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Abstract 

Bee–fungus associations are common, and while most studies focus on entomopathog ens, emerg ing evidence sugg ests that bees 
associate with a variety of symbiotic fungi that can influence bee behavior and health. Here , w e re vie w nonpathogenic fungal taxa 
associated with different bee species and bee-related habitats. We synthesize results of studies examining fungal effects on bee 
beha vior, de v elopment, survi v al, and fitness. We find that fungal communities differ across habitats, with some groups restricted 

mostly to flowers ( Metschnikowia ), while others are present almost exclusively in stored provisions ( Zygosacchar om yces ). Starmer ella 
yeasts are found in multiple habitats in association with many bee species. Bee species differ widely in the abundance and identity 
of fungi hosted. Functional studies suggest that yeasts affect bee fora ging, dev elopment, and pathogen interactions, though few 

bee and fungal taxa have been examined in this context. Rar el y, fungi ar e ob ligatel y beneficial symbionts of bees, wher eas most 
ar e facultati v e bee associates with unknown or ecologicall y contextual effects. Fungicides can r educe fungal a bundance and alter 
fungal communities associated with bees, potentially disrupting bee–fungi associations. We recommend that future study focus on 

fungi associated with non-honeybee species and examine multiple bee life stages to document fungal composition, abundance, and 

mechanistic effects on bees. 

Ke yw ords: Anthophila, microbiome, provision, Starmerella , symbiosis, yeast 
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Introduction 

Insects fr equentl y host micr obial symbionts, and although most 
work to date on these symbioses focuses on bacterial communi- 
ties, insect–fungi associations are common and play important 
roles in insect nutrition and defense (Biedermann & Vega 2020 ,
Vega and Blackwell 2005 , Stefanini 2018 ). Fungal symbionts ben- 
efit insects in many wa ys , including acting as a direct food source 
(fungus-farming ants and termites, ambrosia beetles, Aanen et al.
2002 , Beaver 1989 , Mueller et al. 1998 ), provisioning limiting nu- 
trients (yeast-like symbionts in planthoppers, Noda et al. 1979 ),
detoxifying or digesting food resources (cactophilic fruit flies, bark 
beetles; Starmer and Fogleman 1986 , Soto-Robles et al. 2019 ), and 

pr oviding pr otection a gainst pathogenic or sa pr otr ophic micr obes 
(fungus-farming ants , termites , and beetles; Florez et al. 2015 ). 

Like many other insects, bees interact with microbes in sym- 
bioses ranging from beneficial to parasitic. Bees (superfamily An- 
thophila) are a large group of insects comprised of over 20 000 
species (Orr et al. 2021 ). Bees are important pollinators, contribut- 
ing to global services worth an estimated USD$195–$387 billion 

annually (Porto et al. 2020 ). While many of the bee species used 

for crop pollination services (such as honeybees and bumblebees) 
live in large social colonies, approximately 90% of all bee species 
are solitary (Danforth et al. 2013 ). Studies of microbial symbioses 
in bees hav e dispr oportionatel y focused on eusocial bee groups,
whic h ar e known to hav e a small and well-conserv ed cor e bac- 
terial gut microbiome that augments immunity and is transmit- 
ted acr oss gener ations via the social hiv e envir onment (Kwong 
Recei v ed 20 April 2023; revised 15 June 2023; accepted 6 July 2023 
© The Author(s) 2023. Published by Oxford Uni v ersity Pr ess on behalf of FEMS. This
Commons Attribution-NonCommercial License ( https://creativecommons.org/licen
r e pr oduction in any medium, provided the original work is properly cited. For com
t al. 2017 ). Emerging studies suggest that bacterial associations
a y also pro vide n utritional and protecti ve benefits to solitary

ees, though they lack a core microbiome (Voulgari-Kokota et al.
019 ). Although the bulk of r esearc h to date has focused on bee-
ssociated bacteria, there is growing recognition that bee micro- 
iomes are complex and contain unicellular parasites , viruses ,
nd fungi, which are the focus of this review. 

Fungi associated with bees hav e typicall y been studied as
athogens (Evison and Jensen 2018 ), sa pr ophytes of stor ed pr o-
isions, or indicators of poor bee health. The best studied bee-
ssociated fungi are those in the genus Ascosphaera , which are
pecialized on bee-associated habitats and include species that 
re pathogenic to bee larvae (Aronstein and Murray 2010 , Ravoet
t al. 2014 , Maxfield-Taylor et al. 2015 ) as well as those that grow
a pr ophyticall y on stored pollen (Skou and King 1984 , Vandenberg
nd Stephen 1983 ). In addition, fungi in the genus Aspergillus can
e opportunistic pathogens of adult and larval bees (Becchimanzi 
nd Nicoletti 2022 ) and can produce m ycoto xins that are toxic to
ees (Niu et al. 2011 , Kosti ́c et al. 2019 ). Microsporidians in the
enus Vairimorpha (formerly Nosema ), which are closely related to
ungi, can infect a wide range of bee species and cause nosemo-
is (Martín-Hernández et al. 2018 , Grupe and Quandt 2020 ). Out-
ide of pathogenic interactions, the presence of fungi within bees
as tr aditionall y been r egarded as a sign of str ess; bees str essed
y nosemosis , xenobiotics , or warm overwintering temperatures 
ost a greater abundance of fungi within their gastrointestinal 
ract (Gilliam 1973 , Gilliam et al. 1974 , Rada et al. 1997 , Borsuk
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t al. 2013 , Ptaszy ́nska et al. 2016a , b , Maes et al. 2021 ). Within
tored bee pro visions , some fungi act as spoilage microbes and
ay contribute to larval bee mortality, especially in solitary bee

pecies (Batra et al. 1973 , Lunn et al. 2022 , Pitts-Singer 2004 ). How-
 v er, ther e is gr owing r ecognition that not all fungi associated with
ees indicate disease or decay; some may be commensal or e v en
utualistic. 
Bees host diverse communities of nonpathogenic fungi (Inglis

t al. 1993a , Grabowski and Klein 2017 , Ec he v errigar ay et al. 2021 ,
acinto-Castillo et al. 2022 ). Over the last few decades, and with
ncreased accessibility of DNA sequencing methods, these fungal
ymbionts have been characterized in association with a grow-
ng diversity of bee species, and their roles within bee health and
cology have started to be examined. Here, we synthesize the re-
ults of 148 studies of nonpathogenic bee–fungi associations. We
ummarize the fungal taxa whic h ar e most commonly associated
ith bees, differences in fungal communities between various
ee species and bee-associated habitats, potential routes through
hich these fungi are acquired, and their effects on bee behavior,

urviv al, and r epr oduction. We additionall y discuss e vidence for
ungicidal disruption of these associations and identify current
aps in our understanding of bee–fungi interactions. 

eview methods 

o br oadl y assess whic h fungal taxa ar e found acr oss bee species
nd habitats, we searched for studies that describe bee–fungi in-
eractions using the Web of Science database, using the search
erm ‘ ∗bee fung ∗’. Searches were carried out in July 2021, Octo-
er 2022, and March 2023 using these parameters . T hese searches
esulted in 1243 total studies, of which 127 were chosen for in-
lusion in this r e vie w. An additional search was carried out in
une 2023 using the search term ‘ ∗bee yeast’, which resulted in
he addition of 21 studies. Studies that only focused on fungicide
r pathogen effects on bees were the vast majority of all results
nd were excluded from this review, as these disease interactions
ave been previously reviewed (Evison and Jensen 2018 , Chen and
vans 2021 ). Of the chosen studies, 104 identified fungal commu-
ities associated with bees (Table S1 , Supporting Information). For
ach of these 104 studies, we recorded the top three most preva-
ent fungal genera, determined by metrics such as r elativ e abun-
ance, frequency of isolation, or number of CFUs, depending on
tudy design. For a small number of studies, four taxa were in-
luded in analysis, as two taxa both ranked at the third most
bundant taxon. For c har acterization of these top fungal com-
unities, potential pathogens such as Aspergillus and Ascosphaera
ere not excluded if they ranked as one of the most abundant

axa. The top thr ee gener a r epr esented on av er a ge 84% of total
ungi detected in studies using culture-based isolation of fungi
based on number of colonies or number of isolates), and 55% of
ungal communities in studies that used direct sequencing ap-
r oac hes (based on read counts). For each study, we also recorded
etadata including bee species, habitat, and detection method.

hr ee br oad habitats wer e consider ed: bee body (larv ae , pupae ,
dult external, adult internal, and adult whole body), nest (cor-
icular pollen, pollen pro visions , honey, and propolis), and flo w er

nectar, pollen, and whole flo w er). Methods to c har acterize fungal
ommunities included culture-based isolation with morphologi-
al and physiological identification, culture-based isolation with
NA identification, and cultur e-independent dir ect sequencing
 ppr oac hes. Less common methods of fungal c har acterization in-
luded use of API test strips, RNA transcriptomics, and taxon-
pecific PCR. These methods yield taxonomic annotations that
 ary in pr ecision and employ differ ent sampling depths and as
 r esult gener ate v ery differ ent types of data as we describe be-
ow. When studies examined multiple bee species or habitats, or
sed a combination of detection methods, the fungal community
f each bee species/habitat/detection method combination was
onsider ed separ atel y. To c har acterize flor al fungal comm unities,
 separate nonexhaustiv e searc h was carried out to supplement
tudies obtained using the abov e searc h par ameters, r esulting in
3 total studies on flor al comm unities. We did not aim to compre-
ensiv el y cov er flor al fungal comm unities, as these comm unities
ave been reviewed elsewhere (Vannette 2020 ). 

We note that fungal taxonomy is complex and more recently,
abile, posing challenges to comparing historical and current fun-
al community data. For example, most fungi were historically
amed in multiple phases including as an anamorph (asexual
hase) and teleomorph (sexual phase) because they are mor-
hologically distinct in these phases. Ho w ever, recent conven-
ions suggest identifying species with a single name (Taylor 2011 ).

ith the recent availability of gene or genome-based phylogenetic
ethods, many historical fungal names, including genus names,

ave been revised. Ho w ever, many of the foundational descriptive
tudies of bee–fungi associations were performed prior to DNA se-
uencing availability. To accommodate these important historical
tudies , we ha v e car efull y compar ed fungal taxonomy and up-
ated genus names to current where possible. We note that the
ommon genus Candida is an artificial genus, as it is polyphyletic
nd has been split into multiple groups. When possible, we as-
igned Candida species to updated genera, but retain Candida as a
enus name when this was not possible. 

We used this dataset to: (1) assess the fungal genera most com-
only detected in association with bees, including different bee

pecies and bee tribes; (2) compare fungal communities across
arious bee-associated habitats; (3) assess gaps or biases in exist-
ng data, including taxonomic cov er a ge of bee species and com-
arison among detection methods. We note that the existing data

s extr emel y biased to w ar ds descriptions of honey bee-associated
ungi (54% of studies on Apis mellifera ) and by methods: 67% of
tudies emplo y ed culture-dependent methods follo w ed b y colony
equencing (Fig. 3 B). Belo w, w e integr ate the r esults of our anal y-
is with qualitative information from the literature to answer the
uestions: (1) which fungi associate with bees and how do they
iffer across habitats, (2) how are these fungi acquired by bees,
nd (3) how do these fungi impact bee behavior and health? 

ho are the bee-associated fungi? 

ungi are a diverse group of organisms with about 150 000
escribed species (Species Fungorum 2023 ), and an estimated
.2–3.8 million total species, most of whic h ar e undescribed
Ha wks worth and Lücking 2017 ). Fungi associated with bees most
ommonly belong to the phylum Ascomycota (Fig. 1 ). Fungi can
lso be classified by their growth forms (yeasts or molds) rather
han phylogenetic relatedness, and some have multiple growth
orms, gro wing as y easts under some ecological conditions and as
lamentous fungi in other environments (Nadal et al. 2008 ). 

The fungi most fr equentl y associated with bees are yeasts
ithin the genera Starmerella , Metschnikowia , Zygosaccharomyces ,
nd Candida , which are detected across bee tribes and species
Fig. 1 ). Yeasts typically grow as single cells and primarily repro-
uce asexuall y. Ecologicall y, they ar e r estricted to habitats that
rovide significant amounts of small molecular weight carbon,
nd their growth form makes them most competitive in liquid
r high moistur e substr ates (Lac hance and Starmer 1998 ). Ther e-

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiad077#supplementary-data


Rutkowski et al. | 3 
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Andrena fulva (1)
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Figure 1. Occurrence of the top 14 fungal genera associated with bee species represented in this review, including fungi isolated in association with 
bee bodies or pro visions . For each study, the top three fungal genera are represented. Fungal occurrence is represented as presence or absence, and so 
is biased to w ar d bee species that are overrepresented in studies ( Apis mellifera ). The number of studies representing each bee species is included 
following species names. 
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Figure 2. Composition of fungal communities associated with different bee habitats, including flo w ers (whole flo w ers, pollen, and nectar), bee nest 
pr ovisions (stor ed pollen and nectar, pr opolis, and corbicular pollen), and the bee body [adult (external, whole body, and gastrointestinal tract), larvae, 
and pupae]. The top 14 fungal genera by frequency of detection are represented. 

f  

h  

p  

S  

w  

2  

v  

Z  

e  

H  

h  

h  

Z  

p  

a  

o  

c  

o  

f  

e
 

i  

a  

c  

b  

M  

p  

a  

i  

fl  

s

H
A
F  

t  

t  

o  

a  

i  

a  

t  

t  

a  

b  

L  

2  

s  

o  

h  

2
 

r  

c  

t  

t  

a  

a  

b  

e  

(  

p  
ore, it is not surprising that yeasts are common in sugar-rich
abitats associated with bees, including floral nectar and stored
r ovisions suc h as honey (Figure S1 , Supporting Information).
tarmerella yeasts have been noted for their specific interactions
ith bees and occurrence in bee-visited flo w ers (Lachance et al.
001 ), suggesting a str ong r eliance of yeasts on bees as hosts and
 ectors. Bee-associated yeasts ar e gener all y osmotoler ant, with
ygosacc harom yces yeasts exhibiting particularly strong osmotol-
rance, able to grow on media of up to 70% w/w glucose (Brysch-
erzberg 2004 ). This makes them well adapted to habitats like
oney, whic h can r eac h similarl y high sugar concentrations (So-
aimy et al. 2015 ). In addition to being osmotolerant, Starmerella ,
ygosacc harom yces , and some Wickerhamiella yeasts also exhibit a
r efer ence for the sugar fructose as a carbon source (Leandro et
l. 2014 , Gonçalves et al. 2020 ). Fructophily is uncommon among
ther yeasts and this trait may contribute to these groups’ suc-
ess in bee-associated habitats, which often contain high le v els
f fructose, in part due to conversion of sucrose to glucose and
ructose by bees (Sohaimy et al. 2015 , De-Melo et al. 2017 , Cheng
t al. 2019 ). 

Bees also associate with molds, fungi that grow with spread-
ng mycelia, which include the genera Cladosporium , Aspergillus ,
nd Penicillium (Fig. 1 ). Unlike yeasts, molds are often less spe-
ialized in their habitats and can grow on a wide variety of car-
on sources, including complex pol ysacc harides (Bennett 2009 ).
olds ar e commonl y pr esent in flor al pollen and stored pollen

ro visions . Fungi within these bee-associated genera are diverse
nd inhabit a wide range of habitats and ecological roles, includ-
ng plant pathogens (e.g. Alternaria ), bee pathogens (e.g. Aspergillus
avus , Foley et al. 2014 ; Ascosphaera , Evison and Jensen 2018 ), and
a pr otr ophs. 
ow are bee-associated fungi acquired? 

cquisition from floral resources 

lor al r esources ar e the main food source for most bee species, so
he fungal species found in nectar and pollen dir ectl y contribute
o communities in bee nests and bee gastrointestinal tracts. Many
f the fungi most commonly isolated from bee nests and bodies
re also frequent inhabitants of floral nectar and pollen, includ-
ng Starmerella , Metschnikowia , Aspergillus , and Cladosporium (Fig. 2 ),
nd ar e likel y sourced fr om plants. Indeed, c hanges in bee habi-
ats (and pr esumabl y micr obial species pools) suc h as exposur e
o novel floral communities , hive mo vement, or seasonal changes,
r e r eflected by c hanges in the fungal comm unity associated with
ees (Kakumanu et al. 2016 , Callegari et al. 2021 , Hall et al. 2021 ,
udvigsen et al. 2021 , McFr ederic k and Rehan 2018 , Rothman et al.
019 ). Flo w ers also likely provide a hub through which commen-
al or mutualistic fungi may be spread between individual bees
r bee species (Brysc h-Herzber g 2004 , McFr ederic k et al. 2012 ), as
as been shown for fungal pathogen spread (Evison and Jensen
018 , Gr aystoc k et al. 2020 ). 

Fungal communities in stored bee provisions diverge from flo-
 al comm unities ov er time, likel y due to the addition of bee se-
retions, modifications to the stored food, and/or environmen-
al conditions inside the nest. Provisions are stored in nests of-
en lined with resin, glandular secretions, or other materials that
r e br oadl y antimicr obial (Chui et al. 2022 , Hefetz 1987 , Shanahan
nd Spivak 2021 ), filtering out nonadapted fungal species. In social
ees, hiv e temper atur e is r egulated and k e pt warmer than ambi-
nt temper atur e, ar ound 35 ◦C during the activ e summer months
Fahr enholz et al. 1989 ), whic h can additionall y impact the com-
osition of fungal communities in provisions (Friedle et al. 2021 ).

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiad077#supplementary-data
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(A)

(C)

(B)

F igure 3. Plots sho wing v ariation in taxa r ecov er ed using differ ent methods in curr ent studies of bee–fungi associations. (A) Number of studies of 
specific habitats considered in this study in association with bees, (B) number of studies employing various detection and identification methods of 
fungal communities, and (C) differences in fungal communities across detection methods. Detection methods included are culture-based isolation 
follo w ed b y morpholog ical and physiolog ical identification, culture-based isolation follo w ed b y sequencing-based identification, and 
cultur e-independent comm unity identification (amplicon sequencing). ‘Other’ detection methods include API test strips, RNA transcriptomics, 
microscopy, and taxa-specific PCR. The top 14 fungal genera are represented. 
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Modifications to the stored provisions themselves also reduce the 
risk of contamination by pathogenic or sa pr otr ophic micr obes.
In honeybees, bumble bees, and stingless bees, floral nectar is 
modified to produce honey by reducing water content and adding 
glucose oxidases and antimicrobial peptides, resulting in a liquid 

with a high sugar content that can be upw ar ds of 70% w/w (Souza 
et al. 2006 , De-Melo et al. 2017 ) and gener al antimicr obial pr oper- 
ties (Israili 2014 , Suntiparapop et al. 2012 ). Other pro visions , such 

as honeybee bee bread or many solitary bee nest pro visions , are 
created by mixing nectar and pollen together, producing a provi- 
sion, i.e. often (but not always) more solid than honey. These provi- 
sions are generally acidic (4–4.5 pH) due to the addition of glucose 
oxidase b y w orker bees and the pr olifer ation of lactic acid bac- 
teria, whic h pr oduce gluconic acid and adds to the antimicrobial 
nature of these provisions (Herbert and Shimanuki 1978 , Gilliam 

1979 , Sinpoo et al. 2017 , Anderson and Mott 2023 ). 
The impacts of these provision modifications on fungal com- 

m unity structur e hav e been best illustr ated by studies on the bee 
br ead of A pis mellifera colonies. Fungal communities in bee bread 

initiall y closel y r esemble those found in flor al r esources , but de- 
crease in diversity and abundance over time as provisions are 
alter ed and stor ed (Sinpoo et al. 2017 , Detry et al. 2020 , Disay- 
thanoo w at et al. 2020 , Friedle et al. 2021 ). Many flo w er-associated
axa, such as Metschnikowia , decrease in abundance and are not
ormall y isolated fr om stor ed pr ovisions (Fig. 2 ). Ho w e v er, other
ungal taxa, including Starmerella and Zygosacc harom yces , persist in
hese new conditions, and may e v en incr ease in abundance ov er
ime (Detry et al. 2020 ). Fungal community succession has not
een as extensiv el y studied in the provisions of other bee species,
ut bacterial communities of Osmia and Megachile nest provisions 
lso c hange ov er time (Voulgari-Kok ota et al. 2019 , Kueneman et
l. 2023 ), so it is likely that fungal communities also change with
r ovision a ge in solitary bee species. 

ertical and social acquisition 

n contrast to clear patterns of environmental acquisition, only 
imited evidence suggests that bee-associated fungi can be trans- 

itted among individuals or between generations, in processes 
efined as social or vertical transmission. In the bumble bee
ombus terrestris , the yeasts Starmerella bombi , and Wickerhamiella
ombiphila (but not Metschnikowia reukaufii or M. gruessii ) persisted
n daughter queens’ gastr ointestinal tr act thr ough hibernation
Pozo et al. 2018 ), and thus could potentially be transmitted to
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e wl y founded colonies. Fungal transmission to daughter colonies
as also been suggested in stingless bees. Some evidence suggests
hat stingless bees carry their obligately symbiotic fungi within
ive materials that are moved to new locations during hive split-
ing or swarming e v ents (Menezes et al. 2015 ), though this has yet
o be experimentally tested. To our knowledge, vertical transmis-
ion of fungal communities has not been documented in solitary
ees. Ho w e v er, for spor e-forming fungal pathogens of bees includ-

ng Ascosphaera and Aspergillus , bee nest reuse or nest sharing is a
rimary mode of transmission (Evison and Jensen 2018 ); it seems

ikely that commensal or mutualistic fungi may be transmitted in
 similar fashion, but to our knowledge this has not been docu-
ented. 

irect collection of fungi 
ar el y, honeybees hav e been observ ed to dir ectl y collect spor es
f plant pathogens from plant surfaces, including the rust fungi
elampsora , Uromyces , and Zaghouania , powdery mildew in the

enus Podosphaera , and other fungi within the genus Cladosporium
Sha w 1990 , Sha w and McAlpine 1999 , Eltz et al. 2002 , Modro et al.
009 ). The purpose of this behavior is unknown, but it has mostly
een observed at the end of summer, when floral resources are
carce. Honeybees will not consume pure fungal spores (Parish
t al. 2020a , Schmidt et al. 1987 ), but may mix these spores with
ro visions , potentially pro viding a nutritional benefit greater than
ollen alone (Parish et al. 2020b ). Multiple plant pathogens infect
lants and produce fungal spores that mimic pollen (Slot and Kas-
on 2021 e.g. Monilinia vaccinii-corymbosi and others) and although
ultiple bee species visit such mimics, whether they ingest these

pores is unclear. 

unctions of bee-associated fungi 
espite extensive documentation that bees associate with fungi,

he detection of fungi does not imply their importance in bee biol-
gy. Evidence from a few studies that manipulate fungal presence,
bundance, or identity suggest that in some cases, fungi can influ-
nce bee behavior, de v elopment, health, and survival. We review
hese studies and potential mechanisms of fungal effects on bees
elow. 

lo w er-associa ted yeasts affect bee behavior 
erha ps the gr eatest number of studies of bee–fungi interactions
a ve in vestigated fungal effects on bee foraging preferences or
ectar feeding behavior. In many studies, fungi (most commonly
easts) are applied to flo w ers or artificial nectar and the rate of bee
isitation, pollen or nectar r emov al, or pollination ar e quantified.
f the studies considered here, most assessed responses of bum-
le bees ( B . impatiens , B . terrestris , B . vosnesenskii , and B . friseanus ). In
ll but one published instance, yeast-containing flowers or nectars
ncreased visitation or consumption by bumble bees over uncolo-
ized or bacteria-colonized nectars (Herr er a et al. 2013 , Sc haeffer
nd Irwin 2014 , Schaeffer et al. 2017a , 2019 , Yang et al. 2019 ). As
n exception, B. vosnesenskii did not prefer yeast-inoculated nec-
ar volatiles over those of control nectar in a micr ocolon y study
Rutkowski et al. 2022 ). In contrast to most bumble bee responses,
oneybees show no attraction to nectar yeasts or e v en display r e-
uced visitation to nectar colonized by floral fungi (Kevan et al.
987 , Rering et al. 2018 , 2020 , 2021 , Crowley-Gall et al. 2022 , Scha-
ffer et al. 2022 ). We are unaware of studies that quantify non-
ombus or Apis behavior in response to fungi-colonized flo w ers,
lthough it has been hypothesized that yeast volatiles may act as
n honest cue of the presence or quality of nectar (Russell and
shman 2019 ) for a variety of insect species, and ar e attr activ e to
overflies as well as vespid wasps (Davis et al. 2012 , Colda et al.
021 ). It has been hypothesized that yeast volatiles could be used
y insects as a cue of nectar presence (Crowley-Gall et al. 2021 ,
avis et al. 2012 , Russell and Ashman 2019 ) so it is possible that
ee species may differ in their use of such foraging cues. In addi-
ion, whether cues simply benefit foraging efficiency or the yeasts
hemselv es ar e being activ el y collected is not understood. 

ee-associated fungi can benefit bee 

evelopment 
n addition to acting as resource cues, the ingestion of fungi or fun-
al metabolites can also affect individual bee and colony perfor-
ance, though these effects differ by fungal and bee species. Inac-

ivated yeasts (most commonly Saccharomyces cerevisiae ) are com-
on ad diti v es in artificial diets pr o vided to social bee colonies ,

n some cases providing modest growth benefits over natural
ollen diets (Fernandes-da-Silva and Zucoloto 1990 , Dodologlu
nd Emsen 2011 , van der Steen 2015 , Pa vlo vi ́c et al. 2022 ), though
ot always (Costa and Venturieri 2015 , de Freitas et al. 2020 ).
here is little evidence that these artificial diets have any im-
act on bee immunity and pathogen infection (Moliné et al. 2020 ,
anché-Collí et al. 2021 , Hsu et al. 2021 ), though in one case yeast
iets reduced Nosema spp. infection levels in honeybees (Škerl
nd Gajger 2022 ). In Bombus impatiens , consumption of the nec-
ar yeast Metschnikowia reukaufii did not affect colony survival
r br ood pr oduction (Sc haeffer et al. 2017a ), but addition of the
easts Starmerella sorbosivorans , Zygosacc harom yces rouxii , and De-
aroym yces hansenii —whic h ar e typicall y pr esent within the colon y
nvir onment—impr ov ed worker survival and offspring produc-
ion (Rutkowski et al. 2022 ). In the bumble bee B. terrestris , M. grues-
ii , and W. bombiphila increased colony development rates and the
umber of offspring produced, though other fungal species tested
ere not as beneficial (Pozo et al. 2019 ). In a separate study on the

ame bee species, addition of W. bombiphila and Torulaspora del-
rueckii to colony provisions sped up colony development (Pozo
t al. 2021 ). Inter estingl y, colonization b y some y easts decreased
ueen o verwintering success , suggesting costs of hosting fungal
ymbionts (Pozo et al. 2019 ). Despite detailed work on the poten-
ial mechanisms by which yeasts benefit bumble bees (Schaeffer
t al. 2017a , Pozo et al. 2019 ), evidence to date does not strongly
upport direct nutritional benefits of yeasts generally for bumble
ees. Ne v ertheless, these studies suggest that consuming yeast
an conditionally benefit bumble bees, and that yeast identity is
mportant, with colon y-ada pted fungi potentiall y being mor e ben-
ficial than yeasts from other en vironments . 

The str ongest e vidence for m utualism involving bees and fungi
as been documented in multiple stingless bee species. In Scap-

otrigona depilis , native to Brazil, adult bees cultivate Zygosaccha-
om yces in br ood cells, wher e larv ae feed on fungal psuedohy-
hae. In the absence of this fungus, larval survival rate is low (8%),
s the fungal tissue contains er goster ols necessary for pupation
Menezes et al. 2015 , Paludo et al. 2018 ). The growth of this Zy-
osacc harom yces fungus is further regulated by other fungi ( Can-
ida sp. and Monascus ruber ) in the larval cell, maintaining Zygosac-
 harom yces at a le v el beneficial to the de v eloping larv ae (P aludo et
l. 2019 ). Similar filamentous growth forms of Zygosaccharomyces
pecies have been isolated from brood cells of eight additional
tingless bee species ( Scaptotrigona bipuctata , S. postica , S. tubiba ,
etragona clavipes , Melipona quadrif asciata , M. f asciculata , M. bicolor ,
nd Partamona helleri ), suggesting similar nutritional roles in lar-
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v al de v elopment (de P aula et al. 2023 ). Additionall y, larv ae of the 
stingless bee species Heterotrigona itama , native to Malaysia, also 
show increased mortality (37% survival) when reared on sterile 
diet compared to natural diet (85%) or diet supplemented with 

the fungus Panus lecomtei isolated from provisions (57%, Razali et 
al. 2022 ). The mechanisms behind this effect were not examined 

but the authors hypothesize that nutritional benefits or pathogen 

protection may explain increased larval survival. 

Potential mechanisms: fungi as nutrition, 
detoxifica tion, or pa thogen protection? 
A fe w mec hanisms hav e been hypothesized to explain the positiv e 
effects of fungal addition on bee health, including nutritional ben- 
efits from consumption of fungal cells and associated metabolites.
Nutritional mutualism has been documented in other insects that 
associate with fungi, with fungi providing B vitamins, amino acids,
or sterols to their insect hosts (Biedermann & Vega 2020). Fungi 
are known to produce developmentally necessary sterols in one 
stingless bee species, as discussed above (Menezes et al. 2015 ,
Paludo et al. 2018 ). Fungi may also act as a direct food source. In 

pollen provisions and honey, fungi can r eac h densities of between 

10 3 and 10 6 cfu/g for yeasts and < 10 1 and 10 3 for filamentous 
fungi (Inglis et al. 1992a , b , c , Rosa et al. 2003 , Teixeira et al. 2003 ,
Ka ̌cániová et al. 2004 , Nardoni et al. 2015 , Disay athanoo w at et al.
2020 , Ec he v errigar ay et al. 2021 , Anderson and Mott 2023 ). These 
abundant fungal cells may constitute a substantial portion of bee 
diets. Isotopic analysis of amino acids sourced from bees of vari- 
ous families placed bees as omnivores instead of strict herbivores,
potentially due to consumption of microbial matter (Steffan et 
al. 2019 ). In the solitary bee Osmia ribifloris , sterilization of pollen 

provisions to remove microbes reduced the rate of larval devel- 
opment and decreased the concentration of specific fatty acids 
compared to unsterilized pro visions , further supporting a nutri- 
tional role of fungi in bee health (Dharampal et al. 2019 ). Ho w ever,
these beneficial effects were dependent on microbe identity, and 

wer e mor e pr onounced when micr obes wer e isolated fr om pollen 

of a ppr opriate host plants for O. ribifloris (Dharampal et al. 2020 ).
In other systems including bark beetles and cactophilic Drosophila ,
fungi mediate diet deto xification. Gi ven that pollen is often high in 

plant secondary metabolites (Palmer -Y oung et al. 2019 ) and that 
pollen toxicity may influence host pollen use (Rivest and Forrest 
2020 ), fungi could plausibly be involved in detoxification of pollen 

compounds for larval consumption, but to our knowledge this has 
not been documented. 

Fungi could also benefit bees by reducing the growth of 
pathogens or spoilage microbes in provisions through microbe–
microbe competition, though evidence for this is mixed. Megachile 
rotundata larvae fed yeasts including Trichosporonoides ( Moniliella ) 
megac hiliensis wer e not mor e r esistant to infection by the fungal 
pathogen Ascosphaera than those inoculated with the pathogen 

alone (Inglis et al 1993b ). In in vitro growth assa ys , S. bombi , W.
bombiphila , and M. reukaufii reduced the survival of the bumble 
bee parasite Crithidia bombi (Pozo et al. 2019 ). Plate assays have 
found mixed evidence that pollen-associated fungi can reduce the 
growth of bee pathogens . For example , Asper gillus , Cladosporium ,
Mucor , Penicillium , Rhizopus , and Talaromyces isolated from honey 
bee provisions and guts inhibited the growth of Ascosphaera apis 
(Gilliam et al. 1988 , Disay athanoo w at et al. 2020 ). Ho w e v er, an- 
other study on fungi isolated from bumble bee guts, including S.
bombi , W. bombiphila , and Z. rouxii found no evidence of inhibition 

of Paenibacillus larvae , Melissococcus plutonius , C. bombi , or A. apis in 

growth assays (Praet et al. 2018 ). It is possible that this variation in 
nhibitory ability is due to str ain-le v el differ ences among fungal
pecies, as has been observed for different bacterial strains asso-
iated with bees (Praet et al. 2018 ). In addition to in vitro growth
ssa ys , se v er al associational studies link the presence of fungi to
r eater disease r esistance and lo w er pathogen loads. In honey-
ees, increased hygienic behavior of a colony and a lo w er abun-
ance of A. apis was associated with greater non- A. apis fungal
bundance (Gilliam et al. 1988 ). In B . impatiens pollen pro visions ,
he abundance of yeasts in the Wickerhamiella/Starmerella clade 
as negativ el y associated with Ascosphaera abundance (Dharam- 
al et al. 2020 ). 

Fungi may also affect bee immunity, as has been documented
or bacteria in the corbiculate bee gut microbiome (Bonilla-Rosso 
nd Engel 2018 ). Immune stimulation has been demonstrated 

n the moth Galleria mellonella , wher e pr etr eatment with Saccha-
om yces cerevisiae pr otected larv ae fr om subsequent infections of
andida albicans (Bergin et al. 2006 ). Similarly, S. cerevisiae aug-
ented imm une r esponse to Esc heric hia coli in the social paper
 asp P olistes dominula (Meriggi et al. 2019 ). In contr ast, exposur e of
one ybee work ers to Wic kerhamom yces anomalus , a gut-associated
 east, lo w er ed imm une gene expr ession (Tauber et al. 2019 ). Over-
ll, as all current studies of pathogen inhibition by bee-associated 

ungi have been either associational or based on in vitro growth
ssa ys , mor e r esearc h is necessary to determine if environmen-
al or symbiotic fungi impact disease pr ogr ession in living bees or
olonies, and whether this is mediated through microbe–microbe 
nteractions or bee immune response modulation. In particular,

or e r esearc h into fungal symbiont interactions with pathogens
n nonmanaged and solitary bees, for whom fungal pathogens can
e a significant cause of mortality , is necessary , as all studies to
ate focus on social bee species. 

mpacts of fungicides on bees and 

ssociated fungi 
ungicide exposure can affect bee health, either through direct 
ffects on bees or through effects on symbiotic fungi. The LD50
 alues for man y fungicides tested on bees ar e significantl y higher
han most insecticides, indicating lo w er contact toxicity (Stoner 
nd Eitzer 2013 , Chmiel et al. 2020 ). Ho w e v er, m ultiple studies
ave found sublethal, long-term, or inter activ e effects of fungi-
ides on bees . T hese detrimental effects ma y be due to fungicides
cting on bees dir ectl y (Mao et al. 2017 ), inter action of fungicides
ith other pesticides (Elston et al. 2013 , Sgolastra et al. 2017 ), or

hr ough suppr ession of beneficial fungi. While this last option has
 eceiv ed little attention, emer ging e vidence suggests that fungi-
ide application can change the composition of fungal communi- 
ies associated with bees, with implications for bee health. 

Fungicides reduce the growth of floral and bee-associated fungi 
Alv ar ez-Per ez et al. 2016 , Bartlewicz et al. 2016 , Schaeffer et al.
017b ), which may alter bee–fungi interactions. In bumble bees,
xposure to the fungicides c hlor othalonil and pr opiconazole r e-
uced colony biomass, worker production, and worker survival 

Bernauer et al. 2015 , Steffan et al. 2017 , Rutkowski et al. 2022 ).
hese effects on bee health were accompanied by changes in the
ungal abundance and communities of nest provisions and bee 
uts, with a decrease in common bee associates like Cladosporium ,
spergillus , P enicillium , and Zygosacc harom yces , while other gr oups,

ncluding the pathogen-containing Ascosphaer ales, incr ease in 

r e v alence (Yoder et al. 2013 , Steffan et al. 2017 , Rutkowski et
l. 2022 ). In one case, a ppl ying the azole fungicide propicona-
ole to Bombus vosnesenskii microcolonies reduced worker sur- 
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ival, but supplementation with bee-associated fungi ( Penicillium ,
tarmerella , and Zygosacc harom yces ) bac k into the nest following
ungicide exposure eliminated negative effects of fungicide on
urvival, suggesting that fungicide effects could be mediated
hrough disruption of nest fungi communities (Rutkowski et al.
022 ). Alternativ el y, a study on A. mellifera found that although
r olonged exposur e to the fungicide azoxystr obin r educed gut
ungal community diversity and altered community composition,
ee survival was unaffected by exposure over 10 days (Al Nag-
ar et al. 2022 ). We note that most r esearc h to date of fungicide
mpacts on bees does not consider changes in associated fungal
omm unities, and mor e r esearc h on how fungicides impact bee
ealth and associated communities in tandem is necessary to de-
ermine to what extent fungal community disruption is responsi-
le for observed responses of bees to fungicides. 

imitations and future directions 

lthough we have outlined which fungi are detected in different
abitats and in association with different bee species, we note
hat this summary is biased in a number of ways (Fig. 3 ) and is
ar gel y qualitativ e. In particular, we lac k information on v ariation
n fungal abundance among species and life stages. Some existing
ork r e v eals v ariation in fungal abundance associated with bum-
le bee queens from different habitats (Bosmans et al. 2018 ), and

n some cases fungi are not detected in bumble bees (Hammer et
l. 2022 ). In stingless bees, the presence of fungi in the gastroin-
estinal tr act v aried widel y between bee species (Liu et al. 2023 ).
hese results highlight that fungi are likely not always abundant
r important and we lack an understanding of when and where
ungi ma y pla y important ecological roles . Belo w w e discuss some
dditional limitations in the field of bee–fungi interactions as well
s current gaps in our understanding of these relationships. 

etection methods 

he studies included here span over a century of work, over
hic h time ne w str ategies for c har acterizing micr obial comm u-
ities have been developed. Many older studies of bee–fungi in-
er actions wer e performed befor e DNA sequencing was accessi-
le and relied on morphological and physiological identification.
o w e v er, these methods of fungal identification may not be as re-

iable, as they can v astl y differ from DNA sequencing results for
he same fungal isolates (Rodrigues et al. 2018 ). In this r e vie w, the

ost common method for identifying fungal community mem-
ers was culturing followed by DNA sequencing of isolates (67% of
tudies). Mor e r ecentl y, studies implementing noncultur e-based
hole community sequencing methods (such as Illumina) have
ecome more common. All detection methods have associated
enefits and dr awbac ks. Cultur e-based w ork allo ws isolation and
r eserv ation of fungi associated with bees, but is limited to de-
ection of fungi that are able to grow in the provided media and
r owth condition. Dir ect sequencing tec hniques better ca ptur e
omplete communities, including hard-to-culture microbes, but
lso introduce DNA extraction biases, amplification biases, and
ay include DNA from nonviable fungi (Boers et al. 2019 , White

t al. 2020 ). Only four studies summarized here used a combina-
ion of culture-based and culture-independent methods and illus-
r ate how comm unity composition (or species presence) depends
n the methods emplo y ed (Sinpoo et al. 2017 , Disay athanoo w at et
l. 2020 , Callegari et al. 2021 , Cui et al. 2022 ). We urge researchers
o use a combination of methods to provide a comprehensive view
f fungal communities associated with bees and isolate cultures
hat enable experimental examination of fungal effects on bees. 

axonomic and life stage bias in sampling of 
ees 

he vast majority of all studies on bee–fungi inter actions ar e per-
ormed on honeybees, specifically A. mellifera . Of the 104 bee-
ocused studies included in our analysis, 56 cov er ed A. mellif-
ra , while the next most commonly covered bee species were
. terrestris (eight studies) and Tetragonisca angustula (eight stud-
es). Indeed, many of the most commonly studied bee species
re those managed in some way for pollination, while nonman-
ged bee species are less well re presented. Ad ditionally, though
ost bee species are solitary, the vast majority of current stud-

es focus on eusocial species. Only 18 studies included noneuso-
ial species, and most of these species were represented by only
 single study. Greater coverage of more bee species including
or e nonmana ged species and spanning le v els of sociality ar e

eeded to gain a full understanding of the breadth of bee–fungi
ssociations, and how social living may impact associated fungal
ommunities. 

In addition, very few studies (11) characterize fungal commu-
ities associated with immature life stages of bees, despite the
lear effects that fungal presence or supplementation can have on
ffspring de v elopment and surviv al. In studies that c har acterized
oth immature and adult bee micr obiomes, ther e was str ong ov er-
a p, though immatur es tended to be mor e dominated by the plant
athogen Alternaria and the bee pathogen Ascosphaera (Shoreit and
agy 1995 , Tauber et al. 2021 , Ye et al. 2021 , Nguyen and Rehan
022 ). In one case, the species Starmerella batistae was found asso-
iated with larvae and pupae of the solitary bee species Diadasina
istincta and Ptilotrix plumata , while it was absent from adults (Rosa
t al. 1999 ). Futur e experiments c har acterizing the fungal micr o-
iome of immature bee stages, and their impacts on development,
re needed to determine roles of these fungi throughout the bee
ife cycle. 

echanisms behind fungal function 

urr entl y, fe w studies hav e experimentall y examined the effects
f fungi on bees. As with most other studies of bee–fungi inter-
ctions , these ha v e lar gel y been r estricted to economicall y im-
ortant and managed pollinators, and the mechanisms behind
any of the observed impacts of fungi are not understood. In

ddition to the mec hanisms pr e viousl y pr oposed in this r e vie w,
ee-associated fungi may impact bees through a number of less
ell-studied mechanisms. 

nteractions between fungi and the rest of the microbiome 
he interactions between fungi and other microbiome members
av e r eceiv ed little study. Within the bee gut, abundance of fungal
pecies is in some cases positiv el y associated with the abundance
f beneficial bacteria endosymbionts, like Gilliamella and Snodgras-
ella (Callegari et al. 2021 ). In other cases, fungal symbionts seem
o replace bacteria symbionts as core members of the bee micro-
iome (Cerqueira et al. 2021 ). Increasing fungal richness in the gut
f M. rotundata larvae was associated with lo w ered bacterial rich-
ess, suggesting competitiv e inter actions between these gr oups

McFr ederic k et al. 2014 ). Within pro visions , interactions between
acteria and fungi likely impact fungal community dynamics, as
r olifer ation of lactic acid bacteria results in a more acidic pH,

imiting the growth of many fungal species (Sinpoo et al. 2017 ,
anashia et al. 2018 ). 
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Table 1. Selected future research directions in the field of bee–fungi interactions. 

1. How does the larval mycobiome compare with adults, and what impacts does it have on larval development and survival? 
2. How do fungi interact with other members of the bee microbiome, including pathogens? 
3. How do bee-associated fungi change the nutrient profile of stored bee provisions? 
4. How does the mycobiome vary across gradients of sociality and diet specificity? 
5. Are fungi in social colonies vertically transmitted between colonies and generations? 
6. How do different pesticides impact the mycobiome, and how do these changes affect bee health? 
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Do fungi alter food resources? 
The impact of nectar-dwelling fungi on nectar chemistry has been 

well-studied. Fungi often reduce total sugars present in nectar,
shift sugar composition, and change the composition of floral 
volatiles (Herr er a et al. 2008 , Rering et al. 2018 , 2021 ). Despite 
these clear effects on floral nectar, little is known about how fungi 
within bee nests alter the nutritional profile of pollen or nectar 
pr ovisions that ar e pr ovided to larv ae. One study found that Au- 
reobasidium melangenum , isolated from honeybee pro visions , was 
able to degrade and ferment pollen pro visions , which was asso- 
ciated with upregulation of nutrient genes in honeybees fed on 

this diet (Hsu et al. 2021 ). Intriguingly, bee-associated Starmerella 
species produce abundant sophorolipids which are used as com- 
mercial detergents and surfactants (Kurtzman et al. 2010 , Van 

Renterghem et al. 2017 , Van Bogaert et al. 2016 ). Starmerella bombi- 
cola , which has been isolated from the provisions of a number 
of bee species (Brysc h-Herzber g and Lac hance 2004 , Inglis et al.
1993a , Ec he v errigar ay et al. 2021 ), is a particularly efficient pro- 
ducer of these compounds . T hese sophorolipids ha v e antimicr o- 
bial pr operties, r educing the gr owth of other bacteria and fungi,
including those also associated with flo w ers and bee nests (Hipól- 
ito et al. 2020 , De Clercq et al. 2021 , Alfian et al. 2022 ). These 
compounds may contribute to the pr eserv ation of bee pro visions ,
which has been suggested as the main function of the provi- 
sion microbiome in honeybees (Anderson et al. 2014 ). Ho w ever,
whether these surfactants are synthesized within bee pro visions ,
and their impacts on provision microbiome and bee health have 
yet to be tested. 

Conclusion 

Ov er all, fungi ar e common associates of bees, with yeasts in par- 
ticular exhibiting strong associations with bee bodies and provi- 
sions. Multiple bee species benefit from addition of these yeasts 
to their diets, and at least one stingless bee species obligately 
relies on fungi for larval development. Ho w ever, fungal commu- 
nities and abundance can substantiall y v ary among bee species,
populations, and life stages. This variation suggests that in many 
bee species, interactions with fungi may be more envir onmentall y 
determined and, for bee hosts , facultative . We largely lack infor- 
mation on the mechanisms by which fungi affect bee hosts and 

on associations between fungi and different life stages of bees,
and suggest more mechanism-focused research encompassing a 
wider variety of bee species and life stages so that we may ex- 
pand our understanding of these associations and under which 

contexts they are beneficial to bee health (Table 1 ). 
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