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Abstract

Bee-fungus associations are common, and while most studies focus on entomopathogens, emerging evidence suggests that bees
associate with a variety of symbiotic fungi that can influence bee behavior and health. Here, we review nonpathogenic fungal taxa
associated with different bee species and bee-related habitats. We synthesize results of studies examining fungal effects on bee
behavior, development, survival, and fitness. We find that fungal communities differ across habitats, with some groups restricted
mostly to flowers (Metschnikowia), while others are present almost exclusively in stored provisions (Zygosaccharomyces). Starmerella
yeasts are found in multiple habitats in association with many bee species. Bee species differ widely in the abundance and identity
of fungi hosted. Functional studies suggest that yeasts affect bee foraging, development, and pathogen interactions, though few
bee and fungal taxa have been examined in this context. Rarely, fungi are obligately beneficial symbionts of bees, whereas most
are facultative bee associates with unknown or ecologically contextual effects. Fungicides can reduce fungal abundance and alter
fungal communities associated with bees, potentially disrupting bee-fungi associations. We recommend that future study focus on
fungi associated with non-honeybee species and examine multiple bee life stages to document fungal composition, abundance, and

mechanistic effects on bees.
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Introduction

Insects frequently host microbial symbionts, and although most
work to date on these symbioses focuses on bacterial communi-
ties, insect-fungi associations are common and play important
roles in insect nutrition and defense (Biedermann & Vega 2020,
Vega and Blackwell 2005, Stefanini 2018). Fungal symbionts ben-
efit insects in many ways, including acting as a direct food source
(fungus-farming ants and termites, ambrosia beetles, Aanen et al.
2002, Beaver 1989, Mueller et al. 1998), provisioning limiting nu-
trients (yeast-like symbionts in planthoppers, Noda et al. 1979),
detoxifying or digesting food resources (cactophilic fruit flies, bark
beetles; Starmer and Fogleman 1986, Soto-Robles et al. 2019), and
providing protection against pathogenic or saprotrophic microbes
(fungus-farming ants, termites, and beetles; Florez et al. 2015).
Like many other insects, bees interact with microbes in sym-
bioses ranging from beneficial to parasitic. Bees (superfamily An-
thophila) are a large group of insects comprised of over 20 000
species (Orr et al. 2021). Bees are important pollinators, contribut-
ing to global services worth an estimated USD$195-$387 billion
annually (Porto et al. 2020). While many of the bee species used
for crop pollination services (such as honeybees and bumblebees)
live in large social colonies, approximately 90% of all bee species
are solitary (Danforth et al. 2013). Studies of microbial symbioses
in bees have disproportionately focused on eusocial bee groups,
which are known to have a small and well-conserved core bac-
terial gut microbiome that augments immunity and is transmit-
ted across generations via the social hive environment (Kwong

et al. 2017). Emerging studies suggest that bacterial associations
may also provide nutritional and protective benefits to solitary
bees, though they lack a core microbiome (Voulgari-Kokota et al.
2019). Although the bulk of research to date has focused on bee-
associated bacteria, there is growing recognition that bee micro-
biomes are complex and contain unicellular parasites, viruses,
and fungi, which are the focus of this review.

Fungi associated with bees have typically been studied as
pathogens (Evison and Jensen 2018), saprophytes of stored pro-
visions, or indicators of poor bee health. The best studied bee-
associated fungi are those in the genus Ascosphaera, which are
specialized on bee-associated habitats and include species that
are pathogenic to bee larvae (Aronstein and Murray 2010, Ravoet
et al. 2014, Maxfield-Taylor et al. 2015) as well as those that grow
saprophytically on stored pollen (Skou and King 1984, Vandenberg
and Stephen 1983). In addition, fungi in the genus Aspergillus can
be opportunistic pathogens of adult and larval bees (Becchimanzi
and Nicoletti 2022) and can produce mycotoxins that are toxic to
bees (Niu et al. 2011, Kosti¢ et al. 2019). Microsporidians in the
genus Vairimorpha (formerly Nosema), which are closely related to
fungi, can infect a wide range of bee species and cause nosemo-
sis (Martin-Hernandez et al. 2018, Grupe and Quandt 2020). Out-
side of pathogenic interactions, the presence of fungi within bees
has traditionally been regarded as a sign of stress; bees stressed
by nosemosis, xenobiotics, or warm overwintering temperatures
host a greater abundance of fungi within their gastrointestinal
tract (Gilliam 1973, Gilliam et al. 1974, Rada et al. 1997, Borsuk
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et al. 2013, Ptaszynska et al. 2016a, b, Maes et al. 2021). Within
stored bee provisions, some fungi act as spoilage microbes and
may contribute to larval bee mortality, especially in solitary bee
species (Batra et al. 1973, Lunn et al. 2022, Pitts-Singer 2004). How-
ever, there is growing recognition that not all fungi associated with
bees indicate disease or decay; some may be commensal or even
mutualistic.

Bees host diverse communities of nonpathogenic fungi (Inglis
et al. 1993a, Grabowski and Klein 2017, Echeverrigaray et al. 2021,
Jacinto-Castillo et al. 2022). Over the last few decades, and with
increased accessibility of DNA sequencing methods, these fungal
symbionts have been characterized in association with a grow-
ing diversity of bee species, and their roles within bee health and
ecology have started to be examined. Here, we synthesize the re-
sults of 148 studies of nonpathogenic bee-fungi associations. We
summarize the fungal taxa which are most commonly associated
with bees, differences in fungal communities between various
bee species and bee-associated habitats, potential routes through
which these fungi are acquired, and their effects on bee behavior,
survival, and reproduction. We additionally discuss evidence for
fungicidal disruption of these associations and identify current
gaps in our understanding of bee-fungi interactions.

Review methods

To broadly assess which fungal taxa are found across bee species
and habitats, we searched for studies that describe bee-fungi in-
teractions using the Web of Science database, using the search
term ‘xbee fungx’. Searches were carried out in July 2021, Octo-
ber 2022, and March 2023 using these parameters. These searches
resulted in 1243 total studies, of which 127 were chosen for in-
clusion in this review. An additional search was carried out in
June 2023 using the search term ‘sbee yeast’, which resulted in
the addition of 21 studies. Studies that only focused on fungicide
or pathogen effects on bees were the vast majority of all results
and were excluded from this review, as these disease interactions
have been previously reviewed (Evison and Jensen 2018, Chen and
Evans 2021). Of the chosen studies, 104 identified fungal commu-
nities associated with bees (Table S1, Supporting Information). For
each of these 104 studies, we recorded the top three most preva-
lent fungal genera, determined by metrics such as relative abun-
dance, frequency of isolation, or number of CFUs, depending on
study design. For a small number of studies, four taxa were in-
cluded in analysis, as two taxa both ranked at the third most
abundant taxon. For characterization of these top fungal com-
munities, potential pathogens such as Aspergillus and Ascosphaera
were not excluded if they ranked as one of the most abundant
taxa. The top three genera represented on average 84% of total
fungi detected in studies using culture-based isolation of fungi
(based on number of colonies or number of isolates), and 55% of
fungal communities in studies that used direct sequencing ap-
proaches (based on read counts). For each study, we also recorded
metadata including bee species, habitat, and detection method.
Three broad habitats were considered: bee body (larvae, pupae,
adult external, adult internal, and adult whole body), nest (cor-
bicular pollen, pollen provisions, honey, and propolis), and flower
(nectar, pollen, and whole flower). Methods to characterize fungal
communities included culture-based isolation with morphologi-
cal and physiological identification, culture-based isolation with
DNA identification, and culture-independent direct sequencing
approaches. Less common methods of fungal characterization in-
cluded use of API test strips, RNA transcriptomics, and taxon-
specific PCR. These methods yield taxonomic annotations that

vary in precision and employ different sampling depths and as
a result generate very different types of data as we describe be-
low. When studies examined multiple bee species or habitats, or
used a combination of detection methods, the fungal community
of each bee species/habitat/detection method combination was
considered separately. To characterize floral fungal communities,
a separate nonexhaustive search was carried out to supplement
studies obtained using the above search parameters, resulting in
33 total studies on floral communities. We did not aim to compre-
hensively cover floral fungal communities, as these communities
have been reviewed elsewhere (Vannette 2020).

We note that fungal taxonomy is complex and more recently,
labile, posing challenges to comparing historical and current fun-
gal community data. For example, most fungi were historically
named in multiple phases including as an anamorph (asexual
phase) and teleomorph (sexual phase) because they are mor-
phologically distinct in these phases. However, recent conven-
tions suggest identifying species with a single name (Taylor 2011).
With the recent availability of gene or genome-based phylogenetic
methods, many historical fungal names, including genus names,
have been revised. However, many of the foundational descriptive
studies of bee—-fungi associations were performed prior to DNA se-
quencing availability. To accommodate these important historical
studies, we have carefully compared fungal taxonomy and up-
dated genus names to current where possible. We note that the
common genus Candida is an artificial genus, as it is polyphyletic
and has been split into multiple groups. When possible, we as-
signed Candida species to updated genera, but retain Candida as a
genus name when this was not possible.

We used this dataset to: (1) assess the fungal genera most com-
monly detected in association with bees, including different bee
species and bee tribes; (2) compare fungal communities across
various bee-associated habitats; (3) assess gaps or biases in exist-
ing data, including taxonomic coverage of bee species and com-
parison among detection methods. We note that the existing data
is extremely biased towards descriptions of honey bee-associated
fungi (54% of studies on Apis mellifera) and by methods: 67% of
studies employed culture-dependent methods followed by colony
sequencing (Fig. 3B). Below, we integrate the results of our analy-
sis with qualitative information from the literature to answer the
questions: (1) which fungi associate with bees and how do they
differ across habitats, (2) how are these fungi acquired by bees,
and (3) how do these fungi impact bee behavior and health?

Who are the bee-associated fungi?

Fungi are a diverse group of organisms with about 150 000
described species (Species Fungorum 2023), and an estimated
2.2-3.8 million total species, most of which are undescribed
(Hawksworth and Liicking 2017). Fungi associated with bees most
commonly belong to the phylum Ascomycota (Fig. 1). Fungi can
also be classified by their growth forms (yeasts or molds) rather
than phylogenetic relatedness, and some have multiple growth
forms, growing as yeasts under some ecological conditions and as
filamentous fungi in other environments (Nadal et al. 2008).

The fungi most frequently associated with bees are yeasts
within the genera Starmerella, Metschnikowia, Zygosaccharomyces,
and Candida, which are detected across bee tribes and species
(Fig. 1). Yeasts typically grow as single cells and primarily repro-
duce asexually. Ecologically, they are restricted to habitats that
provide significant amounts of small molecular weight carbon,
and their growth form makes them most competitive in liquid
or high moisture substrates (Lachance and Starmer 1998). There-
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Figure 1. Occurrence of the top 14 fungal genera associated with bee species represented in this review, including fungi isolated in association with
bee bodies or provisions. For each study, the top three fungal genera are represented. Fungal occurrence is represented as presence or absence, and so
is biased toward bee species that are overrepresented in studies (Apis mellifera). The number of studies representing each bee species is included
following species names.
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fore, it is not surprising that yeasts are common in sugar-rich
habitats associated with bees, including floral nectar and stored
provisions such as honey (Figure S1, Supporting Information).
Starmerella yeasts have been noted for their specific interactions
with bees and occurrence in bee-visited flowers (Lachance et al.
2001), suggesting a strong reliance of yeasts on bees as hosts and
vectors. Bee-associated yeasts are generally osmotolerant, with
Zygosaccharomyces yeasts exhibiting particularly strong osmotol-
erance, able to grow on media of up to 70% w/w glucose (Brysch-
Herzberg 2004). This makes them well adapted to habitats like
honey, which can reach similarly high sugar concentrations (So-
haimy et al. 2015). In addition to being osmotolerant, Starmerella,
Zygosaccharomyces, and some Wickerhamiella yeasts also exhibit a
preference for the sugar fructose as a carbon source (Leandro et
al. 2014, Gongalves et al. 2020). Fructophily is uncommon among
other yeasts and this trait may contribute to these groups’ suc-
cess in bee-associated habitats, which often contain high levels
of fructose, in part due to conversion of sucrose to glucose and
fructose by bees (Sohaimy et al. 2015, De-Melo et al. 2017, Cheng
et al. 2019).

Bees also associate with molds, fungi that grow with spread-
ing mycelia, which include the genera Cladosporium, Aspergillus,
and Penicillium (Fig. 1). Unlike yeasts, molds are often less spe-
cialized in their habitats and can grow on a wide variety of car-
bon sources, including complex polysaccharides (Bennett 2009).
Molds are commonly present in floral pollen and stored pollen
provisions. Fungi within these bee-associated genera are diverse
and inhabit a wide range of habitats and ecological roles, includ-
ing plant pathogens (e.g. Alternaria), bee pathogens (e.g. Aspergillus
flavus, Foley et al. 2014; Ascosphaera, Evison and Jensen 2018), and
saprotrophs.

How are bee-associated fungi acquired?

Acquisition from floral resources

Floral resources are the main food source for most bee species, so
the fungal species found in nectar and pollen directly contribute
to communities in bee nests and bee gastrointestinal tracts. Many
of the fungi most commonly isolated from bee nests and bodies
are also frequent inhabitants of floral nectar and pollen, includ-
ing Starmerella, Metschnikowia, Aspergillus, and Cladosporium (Fig. 2),
and are likely sourced from plants. Indeed, changes in bee habi-
tats (and presumably microbial species pools) such as exposure
to novel floral communities, hive movement, or seasonal changes,
are reflected by changes in the fungal community associated with
bees (Kakumanu et al. 2016, Callegari et al. 2021, Hall et al. 2021,
Ludvigsen et al. 2021, McFrederick and Rehan 2018, Rothman et al.
2019). Flowers also likely provide a hub through which commen-
sal or mutualistic fungi may be spread between individual bees
or bee species (Brysch-Herzberg 2004, McFrederick et al. 2012), as
has been shown for fungal pathogen spread (Evison and Jensen
2018, Graystock et al. 2020).

Fungal communities in stored bee provisions diverge from flo-
ral communities over time, likely due to the addition of bee se-
cretions, modifications to the stored food, and/or environmen-
tal conditions inside the nest. Provisions are stored in nests of-
ten lined with resin, glandular secretions, or other materials that
are broadly antimicrobial (Chui et al. 2022, Hefetz 1987, Shanahan
and Spivak 2021), filtering out nonadapted fungal species. In social
bees, hive temperature is regulated and kept warmer than ambi-
ent temperature, around 35°C during the active summer months
(Fahrenholz et al. 1989), which can additionally impact the com-
position of fungal communities in provisions (Friedle et al. 2021).
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Modifications to the stored provisions themselves also reduce the
risk of contamination by pathogenic or saprotrophic microbes.
In honeybees, bumble bees, and stingless bees, floral nectar is
modified to produce honey by reducing water content and adding
glucose oxidases and antimicrobial peptides, resulting in a liquid
with a high sugar content that can be upwards of 70% w/w (Souza
et al. 2006, De-Melo et al. 2017) and general antimicrobial proper-
ties (Israili 2014, Suntiparapop et al. 2012). Other provisions, such
as honeybee bee bread or many solitary bee nest provisions, are
created by mixing nectar and pollen together, producing a provi-
sion, i.e. often (but not always) more solid than honey. These provi-
sions are generally acidic (4-4.5 pH) due to the addition of glucose
oxidase by worker bees and the proliferation of lactic acid bac-
teria, which produce gluconic acid and adds to the antimicrobial
nature of these provisions (Herbert and Shimanuki 1978, Gilliam
1979, Sinpoo et al. 2017, Anderson and Mott 2023).

The impacts of these provision modifications on fungal com-
munity structure have been best illustrated by studies on the bee
bread of Apis mellifera colonies. Fungal communities in bee bread
initially closely resemble those found in floral resources, but de-
crease in diversity and abundance over time as provisions are
altered and stored (Sinpoo et al. 2017, Detry et al. 2020, Disay-

athanoowat et al. 2020, Friedle et al. 2021). Many flower-associated
taxa, such as Metschnikowia, decrease in abundance and are not
normally isolated from stored provisions (Fig. 2). However, other
fungal taxa, including Starmerella and Zygosaccharomyces, persist in
these new conditions, and may even increase in abundance over
time (Detry et al. 2020). Fungal community succession has not
been as extensively studied in the provisions of other bee species,
but bacterial communities of Osmia and Megachile nest provisions
also change over time (Voulgari-Kokota et al. 2019, Kueneman et
al. 2023), so it is likely that fungal communities also change with
provision age in solitary bee species.

Vertical and social acquisition

In contrast to clear patterns of environmental acquisition, only
limited evidence suggests that bee-associated fungi can be trans-
mitted among individuals or between generations, in processes
defined as social or vertical transmission. In the bumble bee
Bombus terrestris, the yeasts Starmerella bombi, and Wickerhamiella
bombiphila (but not Metschnikowia reukaufii or M. gruessii) persisted
in daughter queens’ gastrointestinal tract through hibernation
(Pozo et al. 2018), and thus could potentially be transmitted to
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newly founded colonies. Fungal transmission to daughter colonies
has also been suggested in stingless bees. Some evidence suggests
that stingless bees carry their obligately symbiotic fungi within
hive materials that are moved to new locations during hive split-
ting or swarming events (Menezes et al. 2015), though this has yet
to be experimentally tested. To our knowledge, vertical transmis-
sion of fungal communities has not been documented in solitary
bees. However, for spore-forming fungal pathogens of bees includ-
ing Ascosphaera and Aspergillus, bee nest reuse or nest sharing is a
primary mode of transmission (Evison and Jensen 2018); it seems
likely that commensal or mutualistic fungi may be transmitted in
a similar fashion, but to our knowledge this has not been docu-
mented.

Direct collection of fungi

Rarely, honeybees have been observed to directly collect spores
of plant pathogens from plant surfaces, including the rust fungi
Melampsora, Uromyces, and Zaghouania, powdery mildew in the
genus Podosphaera, and other fungi within the genus Cladosporium
(Shaw 1990, Shaw and McAlpine 1999, Eltz et al. 2002, Modro et al.
2009). The purpose of this behavior is unknown, but it has mostly
been observed at the end of summer, when floral resources are
scarce. Honeybees will not consume pure fungal spores (Parish
et al. 2020a, Schmidt et al. 1987), but may mix these spores with
provisions, potentially providing a nutritional benefit greater than
pollen alone (Parish et al. 2020b). Multiple plant pathogens infect
plants and produce fungal spores that mimic pollen (Slot and Kas-
son 2021 e.g. Monilinia vaccinii-corymbosi and others) and although
multiple bee species visit such mimics, whether they ingest these
spores is unclear.

Functions of bee-associated fungi

Despite extensive documentation that bees associate with fungi,
the detection of fungi does not imply their importance in bee biol-
ogy. Evidence from a few studies that manipulate fungal presence,
abundance, or identity suggest that in some cases, fungi can influ-
ence bee behavior, development, health, and survival. We review
these studies and potential mechanisms of fungal effects on bees
below.

Flower-associated yeasts affect bee behavior

Perhaps the greatest number of studies of bee-fungi interactions
have investigated fungal effects on bee foraging preferences or
nectar feeding behavior. In many studies, fungi (most commonly
yeasts) are applied to flowers or artificial nectar and the rate of bee
visitation, pollen or nectar removal, or pollination are quantified.
Of the studies considered here, most assessed responses of bum-
ble bees (B. impatiens, B. terrestris, B. vosnesenskii, and B. friseanus). In
allbut one published instance, yeast-containing flowers or nectars
increased visitation or consumption by bumble bees over uncolo-
nized or bacteria-colonized nectars (Herrera et al. 2013, Schaeffer
and Irwin 2014, Schaeffer et al. 2017a, 2019, Yang et al. 2019). As
an exception, B. vosnesenskii did not prefer yeast-inoculated nec-
tar volatiles over those of control nectar in a microcolony study
(Rutkowski et al. 2022). In contrast to most bumble bee responses,
honeybees show no attraction to nectar yeasts or even display re-
duced visitation to nectar colonized by floral fungi (Kevan et al.
1987, Rering et al. 2018, 2020, 2021, Crowley-Gall et al. 2022, Scha-
effer et al. 2022). We are unaware of studies that quantify non-
Bombus or Apis behavior in response to fungi-colonized flowers,
although it has been hypothesized that yeast volatiles may act as

an honest cue of the presence or quality of nectar (Russell and
Ashman 2019) for a variety of insect species, and are attractive to
hoverflies as well as vespid wasps (Davis et al. 2012, Colda et al.
2021). It has been hypothesized that yeast volatiles could be used
by insects as a cue of nectar presence (Crowley-Gall et al. 2021,
Davis et al. 2012, Russell and Ashman 2019) so it is possible that
bee species may differ in their use of such foraging cues. In addi-
tion, whether cues simply benefit foraging efficiency or the yeasts
themselves are being actively collected is not understood.

Bee-associated fungi can benefit bee
development

In addition to acting as resource cues, the ingestion of fungi or fun-
gal metabolites can also affect individual bee and colony perfor-
mance, though these effects differ by fungal and bee species. Inac-
tivated yeasts (most commonly Saccharomyces cerevisiae) are com-
mon additives in artificial diets provided to social bee colonies,
in some cases providing modest growth benefits over natural
pollen diets (Fernandes-da-Silva and Zucoloto 1990, Dodologlu
and Emsen 2011, van der Steen 2015, Pavlovi¢ et al. 2022), though
not always (Costa and Venturieri 2015, de Freitas et al. 2020).
There is little evidence that these artificial diets have any im-
pact on bee immunity and pathogen infection (Moliné et al. 2020,
Canché-Colli et al. 2021, Hsu et al. 2021), though in one case yeast
diets reduced Nosema spp. infection levels in honeybees (Skerl
and Gajger 2022). In Bombus impatiens, consumption of the nec-
tar yeast Metschnikowia reukaufii did not affect colony survival
or brood production (Schaeffer et al. 2017a), but addition of the
yeasts Starmerella sorbosivorans, Zygosaccharomyces rouxii, and De-
baroymyces hansenii—which are typically present within the colony
environment—improved worker survival and offspring produc-
tion (Rutkowski et al. 2022). In the bumble bee B. terrestris, M. grues-
sii, and W. bombiphila increased colony development rates and the
number of offspring produced, though other fungal species tested
were not as beneficial (Pozo et al. 2019). In a separate study on the
same bee species, addition of W. bombiphila and Torulaspora del-
brueckii to colony provisions sped up colony development (Pozo
et al. 2021). Interestingly, colonization by some yeasts decreased
queen overwintering success, suggesting costs of hosting fungal
symbionts (Pozo et al. 2019). Despite detailed work on the poten-
tial mechanisms by which yeasts benefit bumble bees (Schaeffer
et al. 2017a, Pozo et al. 2019), evidence to date does not strongly
support direct nutritional benefits of yeasts generally for bumble
bees. Nevertheless, these studies suggest that consuming yeast
can conditionally benefit bumble bees, and that yeast identity is
important, with colony-adapted fungi potentially being more ben-
eficial than yeasts from other environments.

The strongest evidence for mutualism involving bees and fungi
has been documented in multiple stingless bee species. In Scap-
totrigona depilis, native to Brazil, adult bees cultivate Zygosaccha-
romyces in brood cells, where larvae feed on fungal psuedohy-
phae. In the absence of this fungus, larval survival rate is low (8%),
as the fungal tissue contains ergosterols necessary for pupation
(Menezes et al. 2015, Paludo et al. 2018). The growth of this Zy-
gosaccharomyces fungus is further regulated by other fungi (Can-
dida sp. and Monascus ruber) in the larval cell, maintaining Zygosac-
charomyces at a level beneficial to the developing larvae (Paludo et
al. 2019). Similar filamentous growth forms of Zygosaccharomyces
species have been isolated from brood cells of eight additional
stingless bee species (Scaptotrigona bipuctata, S. postica, S. tubiba,
Tetragona clavipes, Melipona quadrifasciata, M. fasciculata, M. bicolor,
and Partamona helleri), suggesting similar nutritional roles in lar-



val development (de Paula et al. 2023). Additionally, larvae of the
stingless bee species Heterotrigona itama, native to Malaysia, also
show increased mortality (37% survival) when reared on sterile
diet compared to natural diet (85%) or diet supplemented with
the fungus Panus lecomtel isolated from provisions (57%, Razali et
al. 2022). The mechanisms behind this effect were not examined
but the authors hypothesize that nutritional benefits or pathogen
protection may explain increased larval survival.

Potential mechanisms: fungi as nutrition,
detoxification, or pathogen protection?

A few mechanisms have been hypothesized to explain the positive
effects of fungal addition on bee health, including nutritional ben-
efits from consumption of fungal cells and associated metabolites.
Nutritional mutualism has been documented in other insects that
associate with fungi, with fungi providing B vitamins, amino acids,
or sterols to their insect hosts (Biedermann & Vega 2020). Fungi
are known to produce developmentally necessary sterols in one
stingless bee species, as discussed above (Menezes et al. 2015,
Paludo et al. 2018). Fungl may also act as a direct food source. In
pollen provisions and honey, fungi can reach densities of between
10® and 10° cfu/g for yeasts and < 10' and 10° for filamentous
fungi (Inglis et al. 1992a, b, ¢, Rosa et al. 2003, Teixeira et al. 2003,
Kacaniova et al. 2004, Nardoni et al. 2015, Disayathanoowat et al.
2020, Echeverrigaray et al. 2021, Anderson and Mott 2023). These
abundant fungal cells may constitute a substantial portion of bee
diets. Isotopic analysis of amino acids sourced from bees of vari-
ous families placed bees as omnivores instead of strict herbivores,
potentially due to consumption of microbial matter (Steffan et
al. 2019). In the solitary bee Osmia ribifloris, sterilization of pollen
provisions to remove microbes reduced the rate of larval devel-
opment and decreased the concentration of specific fatty acids
compared to unsterilized provisions, further supporting a nutri-
tional role of fungi in bee health (Dharampal et al. 2019). However,
these beneficial effects were dependent on microbe identity, and
were more pronounced when microbes were isolated from pollen
of appropriate host plants for O. ribifloris (Dharampal et al. 2020).
In other systems including bark beetles and cactophilic Drosophila,
fungi mediate diet detoxification. Given that pollen is often high in
plant secondary metabolites (Palmer-Young et al. 2019) and that
pollen toxicity may influence host pollen use (Rivest and Forrest
2020), fungi could plausibly be involved in detoxification of pollen
compounds for larval consumption, but to our knowledge this has
not been documented.

Fungi could also benefit bees by reducing the growth of
pathogens or spoilage microbes in provisions through microbe—
microbe competition, though evidence for this is mixed. Megachile
rotundata larvae fed yeasts including Trichosporonoides (Moniliella)
megachiliensis were not more resistant to infection by the fungal
pathogen Ascosphaera than those inoculated with the pathogen
alone (Inglis et al 1993b). In in vitro growth assays, S. bombi, W.
bombiphila, and M. reukaufii reduced the survival of the bumble
bee parasite Crithidia bombi (Pozo et al. 2019). Plate assays have
found mixed evidence that pollen-associated fungi can reduce the
growth of bee pathogens. For example, Aspergillus, Cladosporium,
Mucor, Penicillium, Rhizopus, and Talaromyces isolated from honey
bee provisions and guts inhibited the growth of Ascosphaera apis
(Gilliam et al. 1988, Disayathanoowat et al. 2020). However, an-
other study on fungi isolated from bumble bee guts, including S.
bombi, W. bombiphila, and Z. rouxii found no evidence of inhibition
of Paenibacillus larvae, Melissococcus plutonius, C. bombi, or A. apis in
growth assays (Praet et al. 2018). It is possible that this variation in
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inhibitory ability is due to strain-level differences among fungal
species, as has been observed for different bacterial strains asso-
ciated with bees (Praet et al. 2018). In addition to in vitro growth
assays, several associational studies link the presence of fungi to
greater disease resistance and lower pathogen loads. In honey-
bees, increased hygienic behavior of a colony and a lower abun-
dance of A. apis was associated with greater non-A. apis fungal
abundance (Gilliam et al. 1988). In B. impatiens pollen provisions,
the abundance of yeasts in the Wickerhamiella/Starmerella clade
was negatively associated with Ascosphaera abundance (Dharam-
pal et al. 2020).

Fungi may also affect bee immunity, as has been documented
for bacteria in the corbiculate bee gut microbiome (Bonilla-Rosso
and Engel 2018). Immune stimulation has been demonstrated
in the moth Galleria mellonella, where pretreatment with Saccha-
romyces cerevisiae protected larvae from subsequent infections of
Candida albicans (Bergin et al. 2006). Similarly, S. cerevisiae aug-
mented immune response to Escherichia coli in the social paper
wasp Polistes dominula (Meriggi et al. 2019). In contrast, exposure of
honeybee workers to Wickerhamomyces anomalus, a gut-associated
yeast, lowered immune gene expression (Tauber et al. 2019). Over-
all, as all current studies of pathogen inhibition by bee-associated
fungi have been either associational or based on in vitro growth
assays, more research is necessary to determine if environmen-
tal or symbiotic fungi impact disease progression in living bees or
colonies, and whether this is mediated through microbe-microbe
interactions or bee immune response modulation. In particular,
more research into fungal symbiont interactions with pathogens
innonmanaged and solitary bees, for whom fungal pathogens can
be a significant cause of mortality, is necessary, as all studies to
date focus on social bee species.

Impacts of fungicides on bees and
associated fungi

Fungicide exposure can affect bee health, either through direct
effects on bees or through effects on symbiotic fungi. The LD50
values for many fungicides tested on bees are significantly higher
than most insecticides, indicating lower contact toxicity (Stoner
and Eitzer 2013, Chmiel et al. 2020). However, multiple studies
have found sublethal, long-term, or interactive effects of fungi-
cides on bees. These detrimental effects may be due to fungicides
acting on bees directly (Mao et al. 2017), interaction of fungicides
with other pesticides (Elston et al. 2013, Sgolastra et al. 2017), or
through suppression of beneficial fungi. While this last option has
received little attention, emerging evidence suggests that fungi-
cide application can change the composition of fungal communi-
ties associated with bees, with implications for bee health.
Fungicides reduce the growth of floral and bee-associated fungi
(Alvarez-Perez et al. 2016, Bartlewicz et al. 2016, Schaeffer et al.
2017b), which may alter bee-fungi interactions. In bumble bees,
exposure to the fungicides chlorothalonil and propiconazole re-
duced colony biomass, worker production, and worker survival
(Bernauer et al. 2015, Steffan et al. 2017, Rutkowski et al. 2022).
These effects on bee health were accompanied by changes in the
fungal abundance and communities of nest provisions and bee
guts, with a decrease in common bee associates like Cladosporium,
Aspergillus, Penicillium, and Zygosaccharomyces, while other groups,
including the pathogen-containing Ascosphaerales, increase in
prevalence (Yoder et al. 2013, Steffan et al. 2017, Rutkowski et
al. 2022). In one case, applying the azole fungicide propicona-
zole to Bombus vosnesenskii microcolonies reduced worker sur-
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vival, but supplementation with bee-associated fungi (Penicillium,
Starmerella, and Zygosaccharomyces) back into the nest following
fungicide exposure eliminated negative effects of fungicide on
survival, suggesting that fungicide effects could be mediated
through disruption of nest fungi communities (Rutkowski et al.
2022). Alternatively, a study on A. mellifera found that although
prolonged exposure to the fungicide azoxystrobin reduced gut
fungal community diversity and altered community composition,
bee survival was unaffected by exposure over 10 days (Al Nag-
gar et al. 2022). We note that most research to date of fungicide
impacts on bees does not consider changes in associated fungal
communities, and more research on how fungicides impact bee
health and associated communities in tandem is necessary to de-
termine to what extent fungal community disruption is responsi-
ble for observed responses of bees to fungicides.

Limitations and future directions

Although we have outlined which fungi are detected in different
habitats and in association with different bee species, we note
that this summary is biased in a number of ways (Fig. 3) and is
largely qualitative. In particular, we lack information on variation
in fungal abundance among species and life stages. Some existing
work reveals variation in fungal abundance associated with bum-
ble bee queens from different habitats (Bosmans et al. 2018), and
in some cases fungi are not detected in bumble bees (Hammer et
al. 2022). In stingless bees, the presence of fungi in the gastroin-
testinal tract varied widely between bee species (Liu et al. 2023).
These results highlight that fungi are likely not always abundant
or important and we lack an understanding of when and where
fungi may play important ecological roles. Below we discuss some
additional limitations in the field of bee-fungi interactions as well
as current gaps in our understanding of these relationships.

Detection methods

The studies included here span over a century of work, over
which time new strategies for characterizing microbial commu-
nities have been developed. Many older studies of bee—fungi in-
teractions were performed before DNA sequencing was accessi-
ble and relied on morphological and physiological identification.
However, these methods of fungal identification may not be as re-
liable, as they can vastly differ from DNA sequencing results for
the same fungal isolates (Rodrigues et al. 2018). In this review, the
most common method for identifying fungal community mem-
bers was culturing followed by DNA sequencing of isolates (67% of
studies). More recently, studies implementing nonculture-based
whole community sequencing methods (such as Illumina) have
become more common. All detection methods have associated
benefits and drawbacks. Culture-based work allows isolation and
preservation of fungi associated with bees, but is limited to de-
tection of fungi that are able to grow in the provided media and
growth condition. Direct sequencing techniques better capture
complete communities, including hard-to-culture microbes, but
also introduce DNA extraction biases, amplification biases, and
may include DNA from nonviable fungi (Boers et al. 2019, White
et al. 2020). Only four studies summarized here used a combina-
tion of culture-based and culture-independent methods and illus-
trate how community composition (or species presence) depends
on the methods employed (Sinpoo et al. 2017, Disayathanoowat et
al. 2020, Callegari et al. 2021, Cui et al. 2022). We urge researchers
to use a combination of methods to provide a comprehensive view

of fungal communities associated with bees and isolate cultures
that enable experimental examination of fungal effects on bees.

Taxonomic and life stage bias in sampling of
bees

The vast majority of all studies on bee-fungi interactions are per-
formed on honeybees, specifically A. mellifera. Of the 104 bee-
focused studies included in our analysis, 56 covered A. mellif-
era, while the next most commonly covered bee species were
B. terrestris (eight studies) and Tetragonisca angustula (eight stud-
ies). Indeed, many of the most commonly studied bee species
are those managed in some way for pollination, while nonman-
aged bee species are less well represented. Additionally, though
most bee species are solitary, the vast majority of current stud-
ies focus on eusocial species. Only 18 studies included noneuso-
cial species, and most of these species were represented by only
a single study. Greater coverage of more bee species including
more nonmanaged species and spanning levels of sociality are
needed to gain a full understanding of the breadth of bee-fungi
associations, and how social living may impact associated fungal
communities.

In addition, very few studies (11) characterize fungal commu-
nities associated with immature life stages of bees, despite the
clear effects that fungal presence or supplementation can have on
offspring development and survival. In studies that characterized
both immature and adult bee microbiomes, there was strong over-
lap, though immatures tended to be more dominated by the plant
pathogen Alternaria and the bee pathogen Ascosphaera (Shoreit and
Bagy 1995, Tauber et al. 2021, Ye et al. 2021, Nguyen and Rehan
2022). In one case, the species Starmerella batistae was found asso-
ciated with larvae and pupae of the solitary bee species Diadasina
distincta and Ptilotrix plumata, while it was absent from adults (Rosa
et al. 1999). Future experiments characterizing the fungal micro-
biome of immature bee stages, and their impacts on development,
are needed to determine roles of these fungi throughout the bee
life cycle.

Mechanisms behind fungal function

Currently, few studies have experimentally examined the effects
of fungi on bees. As with most other studies of bee-fungi inter-
actions, these have largely been restricted to economically im-
portant and managed pollinators, and the mechanisms behind
many of the observed impacts of fungi are not understood. In
addition to the mechanisms previously proposed in this review,
bee-associated fungi may impact bees through a number of less
well-studied mechanisms.

Interactions between fungi and the rest of the microbiome

The interactions between fungi and other microbiome members
have received little study. Within the bee gut, abundance of fungal
species is in some cases positively associated with the abundance
of beneficial bacteria endosymbionts, like Gilliamella and Snodgras-
sella (Callegari et al. 2021). In other cases, fungal symbionts seem
to replace bacteria symbionts as core members of the bee micro-
biome (Cerqueira et al. 2021). Increasing fungal richness in the gut
of M. rotundata larvae was associated with lowered bacterial rich-
ness, suggesting competitive interactions between these groups
(McFrederick et al. 2014). Within provisions, interactions between
bacteria and fungi likely impact fungal community dynamics, as
proliferation of lactic acid bacteria results in a more acidic pH,
limiting the growth of many fungal species (Sinpoo et al. 2017,
Janashia et al. 2018).
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Table 1. Selected future research directions in the field of bee—fungi interactions.

1. How does the larval mycobiome compare with adults, and what impacts does it have on larval development and survival?
2. How do fungi interact with other members of the bee microbiome, including pathogens?

3. How do bee-associated fungi change the nutrient profile of stored bee provisions?

4. How does the mycobiome vary across gradients of sociality and diet specificity?

S. Are fungi in social colonies vertically transmitted between colonies and generations?

6. How do different pesticides impact the mycobiome, and how do these changes affect bee health?

Do fungi alter food resources?

The impact of nectar-dwelling fungi on nectar chemistry has been
well-studied. Fungi often reduce total sugars present in nectar,
shift sugar composition, and change the composition of floral
volatiles (Herrera et al. 2008, Rering et al. 2018, 2021). Despite
these clear effects on floral nectar, little is known about how fungi
within bee nests alter the nutritional profile of pollen or nectar
provisions that are provided to larvae. One study found that Au-
reobasidium melangenum, isolated from honeybee provisions, was
able to degrade and ferment pollen provisions, which was asso-
ciated with upregulation of nutrient genes in honeybees fed on
this diet (Hsu et al. 2021). Intriguingly, bee-associated Starmerella
species produce abundant sophorolipids which are used as com-
mercial detergents and surfactants (Kurtzman et al. 2010, Van
Renterghem et al. 2017, Van Bogaert et al. 2016). Starmerella bombi-
cola, which has been isolated from the provisions of a number
of bee species (Brysch-Herzberg and Lachance 2004, Inglis et al.
1993a, Echeverrigaray et al. 2021), is a particularly efficient pro-
ducer of these compounds. These sophorolipids have antimicro-
bial properties, reducing the growth of other bacteria and fungi,
including those also associated with flowers and bee nests (Hip6l-
ito et al. 2020, De Clercq et al. 2021, Alfian et al. 2022). These
compounds may contribute to the preservation of bee provisions,
which has been suggested as the main function of the provi-
sion microbiome in honeybees (Anderson et al. 2014). However,
whether these surfactants are synthesized within bee provisions,
and their impacts on provision microbiome and bee health have
yet to be tested.

Conclusion

Overall, fungi are common associates of bees, with yeasts in par-
ticular exhibiting strong associations with bee bodies and provi-
sions. Multiple bee species benefit from addition of these yeasts
to their diets, and at least one stingless bee species obligately
relies on fungi for larval development. However, fungal commu-
nities and abundance can substantially vary among bee species,
populations, and life stages. This variation suggests that in many
bee species, interactions with fungi may be more environmentally
determined and, for bee hosts, facultative. We largely lack infor-
mation on the mechanisms by which fungi affect bee hosts and
on associations between fungi and different life stages of bees,
and suggest more mechanism-focused research encompassing a
wider variety of bee species and life stages so that we may ex-
pand our understanding of these associations and under which
contexts they are beneficial to bee health (Table 1).
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