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Human management of ecological systems, including issues like
fisheries, invasive species, and restoration, as well as others, often
must be undertaken with limited information. This means that
developing general principles and heuristic approaches is important.
Here, I focus on one aspect, the importance of an explicit consider-
ation of time, which arises because of the inherent limitations in the
response of ecological systems. I focus mainly on simple systems and
models, beginning with systems without density dependence, which
are therefore linear. Even for these systems, it is important to
recognize the necessary delays in the response of the ecological
system to management. Here, I also provide details for optimization
that show how general results emerge and emphasize how delays
due to demography and life histories can change the optimal
management approach. A brief discussion of systems with density
dependence and tipping points shows that the same themes emerge,
namely, that when considering issues of restoration or management
to change the state of an ecological system, that timescales need
explicit consideration and may change the optimal approach in
important ways.
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Ecologists and others are increasingly recognizing the impor-
tance of using models as a guide for managing ecological sys-

tems, and this need is even more important in the face of global
change (1). In many ways, these efforts build on the relative success
of the field of fisheries bioeconomics (2). It is important to rec-
ognize that many of the questions require ongoing actions and that
the problem is a dynamic one, so time and timescales are a central
part of the problem. The challenge of determining appropriate
timescales is exemplified by issues arising in ecological restoration
(3), and is especially critical given both the complexity of many
systems and the need to act in the face of limited data. Specific
examples, such as attempts to restore habitat for grassland butterfly
communities (4), indicate the importance of understanding the
role of time lags in understanding restoration as well as in making
management decisions.
Another feature of ecological management is that decisions

often have to be made in the face of limited data or knowledge of
the systems, so the development of heuristics to guide decisions
is an important step. In this spirit, here I will examine the role of
timescales in ecological management using very simple models
with the aim of elucidating general principles, and ignoring
complications such as stochasticity until the discussion. The
overall goal is to illustrate when and how it is important to
consider time in management, recognizing that this includes both
choice of actions and evaluation.
Several cross-cutting themes will emerge regarding the impor-

tance of understanding and including time. First, there are cases
where it is simply important to recognize that the response of
ecological systems to management actions must play out over
time, so that any evaluation of response or success must take into
account the time needed. Second, there are cases where the op-
timal management over time must take into account the dynamic
response of the system. Ecological systems may be complex, so it is
not surprising that temporal aspects play an important role. It
may be less obvious that the same is true even for much simpler
ecological systems.

The role of the temporal aspect of ecological processes shows
up even in the simplest settings without density dependence.
Mathematically, this means that the system is linear, and therefore
it is possible to write a formula for an explicit solution describing
the dynamics, although in some cases this representation can be
too complex to interpret. Even in this context, one key theme here
will show up: there are differences between trying to remove versus
trying to restore, because with restoration the timescales of the
biological systems enter explicitly.
I will proceed both by developing and presenting general ap-

proaches and by focusing on several specific examples. This is not,
however, a comprehensive review. Important areas like epidemi-
ology are not specifically covered; however, the principles and
ideas I present should apply very broadly. I will begin with an
overview of ideas from linear (density-independent) population
dynamics that will play a role in what follows. Then, I will discuss
how these ideas play out in systems like marine protected areas
where the focus is on evaluation of management. Next, an ap-
proach for ongoing management of systems where density de-
pendence need not be explicitly included will be developed in
more detail. After discussing how these approaches are applied to
issues arising in management of invasive species, I will contrast the
heuristic guidelines with aspects that arise in restoration. Finally, I
will briefly consider aspects where density dependence is impor-
tant and consider aspects of tipping points, emphasizing the role
played by biological timescales. Although the presentation here
focuses on deterministic aspects, uncertainty is clearly an essential
part of management, so a very brief section summarizes some of
the issues involved. I will finish by summarizing the general con-
clusions from these relatively simple models while indicating how
additional important issues could potentially change conclusions.

Density Independent Dynamics
The best understood models in ecology are the ones that ignore
density dependence, which in discrete time are matrix models
(5). Although similar ideas can be discussed for continuous time
models, the fundamental ideas are not different, so here I will
focus the discussion on discrete time models. For these models, a
complete solution can be written down, and quantities such as the
long-term growth rate can be calculated. Nevertheless, this solu-
tion does not necessarily provide the kinds of information most
useful for management. Similarly, there are formulas for the sen-
sitivity of the asymptotic growth rate to changes in parameters, but
these formulas do not directly provide information about dynamics
over shorter timescales (6). These shorter timescales may, how-
ever, be the ones most relevant for many ecological management
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questions ranging from sustainable harvesting to control of in-
vasive species to restoration (7, 8).
In the simplest settings, the dynamics of a species where density

dependence can be ignored will be described by a linear model.
Let the components of the vector Nt be the population level at
different stages (or locations or both listed as a linear array), and
let the entrymij in the matrixM give the per capita contribution of
individuals in stage j to stage i in the next time step. Then the
dynamics of the population are given by the following:

Nt+1 =MNt. [1]

The numbers after T years clearly can be written as follows:

NT =MTN0, [2]

so a complete solution is known. Moreover, many properties of
this solution are known (5) and can be used to guide any man-
agement decisions based on this model. An alternative way of
representing the solution would be to express it as a sum of
eigenvectors times eigenvalues raised to the power T, which also
easily generalizes to other density independent descriptions of
population dynamics.
Typically analyses of the matrix model [1] in management have

focused on properties like the growth rate of the population, which
can be easily calculated because it is the largest eigenvalue of the
matrix M. Additionally, there are convenient equations (5) on the
sensitivity of this growth rate (maximum eigenvalue) to changes in
the entries of M (the demographic parameters). This ability to
understand general aspects of the dependence of the growth rate of
the population on life history parameters allows the determination
of which life stages may be key for designing conservation strate-
gies. A dramatic example (9, 10) of the use of sensitivity analyses is
the development of turtle exclusion devices that reduce mortality
on juvenile loggerhead sea turtles. For the conservation of a spe-
cies, long-term growth rates may be the most important guide, and
the sensitivity analysis showed that juvenile survival would have a
dramatic effect on this long-term growth rate.
For other problems, however, this asymptotic behavior may not

be informative over ecological timescales. The growth rate (ei-
genvalue) that determines the asymptotic behavior of the dynamics
may not be informative over ecological timescales, as emphasized
by Ezard et al. (6). Further complications arise when dealing with
environments that are changing through time, but even in simple
settings information is needed over shorter timescales.
One approach for dealing with dynamics over shorter time-

scales, rather than asymptotic behavior, has been to develop (11)
an analysis of sensitivity for transient dynamics that parallels and
extends the sensitivity analysis for long-term behavior (5). These
newer results provide ways of computing how population dy-
namics over shorter timescales responds to changes in underlying
parameters.

Marine Protected Areas
An important current issue is the recovery or restoration of over-
exploited fisheries and of coastal systems more generally, where for
fisheries the goal is the return of a population to a state with
reasonable representation of reproductive individuals and poten-
tially harvestable individuals. More generally, the aim may be a
return to an age distribution closer to that of an unexploited
population. Because the focus is on overexploited populations,
population levels will be low, so as a first step it may be reasonable
to ignore density dependence. One approach that clearly has been
widely used is the establishment of marine protected areas (12),
where fishing is prohibited.
Understanding the response of a species to the establishment of

a marine reserve is an important question (12). Here, the man-
agement action is clear-cut: establish a marine reserve. Prediction

of the effect of the reserve depends on understanding the response
of species to this action, and the simplest approach would be first to
consider single species without the complications of species inter-
actions. The simple age or stage structured model [1] forms the
basis for understanding the response over time of a single species
with sedentary adults (13) to the establishment of a marine pro-
tected area. The rationale for the establishment of marine pro-
tected areas is to remove negative human influences on marine
species including fishing and other activities; for simplicity, I will
refer to the negative influences as fishing. Before the establishment
of the reserve, the matrix M includes both natural mortality and
mortality due to fishing and afterward the fishing mortality is either
removed completely or reduced. So, mathematically the question
of determining the response becomes one of using Eq. 2 to de-
termine the vector describing the population through time, starting
with a population that has been the subject of fishing. Also, it is
important when assessing the performance of any marine reserve
to take into account the temporal aspect (14).
Even though a complete solution for the dynamics through

time is possible, given the need to understand dynamics in the
face of relatively limited data, it is important to understand
heuristic aspects of this complete solution. Behavior of the
population can be studied under two extreme cases, where all
recruitment of new individuals is either from outside, an open
population, or all recruitment comes from the local population, a
closed population (13). The dynamics differ substantially for
these two general cases, because in a closed population there will
be a further lag in the response of the population until increased
survivorship leads to more reproductive adults, which will in turn
increase recruitment.
Because mortality from fishing typically is highly dependent on

age, a fished population will be very far from the stable age dis-
tribution for an unfished population. Thus, in understanding the
response to the removal of fishing, the transient dynamics are
important. The problem of understanding the dynamics of the
approach to the long-term stable age distribution was studied by
Cohen (15), where a description of the distance between an ob-
served age distribution and the stable age distribution was de-
termined. This gets to the crux of the problem of understanding
the transient behavior—the dynamics corresponding to eigenvec-
tors other than the stable age distribution is important.
With a reduction in mortality, how will the dynamics of an age-

structured population respond? For the fishery examples, where a
discrete time approach may be natural, it is clearly a simple ex-
ercise to write an explicit description of the dynamics for a single
species as is done above, but more usefully general conclusions
can be drawn about the dynamics of the population. The timescale
of recovery will in many ways be determined by the generation
time of the species under consideration. If the population is closed
so that recruitment mainly comes from within the population, as
contrasted with an open population where recruitment is from
outside, then the recovery can be much slower and involve es-
sentially an oscillatory approach to the new dynamics. Here, the
fact that a closed population recovers much more slowly is because
recovery depends on the total growth rate, not the per capita
growth rate, in a closed system of this kind. Conversely, if an open
system lost population through dispersal more than it gained, the
open system might recover more slowly. The overall conclusion is
that care needs to be taken in judging outcomes on too short a
timescale, and that quantitative assessments are possible.
Another way of analyzing the response of a fishery to the

implementation of a marine reserve would be to consider the
importance of shifted effort. Additionally, the transient sensitivity
tools developed by Caswell (11) can be used to understand the
response of the fishery to the implementation of a closed area
(16). The analysis of this case (16) unequivocally demonstrates the
importance of recognizing responses on different timescales as
there is a short-term cost but a long-term benefit.
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Ongoing Management and Density Independence
A second example where it may make sense to ignore the role of
density dependence is in the control of an invasive species rela-
tively early in the invasion. In the simplest settings, the dynamics
of an invasive species that is relatively rare can be described by a
linear model. As this approach can have widespread application
and the previously published approaches can be generalized, I will
present some of the details.
If management is added to the linear population model [1] as

effort removing numbers the following year, the dynamics would
be described by the following:

Nt+1 =MNt −Ht, [3]

where Ht is a vector where entry ht,i is the control of class i at time
t. The classes could represent not only different ages or stages, but
different spatial locations so the formulation is very general. Note
that, obviously, the control Ht must be chosen so that all of the
entries in Nt+1 are nonnegative. Also, the equation above implies
that the management described by Ht comes after the population
dynamics in year t and before the census in year t + 1; this assumed
separation of population dynamics and human action is essentially
removed in the more general formulation below.
The key observation that leads to a simple understanding of

the optimal approach is that because of the lack of density de-
pendence or interactions among the different stages or locations,
with control the population after T years is given by the following:

NT =MTN0 −
XT−1

i=0
HiMT−1−i. [4]

This equation verbally says that, after T years, the population
could be found by taking what the population would be without
management and subtracting the impact of the control in every
year projected forward to year T. Here, the impact in year T of a
control in the previous year is what the controlled part of the
population would have grown to in year T.
Note that, alternatively, the management could be described in

terms of a per capita effort affecting the numbers the following
year, which would replace Eq. 3 by the following:

Nt+1 =MNt −CtNt, [5]

where Ct is a matrix, and Eq. 4 by the following:

NT =MTN0 −
XT−1

i=0
CiNiMT−1−i. [6]

Most generally, Ct would be a matrix whose entries could even be
negative, but could also be restricted to be diagonal or nonnegative
or both. Finally, both kinds of management could be combined as
follows:

Nt+1 =MNt −CtNt −Ht, [7]

and the population in year T would be as follows:

NT =MTN0 −
XT−1

i=0
HiMT−1−i −

XT−1

i=0
CiNiMT−1−i. [8]

This formulation of management with density independence could
be used to answer a range of questions about optimal manage-
ment. The specification of the question is an important step in
determining management for invasive species as the cost of an
invasive species is not the cost of its control but the damage it
causes (17). Thus, one appropriate question would be to choose a
management strategy that maximizes net present value, taking into
account costs of damages from the invasive, costs of management
actions, and discount rates. All of these aspects could be taken

into account in the formulation developed here. However, the
basic ideas come through in simpler problems that may reflect
how choices are made: minimize the cost of removing an invasive
species over a fixed number of years with possible additional con-
straints. These additional constraints could be limits on the total
amount spent, or the amount in a given year, or even restrictions
on what classes or locations are dealt with.
If there were no additional constraints and any discount factor

was ignored, the optimal approach would be simply to immedi-
ately remove all of the invasive species, so H0 = N0. However,
complete removal in a single year is typically not possible, so the
determination of an optimal strategy will result from the form of
the constraints. This can be seen by noting that, if there is some
cost of removal and a population is growing, it is clear that
spending as much as possible as soon as possible is best.
The overall form of the problem ends up being to choose the

control in any year, namely, the entries in the vectors Ht and
matrices Ct. As developed previously (18–20), if the constraints
are linear, then the problem falls into the class called linear
programming problems. These ideas have been applied to spe-
cific problems involving the control of invasive species (18–20).
As noted earlier (21), a slight generalization to quadratic control
can be made with similar ease of computation of solutions.
With problems that fall into the category of linear programming,

two important points arise. First, it is very easy to implement ex-
tremely fast solution methods to solve extremely large problems
with continuous descriptions of both the variables and the pop-
ulation sizes. Second, one feature of the solution is known, namely,
that the solution is at a vertex, meaning first that as much of the
budget should be spent each year as possible. A second conse-
quence of the solution lying at a vertex is that effort should not be
split among different classes unless the maximum possible amount is
spent on all but one of the classes that is being controlled. In other
words, there should never be partial removal of more than one class.
Both from specific solutions and the general points regarding

linear programming, general aspects of control of the spread of
invasive species emerge. I will first consider the case where the
problem specified is to find the most cost-effective means of
removal of an invasive species in a spatial or nonspatial (possibly
implicitly spatial) context. Here, removal should always use all of
the available budget.
The problem of stopping the spread of a species is more com-

plex than just indicated. If the species is growing slowly, budget
constraints are not applied yearly but to the overall budget, and a
discount rate that is greater than the growth rate of the species is
taken into consideration; it can clearly pay to wait for removal.
The problem becomes much more realistic if an actual cost of
damages is included and discount rates are included as well.
An important and dramatic role of timescales emerges if the

problem is made more realistic and aspects of restoration are
included. In San Francisco Bay, an invasive salt marsh cord grass,
which is a hybrid between the nonnative Spartina alterniflora and
the native Spartina foliosa, has had a number of negative impacts,
so there has been an ongoing program of removal of Spartina.
Along the lines of the general principles outlined above, the
approach had been to have the maximal possible effort each year.
However, there is an endangered bird species, Ridgway’s rail

(Rallus obsoletus), that has used the invasive Spartina as habi-
tat. (Note that the common name has recently been changed
from California clapper rail.) This has led to the requirement that
sufficient habitat be provided for the endangered species. The
habitat can either be the invasive Spartina, or the native Spartina
foliosa. Thus, one aspect of management is the restoration of
native Spartina. This problem can be analyzed using the linear
programming approach outlined above, and the results from an
analysis that does include density dependence (nonlinearity) are
essentially similar (18, 20). The key aspect of this system is that
California clapper rails requires mature plants for habitat and
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only seedlings can be planted. Thus, there is a delay introduced by
the biological feature of time to maturity for the cordgrass, and
consequently the economically optimal approach for manage-
ment changes. In effect, the biological constraint of a missing
action, namely, the direct planting of “adult” native Spartina,
changes the dynamics. This is essentially a timescale effect and
leads to the result that the optimal management is to first remove
the invasive as fast as possible until the constraint of maintaining
habitat for the endangered rail is reached. Then there is a period
of planting of native Spartina combined with slow removal of
invasive while waiting for the native Spartina to grow, a period
where smaller expenditures are the optimal solution, until the
invasive is completely eradicated. This result of biological dy-
namics changing the optimal approach will appear below as well.

Density Dependence and Nonlinear Dynamics
With systems that include density dependence and nonlinearities,
much more complex behavior is possible and the range of possible
scenarios is almost unlimited. I will primarily consider systems that
can possibly undergo critical transitions, or tipping points. These
systems are typically thought of us having a slowly changing control
parameter that changes the dynamics of the faster responding
system. One example is shallow lakes where the control parameter
could be thought of as nitrogen or phosphorus input, and the
system state could be the amount of algae or chlorophyll (22). The
two basic states would be oligotrophic or eutrophic, and the system
would exhibit hysteresis as well. The literature on tipping points is
vast (23) and has emphasized predicating critical transitions with
the underlying rationale that the system could switch from a more
desirable state to a less desirable state. Predicting systems that will
undergo such a transition is a challenging issue, but obviously one
reason for trying to do so is to take action to prevent a system from
transitioning (22). Obviously, a proper treatment of this problem
would require the inclusion of stochasticity and parameter changes
through time, but many important ideas come through even from
examining a deterministic version of the problem with parameters
changing so slowly they can be assumed to be constant.
In the most basic situation, management would require chang-

ing the control parameter, such as nitrogen or phosphorous load
in time. There clearly are timescale issues here, as action would
need to be taken before the system transitioned into a state where
recovery could not be achieved by a small change in the control
parameter, but would require either a large change in the control
parameter or the state variable or both. However, this observation
may still understate the nature of the problem if the control pa-
rameter is itself one that has inherent biological dynamics. Two
particular systems (24, 25), one marine and one terrestrial, that
have been studied theoretically provide key insights into how
temporal scales play an important role in thinking of management
of systems that have tipping points and hysteresis.
In general, systems with tipping points have the dependence

roughly illustrated in Fig. 1, where the final system state after a
long time depends on the value of a parameter. Two important
general aspects are that management can consist of changes in
either the input parameter, or potentially changes in the system
state corresponding to changes along either the horizontal axis or
the vertical axis in Fig. 1, respectively. A second point is that dy-
namics near the unstable equilibrium as well to the right of the
“tipping point” in Fig. 1 proceed slowly because in both cases the
system is still near an equilibrium. This, often underappreciated,
role of timescales and slow dynamics in systems with tipping points
means that even when the outside influence (represented by the
parameter) has changed so no desirable equilibrium exists, there
can still be time to act.
In the description of grasslands (25) with exotics and natives that

have different responses to and requirements for nitrogen, the final
state of the system depends on the nitrogen level, with modifica-
tions possibly due to grazing and fire. Management actions that

were considered included responses to or changes in nitrogen in-
puts on the one hand, and changes in grazing levels on the other. In
analyzing this system, which embodies a more complex version of
the bifurcation diagram in Fig. 1, including hysteresis, the different
timescale of response of the system to changes in parameters
(nitrogen level) or what essentially is a change in the state (vege-
tation changes due to fir or grazing) were compared. The model
showed that direct changes in state may be the only way to led to
changes on ecological timescales. Note that the management
actions considered are not direct changes in the population level of
the plants, but actions that lead to changes. This biologically sen-
sible restriction has important consequences. This result embodies
the idea that in a system represented by diagram like Fig. 1, that
relative timescales of changes in the different axes may be key to
understanding the dynamics of the system.
Another specific interaction that incorporates the same kinds of

issues is the system of coral, algae, and grazers. In the simplest
description of the system, there is a hysterias relationship where at
high grazing levels the system is coral dominated (the desirable
state), at low grazing levels the system is dominated by microalgae,
and at intermediate grazing levels there are two stable outcomes
(high and low coral cover) with an unstable equilibrium in be-
tween. Thus, heuristically, understanding management options in
this system include the kinds of biological timescales arising in the

Fig. 1. Schematic diagram of a system with a tipping-point bifurcation
showing the role of time. This abstraction represents parts of systems discussed
in the text including a coral–algal grazer system, and a system with two plant
species and grazing. This is a bifurcation diagram showing both equilibria and
dynamics in the vertical direction as a function of a parameter that is varied in
the horizontal direction. The solid line represents stable equilibria, and the
dashed line represents unstable equilibria. The length (and color) of the arrows
represents the speed of change of the system at those values of the system
state and parameter. The state of the system will evolve both in response to
changes in the parameter and changes in the system state. In choosing how to
manage a system, it is important to recognize that the dynamics near either
A or B are slow because at both the system is near an equilibrium. At any
equilibrium, unstable or not, the rate of change is zero, so dynamics are slow
near any equilibrium. Also, it is important to recognize that direct changes of
system parameters or state may not be possible but may only occur in re-
sponse to changes in other variables with biologically determined timescales.
The dynamics in the figure are a generic system near a tipping point, namely,
dx/dt = −5*(a + x2), where a is a parameter and x is the system state.
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restoration problem for Spartina discussed above along with the
complications of hysteresis.
In the simpler models of this system, the state of the system was

described as the proportion of the habitat that was coral, macro-
algae, or turf, and grazing was represented as a parameter (26), so
management to reach a desirable outcome would involve changing
the grazing level. However, grazing is a biological process and in
the Caribbean is primarily due to feeding by parrotfish (26). In a
more detailed study of the dynamics of coral–algal–grazer systems
(24), the explicit dynamics of the grazer were included. Then the
control (management option) is not an adjustment of grazing
levels directly, but changes in fishing pressure, which leads to re-
ductions in mortality for the grazer. Consequently, the response of
the system is determined in large part by the demography and life
history of the grazer, and rate of change in the system is con-
strained by this biologically realistic bound.

Uncertainty
Thus far, I have not explicitly included the role of uncertainty in
management, which is a clear shortcoming. Instead, I have focused
on developing heuristic understanding that may prove useful in the
face of limited knowledge. Management of any system essentially
consists of determining the current state of the system, then
making predictions of the future state of the system as a result of
any actions taken, and finally choosing an action that leads to the
most desirable outcome. The role of uncertainty in all of these
aspects has long been recognized in fisheries management (27),
and these kinds of uncertainties certainly appear in any coupled
human–ecological system. Especially with nonlinearities (density-
dependent interactions), there is a limited ability to forecast system
dynamics in time (28). System dynamics may not be known, and
determination of system state may be difficult. Given the limited
ability to predict for long times, adaptive management would be
one approach (29). The issues that arise in the implementation of
adaptive management would further reinforce the importance of
recognition of the role of timescales.

Conclusions
Are there generalizations that emerge from the consideration of
ecological timescales in management? Beyond the simple obser-
vation that timescales play a critical role, even these relatively
simple systems have some common features. Especially in systems
with hysteresis and tipping points as represented in Fig. 1, it is first
important to recognize the difficulties in managing to change ei-
ther system states or parameters as only indirect manipulation may
be possible. Second, it is important to recognize that systems
change slowly either near tipping points or near unstable equi-
libria, so prompt action (22) may allow recovery. Much caution is
needed, however, in broadly applying any generalizations based on

systems that admittedly have been greatly simplified, leaving out
important biological issues ranging from global change to sto-
chasticity to spatial heterogeneity.
The challenge of managing ecological systems is becoming

increasingly important, and there is a truly vast literature that I
have only briefly described, leaving out many aspects. I have not
attempted the impossible of trying to be comprehensive but have
instead selected a very small number of case studies and par-
ticular approaches that highlight both general conclusions and
challenges. Clearly, the necessity of explicitly including temporal
aspects and the constraints of ecology lead to a difficult problem
even before the inclusion of economic and other human aspects.
Recognizing the issues arising even in the very simple systems
covered here, the prospect of understanding how temporal issues
play out on the global scale (30) is particularly daunting.
As I have been very selective in the methods and approaches

discussed, it is important to recognize other powerful approaches
for time-dependent optimization. The time-dependent control of
dynamical systems is an intensively studied area with elegant
mathematical approaches able to handle many difficult issues.
However, for ecological problems, action is often needed in the
face of relatively limited information. For problems with limited
information, there are also well-developed approaches, such as
partially observed Markov decision processes, which has been
applied to ecological problems (31). However, because these ap-
proaches can only be strictly applied with rather coarse speci-
fications of system states, it is important to develop heuristic
understanding of control of ecological systems as I have done here.
Alternatively, one could think of the ideas reviewed in the current
paper as exact solutions to approximate (simple) models rather
than approximate solutions to more detailed models; both ap-
proaches have their advantages.
Here, I have emphasized that an appreciation of the way that

ecological dynamics enters into different management problems
even in the context of very simple models can begin to provide
essential information about the kinds of approaches needed for
management and how ecological dynamics enters into assessments
of the efficacy of management actions. Actual implementation of
management approaches is a much more complex problem than
described here, and as noted adaptive management (29) must play
some role in real-world applications. Including more detailed as-
pects of the human dimensions of management problems (32)
leads to even more complex problems with timescales that must be
accounted for.

ACKNOWLEDGMENTS. This research was supported by US Army Research
Office Award W911NF-13-1-0305, National Science Foundation Grant DEB
1009957, and Hatch Project CA-D-ESP-2163-H.

1. Cuddington K, et al. (2013) Process‐based models are required to manage ecological

systems in a changing world. Ecosphere 4(2):1–12.
2. Clark CW (2010) Mathematical Bioeconomics: The Mathematics of Conservation

(Wiley, New York).
3. Callicott JB (2002) Choosing appropriate temporal and spatial scales for ecological

restoration. J Biosci 27(4, Suppl 2):409–420.
4. Woodcock BA, et al. (2012) Identifying time lags in the restoration of grassland

butterfly communities: A multi-site assessment. Biol Conserv 155:50–58.
5. Caswell H (2001) Matrix Population Models (Sinauer Associates, Sunderland, MA).
6. Ezard THG, et al. (2010) Matrix models for a changeable world: The importance of

transient dynamics in population management. J Appl Ecol 47(3):515–523.
7. Hastings A (2004) Transients: The key to long-term ecological understanding? Trends

Ecol Evol 19(1):39–45.
8. Hastings A (2010) The Robert H. MacArthur Award Lecture. Timescales, dynamics, and

ecological understanding. Ecology 91(12):3471–3480, discussion 3503–3514.
9. Crouse DT, Crowder LB, Caswell H (1987) A stage-based population model for log-

gerhead sea turtles and implications for conservation. Ecology 68(5):1412–1423.
10. Crowder LB, Crouse DT, Heppell SS, Martin TH (1994) Predicting the impact of turtle

excluder devices on loggerhead sea turtle populations. Ecol Appl 4(3):437–445.
11. Caswell H (2007) Sensitivity analysis of transient population dynamics. Ecol Lett 10(1):

1–15.

12. Halpern BS (2003) The impact of marine reserves: Do reserves work and does reserve
size matter? Ecol Appl 13(sp1):117–137.

13. White JW, et al. (2013) Transient responses of fished populations to marine reserve
establishment. Conserv Lett 6(3):180–191.

14. White JW, et al. (2011) Linking models with monitoring data for assessing perfor-

mance of no-take marine reserves. Front Ecol Environ 9(7):390–399.
15. Cohen JE (1979) The cumulative distance from an observed to a stable age structure.

SIAM J Appl Math 36(1):169–175.
16. Hopf JK, Jones GP, Williamson DH, Connolly SR (2016) Fishery consequences of marine

reserves: Short-term pain for longer-term gain. Ecol Appl 26(3):818–829.
17. Epanchin-Niell RS, Hastings A (2010) Controlling established invaders: Integrating eco-

nomics and spread dynamics to determine optimal management. Ecol Lett 13(4):528–541.
18. Hall RJ, Hastings A (2007) Minimizing invader impacts: Striking the right balance

between removal and restoration. J Theor Biol 249(3):437–444.
19. Hastings A, Hall RJ, Taylor CM (2006) A simple approach to optimal control of invasive

species. Theor Popul Biol 70(4):431–435.
20. Lampert A, Hastings A, Grosholz ED, Jardine SL, Sanchirico JN (2014) Optimal ap-

proaches for balancing invasive species eradication and endangered species man-

agement. Science 344(6187):1028–1031.
21. Blackwood J, Hastings A, Costello C (2010) Cost-effective management of invasive

species using linear-quadratic control. Ecol Econ 69(3):519–527.

14572 | www.pnas.org/cgi/doi/10.1073/pnas.1604974113 Hastings

www.pnas.org/cgi/doi/10.1073/pnas.1604974113


22. Biggs R, Carpenter SR, Brock WA (2009) Turning back from the brink: Detecting an
impending regime shift in time to avert it. Proc Natl Acad Sci USA 106(3):826–831.

23. Scheffer M, Carpenter SR, Dakos V, van Nes EH, Bailey RM (2015) Generic indicators of
ecological resilience: Inferring the chance of a critical transition. Annu Rev Ecol Evol
Syst 46(1):145–167.

24. Blackwood JC, Hastings A, Mumby PJ (2012) The effect of fishing on hysteresis in
Caribbean coral reefs. Theor Ecol 5(1):105–114.

25. Chisholm RA, Menge DNL, Fung T, Williams NSG, Levin SA (2015) The potential for
alternative stable states in nutrient-enriched invaded grasslands. Theor Ecol 8(4):
399–417.

26. Mumby PJ, Hastings A, Edwards HJ (2007) Thresholds and the resilience of Caribbean
coral reefs. Nature 450(7166):98–101.

27. Botsford LW, Castilla JC, Peterson CH (1997) The management of fisheries and marine
ecosystems. Science 277(5325):509–515.

28. Petchey OL, et al. (2015) The ecological forecast horizon, and examples of its uses and
determinants. Ecol Lett 18(7):597–611.

29. Walters C (1986) Adaptive Management of Renewable Resources (MacMillan, New
York).

30. Barnosky AD, et al. (2012) Approaching a state shift in Earth’s biosphere. Nature
486(7401):52–58.

31. Chadès I, et al. (2011) General rules for managing and surveying networks of pests,
diseases, and endangered species. Proc Natl Acad Sci USA 108(20):8323–8328.

32. Wilson RS, et al. (2016) A typology of time-scale mismatches and behavioral inter-
ventions to diagnose and solve conservation problems. Conserv Biol 30(1):42–49.

Hastings PNAS | December 20, 2016 | vol. 113 | no. 51 | 14573

SU
ST

A
IN
A
BI
LI
TY

SC
IE
N
CE

CO
LL
O
Q
U
IU
M

PA
PE

R




