This method extrapolates well but is based on the strong assumption that the data is normally

distributed. This assumption may fail if the data is generated from a more complex distribution.

Whenever the assumption fails, the data is underfitted: spurious collisions arise, and the

information leakage tends to be understated.

Another way of estimating probability distributions is using kernel density estimation

(KDE) [44]. Using KDE, we can estimate the distribution of data without assuming a specific

distribution. Unlike a histogram, our estimation is smooth, which helps us model continuous

data better and extrapolate to unseen data more easily. If we want to estimate p(x), the kernel

density estimator p̂(x) is

p̂(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
where n is number of samples, h is the positive bandwidth parameter and K is a non-negative

function called kernel. There are various kernel functions: uniform, triangular, Gaussian,

Epanechnikov, etc. The bandwidth h affects our estimation greatly. If it is too small, it overfits

the data we have; if it is too large, it underfits the data.

In this work, we have used two methods for bandwidth selection. First selection method is the

optimal bandwidth if the underlying distribution is Gaussian in which bandwidth h = 1.06σ̂n−1/5,

where σ̂ is the standard deviation of the data [46]. Second method is more general and instead of

assuming any underlying distribution, we use statistical cross-validation techniques to select the

ideal bandwidth. We use grid search which is used for hyper-parameter optimization by training

using a set of candidate parameters on a model (KDE in this case) and evaluating each trained

model. The evaluation metric is obtained using repeated k-fold cross-validation where the data

is split into k equal subsets and for a single subset, we use the other k − 1 subsets to train the

model by estimating KDE using only the other subsets. The selected subset is tested to obtain
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the likelihood of this subset on the model. If the likelihood is high, that means KDE with this

particular bandwidth does not overfit the data points and generalizes to unseen data as we test

likelihood with a separate subset from training subsets. This process is repeated for all k subsets,

for multiple splits of the data and the results (likelihood) are averaged. The model which gets

us a higher likelihood on the test sets is the best performing model as it means it fits the data

well. We select the ideal bandwidth as the bandwidth of the best performing model [47–49].

This method has some variance in bandwidth selection as it depends on the dataset and the

particular splitting but variance can be reduced with the repetitions. [50] We set k to be 5 in

our experiments, with 3 repetitions.

For comparison purposes, we have also included in the experiments a version of KDE in which

the bandwidth is fixed. As for kernel selection, we use Epanechnikov kernel in our implementation

which is optimal in minimizing mean square error. [51]

3.2.5 Stop Criterion

As AutoFeed’s main loop runs, the leakage estimation can converge if newly generated inputs

no longer discover new behaviors. If the estimation stops changing, this can mean that the

exploration of the input space has saturated and we may finish the analysis and print the leakage

estimation ranking. To detect this condition, we check the change in information leakage of

the top leaking feature and finish the analysis if it is smaller than a predetermined ϵ for a long

enough period of time. Accuracy of leakage estimation depends on the accuracy of probability

estimation p̂(x) and as number of inputs N increases, accuracy of p̂(x) will also increase.

In Procedure 1 we show the pseudocode for this process. Note that this pseudocode is a

simplified version: in the actual AutoFeed implementation, we terminate the analysis only if

leakage estimation for the top k features converges, and we assume that leakage estimation

converges if it changes less than ϵ for at least n consecutive iterations (rather than the last iteration

50



Test Input Generation for Network Side Channel Analysis Chapter 3

as in Procedure 1), where k and n are adjustable parameters. To simplify the presentation, in

Procedure 1 we show a version where k = 1 and n = 2, but the values of k and n are adjustable

in our implementation.

3.3 Experimental Evaluation and Implementation

In this section, we describe the implementation and experimental evaluation details for

AutoFeed. We first experimentally evaluate AutoFeed using five example functions which have

interesting input/output relationships. We also evaluate AutoFeed using software systems from

the DARPA Space/Time Analysis for Cybersecurity (STAC) program [41], which are publicly

available [23]. The STAC systems are multi-component systems (Web, client-server, peer-to-peer)

that communicate over TCP streams encrypted with TLS/SSL, developed by DARPA to evaluate

side-channel vulnerability detection techniques. The applications in our benchmark are a superset

of those used in [18]. We added Railyard because we were interested in modeling its highly

structured input format with the mutator-based approach.

3.3.1 Implementation

AutoFeed is written in Python. We use the trace-capturing library from [18], which relies

on scapy [52] for packet sniffing. AutoFeed uses scikit-learn [53] and numpy [54] for probability

estimation and leakage quantification, matplotlib [55] for plotting, and the Python docker [56]

library for container orchestration. We ran AutoFeed on the DARPA STAC Reference Platform,

which comprises three Intel NUC computers (see Section 3.3.4). Users can run AutoFeed on any

number of computers and networks, including localhost. For API design, readers can refer to

Section 6.1.2 which describes the API in depth for the tool, TSA.
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3.3.2 Example Functions

We define five example functions which take an input and produce a single feature in order

to evaluate the contributions discussed in Section 3.2.3 and 3.2.4. Examples 1–4 have the input

format (s, x, y, a, b, c, d, e, f, g, h) where s, the secret value, is between 1–16, and the other fields

are between 1–100. Example 5 takes a list of strings as input and the secret value is the length

of the list limited to a maximum length of 15. Since the secret has 16 possible values in all cases,

the total amount of information that could possibly be leaked is log2 16 = 4.00 bits. Code for

Examples 1–5 can be seen in Listing 3.1. Feature value of Example 1 is distributed uniformly

between 0.5 and 1.0. Since there is no correlation between secret and feature, this example leaks

0 bits. In Example 2, there’s a bijection between feature values and secrets. Thus, this example

fully leaks 4.00 bits. Example 3 is multimodal, where the distribution changes according to value

of x. When x is even, there is perfect correlation between secret and feature values. When x is

odd, there is no correlation. We use Shannon entropy, an average measure of leakage, and this

example leaks 2.00 out of 4.00 bits. Feature of Example 4 depends on fields x and y but those

fields are not related to secret, thus this example leaks 0 bits. Feature of Example 5 depends

on both number and length of list elements, thus there are some collisions. It leaks 2.21 bits of

information.

Listing 3.1: Code for the example functions

def f1(s,x,y,a,b,c,d,e,f,g,h):

return randomfloat (0.5 ,1.0)

def f2(s,x,y,a,b,c,d,e,f,g,h):

return random (1,50) *20 + s

def f3(s,x,y,a,b,c,d,e,f,g,h):

if x%2 == 0: return s*10

else: return y+1000

def f4(s,x,y,a,b,c,d,e,f,g,h):

52



Test Input Generation for Network Side Channel Analysis Chapter 3

return x+y

def f5(list1):

return len(str(list1))

3.3.3 STAC Systems

Airplan (265 classes, 1,483 methods) is the airline system from our Section 3.1 example.

Users can upload, edit, and analyze flight routes by metrics like cost, flight time, passenger and

crew capacities. Our secret of interest is the number of airports in a route map uploaded by a user.

Bidpal (251 classes, 2,960 methods) is a peer-to-peer system where peers buy and sell items via a

single-round auction with secret bids. Users can create auctions, search auctions, and place bids.

The secret of interest is the secret bid placed by a user. GabFeed (115 classes, 409 methods) is

a Web-based forum. Users can create posts, search existing posts, and engage in chat. Our secret

of interest is the Hamming weight (i.e., number of ones) of the server’s private key. SnapBuddy

(338 classes, 2,561 methods) is a Web application for image sharing. Users can upload photos

from different locations, share them with their friends, and find out who is online by geographical

proximity. Our secret of interest is the location of a user (victim). PowerBroker (315 classes,

3,445 methods) is a peer-to-peer system used by electricity companies to buy and sell power.

Plants with excess power try to sell it, and plants that need power try to buy it. The secret of

interest is the value offered by one of the plants (victim). TourPlanner (321 classes, 2,742

methods) is a client-server tour optimizer—a variation of the traveling salesman problem. Given

a list of cities that the user wants to visit, it computes a tour with optimal travel costs. The

secret of interest is the set of places that the user (victim) wants to visit. Railyard (28 classes,

60 methods) is a system to manage a train station. The station manager can build trains by

adding different kinds of cars, different types and quantities of cargo, adding personnel to the

train, and adding stops to the train’s schedule. The secret of interest is the set of types of cargo
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that are on the train when it departs from the station.

Table 3.1: Mutators used (each line is a different dimension).

Airplan
AddAirport, RemoveAirport Add/remove one airport.
AddFlight, RemoveFlight Add/remove one direct flight.
IncrDensity, DecrDensity Increase/decrease flight density by 20%.
IncrWeight, DecrWeight Increase/decrease one weight value by 1.
BoostWeights, DeboostWeights Multiply/divide all weights by 10.

Railyard
AddCar, RemoveCar Add/remove a train car.
AddCargo, RemoveCargo Add/remove a piece of cargo.
AddCrew, RemoveCrew Add/remove one crew member.
AddStop, RemoveStop Add/remove one train stop.
ChangeStops Change all stops with new ones.
ChangeCrew Change all crew with new ones.

GabFeed
AddOne, RemoveOne Add/remove one 1 to the key.
AddFive, RemoveFive Add/remove five 1s to the key.
ShuffleOnes Shuffle the 1s in the key.

TourPlanner
ReplaceOneCity Replace one city with a different one.
ShuffleCities Shuffle the order of the five cities.

Bidpal
IncrBid, DecrBid Increase/decrease bid by $10.

PowerBroker
IncrOffer, DecrOffer Increase/decrease the offer by $10.

SnapBuddy
PickLocation Pick a known location from the list.

3.3.4 Experimental Setup

We used the DARPA STAC Reference Platform [18], with 3 Intel NUCs (server, client, and

eavesdropper) connected by an Ethernet switch with low noise (latency: 0.22 ms min, 0.31 ms

avg, 0.57 ms max). As for AutoFeed parameters, we set RPI to 20 for all programs when looking

for timing side channels, and 5 for Airplan 3 and SnapBuddy as there was non-determinism

in their behavior. Time budget per iteration C is set to 5 minutes. We set the histogram bin
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size to 1 for space side channels, and 10−5 for time. For KDE with fixed bandwidth, we set

the bandwidth to 0.1 for space side channels, and 10−5 for time. For grid search, we search

over 10 parameters from the aforementioned fixed bandwidth for space/time to the maximum

range of the relevant feature. We also include the standard deviation bandwidth in the search.

For mutation weighing, we assign weights using GetWeights, considering top-5 features. The

mutators for DARPA STAC systems are described in Table 3.1. The mutators are manually

written to modify the secret and various aspects of the input with the hope that some of the

mutators will affect the observables. The secret of interest for each app in DARPA STAC systems

is determined by DARPA. For the stop criterion, we set the value of ϵ to a 0.5% difference

and checked that, for the top feature, the leakage estimation stayed within that difference for 3

consecutive iterations.

We also used two leakage quantification tools, Leakiest [20] and F-BLEAU [43], for comparison.

Leakiest computes mutual information between each feature and secret using histogram and KDE

assuming Gaussian distribution for quantification and hypothesis testing. F-BLEAU computes

min-entropy, which provides a lower bound on Shannon entropy, using a nearest neighbor based

approach on all features.

3.3.5 Experimental Results

Leakage method comparison. For the five example functions, we started with 16 seed

inputs and ran 250 iterations, obtaining 100 data points per iteration. Results are shown in

Figure 3.1. In Example 1, where observables are continuous and uniform, Gaussian and KDE

with std.dev. bandwidth converge easily. Histogram and KDE with fixed bandwidth converge

very slowly. KDE with parameter search converges to the ground truth as fast as Gaussian and

KDE-StdDev. In Example 2, Gaussian and KDE-StdDev wrongly converge to zero leakage: they

assume a Gaussian distribution, but this feature is multi-modal. Histogram and KDE-Fixed
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converge to the correct result right away thanks to small bin size and bandwidth parameters.

KDE-ParamSearch initially gets the wrong result but converges to the correct one when enough

data is obtained. In Example 3, because the feature distribution is bimodal, Gaussian and

KDE-StdDev yield incorrect results. Histogram and KDE-Fixed converge to a value near the

actual leakage, but very slowly. KDE-ParamSearch converges much faster to the correct result,

unlike the other methods. In Examples 4–5, all methods perform similarly.

In all five cases, when an assumption fails, the method yields a wrong result or takes too

long. Using KDE-ParamSearch, our results do not overfit the data like Histogram or KDE-Fixed,

and they do not underfit like Gaussian and KDE-StdDev. With this approach, we are able to

select the best bandwidth value that maximizes likelihood of data and we are able to converge

to the correct leakage value.

For STAC applications, using a small set of seeds (<75), we are able to distinguish if a

vulnerability is present, mitigated, or absent; weigh mutators automatically, and stop iterating

when the leakage values for top features stabilize. See Table 3.2.

For Airplan, Railyard and SnapBuddy, AutoFeed converges quickly and vulnerable

cases are found to leak 100%, whereas in cases where leakage is mitigated or absent, lower

leakage results are found. For all cases except Railyard, the LKDE−PS result is greater than

the lower bound estimated by F-BLEAU. F-BLEAU estimates leakage for multi-dimensional

feature vectors and it may have found a correlation between 2 features that AutoFeed is not able

to detect since AutoFeed analyzes each feature separately.

For GabFeed, PowerBroker, Bidpal and TourPlanner, AutoFeed converges in 8

to 20 iterations and the leakage results for leaky versions have higher leakage than for non-

leaky versions. For PowerBroker, Bidpal and GabFeed cases, especially in non-leaky cases,

Histogram and KDE-Fixed overestimate the leakage. For PowerBroker 1 and TourPlanner,

LKDE−PS is lower than LGauss and the reason is that candidate bandwidth values have values

greater than standard deviation and in these cases, a bandwidth value greater than std.dev. was
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selected as the ideal bandwidth, resulting in a lower leakage estimation. PowerBroker 4’s

results show LGauss is overestimating the leakage but std.dev. is actually 100 times lower than

our fixed bandwidth, resulting in LKDE−Fixed overfitting on the data but the fixed methods still

overestimate the leakage, reporting 100% leakage on other features.

Comparing Leakiest to KDE-ParamSearch, Leakiest sometimes underestimates the leakage

(SnapBuddy) and it is unable to produce a result when the number of samples is too low

(GabFeed). Leakage quantification took between 45 minutes and 5.5 hours on almost all appli-

cations and exact runtime per application can be seen on Table 3.2. Only TourPlanner takes

more than a day to analyze in total. The reason is size of the secret domain of TourPlanner is

much greater than other applications, at least 6 times more, and the parameter search is done to

estimate p(x|s) for each secret value s in the secret domain S, making the runtime proportional

with size of the secret domain.

In summary, KDE-ParamSearch, with a stop criterion, converges to a leakage value between

Histogram and Gaussian, in most cases greater than the lower bound identified by F-BLEAU,

and handles all data distributions automatically.

Mutator weighing comparison. To test the effectiveness of assigning weights to mutators,

we ran all five examples starting from the same seed set, once with mutation weighing, once

without mutation weighing, and estimated the leakage using KDE-ParamSearch. The goal is to

see if selecting useful mutators gets the leakage results closer to the ground truth. Results are

shown in Figure 3.2. First four cases had 62 mutators to change the secret and other variables.

The fifth example has 110 mutators to change the input list: add/remove elements, shuffle

characters, replace words, shuffle list, etc.

For Example 1, leakage difference between two runs is minimal because the observable value

does not depend on the input. For Examples 2–5, the run with mutation weighing is able to

converge faster because it gives more weight to mutators that change the parameters like s, x, y

that affect the observables.

57



Test Input Generation for Network Side Channel Analysis Chapter 3

0

1

2

3

4

5000 10000 15000 20000

Histogram Gaussian KDE-Fixed KDE-StdDev
KDE-ParamSearch Ground Truth

0

1

2

3

4

5000 10000 15000 20000

0

1

2

3

4

5000 10000 15000 20000
0

1

2

3

4

5000 10000 15000 20000

0

1

2

3

4

5000 10000 15000 20000

Figure 3.1: Information leakage results for Examples 1–5 using Gaussian, Histogram and KDE.
X-axis shows number of data points. Y-axis shows leakage in bits. Ground truth for the
Examples 1–5 are 0 bits, 4.00 bits, 2.00 bits, 0 bits and 2.21 bits respectively.

We ran a similar test on some STAC apps with complex inputs like Railyard and there

is some difference between leakage results with and without mutator weighing (for top feature,

28% without weighing, 22% with weighing) but without the ground truth, it is impossible to

evaluate if our approach improved the leakage estimation on the STAC apps.

Automated input set generation. Results in Figure 3.1 also show one of the key

advantages. Consider the leakage values computed on Example 2. A tool that relies on manually

constructed input sets cannot differentiate the input set with 10000 inputs from the one with

size 20000. However, the leakage values for these input sets are very different. Based on its

feedback-driven iterative approach, AutoFeed is able to converge to an accurate leakage estimation

automatically starting from the same input set.

58



Test Input Generation for Network Side Channel Analysis Chapter 3

0

1

2

3

4

5000 10000 15000 20000

With Weighing KDE-PS Without Weighing KDE-PS
Ground Truth

0

1

2

3

4

5000 10000 15000 20000

0

1

2

3

4

5000 10000 15000 20000
0

1

2

3

4

5000 10000 15000 20000

0

1

2

3

4

5000 10000 15000 20000

Figure 3.2: Information leakage results for Examples 1–5 with and without mutator weighing,
using KDE-ParamSearch. X-axis shows number of data points. Y-axis is leakage in bits. Ground
truth for the Examples 1–5 are 0 bits, 4.00 bits, 2.00 bits, 0 bits and 2.21 bits respectively.

Leakage results for different noise levels. To demonstrate that AutoFeed also produces

meaningful results on a noisy network environment, we simulate the same experiments as if

the servers are on three different locations. We measured the latency of three servers, one in

US West Coast (Google servers, latency: 3.43 ms avg, 0.08 ms std.dev), one in US East Coast

(Wikimedia servers, latency: 74.64 ms avg, 3.20 ms std.dev), and one in Russia (VK servers,

latency: 220.52 ms avg, 2.38 ms std.dev). We used these latency values to add Gaussian timing

noise to the obtained packets and simulate a noisy network environment. These simulations only

affect the cases where we look for timing side channels. The results are in Table 3.3. We expect

the leakages to drop because of extra collisions created by noisy environments. For all cases,

the leakages drop when compared to the original experiments as we predicted. Some cases like
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Table 3.2: Leakage results using AutoFeed with different probability estimation methods. LGauss

and LHist are Gaussian-based and histogram-based estimations respectively. LLeakiest is Leakiest-
based estimation. LKDE−Fix , LKDE−SD , LKDE−PS are using KDE with a fixed bandwidth, stan-
dard deviation based bandwidth and parameter search based bandwidth respectively. L∗

F−BLEAU

is min-entropy results using the F-BLEAU tool. Top Feature is the top feature when run with
LKDE−PS . Runtime describes total analysis runtime in minutes.

Programs Type Vulnerability Top Feature-AutoFeed LGauss LHist LLeakiest L∗
F−BLEAU LKDE−SD LKDE−Fix LKDE−PS Iter. Runtime

Airplan 2 Space Present Σ Sizes Phase 4 ↓ 100% 100% 99% 90% 100% 100% 100% 3 76 min.
Airplan 5 Space Mitigated Σ Sizes Phase 4 ↓ 89% 94% 74% 82% 88% 93% 89% 4 114 min.
Airplan 3 Space Absent Size Pkt 20 ↓ 46% 33% 21% 20% 45% 35% 47% 6 161 min.
Railyard Space Absent Size Pkt 2 ↕ 22% 27% 21% 27% 20% 22% 22% 12 202 min.
SnapBuddy Space Present Σ Sizes Full Trace ↑ 100% 100% 47% 100% 100% 100% 100% 3 47 min.
GabFeed 1 Time Present ∆ Pkt 12-13 ↕ 99% 100% N/A 60% 100% 100% 98% 8 108 min.
GabFeed 2 Time Absent ∆ Pkt 11-12 ↕ 29% 71% N/A 24% 31% 66% 31% 19 297 min.
GabFeed 5 Time Absent ∆ Pkt 11-12 ↕ 29% 65% N/A 21% 31% 61% 32% 15 240 min.
PowerBroker 1 Time Present ∆ Pkt 9-10 ↑ 43% 100% 42% 53% 45% 100% 39% 20 313 min.
PowerBroker 2 Time Absent ∆ Pkt 43-44 ↕ 11% 32% 3% 18% 10% 24% 15% 18 263 min.
PowerBroker 4 Time Absent ∆ Pkt 28-29 ↕ 22% 9% 9% 32% 26% 9% 25% 16 220 min.
Bidpal 2 Time Present ∆ Pkt 28-29 ↕ 22% 100% 33% 32% 23% 100% 23% 17 217 min.
Bidpal 1 Time Absent ∆ Pkt 35-36 ↕ 2% 39% 3% 15% 3% 35% 14% 10 137 min.
TourPlanner Time Present ∆ Pkt 12-13 ↕ 60% 70% 62% 42% 62% 67% 60% 12 2057 min.

Table 3.3: Leakage results using LKDE−PS for four different noise conditions.

Programs Type Vulnerability Top Feature-AutoFeed STAC Platform US-West US-East Russia
GabFeed 1 Time Present ∆ Pkt 12-13 ↕ 98% 97% 96% 96%
GabFeed 2 Time Absent ∆ Pkt 11-12 ↕ 31% 29% 9% 8%
GabFeed 5 Time Absent ∆ Pkt 11-12 ↕ 32% 23% 8% 7%
PowerBroker 1 Time Present ∆ Pkt 9-10 ↑ 39% 39% 37% 36%
PowerBroker 2 Time Absent ∆ Pkt 43-44 ↕ 15% 14% 3% 3%
PowerBroker 4 Time Absent ∆ Pkt 28-29 ↕ 25% 20% 9% 8%
Bidpal 2 Time Present ∆ Pkt 28-29 ↕ 23% 23% 22% 23%
Bidpal 1 Time Absent ∆ Pkt 35-36 ↕ 14% 9% 8% 3%
TourPlanner Time Present ∆ Pkt 12-13 ↕ 60% 50% 5% 5%

GabFeed 1 are affected less than others. We believe this is because there is not much overlap

between the distributions and the separation is greater than the level of noise.

3.4 Chapter Summary

In this chapter, we presented AutoFeed, a black-box tool to detect and quantify side-channel

information leakage in networked software systems. AutoFeed significantly reduces the manual

effort required by prior black-box side-channel analysis approaches by providing a feedback-driven

automated process for input space exploration and information leakage estimation. Given a set

of input mutators and a small number of seed inputs, AutoFeed iteratively mutates inputs and
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periodically updates its leakage estimations to identify the features that leak most information

about the secret. AutoFeed measures the effect of different mutator subsets on leakage, and

assigns weights to prioritize mutators that produce more changes in the leakage estimation.

AutoFeed uses kernel density estimation and an automated search mechanism to determine

crucial hyperparameter values, in order to estimate probability distributions for modeling the

observed data. It uses a stop criterion to detect convergence of the leakage estimation and

terminate the analysis. The experimental evaluation on the benchmarks shows that AutoFeed is

effective in automatically detecting and quantifying information leaks.
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Chapter 4

Estimating Bounds for Information

Leakage

When analyzing side-channel information leakages on network traces, accurate measurement

of the information leakage is important in determining the impact of the network side-channel

on the user privacy. In previous chapters, our measurements on the information leakage were

computed on single features to answer questions such as "Does the size of 1st packet correlate

with the secret information?". However, there may be cases where that measurement may not

reveal the total information amount. Let’s say we have a case where each packet does not reveal

any information but the total of 1st and 3rd packets correlate with the secret value. In that case,

measuring information leakages accurately requires examining combined features.

Computing mutual information over multiple features brings its own challenges. One of the

challenges is estimating the probability distribution of the combined feature set. This becomes

very difficult as the features also correlate within each other. If the features are independent,

that makes the estimation easier but that does not hold as the network traffic features also

correlate within each other. Another challenge is that increasing the number of features increases

the time complexity of the computation exponentially. One solution is an approximate method
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that computes the information leakage in a timely manner. To find this approximate method,

we present various techniques that provide information leakage bounds using feature reduction

and critic neural networks.

One other issue is demonstrating the information leakage. In the wild, the attacker observes

a network trace, uses the previously computed side-channel analysis results and examines the

feature distribution to find the secret information. This attacker works exactly like a classifier

and we can demonstrate the attacker’s working conditions by training a classifier which takes a

network trace and returns the class value (secret information. This classifier learns the relation

between the features and the secret information and it can be used to demonstrate the information

leakage as a working example that takes a network trace. Performance of the trained classifiers

depend on various parameters such as classifier architecture, batch sizes, number of features

selected, etc. To find the maximum performance we can achieve using classifiers, we demonstrate

methods to find upper bounds on the classifier performance using Bayes’ error rate.

In this chapter, we are going to describe methods to measure information leakage with

multiple features, describe how to compute information leakage bounds and describe how to

demonstrate leakage by using classifiers. In Section 4.1, we describe the challenges in extending

the previous work to multiple features and explore various methods to find the bounds on the

amount of information over multiple features. In Section 4.2, we describe how we demonstrate

the side-channel attack using classifiers. We also describe our explorations on how to compute

the maximum possible classifier performance using Bayes’ error. In Section 4.3, we describe

our experimental evaluation and results on computing the information leakage over multiple

dimensions, and training and testing classifiers. In Section 4.4, we conclude and summarize the

chapter.
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4.1 Measuring Information over Multiple Features

As we described in the previous section, when analyzing network traces, we need to estimate

the information leakage over multiple features to improve our leakage estimate. In the previous

sections, we have performed this estimation over single features which let us obtain an initial

estimate. This estimation may not reflect the total amount of information leakage, especially in

the case where combinations of features leak information. For example, if the secret information

is sum of two integer feature values, then each feature by itself will not be correlated with the

secret information but when combined, there will be full leakage. In the following parts, we

describe how to compute information leakage and its bounds over multiple features.

4.1.1 Statistical Estimation of Mutual Information over Multiple Features

As described in system model in Section 2.2, our feature functions can be applied to a trace list

T to obtain a feature value list Fi = ⟨fi(t(1)), fi(t(2)), . . . , fi(t(|T |))⟩. If we want to combine these

features to have n dimensional features instead of single features, we can have an n dimensional fea-

ture value list F1,2,...,n = ⟨(f1(t(1)), f2(t(1)), . . . , fn(t(1))), . . . , (f1(t(|T |)), f2(t(|T |)), . . . , fn(t(|T |)))⟩.

Each list also has a corresponding secret value list s = ⟨s1, s2, . . . , s|T |⟩. Extending the mutual

information computation described in the previous chapters, we can compute the mutual infor-

mation between the n dimensional feature set F1,2,...,n and the secret value set S. To summarize,

we mapped fi(t) to xi instead not to mention the trace every time. Given these information, the

mutual information between the n dimensional feature set F1,2,...,n and the secret value set S is

shown below.

H(S|F1,2,...,n) = −
∑

⟨x1,...,xn⟩∈F1,2,...,n

p(x1, . . . , xn)
∑
s∈S

p(s|x1, . . . , xn) log2 p(s|x1, . . . , xn) (4.1)
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Computing the formula of conditional entropy for multiple dimensions requires estimating

p(x1, . . . , xn) and p(s|x1, . . . , xn). Estimating these distributions may be difficult as we would

need to have a large amount of samples for different combinations of values for each dimension

which we may not have. Increasing the number of dimensions increases the amount of data

needed exponentially in the general case as the variable space becomes sparse. [57]. Computing

the sum over the multiple dimensions increases the complexity as well. With N dimensions,

the time complexity of the computation is O(kN ) which makes the estimation infeasible as we

increase the number of features.

One naive solution to solve the probability estimation problem is to assume the features

are independent. This makes the problem easier to solve where instead of estimating this

N dimensional distribution, we can compute the distributions for each dimension separately

and combine them based on Bayes’ rule. If the random variables xi and xj are independent,

probability estimation becomes a much easier problem as p(xi, xj) = p(xi)p(xj). For conditional

distributions such as p(xi, xj |s), it can be separated as p(xi|s)p(xj |s). This assumption does

not hold on the network trace data, therefore we would need to obtain estimates using another

method. Independent features can be obtained using feature reduction techniques such as

Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) but feature

reduction can reduce the correlation between trace features and secret information as well. To

address the issue of estimation, we describe how to estimate the probability distribution using

neural networks in the following subsection.

4.1.2 Neural Estimation of Mutual Information

Another way to compute the mutual information is to use neural networks and train them

on the captured trace data to measure the correlation between features and the secret value.

There have been various prior works which estimate the mutual information over complex data
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for improving machine learning models [58–60]. These methods provide a lower bound to the

information leakage using critic networks. To compute the bounds on mutual information, we

train a critic network N(x, y) that takes a feature vector x and the secret value y and returns a

score based on their correlation. The resulting critic network N(x, y) can be used to replace the

conditional distribution p(y|x), therefore we are ultimately trying to learn p(y|x) using a neural

network to compute the entropy.

For training, we start with an initial network N with random edge weights. After each

training step with a batch of input output pairs, we compute the mutual information lower

bounds which we will describe in the next section. The resulting mutual information is used as a

negative loss function to train the next set of parameters and prior work shows that minimizing

mutual information loss maximizes the lower bound value. [58] In the following paragraphs, we

describe the lower bound computation methods we used over network traces.

Interpolated Lower Bounds

Here, we define the mutual information compactly as the expected value of the log difference

between the conditional distribution p(y|x) between the secret value y and feature vector x and

the secret distribution p(y) for the secret value y. The equation below describes the expected

value definition and how it can be converted to our previous definition.

I(X;Y ) = Ep(x,y)

[
log2

p(y|x)
p(y)

]
= Ep(x,y) [log2 p(y|x)− log2 p(y)]

=
(
−Ep(x,y) [log2 p(y)]

)
− (−Ep(x,y) [log2 p(y|x)])

(4.2)

This equation requires the conditional distribution p(y|x) and as we mentioned before, we

plan to substitute the conditional distribution p(y|x) with a critic network N(x, y) to estimate a

lower bound on the information leakage. Assuming that we do not know the distribution p(y|x),

we can use the training dataset to train N(x, y) to learn the substitution for p(y|x). We also

assume that we can train the critic network N successfully. One difficulty with this estimation
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is that it is highly dependent on the critic network’s performance. The parameters such as

input and hidden dimension size, batch size, number of iterations for training, etc. all affect

the results. In our experiments, we explore different parameter values to obtain a well-trained

critic network. Using these assumptions, we use various different bound estimation methods to

estimate the lower bound of the information leakage such as InfoNCE, NWJ, and interpolated

lower bounds [60].

The first lower bound, IInfoNCE, uses the samples and the network to compute the average

information between samples xi, yi, comparing them to secret values of other samples yj . The

bottom part of fraction approximates p(y) while upper part approximates p(y|x) using N(x, y).

As we use samples from the trace dataset, this requires a large and varied sample over the dataset

to measure more accurate values. This is a low variance, high bias estimate and it may underfit

the underlying distribution in times. [58]

IInfoNCE(X;Y ) = E

[
1

K

K∑
i=1

log2
2N(xi,yi)

1
K

∑K
j=1 2

N(xi,yj)

]
(4.3)

The second lower bound, Iα, is a modified version of the previous lower bound technique.

This bound is developed so that the parameter α sets a tradeoff between two estimations of p(y)

and it can be set to different values to achieve a balance between the two estimations. [60].

Iα(X;Y ) = E

[
1

K

K∑
i=1

log2
2N(xi,yi)

αm(y;x1:K) + (1− α)q(y)

]

m(y;x1:K) =
1

K

K∑
j=1

2N(xi,yj)

(4.4)

One difficulty with this estimation is that it is highly dependent on the critic network’s

performance. The parameters such as input and hidden dimension size, batch size, number of

iterations for training, etc. all affect the results. To address this issue, we explore different

parameter values to obtain the best performing result in our experimental evaluation.
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4.2 Training Classifiers and Bounding Classifier Performance

The previous methods can provide information leakage estimations to find the amount of

information leaked but these estimations are based on assumptions. As we mentioned, most

of our information leakage computation is on single features which may not reflect the full

amount of leakage. Our mutual information estimation depends on being able to capture the

probability distribution of features using Gaussian estimation or KDE which may not hold. Our

multi-dimensional information estimation depends on random sampling. Mutual information

bounds using neural networks depend on the parameters and performance of the critic network.

If the network cannot learn the correlation, we have no lower bound other than min-entropy.

Instead of providing a number to represent the correlation between inputs x and secret value

y, we can use machine learning techniques to learn the correlation with classifiers. The aim of

using classifiers is to have a lightweight way of predicting user actions (classes) by observing

traces where the classifier algorithms are finding patterns and correlations between features and

classes. Using a set of the feature vector x and the secret information y pairs, we can train a

classifier N that learns the the correlation between these pairs and provides function, N(x) = y

which takes the feature vector x and returns the related secret. After training, we can use a

trained classifier N which takes a feature vector x and returns the predicted action y ∈ Y.

4.2.1 Classifiers

There are various classifier models that try to learn the relation between the features extracted

from the trace and the secret information. In this section, we describe the various classifiers and

their training procedures which we used in our work.
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Random Forests

Random forest is a classifier that learns the classification tasks using a set of learners and

aggregates the result. A set of decision trees are trained using the dataset, and the majority

result is used as the result of this classifier. Decision trees are trees where each node is a condition

on a feature, and branches denote the true or false condition. The leaf nodes are classes, so for

each input, a path can be extracted, and the class in the leaf node of the extracted path will be

the prediction for that input.

For training, n decision trees are trained separately with different techniques to modify the

training dataset for diversity in the resulting decision trees. There are multiple ways to train

decision trees such as ID3 [61] and C4.5 [62] among others. We used the CART algorithm to

train the decision trees as it is a more general form of decision trees while being similar to the

publicly available state-of-the-art C4.5 algorithm with small differences for generalization. A

simplified algorithm can be seen in Procedure 4 [62–64].

The advantages of the random forests algorithm are its explainability, feature selection, and

avoidance of overfitting to the training data. We can use the decision conditions in decision

trees to point out which packets and features are leaking information. It also has inbuilt feature

selection where features leaking more information will be used for decision rules. With the

majority voting, it prevents a single classifier dominating the results and overfitting to the

training data.

To train each tree, a technique called bootstrapping is used where for each decision tree,

the training samples are randomly selected with replacement over the original dataset. Then a

random feature is selected, and a condition over the selected feature is generated so that the

condition splits each class into its own leaf in the end. The condition is selected using a heuristic

called Gini impurity which is a measure of how often a randomly chosen element from the set

would be incorrectly labeled if it was randomly labeled according to the distribution of labels in
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Procedure 4 CART(X, y⃗) Given the list of inputs X = x⃗(1), x⃗(2), ... where x⃗(i) is a vector (x1, x2, ..., xn)(i)
with size n and the corresponding labels y⃗, CART returns a binary decision tree.

1: if ∀i, j : y⃗i = y⃗j then
2: return LeafNode(y⃗i) ▷ If all inputs are of the same class, create a leaf node denoting that class
3: for i = 1...n do ▷ For each feature dimension
4: (Ii, pi)← ComputeGini(X, y⃗, i) ▷ Compute the Gini impurity for splitting which shows the probability

of guessing error of inputs for a split.
5: i∗ ← argmini Ii
6: p∗ ← pi∗ ▷ Select the split with the lowest Gini impurity
7: N ← Node(p∗) ▷ Create node with the split for the tree.
8: N.right← CART(X[p∗], y⃗[p∗])
9: N.left← CART(X[¬p∗], y⃗[¬p∗]) ▷ Create left and right child nodes for this node using the dataset partitions

where p∗ is true or false
10: return N

the subset.

k-Nearest Neighbors

k-nearest neighbor algorithm is a fairly simple classifier where the class of the input is

determined only by the class of inputs from the training data that are near it. To predict the

class for an input vector x⃗, the algorithm finds k inputs in the training set that are nearest to the

input using the L2 norm as a distance metric. The predicted class for the input is the majority

class of the k nearest inputs. No training procedure is needed as the algorithm just uses the

training set to predict inputs [65]. The advantages of k-NN is its low training time. It should

perform well in cases where the number of features is lower because as the number of features

increase, the feature space becomes sparser and the distance between data points increases.

Fully connected deep neural networks

Deep neural networks consist of multiple consecutive layers of neurons, where each neuron is

a node containing a floating point number and each neuron in a layer is connected to the neurons

in the next layer with a weighted edge. The neuron value in the next layer is the weighted

sum of the all the connected neuron values in the previous layer passed through an activation

function [66].

70



Estimating Bounds for Information Leakage Chapter 4

Deep neural network architectures consist of an input layer, a sequence of hidden layers,

and an output layer. The input layer denotes the feature vector we extracted from the network

traces. It is connected to a sequence of hidden layers, each connected to the next layer, and

ends with the output layer where each neuron corresponds to a class which is the user action or

device state. These correspond to the secret values we are trying to predict. The prediction for

a particular input is the class which has the highest value of corresponding neuron.

The fully connected neural network can be defined as below where feature vector x⃗ =

(x1, x2, ...) is passed through N connected layers, with matrix multiplications and activation

functions applied at each layer as a function with input vector as the input where consecutive

matrix multiplications and activation functions are applied alternately as

h1 = f1(W1x⃗+ b1)

hn = fn(Wnhn−1 + bn)

y = argmax fN (WNhN−1 + bN )

F (x⃗) = argmax fn(Wn . . . f2(W2 · f1(W1 · x⃗)))

where hi represents the ith hidden layer, y represents the output class, Wi represents the edge

weights between the i− 1th and ith layers, bi represents the biases to be added to the ith layer,

and fi represents the activation function, which is rectified linear unit (ReLU) for i = 1, 2 . . . N−1

and logistic sigmoid for i = N [67, 68].

The weighted edges and neuron biases of a network are typically initialized randomly. To

train a neural network, labeled input data must be passed through the layers as described. Then,

the weights and biases are adjusted to minimize the prediction error, and ideally the neural

network improves its predictions with training iteratively.

Neural networks are very flexible and can be applied to a wide variety of tasks. Their

shortcomings are that they requires a large amount of dataset as they learn iteratively and they
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can overfit or underfit to the training set, skewing the accuracy results.

4.2.2 Bounding Classifier Accuracy using Bayes Error Rate

Classifier’s ability to learn the correlations depends on the parameters of the classifier. If a

classifier can guess the secret 75% of the time, we do not know if the classifier can be improved.

To provide some context to the accuracy results, we compute an upper bound to classifier

accuracy. We use Bayes error rate which gives the lowest possible error rate for data distributions

to compute the accuracy bounds as described in the theorem below [69]. As we explained in the

previous sections, obtaining the conditional distribution and computing the entropy is difficult

in multiple dimensions. Therefore we describe a theorem on accuracy bounds on single features

which can be computed easier.

Theorem 1 In a classification task with N classes assuming prior class distribution p(y) is

known for all values y ∈ Y, assuming a Bayes classifier F over a single feature x such that Ci

represents the domain for x when p(x | y = i) is greater than p(x | y = j) for all values of j not

equal to i, the accuracy bound of this classifier can be defined as

AccBound (F ) =

N∑
i

p(y = i)

∫
x∈Ci

p(x|y = i) dx

Proof: To obtain the accuracy bound, we need to find the percentage of true positive data

points for all classes.
∫
Ci
p(x|y = i) dx describes the cumulative probability of secret value i ∈ Y

that is being classified correctly as p(x|y = i) > p(x|y = j) for any value of j not equal to i when

x ∈ Ci. Multiplication of this cumulative probability with the prior class probability p(y = i)

gives us the percentage of inputs with class i over all possible inputs that are correctly classified.

When computed over all classes, this gives us the percentage of inputs classified correctly in

total.
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This theorem assumes that we have the actual p(s) and p(x|s) distributions. We assume p(s)

to be uniform which is also reflected in our datasets as we try to capture equal amount of data

points for each classes. For p(x|s), we estimate the distribution using KDE as described before.

If KDE does not fully capture the actual distribution, then the upper bound may not hold.

Table 4.1: Information leakage results of IoT applications using various quantification methods
in terms of bits. |Y| denotes secret domain size for that application. CC denotes the channel
capacity, the upper bound of information leakage in bits. ISF-KDE denotes the leakage of the
most leaking feature using kernel density estimation (KDE). IInfoNCE, Iα=0.01, Iα=0.50, Iα=0.99

denote the neural mutual information bounds computed for various methods.

Application |Y| CC ISF-KDE IInfoNCE Iα=0.01 Iα=0.50 Iα=0.99

grpc_stove_device 2 1.00 100% 2% 50% 22% 49%
grpc_stove_server 3 1.58 94% 38% 82% 44% 25%
grpc_ac_device 5 2.32 83% 1% 24% 1% 13%
grpc_ac_server 6 2.58 45% 23% 35% 12% 22%
grpc_cctv 2 1.00 96% 60% 62% 60% 60%
awsiot_stove_client 4 2.00 91% 50% 45% 25% 47%
awsiot_stove_device 4 2.00 100% 70% 53% 50% 35%
awsiot_ac_client 6 2.58 99% 39% 100% 54% 52%
awsiot_ac_device 6 2.58 84% 60% 100% 50% 39%
awsiot_lock_client 3 1.58 71% 37% 80% 73% 38%
awsiot_lock_device 3 1.58 82% 51% 63% 63% 50%

4.3 Experimental Evaluation

To experimentally evaluate our approach, we used previously obtained IoT trace datasets.

On these datasets, we computed our leakage estimate on single features, multiple features using

feature reduction, and leakage lower bound using neural networks. We also trained classifiers

and computed classifier accuracy bounds over the extracted features. In cases where we used

classifiers, we split the datasets to training, validation and testing datasets where we split the

original dataset to subsets with size 70%, 10% and 20% respectively. We use the validation

dataset to find the classifier parameters that maximize the validation accuracy. We use classifiers
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with the best parameters to obtain the results on test accuracy and repeat the experiment 5

times with different splits to average the results.

(a) Results for AWSIoT AC (Device-side traffic). (b) Results for AWS IoT Lock (Client-side traffic).

Figure 4.1: Images describe the leakage lower bound over multiple features compared against
highest leakage for a single feature. Best single dimensional leakage result is shown in black
line and results of various leakage lower bound estimations are shown in green line. Dashed
line represents the maximum amount of leakage that can be estimated with this lower bound
technique.

4.3.1 Evaluating Information Leakage Estimation and Lower Bounds

Table 4.1 describes the results on IoT benchmarks for highest single feature leakage estimation,

multi-feature information leakage lower bound results for 4 bound estimation methods. Combining

features can only increase the overall leakage, therefore we can compare our lower bounds

generated using neural networks against our best single feature leakages. If the neural leakage

estimation provides a tighter lower bound, then it helps us estimate the total information leakage

better than the single feature version. By observing the results, we can see that neural information
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bound generation achieves a tighter bound in only 3 out of 11 applications. Comparing neural

estimates to single feature estimations, neural information leakage methods mostly converge

to a lower value which could depend on the data distribution, architectures, etc. We explored

various parameters to train these networks extensively but this method only seems to help in

some cases, not all. We believe in those cases, neural information estimation is useful as it can

provide tighter information leakage bounds.

Figure 4.1 shows two examples where neural leakage estimation performs better than the

single feature lower bound. With 20000 steps, Iα=0.01 converges to a higher lower bound estimate

in these examples but the other approaches mostly stay below the estimation. Comparing the

neural information leakage methods among themselves, Iα=0.01 seems to be the estimator that

achieves the highest information leakage result as seen in the Figure 4.1 and Table 4.1.

4.3.2 Evaluating Classifiers and Classifier Accuracy Upper Bounds

Table 4.2 describes the results of classifiers over the IoT benchmark application. Random

Forest classifier performs the best overall compared to other classifiers based on its feature

selection algorithm and it can be used to demonstrate the leakage when it is performing over the

random guessing accuracy. For bounding the accuracy, we compare the accuracy upper bounds

with a single feature classifier as we can only obtain p(y|x) over single features, and it would

not be fair to compare our single feature upper bound against the multi feature classifiers. On

the bound results, in 13 out of 17 applications, the estimated accuracy bound holds and it is

equal or higher than the actual accuracy. If it does not hold, this could be because KDE does

not fully reflect the distribution. One assumption we make is a continuous distribution but if

the leaking feature is based on packet sizes, the feature distribution is inherently discrete. Our

method could estimate a lower leakage upper bound based on the fact that the classifier cannot

correctly classify packets with size 10.5. That case will not occur for that feature as the packets
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Table 4.2: Testing accuracy results of IoT applications over multiple classifiers. |Y| denotes
secret domain size for that application. AccRandom, AccFcNN, Acck-NN, AccRF denote the testing
accuracy using random guessing, fully connected neural networks, k-nearest neighbor and random
forest classifiers. AccKDE and AccBound denote the highest testing accuracy with a single feature
using KDE as a classifier and highest accuracy bound over single feature distributions. The
highest value between AccNB and AccBound estimations are bolded to show if the upper bound
holds.

Application |Y| AccRandom AccFcNN Acck-NN AccRF AccKDE AccBound

grpc_stove_device 2 50% 68% 63% 80% 60% 62%
grpc_stove_server 3 33% 54% 55% 84% 55% 99%
grpc_switch 3 33% 99% 100% 100% 99% 99%
grpc_ac_device 5 20% 38% 36% 44% 35% 48%
grpc_ac_server 6 16% 28% 28% 30% 28% 50%
grpc_cctv 2 50% 99% 100% 100% 100% 100%
awsiot_stove_client 4 25% 100% 100% 100% 75% 80%
awsiot_stove_device 4 25% 85% 99% 97% 100% 99%
awsiot_ac_client 6 16% 79% 43% 83% 66% 47%
awsiot_ac_device 6 16% 84% 84% 84% 74% 65%
awsiot_lock_client 3 33% 46% 48% 72% 69% 94%
awsiot_lock_device 3 33% 81% 79% 84% 47% 86%
myq_device 3 33% 59% 57% 60% 53% 80%
myq_client 3 33% 83% 82% 100% 100% 92%
camera 3 33% 100% 99% 100% 100% 100%
motion 2 50% 94% 86% 94% 93% 98%
light 3 33% 77% 71% 83% 66% 72%

have discrete sizes, which makes that finding useless.

4.4 Chapter Summary

In this chapter, we explored various methods to extend our previous information leakage

estimation using multi feature estimation and neural leakage estimation methods. We also

described how we can train classifiers on the network traces and bound the accuracy for an

expected amount of performance. During our experimental evaluation, we observed that neural

leakage estimation methods provide tighter bounds only in a few cases. Classifier accuracy bound
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holds in almost all cases and as classifiers depend on many parameters, an upper bound on

performance means we can measure the classifier accuracy against the upper bound on accuracy.
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Chapter 5

Targeted Black-Box Side-Channel

Mitigation

Internet of Things (IoT) devices are becoming more popular with increasing internet connectivity

and bandwidth and they allow users to control or get information from sensors or appliances such

as motion sensors, smart locks, and smart lights via smartphone apps. Although IoT devices

present many benefits, they also carry the risk of being vulnerable to malicious actors. Security

and privacy of IoT devices and applications are a timely and critical research problem because

of vulnerabilities directly affecting end-users and their households [70,71]. Even with encryption,

eavesdroppers can monitor the network traffic and use the metadata of the traffic, such as the

amount of bytes transmitted or duration of transmission, to leak information about user actions.

For example, a sleep sensor that sends more packets when the user is awake reveals the sleeping

habits of its user [13]. These types of information leaks due to non-functional characteristics

of computer systems are called side-channels, and in this paper, we investigate mitigating the

side-channel vulnerabilities in IoT applications due to network traffic.

If information leakage is detected in an IoT application, measures such as padding the

packets with extra bytes, delaying packets and injecting extra packets can be used to obfuscate
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the relation between the network traffic and device or user activity which in turn reduces the

information leakage. Too much padding or delays degrade the performance of the system and

increase the power consumption, therefore a trade-off must be achieved to balance privacy and

usability of the system.

In this chapter, we propose a black-box side channel analysis tool called Shark! to mitigate

side-channel vulnerabilities in IoT applications. Shark! works by collecting encrypted network

traces and labeling them with the secret value of the corresponding trace (which can be user

actions or a device state such as a motion sensor’s status at the time of the trace capture).

Shark! analyzes the traces by extracting features such as packet sizes and timings, and quantifies

the information leakage. Using the information leakage quantification, Shark! prioritizes which

features to target and iteratively develop a mitigation strategy with respect to a tunable

objective function balancing the information leakage reduction and overhead. The tunable

objective function can be customized by the user by changing the parameter that controls

the trade-off between information leakage and mitigation overhead. This enables Shark! to

synthesize a set of Pareto optimal [22] mitigation strategies corresponding to different trade-offs

between privacy and performance.

Compared to prior work on network side-channel mitigation approaches [72–75], we present

the following novel contributions in this paper:

1. A method to prioritize the features for mitigation using metrics measuring information

leakage, targeting the packets related with features that leak the most information (Sec-

tion 5.3).

2. A search-based, tunable side-channel vulnerability mitigation method which finds the

optimal packet padding and delaying strategy for mitigating both space and time network

side-channels while keeping the overhead low, with the ability to adjust the trade-off

between the leakage and the mitigation overhead (Section 5.4).
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3. Implementation and experimental evaluation of the novel targeted black-box network

side-channel mitigation approach we present in this paper (Section 5.5).

Our experimental evaluation of Shark! on three IoT benchmarks demonstrates that our

approach overall performs better than the prior work in terms of reducing information leakage

and overhead. Our evaluation shows that the approach can obtain a Pareto optimal mitigation

strategy set where the user can select the strategy that fits their leakage and overhead constraints.

The rest of the chapter is organized as follows. In Section 5.1, we describe a motivating

example, give the overview of our approach and our assumptions on attacker behavior. In

Section 5.2, we give an overview of the network structure and protocols for the IoT applications

and describe our system model. In Section 5.3, we go over the feature extraction and prioritization

methods. In Section 5.4, we go over the targeted mitigation technique. In Section 5.5, we discuss

the implementation details, IoT benchmarks, experimental evaluation of our approach, and its

limitations. In Section 5.6, we conclude the paper.

5.1 Motivation & Overview

A Smart Garage Door Application.

We analyzed an IoT device produced by Chamberlain Group which manufactures various

brands of garage doors and access control systems, and provides an application to control the

systems called MyQ. The communication protocol between MyQ and the backend server is via

a tailored HTTPS that supports the publish-subscribe model. To better demonstrate the root

cause of the issue, we installed the MyQ application with version number 4.147 on a jailbroken

iOS device, and we leveraged SSL Kill Switch [76] to bypass SSL certification pinning and

utilize mitmproxy [77] to capture the original before-encrypted packets for analysis. To open or

close the garage door, the MyQ application sends a TCP packet to the server with the payload
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{"action_type":"open"} or {"action_type":"close"} respectively.

While the content of HTTP headers, method, and URL may vary in each request, we do not

observe any changes in their sizes. Yet, for two different actions, the size of the HTTP body

is distinguishable. There exists a one byte difference between packets containing the strings

"open" and "close". Even when the packets are encrypted, someone who is eavesdropping on

the network traffic can infer when a user is opening or closing the garage door. These types of

network side-channel information leakages are pervasive in IoT systems and have been used in

prior work to identify devices and user actions [13,78,79].

Network
Trace

Dataset T

Feature Extraction
Feature Prioritization

via Leakage
Quantification

Pareto Optimal
Mitigation for Multiple

Features

User provided parameters
to guide mitigation

Optimal Mitigation
Strategy based on
user constraints 

Figure 5.1: Shark! workflow describing the main building blocks of our approach.

Our Leakage Analysis and Targeted Mitigation Approach.

Shark! automatically discovers the information leakage in IoT applications like the one

described above and mitigates them by synthesizing a packet padding and delaying strategy

based on the most leaking features while minimizing the cost of mitigation. Figure 5.1 illustrates

the workflow and the steps of our approach.

For example, to investigate the garage door application discussed above, one can use Shark!

to listen to the communications and collect a set of traces where the user opens the door and

another set of traces where the user closes the door. Shark! has packet capture capabilities to

label each captured trace with the corresponding action (the secret information that we would

like to protect) and create a trace dataset for analysis.

Shark! uses the labeled trace dataset to extract common features among all traces. It

extracts aggregate features such as total size, total duration, the average size of packets in the
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trace, etc., and packet-level features such as the first packet size, the time difference between third

and fourth packet, etc. To detect and quantify side-channel leakages, it models the distribution

of each feature per secret and calculates the mutual information between the feature and secret

using the distributions which reflect how many bits of information was learned by observing each

feature. Shark! ranks the results according to the amount of information leaked and provides a

ranked list of features and the amount of information leaked by observing that feature.

Finally, to mitigate the vulnerability, Shark! uses the generated feature ranking to iteratively

synthesize a packet padding and delaying strategy based on the top leaking features which

minimizes the information leakage and time and space overhead based on the user’s constraints.

Because the aforementioned metrics conflict with each other (minimizing overhead means no

padding, which means leakage is not reduced at all), we use a linear combination of leakage and

overhead metrics as the objective function and the user can tune the weights for them based on

the needs of each IoT application. At the end of the iteration, Shark! provides a mitigation

strategy which is the optimum strategy with respect to user’s constraints on information leakage

and time and space overhead.

Assumptions about attacker capabilities.

In our attack model, we assume that an eavesdropper is able to capture traces of user actions

using duplicate IoT devices (which is possible for commercial devices) and train classifiers using

the captured traces to identify devices or user actions. To perform the attack, we assume that

the attacker is either in the same local area network or on a network switch between the device

and server to monitor the victim’s network traffic. We also assume that the attacker has a way to

identify different device or client application traffic by either observing the MAC addresses of IoT

devices if they are in the local area network or using separate classifiers for device identification,

which is feasible as shown in literature [80, 81] and our experiments. The attacker passively

observes each trace associated with the action once and uses the classifiers to obtain the secret
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information (device type/action depending on the task). We assume that observation of the

trace associated with the action happens only once because the attacker cannot cause the user

to perform an action. This prevents the amplification strategy to circumvent packet padding as

the attacker cannot cause the user to perform the same action multiple times knowingly. We

also assume that the attacker has no prior information that can impact its information gain such

as sleep patterns or job schedules of the users.

5.2 IoT Network Model

In this paper, we focus on network communications to and from IoT middleware or backend

servers. IoT device users send commands to or get updates from their devices using clients

such as their smart phones. The servers relay this information to and from the devices or the

hubs. We are not interested in monitoring the local wireless communication or personal area

networks (PAN), therefore the standard local protocols for IoT like Zigbee, Z-Wave, Bluetooth,

or Wi-Fi are beyond the scope of our analysis. Focusing on communications over the internet

increases the attack surface by enabling remote attacks. An eavesdropper on the local network

can only collect encrypted packets when they are close to the signals of emitters or when they

have access to the devices of the victims. Communication with remote hosts via the internet

enables eavesdroppers to attack at various points during data transmission.

There are several IoT protocols for communicating over the internet. gRPC [82] is a

remote procedure call (RPC) framework based on HTTP/2.0. It encodes data with Protobuf,

a serialization library that converts objects to binary streams. MQTT [83] is an open-source

protocol standard designed to support communications between two or more separated devices. It

has several implementations like RabbitMQ, HiveMQ, and AWS IoT. Since no default serialization

method is provided, developers commonly conduct JSON serialization on objects sent in request

and response. STOMP [84] is an alternative to MQTT, commonly used in low-energy devices as
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it provides minimal functionality. Similar to MQTT, developers have full freedom on deciding

which serialization methods to use. Other protocols such as Websocket, AMQP, JMS, and CoAP

are also commonly used in the IoT ecosystem. However, since they share most patterns of the

aforementioned protocols [85], in our experimental evaluation, we only focused on the three

protocols listed above. Our side-channel analysis technique is applicable to applications written

using any of these communication protocols.

5.3 Feature Extraction and Prioritization

In this section, we describe the initial steps of our targeted mitigation approach (see Fig-

ure 2.3), the feature extraction and feature prioritization techniques.

5.3.1 Feature Extraction from Network Traces

To have an accurate information leakage analysis, we have to process the traces obtained from

capturing network packets and extract meaningful features from the network packets. Based on

our definition of traces and the corresponding secrets in Section 5.2, we define feature functions

f : T→ R (where T is the domain of traces) which map each trace t to a numerical feature value

that can potentially correlate with the corresponding action label y. We extract packet-based

features such as size of each packet and inter-arrival time to the consecutive packet. We also

extract trace-level features such as the total size, total duration, mean, standard deviation, min

and max of packet size and time differences. These feature definitions are based on the leakage

sources in the prior work [21,73]. Our feature function definitions are described in Table 5.1. For

each function fi, we apply it to the trace set T to obtain the vector of values for that feature,

Fi = ⟨fi(t(1)), fi(t(2)), . . . , fi(t(|T |))⟩ which we use to determine the probability distributions.
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Table 5.1: Definition of network trace features.

Feature Function Definition Description

f sum−size(t)
∑

p∈t p.size Sum of sizes of packets in trace t.

fmax−size(t) maxp∈t p.size Max. of sizes of packets in trace t.

fmin−size(t) minp∈t p.size Min. of sizes of packets in trace t.

f size(t, i) pi.size Size of packet i.

fnum−pkt(t, k)
∑

p∈t[p.size = k] Number of packets with size k.

fvar−size(t) σ(p.size ∈ t) Std. deviation of sizes of packets in trace t.

favg−size(t)
∑

p∈t p.size/|t| Avg. of sizes of packets in trace t.

fduration(t) pn.time− p1.time Total time of trace t.

f∆time(t, i) pi+1.time− pi.time Time diff. of packets i & i+ 1.

5.3.2 Feature Prioritization via Leakage Quantification

To target mitigation to specific features, we need to have a metric of importance where

mitigating more important features would reduce the information leakage more than mitigating

less important features. To measure and quantify importance of each feature, we use an

information theoretic measure, Shannon entropy [45] which quantifies information in terms

of amount of bits. If we have n unique secret values, log2 n will be the maximum amount of

information leakage for that secret according to Shannon entropy. We define a feature vector Fi

= ⟨fi(t(1)), fi(t(2)), . . . , fi(t(|T |))⟩ to represent the value of feature i over each trace t(j) in T .

Recall that, we use a secret vector y⃗ = (y(1), y(2), ..., y(|T |)) which represents the secret value y(j)

of the corresponding trace t(j). We use mutual information I(Y;Xi) to quantify the information

leakage for feature i, where Y is the domain of all secret values and Xi is the domain of feature

values for feature i. The mutual information for feature i, Ii, is defined as

Ii = I(Y;Xi) = −
∑
y∈Y

p(y) log2 p(y)−

− ∑
x∈Xi

p̂i(x)
∑
y∈Y

p̂i(y|x) log2 p̂i(y|x)


where the first part of the equation, initial entropy, represents the initial uncertainty about

the secret. Second part of the equation, conditional entropy, represents the uncertainty after

observing a feature value. The subtraction of these two measures gives the average amount of
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information leaked by observing the feature values Fi.

We do not have the exact probability distributions pi(x), pi(y|x). Therefore, we first compute

the estimated probability distribution p̂i(x|y) using the feature vector Fi and the corresponding

secret vector y⃗. We use Kernel Density Estimation (KDE) with k-fold cross validation [49]

to estimate the probability distribution p̂i(x|y) [21,47–49]. We assume the secret distribution

p(y) to be uniform to represent the attacker has no prior information about the secret. It can

be modified in the cases of prior information to reduce the initial amount of information. We

compute p̂i(x) and p̂i(y|x) using p(y) and p̂i(x|y) and the Bayes’ rule.

After quantifying the information leakage of each feature separately, Shark! ranks them

from the highest amount of information leaked to the lowest, which we then use in our targeted

mitigation strategy. Algorithm 5 describes the feature ranking method where the highest ranked

feature fm is found by the formula: m = argmaxi Ii.

Procedure 5 FeaturePrioritization(T,Lf ) Given a set of traces T , and a list of feature
functions Lf , FeaturePrioritization extracts features over traces, ranks them based on the
information leakage per feature and returns a list of feature rankings.
1: Lranked

f ← ⟨⟩
2: for each fi in Lf do
3: Fi ← ⟨fi(t(1)), fi(t(2)), . . . fi(t(|T |))⟩ ▷ Extract feature fi from traces
4: Qi ← QuantifyLeakage(Fi) ▷ Quantify information leakage for feature fi
5: Lranked

f .append(Qi, fi)

6: Sort(Lranked
f ) ▷ Sort features based on the information leakage amount

7: return Lranked
f

5.4 Pareto Optimal Mitigation for Multiple Features

To obtain a mitigation strategy that balances the trade-off between added network overhead

and remaining information leakage, we define an optimization problem based on obtaining low

cost and low information leakage. We describe our cost models and tunable mitigation search

below.
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5.4.1 Cost Models.

To measure the impact of any mitigation method on the cost of the transmission, we use

metrics based on byte overhead and timing overhead and find how much our mitigation technique

impacts the network traffic. To compare two trace sets, we use T to denote the original trace set

and T ′ to denote traces where the mitigation strategy is applied.

Cost for space mitigation on two sets of traces can be measured as

Cspace(T, T
′) =

∑|T ′|
i=0 f

sum−size(t′(i))−
∑|T |

i=0 f
sum−size(t(i))∑|T |

i=0 f
sum−size(t(i))

Similarly, cost for time mitigation on two sets of traces can be measured as

Ctime(T, T
′) =

∑|T ′|
i=0 f

duration(t′(i))−
∑|T |

i=0 f
duration(t(i))∑|T |

i=0 f
duration(t(i))

These cost metrics represent the average increase in number of bytes transmitted and duration

of the traces, respectively. Increase in either of these metrics would impact power usage, quality

of communication and total used bandwidth as transmissions would either take more time, more

bandwidth or both.

5.4.2 Tunable Mitigation on Targeted Features.

Using the feature ranking obtained over traces, we can generate a mitigation strategy based

on the top leaking features. This generated strategy needs to balance the constraints of the user

on information leakage and overhead of the leakage on the communications. In addition, this

strategy needs to be applicable to unseen traces as well, therefore our strategy should not be

specific to mitigating information leakage in our dataset. With these constraints in mind, we

present our targeted mitigation strategy. It takes a set of traces T = (t(1), t(2), ...), iteratively

modifies T to T ′ based on the feature ranking Lranked
f , and generates mitigation rules if the
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modification is improving the user constraints.

We use three tunable parameters, α, β, and γ to define the objective function to minimize.

These parameters specify the user constraints on leakage and overhead. The objective function

Θ(T ′, T ) is defined as

α×QuantifyLeakage(T ′) + β × Cspace(T, T
′) + γ × Ctime(T, T

′).

The parameter α denotes the weight of the information leakage of the modified set of traces T ′

(higher α corresponds to higher emphasis on lowering leakage). The parameter β denotes the

weight of the space cost of mitigation (higher β corresponds to higher emphasis on low space

overhead), and the parameter γ denotes the weight of the time cost of mitigation (higher γ

corresponds to higher emphasis on low time overhead).

We describe our mitigation approach in Algorithm 6. As seen in Lines 3–6, our approach

iterates over the ranked feature list Lranked
f , modifies the traces based on the feature (which we

explain in the following subsection), quantifies the information leakage of the modified trace and

calculates the objective function value Θ. QuantifyLeakage(T ′) performs feature extraction

and quantification over the modified set of traces T ′ and returns the highest information leakage

measure over all features as described in Sections 5.3.1 and 5.3.2. If the objective function is

minimizing compared to the previous iteration (Lines 7–10), our approach updates the current

minimum value Θmin to Θ, updates the trace set T to the modified trace set T ′ and saves the

feature for the revised feature ranking Lrevised
f . If the modification based on the feature does

not improve the objective function (it could be because the modification increases the overhead

too much), we exclude the feature from the revised feature ranking. After the execution, our

approach returns the revised feature ranking Lrevised
f which can be used to modify unseen traces.
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Procedure 6 TargetedMitigation(T, Lranked
f , α, β, γ) Given a set of traces T , list of ranked

features Lranked
f , leakage weight α, space cost weight β and time cost weight γ, Targeted-

Mitigation iterates over the features and shapes the traffic to reduce the information leakage
while minimizing the objective function, returning the list of features Lrevised

f that improve the
objective function (where Θmin denotes the current minimum value of the objective function).
1: Θmin ←∞
2: Lrevised

f ← ⟨⟩
3: for j ← 1 to |Lranked

f | do
4: for each t(k) in T do
5: t′(k) ←Modify(t(k), Lranked

f [j]) ▷ Modify trace to reduce leakage from feature
Lranked
f [j]

6: Θ← α×QuantifyLeakage(T ′) + β × Cspace(T, T
′) + γ × Ctime(T, T

′)

7: if Θ < Θmin then
8: Θmin ← Θ

9: T ← T ′

10: Lrevised
f .append(Lranked

f [j])

11: return Lrevised
f ▷ List of features that improve the objective function

5.4.3 Targeted Trace Modification

For obfuscating space and time side-channels, we define and utilize three methods to modify

the traces. First method Pad(t,D) pads every packet with a padding size based on the

distribution D. This function helps with defining padding over all packets to mitigate information

leakage of aggregate features such as f sum−size. It takes a trace t = (p1, p2, ..., pn) and returns

t′ = (p′1, p
′
2, ..., p

′
n) where p′i.size← pi.size + xi and xi ∼ D.

Second method, Delay(t, dlimit), delays each packet based on the uniform delaying up

to a certain limit. This helps with mitigating delays over multiple packets such as fduration.

It takes a trace t = (p1, p2, ..., pn) and returns t′ = (p′1, p
′
2, ..., p

′
n) where if pi.src ← pi+1.src,

p′i.time ← U(pi.time, pi+1.time) if and pi.dst ← pi+1.src, for all j ≥ i, p′j .time ← p′j .time +

U(0.0,max(µδtime/2, dlimit). This delay injection assumes two party communication (e.g. between

server and client). If two packets are sent from the same source, the first one can be delayed at

most until the next packet. If the destination of one packet is the source for the next packet,

89



Targeted Black-Box Side-Channel Mitigation Chapter 5

we assume the second packet is a response to the first. In this case, delaying the request would

delay the response and all the packets that come after it. In this case, we delay those packets at

most half of the average time difference between consequent packets or the delay limit dlimit if

the time difference is too large.

Our third method, Inject(t, k, s), injects k random packets with size s into the trace. It

takes a trace t = (p1, p2, ..., pn) and returns t′ = (p′1, p
′
2, ..., p

′
n+k) where k packets are added

to the trace where for any injected packet p′i, its source, destination and ports are sampled

from existing packets, and size and timing of the injected packet is defined as p′i.size← s and

p′i.time ← U(p1.time, pn.time). Injecting extra packets can obfuscate side-channels caused by

both timing and space side-channels such as number of packets with a specific size or timing

delays between certain packets and we use this method to obfuscate various types of information

leakages.

For obfuscating different types of features, we employ different packet modifications such

as changing the size of packets by padding the content, delaying the packets or injecting new

packets as explained using the aforementioned methods. Using these modifications, we explain

how Modify(t, f) works for each feature type to mitigate side-channels based on each type of

feature.

• For feature f size(i), we equalize the size of ith packet in each trace to avoid information

leakage. For each trace t, we modify the size of ith packet pi to the maximum size of ith

packet over all traces. It can be described as ∀t′ ∈ T ′, p′i.size← maxt∈T f
size(t, i).

• For feature f∆time(i), we delay the (i+1)th packet to equalize the delta between them. For

each trace t, we modify the response time for the (i+1)th packet to maximum delay between

ith and (i+1)th packets. It can be described as p′i+1.time← maxt∈T f
∆time(t, i) + pi.time.

• For feature fmax−size, for each trace t, we inject a packet to t with size equal to maximum

size over all packets to obfuscate this feature. For each t, we modify it to create t′ where
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t′ ← Inject(t, 1,maxt∈T f
max−size(t)).

• For feature fmin−size, we pad all packets with size below a threshold to equalize the sizes

of minimum packets. It can be described as ∀p ∈ t, p.size < maxt∈T f
min−size(t) : p′.size←

maxt∈T f
min−size(t).

• For feature fnum−pkt(k), we inject packets to equalize the number of packets with size k.

For each t, we pick a random number of packets n ∼ U(0, 2×maxt∈T f
num−pkt(t, k)) and

modify the original trace to create t′ where t′ ← Inject(t, n, k).

• For the size and timing based aggregate features, (f sum−size, fvar−size, favg−size, fduration)

we search for a padding strategy to apply to all packets by searching for best parameters

D or dlimit over a set of parameters for Pad(t,D) and Delay(t, dlimit) respectively. We

describe the set of parameters used for the search method in Section 5.5.1.

5.4.4 Online Mitigation

As shown in the previous subsections, while performing the search in Algorithm 6, trace

modification (Modify(t, f)) and leakage quantification (QuantifyLeakage(T ′)) is done offline

and applied to each trace. In real traffic, this is not possible as the traces must be processed and

modified as each packet arrives. To address this, using the modified feature set, we implement a

packet-based mitigation system that modifies each packet based on the results of the search in

Algorithm 6. Using the results of the search, we can synthesize the online mitigation that takes a

packet and modifies it based on the features we should modify to reduce the information leakage.

Algorithm 7 describes a method that processes each packet based on the mitigations and

returns the modified packet. It takes a packet p, modifies it based on the packet index i and each

leaking feature in the revised feature list. Instead of the Modify(t, f) described in Section 5.4.3,

we use a method called ModifyPacket(p, i, f) which extends Modify(t, f) on a packet pi
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rather than the full trace t. For Pad and Delay functions, there’s no change as both methods

apply same modifications to each packet of the trace indiscriminately. For Inject(t, k, s), as we

limit it to injecting k packets of size s within a trace t, we obtain the average number of packets

per trace from the training set T as µnum−pkt and inject a packet for each µnum−pkt/k packets.

A router that processes packets can use this method to apply padding and delays to each

received packet that is transmitted between IoT device, server and smartphone application. In a

real world implementation, this algorithm would need to be optimized to apply the mitigation

quickly and send the packet with minimal delays and it can be done as shown in prior work [73]

and we will demonstrate it in our experimental evaluation.

Procedure 7 OnlineMitigation(p, Lrevised
f ) Given a packet p and the revised feature set

Lrevised
f , OnlineMitigation modifies the packet based on the targeted features. We do not

include dummy packet injections in this description, those packets are sent without processing
any packets.
1: i← i + 1 ▷ Packet index counter
2: for j ← 1 to |Lrevised

f | do
3: p←ModifyPacket(p, i, Lrevised

f [j]) ▷ Modify packet to apply mitigation strategy
based on feature Lrevised

f [j], described in Section 5.4.3

4: return p ▷ Modified packet based on padding and delays

5.5 Implementation and Experimental Evaluation

In this section we first describe our implementation, followed by the discussion of benchmarks

we used in our experiments, and then describe the results of our experimental evaluation.

5.5.1 Implementation

Shark! is implemented in Python. For trace capture, automation of analysis, mutual

information calculation, and feature ranking capabilities, we use tools described in [18,21]. For

online mitigation, we used Scapy’s network capture, padding and packet sending capabilities [52].
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For measuring the effectiveness of the mitigation, we used existing implementations of random

forest classifier, k-nearest neighbor, and fully connected neural network algorithms in scikit-learn

library [53]. For the random forest classifier, we set the number of decision trees to 100 which

we obtained after testing the random forest with 50, 100, 150 and 200 and picking the value

maximizing accuracy after cross validation.

For the mitigation parameters D and dlimit of Pad(t,D) and Delay(t, dlimit), we use grid

search over a set of fixed parameters, picking the parameter that minimizes the the objective func-

tion. For D, we use various uniform distributions, U(0, k) where k ∈ {25, 50, 100, 150, 200, 250}

bytes and existing packet padding methods in the related work such as exponential padding. We

also calculate the per packet size difference between the largest and smallest traces and set that

parameter as k for the search. For delay parameter dlimit search, we use the set of parameters

{10ms, 20ms, 50ms, 100ms, 200ms}. We chose these range of parameters to represent mitigation

methods with low and high impact on information leakage and network overhead.

For the experimental evaluation of Shark! against related work, we set γ to ∞ and only

use α and β parameters to focus on space cost and accuracy in the objective function to have

a fair comparison between Shark! and most of the prior work which focuses on only packet

padding. For quantification, we use the default parameters in [21] implementation which works

for estimating distributions of space and time features. Our approach and some of the prior work

behaves stochastically and to address this issue, we ran each experiment 3 times and averaged

the results over 3 runs to alleviate the randomness.

5.5.2 IoT Benchmarks

IoT protocol benchmarks.

To cover the common design and architecture patterns in our experimental evaluation we

used the gRPC, MQTT, and STOMP protocols discussed in Section 5.2 to create applications
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with various protocols. We created 10 applications using the protocols representing both smart

home and industrial IoT systems such as ovens, air conditioners, smart locks and electrical

switches. Details of the applications can be examined in this repository [86].

To create the trace dataset for evaluation, we captured 2000 traces per secret value for each

application by inducing the action or system state. For the user-controlled applications, we

obtained the traffic generated by both the client and the device, and we analyze them separately

as the attacker could have access to only one stream. For sensors, we only captured the traffic

between server and device as there is no client to give commands.

The applications in our IoT benchmark are written in Python. The benchmark is publicly

available in an anonymized repository [86]. Table 5.2 summarizes the types of each device and

the protocol that is being used. In each application, there is a device service to represent the IoT

device updating information and receiving actions; the client service to represent control systems

of IoT devices; and the backend service to coordinate the communication between device service

and client service. For the MQTT (AWS IoT) and STOMP applications, we only implemented

client and device since neither allows logic definitions at the server side. While we leverage AWS

MQ platform to create the server that supports communication between client and device via

STOMP protocol, AWS IoT platform is used for application using MQTT protocol. For gRPC

applications, we define our own functions like logging in and registering device at server side

instead of implementing the server to be a general message queue like the former applications.

We deploy our server to a Google Kubernetes Engine instance with 3 nodes (each having 4

cores vCPU and 11 GB RAM). To simulate the real-world production environment and imitate

the timing features in the backend of real-world IoT services, we also utilize a SQL database

(MySQL) and a cache database (Redis).

For each application, the secret of interest is the general actions the user can take if it is

user-controlled (like a light) or the state of the device if it is a sensor (like a camera). For air

conditioner apps, the possible actions are turning the AC to make the air hotter, colder, blowing
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Table 5.2: All IoT benchmark applications and secret domain size of each application.

Application Device Type Protocol |Y|

grpc_ac Air Conditioner gRPC/Protobuf 6

grpc_cctv CCTV gRPC/Protobuf 2

grpc_oven Oven gRPC/Protobuf 4

grpc_switch Electrical Switch gRPC/Protobuf 3

awsiot_ac Air Conditioner MQTT (AWS IoT) 6

awsiot_oven Oven MQTT (AWS IoT) 5

awsiot_lock Lock MQTT (AWS IoT) 5

stomp_ac Air Conditioner STOMP (AWS MQ) 5

stomp_oven Oven STOMP (AWS MQ) 4

stomp_lock Lock STOMP (AWS MQ) 2

hot or cold air with the fans, or turning off the device. For oven apps, the possible actions are to

broil, stop heating, or bake with or without a fan. For the lock apps, the different actions the

user can take are to lock or unlock the lock. For the CCTV app, the states are no motion or

motion detected. For the electrical switch app, the states are the switch being on, off, or in an

unknown state.

For all MQTT applications and grpc_ac applications, we also include no action where the

user does not do anything as a secret of interest. This is important as we want to be able to

detect whether an action happens or not as well. We did not include no action case as a secret of

interest in STOMP applications and grpc_oven; the reason is that in our implementation, both

clients and devices just re-transmit the latest action given to the device in those implementations,

therefore there is no observable difference between the previous action and no action state.
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IoT real-world benchmarks.

We used an existing IoT application benchmark from previous work, the UNSW device

identification dataset [79] which contains network traces from a variety of IoT devices in which

the task is to identify devices.

In addition to the UNSW benchmark, we also used four IoT devices, a Samsung SmartThings

camera, a SmartThings magnetic motion sensor, a Sengled smart light bulb, and MyQ garage

door, to generate network traffic with various user actions. To sniff the network traffic, we used

a computer with Ubuntu 20.04 OS as a Wi-Fi hotspot to monitor the traffic and capture the

device traffic. For each user action, we generated 100 traces where each trace is 15 seconds long.

For the SmartThings camera, we generated traces where no action and no motion is detected,

the sound is detected without motion, and both sound and motion is detected. For the motion

sensor, we generated traces where the motion happened or did not happen in front of the sensor.

For the smart light bulb, we obtained traces where the user performs the action of turning on or

turning off the lights or doing nothing. For the garage door, we generated traces for opening,

closing the garage door, and where nothing happens.

5.5.3 Experimental Evaluation

We compare our approach against prior mitigation methods which use a fixed or randomized

packet padding strategy [72–75] such as such as linear padding (increasing sizes of each packet

to the nearest increment of 128) [72], exponential padding (increasing sizes of each packet

to the nearest power of 2) [72], uniform padding (padding each packet with 1-1500 bytes

randomly) [72, 74], uniform-255 padding (padding each packet with 1-255 bytes randomly) [72],

maximum transmission unit (MTU) padding (increasing size of each packet to maximum

transmission unit of 1500 bytes for TCP/UDP packets) [72], MTU padding with 0-20 ms

delay to each packet (MTU-20ms) [75], mice & elephants padding (increasing size of each packet
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with size less than 100 to 100, to 1500 - max packet size otherwise) [72], Level-X where X is 100,

500, 700 or 900 (increasing size of every packet with size less than X to X, pad them randomly

otherwise) [73]. None of the aforementioned approaches had a public implementation, therefore

we implemented all the methods ourselves.

To evaluate Shark! against the various related work and compare its performance against

advanced attacks, we trained random forest classifiers [63, 64], k-nearest neighbors [65] and

fully-connected neural networks [66] on the traces. Random forest classifiers performed the best

in terms of accuracy, therefore we used random forest classifiers in our evaluations. Hence, we

are evaluating the ability of different mitigation strategies against the best performing classifier’s

ability to infer the secret from network traces.

For a fair evaluation, we split the trace set T into two trace sets with equal size called seen

traces, Tseen , and unseen traces, Tunseen , simulating the case where the mitigation strategy is

synthesized offline and then deployed on the device. We synthesize our mitigation strategy only

on seen traces and apply our mitigation strategy and test our approach on unseen traces. To

compare the side-channel mitigation methods of Shark! and the prior work, we split the unseen

trace set Tunseen to training trace set Ttrain and testing trace set Ttest in 80%/20% split with

5-fold cross-validation to alleviate cases where the arbitrary splitting of trace sets can affect the

classification results. We train the classifier on Ttrain and measure the accuracy, precision, recall,

F1 score of the classifier on Ttest .

Comparison of Shark! to prior work over various classifiers.

For comparison purposes, we trained random forest classifiers for the aforementioned prior

works and Shark! over 10 IoT protocol benchmark applications, 4 real world applications and

UNSW trace dataset. As a baseline, we also include the performance of the classifiers where

we use traces with no mitigation, with full mitigation (padding all packets to full size, delaying

packets to make the transmission like heartbeat and injecting packets to make trace size equal
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overall) and random guessing probability.

Table 5.3 shows the average accuracy, precision, recall, F1-score [87] and space cost using the

random forest classifier. The results show that when our mitigation approaches the ones with

prefix Shark!) are used, modified traces leak less information and induce less overhead compared

to prior work depending on the objective function and the user can select a trade-off between

them. Shark! (Overhead) achieves lowest overhead compared to other works while reducing

leakage some amount. Shark! (Balanced) has higher overhead compared to exponential padding

approach but reduces leakage, precision and recall to lower levels. Shark! (Leakage) has high

overhead compared to most of the works but it achieves leakage very close to full mitigation with

only 3x space cost. Our method is able to mitigate sources of side-channels by padding a single

packet or injecting a few packets which have low impact on the overhead whereas it can reduce

the information leakage significantly. For the aggregate features, our approach finds the padding

that improves the objective function, therefore our feature prioritization and iterative mitigation

synthesis using the objective function always improves upon the padding over previous steps,

enabling Shark! achieve lower overhead, leakage or both.

Figure 5.2: Average accuracy (x-axis) and overhead (y-axis) results of prior work and Shark!
using the random forest classifier. Red pluses represent the results of prior approaches, blue
crosses represent the results of Shark! with different weights for objective function. Lower
values are the better results.
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Table 5.3: Average testing accuracy, precision, recall, F1-score and packet size overhead results of
the prior work and Shark! with 6 objective functions on all benchmarks, trained on a random
forest classifier. Overhead, Balanced and Leakage results of Shark! represent cases where the
objective function weights α (leakage weight) and β (overhead weight) are 1 and 1, 1 and 0.1, 1
and 0.01 respectively. Bold values are minimum values among the methods.

Mitigation Method Accuracy Precision Recall F1-Score Cspace

No mitigation 0.83 0.84 0.83 0.83 0.00

Full mitigation 0.44 0.44 0.44 0.44 113.39

Random Guess 0.30 0.30 0.30 0.30 N/A

Uniform 0.55 0.55 0.55 0.54 7.48

Uniform255 0.56 0.57 0.56 0.56 1.35

Mice & Elephants 0.57 0.57 0.57 0.57 2.62

Linear 0.57 0.58 0.58 0.58 0.93

Exp 0.58 0.58 0.58 0.58 0.32

MTU 0.56 0.56 0.56 0.56 14.92

MTU-20ms 0.53 0.54 0.54 0.53 14.92

Level-100 0.58 0.59 0.59 0.58 0.76

Level-500 0.56 0.57 0.56 0.56 4.54

Level-700 0.56 0.57 0.56 0.56 6.58

Level-900 0.56 0.57 0.56 0.56 8.65

IoTPatch (Overhead) 0.67 0.56 0.55 0.54 0.09

IoTPatch (Balanced) 0.52 0.46 0.47 0.46 0.65

IoTPatch (Leakage) 0.47 0.49 0.49 0.48 3.01

IoTPatch (Overhead w/Time) 0.64 0.55 0.55 0.54 0.09

IoTPatch (Balanced w/Time) 0.50 0.45 0.46 0.46 0.65

IoTPatch (Leakage w/Time) 0.45 0.47 0.47 0.47 3.01
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Pareto optimality of Shark!.

Figure 5.2 shows the accuracy (x-axis) and space overhead (y-axis) results for the prior work

and Shark! with different objective function parameters which weigh overhead and leakage

at different levels. Both plots show that Shark! with various objective functions provides a

Pareto optimal solution set, where different objective functions result in different points in the

accuracy-overhead space. The users can run Shark! with different objective functions, get the

mitigation strategies with various results and pick the one that fits their needs and requirements.

For example, in the MyQ garage door example in Figure 5.2, they can pick the strategy with low

overhead where the attacker can guess accurately with 65% accuracy or pick the strategy with

higher overhead while reducing the accuracy of the attacker to 45%.

Effectiveness of targeting timing side-channels.

To demonstrate the value of targeting timing side-channels, we set the timing overhead

weight γ equal to 0.1 for the objective function and compared Shark! with and without timing

information leakages.

Table 5.3 shows the results of Shark! with/without the timing mitigation. Compared to

Shark! without any timing mitigation, timing mitigation reduces the testing accuracy 2-3%

more, similar to the accuracy difference between MTU and MTU-20ms padding. The average

time cost for Shark! with targeting side-channels is 10% whereas traces where MTU with 0-20

ms delays have in average 90% time cost. Results of both our approach and MTU with 0-20 ms

delays demonstrate the importance of targeting timing side-channels and our method only uses

timing mitigation when it is needed, achieving lower overhead.

Limitations.

Our results on feature prioritization and side-channel mitigation depend on the quality of

the captured network trace set that contains a variety of user behaviors. If the number of traces
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are low or they are captured in a way such that some other unrelated event (such as time of day,

device updates, etc.) correlates with the action, Shark! can try to mitigate the traffic, assuming

it leaks information when in fact it does not leak information in the real world. To alleviate

validity concerns and to simulate attacker conditions, in our evaluations we split the trace sets

such that we synthesize the mitigation strategy on seen traces and demonstrate effectiveness of

mitigation against attacks on another set of unseen traces.

Shark! detects and quantifies the information leakage and it can find the optimum mitigation

strategy to reduce leakage, however implementing that strategy is left to the user. The mitigation

strategies generated by Shark! can be implemented on a network similar to the prior works [73,75]

which use software defined networking to manipulate network traffic data.

5.6 Chapter Summary

We presented a targeted black-box side-channel mitigation approach for IoT applications

called Shark! which analyzes captured network traces by extracting features based on packet

sizes and timings and creates a feature ranking based on the information leakage quantification.

Shark! uses this feature ranking to synthesize a mitigation strategy based on the needs of

the user, balancing the trade-off between the information leakage and mitigation overhead.

We evaluate our approach on network traces collected from a set of IoT applications with

various protocols, four IoT devices and a device identification dataset. Our experimental results

demonstrate that Shark! outperforms the prior work and provides Pareto optimal mitigation

strategies based on user’s constraints.
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Chapter 6

TSA: A Tool for Network Side-Channel

Analysis, Quantification, and Mitigation

In this chapter, we present TSA, a Tool for detecting and quantifying network Side-channels

Automatically with black-box testing and input generation methods. TSA is based on the

technical approaches presented in previous Chapters 2 and 3 [18,21]. We extend these prior works

into a flexible open source tool with documented APIs which the users can utilize to analyze

their applications. In network trace analysis, we provide the option of trace alignment to extract

more meaningful features for trace analysis. To demonstrate the capabilities of TSA, we analyze

7 applications in DARPA STAC benchmark, and one IoT benchmark on device identification

using TSA.

TSA can be used in two ways. If the user is testing an application and has not collected any

traces, they can use TSA to generate inputs to test the application, capture the network traces,

and analyze the captured traces in a feedback driven loop where TSA terminates the analysis

if the information leakage estimate converges to a value. If they already captured some traces

previously, they can use TSA to just perform side-channel analysis and quantification.

When using TSA, the user provides some seed inputs for the target system, and a set
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of mutators which, given a valid input, return another one. The user chooses a secret of

interest—some aspect of the input that they consider sensitive, whose leakage they want to

detect and quantify. TSA then repeatedly executes the target system, generates new inputs,

captures network traffic, and adjusts input generation strategy based on the feedback it obtains

by analyzing captured traffic. For analysis, TSA extracts features that may leak side-channel

information using the size, time and direction of the captured network packets. Afterwards, it

computes the mutual information using Shannon entropy and finds features that maximize the

information gain about the secret of interest. The final output from TSA is an automatically

generated ranking of the top n most-leaking features, sorted by how much information they each

leak about the secret of interest.

The envisioned users of TSA include researchers and software engineers, and other people

who want to analyze the side-channel information leakage of their applications. The challenge we

propose to address is automatically analyzing side-channel information leakages of applications

using a small set of inputs and mutators. In Section 6.1, we go over the tool architecture and

API to describe how it can be used for analysis. In Section 6.2, we describe the results of case

studies to demonstrate different uses of the tool. In Section 6.3, we conclude the paper.

Figure 6.1: Architecture of TSA.
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Figure 6.2: Workflow of TSA. Thick blue arrows denote the flow of execution.

6.1 TSA

In this section, we describe TSA’s architecture and main workflow of TSA’s execution. We

also describe how TSA is used on an example application, how the user provides inputs, mutators

and application orchestration.

6.1.1 TSA Framework

Figure 6.1 describes the core framework of TSA and two ways the user can provide data for

the analysis. If the user provides seed inputs, mutators and an instrumented application, TSA

uses its trace generation framework to generate new inputs and run those inputs to generate

network traces. TSA’s trace analysis framework takes the generated traces and performs side-

channel analysis with trace alignment, feature extraction and quantifies the information leakage

over each feature. The leakage quantification results are used to determine the importance of

mutators which are used to generate new inputs in mutation-based input generation. If the user

only provides collected and labeled network traces, TSA’s trace analysis framework performs
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side-channel analysis as described and returns the leakage quantification results.

TSA Workflow Summary

Figure 6.2 describes the workflow of TSA when used with a set of seed inputs and mutators.

We only describe the workflow of this use as TSA’s workflow with a set of collected network

traces is explained clearly in Figure 6.1 and in the previous section. To obtain an initial leakage

estimation, TSA runs the seed inputs over the instrumented application to obtain an initial set

of traces, uses trace alignment and feature extraction to obtain features and use quantification

methods to quantify the information leakage. Using this initial leakage estimation, TSA evaluates

the influence of mutators on the leakage estimation based on changes in top feature or secret

and computes weights for mutators which are proportional to their likelihood of changing secret

value or perturbing feature values.

After this initial setup, for each iteration, TSA generates new inputs using mutators and

previous inputs based on the computed weights, runs these new inputs over the system to obtain

new traces and runs the analysis over all of the collected traces to obtain the leakage estimation

for that iteration. If the stopping criterion is satisfied, then it returns the final information leakage

estimation on the application. Otherwise, it starts a new iteration, repeating the previously

described steps. We perform analysis over all the collected traces and generate new inputs using

all the previously generated inputs but we do not show the accumulation of traces and inputs on

the figure for simplification.

6.1.2 TSA API

To analyze their applications, users need to define the input model, provide a set of mutators

and write code to orchestrate system setup and execution. To make this process easier, we provide

an API with classes for defining inputs, mutators and application orchestration. Listing 6.1

provides an example code segment the user may write to test an example shopping application
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extending TSA API classes. The TSA codebase contains examples with varying degrees of

complexity, including apps, inputs, and mutators for the STAC benchmark which the users can

refer to as well.

Input model

To help the users write inputs, we provide Input base class which represents a valid input

for the application. Users can subclass Input and add fields and members to model the relevant

characteristics. For example, if the user wants to test if their purchases are leaked, user can

define a shopping list input as Python class ShoppingInput extending Input with a list named

shoppingcart representing their purchases and string named zipcode representing the ZIP code

of their shipping address. The users can also write assertions in the constructor such as ZIP code

belonging to a set of valid US ZIP codes to check validity of the input when it is being created.

The only mandatory methods to implement are methods hash and secret. First method

hash is used by TSA to check if the newly generated inputs are unique. A simple way to

implement hash is to pack all relevant class members in a tuple and call Python’s primitive hash

method on that tuple. This ensures that any change in any member affects the resulting hash

value. The second method secret defines the secret of interest in relation to the input. This

is up to the user and in our example, it can be number of elements in the shopping cart, the

total cost of all items in the shopping cart, prefix of user’s ZIP code (denoting general area of

delivery), or any other sensitive information.

Listing 6.1: Example usage of TSA API

from tool import Platform , Container , Sniffer , App , Input , Mutator

class ExampleApp(App):

def launch(self):

Platform.cleanuphosts (["homer.example.edu", "marge.example.edu"])

# Deploy two containers on two different machines

self.servercontainer = Container("example/server:v1.0")

self.clientcontainer = Container("example/client:v1.0")

self.server = Platform.launch(self.servercontainer , "homer.example.edu")

self.client = Platform.launch(self.clientcontainer , "marge.example.edu")
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# Run the server

server_cmd = "bash -c ’cd /home/server && ./ startServer.sh’"

self.server.exec(server_cmd , detach=True)

def shutdown(self):

self.server.killrm ()

self.client.killrm ()

def run(self , inputs):

sniffer = Sniffer(ports =[8080 , 8081])

sniffer.start()

for input in inputs:

sniffer.startinteraction(input.secret ())

self.client.createfile(input , "/home/client/input.txt")

cmdfmt = "bash -c ’cd /home/client && ./ startClient.sh {} {}’"

self.client.exec(cmdfmt.format("homer.example.edu", "input.txt"))

sniffer.stop()

return sniffer.traces ()

class ShoppingInput(Input):

def __init__(self , shoppingCart , zipcode):

assert len(shoppingCart) > 0

assert len(zipcode) == 5

self.shoppingCart = shoppingCart

self.zipcode = zipcode

self.itemList = [’apple ’, ’orange ’, ...]

def __eq__(self , other):

return self.shoppingCart == other.shoppingCart

and self.zipcode == other.zipcode

def __hash__(self):

return hash((self.shoppingCart , self.zipcode))

def secret(self):

return len(self.shoppingCart)

class AddItem(Mutator):

def mutate(input):

randomItem = random.choice(input.itemList)

input.shoppingCart.append(randomItem)

return input

class RemoveItem(Mutator):

def mutate(input):

if len(input.shoppingCart) > 0:

randomIndex = random.randrange(len(input.ShoppingCart))

input.shoppingCart.pop(randomIndex)

return input

else:

return None

class ChangeZIPCode(Mutator):

# ... etc ...
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Mutators

Mutator base class in TSA API represents a mutator that transforms valid inputs. The

users can write their own mutators extending Mutator and providing their own implementation

for the method mutate, which is a static method that takes an Input and returns another Input.

The method assumes Input is a valid input for the system and tries to return another valid

input. If it cannot, the method should return None. For example, the user may write a mutator

which adds an item to the shopping cart or another mutator which removes an item from the

shopping cart if possible.

Listing 6.1 shows an example with three mutators. The first mutator, AddItem, adds an item

to the shopping cart field and returns the new input. The second mutator, RemoveItem, removes

a random item from the shopping cart field if it is not empty, and returns the new input. If

the shopping cart is empty, it returns None as it cannot remove items from an empty list. The

third mutator, ChangeZIPCode, changes the ZIP code of the input from a set of valid ZIP codes,

returning the new input. We provide the code for the first two mutators for space reasons as the

code to check valid ZIP codes is complicated.

System Setup and Execution

To execute the system under test, we provide App base class which can be extended by the

users. When implementing the instrumentation of system execution, the user must implement

three methods, launch, shutdown and run. launch and shutdown methods set up the system

before analysis and shut down the system after analysis respectively. run method takes a list

of Input objects and runs them one by one over the system under test, returning a set of

captured network traces. The user needs to provide how the inputs interact with the system

by implementing run method. This imitates how a user might use the input as a scenario. For

example, for ExampleApp.run() might have a script that searches each item of the input file on
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a website, puts the first result on the shopping cart and checks out using the ZIP code in the

input.

To instrument deployment and launching of components such as clients, servers and peers, we

use Docker [88] in our examples. We provide the classes called Container and Platform which

set up and launch Docker containers respectively. We provide methods to create containers on

hosts and on the containers, and we provide methods to copy files, run commands and shutdown.

Using Docker is optional, but recommended for simplicity and reproducibility. This also allows

running TSA analyses on cloud platforms with minimal changes.

Packet sniffing

To help with capturing traffic, TSA provides a Sniffer class that offers a simple interface

for capturing traffic and labeling the captured traces. To set up network capture, the user can

create a Sniffer object, denoting specific ports they want to listen and start the sniffing which

runs in a separate thread. Before starting each interaction, the App’s run method should call

Sniffer.startinteraction(secret) to ensure that the captured traffic is labeled with the

correct secret. Lastly, run should finish sniffing with Sniffer.stop() method and return the

traces obtained from Sniffer.

TSA Setup

Our tool runs in a feedback-driven manner, where it generates inputs by picking mutators

based on a heuristic, generates new traces by running the inputs on the instrumented app and

runs our analysis on the newly obtained traces. If the leakage estimation of top-k features do

not change below an ϵ value for N steps, then the estimation stops. To setup this feedback

loop, we provide default values to the stop criterion parameters but the users can provide their

own values for k, ϵ and N variables to set up their own stop criterion. Users can also provide

a parameter to determine how many times each input will run on the system. Some systems
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may exhibit non-deterministic behaviors, therefore running each input multiple times may be

beneficial for the accuracy of the analysis.

6.1.3 TSA Usage

TSA1 is available as a command-line tool and Python package. As a Python package,

TSA can be used as a library that provides classes for sniffing network communication, parsing

network traces and extracting features, quantifying information leakage and visualizing the feature

distributions and information leakage. Defining input models, mutators, system instrumentation

and providing seed inputs require writing them in Python, therefore this is the recommended

way to use TSA for feedback-driven analysis. We provide examples on how the TSA is used as a

Python package in our repository.

TSA’s command-line interface is used for analyzing already captured network traces. TSA’s

command-line arguments include network trace and label file names, which ports to examine for

filtering traffic, and folder location for generated plots. There are flags for choosing the leakage

quantification options, choosing whether to use alignment on network traces, and whether to

quantify only space or time features if the user is interested in only one of them.

In both usages, TSA outputs the leakage information as a ranking over the extracted features.

If requested, TSA also provides plots for the feature distributions per secret to show how features

and secrets correlate.

6.2 TSA Evaluation

To demonstate the performance of our approach when input sets and mutators are given, we

used TSA to analyze information leakages of 2 applications in the DARPA STAC benchmark [41]

which contain implementations of various client-server or peer-to-peer web applications such
1The tool’s source code, experimental evaluation code, evaluation results, and documentation are publicly

available at https://github.com/kadron/tsa-tool
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as a messaging app, a peer-to-peer bidding application, a railyard or air traffic management

system. The applications we analyzed are Airplan and Railyard. This benchmark has multiple

versions of each application where some versions are found to be leaking information through

manual analysis. This provides some coarse ground truth where we can compare our leakage

results against that ground truth. We also used TSA to analyze an IoT benchmark generated

by researchers from University of New South Wales (UNSW) Sydney [79] where the task is to

identify the device by observing the trace. The traces were already provided in this benchmark,

thus we used TSA to just analyze the traces and not generate new traces. We report the leakages

in terms of percentages and amount of bits leaked compared with the full amount of information

of the secret set.

Airplan Case Study. Airplan is an air traffic management application where the users

of the system can upload route maps describing the connections between certain airports and

properties of the connections such as distance, fuel usage, number of passengers per flight, etc.

Airplan can also be used to find the ideal path between airports such as the path minimizing

fuel usage or maximizing amount of passengers carried. To analyze Airplan, we provided an

input model describing the route map graph, denoted the secret as the number of airports (as

described in DARPA STAC benchmark), and provided an interaction script which launches the

server, logs in to the website, uploads the route map, checks that it is uploaded and logs out.

For analysis, we provided 13 seed inputs corresponding to one for each secret value (a graph with

2 nodes, 3 nodes, etc.) and 10 mutators which add/remove nodes, add/remove flights, modify

airport names and each weight separately.

Using our tool, we find that Airplan 2, the vulnerable application leaks 100% (3.70 out

of 3.70 bits) of the information within 76 minutes of analysis and 3 iterations. Airplan 5 is a

modified version of Airplan 2 where the vulnerability is patched and TSA reports that it leaks

89% (3.29/3.70 bits) of the information within 114 minutes of analysis. Airplan 3 is marked
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not vulnerable in the DARPA STAC benchmark and TSA reports that it leaks 47% (1.74/3.70

bits) of the information within 161 minutes of analysis. These results are consistent with the

ground truth where the vulnerable application leaks 100% and other versions have less leakage

depending on different versions.

Railyard Case Study. Railyard is a train station management system where the station

manager can use the application to provide a description of the train such as the number of

cars, list of cargo and crew in each car and the stops that the car will visit. There are different

types of cars for specific cargo and crew. The secret of interest in the benchmark is the set of

different cargo types. For analysis, we wrote an input structure describing the cars, crew, cargo

and stops. We used the TSA API to write an interaction script that sets up the train where the

train departs after the specification is set. We provided 64 inputs with different configurations

denoting possible combinations of possible cargo and 10 mutators that add/remove a train car, a

piece of cargo, a crew member, or a stop. Our analysis shows that this application leaks 22%

(1.32/6.00 bits) of the information within 202 minutes which is similar to the coarse ground

truth provided by DARPA STAC benchmark where it is marked non-vulnerable. There is no

vulnerable version of Railyard in the DARPA STAC benchmark to compare against but 22%

leakage shows that the application does not leak a significant amount of information.

UNSW IoT Benchmark Case Study. To demonstrate that TSA can be used to analyze

previously obtained network traces, we used TSA on the UNSW IoT Benchmark. In this dataset,

each trace is marked the secret, MAC address which matches to the device type used when

generating the benchmark. There’s no ground truth to the benchmark but previous work found

that classifiers can perform with 95% accuracy over the benchmark. [89] TSA reports that the

feature with the highest information leakage leaks 58%(2.55/4.39 bits). Another tool, F-BLEAU

reports a higher min-entropy leakage with 80%. This is because combining multiple features may
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increase the information leakage and the original benchmark also reports around 95% classifier

accuracy to verify this result.

6.3 Chapter Summary

We presented TSA for automatically detecting and quantifying network side-channel infor-

mation leakages. In our presentation, we described how TSA works given inputs and mutators,

and how its API can be modified to analyze other applications. In our experimental evaluation,

we showed TSA’s performance against two existing benchmarks.
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Related Work

In this chapter, we summarize the prior work related to the topics of this dissertation. We

describe the related work on software and network side-channel analysis, input generation and

testing for side-channel analysis, and side-channel mitigation.

Related Work on Software Side-Channel Analysis. One relevant related work uses

sequence alignment algorithms on unencrypted packet payloads in order to infer similar segments

packet contents [90]. This technique applies to the plain-text content of the packets. Our work

on the other hand applies sequence alignment algorithms to the packet attributes (time-stamps

and packet sizes) for automatically inferring phases of network interactions, and does not assume

that packets are unencrypted. Work by Chapman, et. al. illustrates methods for detecting

the potential side channels in client-server application traffic [91]. Their approach crawls the

given web application to build a model of the system side channel and uses Fisher criterion

for quantifying leakage. A different approach by Chen, et. al. focuses differentiating leakage

measurements by analyzing state diagrams for web applications [11]. Yet another approach by

Mather, et. al. uses a packet-level analysis of network traffic for estimating information leakage

for network applications [92]. A number of works present specialized techniques for discovering
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specific types of vulnerabilities, like identifying the source identity of an HTTP stream [93,94] or

automatically determining network-traffic-based fingerprints for websites [95].

The Blazer tool [96] also addresses the applications in the DARPA STAC benchmark. Their

approach focuses on showing safety properties of non-vulnerable programs but is able to indicate

possible side-channel vulnerabilities by detecting observationally imbalanced program branches

using a white-box static program analysis approach. Another recent tool called Scanner

has shown success in statically detecting side-channel vulnerabilities in web applications that

result from secret-dependent resource usage differences [97]. The tool Sidebuster focuses on

side-channel detection and quantification during the software development phase using taint

analysis [98]. These three tools all assume access to the source code of the application whereas

we use a fully black-box approach. A number of works analyze mobile application for analyzing

side-channels in networks of mobile devices [12,99,100].

Another line of work relies on formal methods and software verification techniques, like

symbolic execution along with model-counting constrain solvers, to statically quantify the amount

of information an attacker can gain about a secret in a system [101–104]. These works analyze a

variety of attacker models, from active attackers who adaptively query the system to incrementally

infer secret information to passive attackers who observe systems which they cannot query, and

use methods from quantitative information flow [34, 105, 106] to automatically derive bounds

on side-channel information leakage. These are white-box analysis techniques that rely on the

ability to symbolically execute a given application.

Chen et al. [11] study side-channel leaks in Web applications using a stateful model that

relates transitions between system states to side-channel observables. They show vulnerabilities

and look into mitigation costs. They do not provide a tool or quantify leakage. Chapman

and Evans [107] present a technique for black-box side channel detection in Web applications

by crawling the application and building an automaton. They associate transitions between

app states with captured network traffic, and build classifiers to recognize, on future traffic,
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which transition is likely to have been triggered. They use the Fisher criterion [108] to quantify

information leakage based on distinguishability of data points. They use simpler aggregate

features, like total size difference or edit distance.

Privacy Oracle [109] finds leaks using differential testing. Like AutoFeed, it is black-box,

and it uses alignment to detect meaningful relationships across network traces. But it assumes

that network traffic is unencrypted. AutoFeed does not rely on such an assumption: it exploits

publicly observable side-channel metadata.

AppScanner [42] is a tool for identifying different apps from encrypted network traces. It is

black-box and trains classifiers on traces which can identify which app is being used. They focus

on a single type of secret, whereas AutoFeed is a more general tool.

F-BLEAU [43] is a black-box side channel detection and quantification tool that uses k-nearest

neighbors estimation to generalize the estimation to unseen data, and min-entropy to quantify

information leakage. Leakiest [20] is a tool for side channel detection that uses models based on

histograms and KDE, with bandwidth based on std.dev. It provides confidence intervals, but

only if there was enough data, which cannot be known until after the analysis.

WeFDE from Li et al. [110] is a website fingerprinting approach which tries to detect which

website is visited over the Tor network. WeFDE uses KDE with Monte Carlo sampling to quantify

the information leakage over all features. All of these approaches provide information leakage

quantification capabilities given extracted features and labeled traces with various probability

estimation and different quantification measures. Comparing WeFDE to our approaches, in

addition to quantifying the information leakage with a dynamic probability estimation method

similar to WeFDE, our approach uses user provided inputs and mutators to automate the input

generation and trace capture in a feedback-driven manner.

Related Work on Input Generation, Testing and Feedback-driven Analysis. Fuzzing

techniques are popular in security testing. Coverage-guided fuzzing [111–113] can generate
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complex, structured inputs. Many fuzzing engines use mutation. Some frameworks allow for

custom mutators [114]. Others combine fuzzing with symbolic execution [115, 116]. However,

coverage-guided fuzzers depend on code instrumentation, and thus require source code. Also,

fuzzing engines are generally built toward the goal of breaking the system—that is, finding inputs

that cause crashes or assertion violations, rather than quantifying leakage. Fuzzing engines also

tend to assume that it is possible to execute the system in milliseconds, while AutoFeed deals

with systems that can take many seconds per input.

DifFuzz [16] is a side-channel analysis technique based on differential fuzzing. Like AutoFeed,

it involves a feedback loop, but it is white-box. Its evaluation uses manually sliced parts of

programs, where crucial classes or methods relevant to the side channel are manually isolated and

compiled together with the tool as a program. AutoFeed can analyze unmodified systems, and

since it interacts with them at the network level, it can analyze systems written in any language or

combination thereof. Other key differences are that AutoFeed handles noise and nondeterminism

while DifFuzz assumes determinism and precise measurements, and that AutoFeed quantifies the

amount of information leaked.

QFuzz [117], similar to DifFuzz, is a side-channel analysis technique based on fuzzing. It

generates new inputs using fuzzing for Java code to explore different program paths and unlike

DifFuzz which can only measure side-channel differences between two inputs, QFuzz quantifies

the information leakage using min-entropy. It is still a white-box technique and while it has its

advantages, the same approach is difficult to apply to software that uses network capabilities.

Work by Bang et al. [15] performs online synthesis of adaptive side-channel attacks. It uses

another kind of feedback loop. Like AutoFeed, it profiles the program through the network.

However, it is still a white-box technique due to its need to symbolically execute the program

before running it. Due to its dependency on symbolic execution, it cannot handle large systems.
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Related Work on Side-channel Mitigation. In the network side-channel mitigation area,

there have been several proposed mitigation techniques based on packet padding and delaying [72–

75]. In the evaluation of Chapter 5, we compared our work against the proposed techniques

and experimentally demonstrated that our work synthesizes mitigation strategies with better

accuracy and overhead due to feature prioritization and refinement on an objective function.

Apthorpe et al.’s work Stochastic Traffic Padding [118] mitigates side-channels caused by a

burst of packets (such as a camera uploading a photo, Amazon Echo downloading music files

for play, etc.) where the timing of the burst of packets leaks when the event happens. They

obfuscate the timing of the event by sending fake bursts of packets over a trace. Their method is

tailored on mitigating a specific type of information leakage based on user taking or not taking

an action whereas our approach tries to mitigate information leakages in general. The padding

method is not publicly available to use and the authors did not respond to our requests for their

implementation.

Liu et al.’s work, SniffMislead [119] aims to obfuscate the correlation between network side

channels and user actions by simulating dummy users over the network. They capture traces

and use classifiers to identify which packets are relevant to the action and replay those packets

over the trace as phantom users to confuse any eavesdroppers. Our approach is more general as

it can be used to reduce information leakage for device fingerprinting or action fingerprinting

as we evaluate approach over a variety of benchmarks. We also provide a tunable mitigation

strategy for the privacy and overhead constraints of the user.

Several techniques have been proposed for mitigating timing channels [120–123]. Closest to

our timing mitigation approach is a study by Askarov et al. [121]. They investigate techniques

for general black-box mitigation of timing side-channels on an event stream and they propose a

buffering approach to regularly send the events instead which enforces an information leakage

bound on the timing information. In this case, maintaining the quality of service of the

communication is important, therefore we explore approaches based on random delays rather
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than sending packets in regular intervals.
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Conclusion

As we demonstrated throughout the dissertation, network side-channel vulnerabilities are very

common in many network applications such as websites, IoT devices, smartphone applications.

Most of these vulnerabilities are caused by specific implementations which can be tested and fixed.

For example, the IoT example we gave leaked the user action because the actions were relayed

with packets containing "open" or "close" strings with unique lengths. Even if this side-channel

is fixed by padding packets, implementation details can cause one action to have a different time

signature or different packet response. Detecting and quantifying these side-channels require

testing various behaviors of the system under test, analyzing the various metadata of the captured

traces, quantifying the information leakage accurately, and finding a mitigation strategy that

balances the trade-off between quality of service and information leakage. In this dissertation, we

provided techniques to address the problem of detecting, quantifying and mitigating side-channels

like the example above with various novel techniques.

To address the problem of detecting and quantifying side-channels, we presented Profit.

Profit runs the system under test with given inputs to capture the network traffic. It extracts

features based on aligned traces and quantifies the information leakage over each feature with

probability estimation and information theory techniques. We demonstrated the effectiveness of
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Profit on DARPA STAC benchmark where Profit extracts meaningful features on sections of

network traces based on trace alignment, ranks the features based on their leakage amount and

finds which applications are vulnerable to the side-channel information leakages.

To improve automation in side-channel analysis, we presented AutoFeed, which is a feedback-

driven side-channel analysis method. AutoFeed provides a mutation-based input generation

technique where in each iteration, AutoFeed generates new inputs using the user-provided input

seed set and mutators. AutoFeed guides the mutation based on the amount of leakage in features

to explore new behaviors in network traces. To improve leakage quantification, AutoFeed also

finds the best fitting probability distribution using kernel density estimation and cross-validation

techniques. We showed that AutoFeed is effective in detecting and quantifying information

leakages over both canonical examples and DARPA STAC benchmarks.

To quantify the information leakage more accurately, we introduced methods on quantifying

information leakage over multiple features. To address the issues of computational cost and

probability estimation difficulty of quantifying side-channels over multiple features, we calculate

leakage bounds where we use neural networks to estimate probability and sample over the feature

space to reduce computational cost of quantification. We also use classifiers to demonstrate

side-channel attacks and provide accuracy bounds to estimate classifier performance.

To address the problem of side-channel mitigation, we presented a method, Shark! synthe-

sizes a mitigation strategy balancing network overhead and amount of information leakage. To

synthesize the mitigation strategy, Shark! takes user constraints to create an objective function

and tries to minimize it by obfuscating certain features by padding and delaying existing packets

and injecting dummy packets over the network trace. Once the mitigation strategy is found,

we synthesize a function that processes a network traffic as a stream to perform the mitigation

strategy. We showed that Shark! synthesizes mitigation strategies with lower leakage and

overhead over IoT benchmarks compared to the related work.

To unify all the approaches, we also provide a tool, TSA for the research community. TSA
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can be used in various ways to either test the application or just analyze captured network traces.

We provide a Python library, an API for application testing and a command-line tool for TSA.

While the techniques and tools we presented improve upon the previous related work on

side-channel detection, quantification and mitigation, more work can be done to further the

improvements. To provide different methods of input generation, grammar-based fuzzers can be

used to generate network traces for analysis. This would still require user to provide a grammar

but that could be easier for some users. Our work is based on black-box analysis which works

well for network applications but it is difficult to figure out the exact source of information

leakage in the code. Some white-box analysis techniques such as concolic execution and taint

analysis could be done to map network features to specific code segments and automated repair

techniques could be used to mitigate side-channels.

Overall, in this final chapter, we would like to point out that building on top of previous

work on network side-channel analysis, our contributions have improved state-of-the-art with

novel techniques on the network side-channel analysis, input generation and automated testing,

and side-channel mitigation. Specifically, we introduced a side-channel analysis approach with

more detailed features obtained by trace alignment, an automated testing approach for network

side-channels, improved leakage quantification using classifiers, automated mitigation strategy

synthesis and combined these approaches into a single tool. We also demonstrated the effectiveness

of these side-channel analysis approaches through experimental evaluation on various benchmarks.
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