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Abstract

Witten Deformation on noncompact manifolds and Landau-Ginzburg B-model

by

Junrong Yan

Motivated by the Calabi-Yau/Landau-Ginzburg correspondence, we study BCOV-type

torsion for Landau-Ginzburg B-models. To pave the way for understanding the Landau-

Ginzburg model from the index theoretic point of view, we study Witten deformation,

which was introduced in one of Witten’s extremely influential papers in 1987, on non-

compact manifolds. In Part I, we explore the analysis of Witten deformation on non-

compact manifolds: we show the asymptotic growth of eigenvalues and the decay of

eigenfunctions near infinity as well as the expansion and the estimate of the heat kernel

for Schrödinger-type operators on noncompact manifolds. With heat kernel expansions

of Schördinger-type operators, we define the Ray-Singer metric (analytic torsion) for

the Witten deformation associated with some flat vector bundle and explore several

nice properties of it (independence of metrics, Cheeger-Muller/Bismut-Zhang theorem,

e.t.c.). Next, we move on to study Landau-Ginzburg B-models in Part II. In chapter 6, we

investigate the genus-zero theory for Landau-Ginzburg B-models, and establish Calabi-

Yau/Landau-Ginzburg correspondence for the tt∗ structure and the Weil-Peterson type

metric.
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Chapter 1

Introduction

1.1 Background and Motivations

The mirror symmetry, first formulated in the 1990s, is a correspondence between the

symplectic geometry (A-model) of a Calabi-Yau manifold X and the complex geometry

(B-model) of its mirror X∨. Since its formulation over three decades ago [1, 2], the mirror

symmetry conjecture has had a profound influence on mathematics. The A-model on a

Calabi-Yau manifold X is the famous Gromov–Witten theory of X. The genus 0 theory

of Calabi-Yau B-model is related to the variation of Hodge structure, whereas the higher

genus B-model theory is known as BCOV theory [3], [4].

Simultaneously, physicists extended the above discussion to singularity theory, which

became known as the Landau-Ginzburg model. A Landau-Ginzburg model is defined

on the pair (X, f), where X is a complete noncompact Kähler manifold and f is a

holomorphic function. For the A-side, the Landau-Ginzburg A-model is constructed by

Fan-Jarvis-Ruan [5] following Witten’s proposal [6], which is known as FJRW-theory.

Moreover, Chang-Li-Li [7] recently formulated FJRW-theory in an algebraic geometric

formulation. On the B-side, Saito’s theories of primitive form [8] and the higher residue
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Introduction Chapter 1

pairing [9] generate the structure of a Frobenius manifold on the singularity’s universal

deformation space [10], which yield the the genus-0 theory of Landau-Ginzburg B-model.

Also, some Hodge theoretical aspect in LG B-model, called the tt∗-geometry, is discovered

by Cecotti-Vafa [11], whose integrability structure is studied by Dubrovin [12]. Later,

Hertling [13] carefully researched the tt∗ geometric structure and organized a variety of

known structures into the so-called TERP structure. Additionally, Fan [14] introduced

an analytic approach in the spirit of N = 2 geometry by studying the spectral theory of

a twisted Laplacian operator. Besides, Li-Wen [15] used the L2 Hodge theory to give a

Frobenius manifold structure for the case f with compact critical locus. Furthermore,

motivated by the Virasoro equations and localization calculation in the A-model at a

higher genus, Givental [16] gave a remarkable formula for the partition function in the

semi-simple case.

The Calabi-Yau/Landau-Ginzburg correspondence connects nonlinear sigma models

on Calabi-Yau manifolds with Landau-Ginzburg models. It turns out that CY/LG corre-

spondence and mirror symmetry have served as guidelines in the study of many branched

of mathematics (see the following diagram):

Calabi-Yau A-model Landau-Ginzburg A-model

Calabi-Yau B-model Landau-Ginzburg B-model

CY/LG

Mirror Symmetry

CY/LG

Mirror Symmetry

We attempt to understand the LG B-model and LG/CY correspondence from an

index theoretic perspective. In [3], Bershadshy-Cecotti-Ooguri-Vafa (BCOV) showed

that the genus-one term F1 for Sigma model on CY manifolds is computed by some

analytic torsion (BCOV torsion) and obtained a holomorphic anomaly formula. In the

spirit of the LG/CY correspondence, one might conjecture that the genus-one term for

2



Introduction Chapter 1

the LG model could be expressed as a torsion-type invariant (We call it BCOV type

torsion).

The CY/LG correspondence for the A model is partially done by Chiodo-Iritani-Ruan

[17]. The question of whether the LG/CY correspondence holds true for the B-model is

an intriguing and challenging one. To address this question, we should understand Witten

deformation on noncompact manifolds. Here the Witten deformation df is introduced in

the extremely influential paper [18], by considering the new differential df = d+df, where

d is the conventional exterior derivative on forms, and f is a Morse function. Setting

dTf := d+ Tdf,

Witten observed that the eigenfunctions of the small eigenvalues for the corresponding

deformed Hodge-Laplacian, the so-called Witten Laplacian, concentrate at the critical

points of f . As a result, Witten deformation builds a direct bridge between the Betti

numbers and the Morse indices of the critical points of f .

Witten deformation on closed manifolds has resulted in a wealth of beautiful ap-

plications, ranging from Demailly’s holomorphic Morse inequalities[19], to the proof of

Ray-Singer conjecture and its generalization by Bismut-Zhang [20], to the instigation of

the development of Floer homology theory.

The analysis of elliptic and parabolic PDEs on noncompact manifolds is critical in

Part I of this thesis, as it leads to an understanding of the asymptotic growth of eigen-

values and decay of eigenfunctions near infinity(Chapter 3), as well as the expansion

and the estimate of the heat kernel for Schördinger type operators on noncompact man-

ifolds (Chapter 4). Moreover, these analyses, for example, pave the way for connecting

the L2 cohomology of the Witten deformation on noncompact manifolds (Quantum vac-

uum space of LG models) to other cohomologies, allowing for the definition of important

3



Introduction Chapter 1

geometric/topological invariants such as the Ray-Singer analytic torsion for Witten de-

formation on noncompact manifolds (Chapter 5).

Following that, we move to the complex setting and examine the LG/CY corre-

spondence for the B-model. We establish LG/CY correspondence for genus 0 theory in

B-model (tt∗ structures) structures in Chapter 6. In fact, Carlson-Griffiths [21] compared

the cup product and symplectic pairing on the CY and LG sides. Also, Cecotti [22] in-

vestigated the tt∗ geometry structure on both sides from a physical standpoint. Besides,

Fan-Lan-Yang [23] partially proves that the two tt∗ structures are isomorphic via the

CY/LG correspondence except for the real structures. Here we use different methods

than [23, 24] to show the full CY/LG correspondence: we introduce two U(1) actions

(called U(1) charges in the physical literatures), which act as certain bi-grading for LG

B-models. We also establish CY/LG correspondence for Weil-Peterson type metrics us-

ing these two U(1) actions. Furthermore, the Agmon estimate derived in [25] plays an

essential role in our method.

To investigate the LG/CY correspondence for the genus 1 term in B-theory, we must

generalize our discussion in Chapter 4 and Chapter 5 to families of LG models and the

complex/holomorphic setting, which remains unexplored.

1.2 Definition and Notations

1.2.1 Tameness Conditions

Since we are working on noncompact manifolds, several tameness conditions are

needed.

Definition 1.2.1 (Bounded Geometry). Let (M, g) be an n-dimensional noncompact

connected complete Riemannian manifold with metric g. (M, g) is said to have bounded

4
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geometry, if the following conditions hold:

1. the injectivity radius r0 of M is positive.

2. |∇mR| ≤ Cm, where ∇mR is the m-th covariant derivative of the curvature tensor

and Cm is a constant only depending on m.

On such a manifold, the Sobolev constant is uniformly bounded, see e.g. [26]. Now

let f : M → R be a smooth function. In [14], several notions of tameness for the triple

(M, g, f) are introduced.

Definition 1.2.2 (Strongly Tameness). The triple (M, g, f) is said to be strongly tame,

if (M, g) has bounded geometry and

lim sup
p→∞

|∇2f |(p)
|∇f |2(p)

= 0,

and

lim
p→∞

|∇f | → ∞,

where ∇f,∇2f are the gradient and Hessian of f respectively.

Remark 1.2.3. Fix p0 ∈ M , and let d be the distance function induced by g. Here

p→ ∞ simply means that d(p, p0) → ∞.

Definition 1.2.4 (Well Tameness). The triple (M, g, f) is said to be well tame, if (M, g)

has bounded geometry and

lim sup
p→∞

|∇2f |(p)
|∇f |2(p)

<∞,

and

lim inf
p→∞

|∇f | > 0.

5
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As usual, the metric g induces a canonical metric (still denote it by g) on Λ∗(M),

which then defines an inner product (·, ·)L2 on Ω∗
c(M):

(ϕ, ψ)L2 =

∫
M

(ϕ, ψ)gdvol, ϕ, ψ ∈ Ω∗
c(M).

Let L2Λ∗(M) be the completion of Ω∗
c(M) with respect to ∥ · ∥L2 , and for simplicity,

we denote L2(M) := L2Λ0(M).

For any T ≥ 0, let dTf := d + Tdf∧ : Ω∗(M) → Ω∗+1(M) be the so-called Witten

deformation of de Rham operator d. It is an unbounded operator on L2Λ∗(M) with

domain Ω∗
c(M). Also, dTf has a formal adjoint operator δTf , with Dom(δTf ) = Ω∗

c(M),

such that

(dTfϕ, ψ)L2 = (ϕ, δTfψ)L2 , ϕ, ψ ∈ Ω∗
c(M).

Set ∆H,Tf = (dTf + δTf )
2, and we denote the Friedrichs extension of ∆H,Tf by □Tf .

As we will see (Theorem 3.1.1), if (M, g, f) is well tame, then ∆H,Tf is essentially self-

adjoint (and hence □Tf is the unique self-adjoint extension). In Appendix A (also see

Theorem 3.1.3), we will prove the Hodge-Kodaira decomposition when (M, g, f) is well

tame and T large enough,

L2Λ∗(M) = ker□Tf ⊕ Imd̄Tf ⊕ Imδ̄Tf , (1.1)

where d̄Tf and δ̄Tf are the minimal extensions of dTf and δTf respectively.

Setting Ω∗
(2)(M) := L2Λ∗(M) ∩ Ω∗(M), we have a chain complex (of unbounded

operators)

· · ·
dTf−−→ Ω∗

(2)(M)
dTf−−→ Ω∗+1

(2) (M)
dTf−−→ · · · .

Let H∗
(2)(M,dTf ) denote the cohomology of this complex. In Appendix A, we will show

6
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that H∗
(2)(M,dTf ) ∼= ker□Tf , provided (M, g, f) is well tame and T is large enough.

Finally, we note the following well-known fact(Cf. [18, 27]).

Proposition 1.2.5. The Hodge Laplacian ∆H,Tf has the following local expression:

∆H,Tf = ∆+ T∇2
ei,ej

f [ei∧, ιej ] + T 2|∇f |2. (1.2)

Here {ei} is a local frame on TM and {ei} is the dual frame on T ∗M , ∆ is the usual

Hodge Laplacian.

We now introduce several stronger tameness conditions we need in treating the local

index theorem.

Definition 1.2.6 (κ-regular Tameness). Let (M, g) be a complete Riemannian manifold

with bounded geometry, and κ ∈ [0, 1). We say (M, g, f) is κ-regular tame if

1. lim supp→∞
|∇mf |

|∇f |(m−1)κ+1 <∞, for any m ≥ 1;

2. limp→∞ |∇f | = ∞.

In typical examples from Landau-Ginzburg models, M = Cn with the Euclidean

metric and a nondegenerate quasi-homogeneous polynomial f . Then (Cn, f) is κ-regular

tame for some κ < 1, see the discussion in the last chapter. For our purpose, we refor-

mulate one of the consequences of κ-regular tameness. Indeed, an inductive argument

yields that, if (M, g, f) is κ-regular tame, then for V = |∇f |2, we have, for all k ∈ N,

lim sup
p→∞

|∇kV |
|V |(kκ+2)/2

<∞.

Remark 1.2.7. In [28], in order to prove Weyl’s law for Schrödinger operator on Rn,

Rozenbljum imposed similar κ-tameness conditions (see (0.6) in [28]). In the appendix,
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we will show that with κ-tameness condition, one can prove a weaker version of Weyl’s

law.

Our next condition ensures that we have a good local index theory.

Definition 1.2.8 (α-polynomial Tameness). Fix α ≥ n/2. A triple (M, g, f) is called

α-polynomial tame, if (M, g, f) is κ-regular tame for some κ ∈ (0, 1), and in addition,

there is some constant C, such that for all λ ≥ 0,

∫
{p∈M :|∇f |2(p)≤λ}

(λ− |∇f |2)n/2dvolM ≤ Cλα.

Again we will see that typical examples coming from Landau-Ginzburg models are

polynomial tame.

Remark 1.2.9. This condition should be interpreted in terms of the (semiclassical)

Weyl’s law for Schrödinger operators in Euclidean space ( Cf. [28, 29] ), which would

guarantee the polynomial growth of the eigenvalues. However, though expected, we could

not find in the literature such Weyl’s law on manifolds. To focus our discussion on the

asymptotic expansion of heat kernel and local index theorem, we only prove a weaker

version of Weyl’s law here under our assumption.

1.2.2 tt∗ Structures

To analyze the holomorphic anomaly formula and the CY/LG correspondence for

genus-one terms, we investigate the tt∗ geometry structure, which captures the 2D vac-

uum geometry in string theory. People believe that the tt∗ structure of the B-model

carries all the information of genus-zero terms. We will see later that both the CY

B-model and the LG B-model have tt∗ structures.

8
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Here we briefly illustrate the concept of tt∗ geometry; interested readers can refer

to [30] for more information: Let H be the Hilbert space of a QFT. Assume V ⊂ H is

a distinct subspace with a fixed finite dimension. For instance, let V be the space of

ground states |0⟩. Assume we have a family of physical theories parametrized by the

moduli space M and the full Hilbert space of physical theories stays unchanged, i.e., the

Hilbert space H is a trivial bundle over M. The distinguished subspace V (m), on the

other hand, now depends on m ∈ M. If V = ∪m∈MV (m), then V → M is a vector

bundle.

In the case of (2, 2) theories, it will turn out that M carries a Kähler structure, and

V → M is a holomorphic vector bundle, then we could assume m = (t, t̄).

Let
∣∣∣α (mi)j

〉
be an orthonormal basis of V (m), i.e.,

⟨α(m)k | α(m)j⟩ = δjk

The triviality of the Hilbert space bundle over M naturally defines a connection D on

the V -bundle,

(Ai)
k
j =

〈
α(m)k

∣∣∣∣ ∂

∂mi

∣∣∣∣α(m)j

〉
.

Moreover, fix m ∈ M, follows from state-operator correspondence in CFT, one has

Kodaira-Spencer type map C : TmM 7→ End(Vm). It follows from some physical argu-

ments (not rigorous in mathematics since path integral is involved) that

[Di, Dj] = 0,[
D̄i, D̄j

]
= 0,

[Di, Cj] = [Dj, Ci] ,
[
D̄i, C̄j

]
=
[
D̄j, C̄i

]
,[

Di, D̄j

]
= −

[
Ci, C̄j

]
,

(1.3)

9



Introduction Chapter 1

where Di = D∂ti
, D̄i = D∂t̄i

, Ci = C(∂ti), C̄i = C(∂t̄i). As a result, ∇z = D+D̄+ 1
z
C+zC̄

is a flat connection for any z ∈ C∗.

Lastly, V → M carries a natural real structure κ induced from H → M, which

satisfies several nice properties that we will state in a moment.

In summary, one has

Definition 1.2.10 (tt∗ structures). Let M be a complex manifolds, a tt ∗ geometry

structure (K →M,κ, g,D, D̄, C, C̄) consists of the following data:

• K →M is a holomorphic vector bundle,

• a complex anti-linear involution κ : K → K, i.e. κ2 = Id, κ(λα) = λ̄κ(α),∀λ ∈ C,

• a Hermitian metric g(u, v),

• a one parametric family of flat connections ∇z = D+ D̄+ 1
z
C + zC̄, where D+ D̄

is the Chern connection of g, D is the (1, 0) component of Chern connection, D̄ is

the (0, 1) component of Chern connection, C, C̄ are the C∞(M)-linear map

C : C∞(K) → C∞(K)⊗A(1,0)
M , C̄ : C∞(K) → C∞(K)⊗A(0,1)

M

satisfying

1. g is real with respect to κ : g(κ(u), κ(v)) = g(u, v),

2. (D + D̄)(κ) = 0, C̄ = κ ◦ C ◦ κ,

3. C̄ is the adjoint of C with respect to g, i.e. g (CXu, V ) = g
(
u, C̄Xv

)
, X ∈ TM .

Then we say such structure (K →M,κ, g,D,C, C̄) is a tt ∗ geometry structure.

Definition 1.2.11 (Morphism of tt∗ structures). Let Gi =
(
Ki −→M,κi, ηi, Di, Ci, C̄i

)
, i =

1, 2, be two tt∗ geometric structures. An morphism ϕ : K1 7→ K2 of two holomorphic bun-

10



Introduction Chapter 1

dles is called a morphism of two tt∗ geometric structure G1 and G2 if the following hold:

∀p ∈M,X ∈ TpM,u, v ∈ (H1)p,

1. η1(u, v) = η2 (ϕ(u), ϕ(v)).

2. κ2 ◦ ϕ = ϕ ◦ κ1.

3. ϕ ((D1)X u) = (D2)X (ϕ(u)) and ϕ ◦
((
D̄1

)
X̄
(κ1(u))

)
=
(
D̄2

)
X̄
(κ2 (ϕ(u))

4. ϕ ((C1)X u) = (C2)X (ϕ(u)) .

Two tt∗ structures are isomorphic if there exists morphism ϕ : G1 → G2, ψ : G2 → G1,

s.t. ϕ ◦ ψ = IdG2, ψ ◦ ϕ = IdG1 .

1.2.3 Mixed Hodge Structures and tt∗ Structures on LG B-

models

Mixed Hodge Structures on LG Models

Following Steenbrink [31], we explore the mixed Hodge structures of LG B-model for

a quasi-homogeneous polynomials: we consider a pair (X = Cn, f0), where f : Cn → C is

a quasi-homogenous polynomial, i.e., there exist q1, . . . , qn ∈ Q such that for any λ ∈ C∗,

f(λq1z1, . . . , λ
qnzn) = λf(z1, ..., zn).

Each qi is called the weight of zi, denote by wt(zi) = qi.

While, for convenience, we assume that f is non-degenerate, i.e. we require that

1. f contains no monomial of the form zizj for i ̸= j,

2. f has only an isolated singularity at the origin.

11
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The polynomial f plays the role of superpotential for LG model. For any t ∈ C∗,

Vt := {z ∈ Cn : f(z) = t}. Then we consider a projective compactification of V1 in a

weighted projective space. Let qi = ai/bi with (ai, bi) = 1, and d = lcm (b1, . . . , bn), i.e.

d is the least common multiple of b1, ..., bn. We put Qi = qid. Let z = (z1, ..., zn), and

Z = (z, zn+1), then the polynomial

Ft(Z) ≡ f (z)− tzdn+1.

is also quasi-homogeneous. LetM = P (Q1, Q2, . . . , Qn, 1) be the weight projective space

with weights (Q1, Q2, ..., Qn, 1), then V̄t := {[Z] ∈ P (Q1, Q2, . . . , Qn, 1) : Ft(Z) = 0}. If

we identify Cn with the open set in M where xn+1 ̸= 0, we see that Vt = V̄t ∩ Cn.

Generically, V̄t is not smooth: it is an orbifold. Let M∞ be the hypersurface in M given

by Xn+1 = 0. Then M∞ ∼= P (Q1, Q2, . . . , Qn). Consider the part of V̄t at infinity,

V∞ ≡ V̄ \Vt = V̄ ∩M∞,

i.e. the hypersurface in M∞ given by the equation

f(z) = 0.

Again, V∞ is an orbifold (in general). It follows from the Mayer-Vietoris exact sequence

of the couple
(
V̄t, Vt

)
and the Thom isomorphism H∗ (V̄t, Vt) ≃ H∗−2 (V∞) that

· · · → H i(V̄t) → H i (Vt) → H i−1 (V∞) → H i+1(V̄t) → · · · (1.4)

Hence

Hn−1 (Vt) ≃ Hn−1(V̄t)0 ⊕Hn−2 (V∞)0 ,

12
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where

Hn−1(V̄ )0 = coker
(
Hn−3 (V∞) → Hn−1(V̄t)

)
,

Hn−2 (V∞)0 = ker
(
Hn−2 (V∞) → Hn(V̄t)

)
.

From the Lefschetz theorem it is clear that Hn−2 (V∞)0 is just the primitive cohomology

of the Kähler orbifold V∞. The weight graduation of Hn−1 (Vt) is

Grn−1H
n−1 (Vt) ≃ Hn−1(V̄ )0

GrnH
n−1 (Vt) ≃ Hn−2 (V∞)0 [−1].

(1.5)

Hence Hn−1(V̄ )0 and Hn−2 (V∞) carry pure Hodge structures which define the Hodge

filtration of the group Hn−1 (Vt). In (1.5), [−1] means “Tate twist”, i.e., a degree shift

by −1 in the Hodge filtration:

F pGrnH
n−1 (Vt) ≃ F p−1Hn−2 (V∞)0 ,

which defines a morphism of Hodge structures of type (−1,−1).

Let Ωk(Cn) be the space of holomorphic k-forms,Hk
(2)(Cn, ∂̄f ) be the k-th L

2-cohomology

w.r.t. Witten deformation ∂̄f := ∂̄ + ∂f∧, Jac(f) := C[z1, ..., zn]/ < ∂1f, ..., ∂nf >, then

one can show that (c.f. [25, 23, 14]), as vector spaces,

Hn−1(Vt) ≃ Hn
(2)(Cn, ∂̄f ) ≃ Ωn(Cn)/df ∧ Ωn−1(Cn) ≃ Jac(f).

Now we would like to describe mixed Hodge structure on Ωn(Cn)/df ∧ Ωn−1(Cn) ≃

Jac(f) directly.

Fix a homogeneous basis {ϕa}a=0,...,µ−1 of Jac(f) with ϕ0 = 1, deg(ϕa) ≤ n − 2, and

let Aa := ϕadz1...dzn ∈ Ωn(Cn)/df ∧ Ωn−1(Cn).

13
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Definition 1.2.12. For A = zβ1

1 · · · zβn
n dz1 ∧ · · · ∧ dzn, we define

l(A) :=
n∑

i=1

(βi + 1)Qi.

Now assume that f is homogeneous of degree n. In this case, Qi ≡ 1.

Let Jac(f)′ := Span{ϕa : n|l(Aa)}, then by [31], as a vector space

GrnH
n−1 (Vt) ≃ Jac(f)′.

Moreover, one also has

F pGrnH
n−1 (Vt) ≃ Span{ϕa ∈ Jac(f)′ : l(Aa) ≤ n(n− 1− p)}.

In Section 6.3, we will define a map R : Jac(f)′ → Hn−2(V∞)0[−1] that preserve the

filtration. In particular, R(1) ∈ Ωn−2,0(V∞).

Monodromy, Leray Coboundary Map and Lefschetz Thimble.

Let ct(s) := te2πis, 0 ≤ s ≤ 1, then ct induces a monodromy operatorM : Hn−1(Vt) →

Hn−1(Vt).

Dualize (1.4), one shows

· · · → Hn(V̄t) → Hn−2 (V∞)
τ→ Hn−1(Vt) → Hn−1(V̄t) → · · · ,

where τ is the Leray coboundary map.

Then following Steenbrink [31], one has

GrnH
n−1 (Vt)

∗ ≃ ker(M − Id) ≃ τ(H),

14
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where V ∗ denotes the dual space of a vector space V.

Let s > 0, and consider the sets

F≥s = {z ∈ Cn | Re(F (z, u)) ≥ s} , F≤−s = {z ∈ Cn | Re(F (z, u)) ≤ −s} .

By Morse theory, we know that if there is no critical values of Re(F (z, u)) between [a, b],

then the set f≤a is the deformation kernel of F≤b by the flow generated by the vector

field ∇Re(F (z, u))/|∇Re(F (z, u))|. So if s is large enough, there is no critical points in

F≤−s and each F≤−s has the same homotopy type. We denote their equivalence class by

F−∞. Similarly, we have F+∞. We have the relative homology group H∗ (Cn, F−∞;Z)

and H∗ (Cn, F+∞;Z).

Following [23], we fix a basis {σk}µ−1
k=0 of Hn−1(V−1), such that σk ∈ ker(M − Id) for

0 ≤ k ≤ µ′ − 1. Hence, there exists δk ∈ Hn−2(V∞)0 := (Hn−2(V∞)0)
∗, s.t. σk = τ(δk) for

0 ≤ k ≤ µ′ − 1. For t > 0, let Φt : V−t → V−1 be the map (z1, .., zn) → (t−
1
n z1, ..., t

− 1
n zn),

and set

γk := ∪t>0(Φt)
∗σk,

then one can see easily that {γk}µ−1
k=0 is a basis of Hn(Cn, f−∞) (called Lefchetz thimble).

Similarly, one can construct a basis {γ̃k}µ−1
k=0 of Hn(Cn, f+∞).

Now we set up some notations for intersection matrices: let (I)ij(0 ≤ i, j ≤ µ− 1) be

the intersection matrix (see Definition 6.4.1 for the definition), I = I−1; I ′ij(0 ≤ i, j ≤

µ′ − 1) be a submatrix of I, and I ′ = (I ′)−1; (ICY )ij = δi ∩ δj be the intersection matrix,

and ICY = (ICY )−1.

15
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tt∗ Structures on LG Models

For simplicity, consider a marginal deformation of f :

F (u, x) = f(x) +
ν∑

i=1

uiψi(x),

i.e. l(ψidz1...dzn) = l(fdz1...dzn), i = 1, . . . , ν. We denote M by the space of parameters

ui, which should be a small neighborhood of the origin in Cν . As a result, we have a

family of supersymmetric algebra operators ∂̄F , ∂F , ∂̄
∗
F , ∂

∗
F ,∆F parameterized by u ∈M .

First, we have the following trivial complex Hilbert bundle L2Λ∗(X)×M →M . For

simplicity, denote by L2A its L2-integrable section space. There are two natural parings,

h : L2A× L2A −→ C∞(M) h(α, β) =

∫
X

α ∧ ∗β̄,

η : L2A× L2A −→ C∞(M) η(α, β) =

∫
X

α ∧ ∗β.

Moreover, there is a canonical real structure on the Hilbert bundle, which is given by

the complex conjugate τR. Then h(α, β) = η(α, τRβ)

Let Hn := Hn
F be the Hodge bundle over M , and its fiber at u ∈ M is the space of

all harmonic n-forms of ∆F (u). We denote the space of its section by H.

Let Πu : L2A → H be the harmonic projection, G be the inverse operator of ∆F

on im(∂̄F ) ⊕ im(∂̄∗F ), then G commutes with the operators ∂̄F , ∂F , ∂̄
∗
F , ∂

∗
F ,∆F , and the

operator form of Hodge decomposition reads

Id = Πu +∆FG = Π+G∆F .

On the Hodge bundle, we have

(1) The connection D, D̄

16
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Notice that the Hodge bundle is embedded into the Hilbert bundle, so we can define

D, D̄ in a natural way:

Di = Πu ◦ ∂i, D̄ī = Πu ◦ ∂̄ī i = 1, ..., s.

(2) The operators Ci, C̄ī

We define Ci = Πu ◦ ∂iF = Πu ◦ ψi, C̄ī = Πu ◦ ∂iF = Πu ◦ ψi. We can also compute

that

Ci = (∂iF )− ∂̄F ∂̄
∗
FG(∂iF ), C̄ī = (∂iF )− ∂F∂

∗
FG(∂iF ).

By definition, C̄ī is the adjoint operator of Ci with respect to the tt∗ metric h, i.e.

h(Ciα, β) = h(α, C̄īβ).

Proposition 1.2.13 (tt∗ equation). The operators Di, D̄j̄, Ci, C̄j̄ satisfy the following

equations

1. [Ci, Cj] = 0, [C̄ī, C̄j̄] = 0, [Di, C̄j̄] = [D̄ī, Cj] = 0;

2. [Di, Cj] = [Dj, Ci], [D̄ī, C̄j̄] = [D̄j̄, C̄ī];

3. [Di, Dj] = 0, [D̄ī, D̄j̄] = 0, [Di, D̄j̄] = −[Ci, C̄j̄].

As a result, (H →M, τR, h,D,C, C̄) carries a tt
∗ structure.

Now assume that f is homogeneous of degree n.

Definition 1.2.14 (small tt∗ structure on LG models). Let H′ ⊂ H be the subbundle

generated by wka, where l(Aka)/n ∈ Z. By Proposition 6.2.1, restriction of τR, h,D,C, C̄

to H′ defines a tt∗ structure, called small tt∗ geometry structure on LG models.

17
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1.3 Main Results

1.3.1 On Agmon Estimate and Thom-Smale-Witten Complex

In this subsection, we assume that (M, g) has bounded geometry, f is a Morse function

with finite many critical points. Clearly this will be the case if (M, g, f) is well tame and

f is Morse.

As we mentioned the main technical result here is the Agmon estimate for the eigen-

forms of the Witten Laplacian.

Theorem 1.3.1. Let (M, g, f) be well tame, and ω ∈ Dom(□Tf ) be an eigenform of □Tf

whose eigenvalue is uniformly bounded in T . Then

|ω(p)| ≤ CT (n+2)/2 exp(−aρT (p))∥ω∥L2 ,

for any a ∈ (0, 1) (provided T is sufficiently large and C is a constant depending on the

dimension n, the function f , the curvature bound, the injectivity radius lower bound r0,

and a; for the precise choice of T,C see the end of Section 3). Here the definition of the

Agmon distance ρT (p) will be given in Section 3.2.

The proof of the Agmon estimate, given in Section 3.5, is to carry out the idea of [32]

in this more general setting.

Set bi(T ) = dimH i
(2)(M,dTf ). If x is a critical point of f , denote nf (x) the Morse

index of f at x. Let mi be the number of critical points of f with Morse index i. Then

the strong Morse inequalities hold.

Theorem 1.3.2. If (M, g, f) is well tame, then we have the following strong Morse

inequality

(−1)k
k∑

i=0

(−1)ibi(T ) ≤ (−1)k
k∑

i=0

(−1)imi, ∀k ≤ n,

18
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provided T is large enough. And the equality holds for k = n.

In general, bi(T ) may be very sensitive to T . However, we have the following result

regarding the independence of bi(T ) in T . Assume that the Morse function f satisfies the

Smale transversality condition. Let (C∗(W u), ∂̃′) be the Thom-Smale complex given by

f . It is important to note that in general, since M is noncompact, it could happen that

(∂̃′)2 ̸= 0. Also let c > 0 be big enough, Uc = {p ∈ M : f(p) < −c} and (Ω∗(M,Uc), d)

be the relative de Rham complex.

Theorem 1.3.3. If (M, g, f) is well tame, then (∂̃′)2 = 0, and therefore the cohomology

H∗(C•(W u), ∂̃′) is well defined. Moreover, there exists T0 ≥ 0, such that H∗
(2)(M,dTf )

is isomorphic to H∗(C•(W u), ∂̃′) for all T > T0. In addition, H∗(C•(W u), ∂̃′), hence

H∗
(2)(M,dTf ) is isomorphic to the relative de Rham cohomology H∗

dR(M,Uc).

Remark 1.3.1. When (M, g, f) is strongly tame, T0 = 0.

By Theorem 1.3.3, we can refine our result of Theorem 1.3.2.

Corollary 1.3.4. If (M, g, f) is well tame, then bi(T ) is independent of T when T is big

enough. When (M, g, f) is strongly tame, bi(T ) is independent of T > 0.

Remark 1.3.2. Assume that M is oriented and let ∗ be the Hodge star operator. Then

∗□Tf = □−Tf∗. Hence we have the following Poincaré duality:

Hk(M,dTf ) ∼= Hn−k(M,d−Tf ).

1.3.2 Heat Kernel Expansion and Local Index Theorem

As we will see in the next section, the α-polynomial tame condition guarantees that

exp(−t□Tf ) is of trace class. Our first contribution is the pointwise asymptotic expansion

of the heat kernel of the Witten Laplacian with a strong remainder estimate.
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Let (M, g, f) be α-polynomial tame, and KTf (t, x, y) denote the heat kernel of the

Witten Laplacian □Tf . Denote by hT (x, y) the average of the potential function T
2|∇f |2

on the geodesic segment from x to y, Cf. (4.8).

Theorem 1.3.5. The heat kernel KTf has the following complete pointwise asymptotic

expansion. For any x, y ∈M such that d(x, y) ≤ 1
2
τ ,

KTf (t, x, y) ∼
1

(4πt)
n
2

exp(−d2(x, y)/4t) exp(−thT (x, y))
∞∑
j=0

tjθT,j(x, y),

as t→ 0. Each θT,j is a polynomial of T :

θT,j(x, y) =

[ j
3
]+j∑

l=0

T lθl,j(x, y),

and, when restricted to the diagonal of M ×M , θl,j(y, y) can be written as an algebraic

combination of the curvature of the metric g, the function f , as well as their derivatives,

at y; in addition, θT,0(y, y) = Id . Moreover, we have the following remainder estimate.

For any k sufficiently large and any a ∈ (0, 1),

∣∣∣∣∣KTf (t, x, y)−
1

(4πt)
n
2

exp(−d2(x, y)/4t) exp(−t hT (x, y))
k∑

j=0

tjθT,j(x, y)

∣∣∣∣∣
≤ Ct

1
3
(1−κ)k−κ+2

3
−n

2
+1T

−2k+4
3 exp(−ad̃T (t, x, y)),

for t ∈ (0, 1] and T ∈ (0, t−
1
2 ].

Here d̃T (t, x, y) is the parabolic distance alluded at the beginning of the introduction,

see (4.14) for the precise definition. By relating it to the Agmon distance we can obtain

an effective bound on d̃T (t, x, y), which, when combined with the theorem above, yields
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the following corollary.

Corollary 1.3.6. For T = t−
1
2 , and any k sufficiently large, any a ∈ (0, 1),

∣∣∣∣∣∣Kt−
1
2 f
(t, x, x)− 1

(4πt)
n
2

exp(−|∇f |2(x))
k∑

j=0

[ j
3
]+j∑

l=0

tj−
l
2 θl,j(x, x)

∣∣∣∣∣∣
≤ Ct

1
3
(2−κ)k−κ+1

3
−n

2 exp(−aβ̄|∇f |1−κ(x)),

for t ∈ (0, 1], where β̄ > 0 is a constant depending only on the bounds in the tameness

condition. In particular, we have the following small time asymptotic expansion of the

heat trace:

Trs

(
exp(−t□

t−
1
2 f
)
)
∼ 1

(4πt)
n
2

∞∑
j=0

[ j
3
]+j∑

l=0

tj−
l
2

∫
M

exp(−|∇f |2(x)) trs(θl,j(x, x))dx,

as t→ 0, with the remainder estimate

∣∣∣∣∣∣Trs
(
exp(−t□

t−
1
2 f
)
)
− 1

(4πt)
n
2

k∑
j=0

[ j
3
]+j∑

l=0

tj−
l
2

∫
M

exp(−|∇f |2(x)) trs(θl,j(x, x))dx

∣∣∣∣∣∣
≤ Ct

1
3
(2−κ)k−κ+1

3
−n

2 .

Here Trs and trs denote the global supertrace and pointwise supertrace respectively.

On the other hand, by Theorem 1.3 in [25] and the α-polynomial tame condition, the

index of the Witten Laplacian

χ(M,dTf ) =
n∑

i=0

(−1)ibi(T ), bi(T ) = dim(H i
(2)(M,dTf ))

is independent of T > 0. In fact we have that Trs(exp(−t□Tf )) is independent of t and
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T and

χ(M,dTf ) = ind(□Tf ) = Trs(−t exp(□t−
1
2 f
)) =

∫
M

trs(KTf (t, x, x))dx.

Now apply our new rescaling technique, one has

Theorem 1.3.7 (Local index theorem and index formula for □Tf ). For any x ∈M , we

have

lim
t→0

trs(Kt−
1
2 f
(t, x, x)) =

(−1)[
n+1
2

]

π
n
2

exp(−|∇f(x)|2)
∫ B

exp(−R̃(x)
2

− ∇̃2f(x)).

In particular, for any T > 0,

ind(□Tf ) =
(−1)[

n+1
2

]

π
n
2

∫
M

exp(−|∇f |2)
∫ B

exp(−R̃
2
− ∇̃2f). (1.6)

Here
∫ B

denotes the Berezin integral, which will be introduced in a moment, and

R̃, ∇̃2f ∈ Ω∗(M)⊗̂Ω∗(M) are defined as

R̃ = −
∑

i<j,k<l

Rijkle
iej êkêl, ∇̃2f = ∇2

ei,ej
feiêj

for some orthonormal frame {ei} in TM and its dual frame {ei} in T ∗M . We have

used {êi} to denote the same orthonormal frame in the second copy of T ∗M . For any

ω ∈ Ω∗(M)⊗̂Ω∗(TM), I = {i1, ..., ik} ⊂ 1, 2, ..., n, we write ω as

ω =
∑
I

wI ê
I ,
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where êI = êi1 ∧ ... ∧ êik . Then the Berezin integral is defined as

∫ B

: Ω∗(M)⊗̂Ω∗(M) 7→ Ω∗(M),

∫ B

ω = ω1,2,...,n.

Remark 1.3.3.

1. Here the index density is computed by coupling tT 2 = 1. Our arguments still work if

we set tT 2 to be any positive constant T0. As T0 → ∞, the integral of index density

localizes at critical points of f . On the other hand, when T0 → 0+, the index of □Tf

should depend on “the topology away from infinity” and the behavior of f near the

infinity. This will be discussed in more detail in a separate paper where we extend

our treatment to Dirac/Callias type operators.

2. When M is compact, (1.6) is a special case of a formula in Chapter 3 of [27].

3. Notice that
∫ B

exp(−∇2f) = (−1)[
n
2
] det(−∇2f). Thus, when M = Rn, (1.6)

reduces to

χ(Rn, df ) =
(−1)n

π
n
2

∫
Rn

exp(−|∇f |2) det(−∇2f)dvol.

In particular, when M = Cn, f is a holomorphic function such that its real part

Ref is polynomial tame, we have

χ(Cn, df ) =
1

πn

∫
Cn

exp(−|∇Ref |2)det(−∇2Ref)dvol

=
(−1)n

πn

∫
Cn

exp(−|∂f |2)|det(−∂2f)|2dvol

is given by the Milnor number of f . This is a generalization of a result in [33], see

the last section for more discussion.
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1.3.3 LG/CY Correspondence for Weil-Peterson-type Metric

and tt∗ Structures

Let f : Cn → C be a quasi-homogeneous polynomial, F (z, u) be a marginal deforma-

tion of f :

F (x, u) = f(x) +
ν∑

i=1

uiψi(x),

i.e. l(ψidz1...dzn) = l(fdz1...dzn), i = 1, . . . , ν (Recall Definition 1.2.12 for the definition

of l). We denoteM by the space of parameters ui, which should be a small neighborhood

of the origin in Cν .

For each Aa = ϕadz1...dzn, there exists a harmonic form wa(u) ∈ ker(∆F (·,u)) (c.f.

Proposition 6.1.2), s.t.

wa(u) = Aa + ∂̄F (·,u)νa(u)

for some νa, such that ηa has at most polynomial growth.

Theorem 1.3.8. M carries a Weil-Peterson type metric G. More explicitly, one has

Gij̄ = ∂i∂̄j log h(w0(u), w0(u)) =
h(Ciw0(u), Cjw0(u))

h(w0(u), w0(u))
,

where Gij̄ = G(∂i, J∂̄j),∂i :=
∂

∂ui
, ∂̄j :=

∂
∂ūj
, J is the canonical complex structure on Cn.

Now assume that f is homogeneous of degree n. Fix a homogeneous basis

{ϕa}µ−1
a=0 of Jac(f), such that l(Aa) ≤ l(Ab) if a < b, ϕ0 = 1. Moreover, assume that

{ϕai}
µ′−1
i=0 is a basis of Jac(f)′. Let |u| be small enough, such that {ϕa}µ−1

a=0 is still a basis

of Jac(F (·, u)), {γk}µk=0 constructed in Section 1.2.3 is still a basis of Hn(Cn, F (·, u)−∞).

By [25] or Theorem 1.3.3, one can see that {eF+F̄wa} ({e−F−F̄ ∗ wa}) is a basis of
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Hn(Cn, F (·, u)−∞) (Hn(Cn, F (·, u)+∞)). Consequently, the matrix

(A)ka :=

∫
γk

eF+F̄wa

and

(Ã)ka :=

∫
γ̃k

e−F−F̄ ∗ wa

are invertible.

Let

(B)ka :=
∫
γk

eFAa,

and

(B̃)ka :=
∫
γk

e−F ∗ Aa,

then there exist matrices T and T̃ , such that B = T A and B̃ = T̃ Ã.

In [11], using Leznov-Saveliev method, Cecotti-Vafa shows that there exists (c.f. (A.9)

in [11]) a block-diagonal and holomorphic matrix F , a unit lower triangular matrix N ,

such that T = eFN . As a result, there exists a holomorphic function λ(u), such that

∫
γk

eF+F̄w0 = eλ(u)
∫
γk

eFdz1...dzn.

However, we have a more explicit description of T . Moreover, λ(u) ≡ 0 :
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Theorem 1.3.9. T and T̃ are (block) unit lower triangular matrix. More explicitly,

(T )aa = 1 for 0 ≤ a ≤ µ− 1;

(T )ab = 0 if a < b;

(T )ab =


0, if l(Aa)−l(Ab)

n
/∈ Z+;

(−1)lab

lab!

∑
lc=lb

∫
Cn f̄

labAa ∧ ∗w̄ch
cb, if lab :=

l(Aa)−l(Ab)
n

∈ Z+.

(We will see that by Agmon estimate,
∫
Cn f̄

labAa ∧ ∗w̄b <∞. )

Here (hab) is the inverse of (hab), hab = h(wa, wb). In particular,

∫
γk

eF+F̄w0 =

∫
γk

eFdz1...dzn,

∫
γ̃k

e−F−F̄ ∗ w0 =

∫
γ̃k

e−F ∗ dz1...dzn,

Let Xu = {[z] ∈ CP n−1 : F (z, u) = 0}. In Section 6.3, we will define a map R :

Jac(F (·, u))′ → Hn−2(Xu)0[−1] that preserves the Hodge filtration. In particular, R(1)

is a nowhere vanishing holomorphic (n−2)-form onXu. Now let GCY := ∂∂̄ log
∫
Xu
R(1)∧

∗R(1), then GCY is the Weil-Peterson metric on M. It follows from Theorem 1.3.9, that

Theorem 1.3.10. G = GCY .

Eventually,

Theorem 1.3.11. The small tt∗ structure on LG’s side (See Definition 1.2.14) and the

tt∗ structure on CY’s side (See Definition 2.4.7) are isomorphic.
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Preliminary

2.1 Witten Deformation on Closed Manifolds

In this section, we will have a brief review on Witten deformation on closed manifolds.

2.1.1 Hodge Theory

Let (M, g) be an n-dimensional closed Riemannian manifold.

Recall that with the exterior differential d : Ωk(M) → Ωk+1(M), we have a cochain

complex

(Ω∗(M), d) : 0 → Ω0(M)
d→ Ω1(M)

d→ · · · d→ Ωn(M)
d→ 0

called the de Rham complex, with de Rham cohomology:

Hk
dR(M ;R) :=

ker d|Ωk(M)

Im d|Ωk−1(M)

.
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The Riemannian metric g induces an inner-product on Ωk(M) via

(α, β)L2 =

∫
M

α ∧ ∗β

where ∗ : Ωk(M) → Ωn−k(M) is the Hodge star operator. If we denote by δ : Ωk(M) →

Ωk−1(M) by

δ = (−1)nk+n+1 ∗ d∗,

it is easy to see that

⟨dα, β⟩ = ⟨α, δβ⟩ .

That is, δ if the formally adjoint of d.

If we denote the de Rham-Hodge operator by D = d + δ, then the Hodge Laplacian

∆ := D2 = dδ + δd. In particular, one has the Kodaira-Hodge decomposition theorem

holds,

Ω∗(M) = ker∆⊕ Im d⊕ Im δ.

We call α is a harmonic form if α ∈ ker(∆). As a corollary, we have the isomorphism

ker∆ ≃ H∗
dR(M ;R).

We can obtain a nice local expression if we introduce the Clifford operators, which

give an action of TM on Ω∗(M). If v ∈ TM , set

c(v) := v# ∧ −ιv and ĉ(v) := v# ∧+ιv

where ιv is the interior product and v# ∈ T ∗M is the dual of v under g. We will also
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denote c
(
v#
)
= c(v) and ĉ

(
v#
)
= ĉ(v). One has Clifford relations for these maps:

c(v)c(w) + c(w)c(v) = −2g(v, w)

ĉ(v)ĉ(w) + ĉ(w)ĉ(v) = 2g(v, w)

c(v)ĉ(w) + ĉ(w)c(v) = 0

Given a local orthonormal frame {ei}ni=1 for TM with corresponding dual basis {ei}ni=1

of T ∗M , and denoting by ∇ the Levi-Civita connection, we have the following local

expressions:

d =
n∑

i=1

ei ∧∇ei ,

δ = −
n∑

i=1

ιei∇ei ,

D =
n∑

i=1

c (ei)∇ei .

2.1.2 Witten Deformation

Let f ∈ C∞(M) be a Morse function on M , and for T ∈ R define the deformation of

the exterior diferential differential as:

dTf = e−TfdeTf = d+ Tdf ∧ .

One can see that dTf : Ωk(M) → Ωk+1(M), for any k. Also,

d2Tf = e−Tfd2eTf = 0.

Therefore, we have a cochain complex

(Ω•(M), dTf ) : 0 → Ω0(M)
dTf−→ Ω1(M)

dTf−→ · · ·
dTf−→ Ωn(M)

dTf−→ 0
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and the cohomology space

H∗
Tf,dR(M ;R) :=

ker dTf |Ω∗(M)

Im dTf |Ω∗−1(M)

Let δTf be the formal adjoint of dTf with respect to L2 metric

(α, β)L2 =

∫
M

α ∧ ∗β.

That is,

⟨dTfα, β⟩ = ⟨α, δTfβ⟩ .

If we denote the de Rham-Hodge operator by DT = dTf + δTf , then the Hodge

Laplacian ∆T := D2
T = dTfδTf + δTfdTf . In particular, one has the Kodaira-Hodge

decomposition theorem holds,

Ω∗(M) = ker∆T ⊕ Im dTf ⊕ Im δTf .

We call α is a harmonic form if α ∈ ker(∆T ). As a corollary, we have the isomorphism

ker∆T ≃ H∗
Tf,dR(M ;R).

We can obtain a nice local expression by using the Clifford operators: Given a local

orthonormal frame {ei}ni=1 of TM with corresponding dual basis {ei}ni=1 of T ∗M , and
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denoting by ∇ the Levi-Civita connection, we have the following local expressions:

dTf =
n∑

i=1

ei ∧∇ei + Tdf∧,

δ = −
n∑

i=1

ιei∇ei + Tι∇f ,

D =
n∑

i=1

c (ei)∇ei + T ĉ(df).

Moreover, by a direct computation, ∆T = ∆+ T∇2
ei,ej

fc(ei)ĉ(ej) + T 2|∇f |2.

2.1.3 Witten’s Idea

Now, we can briefly illustrate Witten’s idea here: look at an eigenform u of ∆T with

respect to eigenvalue λ, one can see easily that if the value of u doesn’t concentrate on

the nearby of cirtical points, i.e., the place where ∇f = 0, then it must concentrate at

somewhere, say U , that |∇f | > c for some c > 0. Restricted on U , ∆T ≥ cT 2

2
if T is big.

As a result, one must have λ ≥ cT 2

2
. In other words, if we focus on the eigenspaces with

respect to eigenvalues λ = O(1) as T → ∞, then we can localize our discussion at the

critical points of f. See [27, 25] or Chapter 3 for more details.

2.2 Analytic Torsion on Closed Manifolds

In this section, we will review analytic torsion on closed manifolds.

2.2.1 The Finite-dimensional Case

If V is a finite-dimensional k-vector space of dimension n, then we define the deter-

minant of V by

det(V ) := ΛnV.
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One can see that det is a functor from the category of finite-dimensional vector space to

the category of one-dimensional vector space.

If L is a one-dimensional vector space, then we have a canonical isomorphism

End(L) ∼= k

Under this identification the morphism det(A) : detV → detV induced by a morphism

A : V → V is exactly mapped to the element det(A) ∈ k.

We now consider a finite chain complex over k,

C : · · · → Cn−1 → Cn → Cn+1 → . . .

of finite-dimensional k-vector spaces.

Definition 2.2.1. We define the determinant of the chain complex C to be the one

dimensional k-vector space

det C :=
⊗
n

(detCn)(−1)n

The determinant det(C) only depends on the underlying Z-graded vector space of C and

not on the differential.

The cohomology H(C) of the chain complex C can be thought as a chain complex

with trivial differentials. Hence detH(C) is also well-defined.

Moreover, one has

Proposition 2.2.2. We have the so-called torsion isomorphism

τC : det C
∼=→ detH(C).
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We now assume that k = R or k = C. Given a metric hV on V . It induces a metric

hdetV on det V .

On a chain complex C, Let hC be a collections of metrics
(
hCn
)
n.
Such a metric induces

a metric hdetC on det C. Hence induce a metric τC,∗h
C on detH(C).

Definition 2.2.3. Let C be a finite chain complex and hC and hH(C) metrics on C and

its cohomology H(C). Then the analytic torsion

T
(
C, hC, hH(C)) ∈ R+

is defined by the relation

hdetH(C) = T
(
C, hC, hH(C)) τC,∗hdet C,

where hdetH(C) is the metric on detH(C) induced by hH(C), hdet(C) is the metric on det(C)

induced by hC.

We consider the Z-graded vector space

C :=
⊕
n∈Z

Cn

and the differential d : C → C as a linear map of degree one. The metric hC induces a

metric hC on C. Using hC we can define the adjoint d∗ : C → C which has degree −1.

We define the Hodge Laplace

∆ := (d+ d∗)2 = dd∗ + d∗d.
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We have the Hodge decomposition

C ∼= ker∆⊕ Im(d)⊕ Im (d∗) , Ker(d) = Ker(d)⊕ Im∆.

In particular, we get an isomorphism of graded vector spaces

H(C) ∼= ker(∆)

This isomorphism induces the Hodge metric h
H(C)
Hodge on H(C).

One can show that

Proposition 2.2.4. We have the equality

T
(
C, hC, hH(C)

Hodge

)
=

√∏
n∈Z

det (∆′
n)

(−1)nn

This proposition enables us to extend the definition of Analytic torsion to infinite-

dimensional vector spaces.

2.2.2 Determinant in Infinite Dimensional Case

By Proposition 2.2.4, to define analytic torsion, we have to extend the definition of

the determinant of an operator to the infinite-dimensional case.

First, observe that if V is a finite dimensional vector space of dimension n over R or

C, A : V → V is positive definite, then A is diagonalizable. Suppose A has eigenvalues

λ1, ...λn (Counting with multiplicity), then

ln det(A) =
n∑

i=1

ln(λi) =
n∑

i=1

∂λsi
∂s

∣∣∣∣
s=0

.
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Now define ZA(s) :=
∑n

i=1 λ
s
i . Since for λ > 0, λs = 1

Γ(s)

∫∞
0
ts−1e−tλdt, one has

ZA(s) =
1

Γ(s)

∫ ∞

0

ts−1

n∑
i=1

e−tλidt =
1

Γ(s)

∫ ∞

0

ts−1Tr(e−tA)dt.

Hence, if A = ∆, then we could make sense of det(∆) by using heat kernels.

2.2.3 Infinite Dimensional Case

Let now
(
M, gTM

)
be a closed Riemannian manifold, and let

(
E,∇E, hE

)
be a flat

vector bundle with metric hE. Then we can equip the de Rham complex Ω∗(M ;E) with

a a metric h
Ω(M ;E)

L2 given by

h
Ω(M ;E)

L2 (α, β) =

∫
M

(α, β)gTM ,hEdvolM ,

where (α, β)gTM ,hE is defined as follows: if α = ω ⊗ s, β = ω′ ⊗ s′ ∈ Ω∗(M,E) for

ω, ω′ ∈ Ω∗(M), s, s′ ∈ Γ(M,E), then

(α, β)gTM ,hE := gTM(ω, ω′)hE(s, s′).

Now the connection ∇E : Ω0(M,E) → Ω1(M,E) extends uniquely to a derivation of

Ω(M)-modules

dE : Ω∗(M,E) → Ω∗+1(M,E)

of degree one and (dE)2 = 0. Then the Laplace operator

∆ :=
(
dE,∗ + dE

)2
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preserves degree and its components

∆k : Ω
k(M,E) → Ωk(M,E), k ∈ N

are of Laplace type.

Notice that on a closed manifold, the heat kernel K(t, x, x) of a Laplacian type oper-

ator ∆ has the following asymptotic expansion near the diagonal:

K(t, x, y) =
∞∑
k=0

E0(t, x, y)tkθk(x, y),

where E0(t, x, y) = 1√
4πt
e−

d2(x,y)
4t .

In particular, one has

K(t, x, x) =
∞∑
k=0

tk√
4π
θk(x, x),

and

Tr(e−t∆) =
∞∑
k=0

t−
n
2
+k

√
4π

∫
M

θk(x, x)dvolM =
∞∑
k=0

akt
−n

2
+k. (2.1)

Naively, the zeta function is defined by

ζ∆(s) :=
1

Γ(s)

∫ ∞

0

ts−1Tr(e−t∆)dt.

However, it doesn’t make sense. Hence we need to regularize it:

1. If ker(∆) ̸= 0, then for any s ∈ C, |
∫∞
0
ts−1Tr(e−t∆)dt| ≥

∫∞
0
tRe(s)−1dt = ∞.

Hence, we restrict on the orthogonal complement of ker(∆). Let ∆′ = ∆|ker∆⊥ .

2. ByWeyl’s law, since the eigenvalues of ∆ has polynomial growth,
∫∞
1
ts−1Tr(e−t∆′

)dt

is holomorphic for any s ∈ C.
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3. By (2.1), 1
Γ(s)

∫ 1

0
ts−1

(
Tr(e−t∆′

)−
∑l

k=0 t
−n

2
+kak

)
dt is holomorphic for Re(s) ≥

l − n
2
.

4. When Re(s) >> 0,

1

Γ(s)

∫ 1

0

ts−1

(
l∑

k=0

t−
n
2
+kak

)
dt =

l∑
k=0

1

Γ(s)
=

l∑
k=0

1

(−n
2
+ k + s)Γ(s)

.

As a result, 1
Γ(s)

∫ 1

0
ts−1

(∑l
k=0 t

−n
2
+kak

)
dt could be extended to a holomorphic

function near s = 0.

In a word, there is a way to regularize the zeta function ζ∆′(s) such that ζ∆′(s) is

holomorphic near s = 0.

Now we can define det(∆′) := eζ
′
∆′ (0).

Definition 2.2.5. We define the analytic torsion of
(
M,∇, hTM , hE

)
by

Tan
(
M,∇E, hTM , hE

)
:=

√∏
k∈N

(det∆′
k)

(−1)kk

It is the analog of T
(
Ω∗(M,E), h

Ω∗(M,E)

L2 , h
H∗(M,E)
Hodge

)
.

2.3 Cheeger-Muller/Bismut-Zhang Theorem

In this section, we will briefly introduce Cheeger-Muller/Bismut-Zhang theorem. For

simplicity, now we let E =M×R be the trivial line bundle, (M, g) be a closed Riemannian

manifold.
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2.3.1 Thom-Smale-Witten Theory

Definition 2.3.1. A Morse function f ∈ C∞(M) is a smooth function on M , such that

∇2f(x) is non-degenerate at every critical point x ∈ M of f . The index of a critical

point if (x) is the number of negative eigenvalues of ∇2f(x).

For i ∈ N, we let Critf (i) denote the set of critical points of index i so that Critf =⋃
i∈N Critf (i) is the set of critical points of f .

Definition 2.3.2. The stable (unstable) manifold W s(x) (W u(x)) of a critical point x ∈

Critf is the subset ofM of all points y ∈M such that limt→∞ Φt(y) = x (limt→−∞ Φt(y) =

x). Here Φt is the flow with respect to −∇f.

Definition 2.3.3. We say that the triple (M, g, f), where f is a Morse function, satisfies

the Morse-Smale condition, if for every pair of critical points x, y ∈ M the intersection

of W u(x) and W s(y) is transversal.

Fix a Morse function f , the set of metric g that makes the triple (M, g, f) satisfy the

Morse-Smale condition is a dense open set in the space of Riemannian metric on M.

Classical Morse theory tells us that a Morse function f gives a CW structure of a

closed manifold, whose cellular chain complex (called Thom-Smale-Witten chain com-

plex) could be described as follows:

First, fix orientations on unstable manifolds W u(x). The vector space of degree i-

chains is given by

Ci(W
u) := R [Critf (i)]

The chosen orientations of the unstable manifolds induce orientations. The same choices

induce coorientations of the stable manifolds. For a pair

x, y ∈ Critf with if (y) = if (x) + 1
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the intersection

W u(y) ∩W s(x)

is transversal, consists of finite number of curves. As an intersection of an oriented and

a cooriented manifold, it is oriented. We define the multiplicity of γ ∈ W u(y) ∩W s(x)

m(γ) ∈ {1,−1}

such that the gradient m(γ)∇f is positively oriented on γ. We can now define the

differential of the Morse-Smale complex by

∂ : Ci+1 → Ci, y 7→
∑

x∈Critf (i)

∑
γ∈(Wu(y)∩W s(x))

m(γ)x.

2.3.2 Milnor Metric and Ray-Singer Metric

Let (C∗(W u), ∂̃′) denote the Thom-Smale-Witten cochain complex, H∗(C•(W u), ∂̃′)

denote the Thom-Smale-Witten cohomology. We also introduce an inner product on

Ci(W
u) as follows:

if x, y ∈ Critf (i), then ⟨x, y⟩ = 0 if x ̸= y; ⟨x, x⟩ = 1.

This induces a metric hC
∗(Wu) on C∗(W u).

Recall the canonical map τC∗ given in Proposition 2.2.2.

Definition 2.3.4. We define the Milnor metric on detH∗(C•(W u), ∂̃′) by

∥ · ∥M,∇f
detH•(M,R) = τC∗(Wu)h

detC∗(Wu).

We now consider the de Rham complex Ω(M,R). Its cohomology will be denoted

by H(M,R). The Riemannian metric on M induces an L2- metric h
H(M,R)
Hodge on the coho-
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mology. We get an induced metric h
detH(M,R)
Hodge on detH(M,R) and the analytic torsion

Tan
(
M,d, gTM

)
, see Definition 2.2.5 (Here d is the de Rham differential).

Definition 2.3.5. We define the Ray-Singer metric

∥ · ∥RS
detH•(M,R) := Tan

(
M,d, gTM

)−1
h
detH(M,R)
Hodge

Theorem 2.3.1 (Cheeger-Müller/Bismut-Zhang theorem). If
(
M, gTM

)
is a closed odd-

dimensional Riemannian manifold, then we have the equality of metrics

∥ · ∥RS
detH•(M,R) = ∥ · ∥M,∇f

detH•(M,R).

This is not the most general version, we refer to [20] for the general case.

Sketch of the proof. If we replace the de Rham differential d by Witten deformation d+

Tdf for T ∈ R. Its cohomology will be denoted by H(M,R)T . The Riemannian metric

on M induces an L2- metric h
H(M,R)
Hodge (T ) on the cohomology. We get an induced metric

h
detH(M,R)
Hodge (T ) on detH(M,R)T and the analytic torsion ∥ · ∥M,∇f

detH•(M,R).

We could also define the Ray-Singer metric

∥ · ∥RS
detH•(M,R)(T ) := Tan

(
M,dTf , g

TM
)−1

h
detH(M,R)
Hodge (T ).

One can show that if dimRM is odd, ∥·∥RS
detH•(M,R)(T ) is independent of T . Let T → 0,

∥·∥RS
detH•(M,R)(T ) → ∥·∥RS

detH•(M,R). Let T → ∞, the discussion localize at the critical points

of f (See our discussion in Subsection 2.1.3), eventually ∥·∥RS
detH•(M,R)(T ) → ∥·∥M,∇f

detH•(M,R),

which finishes the proof of Theorem 2.3.1.
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2.4 tt∗ Structure on Calabi-Yau Manifolds

In this section, we will review variation of Hodge structures and tt∗ structures on a

Calabi-Yau manifold X.

2.4.1 Variation of Hodge Structures

Definition 2.4.1. A Hodge structure of weight m is given by a data (HQ, F
p) where HQ

is a finitely generated Q-vector space, and F p, p = (0, . . . ,m) is a decreasing filtration

on the complexification H = HQ ⊗ C such that F p ⊕ Fm−p+1 ∼= H, for all p. Setting

Hp,q = F p ∩ F̄ q, one has

H =
⊕

p+q=m

Hp,q, Hp,q = H̄q,p

Hence F p = ⊕p′≥pH
p′,m−p′.

Example 2.4.2. Let X be a compact Kähler manifold, then

∀k ∈ N, Hk(X,C) =
⊕

p+q=k

Hp,q(X), Hq,p = Hp,q

gives a Hodge structure.

Definition 2.4.3. A polarized Hodge structure of weightm is given by the data (HQ, F
p, Q)

where (HQ, F
p) is a Hodge structure of weight m and

Q : HQ ⊗HQ → Q

is a bilinear form satisfying the conditions

• Q(u, v) = (−1)mQ(v, u)

41



Preliminary Chapter 2

• Q (F p, Fm−p+1) = 0

• The Hermitian form ip−qQ(u, v̄) is positive definite , where u, v ∈ Hp,q.

Example 2.4.4. Let X be a compact Kähler manifold of complex dimension n, then

Hn(X) admits a polarized Hodge structure by setting Q(u, v) = (−1)n(n−1)/2
∫
X
u ∧ v.

Definition 2.4.5. A variation of polarized Hodge structure is given by the data

(
S,HQ,Fp,∇+ ∇̄, Q

)
,

where

• S is a smooth complex algebraic variety.

• HQ is a local system of Q-vector spaces on S.

• H = HQ ⊗OS is a holomorphic vector bundle with a filtration Fp by holomorphic

sub-bundles.

• ∇+ ∇̄ : H → Ω1
S ⊗H is an integrable connection. Here ∇ is the (1, 0) component

of the connection and ∇̄ the (0, 1) component.

• (∇+ ∇̄)HQ = 0

• For each s ∈ S, on each fiber the induced data (HQ,s,Fp
s ) gives a Hodge structure

of weight m.

• The Griffiths transversality conditions

(∇+ ∇̄)Fp ⊆ Ω1
S ⊗Fp−1

are satisfied.
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• The bilinear form Q

Q : HQ ⊗HQ → Q

satisfying (∇+ ∇̄)Q = 0 and inducing polarized Hodge structure on each fiber.

Example 2.4.6. Let π : X → S be a family of compact Kähler manifold with typical

fiber X (dimCX = n). Consider vector bundle HQ = Rnπ∗Q. Fiberwisely, HQ is the

space of middle cohomology of the fiber. Let F be the filtration induced by fiberwise

filtration, ∇ + ∇̄ be the Gauss-Manin connection on HQ, Q be the fiberwise pairing.

Then (S,HQ,F ,∇, Q) gives a variation of polarized Hodge structure.

Variation of Polarized Hodge Structure and tt∗ Structure

Consider a variation of Hodge structure
(
S,HQ,Fp,∇+ ∇̄, Q

)
, and letH = HQ⊗OS,

then H admits a natural real structure κ. Next, let g(u, v) := ip−qQ(u, v̄), u, v ∈ Hp,q

be the hermitian metric on H, {ek} be a local frame with respect to metric h. By

Griffiths transversality condition, we could decompose ∇ = D + C, ∇̄ = D̄ + C̄, s.t.

D+ D̄ is the Chern connection with respect to metric h. Then one can check easily that

(H → S, κ, g,D, D̄, C, C̄) gives a tt∗ structure. Hence, we can view a tt∗ structure as a

generalized version of variation of polarized Hodge structure.

2.4.2 tt∗ Structure on Calabi-Yau Manifolds

Let M be the moduli stack of complex structures of Calabi-Yau manifold X of di-

mension n, with the universal family π : X → M. Todorov-Tian’s smoothness theorem

implies that M is smooth of dimension dimH1 (X,TX) = hn−1,1(X). We denote by HCY
Q

the vector bundle

HCY
Q = Rnπ∗(Q)0
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on M. Fiberwisely, HCY
Q is the space of primitive forms in the middle cohomology of

the fiber. Let HCY := HCY
Q ⊗ OM, then HCY admits a real structure κCY . Also HCY

has a flat holomorphic structure given by the Gauss-Manin connection. We will use

∇GM to denote the (1, 0) component of the Gauss-Manin connection and ∇̄GM the (0, 1)

component. Let F pHCY be the Hodge filtration, and

Hp,n−p := F pHCY /F p+1HCY

is the Hodge bundle of type (p, n− p).

By Griffiths transversality condition, LCY := Hn,0 is a holomorphic subbundle of

HCY . LCY is called the vacuum line bundle in the physics literature. For a given

point [X] ∈ M,LCY
[X] is the space of holomorphic volume form on X. Let QCY (u, v) :=

(−1)n(n−1)/2
∫
X
u ∧ v, and gCY (u, v) := ip−qQ(u, v̄) for u, v ∈ Hp,q(X), then for any

holomorphic section of Ω ∈ LCY , the Weil-Peterson metric GCY on M is given by

∂M∂̄M log(g(Ω,Ω)). By our discussion in last subsection, the Gauss-Manin connection

admits a decomposition ∇GM = DCY + CCY , ∇̄GM = D̄CY + C̄CY . Moreover, in this

case, CCY : Hp,n−p → Ω(1,0)(M)⊗Hp−1,n−p+1 is the Kodaira-Spencer map. Now

(HCY → M, κCY , gCY , DCY , D̄CY , CCY , C̄CY ) (2.2)

is a tt∗ structure.

Let f : Cn → C be a homogeneous polynomial of degree n, F (z, u) be a marginal

deformation of f :

F (x, u) = f(x) +
ν∑

i=1

uiψi(x),

i.e. ϕi has degree n.

We denote M by the space of parameters ui, which should be a small neighborhood
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of the origin in Cν . For u ∈M , Xu := {[z] ∈ CP n−1 : f(z) = 0} is a Calabi-Yau manifold

of dimension n− 2. There exists a map i :M → M.

Definition 2.4.7. The tt∗ structure (HCY → M,κCY , gCY , DCY , D̄CY , CCY , C̄CY ) on

Calabi-Yau’s side is the the restriction of tt∗ structure (2.2) on M.

2.5 BCOV Torsion and Holomophic Anomaly For-

mula on Calabi-Yau Manifolds

We review the story of the Calabi-Yau B-model first: We consider a family of Calabi-

Yau manifolds X →M with a typical fiber X, where M parameterize different complex

structure of X. Indeed, it is well known that the CY B-model concerns the deformation

of the complex structure. The genus 0 theory is equivalent to the variation of Hodge

structure (equivalently, tt∗ structure). The study of the higher genus theory is much more

challenging and interesting. In this direction, Bershadshy-Cecotti-Ooguri-Vafa (BCOV)

showed that the genus one term F1 for CY B-model admits a holomorphic anomaly

equation as follows (see Subsection 2.4.2 for further explanations of each term)

∂M ∂̄MF1 =
1

2
trCCY C̄CY − GCY

24
χ(X), (2.3)

where χ(X) is the Euler number of X.

Let ∆p,q be the restrict of Hodge Laplacian on p, q forms Ωp,q(X), then the BCOV

torsion is defined as

τBCOV = Πp,q det (∆
p,q)(−1)p+qp .

See Subsection 2.2.2 for the definition of det(∆).

For a family of Calabi-Yau B-model X → M , fixing a Kähler structure on X, then
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we define fiberwise BCOV torsion, still denoted by τBCOV .

Next, condsider the determinant line bundle λ =
∧

0≤p,q≤n (detR
qπ∗Ω

p(X/M))(−1)p+qp,

where Ωp(X/M) is the sheaf of relative p-forms. Then on line bundle λ → M , there are

two natural metrics, the usual L2 metric ∥ · ∥L2 induced by the harmonic forms, and the

Quillen metric ∥ · ∥Q given by ∥ · ∥Q = ∥ · ∥L2τ−1
BCOV .

Hence

∂M ∂̄M log ∥ · ∥Q = ∂M ∂̄M log ∥ · ∥L2 − ∂M ∂̄M log τBCOV .

Then using Bismut-Gillet-Soulé (BGS) type curvature formula [34], BCOV [3] and

Fan-Fang-Yoshikawa [35] shows that

∂M ∂̄M log ∥ · ∥Q = −G
CY

24
χ(X),

∂M ∂̄M log ∥ · ∥L2 =
1

2
trCCY C̄CY

Thus, comparing with (2.3), the F1 term should be log τBCOV , up to some holomorphic

and anti-holomorphic corrections.

2.6 Motivation of This Thesis Project

We can now discuss why this thesis project is significant to us in greater detail. The

CY B-model is concerned with the deformation of the complex structure, as discussed

in Section 2.5: The genus-zero theory is equivalent to the study of tt∗ structure (see

Definition 2.4.7) of Calabi-Yau manifolds; the genus-one term F1 is computed by BCOV

torsion.

Then in keeping with the spirit of the LG/CY correspondence, we should have a simi-

lar story for the LG B-model, which involves the deformation of singularities. Indeed, its
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genus 0 theory is given by Saito’s theory of primitive forms and higher residue pairing(c.f.

[8, 9]), originating in Saito’s study of period integrals over vanishing cycles associated

to an isolated singularity. Compared with the CY B-model, one might conjecture that

the genus one term could be expressed as a torsion type invariant (We call it BCOV

type torsion for LG B-model). In [33] and [36], Fan-Fang and Shen-Xu-Yu defined such

a counterpart of the BCOV torsion for LG models on Cn. Moreover, in [37], X. Tang

deduced a holomorphic anomaly formula for this torsion for the case of Cn.

It will be interesting to ask if the LG/CY correspondence holds for the B-model.

To address this question for the genus 0 case, we show LG/CY correspondence for tt∗

structures in Chapter 6. In fact, Fan-Lan-Yang in [23] partially prove that the two tt∗

structures are isomorphic via the CY/LG correspondence, except for the real structures

. Here we use different methods to show the full LG/CY correspondence: we introduce

two U(1) actions that act as certain bi-grading for LG B-models. With the help of these

two U(1) actions, we also show LG/CY correspondence for Weil-Peterson type metrics.

Additionly, in our method, the Agmon estimate derived in Chapter 3 plays an essential

role.

Following that, we investigate the LG/CY correspondence for the genus-one term

in B-models.The genus-one term of the LG B-model is conjectured to be computed via

some analytic torsion with respect to the Witten deformation ∂̄f = ∂̄+ ∂f ∧ . Hence, the

first section of this thesis studies Witten deformations on noncompact manifolds. The

Agmon estimate in Chapter 3 also plays an important part in the heat kernel expansion

and the proof of LG/CY correspondence for genus 0 theory. As discussed in Subsection

2.2.2, to make sense of the determinant of Laplacian, i.e. analytic torsion, one must first

understand the heat kernel expansion, which is our main task in Chapter 4. In Chapter

5, we define analytic torsion for Witten deformations on noncompact manifolds using

the heat kernel expansion from Chapter 4. To study LG/CY correspondence for genus
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1 term, we must generalize the previous discussion to the case of families of LG models

and the complex/holomorphic setting, which is still under exploration.
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Part I

Analysis of Witten Deformation on

Noncompact Manifolds
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Chapter 3

On Agmon Estimate and

Thom-Smale-Witten Complex

In this chapter, we study the Agmon estimate, and explore the relations between the

Thom-Smale complex for a Morse function f on a noncompact manifold M and the

deformed de Rham complex with respect to f .

The crucial technical part of this work is the Agmon estimate for eigenforms of the

Witten Laplacian which is essential in extending the usual analysis from compact setting

to the noncompact case. The Agmon estimate was discovered by S. Agmon in his study of

N -body Schrödinger operators in the Euclidean setting and has found many important

applications. The exponential decay of the eigenfunction is expressed in terms of the

so-called Agmon distance, Cf. [32]. We make essential use of this Agmon estimate to

carry out the isomorphism between the Witten instanton complex defined in terms of

eigenspaces corresponding to the small eigenvalues with the Thom-Smale complex defined

in terms of the critical point data of the function. We remark that the Agmon estimate

near the critical points also plays an important role in the compact case , see [38] and also

[20]. The novelty here is that we make essential use of the exponential decay at spatial
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infinity provided by the Agmon estimate. Later on, we will see that Agmon estimate

also plays a very important part in the proof of LG/CY correspondence for Weil-Peterson

metrics.

The first difficulty one encounters here is the presence of continuous spectrum on a

noncompact manifolds and for that one has to impose certain tameness conditions. This

consists of the bounded geometry requirement for the manifold as well as growth condi-

tions for the function. The notion of strong tameness is introduced in [14] in the Kähler

setting which guarantees the discreteness of the spectrum for the Witten Laplacian. Here

we introduce a slightly weaker notion which allows continuous spectrum but only outside

a large interval starting from 0.

It is important to note that, and this is another new phenomenon in the noncompact

case, the Thom-Smale complex may not be a complex in general. Namely, the square of

its boundary operator need not be zero, since M is noncompact. However we prove that

with the tameness condition, it is.

3.1 The Spectrum of Witten Laplacian

In this section we study the spectral theory of the Witten Laplacian on noncompact

manifolds. In particular we establish the Kodaira decomposition and the Hodge theorem

for the Witten Laplacian under our tameness condition.

3.1.1 Essential Self-adjointness of df + δf

Theorem 3.1.1. On a complete Riemannian manifold, if

lim sup
p→∞

|∇2f |(p)
|∇f |2(p)

<∞,
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then df + δf is essentially self-adjoint.

Proof. Since lim supp→∞
|∇2f |(p)
|∇f |2(p) < ∞, □f is bounded from below by Proposition 1.2.5.

The rest of the proof is essentially the same as in Section 4 of [39]; see also the proof of

Theorem 1.17 in [40].

3.1.2 On the Spectrum of □Tf

From now on we will assume that (M, g, f) is well tame. Let K be a compact subset,

which can be taken to be a compact submanifold with boundaries that contains the

closure of a ball of sufficiently large radius ofM (we will make a more specific choice of K

later in section 3.3), such that ϵf (K) := infM−K |∇f | > 0, cf (K) := supM−K
|∇2f |
|∇f |2 < ∞.

Then on M −K,

|∇f | > 1

2
ϵf , |∇2f | < 2cf |∇f |2. (3.1)

Let CK = maxK |∇2f |. First, we establish the following basic lemma.

Lemma 3.1.1. Fix any b ∈ (0, 1), there exists T1 = T1(cf , CR, ϵf , b) ≥ 0 so that whenever

T > T1, ϕ ∈ Dom(□Tf )

∫
M

(□Tfϕ, ϕ)dvol ≥
∫
M

(∇ϕ,∇ϕ)dvol +
∫
M−K

b2T 2|∇f |2(ϕ, ϕ)dvol

−(CR + TCK)

∫
K

(ϕ, ϕ)dvol. (3.2)

Here CR is a constant depending only on the sectional curvature bounds of g.

Proof. It suffices to show the inequality for a compactly supported smooth form. By
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Proposition 1.2.5, together with the Bochner-Weitzenböck formula, we have

∫
M

(□Tfϕ, ϕ)dvol ≥
∫
M

(∇ϕ,∇ϕ)dvol− (CR + TCK)

∫
K

(ϕ, ϕ)dvol

+

∫
M−K

eT (p)(ϕ, ϕ)dvol,

where eT = T 2|∇f |2(1− 4cf
T

− 4CR

T 2ϵ2f
). Thus, for any b ∈ (0, 1), let

T1(K) := max{ 8cf
1− b2

,

√
8CR

ϵf
√
1− b2

}. (3.3)

Then whenever T > T1, one can see 1− 4cf
T

− 4CR

T 2ϵ2f
> b2. Consequently,

∫
M

(□Tfϕ, ϕ)dvol ≥
∫
M

(∇ϕ,∇ϕ)dvol +
∫
M−K

|bT∇f |2(ϕ, ϕ)dvol

−(CR + TCK)

∫
K

(ϕ, ϕ)dvol.

Remark 3.1.2. When (M, g, f) is strongly tame, we can take K to be sufficiently “large”

so that cf and 1
ϵf

are as small as one wants. As a result, T1 can be made as small as one

wants by choosing appropriate K.

Theorem 3.1.2. Let σ be the set of spectrum of □Tf . Then when T > T1, σ∩[0, ( bϵf2 )2T 2]

consists of a finite number of eigenvalues of finite multiplicity.

Proof. Let P : L2Λ∗(M) → L2Λ∗(M) be the integral of the spectral measure of □Tf on

[0, (
bϵf
2
)2T 2]. It suffices to prove that L := Im(P ) is finite dimensional. For any ϕ ∈ L,

we have ∫
M

(□Tfϕ, ϕ)dvol ≤ (
bϵf
2
)2T 2

∫
M

|ϕ|2dvol. (3.4)
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Combining with (3.2), we have

(
bϵf
2
)2T 2

∫
M

|ϕ|2dvol ≥
∫
M

(∇ϕ,∇ϕ)dvol +
∫
M−K

|bT∇f |2(ϕ, ϕ)dvol

−(CR + TCK)

∫
K

(ϕ, ϕ)dvol

provided T > T1. That is,

∫
M
(∇ϕ,∇ϕ)dvol +

∫
M−K

|bT∇f |2(ϕ, ϕ)dvol

≤ (
bϵf
2
)2T 2(1 + 4CR

(bϵf )2T 2 +
4CK

(bϵf )2T
)
∫
K
(ϕ, ϕ)dvol + (

bϵf
2
)2T 2

∫
M−K

(ϕ, ϕ)dvol.

Since |bT∇f |2 > (
bϵf
2
)2T 2 on M −K, when T > T1,

∫
M

(∇ϕ,∇ϕ)dvol ≤ (
bϵf
2
)2T 2(1 +

4CR

(bϵf )2T 2
+

4CK

(bϵf )2T
)

∫
K

(ϕ, ϕ)dvol. (3.5)

Now define Q : L → L2Λ∗(K), by Qu = u|K . By (3.5), it’s easy to see that Q is

injective, and Im(Q) ⊂ W 1,2(Λ∗K). SinceW 1,2(Λ∗K) ↪→ L2Λ∗(K) is compact, dim(L) =

dim(Im(Q)) must be finite.

We now state the important consequence of this section. By combining Theorem

3.1.1 and Theorem 3.1.2 with Proposition A.2.1, decomposition (A.4), we have

Theorem 3.1.3. Assume that (M, g, f) is well tame. Then when T > T1, we have the

Kodaira decomposition

L2Λ∗(M) = ker□Tf ⊕ Im(d̄Tf )⊕ Im(δ̄Tf ).
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Furthermore, the Hodge Theorem holds:

H∗
(2)(M,dTf ) ∼= ker□Tf .

Remark 3.1.3. If (M, g, f) is strongly tame, T1 could be arbitrarily small, hence Theorem

3.1.3 holds true for any T > 0.

3.2 The Agmon Estimate

In this section, we assume that (M, g, f) is well tame, and T > T1, where T1 is

described in Lemma 3.1.1.

Let g̃T := b2T 2|∇f |2g be the Agmon metric onM. Let K be the compact set as in last

section. In this and later sections we define the Agmon distance ρT (p) be the distance

between p and K induced by g̃T . Then we have |∇ρT |2 = b2T 2|∇f |2 a.e. p /∈ K, where

the gradient ∇ is induced by g.

For simplicity, denote b2T 2|∇f |2 by λT . We need the following two technical lemmas,

whose proofs are postponed to Section 3.5.

Lemma 3.2.1. Assume w ∈ L2(M), 0 ≤ u ∈ L2(M), and (∆ + λT )u ≤ w outside the

compact subset K ⊂M in the weak sense. That is

∫
M−K

∇u∇v + λTuvdvol ≤
∫
M−K

w · vdvol, ∀ 0 ≤ v ∈ C∞
c (M −K).

Then for any j ∈ N, there exists another compact subset L ⊃ K of M such that

∫
M−L

|u|2λT exp(2bρT,j)dvol ≤ C2

∫
M−K

|w|2λ−1
T exp(2bρT,j)dvol

+ C1

∫
L−K

|u|2λT exp(2bρT,j)dvol

(3.6)
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for C1 =
8(1+b2)
(1−b2)2

, C2 =
4

(1−b2)2
.

Here ρT,j := min{ρT , j}.

Corollary 3.2.1. If w = cu for some c > 0 and T > 2
√
1+c

bϵf
, then

I(u) :=

∫
M

|u|2 exp(2bρT )dvol <∞.

Proof. With this choice of T , λT > 1 + c outside K. Now replacing λT with λT − c and

w with 0 in Lemma 3.2.1, we get

∫
M−L

|u|2 exp(2bρT,j)dvol ≤
∫
M−L

|u|2(λT − c) exp(2bρT,j)dvol

≤ C1

∫
L−K

|u|2λT exp(2bρT,j)dvol ≤ C1

∫
L−K

|u|2λT exp(4b)dvol <∞.

Now let j → ∞. By the monotone convergence theorem, we finish the proof.

By refining the argument above, we have the following corollary which will be used

in the proof of our Agmon estimate for eigenforms.

Corollary 3.2.2. If 0 ≤ u ∈ Dom(□Tf ), and □Tfu ≤ (c+T |∇2f |)u for some c > 0 and

T > max{
√

3
b2ϵf

,
√

2C2c
b2ϵf

, 2cfC2}, then

I(u) :=

∫
M

|u|2 exp(2bρT )dvol ≤ CT 2∥u∥2

where the constant C = C(CL, cf , ϵf , b, c), L = {p ∈M : ρT (p) ≤ 2}, CL > maxL |∇f |2.

Proof. Following the proof of Lemma 3.2.1 given in Section 7.1, put L = {p ∈ M :

ρT (p) ≤ 2}. Since u ∈ Dom(□Tf ), |∇f |u ∈ L2(M).
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Then by Lemma 3.2.1 we deduce

∫
M−L

|u|2λT exp(2bρT,j)dvol ≤ C1

∫
L−K

|u|2λT exp(2bρT,j)dvol

+ C2

∫
M−K

(c+ T |∇2f |)λ−1
T |u|2 exp(2bρT,j)dvol

for C1, C2 as above.

Since u ∈ L2(M),
∫
M−K

(c+ T |∇2f |)λ−1
T |u|2 exp(2bρT,j)dvol <∞.

We split the second integral on the right hand side into two; the one over L−K will

be absorbed into the first term. The second term is (we omit the volume form here)

C2

∫
M−L

(c+ T |∇2f |)λ−1
T |u|2 exp(2bρT,j)

≤ (
4C2c

b2T 2ϵ2f
+

2C2cf
T

)

∫
M−L

|u|2 exp(2bρT,j)

Combining the above one arrives at

∫
M−L

|u|2λT exp(2bρT,j) ≤ C1

∫
L−K

|u|2(λT +
4C2c

b2T 2ϵ2f
+

2C2cf
T

) exp(2bρT,j)

+ C2(
4c

b2T 2ϵ2f
+

2cf
T

)

∫
M−L

|u|2 exp(2bρT,j).

Thus,

∫
M−L

|u|2(λT − 4C2c

b2T 2ϵ2f
+

2C2cf
T

) exp(2bρT,j)

≤ 2C1(C
Lb2T 2 +

4C2c

b2T 2ϵ2f
+

2C2cf
T

)e4b∥u∥2,

where CL > maxL |∇f |2. If T > max{2
√
3

bϵf
, 2

√
C2c

bϵf
, 2cfC2}, then

λT − (
4C2c

b2T 2ϵ2f
+

2C2cf
T

) > 1
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outside L. Hence

∫
M−L

|u|2 exp(2bρT,j)dvol ≤ 2C1(C
Lb2T 2 + C2(

2c

b2T 2ϵf
+

2cf
T

))e4b∥u∥2,

and consequently

∫
M

|u|2 exp(2bρT,j)dvol ≤ [2C1(C
Lb2T 2 +

2C2c

b2T 2ϵf
+

2C2cf
T

) + 1]e4b∥u∥2,

for T > max{2
√
3

bϵf
, 2

√
C2c

bϵf
, 2cfC2}.

Now let j → ∞. By the monotone convergence theorem again, we finish the proof.

Remark 3.2.2. It may seem that CL and CL depend on T as L = {p ∈M : ρT (p) ≤ 2}.

However, notice that as T becomes bigger, L gets smaller. Hence we can choose CL >

maxp∈L |∇f |(p), CL > maxp∈L |∇2f(p)|, which are then independent of T .

Lemma 3.2.3 (De Giorgi-Nash-Moser Estimates). For r > 0, let Br(p) be the geodesic

ball around p with radius r (in the metric g). Let 0 ≤ u ∈ L2(M), and ∆u ≤ cu on B2r(p)

in the weak sense for some constant c ≥ 0. Then there exists constant C3(n, c, r0, R) > 0

depending only on the dimension n, the Sobolev constant (which depends on the injectivity

radius lower bound r0 and curvature bound on R) and c, such that for r ≤ r0

sup
y∈Br(p)

u(y) ≤ C3

rn/2
∥u∥L2(B2r(p)).

With these preparation we are now ready to prove our first main estimate for the

eigenforms of □Tf .

Proof of Theorem 1.3.1. Consider an eigenform ω of □Tf . That is □Tfω = µ(T )ω, where

the eigenvalue µ(T ) satisfies |µ(T )| ≤ c for some constant c. Then letting u = g(ω, ω)1/2,

by a straightforward computation using the Bochner’s formula (for forms) and the Kato’s
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inequality, we have

□Tfu ≤ (c+ |R|+ T |∇2f |)u,

where |R| is the upper bound of curvature tensor. Hence by Corollary 3.2.2, we have, for

T ≥ max{2
√
3

bϵf
,
2
√

C2(c+|R|)
bϵf

, 2cfC2},

I(u) =

∫
M

|u|2 exp(2bρT )dvol ≤ CT 2∥u∥2

where the constant C = C(CL, cf , ϵf , b, c, |R|, n).

Recall that for the compact set K, (3.1) is satisfied. Hence by Proposition 1.2.5, the

conditions of Lemma 3.2.3 are satisfied for u on M −K. Namely, for T > T1,

∆u ≤ (c+ |R|)u

on M −K. Also, the Agmon distance ρT (p) is the distance between p and K induced by

g̃T and L = {p ∈M : ρT (p) ≤ 2}. Suppose p ∈M − L. Denote by B̃r(p) the g̃T -geodesic

ball around p with radius r. Set l = supq∈B̃2(p)
|T∇f |(q), and r = 1/(2l). Then one can

easily verify that B2r(q) ⊂ B̃2(p), ∀q ∈ B̃1(p).

Choose q0 ∈ B̃2(p) so that |T∇f |(q0) ∈ (l/2, l]. By Lemma 3.2.1 and de Giorgi-Nash-

Moser estimate (Lemma 3.2.3), we have

|u(p)|2 exp(2bρT (p)) ≤
C3(n, c, r0, R)

rn
∥u∥2L2(B2r(p))

exp(2bρT (p))

≤ C4(n, c, r0, R)

rn

∫
B̃2(p)

|u|2(q) exp(2bρT (q))dvol

≤ C5(C
L, cf , ϵf , b, c, R, n, r0)|T∇f(q0)|nI(u).
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We will prove that

|∇f(q0)|2 ≤ sup
p′∈K

|∇f |2(p′) exp(2cf
bT

ρT (q0)) (3.7)

in Lemma 3.3.6. Hence,

|∇f(q0)|2 ≤ sup
p′∈K

|∇f |2(p′) exp(2cf
bT

ρT (q0)) ≤ sup
p′∈K

|∇f |2(p′) exp(ϵρT (q0))

for any small ϵ, provided T ≥ 2cf
bϵ
. It follows then that,

|u(p)|2 ≤ C6(C
L, cf , ϵf , a, b, c, R, n, r0)I(u)T

n exp(−2aρT (p)),

for any a < b provided T ≥ ncf
b(b−a)

. Hence if

T ≥ T2(K) := max{2
√
3

bϵf
,
2
√
C2(c+ |R|)
bϵf

, 2cfC2,
ncf

b(b− a)
}, (3.8)

|u(p)|2 ≤ C7(C
L, cf , ϵf , a, b, c, r0, |R|, n)T n+2 exp(−2aρT (p))∥u∥2.

Remark 3.2.4. The proof above gives the inequality for p ∈ M − L = {ρT (p) > τ0} for

some constant τ0 independent of T , which is what we needed for later applications. For

p ∈ L, using the same reasoning as in Remark 3.2.2, there exist constant C > 0, which

is independent of T , such that

∆u ≤ CTu. (3.9)

for all p ∈ L. Therefore via Moser iteration as in Lemma 3.2.3 and similar arguments

as above, one can show that

|u|2(p) ≤ C ′T n∥u∥2L2 ≤ C ′ exp(2a)T n exp(−aρT )∥u∥2L2 .
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Remark 3.2.5. When (M, g, f) is strongly tame, T2 can be arbitrarily small.

3.3 Thom-Smale Theory

In this and the next section, we assume that f is a Morse function on M . Moreover,

let K be a suitable compact subset of M such that ϵf (K) > 0, ϵ > 0 be small enough (to

be determined later), T5(ϵ,K) :=
cf
ϵ
. Then outside K, we have

T |∇2f | ≤ ϵ T 2|∇f |2, (3.10)

provided T ≥ T5.

Remark 3.3.1. We can take T5 to be arbitrarily small if (M, g, f) is strongly tame.

In this section, we always assume that T ≥ T5. Under these conditions we will define

the Thom-Smale complex (C∗(W
u), ∂̃) but leave the proof that ∂̃2 = 0 to Section 3.5.3.

The remaining of the Section is devoted to the pairing between the Thom-Smale complex

and the Witten instanton complex.

Before defining the Thom-Smale complex, there is still a subtle issue for noncompact

cases. That is, the gradient vector field −∇f may not be complete, i.e., its flow curves

may not exist for all time. But notice that if we rescale the vector field by some positive

function, the corresponding integral curves will simply be reparameterizations of the

original integral curves.

For this purpose, we fix a positive smooth function F such that,

F |M−K =
1

bT |∇f |2

Then we have
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Lemma 3.3.2.

(1)

bT |f(p)− f(q)| ≤ d̃T (p, q), ∀p, q ∈M. (3.11)

(2) Let Φ̃t be the flow generated by Yf := −F∇f , and p ∈M . If the flow line Φ̃t(p), t ∈

[s1, s2] is outside K, then it’s the minimal geodesic connecting Φ̃s1(p) and Φ̃s2(p) with

respect to metric g̃T . Moreover,

d̃T (Φ̃
s1(p), Φ̃s2(p)) = bT |f(Φ̃s1(p))− f(Φ̃s2(p))| = |s2 − s1|. (3.12)

(3) Yf is a complete vector field.

Proof. (1). Let γ : [0, d̃T (p, q)] → M be the minimal geodesic connecting p and q with

respect to g̃T . Let ∇̃T be the Levi-Civita connection induced by g̃T . One computes

d

ds
f(γ(s)) = g̃T (∇̃Tf, γ′(s)) = g̃T (

∇f
b2T 2|∇f |2

, γ′(s))

≤

√
g̃T (

∇f
b2T 2|∇f |2

,
∇f

b2T 2|∇f |2
) =

1

bT
.

Consequently, bT |f(p)− f(q)| ≤ d̃T (p, q).

(2). We give a direct proof (See [38] Lemma A 2.2 for another).

Let’s first show that γ(s) := Φ̃s(p), s ∈ [s1, s2] is a geodesic. Since g̃T (Yf , Yf ) = 1

outside K, we let ẽT1 (s), ..., ẽ
T
n (s) be a local orthomormal frame on γ with ẽT1 = Yf . One

can easily show that outside K, −Yf/(bT ) is the gradient of f with respect to g̃T . In

order to prove γ′′ = 0, it suffices to prove g̃T (γ
′′, ẽTi ) = 0, i ≥ 2.
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Indeed,

g̃T (γ
′′, ẽTi ) = g̃T (∇̃T

Yf
Yf , ẽ

T
i )

= −g̃T (Yf , [Yf , ẽTi ])

= [Yf , ẽ
T
i ]f

= −Yf g̃T (ẽTi ,
Yf
bT

) + ẽTi g̃T (Yf ,
Yf
bT

)

= 0.

We now prove that γ is the shortest geodesic connecting γ(s1) and γ(s2) in (M, g̃T ).

Assume that σ : [s1, s
′
2] 7→ M is another normal geodesic connecting γ(s1) and γ(s2)

induced by g̃T . Then g̃T (σ
′(s1), Yf ) < 1. Set α(s) = f ◦γ(s), β(s) = f ◦σ(s), then we have

α(s1) = (
¯
s1), and α

′(s) = −1, ’
¯
(s) = −g̃T (σ′(s), Yf ◦ γ(s)) ≥ −1. Hence by a comparison

theorem in ODE, we must have α(s) ≤ (
¯
s). Now σ(s′2) = γ(s2), and s

′
2−s1 = Length(σ).

Thus, a(s′2) ≤ (
¯
s′2) = α(s2). Since α is decreasing, we must have s′2 ≥ s2.

Therefore, Φ̃s(y), s ∈ [s1, s2] is one of shortest geodesic connecting y and Φ̃t(y).

Hence d̃T (Φ̃
s1(p), Φ̃s2(p)) = |s2−s1|.Moreover, since ∂

∂s
f(Φ̃s(p)) = Yff = g(∇f, Yf ) =

1
bT
,

bT |f(Φ̃s1(p))− f(Φ̃s2(p))| = |s2 − s1|.

(3). To prove that Yf is complete, we show that for any p ∈M , there exists a uniform

constant ϵ0 > 0 such that Φ̃t(p) is well defined on (−ϵ0, ϵ0).

Recall that L := {p ∈M : d̃T (p,K) ≤ 2}. It suffices to show that for any p ∈M −L,

Φ̃t(p) is well defined on (−1, 1), as L is compact.

But this is clear: on M −K, bTF−1g(Yf , Yf ) = g̃T (Yf , Yf ) = 1, and (M, bTF−1g) is

complete, and Φ̃t(p), t ∈ (−1, 1) is a geodesic inside M −K with respect to bTF−1g.
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Now we can talk about the unstable and stable manifolds of Yf :

Let x be a critical point of the Morse function f , W s(x) and W u(x) be the stable and

unstable manifold of x with respect to flow Φ̃t defined in Lemma 3.3.2 (See Chapter 6

in [27] for a precise definition of stable and unstable manifolds). We will further assume

that f satisfies the Smale transversality condition, namely W s(x) and W u(y) intersect

transversally. Then the Thom-Smale complex (C∗(W
u), ∂̃) is defined by

C∗(W
u) = ⊕x∈Crit(f)RW u(x),

and

Ci(W
u) = ⊕x∈Crit(f),nf (x)=iRW u(x).

To define the boundary operator, let x and y be critical points of f , with nf (y) = nf (x)−1.

For x ∈ Crit(f), set

∂̃W u(x) =
∑

y∈Crit(f),nf (y)=nf (x)−1

m(x, y)W u(y).

Here the integer m(x, y) is the signed counts of the flow lines in W s(y) ∩W u(x).

In order to see that the integer m(x, y), and hence the coboundary operator, is well

defined, we now make a more judicious choice of K. Fix any p0 ∈ M . Let d̃ be the

distance function induced by (the Agmon metric) |∇f |2g, and set

D = sup
y∈Crit(f)

d̃(y, p0) + 2 sup
y,z∈Crit(f)

d̃(y, z). (3.13)

We choose K so that

B̃D+1(p0) ⊂ K◦,
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whereK◦ denotes the interior ofK, B̃r(p0) := {p ∈M : d̃(p, p0) ≤ r}. From the definition

ofD, it’s clear that all critical points are contained inK◦.Moreover we make the following

remark.

Remark 3.3.3. The choice of K together with (3.12) guarantees that for any x, y ∈

Crit(f), W s(x) ∩W u(y) ⊂ K◦. See also Lemma 3.5.6 for more detail.

Thus, just like the compact case, by the transversality, m(x, y) is well defined.

We will prove in Section 3.5.3 that under our tameness condition, ∂̃2 = 0. Thus,

(C∗(W
u), ∂̃) is a complex.

Let F
[0,1],∗
Tf be the space spanned by the eigenforms of □Tf with eigenvalue lying in

[0, 1]. By Theorem 3.1.2, F
[0,1],∗
Tf is finite dimensional when T is big enough. By previous

discussions, the cohomology of the Witten instanton complex is H∗
(2)(M,dTf ) when T is

large enough.

To prove Theorem 1.3.3, we now consider the following chain map J : (F
[0,1],∗
Tf , dTf ) 7→

C∗((W u)′, ∂̃′). Here C∗((W u)′, ∂̃′) denote the dual chain complex. LetW u(x)′ be the dual

basis of W u(x). Then

J ω =
∑

x∈Crit(f)

W u(x)′
∫
Wu(x)

exp(Tf)ω.

However there is a technical issue here we need to address. When W u(x) is compact,

the integral
∫
Wu(x)

exp(Tf)ω is clearly well defined, butW u(x) here may be noncompact.

We will be content here only with the well-definedness of the map and leave the proof

that J is indeed a chain map to Section 7.3, see Corollary 3.5.2.

Let r > 0 small enough, B
nf (x)
r (x) ⊂ K be the nf (x)-dimensional ball in W u(x) with

center x and radius r with respect to metric g. As before, let Φ̃t be the flow generated

by −F∇f . Then W u(x) = ∪t>0Φ̃
t(B

nf (x)
r (x)). Moreover, by the definition of unstable

manifold, if t1 < t2, Φ̃
t1(B

nf (x)
r (x)) ⊂ Φ̃t2(B

nf (x)
r (x)).
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Therefore, for any ω ∈ F
[0,1],∗
Tf

∣∣∣∣∫
Wu(x)

exp(Tf)ω

∣∣∣∣ = ∣∣∣∣ limt→∞

∫
(Φ̃t)(B

nf (x)
r (x))

exp(Tf)ω

∣∣∣∣
≤ C exp(Tf(x)) lim

t→∞

∫
B

nf (x)
r (x)

|ω| ◦ Φ̃t| det((Φ̃t)∗)|dvolWu(x)

The well-definedness of J is now reduced to the following two technical lemmas, as well

as Theorem 1.3.1 and the well tameness of (M, g, f).

Lemma 3.3.4. Suppose t > 0 is big enough, y ∈ B
nf (x)
r (x)− Φ̃−tK. Then

|ρT (Φ̃t(y))− t| < T sup
p∈K

|∇f | diam(K),

where diam(K) is the diameter of K with respect to metric g.

Proof. For any y ∈ B
nf (x)
r (x)− Φ̃−tK, (3.12) and the triangle inequality give

|ρT (Φ̃t(y))− t| = |d̃T (Φ̃t(y), K)− d̃T (Φ̃
t(y), y)|

≤ T sup
p∈K

|∇f |diam(K),

where d̃T is the distance induced by g̃T .

Lemma 3.3.5. Fix any y ∈ B
nf (x)
r (x)− Φ̃−tK and set p = Φ̃t(y). we have

|Φ̃t
∗(y)| ≤ C7(T ) exp(

6ϵρT (p)

b
).

Hence,

| det(Φt)∗(y)| ≤ C7(T ) exp(
6nf (x)ϵρT (p)

b
).
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Here C7 is a constant independent of y. In particular, for the fixed a ∈ (0, 1) in Theorem

1.3.1 and b ∈ (a, 1), any choice of 0 < ϵ ≤ ab
12n

will guarantee that J is well defined for

T > T5(ϵ).

Proof. Let e be a unit tangent vector of W u(x) at y, extend e to a local unit vector field

(still denoted by e) of W u(x) near y. Noting that from (3.10)

|∇Φ̃t
∗e
(Φ̃t)∗(Yf )| ≤

3ϵ

b
|(Φ̃t)∗e|,

we have

| ∂
∂t
g((Φ̃t)∗e(y), (Φ̃

t)∗e(y))|

= 2|g(∇(Φ̃t)∗e(y)
(Φ̃t)∗Yf , (Φ̃

t)∗e(y))|

≤ 6ϵ

b
|g((Φ̃t)∗e(y), (Φ̃

t)∗e(y))|.

By a classical result in ODE, we have

g((Φ̃t)∗e(y), (Φ̃
t)∗e(y)) ≤ C8 exp(

6ϵt

b
).

Our lemma follows from Lemma 3.3.4.

Now when (M, g, f) is well tame, we set T0 to be the smallest nonnegative number,

such that ∀δ > 0,

1. whenever T ≥ T0+δ, Theorem 1.3.1 holds true for the Agmon distance with respect

to some compact subset K(δ) ⊂M depending on δ;

2. Theorem 3.1.3 holds true whenever T > T0;

3. The map J is well defined whenever T > T0.
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Fix a compact set K as before. Then

T0 ≤ max{T1(K), T2(K), T5(K)}. (3.14)

(Cf. (3.3) for the description of T1, (3.8) for T2.) Moreover, if (M, g, f) is strongly tame,

T0 = 0.

We note in passing the following lemma which plays an important role in estimating

the eigenforms previously.

Lemma 3.3.6. Suppose T ≥ T0. Then for any q ∈M ,

|∇f |2(q) ≤ sup
p∈K

|∇f |2(p) exp(2cf
bT

ρT (q))

Proof. Let γ : [0, ρT (q)] 7→ M be a normal minimal g̃T -geodesic connecting K and q.

Then we have g(γ′, γ′) = 1
b2T 2|∇f |2 outside K.

Let h(t) = |∇f |2 ◦ γ, then

h′(t) = 2g(∇γ′∇f,∇f) ≤ 2

bT
|∇2f | ≤ 2cf

bT
|∇f |2 = 2cf

bT
h(t),

Hence |∇f |2(q) ≤ |∇f |2 ◦ γ(0) exp(2cf
bT
ρT (q)).

3.4 Morse Inequalities

In this section, we assume that T ≥ T0. In fact, we also assume that in a neighborhood

Ux of critical points x of f , we have coordinate system z = (z1, ..., zn), such that for

k = nf (x),

f = f(x)− z21 − ...− z2k + z2k+1 + ...+ z2n, g = dz21 + ...+ dz2n. (3.15)
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This is a generic condition. Without loss of generality we assume that Ux is an Euclidean

open ball around x with radius 1. Also, these open sets are disjoint.

Recall that mi denotes the number of critical points of f with Morse index i.We have

the following proposition.

Proposition 3.4.1. There exists T3 ≥ T0 big enough (see (3.14) for the definition of

T0)), so that whenever T ≥ T3, the number of eigenvalues (counted with multiplicity) in

[0, 1] of □Tf |Ωi
(2)

(M) equals mi. I.e. dimF
[0,1],∗
Tf = mi.

The proof of Proposition 3.4.1 follows from that of Proposition 5.5 in [27], except for

the proof of the following proposition, which requires a slight modification using the well

tame condition.

Proposition 3.4.2. There exist constants C > 0, T4 > 0 such that for any smooth form

ϕ ∈ Ω∗
(2)(M) with supp(ϕ) ⊂M − ∪x∈CritfUx and T ≥ T4, one has

∥□Tfϕ∥L2 ≥ CT∥ϕ∥L2 .

Here supp(ϕ) denotes the support of ϕ.

Proof. Since f is well tame, there exist δ1, δ2 > 0, such that |∇f | ≥ δ1 and |∇2f | ≤

δ2|∇f |2 on M − ∪x∈CritfUx. Then our proposition follows from the same argument in

Proposition 4.7 of [27].

On the other hand, (F
[0,1],∗
Tf , dTf ) form a complex, the so called Witten instanton

complex, whose cohomology is H∗
(2)(M,dTf ), when T is big enough, by Theorem 3.1.3.

As a result, our Theorem 1.3.2 (the strong Morse inequalities) follows from Proposition

3.4.1 and our Hodge theorem when T > T3. For the case of T ∈ (T0, T3], see Section 3.5.
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3.5 The Agmon Estimate—Technical Parts

In this section we first carry out the main technical estimates of the paper. Then, in

Section 3.5.3, we establish the Stokes formula for the Thom-Smale complex in our setting

and deduce among its consequences that the square of the coboundary operator for the

Thom-Smale complex is zero. The remaining subsections are devoted to the rest of the

proof for Theorem 1.3.3 and Theorem 1.3.1.

3.5.1 Proof of Lemma 3.2.1

Proof. Our proof is adapted from that of Theorem 1.5 in [32].

Let L = {p ∈M : ρT (p) ≤ 2}. Let ηk ∈ C∞
c (R) (k large enough) be a smooth bump

function such that

ηk(t) =


0, If |t| < 1 or |t| > k + 1;

1, If |t| ∈ (2, k),

and |η′k(t)| ≤ 2, ηk(t) ∈ [0, 1],∀t ∈ R.

Set ρT,j = min{ρT , j}, and

λT,j =


λT , if ρT < j,

0, otherwise

.

Clearly |∇ρT,j|2 = λT,j a.e. and λT ≥ λT,j.

Now set φk,j = (ηk ◦ ρT ) exp(bρT,j). Then by assumption, we have

∫
M

∇u∇(φ2
k,ju) + λT (uφk,j)

2dvol ≤
∫
M

wφ2
k,judvol.
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Noting that ∇u∇(φ2
k,ju) = |∇(φk,ju)|2 − |∇φk,j|2u2 ≥ −|∇φk,j|2u2, we have

∫
M−K

(λT |uφk,j|2 − |u|2|∇φk,j|2)dvol ≤
∫
M−K

wuφ2
k,jdvol. (3.16)

Since (we now omit the volume form dvol in what follows)

∫
M−K

wuφ2
k,j ≤

1

1− b2

∫
M−K

(λT )
−1w2φ2

k,j +
1− b2

4

∫
M−K

λTu
2φ2

k,j,

and

|∇φk,j|2 ≤
1 + b2

2
(ηk ◦ ρT )2|∇ρT,j|2 exp(2bρT,j) +

1 + b2

1− b2
(η′k ◦ ρT )2|∇ρT |2 exp(2bρT,j)

=
1 + b2

2
(ηk ◦ ρT )2λT,j exp(2bρT,j) +

1 + b2

1− b2
(η′k ◦ ρT )2λT exp(2bρT,j),

by (3.16), we have

3 + b2

4

∫
M−K

λT (ηk ◦ ρT )2u2 exp(2bρT,j)−
1 + b2

2

∫
M−K

λT,j(ηk ◦ ρT )2u2 exp(2bρT,j)

≤ 1

1− b2

∫
M−K

w2(ηk ◦ ρT )2λ−1
T exp(2bρT,j)

+
1 + b2

1− b2

∫
M−K

u2(η′k ◦ ρT )2λT exp(2bρT,j)

≤ 1

1− b2

∫
M−K

w2λ−1
T exp(2bρT,j)

+ 2
1 + b2

1− b2

∫
L−K

u2λT exp(2bρT,j) + 2
1 + b2

1− b2

∫
B̃k+1−B̃k

u2λT exp(2bj)

(3.17)

Letting k → ∞, by the monotone convergence theorem and the fact that
∫
M
λTu

2 <∞,
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we have

3 + b2

4

∫
M−L

λTu
2 exp(2bρT,j)−

1 + b2

2

∫
M−L

λT,ju
2 exp(2bρT,j)

≤ 1

1− b2

∫
M−K

w2λ−1
T exp(2bρT,j) + 2

1 + b2

1− b2

∫
L−K

u2λT exp(2bρT,j).

3.5.2 Proof of Lemma 3.2.3

Proof. The proof is a standard argument of Moser iteration and we present it here for

reader’s convenience.

The starting point is the differential inequality

cu ≥ ∆u (3.18)

weakly on B2r(p).

Set r1 = 2r, rk+1 = rk − (1/2)kr, nk = (n/(n− 2))k−1

Let ηk ∈ C∞
c (B2r) be bump functions s.t.

ηk =


1 on Brk+1

,

0 on B2r −Brk ,

and |∇ηk(q)| < 2
rk+1−rk

, ηk(q) ∈ [0, 1],∀q ∈ B2r.

Set um = min{u,m}, and ϕ1 = η21um ∈ H1
0 (B2r). Notice that ϕ1 = 0 and ∇ϕ1 = 0 in
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{u ≥ m}. Hence, by (3.18), we have

∫
Br1

c(um)
2dvol ≥

∫
B2r

cuϕ1dvol ≥
∫
B2r

∇u∇ϕ1dvol

=

∫
B2r

η21|∇um|2 + 2η1∇η∇umumdvol

≥
∫
B2r

η21|∇um|2 − 1/2η21|∇um|2 − 2|∇ηum|2dvol

≥
∫
B2r

η21|∇um|2 − 1/2η21|∇um|2 − 2|∇ηum|2dvol

≥ 1/2

∫
Br2

|∇um|2dvol − 4/(r2 − r1)
2

∫
Br1

|um|2dvol

Hence, we have

∫
Br2

|∇um|2dvol ≤ (2c+ 8/(r1 − r2)
2)

∫
Br2

c(um)
2dvol ≤ C(n)/(r1 − r2)

2

∫
Br2

c(um)
2dvol.

By Sobolev inequality,

(

∫
Br1

|um|2n2dvol)1/n2 ≤ C(n)/(r1 − r2)
2

∫
Br2

c(um)
2dvol.

That is

∥um∥L2n2 (Br2 )
≤ (C(n)/(r1 − r2))∥um∥L2n1 (Br1 )

Let m→ ∞, we have

∥u∥L2n2 (Br2 )
≤ (C(n)/(r1 − r2))∥u∥L2n1 (Br1 )
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Consider ϕk = η2k(u
2nk−1
m ) ∈ H1

0 (B2r). By the same arguments as above, we have

∥u∥L2nk+1 (Brk+1
) ≤ (C(n)/(rk − rk+1))

1/(nk)∥u∥L2nk (Brk
).

As a consequence,

∥u∥L∞(Br) = lim
k→∞

∥u∥L2nk (Brk
)

≤ CΠ∞
k=1(C(n)/(rk − rk+1))

1/(nk)∥u∥L2(B2r)

= C(C(n)/r)(
∑∞

k=1 1/(nk))2
∑∞

k=1 k/nk∥u∥L2(B2r)

≤ C/rn/2∥u∥L2(B2r).

We state two Lemmas that will be needed shortly,

Lemma 3.5.1. Suppose that u ∈ L2(M), w ∈ LN(M) for some N > n/2, and □Tfu ≤ w

in the weak sense (and u ≥ 0.). For r > 0 small enough, p /∈ L, let Br(p) be the geodesic

ball around p with radius r induced by g. Then

sup
y∈Br(p)

u(y) ≤ C2(r
−n/2∥u∥L2(B2r(p)) + r−n/N∥w∥LN (B2r(p))),

where C2 > 0 is a constant that depends only on the dimension n, the injectivity radius

lower bound r0 and the curvature bound.

Proof. The proof is actually similar to the proof Lemma 3.2.3, requiring only some slight

modification. See Theorem 4.1 in [41] for a reference.

By the same argument as the proof of Theorem 1.3.1, we have
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Lemma 3.5.2. Let (M, g, f) be well tame, w ∈ LN(M) ∩ LN∗
(M) satisfying

∥w∥NLN
wt

:=

∫
M

|w|N exp(2a′′NρT )dvol <∞

for some a′′ ∈ (0, b), where N∗ = N
N−1

. If ϕ ∈ L2(M) is a weak solution of □Tfϕ ≤ w,

then

|ϕ(p)| ≤ C
(
∥ϕ∥L2 + sup{∥w∥LN∗ , 1}∥w∥LN

wt

)
exp(−a′′ρT (p)).

3.5.3 On the Thom-Smale Complex

In this subsection, we will show that the Thom-Smale complex defined previously in

Section 3.3 is indeed a complex. The key here is to establish the analog of the so called

Stokes formula in our setting. We use a doubling construction to reduce it to the compact

case and makes essential use of the uniform lower bound of |∇f | outside suitably chosen

compact sets, which guarantees that the flow lines coming out of the compact region will

never return; see also Remark 7.7.

Intuitively the idea may be explained as follows. When the Morse function f is proper,

such compact regions can be chosen to be the sublevel set a ≤ f ≤ b. Since f decreases

along its negative gradient flow, flow line out of the region will obviously not return. In

general, however, f may not be proper, but it turns out that the Agmon distance is a

good replacement. Indeed, when f is proper, f measures the Agmon distance between

its level sets.

First, let’s recall the Stokes formula in the compact case. The following is a restate-

ment of Proposition 6 in [42].

Proposition 3.5.3. Let (N, g) be a compact Riemannian manifold (without bound-

ary), and f a Morse function. Assume that (N, g, f) satisfies Thom-Smale transver-

sality condition. Then, for any critical point x ∈ Crit(f) with Morse index nf (x), any
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ϕ ∈ Ωnf (x)−1(M), one has the following so called Stokes Formula

∫
Wu(x)

dϕ =
∑

y∈Crit(f),nf (y)=nf (x)−1

m(x, y)

∫
Wu(y)

ϕ.

For our noncompact case with tame conditions and Thom-Smale transversality, we

have similarly

Proposition 3.5.4. For any critical point x ∈ Crit(f) with Morse index nf (x), any

ϕ ∈ Ω
nf (x)−1
c (M), one has the following so called Stokes Formula

∫
Wu(x)

dϕ =
∑

y∈Crit(f),nf (y)=nf (x)−1

m(x, y)

∫
Wu(y)

ϕ.

Before giving the proof of this proposition, we first draw a couple of consequences.

Corollary 3.5.1. Let ∂̃ : C∗(W
u) 7→ C∗−1(W

u) be the map constructed in Section 3.3,

then ∂̃2 = 0.

Proof. Otherwise, ∂̃2W u(x) ̸= 0. Then there exists ϕ ∈ Ω
nf (x)−2
c (M), s.t.

∫
∂̃2Wu(x)

ϕ ̸= 0.

But by Proposition 3.5.4, ∫
∂̃2Wu(x)

ϕ =

∫
Wu(x)

d2ϕ = 0,

a contradiction.

Corollary 3.5.2. Let ω ∈ F
[0,1],nf (x)−1

Tf , one has

∫
Wu(x)

exp(Tf)dTfω =
∑

y∈Crit(f),nf (y)=nf (x)−1

m(x, y)

∫
Wu(y)

exp(Tf)ω.
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In particular, the map J introduced in Section 3.3 is a chain map.

Proof. By Theorem 1.3.1 and Lemma 3.3.5, for any ϵ > 0, there exists ϕ ∈ Ω
nf−1
c (M)

such that, for any y ∈ Crit(f) with nf (y) = nf (x)− 1,

∫
Wu(x)

| exp(Tf)dTfω − dϕ| < ϵ,

∫
Wu(y)

| exp(Tf)ω − ϕ| < ϵ.

Now our Corollary follows from Proposition 3.5.4.

We now turn to the proof of Proposition 3.5.4. We start with the following observa-

tion.

Lemma 3.5.5. Let (N, ∂N) be compact manifold with boundary. Moreover, assume that

near the boundary ∂N , the manifold is of product type (0, 1] × ∂N. Suppose that f is a

Morse function on N − [1/2, 1] × ∂N . Then there exists a Morse function f̄ on N , s.t.

f̄ |N−[1/4,1]×∂N = f, f̃ |[3/4,1]×∂N = r. Here r is the standard coordinate on (0, 1] factor.

The proof is essentially the same as that of Theorem 2.5 in [43].

Recall from Section 3.3 that d̃ denote the distance function induced by the Agmon

metric |∇f |2g. Let Φt denote the flow generated by −∇f. By reparameterization the

results in Lemma 3.3.2 can be restated for Φt (and d̃). Namely, we have

|f(p)− f(q)| ≤ d̃(p, q), ∀p, q ∈M. (3.19)

and

d̃(Φt1(p),Φt2(p)) = |f(Φt1(p))− f(Φt2(p))|. (3.20)

Set (Cf. (3.13))

D = sup
y∈Crit(f)

d̃(y, p0) + 2 sup
y,z∈Crit(f)

d̃(y, z).
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Lemma 3.5.6. For any fixed x ∈ Crit(f) and any D̄ > D and let B̃D̄(x) be the ball

centered at x with radius D̄ in the distance d̃ and B̃◦
D̄
(x) the interior of B̃D̄(x), Then for

any y, z ∈ Crit(f), W u(y)∩W s(z) ⊂ B̃◦
D̄
(x). Moreover, if p /∈ B̃D̄(x) lies in the unstable

manifold W u(x), then {Φt(p) : t ≥ 0} ∩ B̃D̄(x) = ∅.

Proof. Since f is decreasing along the flow Φt, by (3.20), for any p ∈ W u(y) ∩W s(z),

d̃(y, p) = f(y)− f(p) ≤ f(y)− f(z) = d̃(y, z).

Hence

d̃(x, p) ≤ d̃(x, y) + d̃(y, p) ≤ d̃(x, y) + d̃(y, z) ≤ D.

Similarly, if q /∈ B̃D̄(x) lies in the unstable manifold W u(x), then for any t ≥ 0,

d̃(x,Φt(q)) = f(x)− f(Φt(q)) ≥ f(x)− f(q) = d̃(x, q) ≥ D̄

as desired.

Now we are ready to prove Proposition 3.5.4

Proof. We reduce it to the compact case by a doubling construction and make use of

Proposition 3.5.3.

For any ϕ ∈ Ω
nf (x)
c (M), let

D̄ := sup
p∈Critf∪supp(ϕ)

d̃(p, p0) + 2 sup
p,q∈Critf∪supp(ϕ)

d̃(p, q),

we can find a compact submanifold (N, ∂N) with boundary, such that B̃D̄(x) ⊂ N◦. Here

supp(ϕ) denotes the support of ϕ, N◦ denote the interior of N. Thus, supp(ϕ) ⊂ B̃◦
D̄
(x).

Now consider the double (DN = N+ ∪ N−, gDN) of N , gDN |B̃D̄(x) = g. By Lemma
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3.5.5, we can find a Morse function f̄ on DN , such that f̄ |B̃D̄(x) = f. We may as well

assume that (DN, gDN , f̄) satisfy Thom-Smale transversality condition. Then for any

y, z ∈ Crit(f̄) with Morse index nf̄ (y) = nf̄ (z) + 1, let mDN(y, z) be the signed count of

the number of flow lines in W u
DN(y) ∩W s

DN(z), where W
s
DN and W u

DN denote the stable

and unstable manifolds with respect to f̄ on DN.

Then, we note the following observations:

1. By Lemma 3.5.6 and its proof, if z ∈ B̃D̄(x) is a critical point of f̄ with nf̄ (z) =

nf̄ (x) − 1, we have mDN(x, z) = m(x, z). Indeed, suppose γ is a flow line on DN

connecting x and z, and γ is not contained in B̃D̄(x). Let w ∈ γ ∩ ∂B̃D̄(x) be the

place where γ first meets ∂B̃D̄(x). Then

D ≥ d̃(x, z) ≥ f(x)−f(z) = f̄(x)−f̄(z) > f̄(x)−f̄(w) = f(x)−f(w) = d̃(x,w) = D,

which is a contradiction. Here the strict inequality above follows from the fact that

f̄ decreases along its flow lines, and the second to the last equation follows from

the fact that the part of flow lines of f̄ inside B̃D̄(x) coincides with flow lines of f

as gDN |B̃D̄(x) = g, f̄ |B̃D̄(x) = f .

As a result flow lines (if exist) connecting x and z in DN must be contained in

B̃D̄(x). By Lemma 3.5.6, they are exactly flow lines connecting x and z in M .

Therefore, mDN(x, z) = m(x, z).

2. If z /∈ B̃D̄(x) is a critical point of f̄ , and W s
DN(z) ∩W u

DN(x) ̸= ∅, then W u
DN(z) ∩

supp(ϕ) = ∅.

This is because, let γ be a flow line connecting x and z in DN , w ∈ γ ∩ ∂B̃D̄(x)

be the first place where γ meets ∂B̃D̄(x). By (3.20), f̄(x)− f̄(z) > f̄(x)− f̄(w) =
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f(x)− f(w) = d̃(x,w) = D̄. Hence,

f̄(z) < inf
p∈supp(ϕ)

f̄(p). (3.21)

Otherwise, there is p ∈ supp(ϕ) such that f̄(z) ≥ f̄(p). Then by (3.19), D̄ ≥

d̃(x, p) ≥ f(x) − f(p) = f̄(x) − f̄(p) ≥ f̄(x) − f̄(z) > D̄. By (3.21), W u
DN(z) ∩

supp(ϕ) = ∅.

As a result, by Proposition 3.5.3

∫
Wu(x)

dϕ =

∫
Wu

DN (x)

dϕ =
∑

z∈Crit(f̄),nf̄ (z)=nf̄ (x)−1

mDN(x, z)

∫
Wu

DN (z)

ϕ

=
∑

y∈Crit(f),nf (y)=nf (x)−1

mDN(x, y)

∫
Wu(y)

ϕ (By Observation 2)

=
∑

y∈Crit(f),nf (y)=nf (x)−1

m(x, y)

∫
Wu(y)

ϕ (By Observation 1),

as claimed.

Remark 3.5.7. Here we have made essential use of the fact that |∇f | has a positive lower

bound outside some compact set K0. Indeed, in this case, (M, |∇f |2g) is complete and

hence, B̃r(p) is compact for all r > 0, p ∈ M. Therefore one can always find a compact

manifold with boundary N containing B̃D̄(x). Moreover, by our choice of D̄, for all q ∈

(M − B̃D̄(x)) ∩W u(x), f(q) < infq′∈supp(ϕ)∪Crit(f) f(q
′). Therefore, since f is decreasing

along the flow, once a flow line escapes B̃D̄(x), it never flows back to supp(ϕ) ∪ Crit(f).

Consequently, we have Lemma 3.5.6 , Observation 1 and 2.

A Counterexample

To close out this subsection, we present a counterexample provided by Shu Shen

which showes that, if one drops the condition that |∇f | has a positive lower bound near
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infinity, the conclusion ∂̃2 = 0 can fail.

Consider the following heart shaped topological sphere S with f being the height

function. Then we have four critical points x, y, z, w as indicated below. Let γ be a flow

line connecting y and w, and remove a point p on γ. Make a conformal change of metric

near the point p so that S − {p} is complete under this new metric. Now one can check

that |∇f(q)| → 0, as q → p. On the other hand, since the flow line is invariant under

the conformal change of metric, γ − {p} is still a (broken) flow line. And in this case,

∂̃2x = w, which is nonzero.

In our previous arguments, the fact that |∇f | has a positive lower bounded near the

infinity play a crucial role. See Remark 3.5.7 above.

p

γ

y

x z

w

Remark 3.5.8. We would like to thank Shu Shen for providing this interesting example.

3.5.4 Isomorphism of H∗(C•(W u), ∂̃′) and H∗
dR(M,Uc)

For simplicity, we assume that f is a self-indexed Morse function, i.e., if x is a critical

point of f with Morse index i, we require f(x) = i.

Let Vi = f−1(−∞, i+ 1
2
], 0 ≤ i ≤ n.

81



On Agmon Estimate and Thom-Smale-Witten Complex Chapter 3

Recall that we assume in a neighborhood Ux of critical points x of f , we have coor-

dinate system z = (z1, ..., zn), such that

f = f(x)− z21 − ...− z2nf (x)
+ z2nf (x)+1 + ...+ z2n,

g = dz21 + ...+ dz2n,

Moreover Ux is an Euclidean open ball around x with radius 1. Also, these open balls are

disjoint.

We have the following observation:

Lemma 3.5.9. V0 can be written as disjoint union of ∪x∈Crit(f),nf (x)=0Ũx and V , where

V is some open subset diffeomorphic to Uc, Ũx is an Euclidean ball around x with radius

1
2
. Also, Vn is diffeomorphic to M.

Proof. Let Xf := ∇f
|∇f |2 , Φ

t be the flow generated by Xf . Then we have

(
Φc+ 1

2 (Uc)
)
∩
(
∪x∈Crit(f),nf (x)=0Ũx

)
= ∅.

This is because:

• If f(p) ≤ c− 1
2
, then f(Φc+ 1

2 (p)) < 0. Hence Φc+ 1
2 (p) /∈ ∪x∈Crit(f),nf (x)=0Ũx.

• If c − 1
2
≤ f(p) < c, and if Φc+ 1

2 (p) ∈ Ũx for some x ∈ Crit(f) with Morse

index nf (x) = 0. Then Φc+ 1
2 (p) ∈ W s(x), which implies p ∈ W s(x). But this is

impossible since f(p) < −c < 0 = f(x).

We can similarly prove that Vn is diffeomorphic to M.

Let C∗(Vi, Uc) be the complex of relative singular chains. Then we have

C∗(Vn, Uc) ⊃ C∗(Vn−1, Uc) ⊃ · · ·C∗(V0, Uc).
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By Lemma 3.5.9 and a spectral sequence argument similar to the proof of Theorem

1.6 in [20], one can show that

H∗(C
•(W u), ∂̃) ≃ H∗(M,Uc).

Thus, it follows from the universal coefficient theorem that

H∗(C•(W u), ∂̃′) ≃ H∗
dR(M,Uc).

3.5.5 Isomorphism of H∗
(2)(M,dTf) and H∗(C•(W u), ∂̃′)

We will first show that the chain map J : (F
[0,1],∗
Tf , dTf ) 7→ C∗((W u)′, ∂̃′) defined in

Section 3.3 is in fact an isomorphism when T is sufficiently large. Hence J induces an

isomorphism between H∗
(2)(M,dTf ) and H

∗(C•(W u), ∂) in that case.

More precisely the arguments follow those in Chapter 6 of [27], with a necessary

modification, and we will only indicate the modification here. The basic idea is to

construct an explicit map which approximate the inverse of J (up to constant multiple)

as T → ∞. Therefore, there exists T6 > T0, such that J is an isomorphism whenever

T > T6. (We point out that the explicit description of T6 is more involved than T0.)

In fact, the modification we need is a more refined estimate in Theorem 6.7 of [27].

Namely, we have

|Pτx,T − τx,T | ≤ C exp(−a′T
√
ρ2 + 1)∥τx,T∥L2 , (3.22)

where P is the orthogonal projection from L2Λ(M) to F [0,1],∗, and C, a′ < a are positive

constants.

Here τx,T is defined as follows (and the explicit map from C∗((W u)′, ∂̃′) to (F
[0,1],∗
Tf , dTf )

83



On Agmon Estimate and Thom-Smale-Witten Complex Chapter 3

assigns a (normalizing) multiple of Pτx,T to W u(x)∗). Notice that in Section 3.4, we

require that in a neighborhoof U of x, the metric and Morse function is of the form

(3.15). Let αx be a bump function whose support is contained in U and αx ≡ 1 in a

neighborhood V of x, and set

τx,T = αx exp(−T 2|z|2)dz1 ∧ · · · ∧ dznf (x).

Then □Tfτx,T = 0 in V and M − U .

To obtain the estimate (3.22), pick a bump function η with compact support , such

that η ≡ 1 on K. Then our Agmon estimate yields

|(1− η)(Pτx,T − τx,T )| ≤ C exp(−aTρ)∥τx,T∥L2 .

On the other hand, the estimate

|η(Pτx,T − τx,T )| ≤ C exp(−cT )∥τx,T∥L2

follows from exactly the same argument in the proof of Theorem 6.7 of [27].

Now it remains to prove that when T ∈ (T0, T6], H
∗
(2)(M,dTf ) and H∗(C•(W u), ∂)

are still isomorphic.

We only present the proof for the case when (M, g, f) is strongly tame, the case of

well tame being exactly the same except notationally. In this case, we have T0 = 0. The

idea is to show that if S > 0, then for any T ∈ [7/8S, S], H∗
(2)(M,dTf ) and H

∗
(2)(M,dSf )

are isomorphic. Hence H∗
(2)(M,dTf ) is independent of T ∈ (0,∞), which finishes the

proof of isomorphism of H∗
(2)(M,dTf ) and H

∗(C•(W u), ∂).

For simplicity, we prove that H∗
(2)(M,d7f ) and H

∗
(2)(M,d8f ) are isomorphic, the gen-

eral case being similar.
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Thus fix coefficients a = 63
64
, b = 127

128
in Lemma 3.1.1 and Theorem 1.3.1.

Define Mf : (F
∗,[0,1]
8f , d8f ) 7→ (Ω∗

(2)(M), d7f ); ∀w ∈ F
∗,[0,1]
8f , Mf (w) = exp(f)w. Simi-

larly M−f : (F
∗,[0,1]
7f , d7f ) 7→ (Ω∗

(2)(M), d8f ); ∀w ∈ F
∗,[0,1]
7f , M−f (w) = exp(−f)w.

Clearly these are chain maps once we check that Mf and M−f are well defined. To

this end, let’s verify that |f(p)| ≤ supq∈K |f(q)|+ 1
bT
ρT (p). Indeed, let γ : [0, ρT (p)] be a

normal minimal geodesic connecting K and p, in the metric g̃T . Then

| d
dt
f ◦ γ(t)| = | < ∇̃f, γ′ >g̃T | ≤ 1

bT
.

Now the L2 bound of Mf (w) (resp. M−f (w)) follows by Theorem 1.3.1 and the

standard volume comparison. Hence Mf induces a homomorphism (still denote it by

Mf ) from H∗
(2)(M,d8f ) to H

∗
(2)(M,d7f ).

Our next step is to show that Mf is injective. Suppose we have w ∈ ker(□8f ),

s.t. Mfw is exact, which means that we can find α ∈ Im(δ7f ), s.t exp(f)w = d7fα(=

(d7f + δ7f )α).

Thus

□7fα = (d7f + δ7f ) exp(f)w = exp(f)d8fw + exp(2f)δ6fw

= 0 + exp(2f)(δ8fw − ι2fw) = − exp(2f)ι2fw.

By Lemma 3.5.2, |α| ≤ C exp(−1/3ρ7). Consequently, exp(−f)α ∈ L2Λ∗(M), and

w = d8f exp(−f)α is exact.

As a result, Mf is injective. Similarly, M−f is also injective. Therefore, H∗
(2)(M,d8f )

and H∗
(2)(M,d7f ) are isomorphic.
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Chapter 4

Heat kernel Expansion and Local

Index Theorem

In this chapter, we study the asymptotic expansion of the heat kernel associated to

the Witten Laplacian which is essentially a Schrödinger operator. Not much is known

previously about asymptotic expansions of heat kernels and heat traces of Schrödinger

operators on non-compact spaces. Even for cases as simple as Cn with polynomial po-

tentials, it is already very complicated. Motivated by path integral formulation of the

heat kernel, we found that a parabolic distance, introduced in Li-Yau’s famous work on

the parabolic Harnack estimate, provides a much simpler and satisfying approach. Using

the Li-Yau parabolic distance, we derive a pointwise asymptotic expansion of the heat

kernel for the Witten Laplacian with strong remainder estimate. When the deformation

parameter of Witten deformation and time parameter are coupled, we derive an asymp-

totic expansion of trace of heat kernel for small-time t, and obtain a local index theorem.

In the special case of Cn with a quasi-homogeneous polynomial, the corresponding index

formula reduces to the Milnor number of the polynomial.
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4.1 Weak Weyl Law

In this section we will show that the polynomial tame condition implies that exp(−t□Tf )

is of trace class. This is achieved by proving a weak Weyl law which shows that the eigen-

values of the Witten Laplacian grows polynomially. The Agmon estimate developped in

[25] plays a crucial role here.

4.1.1 Review of Hodge Theory for Witten Laplacian

For any T > 0, let

dTf := d+ Tdf∧ : Ω∗(M) 7→ Ω∗+1(M)

be the so-called Witten deformation of de Rham operator d. As usual, the metric g

induces a canonical metric (still denote it by g) on Λ∗(M), which then defines an inner

product (·, ·)L2 on Ω∗
c(M):

(ϕ, ψ)L2 =

∫
M

(ϕ, ψ)gdvol, ϕ, ψ ∈ Ω∗
c(M).

Let L2Λ∗(M) be the completion of Ω∗
c(M) with respect to ∥ · ∥L2 , and L2(M) :=

L2Λ0(M).

Then dTf is an unbounded operator on L2Λ∗(M) with domain Ω∗
c(M). Also, it has a

formal adjoint operator δTf , with Dom(δTf ) = Ω∗
c(M), such that

(dTfϕ, ψ)L2 = (ϕ, δTfψ)L2 , ϕ, ψ ∈ Ω∗
c(M).

Set ∆H,Tf = (dTf + δTf )
2, and we denote the Friedrichs extension of ∆H,Tf by □Tf .

If (M, g) is complete then ∆H,Tf is essentially self-adjoint (and hence □Tf is the unique
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self-adjoint extension). In [25] We proved that when (M, g, f) is tame,

L2Λ∗(M) = ker□Tf ⊕ Imd̄Tf ⊕ Imδ̄Tf , (4.1)

where d̄Tf and δ̄Tf are the graph extensions of dTf and δTf respectively.

Setting Ω∗
(2)(M,Tf) := Dom(d̄Tf ) ∩ Ω∗(M), we have a chain complex

· · ·
dTf−−→ Ω∗

(2)(M,Tf)
dTf−−→ Ω∗+1

(2) (M,Tf)
dTf−−→ · · · .

Let H∗
(2)(M,dTf ) denote the cohomology of this complex. In [25], we have shown that

H∗
(2)(M,dTf ) ∼= ker□Tf , provided (M, g, f) is well tame and T is large enough. Note

that the notion of well tame [25] is strictly weaker than that of regular tame.

Finally, we note the following well known

Proposition 4.1.1. Denote Lf = ∇2
ei,ej

f [ei∧, ιej ] locally, where {ei} is a local frame

on TM and {ei} is the dual frame on T ∗M. Then the Witten Laplacian ∆H,Tf has the

following expression:

∆H,Tf = ∆− TLf + T 2|∇f |2. (4.2)

Here ∆ denotes the Hodge Laplacian.

4.1.2 Weak Weyl Law for Witten Laplacian

Let (M, g, f) be α-polynomial tame defined in the previous section. Then, (M, g, f)

is regular tame and there is some constant C, such that for all λ ≥ 0,

∫
{p∈M :|∇f |2(p)≤λ}

(λ− |∇f |2)n/2dvolM ≤ Cλα.

This has the following immediate consequences.
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Lemma 4.1.2. Let Kλ := {p ∈M : |∇f |2(p) < λ}, then

Vol(Kλ) ≤ Cλα−
n
2 .

Furthermore, for any k ≥ 0, there is a constant Ck depending only on k and the tameness

condition such that ∫
M

exp(−|∇f |2)|∇f |kdvol ≤ Ck.

Proof. We have

λ
n
2 Vol(Kλ) ≤

∫
K2λ

(2λ− |∇f |2)
n
2 ≤ Cλα.

To prove the second estimate, we notice that

∫
M

exp(−|∇f |2)|∇f |kdvol =
∞∑
l=0

∫
Kl+1−Kl

exp(−|∇f |2)|∇f |
k
2 dvol

≤
∞∑
l=0

e−l(l + 1)
k
2 Vol(Kl+1 −Kl)

≤ C
∞∑
l=0

e−l(l + 1)
k
2
+α−n

2 = Ck <∞,

as desired.

Note that, in particular, if α = n/2, then M must have finite volume.

We now turn our attention to the growth of eigenvalues of the Witten Laplacian.

First, by refining the argument of Theorem 1.1 in [25], we have the following exponential

decay estimate for eigenforms.

Proposition 4.1.3. Let (M, g, f) be strongly tame, and ω ∈ Dom(□f ) be an eigenform
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of □f with eigenvalue λ ≥ 1. Then

|ω(p)| ≤ C(M,a)(1 + δf )λ exp(−aρ5λ(p))∥ω∥L2 , (4.3)

for any a ∈ (0, 1) whenever p /∈ K3λ. Here ρλ is the Agmon distance induced by Agmon

metric gλ := (|∇f |2 − λ)+ g, with (|∇f |2 − λ)+ denoting the nonnegative part, δf is a

positive number such that δf > supp∈M
|Hess(f)|
(|∇f |+1)2

, and C is a constant depending on the

curvature bounds and a.

Proof. Indeed, in the proof of Lemma 3.1 in [25], we let K = Kλ, L = K2λ∩{p : ρλ(p) <

2}, φk,j = µk exp (bρT,j), λT = a2(|∇f |2 − λ)+ for some a ∈ (0, 1), w = 0 instead. Here

for k large, µk is a bump function that satisfies

(a) |∇µk|2 ≤ C(1 + δf )λ in L−K.

(b) |∇µk|2(p) ≤ 2(|∇f |2 − λ)+ when p ∈ {q ∈M : ρλ(q) ∈ (k, k + 1)}.

(c) µk(p) = 1 when p ∈M − L ∩ {q ∈M : ρλ(q) < k}.

(d) µk(p) = 0 when p ∈ K ∪ {q ∈M : ρλ(q) > k + 1}.

Indeed, it suffices to verify (a), to this end, we show that

D := dist(K,M − L) ≥ c

(δf + 1)λ
(4.4)

with respect to metric g. Let γ : [0, D] → M be a shortest normal geodesic connecting

K and M −L with respect to metric g, such that γ(0) ∈ ∂K, γ(D) ∈ ∂L. We must have

γ ⊂ L̄. Moreover, if ρλ ◦ γ(D) = 2, then since |∇ρλ|2 = (|∇f |2 − λ)+ ≤ λ on L, we must

have D ≥ 2
λ
. If ρλ ◦ γ(D) < 2, we must have |∇f | ◦ γ(D) =

√
2λ. Since |∇|∇f || ≤

|Hessf | ≤ δf (1 + |∇f |2) ≤ 3δfλ, we must have D ≥ 1
3δf

√
λ
≥ 1

3δfλ
. Consequently, (3.13)

is true.
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Now we still have (see the proof of Lemma 3.1 in [25]):

∫
M−L

|u|2(|∇f |2 − λ)+ exp (2bρλ,j) dvol ≤ C1(b)(1 + δf )λ

∫
L−K

|u|2 exp (2bρλ,j) dvol

≤ C2(b)(1 + δf )λ

∫
L−K

|u|2dvol,

where ρλ,j = min ρλ,j for all j ∈ Z+.

Since on K3λ, (|∇f |2 − λ)+ ≥ 5λ, one has

∫
M−K6λ

|u|2 exp (2bρλ,j) dvol ≤ C3(b)(1 + δf )

∫
L−K

|u|2dvol.

Proceed as in [25], one can see that when p ∈M −K3λ, (4.3) is true.

With the help of Proposition 4.1.3, we now deduce a weak version of Weyl’s law:

Proposition 4.1.4. If (M, g, f) is α-polynomial tame, then the spectrum of □f has

polynomial growth. More precisely, there exist constants δ > 0 and C > 0, such that

λk(□f ) ≥ Ckδ, where λk(□f ) denotes the k-th eigenvalue of □f (counted with multiplic-

ity). Consequently, exp(−t□Tf ) is of trace class for all T > 0, t > 0.

Proof. Let E(λ) be the number of eigenvalues not exceeding λ, and u be an eigenform

with eigenvalue λ0 ≤ λ. We normalize u so that ∥u∥L2 = 1 .

By Proposition 4.1.3,

|u(p)| ≤ Cλ exp(−aρλ(p)).

We claim that there exists n0 > 1 independent of λ ≥ 1 and u, such that

∫
M−Kn0λ

|u|2dvol < 1

2
. (4.5)
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To prove the claim we first estimate the Agmon distance. Thus, for p ∈ K(k+1)λ−Kkλ,

let γ : [0, l] 7→ M be a minimal curve in the Agmon metric gλ connecting p and Kkλ;

moreover, |γ′(s)| = 1 with respect to the metric g. Then we may as well assume that

γ ⊂ K(k+1)λ; otherwise, we can find l0 ∈ [0, l], such that γ|[l0,l] ⊂ K(k+1)λ and we can take

p = γ(l0). Hence by the tameness condition, there exists c > 0, s.t.

d

dt
(|∇f |2 ◦ γ(t)) ≤ c|∇f |κ+2 ≤ c((k + 1)λ)

κ+2
2 .

It follows by integrating that l ≥ |∇f |2(p)−kλ

((k+1)λ)
κ+2
2
. In particular, if L is the gλ-length of γ

such that that |∇f |2(p) = (k + 1)λ, then for some c′ > 0

L =

∫ l

0

(|∇f |2 − λ)
1
2 ◦ γ(t)dt ≥ (k − 1)

1
2λ

1−κ
2

(k + 1)
κ+2
2

≥ c′λ
1−κ
2

k
κ+1
2

.

Hence, if x ∈ K(k+1)λ −Kkλ, then (say k ≥ 3)

ρλ(x) ≥
k−1∑
i=2

c′λ
1−κ
2

i
κ+1
2

≥ c′′λ
1−κ
2 k

1−κ
2

for some constant c′′ > 0.
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Therefore, assuming n0 > 5,

∫
M−Kn0λ

|u|2dvol =
∞∑

k=n0

∫
K(k+1)λ−Kkλ

|u|2dvol

≤
∞∑

k=n0

∫
K(k+1)λ−Kkλ

λCe−aρλdvol

≤
∞∑

k=n0

Cλe−ac′′λ
1−κ
2 k

1−κ
2 Vol(K(k+1)λ)

≤
∞∑

k=n0

C1λe
−ac′′λ

1−κ
2 k

1−κ
2 ((k + 1)λ)α−

n
2

≤
∞∑

k=n0

C1C
′e−

1
2
ac′λ

1−κ
2 k

1−κ
2 ≤

∞∑
k=n0

C1C
′e−

1
2
ac′′k

1−κ
2

for λ ≥ 1. Here C ′ = maxη>0 η
2α−n+2

1−κ e−
1
2
ac′′η. Clearly there is some n0 independing λ

such that the last term in the inequality above is less than 1/2, which finishes the proof

of the claim.

Let N(ϵ, λ) be the minimal number of elements in an ϵ-dense subset of Kn0λ. Then

by the volume comparison, N(ϵ, λ) ≤ C2
Vol(Kn0λ

)

ϵn
. We now follow the argument in the

proof of Theorem 5.8 of [44] to show that E(λ) ≤ N(ϵ, λ) for suitable ϵ. Indeed, if

E(λ) > N(ϵ, λ), then there exists u ∈ E(λ) with unit L2 norm which vanishes on an

ϵ-dense subset of Kn0λ. By using the elliptic estimate as in [44] one deduces

sup
Kn0λ

|u| ≤ ϵCk(1 + λk)

for any 2k > n
2
+1. But this is clearly impossible if we take ϵ−1 := 2Ck(1+λ

k)Vol(Knoλ)
1/2,

as ∫
Kn0λ

|u|2dvol > 1/2.

.
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As a result, if we choose the minimal k, s.t. 2k > n
2
+ 1, then by Lemma 4.1.2,

E(λ) ≤ N(ϵ, λ) ≤ C1
Vol(Kn0λ)

ϵn
≤ Cλ

n
2
α+α+n.

The rest of the proposition follows.

Remark 4.1.5. The α-polynomial tame condition is a technical one for the usual heat

kernel approach to local index theorems. For example, on R consider f = |x| ln |x| outside

|x| ≤ e. Let λk be the k-th eigenvalue of □f . Then by Weyl’s law (Cf. [29]), λk ≲
√
ln(k).

For such slowly growing eigenvalue distributions, it is unreasonable to consider the limit

limt→0 Trs(exp(−t□f )). On the other hand, this assumption is not essential if one is only

interested in an index formula. This issue will be elaborated in a separate paper when we

discuss the Dirac/Callias type operators.

Thus, assuming the α-polynomial tame condition, exp(−t□Tf ) is of trace class. It

follows that

h(t, T ) = Trs(exp(−t□Tf )) (4.6)

is independent of t. Moreover, as t→ ∞, h(t, T ) → χ(M,dTf ), where

χ(M,dTf ) =
n∑

i=0

(−1)ibi(T ), bi = dim(H i
(2)(M,dTf )).

Now by Theorem 1.3 in [25], h(t, T ) is independent of T > 0. As a result, h(t, T ) is

independent of both t > 0 and T > 0.

4.2 Construction of Parametrix

In this section, we extend the parametrix construction of the heat kernel to the Witten

deformation. The case of Euclidean space is treated in [33].
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Fix x ∈ M , and let d(y, x) be the distance function. Let τ > 0 be the injectivity

radius of M. Then for y ∈ Bτ (x), define

E0(t, x, y) =
1

(4πt)
n
2

exp(−d2(x, y)/4t). (4.7)

For simplicity, we denote VT = T 2|∇f |2 and V = |∇f |2. Suppose γ is the normal geodesic

connecting x and y, and rx(y) = d(x, y). Set

hT (x, y) =
1

rx(y)

∫ rx(y)

0

VT (γ(s))ds = T 2h(x, y), h(x, y) =
1

rx(y)

∫ rx(y)

0

V (γ(s))ds.

(4.8)

We define

E1,T (t, x, y) = exp(−t hT (x, y)). (4.9)

Then direct computation gives us the following formulas (the first two are well known).

Proposition 4.2.1. For y ∈ Bτ (x) in the normal coordinates near x, we have

∇E0 = −E0
2t
r∇r, (

∂

∂t
+∆)E0 =

E0
4tG

∇r∇rG.

∇r∇rhT (x, y) + hT (x, y)− VT (y) = 0.

Here G = det(gij) and derivatives are taken with respect to y.

Let pi : M ×M 7→ M be the projection of i-th factor of M ×M to M, i = 1, 2.

We define the vector bundle E → M × M to be E = (p1)
∗(Λ∗(M)) ⊗ (p2)

∗(Λ∗(M)).

Let s(t, x, y) =
∑k

i=0 t
iΘi(x, y), where Θi(x, y) ∈ Γ(E). Since y is within the injectivity

radius of x, we use parallel transport along radius geodesics to identify Λ∗
y(M) with

Λ∗
x(M). In this way, Θi(x, y) ∈ Γ(E) is identified with an endomorphismm of Λ∗(M)

using the metric. Again by a straightforward computation and using Proposition 4.2.1,
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we have

Proposition 4.2.2.

(
∂

∂t
+□Tf )(E0E1,T s)

= E0E1,T
{ k−1∑

j=−1

[(j + 1 +
1

4G
∇r∇rG)Θj+1 +∇r∇rΘj+1 +∆Θj − TLfΘj]t

j

+ [∆Θk − TLfΘk]t
k +

k+1∑
j=1

[−∆hTΘj−1 + 2∇∇hT
Θj−1]t

j

+
k+2∑
j=2

[−|∇hT |2Θj−2]t
j
}
,

(4.10)

where the derivatives are taken with respect to y.

Now we can follow the standard procedure to find suitable Θj = ΘT,j with ΘT,0(x, x) =

Id, j = 0, 1, ..., k, such that

(
∂

∂t
+□Tf )(E0E1s) = tkRk,T (t, x, y), (4.11)

where Rk,T (t, x, y) is C
0 in t ∈ [0,∞). This amounts to solving ODEs inductively.

For j = −1, we have d
dr
(G1/4ΘT,0) = 0. Together with the initial condition ΘT,0(x, x) =

Id, one has ΘT,0 = G−1/4 Id.

For j = 0, we have d
dr
(rG1/4ΘT,1) = G1/4(TLf − ∆)ΘT,0; hence we can solve Θ1

explicitly in terms of ΘT,0, by integrating along the geodesic.

Similarly, for 1 ≤ j ≤ k − 1, ΘT,j+1 can be solved recursively from the equation

d

dr
(rj+1G1/4ΘT,j+1) = −rjG1/4(∆ΘT,j − TLfΘT,j −∆hTΘT,j−1

+ 2∇∇hT
ΘT,j−1 − |∇hT |2ΘT,j−2).
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With these choices for ΘT,j’s, we obtain (4.11), where

Rk,T = E0E1
{
[∆ΘT,k − TLfΘT,k −∆hTΘT,k−1 + 2∇∇hT

ΘT,k−1 − |∇hT |2ΘT,k−2]

+ [−∆hTΘT,k + 2∇∇hT
ΘT,k − |∇hT |2ΘT,k−1]t+ [−|∇hT |2ΘT,k]t

2
}

(4.12)

The following proposition follows from the above construction via an argument of

induction, using the κ-regular tame condition.

Proposition 4.2.3. Each ΘT,j can be written as a polynomial of T :

ΘT,j(x, y) =

[ j
3
]+j∑

l=0

T lΘl,j(x, y),

where Θl,j is independent of T , [a] denotes the integral part of a real number a. Moreover

|ΘT,j(x, y)| ≤ C(V̄γ)
κ′jT [ j

3
]+j,

where κ′ = κ+2
3
, V̄γ = supp∈γ |V (p)|, γ is the shortest geodesic connecting x and y. When

restricted to the diagonal of M×M , ΘT,j(y, y) can be written as an algebraic combination

the curvature of the metric g, the function f , as well as their derivatives, at y; in addition,

ΘT,0(y, y) = Id .

Let η ∈ C∞
c (R) be a bump function, such that the support of η is contained in [−1, 1],

and η|[− 1
2
, 1
2
] ≡ 1. Let ϕ ∈ C∞(M ×M) be defined as

ϕ(x, y) = η(d2(x, y)/τ 2). (4.13)
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Proposition 4.2.4. Set

Kk
Tf (t, x, y) = ϕ(x, y)E0(t, x, y)E1,T (t, x, y)

k∑
j=0

tjΘT,j(x, y),

then

(
∂

∂t
+□Tf )K

k
Tf (t, x, y) = tkϕ(x, y)Rk,T (t, x, y) + ∆ϕ(x, y)Kk

Tf (t, x, y)

− 2(∇ϕ(x, y),∇Kk
Tf (t, x, y)),

where Rk,T is given by (4.12).

The following lemma provides the estimate saying that Kk
Tf (t, x, y) is a suitable

parametrix for the heat kernel of the Witten Laplacian. The proof uses Lemma 4.3.9

which will be shown in the next section when we introduce the necessary notions.

Lemma 4.2.5. Assume t ∈ (0, 1]. Let

R̃k,T = tkϕ(x, y)Rk,T (t, x, y) + ∆ϕ(x, y)Kk
Tf (t, x, y)− 2(∇ϕ(x, y),∇Kk

Tf (t, x, y),

then for T ∈ (0, t−
1
2 ], any a ∈ (0, 1),

|R̃k,T (x, y)| ≤ Ca,kχBx(y)t
(1−κ′)k−κ′−n

2 T
−2k+4

3 exp(−atT 2h(x, y)) exp(−ad
2(x, y)

4t
).

Here Ca,k is a constant depends on a, k, κ′ = κ+2
3

(from Proposition 4.2.3), Bx = {y ∈

M : d(x, y) < τ}, and χBx(y) denotes the characteristic function of Bx.

Proof. Since the support of ∆ϕ(x, y) and ∇ϕ(x, y) is a subset of {(x, y) ∈ M × M :
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d2(x,y)
τ2

∈ (1
2
, 1)}, by Proposition 4.2.3, Lemma 4.3.9 and the fact that 0 < a < 1,

|∆ϕ(x, y)Kk
Tf (t, x, y) + (∇ϕ(x, y),∇Kk

Tf (t, x, y))|

≤ Ck,aχBxt
−n

2 exp(−(1− a)d2(x, y)

4t
) exp(−atT 2h(x, y)) exp(−ad

2(x, y)

4t
)

≤ Ck,a,kχBxt
(1−κ′)k−κ′−n

2 exp(−atT 2h(x, y)) exp(−ad
2(x, y)

4t
).

The last inequality follows form the fact that the function tl exp(−t) ≤ Cl for t ∈

(0,∞), l > 0.

Similarly, by Proposition 4.2.3, Lemma 4.3.9 and the fact that tT 2 ≤ 1, we have

|tkϕ(x, y)Rk,T | ≤ CkχBx

k+2∑
j=k

tj−
n
2 T 4(j+1)/3V̄ κ′(j+1)

γ exp(−t hT (x, y)) exp(−
d2(x, y)

4t
)

≤ C ′
kχBxt

k−n
2 T

4(k+1)
3 V̄ κ′(k+1)

γ exp(−tT 2h(x, y))) exp(−d
2(x, y)

4t
)

≤ Ca,kχBxt
(1−κ′)k−κ′−n

2 T
−2k+4

3 exp(−atT 2h(x, y))) exp(−ad
2(x, y)

4t
).

This finishes the proof.

4.3 Li-Yau’s Parabolic Distance and Heat Kernel Es-

timate

With the construction of the parametrix and the error estimate in the last section,

we are now faced with the task of proving that it gives the desired asymptotic expansion

of heat kernel. To this end, we need to estimate the convolutions of these terms, which

seem quite daunting. Remarkably we found that a parabolic distance that appeared

previously in Li-Yau’s famous work [45] on the Harnack estimate of the heat kernel of

Schrödinger operators greatly simplifies the task, both computationally and conceptually.
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Our inspiration actually comes from the path integral formalism of quantum mechanics.

Another remarkable feature of Li-Yau’s parabolic distance is its connection with the

Agmon distance [32], [20], [25], which we will use to establish the needed lower bound for

the parabolic distance. The resulting pointwise asymptotic expansion of the heat kernel

will then be strong enough to pass to the trace of the heat kernel in the noncompact

setting.

Let Kk
Tf be the parametrix of ∂t +□Tf constructed in Section 4.2, i.e.

Kk
Tf (t, x, y) = ϕ(x, y)E0(t, x, y)E1,T (t, x, y)

k∑
j=0

tjΘT,j(x, y),

where ϕ is the cut-off function defined in (4.13).

We define convolution of f(t, x, y), g(t, x, y) ∈ Γ(E) as

(f ∗ g)(t, x, y) =
∫ t

0

∫
M

(f(t− s, x, z), g(s, z, y))zdvol(z)ds.

Let KTf denote the heat kernel of □Tf . By the Duhamel Principle, we have

Lemma 4.3.1. The heat kernel KTf is given by

KTf (t, x, y) = Kk
Tf (t, x, y) + (Kk

Tf ∗
∞∑
l=1

(−1)l(R̃k,T )
∗l)(t, x, y).

Here

R̃∗l
k,T = R̃k,T ∗ ... ∗ R̃k,T︸ ︷︷ ︸

l times

.

Motivated by the path integral formalism of quantum mechanics, for any piecewise
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smooth curve c : [0, t] 7→M , s.t. c(0) = x, c(t) = y, we define

St,x,y(c) =

∫ t

0

(
|c′(s)|2

4
+ T 2V (c(s))

)
ds.

Let Ct,x,y := { c : [0, t] 7→ M | c is piecewise smooth, c(0) = x, c(t) = y }. Define

Li-Yau’s parabolic (meta-)distance as following

d̃T (t, x, y) := inf
c∈Ct,x,y

St,x,y(c). (4.14)

The following lemma summarizing its fundamental properties follows mostly from the

definition.

Lemma 4.3.2. d̃T (t, x, y) is a parabolic (meta-)distance; that is

• d̃T (t, x, y) ≥ 0;

• d̃T (t, x, y) = d̃T (t, y, x);

• for 0 ≤ s ≤ t, we have

d̃T (t− s, x, y) + d̃T (s, y, z) ≥ d̃T (t, x, z). (4.15)

Moreover,

d̃T (t, x, y) ≤
d2(x, y)

4t
+ t hT (x, y). (4.16)

The last inequality follows from taking a minimal geodesic c̃ connecting x and y and

noting that St,x,y(c̃) =
d2(x,y)

4t
+ t hT (x, y). The inequality (4.16) connects the parabolic

distance to our parametrix.

Conceptually the most crucial property of the parabolic distance for the estimation

of the convolutions of the error terms is the triangle inequality (4.15). We illustrate this
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by an example. If VT = 0, then d̃T (t, x, y) =
d2(x,y)

4t
. In this case, the triangle inequality

(4.15) reduces to the well known

d2(x, y)

t− s
+
d2(y, z)

s
≥ d2(x, z)

t
,

which plays a crucial role in the classical asymptotic expansion for the heat kernel.

The following lemma will be also needed in the heat kernel estimate involving the

convolutions, and whose proof follows from a standard argument of volume comparison.

Lemma 4.3.3. For x ∈ M and δ < τ , denote Bx = {y ∈ M : d(x, y) < δ}. Then there

exists A = A(F0, τ, δ, n) > 0, s.t.

∫
Bx

exp(−d
2(x, z)

t
)dz ≤ At

n
2 .

Recall that F0 is the curvature bound, τ is the injectivity radius bound.

With these preparations we now turn to the estimation of the convolution terms in

the Duhamel Principle, Lemma 4.3.1. From now on, we fix an integer k sufficiently large

so that

α(k, κ, n) =
1

3
(1− κ)k − κ+ 2

3
− n

2
+ 1 > 0.

Lemma 4.3.4. Assume that t ∈ (0, 1] and T ∈ (0, t−
1
2 ]. Then for any a ∈ (0, 1), there

exist C = C(k, a, κ, τ, F0) > 0, such that, for all l ∈ N,

|Kk
Tf ∗ R̃∗l

k,T |(t, x, y) ≤
C ltαlT βl

l!
exp(−ad̃T (t, x, y)),

where α = α(k, κ, n) as above, and β = β(k) = −2k+4
3

.
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Proof. Let Bx = {y ∈M : d(x, y) < τ}, then by the volume comparison, we have

vol(Bx) ≤ Cτ . (4.17)

From Lemma 4.2.5 and (4.16), we have for T ∈ (0, t−
1
2 ], any a ∈ (0, 1),

|R̃k,T (x, y)| ≤ Ca,kχBx(y)t
α−1T β exp(−ad̃T (t, x, y)).

Therefore by (4.15),

|R̃∗l
k,T | =

∣∣∣∣∫ t

0

∫ t1

0

...

∫ tl−2

0

∫
M

...

∫
M

R̃k,T (t− t1, x, z1)R̃k,T (t1 − t2, z1, z2)

×R̃k,T (t2 − t3, z2, z3) · · · R̃k,T (tl−1, zl−1, y)dvol(zl−1) · · · dvol(z1)dtl−1dtl−2 · · · dt1
∣∣∣

=

∣∣∣∣∣
∫ t

0

∫ t1

0

...

∫ tl−2

0

∫
Bx

...

∫
Bzl−2

R̃k,T (t− t1, x, z1)R̃k,T (t1 − t2, z1, z2)

× R̃k,T (t2 − t3, z2, z3) · · · R̃k,T (tl−1, zl−1, y)dvol(zl−1) · · · dvol(z1)dtl−1dtl−2...dt1

∣∣∣
≤ (CτCa,k)

lT βl exp(−ad̃T (t, x, y))
∫ t

0

∫ t1

0

...

∫ tl−2

0

(t− t1)
α−1 · · · tα−1

l−1 dtl−1 · · · dt1

≤ C ltαl−1T βl

(l − 1)!
exp(−ad̃T (t, x, y)).

On the other hand, by Proposition 4.2.3, Kk(t, x, y) ≤ Ct−
n
2 exp(−a′d̃T (t, x, y)),

where, for our purpose, a′ ∈ (0, 1) is chosen to be a′ = 1+a
2

= a + b, with b = 1−a
2
> 0.

Hence
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|Kk
Tf ∗ R̃∗l

k,T |(t, x, y) ≤
C l+1T βl

(l − 1)!

∫ t

0

∫
Bx

(t− s)−
n
2 sαl−1

× exp(−a′d̃T (t− s, x, z)) exp(−ad̃T (s, z, y))dvol(z)ds

≤ C l+1T βl

(l − 1)!
exp(−ad̃T (t, x, y))

×
∫ t

0

sαl−1

∫
Bx

(t− s)−
n
2 exp(−bd

2(x, y)

4(t− s)
)dvol(z)ds

≤ AC l+1tαlT βl

(αl)(l − 1)!
exp(−ad̃T (t, x, y)).

Here in the last inequality, we have made use of Lemma 4.3.3.

We summarize our discussion so far.

Theorem 4.3.1. The heat kernel KTf has the following complete pointwise asymptotic

expansion. For any x, y ∈M such that d(x, y) ≤ 1/2τ ,

KTf (t, x, y) ∼
1

(4πt)
n
2

exp(−d2(x, y)/4t) exp(−t hT (x, y))
∞∑
j=0

tjΘT,j(x, y),

as t→ 0. Each ΘT,j is a polynomial of T :

ΘT,j(x, y) =

[ j
3
]+j∑

l=0

T lΘl,j(x, y),

and, when restricted to the diagonal of M ×M , Θl,j(y, y) can be written as an algebraic

combination of the curvature of the metric g, the function f , as well as their derivatives,

at y; in addition, ΘT,0(y, y) = Id . Moreover, we have the following remainder estimate.
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For any k sufficiently large and any a ∈ (0, 1),

∣∣∣∣∣KTf (t, x, y)−
1

(4πt)
n
2

exp(−d2(x, y)/4t) exp(−t hT (x, y))
k∑

j=0

tjΘT,j(x, y)

∣∣∣∣∣
≤ Ct

1
3
(1−κ)k−κ+2

3
−n

2
+1T

−2k+4
3 exp(−ad̃T (t, x, y)),

for t ∈ (0, 1] and T ∈ (0, t−
1
2 ].

Remark 4.3.5. Here the choice for t ∈ (0, 1] and T ∈ (0, t−
1
2 ] is for simplicity and

convenience. Our discussion works for t ∈ (0, t0] and T ∈ (0, T0t
− 1

2 ] but the estimates

will depend on those choices as well.

Without an effective lower bound on the parabolic distance d̃T (t, x, y) in our non-

compact setting, the pointwise asymptotic expansion for the heat kernel of the Witten

Laplacian will not be very useful beyond recovering the classical expansion. In particular,

in passing from the pointwise asymptotic expansion to the asymptotic expansion of the

(global) heat trace, we need remainder estimates which can compensate for the divergent

volume integral. Here we explore the interesting connection of the parabolic distance to

the Agmon distance and establish such an effective lower bound.

Recall that, in our setting, the Agmon metric (Cf. [32], [20], [25]) is T 2|∇f |2g. For

any piecewise smooth curve c inM , denote LTf (c) the Agmon length of c, i.e., the length

of c with respect to Agmon metric T 2|∇f |2g.

First of all, we note

Lemma 4.3.6. Let c ∈ Ct,x,y be a piecewise smooth curve.Then,

St,x,y(c) ≥ LTf (c). (4.18)
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Proof. This follows from an elementary inequality as

St,x,y(c) =

∫ t

0

|c′(s)|2

4
+ T 2V (c(s))ds ≥

∫ t

0

T |∇f |(c(s))|c′(s)|ds = LTf (c).

Thus the parabolic distance is bounded from below by the Agmon distance (but we

actually will be using the Agmon length later).

The following lemma says that the Agmon length can be bounded from below effec-

tively if the potential function varies considerably along a curve.

Lemma 4.3.7. Let c ∈ Ct,x,y be a piecewise smooth curve. If

inf
s∈[0,t]

V (c(s)) ≤ 1

2
sup
s∈[0,t]

V (c(s)),

then there exists constant β̄ > 0 depending only on the bounds in the tameness condition,

such that

LTf (c) ≥ β̄T sup
s∈[0,t]

|V |1−κ(γ(s)).

Proof. Set V̄c := sups∈[0,t] V (c(s)). Then we can find an interval [a, b] ⊂ [0, t], s.t.

V (c(a)) = V̄c

2
, V (c(b)) = V̄c (or vice versa, V (c(b)) = V̄c

2
, V (c(a)) = V̄c). Moreover,

for all s ∈ [a, b], V (c(s)) ≥ V̄c

2
.

Now by the κ-regular tame condition,

V̄c
2

= |V (c(a))− V (c(b))| ≤
∫ b

a

|∇V (c(s))||c′(s)|ds

≤ C

∫ b

a

|V (c(s))|
κ+2
2 |c′(s)|ds

≤ CV̄
κ+1
2

c

∫ b

a

|∇f |(c(s))|c′(s)|ds

≤ CT−1V̄
κ+1
2

c LTf (c|[a, b])
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Thus, for β̄ = 1
2C

> 0,

LTf (c) ≥ LTf (c|[a,b]) ≥ β̄T V̄
1−κ
2

c = β̄T sup
s∈[0,t]

|V |
1−κ
2 (γ(s)). (4.19)

Finally we arrive at the following effective lower bound for the parabolic distance.

Lemma 4.3.8. One has

d̃T (t, x, y) ≥ min{β̄TV
1−κ
2 (x),

tT 2V (x)

2
}. (4.20)

In particular, for t ∈ (0, 1], T = t−
1
2 ,

d̃T (t, x, y) ≥ β̄V
1−κ
2 (x)min{1, V (x)

κ+1
2

2β̄
}. (4.21)

Proof. Let γ : [0, t] 7→M be a curve minimizing St,x,y.As before, set V̄γ := sups∈[0,t] V (γ(s)).

If V (γ(s)) ≥ V̄γ

2
for all s ∈ [0, t], then we have

d̃T (t, x, y) ≥
tT 2V̄γ
2

≥ tT 2V (x)

2
. (4.22)

If not, by Lemma 4.3.7,

LTf (x, y) ≥ β̄T V̄
1−κ
2

γ ≥ β̄TV
1−κ
2 (x). (4.23)

Therefore, by Lemma 4.3.6,

d̃T (t, x, y) ≥ min{β̄TV
1−κ
2 (x),

tT 2V (x)

2
}.
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Our results follow.

We also note the following lemma which was used in the previous section.

Lemma 4.3.9. For a ∈ (0, 1), t ∈ (0, 1), l > 0, there exists Ca,κ,l > 0, s.t.

V̄ l
γ exp(−

d2(x, y)

4t
) exp(−tT 2h(x, y)) ≤ Ca,κ,lt

−lT−2l exp(−ad
2(x, y)

4t
) exp(−atT 2h(x, y)),

where γ is the minimal geodesic connecting x and y, V̄γ = supp∈γ |V (p)|.

Proof. When infp∈γ |V (p)| ≥ V̄γ

2
, h(x, y) ≥ V̄γ

2
, hence V̄ l

γ exp(−(1 − a)tT 2h(x, y)) ≤

Ca,lt
−lT−2l for some Ca,l > 0.

Otherwise, by Lemmas 4.3.6 and 4.3.7, d2(x,y)
4t

+ tT 2h(x, y) ≥ β̄T V̄
1−κ
2

γ ≥ β̄(T 2V̄γ)
1−κ
2 .

Therefore, there exist Ca,κ,l such that

V̄ l
γ exp(−(1− a)

d2(x, y)

4t
) exp(−(1− a)tT 2h(x, y)) ≤ V̄ l

γ exp(−(1− a)β̄(T 2V )1−κ)

≤ Ca,κ,lT
−2l ≤ Ca,κ,lt

−lT−2l

which yields the result.

Combining the above discussion with Theorem 4.3.1 we have

Theorem 4.3.2. For T = t−
1
2 , the heat kernel K

t−
1
2 f

of the Witten Laplacian has the

following complete pointwise (diagonal) asymptotic expansion. For any x ∈M ,

K
t−

1
2 f
(t, x, x) ∼ 1

(4πt)
n
2

exp(−|∇f |2(x))
∞∑
j=0

[ j
3
]+j∑

l=0

tj−
l
2Θl,j(x, x),
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as t→ 0. Moreover, for any k sufficiently large and any a ∈ (0, 1),

∣∣∣∣∣∣Kt−
1
2 f
(t, x, x)− 1

(4πt)
n
2

exp(−|∇f |2(x))
∞∑
j=0

[ j
3
]+j∑

l=0

tj−
l
2Θl,j(x, x)

∣∣∣∣∣∣
≤ Ct

1
3
(2−κ)k−κ+1

3
−n

2 exp(−aβ̄|∇f |1−κ(x)),

for t ∈ (0, 1] and x ∈ M . In particular, we have the following small time asymptotic

expansion of the heat trace:

Tr
(
exp(−t□

t−
1
2 f
)
)
∼ 1

(4πt)
n
2

∞∑
j=0

[ j
3
]+j∑

l=0

tj−
l
2

∫
M

exp(−|∇f |2(x)) tr(Θl,j(x, x))dx,

as t→ 0, with the remainder estimate

∣∣∣∣∣∣Tr
(
exp(−t□

t−
1
2 f
)
)
− 1

(4πt)
n
2

k∑
j=0

[ j
3
]+j∑

l=0

tj−
l
2

∫
M

exp(−|∇f |2(x)) tr(Θl,j(x, x))dx

∣∣∣∣∣∣
≤ Ct

1
3
(2−κ)k−κ+1

3
−n

2 .

Proof. This follows from Theorem 4.3.1 and Lemma 4.3.8 by noting that V ≥ (2β̄)
2

κ+1

outside a compact set.

4.4 Local Index Theorem for Witten Laplacian

We now turn to the local index theorem for the Witten Laplacian. From the discussion

at the end of Section 2 (see (4.6) and after) we have

χ(M,dTf ) =
n∑

i=0

(−1)idim(H i
(2)(M,dTf )) = Trs(exp(−t□Tf )) (4.24)
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is independent of t.Moreover, by Theorem 1.3 in [25], χ(M,dTf ) is independent of T > 0.

As a consequence, Theorem 4.3.2 reduces the index formula for Witten Laplacian to a

local index theorem, which we will develop in this section.

First we summarize what we know about the index of the Witten Laplacian as the

following McKean-Singer type formula.

Proposition 4.4.1. Assume that (M, g, f) is polynomial tame. Then for T > 0, χ(M,dTf )

is independent of T and

χ(M,dTf ) =

∫
M

trs(KTf (t, x, x))dx

for any t > 0. Here dx denotes the volume form induced by g.

In the usual approach to the local index theorem, one studies the integrand, the

pointwise supertrace trs(KTf (t, x, x)), in the limit t → 0 via the Getzler’s rescaling. To

proceed with Getzler’s rescaling technique, we now fix x0 ∈ M and let x be the normal

coordinates near x0. Thus x = 0 at x0, and we will use 0 and x0 interchangeably in

this section. We trivialize the bundle Λ∗(M) in the normal neighborhood U by parallel

transport along radical geodesic from x0. In fact, we can assume M = Tx0M for now by

extending everything trivially outside the normal neighborhood (we will see that we can

localize the problem because of Theorem 4.3.2).

For usual Getzler’s rescaling techniques (a la Bismut-Zhang [20] for the de Rham

complex), one defines δϵ as follows:

1. For function f ∈ C∞([0,∞) × U), (δϵf)(t, x) = f(ϵt, ϵ
1
2x). As a consequence, we

have

lim
t→0

f(t, 0) = lim
ϵ→0

(δϵf)(t, 0).

Moreover, δϵf(t, x)δ
−1
ϵ = f(ϵt, ϵ

1
2x), δϵ∂xi

δ−1
ϵ = ϵ−

1
2∂xi

, δϵ∂tδ
−1
ϵ = ϵ∂t.
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2. Let {ei}ni=1 be a local frame near x0, {ei}ni=1 its dual frame. Then for c(ei) =

ei ∧ −ιei , ĉ(ei) = ei ∧ +ιei , we define δϵc(ei) = ϵ−
1
4 ei ∧ −ϵ 1

4 ιei ,δϵĉ(ei) = ϵ−
1
4 ei ∧

+ϵ
1
4 ιei . Now let cϵ(ei) = ϵ−

1
4 ei ∧ −ϵ 1

4 ιei , ĉϵ(ei) = ϵ−
1
4 ei ∧ +ϵ

1
4 ιei , then δϵc(ei)δ

−1
ϵ =

cϵ(ei), δϵĉ(ei)δ
−1
ϵ = ĉϵ(ei).

Recall that KTf is the heat kernel of □Tf . Then K
′
Tf,ϵ = ϵ

n
2 δϵKTf is the heat kernel for

□′
Tf,ϵ := ϵδϵ□Tfδ

−1
ϵ . Moreover, for small ϵ [20, (4.60)]

□′
Tf,ϵ = −∆Tx0M

IdΛ∗T ∗
x0

M +
1

2

∑
i<j<k<l

Rijkl(0)e
i ∧ ej ⊗ êk ∧ êl +O(ϵ

1
2 ),

where ∆Tx0M
is the Euclidean Laplacian on Tx0M , and Rijkl(x) is the Riemannian cur-

vature tensor at x.

This is the usual Getzler’s rescaling. As ϵ→ 0, the information of f disappears. But

for the noncompact case, unlike the compact case, the index should depend on f . To

deal with this issue, we introduce the following rescaling technique: we let T join the

game.

As mentioned before, the index χ(M,dTf ) = Trs(exp(−t□Tf )) is independent of

T > 0. Hence, in our rescaling, we define, in addition, δϵ(T ) = ϵ−
1
2T.

Now under new rescaling, then we have

Lemma 4.4.2. Let □Tf,ϵ := ϵδϵ□Tfδ
−1
ϵ . Then

□Tf,0 := lim
ϵ→0

□Tf,ϵ = −∆Tx0M
IdΛ∗T ∗

x0
M −1

2

∑
i<j<k<l

Rijkl(0)e
i∧ej⊗ êk∧ êl+VT (x0)+TLf,0.

Here Lf,0 = ∇2
ei,ej

f(x0)ei ⊗ êj.
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Proof. By Proposition 4.1.1, □Tf = ∆− TLf + T 2|∇f |2. By [20, (4.60)],

ϵδϵ∆δ
−1
ϵ = −∆Tx0M

IdΛ∗T ∗
x0

M +
1

2

∑
i<j<k<l

Rijkl(0)e
i ∧ ej ⊗ êk ∧ êl +O(ϵ

1
2 ).

On the other hand, by the new rescaling in T , ϵδϵ(T
2|∇f |2)δ−1

ϵ = T 2|∇f |2(x0) + O(ϵ
1
2 ).

Now Lf = ∇2
ei,ej

f [ei∧, ιej ] = −∇2
ei,ej

fc(ei)ĉ(ej). Hence

ϵδϵ(TLf )δ
−1
ϵ = −T∇2

ei,ej
f(x0)ei ⊗ êj +O(ϵ

1
2 ).

Our result follows.

Denote R̃(x0) = −Rijkl(x0)e
i ∧ ej ⊗ êk ∧ êl. Let KTf,0 be the heat kernel of □Tf,0.

Clearly −∆Tx0M
IdΛ∗T ∗

x0
M commutes with R̃(x0)

2
+ TLf (x0) + VT (x0). Therefore we have

KTf,0 = E0 exp(−t[
R̃(x0)

2
+ TLf (x0) + VT (x0)]). (4.25)

By Theorem 4.3.2, KTf (t, x, x) has the following asymptotic expansion,

KTf (t, x, x) = (4πt)−
n
2 exp(−tVT )

∞∑
j=0

tjΘT,j(x, x),

with strong remainder estimate when T = t−1/2. In particular,

K
t−

1
2 f
(t, x, x) = (4πt)−

n
2 exp(−V )

∑
k∈ 1

2
N

tk
∑

j− 1
2
l=k,l≤j+[ j

3
]

Θl,j(x, x). (4.26)

Here N denotes the set of natural numbers which by our convention contains 0. Thus we

can upgrade Proposition 4.4.1 to
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Proposition 4.4.3. For T > 0,

χ(M,dTf ) = lim
t→0

Tr(exp(−t□
t−

1
2 f
)) =

∫
M

lim
t→0

TrΛ
∗(TM)

s (K
t−

1
2 f
(t, x, x))dx (4.27)

=
1

(4π)
n
2

∫
M

exp(−|∇f |2)
∑

j− 1
2
l=n

2

trΛ
∗(TM)

s (Θl,j(x, x))dx.

Here (to emphasize) we use tr
Λ∗(TM)
s to denote the pointwise supertrace on Λ∗(TM) which

was previously denoted by trs.

Now for I = {i1, ..., ik} ⊂ {1, 2, ..., n}, (i1 < ... < ik), denote c(eI) = c(ei1)...c(eik), ĉ(eI) =

ĉ(ei1)...ĉ(eik). Write Θl,j =
∑

I,J⊂{1,2,...,n}Θl,j,I,Jc(eI)ĉ(eJ). The following Proposition on

the key property of the supertrace is well known.

Proposition 4.4.4. For I, J ⊂ {1, 2, ..., n},

trΛ
∗(TM)

s (c(eI)ĉ(eJ)) =


(−1)

n(n+1)
2 2n, if I = J = {1, 2, ..., n}

0, otherwise.

Thus tr
Λ∗(TM)
s (Θl,j) = (−1)

n(n+1)
2 2nΘl,j,In,In , where In = {1, 2, ..., n}. We now recall

the Berezin integral formalism. For any ω ∈ Ω∗(TM)⊗̂Ω∗(TM), I ⊂ 1, 2, ..., n, we can

write ω as

ω :=
∑
I

wI ê
I .

Then the Berezin integral
∫ B

: Ω∗(TM)⊗̂Ω∗(TM) 7→ Ω∗(TM) is defined as

∫ B

ω = ωIn .

The following lemma is also well known in local index theory and the Getzler rescaling

technique.
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Lemma 4.4.5. We have

lim
t→0

trΛ
∗(TM)

s (K
t−

1
2 f
)(t, x0, x0)dx = (−1)

n(n+1)
2 2n

∫ B

lim
ϵ→0

ϵ
n
2 (δϵKt−

1
2 f
)(t, x0, x), (4.28)

provided that the right hand limit exists.

Proof. Write K
t−

1
2 f
(t, x0, x) =

∑
I,J⊂{1,2,...,n} aI,J(t, x)c(eI)ĉ(eJ). By Proposition 4.4.4,

trΛ
∗(TM)

s (K
t−

1
2 f
(t, x0, x0)) = (−1)

n(n+1)
2 2naIn,In(t, x0).

On the other hand,

(ϵ
n
2 δϵKt−

1
2 f
)(t, x0, x) =

∑
I,J⊂{1,2,...,n}

aI,J(ϵt, ϵ
1
2x)ϵ

n
2 cϵ(eI)ĉϵ(eJ).

Hence,

∫ B

lim
ϵ→0

ϵ
n
2 (δϵKt−

1
2 f
)(t, x0, x) = lim

ϵ→0
aIn,In(ϵt, ϵ

1
2x)e1 ∧ · · · ∧ en = lim

t→0
aIn,In(t, x0)dx.

Our result follows.

For the right hand side of the previous lemma, we have the following proposition.

Proposition 4.4.6. There exists a ∈ (0, 1) such that

|ϵ
n
2 (δϵKt−

1
2 f
)(t, x, x)−K

t−
1
2 f,0

(t, x, x)| ≤ Cϵt2−κ−n
2 exp(−aV 1−κ).

Proof. Let K0(t, x, y) = ϕ(x, y)KTf,0(t, x, y). Then by the tameness condition, for some

a ∈ (0, 1) we have

|(□Tf,ϵ −□Tf,0)K0(t, x, y)| ≤ CχBx(y)ϵt
−n+1−κ

2 T−2 exp(−ad(x, y)
4t

) exp(−atT 2V (x)).
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By the Duhamel principle,

ϵ
n
2KTf,ϵ −K0 = (ϵ

n
2KTf,ϵ) ∗ ((□Tf,ϵ −□Tf,0)K0(t, x, y)).

On the other hand, ϵ
n
2KTf,ϵ = ϵ

n
2 (δϵK

k
Tf +

∑∞
l=1 δϵ(K

k
Tf ∗ R̃∗l

k,T ), and it is straightfor-

ward to check that

|ϵ
n
2 δϵKTf (t, x, y)| ≤ CχBxt

−n
2 exp(−atT

2

2
V (x)) exp(−ad

2(x, y)

4t
).

Proceeding as in the previous section we finish the proof of the Proposition.

Finally, we arrive at our local index theorem for the Witten Laplacian. Recall that

R̃, ∇̃2f ∈ Ω∗(M)⊗̂Ω∗(M) are defined as (we abuse the notatin here by omitting the

wedge product signs)

R̃(x) = Rijkl(x)e
iej êkêl, ∇̃2f(x) = ∇2

ei,ej
f(x)eiêj.

Theorem 4.4.1. For any x0 ∈M , we have

lim
t→0

TrΛ
∗(TM)

s (K
t−

1
2 f
)(t, x0, x0) =

(−1)[
n+1
2

]

π
n
2

exp(−|∇f(x0)|2)
∫ B

exp(−R̃(x0)
2

−∇̃2f(x0)).

In particular, for T > 0,

χ(M,dTf ) =
(−1)[

n+1
2

]

π
n
2

∫
M

exp(−|∇f |2)
∫ B

exp(−R̃
2
− ∇̃2f).
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Proof. By (4.28) and Proposition 4.4.6,

lim
t→0

trΛ
∗(TM)

s (K
t−

1
2 f
)(t, x0, x0)dx = (−1)

n(n+1)
2 2n

∫ B

lim
ϵ→0

(ϵ
n
2 (δϵKt−

1
2 f
)(t, x0, x))

= (−1)
n(n+1)

2 2n
∫ B

K
t−

1
2 f,0

=
(−1)

n(n+1)
2 2n

(4πt)
n
2

∫ B

exp(−tR̃(x0)
2

− t
1
2Lf (x0)− |∇f(x0)|2)

=
(−1)[

n+1
2

]

π
n
2

exp(−|∇f(x0)|2)
∫ B

exp(−R̃(x0)
2

− ∇̃2f(x0)).

The second result then follows from Proposition 4.4.3.

4.5 Examples From Landau-Ginzburg Models

In this section we will disucss in somewhat detail how our results apply to some

examples coming from Landau-Ginzburg models. Some of our discussions benefited from

those of [33].

Consider a triple (M, g, f), where (M, g) is a Kähler manifold with bounded geometry,

and f : M −→ C a holomorphic function. In this case, one considers the Witten

deformation of the ∂̄-operator

∂̄f = ∂̄ + ∂f∧ : Ωk(M,C) −→ Ωk+1(M,C).

The corresponding Witten Laplacian is then □∂̄,f = ∂̄∗f ∂̄f + ∂̄f ∂̄
∗
f .

On the other hand, one can also consider the underlying real manifold M with the

Riemannian metric given by g, together with the potential function given by 2Ref =
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f + f̄ . It follows from the Kähler identity that

2□∂̄,f = □2Ref .

As a consequence, χ(M, ∂̄f ) = χ(M,dRef ).

A large class of Landau-Ginzburg models consists of (Cn, g0, f) where g0 is the Eu-

clidean metric and f : Cn → C a so-called nondegenerate quasi-homogeneous polynomial.

Here f ∈ C[z1, · · · , zn] is a quasi-homogeneous (also known as weighted homogeneous)

polynomial if there are positive rational numbers q1, · · · , qn, called the weights, such that

f(λq1z1, · · · , λqnzn) = λf(z1, · · · , zn),

for all λ ∈ C∗. f is called nondegenerate if f contains no monomials of the form zizj for

i ̸= j and 0 is the only critical point of f (equivalently, the hypersurface f = 0 in the

weighted projective space is non-singular). By the classification result of [46] (see also

[47, Theorem 3.7]), if f is nondegenerate, then qi ≤ 1
2
,∀i (and these weights are unique).

If f is a nondegenerate quasi-homogeneous polynomial, then (Cn, g0, f) (or equiva-

lently, the corresponding real model) is polynomial tame. To see this, one uses a result

from [48]. Indeed, it is shown in [48, Theorem 5.8] that if f is a nondegenerate quasi-

homogeneous polynomial, then there exists a constant C > 0 depending only on f such

that for all (u1, · · · , un) ∈ Cn, and each i = 1, · · · , n,

|ui| ≤ C

(
n∑

j=1

| ∂f
∂zj

(u1, · · · , un)|+ 1

)γi

, (4.29)

where γi =
qi

minj(1−qj)
.

As |∇Ref |2 =
∑

j |
∂f
∂zj

|2, one obtains using the above estimate and quasi-homogeneity
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that for m ≥ 1,

|∇mRef | ≤ C(|∇Ref |+ 1)
1−mminj qj
minj(1−qj) ,

where the constant C now also depends on m, n. Since qj ≤ 1
2
, the exponent here

1−mminj qj
minj(1− qj)

≤ 2(1−mmin
j
qj).

Thus, if we let κ = max{0, 1− 4minj qj} < 1, then the real model here (R2n, g0,Ref) is

κ-regular tame.

Remark 4.5.1. It is also clear from the above discussion that when mminj qj ≥ 1, we

can choose κ = 0, and therefore the real model (R2n, g0,Ref) is effectively 0-regular tame.

Also from the estimate (4.29) and qj ≤ 1
2
one deduces that

|z|2 ≤ C(|∇Ref |2 + 1).

It follows that

∫
|∇Ref |2≤λ}

(λ− |∇Ref |2)2n/2dvol ≤ λnVol(B(0,
√
C(λ+ 1))) ≤ C ′λ2n.

And thus (R2n, g0,Ref) is polynomial tame. Therefore, Theorem 4.4.1 yields the following

formula for the Milnor number of f , which is stated in [33] under additional restriction

on the weights of f .

Corollary 4.5.1. If f ∈ C[z1, · · · , zn] is a nondegenerate quasi-homogeneous polynomial,

then

χ(Cn, ∂̄f ) =
(−1)n

πn

∫
Cn

exp(−|∂f |2)|det(−∂2f)|2dvol.
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Proof. Theorem 4.4.1 applied to the real model (R2n, g0,Ref) gives us

χ(Cn, ∂̄f ) = χ(R2n, dRef ) =
(−1)[

2n+1
2

]

πn

∫
R2n

exp(−|∇Ref |2)
∫ B

exp(−∇̃2Ref)

=
(−1)n

πn

∫
R2n

exp(−|∇Ref |2)(−1)n det(−∇2Ref)dvol

=
(−1)n

πn

∫
Cn

exp(−|∂f |2)|det(−∂2f)|2dvol.

In the remaining part of the section we discuss the asymptotic expansion of the heat

trace for the Witten Laplacian of the Landau-Ginzburg model (Cn, g0, f), or equivalently,

its real model (R2n, g0,Ref), for f a nondegenerate quasi-homogeneous polynomial, but

without setting T = t−
1
2 as before.

By Theorem 4.3.1, we have a pointwise asymptotic expansion for the heat kernel with

remainder estimate, which we will specialize here on the diagonal. For any k sufficiently

large and any a ∈ (0, 1), there exists C > 0 such that for t ∈ (0, 1] and T ∈ (0, t−
1
2 ],

∣∣∣∣∣KTf (t, x, x)−
1

(4πt)n
exp(−tT 2V (x))

k∑
j=0

tjΘT,j(x, x)

∣∣∣∣∣
≤ Ct

1
3
(1−κ)k−κ+2

3
−n+1T

−2k+4
3 exp(−ad̃T (t, x, x)).

Here

V = |∇Ref |2 =
∑
j

| ∂f
∂zj

|2.

We will first see that the remainder estimate is strong enough for the global heat

trace, namely it is convergent when integrated on Cn. By Lemma 4.3.8

d̃T (t, x, x) ≥ min{β̄TV
1−κ
2 (x),

tT 2V (x)

2
}.
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On the other hand, by [33, Lemma 3.11(i)], which follows from the fact that f is a

nondegenerate quasi-homogeneous polynomial,

tV (z1, · · · , zn) ≥ V (tδq1z1, · · · , tδqnzn), δ =
1

2minj(1− qj)
≤ 1.

Now set

Ωt =

{
V ≤ (

2β̄

tT
)

2
1+κ

}
, Ωc

t = Cn − Ωt.

Then on Ωt,

d̃T (t, z, z) ≥
tT 2V (z)

2
≥ 1

2
T 2V (tδq1z1, · · · , tδqnzn).

Hence,

∫
Ωt

e−ad̃T (t,z,z)dvol ≤
∫
Cn

e−
1
2
aT 2V (tδq1z1,··· ,tδqnzn)dvol = t−2δ|q|C(a, T ), |q| =

∑
j

qj.

On Ωc
t , d̃T ≥ β̄TV

1−κ
2 . Thus,

∫
Ωc

t

e−ad̃T (t,z,z)dvol ≤
∫
Cn

e−β̄TV
1−κ
2 dvol = C1(β̄, T ).

And we arrive at

∫
Cn

e−ad̃T (t,z,z)dvol ≤ t−2δ|q||C(a, T ) + C1(β̄, T ).

We now look at the terms in the asymptotic expansion given by Theorem 4.3.1. For a

multi-index α = (α1, · · · , αn) with αi nonnegative integer, we denote ∂αf = ∂|α|f
∂α1z1···∂αnzn

,

|α| = α1+ · · ·αn. From the construction in Section 4.2, ΘT,j(z, z) is a linear combination

of ∂α
1
f · · · ∂αlf , with l ≤ j and (non-trivial) multi-indeces α1, · · · , αl satisfying |α1| +

· · · |αl| ≤ 2j.
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At this point we make the further assumption that f is homogeneous; namely

q1 = · · · = qn,

and we denote the common value by q. Differentiating the equation for quasi-homogeneity

gives,

λq|α|(∂αf)(λq1z1, · · · , λqnzn) = λ ∂αf(z1, · · · , zn),

from which one deduces that

tV (z1, · · · , zn) = V (tδqz1, · · · , tδqzn).

Hence,

∫
Cn

e−tT 2V ∂α
1

f · · · ∂αl

fdvol = tδq
∑l

i=1 |αi|−δl−2nδq Cα1,··· ,αl(f),

where Cα1,··· ,αl(f) is a constant depending on f and α1, · · · , αl.

We now summarize our discussion as the following result. For convenience we set

T = 1 here. (Thus, for homogeneous f , we don’t need to couple tT 2 = 1 to get a local

index theorem.)

Theorem 4.5.2. For the Landau-Ginzburg model (Cn, g0, f) where f is a nondegener-

ate homogeneous polynomial with weight q, we have the following small time asymptotic

expansion of the heat trace for the Witten Laplacian:

Tr (exp(−t□f )) ∼
1

(4πt)n

∞∑
j=0

∑
l≤j

∑
α1,··· ,αl

tj+δq
∑l

i=1 |αi|−δl−2nδqCα1,··· ,αl(f),
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as t→ 0, where |α1|+ · · · |αl| ≤ 2j. Moreover, for k sufficiently large, and t ∈ (0, 1],

∣∣∣∣∣∣Tr (exp(−t□f ))−
1

(4πt)n

k∑
j=0

∑
l≤j

∑
α1,··· ,αl

tj+δq
∑l

i=1 |αi|−δl−2nδqCα1,··· ,αl(f)

∣∣∣∣∣∣ ≤ Ct
k+1
3

−n−2nδq.

Here δ = 1
2(1−q)

.

Proof. We note that κ = 0 in this case. The result follows from combining the above

discussion.

Remark 4.5.2. A similar but different expansion is in [33], and without the remainder

estimate.
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Chapter 5

Analytic Torsion on Noncompact

Manifolds

5.1 Introduction

In this section, we assume that our vector bundle E →M is bounded:

Definition 5.1.1. A bounded vector bundle is a triple (E,M,∇E), where E → M is a

complex vector bundle over Riemannian manifold (M, g), and ∇E is a connection on E

whose curvature tensor RE as well as all its m-th covariant derivative ∇mRE is uniformly

bounded.

Thus, if (M, g) has bounded geometry, all its tensor bundles are bounded. As another

example, a flat vector bundle F −→M is always bounded.

Now let (F,∇F ) be a flat vector bundle on M and gF a (fiberwise) metric on F . We

denote by Ω∗(M,F ) the space of smooth forms on M with coefficients in F and dF the

exterior differential on Ω∗(M,F ). Given a potential function f , the Witten deformation
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in this setting is simply

dFTf = dF + Tdf∧ : Ω∗(M,F ) −→ Ω∗+1(M,F ), (5.1)

wheere T is the deformation parameter. A Riemannian metric g on M together with a

metric gF on F gives rise to an L2 metric on Ω∗
0(M,F ), those with compact supports.

The formal adjoint of the Witten deformation with respect to this L2 metric will be

denoted by dF∗
Tf . If (M, g, f) is polynomial tame, the corresponding Witten Laplacian

□F
Tf = dF∗

Tfd
F
Tf + dFTfd

F∗
Tf (5.2)

is essentially self-adjoint in L2Λ∗(M,F ), the L2-completion of Ω∗
0(M,F ).

5.2 Redefining Ray-Singer Analytic Torsion

In this section we give an equivalent definition of the Ray-Singer analytic torsion which

will be crucial for the generalization to Landau-Ginzburg models. The re-definition is

motivated by our local index theorem in [49].

5.2.1 Previous Results for Witten Laplacian

In this subsection we review some of our previous results on the Hodge theory and

local index theory for Witten deformations on noncompact manifolds [25, 49]. These will

play important role in our current discussion. Note that in these work the flat vector

bundle is set to be the trivial line bundle. However the results extend with only notational

change.

Let (M, g, f) be polynomial tame and (F,∇F ) be a flat vector bundle on M and gF a

124



Analytic Torsion on Noncompact Manifolds Chapter 5

metric on F . For any T > 0, let dFTf := dF +Tdf∧ be the Witten deformation as defined

in (5.1). As usual, the metrics g, gF induce an inner product (·, ·)L2 on Ω∗
0(M,F ):

(ϕ, ψ)L2 =

∫
M

(ϕ, ψ)g,gF dvol, ϕ, ψ ∈ Ω∗
0(M,F ).

Let L2Λ∗(M,F ) be the completion of Ω∗
0(M,F ) with respect to ∥ · ∥L2 . Then dFTf

is an unbounded operator on L2Λ∗(M,F ) with domain Ω∗
0(M,F ). Also, it has a formal

adjoint operator dF∗
Tf , with Dom(dF∗

Tf ) = Ω∗
0(M,F ), such that

(dFTfϕ, ψ)L2 = (ϕ, dF∗
Tfψ)L2 , ϕ, ψ ∈ Ω∗

0(M,F ).

Set ∆F
Tf = (dFTf + δFTf )

2 and denote ∆F the Hodge Laplacian associated with dF . Let

L∇f = dF i∇f + i∇fd
F (5.3)

be the Lie derivative acting on Ω∗(M,F ).

Let ∇F∗ be the adjoint connection of ∇F , i.e., for any s, t ∈ Γ(E), X ∈ Γ(TM),

XhF (s, t) = hF (∇F
Xs, t) + hF (s,∇F∗

X t),

set ∇e = 1
2
(∇F +∇F∗), ω(F, gF ) = ∇F∗ −∇F . One can see easily that dFTf = ei ∧∇F

ei
+

Tdf∧, dF∗
Tf = −ιei ∧∇F∗+ ιT∇f , where {ei} is an orthonormal frame, {ei} its dual frame.

Let DTf = dFTf + dF∗
Tf , D

e
Tf = c(ei)∇e

ei
+ T ĉ(∇f), where for X ∈ Γ(TM), let X∗ ∈

Γ(T ∗M) be its dual, then c(X) = X∗ ∧−ιX , ĉ(X) = X∗ ∧+ιX . One can see easily that

DTf = De
Tf −

1

2
ĉ (ei)ω

(
F, gF

)
(ei) .
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The following basic formula is from [20].

Proposition 5.2.1. The Witten Laplacian ∆F
Tf has the following expression:

∆F
Tf = ∆e +

S

4
+

1

8

〈
ek, R

TM (ei, ej) eℓ
〉

c (ei) c (ej) ĉ (ek) ĉ (eℓ) +
1

4

(
ω
(
F, gF

)
(ei)
)2

− 1

8
(c (ei) c (ej)− ĉ (ei) ĉ (ej))

(
ω
(
F, gF

))2
(ei, ej)

− 1

4
c (ei) ĉ (ej)

(
∇F

ei
ω
(
F, gF

)
(ej) +∇F

ej
ω
(
F, gF

)
(ei)
)

− Tω(F, gF )(∇f) + TLf + T 2|∇f |2

where Lf = ∇2
ei,ej

f [ei∧, ιej ], ∆e = −∇e
ei
∇e

ei
+∇e

∇TM
ei

ei
, {ei} is a local frame on TM and

{ei} is the dual frame on T ∗M , S is the scalar curvature.

Moreover, let

∆F,0
Tf = ∆e +

S

4
+

1

8

∑
1≤i,j,k,ℓ≤n

〈
ek, R

TM (ei, ej) eℓ
〉
− Tω(F, gF )(∇f) + TLf + T 2|∇f |2,

∆F,1
Tf = −1

8

∑
1≤i,j≤n

(c (ei) c (ej)− ĉ (ei) ĉ (ej))
(
ω
(
F, gF

))2
(ei, ej)

− 1

4

∑
1≤i,j≤n

c (ei) ĉ (ej)
(
∇F

ei
ω
(
F, gF

)
(ej) +∇F

ej
ω
(
F, gF

)
(ei)
)
.

Then one has ∆F
Tf = ∆F,0

Tf +∆F,1
Tf , ∗∆

F,0
Tf = ∆F,0

−Tf∗ and ∗∆F,1
Tf = −∆F,1

−Tf∗, where ∗ is

the Hodge star operator.

We denote the Friedrichs extension of ∆F
Tf by □F

Tf . Since (M, g, f) is polynomial
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tame, ∆F
Tf is essentially self-adjoint (and hence □F

Tf is the unique self-adjoint extension).

In [25] or Chapter 3, we proved that when (M, g, f) is tame,

L2Λ∗(M,F ) = ker□F
Tf ⊕ Imd̄FTf ⊕ Imd̄F∗

Tf , (5.4)

where d̄FTf and d̄F∗
Tf are the graph extensions of dFTf and dF∗

Tf respectively.

Setting Ω∗
(2)(M,F, Tf) := Dom(d̄FTf ) ∩ Ω∗(M,F ), we have a chain complex

· · ·
dFTf−−→ Ω∗

(2)(M,F, Tf)
dFTf−−→ Ω∗+1

(2) (M,F, Tf)
dFTf−−→ · · · .

Let H∗
(2)(M,F, dFTf ) denote the cohomology of this complex. In [25] or Chapter 3, we

have shown that H∗
(2)(M,F, dFTf )

∼= ker□F
Tf , provided (M, g, f) is well tame and T is

large enough.

In [49] or Chapter 4, we develop a framework for the asymptotic expansion of the

heat kernel for the Witten Laplacian in the noncompact case and proved a local index

theorem. In general the situation is very complicated but it simplifies when we couple

the deformation parameter T and the time parameter t by setting tT 2 = 1. Below we

summarize the results in the form that we need here.

Let (M, g, f) be (κ, α)-polynomial tame, and KTf (t, x, y) denote the heat kernel of

the Witten Laplacian □F
Tf .

Theorem 5.2.1. For T = t−
1
2 , the heat kernel KTf has the following complete pointwise

asymptotic expansion on the diagonal. For any x ∈M ,

KTf (t, x, x) ∼
1

(4πt)
n
2

exp(−|∇f |2(x))
∞∑
j=0

tjΘT,j(x),
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as t→ 0. Each ΘT,j is a polynomial of T :

ΘT,j(x) =

[ j
3
]+j∑

l=0

T lΘl,j(x),

and Θl,j(x) can be written as an algebraic combination of the curvature of the metric g,

the function f , and the endomorphism ω(F, gF ), as well as their derivatives, at x; in

addition, ΘT,0(x) = Id . Furthermore, for any k sufficiently large, any a ∈ (0, 1),

∣∣∣∣∣∣Kt−
1
2 f
(t, x, x)− 1

(4πt)
n
2

exp(−|∇f |2(x))
∞∑
j=0

[ j
3
]+j∑

l=0

tj−
l
2Θl,j(x, x)

∣∣∣∣∣∣
≤ Ct

1
3
(2−κ)k−κ+1

3
−n

2 exp(−aβ̄|∇f |1−κ(x)),

for t ∈ (0, 1], where β̄ > 0 is a constant depending only on the bounds in the tameness

condition. In particular, we have the following small time asymptotic expansion of the

heat trace:

Tr
(
exp(−t□

t−
1
2 f
)
)
∼ 1

(4πt)
n
2

∞∑
j=0

[ j
3
]+j∑

l=0

tj−
l
2

∫
M

exp(−|∇f |2(x)) tr(Θl,j(x, x))dx,

as t→ 0. Finally, assuming that gF is flat in the sense that ∇FgF = 0, then the following

local index theorem holds,

lim
t→0

TrΛ
∗(TM)

s (K
t−

1
2 f
)(t, x, x) =

(−1)[
n+1
2

]

π
n
2

exp(−|∇f(x)|2)
∫ B

exp(−R̃(x)
2

− ∇̃2f(x)).

Here
∫ B

denotes the Berezin integral, to be recalled in a moment, and R̃, ∇̃2f ∈
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Ω∗(TM)⊗̂Ω∗(TM) are defined as

R̃ = −
∑

i<j,k<l

Rijkle
iej êkêl, ∇̃2f = ∇2

ei,ej
feiêj (5.5)

for some orthonormal frame {ei} in TM and its dual frame {ei} in T ∗M .

As we see from the above result, the existence of the asymptotic expansion for the

heat trace and local index theorem is quite complicated and in general requires the

coupling of the deformation parameter T and the heat parameter t. Correspondingly the

original definition of the Ray-Singer analytic torsion requires modification to take this

into account.

5.2.2 Estimation of Integrals

Proposition 5.2.2. Let (M, g, f) be (κ, α)-polynomial tame, then for t > 0, l ∈ Z+, one

has ∫
M

|f ||∇f |l exp(−t|∇f |2)dvol <∞, (5.6)∫
M

|∇f |l exp(−tρ)dvol <∞. (5.7)

Here ρ(x) = d̃(x,K) for some compact set K ⊂ M , d̃(x, x0) is the Agmon distance

between x and x0 with respect to Agmon metric |∇f |2g. In particular, Theorem 4.3.1 and

(5.6) tell us that Trs (f exp(−t□Tf )) is of trace class for all t, T > 0. As a result, follows

from the same arguments in [], we know that

dt

2t
Trs
[
N exp

(
−tD2

T

)]
− dT Trs

[
f exp

(
−tD2

T

)]
(5.8)

is a closed 1-form in R+ × R+.

Proof. The estimation of (5.7) follows from the similar arguments in the proof of Propo-

129



Analytic Torsion on Noncompact Manifolds Chapter 5

sition 2.4 in [49].

For λ > 1, let Kλ := {p ∈M : |∇f |2 < λ} and K̃λ be the path-connected components

of Kλ containing K1. then |K̃λ| < CMλ
α for some CM > 0. By tameness condition, we

also have

|Hessf | ≤ cM(|∇f |2 + 1)
κ+1
2 (5.9)

for some cM > 0.

Moreover, we claim that whenever r ≤ 1

2cM (λ+2)
κ+2
2
, we must have Br(p) ⊂ K̃λ+1 for

all p ∈ K̃λ, where Br(p) := {q ∈M : d(q, p) ≤ r}, d is the distance with respect to gTM .

Otherewise, there exists r′ ≤ 1

2cM (λ+2)
κ+2
2
, p′ ∈ K̃λ, such that Br′(p

′) touch ∂K̃λ+1,

then on Br′(p
′),

|∇f |2 ≤ λ+ 1. (5.10)

Assume q′ ∈ Br′(p
′) ∩ ∂K̃λ+1. As a result, by (5.9) and (5.10),

1 = |∇f |2(q′)− |∇f |2(p′) ≤ r′|Hessf ||∇f | ≤ 1/2,

which is a contradiction.

Fix λ > 1. Let γ be a curve connecting p ∈ K̃λ and K1, then by the claim N(γ) ⊂

K̃λ+1, where N(γ) := {q ∈ M : d(q, γ) < 1

2cM (λ+2)
κ+2
2
}. Let δ be the length of γ with

respect to gTM , then there exists c′′M > 0 such that

c′′Mδ

(λ+ 2)
κ+2
2

≤ |N(λ)| ≤ |K̃λ+1| ≤ CM(λ+ 2)α. (5.11)

Since |f(p)| ≤ supq∈K1
|f(q)| + (λ + 2)δ, by (5.11), there exists AM > 0, such that

|f(p)| ≤ AM(1 + λ)
κ+2
2

+α whenever p ∈ K̃λ. Since ∪λ>1K̃λ =M, proceed as what we did

in the proof of Proposition 2.4 in [49], we have the estimation (5.6).
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5.2.3 An Equality in Compact Cases

In this subsection, we will assume that (M, g) is a closed manifold. Let (F,∇F ) be a

flat vector bundle with a metric gF . Let f be a Morse function onM , □F
Tf be the Witten

deformed Laplacian with respect to dFTf . We denote by □F the Hodge Laplacian with

respect to dF . As usual N is the number operator on Ω∗(M,F ).

For 1 ≤ i ≤ n, let M i be the number of x ∈ Crit(f) of index i. Set

χ(F ) =
n∑
0

(−1)i dimH i(M,F, dFf ),

χ′(F ) =
n∑
0

(−1)ii dimH i(M,F, dFf ).

Clearly,

χ(F ) = rk(F )
∑

x∈Crit(f)

(−1)ind(x).

Set

χ̃′(F ) = rk(F )
∑

x∈Crit(f)

(−1)ind(x) ind(x) = rk(F )
n∑

i=0

(−1)iiM i,

TrCrit(f)
s [f ] =

∑
r∈Crit(f)

(−1)ind(x)f(x).
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For s >> 0, consider the following holomorphic functions:

ψ1,f (s) =
1

Γ(s)

∫ 1

0

ts−1(Trs(N exp(−t□F
f ))− χ′(F ))dt,

ψ2,f (s) =
1

Γ(s)

∫ 1

0

ts−1(Trs(N exp(−t□F

t−
1
2 f
)− χ′(F ))dt

+
2

Γ(s)

∫ 1

0

ts−
3
2 Trs(f exp(−t□F

t−
1
2 f
))dt

= ψ2,1,f (s) + ψ2,2,f (s),

where χ′(M,F ) =
∑n

i=0(−1)ii bi(M,F ), bi(M,F ) = dim(H i(M,F, dFf )).

By the asymptotic expansion of heat kernels, ψ1 and ψ2 extend to meromorphic

functions on C which are both holomorphic at s = 0. We begin with the following

observation. First of all, define as in [20]

BT =
R̃

2
+ T ∇̃2f + T 2|∇f |2 ∈ Ω∗(TM)⊗̂Ω∗(TM), (5.12)

where R̃ and ∇̃2f are defined in (5.5).

Proposition 5.2.3. When n is odd, we have

d

ds
ψ1,f (s)|s=0 =

d

ds
ψ2,f (s)|s=0 +

∫
M

θ

2

(
F, gF

) ∫ B

d̂f exp (−BT 2) ,

When n is even, then

d

ds
ψ1|s=0 =

d

ds
ψ2,f |s=0 + 2rk(F )

∫
M

f

∫ B

exp(−B0) +

∫
M

θ

2

(
F, gF

) ∫ B

d̂f exp (−BT 2) .
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Proof. By theorem 7.10 in [20],

Trs(N exp(−t□F
f )) =

n

2
χ(F ) + α−1

1√
t
+O(

√
t), (5.13)

where a−1 = rk(F )
∫
M

∫ B
L exp(−B0) and L = 1

2

∑n
i=1 e

iêi ∈ Ω∗(TM)⊗̂Ω∗(TM).

By a similar argument but using the rescaling techniques in [49], we deduce that

Trs

(
N exp(−t□F

t−
1
2 f
)
)
=
n

2
χ(F ) + b−1

1√
t
+O(

√
t), (5.14)

with b−1 = rk(F )
∫
M

∫ B
L exp(−B1). Also,

Trs

(
f exp(−t□F

t−
1
2 f
)
)
= c−1 +

√
td1/2 +O(t), (5.15)

with c−1 =
∫
M

∫ B
f exp(−B1), d1/2 =

∫
M

θ
2

(
F, gF

) ∫ B
d̂f exp (−BT 2).

By Theorem 5.6 in [20], we know that

1

2t

∂

∂T
Trs[N exp(−t□F

Tf )] = − ∂

∂t
Trs[f exp(−t□F

Tf ). (5.16)

which means that

αt,T =
dt

2t
Trs[N exp(−t□F

Tf )]− dT Trs[f exp(−t□F
Tf ) (5.17)

is a closed 1-form in R+ × R+, Hence for ϵ > 0, we can see that the integral of αt,T on
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the loop indicated here is zero:
(1, ϵ)

(1, 1)

( 1√
ϵ
, ϵ)

γ3
γ2

γ1

where γ3 denotes the curve

T = t−
1
2 . We now examine the integral over each individual piece of the loop.

• Integral over γ1:

I1,ϵ :=

∫ 1

ϵ

Trs
(
N exp(−t□F

f )
) dt
2t

=

∫ 1

ϵ

(
Trs

(
N exp(−t□F

t−
1
2 f
)
)
− a−1

1√
t
− n

2
χ(F )

)
dt

2t

− a−1(1− ϵ−
1
2 )− n

4
χ(F ) log(ϵ).

(5.18)

Hence, as ϵ→ 0,

I1,ϵ − a−1ϵ
− 1

2 + (
n

4
χ(F ) + χ′(F )) log(ϵ) → 1

2

d

ds
ψ1|s=0 (5.19)

• Integral over γ2:

134



Analytic Torsion on Noncompact Manifolds Chapter 5

By Theorem 7.12 in [20],

I2,ϵ := −
∫ 1√

ϵ

1

Trs
(
f exp(−ϵ□F

Tf )
)
dT

= − 1√
ϵ

∫ 1

√
ϵ

rk(F )

∫
M

f

∫ B

exp(−BT )dT +

∫
M

θ

2

(
F, gF

) ∫ B

d̂f exp (−BT 2) +O(ϵ)

= − 1√
ϵ

∫ 1

0

rk(F )

∫
M

f

∫ B

exp(−BT )dT + rk(F )

∫
M

f

∫ B

exp(−B0)

+

∫
M

θ

2

(
F, gF

) ∫ B

d̂f exp (−BT 2) +O(ϵ)

(5.20)

• Integral over γ3:

I3,1,ϵ := −
∫ 1

ϵ

Trs

(
N exp(−t□F

t−
1
2 f
)
) dt
2t

= −
∫ 1

ϵ

(
Trs

(
N exp(−t□F

t−
1
2 f
)
)
− b−1

1√
t
− n

2
χ(F )

)
dt

2t

+ b−1(1− ϵ−
1
2 ) + (

n

4
χ(F ) + χ′(F )) log(ϵ).

(5.21)

Hence, as ϵ→ 0,

I3,1,ϵ + b−1ϵ
− 1

2 − n

4
χ(F ) log(ϵ) → −1

2

d

ds
ψ2,1|s=0 (5.22)

I3,2,ϵ :=
1

2

∫ 1

ϵ

t−3/2Trs

(
f exp(−t□F

t−
1
2 f
)
)
dt

=
1

2

∫ 1

ϵ

t−3/2
(
Trs

(
f exp(−t□F

t−
1
2 f
)
)
− c−1

)
dt

− c−1(1− ϵ−
1
2 )

(5.23)
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Hence, as ϵ→ 0,

I3,2,ϵ − c−1ϵ
− 1

2 → 1

2

d

ds
ψ2,2|s=0 (5.24)

Now looking at the divergent terms:

• For log(ϵ) term:

By (5.18) and (5.21), the coefficient of log(ϵ) vanished.

• For 1√
ϵ
term, by (5.18), (5.20), (5.21) and (5.23), the coefficient is

b−1 − a−1 − c−1 −
∫ 1

0

∫
M

f exp(−BT )dT,

which is zero by Theorem 3.17 in [20].

As a consequence, by (5.19), (5.22) and (5.24) and the fact that I1,ϵ+I2,ϵ+I3,1,ϵ+I3,2,ϵ =

0

d

ds
ψ1|s=0 =

d

ds
ψ2,f |s=0 + 2rk(F )

∫
M

f

∫ B

exp(−B0) +

∫
M

θ

2

(
F, gF

) ∫ B

d̂f exp (−BT 2) .

Notice that when n is odd,
∫ B

exp(−B0) = 0, which finishes the proof.

5.2.4 Redefining Ray-Singer Metric

Now we can redefine our Ray-Singer metric ∥ · ∥RS
H∗(M,F,df )

to be

Definition 5.2.4.

log ∥ · ∥RS
H∗(M,F,df )

:= log | · |RS
H∗(M,F,df )

d

ds
θ(s)|s=0,

136



Analytic Torsion on Noncompact Manifolds Chapter 5

where

θ(s) =
1

Γ(s)

∫ ∞

1

ts−1
(
Trs
(
N exp(−t□F

f )
)
− χ′(M,F )

)
dt+ ψ2(s).

Proposition 5.2.5. If fτ is a family of Strongly polynomial tamed function, then when

n is odd,

log ∥ · ∥RS
H∗(M,F,dfτ )

is independent of τ.

Proof. Let ϕ = ∂τfτ |τ=0. By (5.16), one can see that

∂τ

∫ ∞

1

ts−1
(
Trs
(
N exp(−t□F

f )
)
− χ′(M,F )

)
dt|τ=0 = 2Trs(ϕ exp(−□f ))− 2Trs(ϕP )

− 2s

∫ ∞

1

ts−1 (Tr(ϕ exp(−t□f ))) dt.

(5.25)

Moreover, by (5.16) again, if s >> 0,

∂τ

∫ 1

0

ts−1(Trs(N exp(−t□F

t−
1
2 f
)− χ′(M,F ))dt

=

∫ 1

0

−2ts−1/2∂t(Trs(ϕ exp(−t□F

t−
1
2 f
))dt+ 1/2

∫ 1

0

−2ts−2∂T (Trs(ϕ exp(−t□F
Tf ))dt|T=t−

1
2

= (s− 1/2)

∫ 1

0

2ts−3/2Trs(ϕ exp(−t□F

t−
1
2 f
)dt+ 1/2

∫ 1

0

−2ts−2∂T (Trs(ϕ exp(−t□F
Tf ))dt|T=t−

1
2

− 2Trs(ϕ exp(−□f )).

(5.26)

∂τ

∫ 1

0

ts−
3
2 Trs(f exp(−t□F

t−
1
2 f
))dt

=

∫ 1

0

ts−3/2Trs(ϕ exp(−t□F

t−
1
2 f
)dt+

∫ 1

0

ts−3/2(Trs(f∂τ exp(−t□F

t−
1
2 f
))dt

(5.27)
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One can see that

2ts−3/2(Trs(f∂τ exp(−t□F

t−
1
2 f
)) = ts−2∂T (Trs(ϕ exp(−t□F

Tf ))|T=t−
1
2

(5.28)

By (5.25) (5.26), (5.27) and ((5.28)), one has

∂τ

∫ ∞

1

ts−1
(
Trs
(
N exp(−t□F

f )
)
− χ′(M,F )

)
dt+ ∂τψ2

= −2Trs(ϕP )− 2s

∫ ∞

1

ts−1 (Tr(ϕ exp(−t□f ))) dt

+ s

∫ 1

0

2ts−3/2Trs(ϕ exp(−t□F

t−
1
2 f
)dt.

(5.29)

As a result

∂τ log ∥ · ∥RS
H∗(M,F,df )

= 0.

By Proposition 5.2.3, on closed manifold, we have

Proposition 5.2.6.

2 log ∥ · ∥RS
H∗(M,F,d) = log ∥ · ∥RS

H∗(M,F,df )
+ log ∥ · ∥RS

H∗(M,F,d−f )

Let R(M, g, h, F, f) = log ∥·∥RS
H∗(M,F,df )

+log ∥·∥RS
H∗(M,F,d−f )

, where n is the dimension of

the manifoldsM . Next, step, we would like to study the variation ofR, that is, suppose we

have a family of metric gl onM and hl on F , we would like to compute ∂
∂l
R(M, gl, hl, F, f).

To this end, using the same notation as in [20], let L := ∗−1
l

∂
∂l
∗l +h−1

l
∂
∂l
hl

We may also need Proposition 2.4 and Proposition 2.5 in [50], for the self-containess,

we restate them as below:
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Proposition 5.2.7. A Riemannian n -manifold M has bounded geometry if and only if

there is a ball B with center 0 in Rn such that

• B is the domain of a normal coordinate system at every point m of M

• the Christoffel symbols ofM, considered as a family of smooth functions parametrized

by indices i, j, and k and by a point m of M, lie in a bounded subset of the Fréchet

space C∞(B).

Such a ball is called a good coordinate ball.

Proposition 5.2.8. Let M be a manifold of bounded geometry. A Clifford bundle S over

M has bounded geometry if and only if there is a good coordinate ball B such that the

Christoffel symbols for S lie in a bounded subset of C∞(B).

Given a family of metric (gl, hl), l ∈ [0, 1] on TM → M and F → M , let ∇TM
l

and ∇lf be the Levi-Civita connection and gradient induced by gl, R̃l and (∇̃2)lf are

operators induced by gl.

Proposition 5.2.9. Suppose the variation of metric is controllable, then when n is even

one has anomaly formal:

∂

∂l
R(M, gl, hl, F, f) = 2

∫
M

tr

[(
hFl
)−1 ∂hFl

∂ℓ

]
(−1)[

n+1
2 ]

π
n
2

∫ B

exp

(
−R̃l(x) + |∇lf |2 − (∇̃2)lf(x)

2

)

− 2

∫
M

θ
(
F, g′F

)
l
ẽl
(
TM,∇TM ,∇TM

l , f
)
,

where θl(F, h
F ) = Tr((hl)

−1hl), ẽl(TM,∇TM ,∇TM
l , f) is the Chern-Simon transgressed

form;

ẽl(TM,∇TM ,∇TM
l , f) =

∫ l

0

∫ B

(
∂

∂l
∇TM

l +
̂∂

∂l
(∇lf)#) exp

(
−R̃l(x) + |∇lf |2 − (∇̃2)lf(x)

2

)
dl.
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When n is odd, ∂
∂l
R(M, gl, hl, F, f) = 0.

Proof. For simplicity, let’s assume that H∗(M,F ) = 0 first. Let gl, hl be a family of

metric on M and F correspondingly.

First, we compute ∂
∂l
(ψ2,1,f (s) + ψ2,1,−f (s)): We notice that ∂

∂l
dF,∗f = −[L, dF,∗f ]. Pro-

ceed as in the proof of Theorem 5.6 in [20], one can show that

∂

∂l
Trs[N exp(−t□Tf )] = −t ∂

∂t
Trs[L exp(−t□Tf )] (5.30)

By (5.30), we can see that

Trs[L exp(−t□Tf )] = −
∫ t

ϵ

1

s

∂

∂l
Trs[N exp(−s□Tf )]ds+ Trs[L exp(−ϵ□Tf )] (5.31)

By (5.31) and Theorem 5.6 in [20], one has

∂

∂T
Trs[L exp(−t□Tf )] = −

∫ t

ϵ

1

s

∂

∂T

∂

∂l
Trs[N exp(−s□Tf )]ds+

∂

∂T
Trs[L exp(−ϵ□Tf )]

=

∫ t

ϵ

2
∂

∂l

∂

∂s
Trs[f exp(−s□Tf )]ds+

∂

∂T
Trs[L exp(−ϵ□Tf )]

= 2
∂

∂l
Trs[f exp(−t□Tf )]− 2

∂

∂l
Trs[f exp(−ϵ□Tf )] +

∂

∂T
Trs[L exp(−ϵ□Tf )]

Now we would like to compute

lim
ϵ→0

−2
∂

∂l
Trs[f exp(−ϵ□Tf )] +

∂

∂T
Trs[L exp(−ϵ□Tf )] + n.p.

Here n.p. denotes the terms that we replace f in previous terms by −f.

140



Analytic Torsion on Noncompact Manifolds Chapter 5

To this end, we compute

2
∂

∂l
Trs (f exp(−ϵ□Tf )) + n.p. = −2ϵ

∂

∂b
Trs

(
f exp(−ϵ□Tf − b[DTf ,

∂

∂l
DTf ])

)
|b=0 + n.p.

= −2ϵTrs

(
[DTf , f ] exp(−ϵ□Tf − b

∂

∂l
DTf )

)
|b=0 + n.p.

= −2ϵTrs
(
c(df) exp(−ϵ□Tf − b[(dF∗

T ), L])
)
|b=0 + n.p.

= −2ϵTrs
(
[dF∗

T , c(df)] exp(−ϵ□Tf − bL)
)
|b=0 + n.p.

= −ϵTrs
(
(2T |∇f |2 − ĉ(ei)c(∇ei∇f) + c(ei)c(∇ei∇f)− 2∇∇f ) exp(−ϵ□Tf − bL)

)
|b=0 + n.p.

= −ϵTrs
(
(2T |∇f |2 −∇2

ei,ek
f ĉ(ei)c(ek) + c(ei)c(∇ei∇f)− 2∇∇f ) exp(−ϵ□Tf − bL)

)
|b=0 + n.p.

= −ϵTrs
(
(2T |∇f |2 −∇2

ei,ek
f ĉ(ei)c(ek) + ∆f − 2∇∇f ) exp(−ϵ□Tf − bL)

)
|b=0 + n.p.

(5.32)

Next, we compute

∂

∂T
Trs (L exp(−ϵ□Tf )) + n.p. = −ϵTrs

(
L exp(−ϵ□Tf − b[DT ,

∂

∂T
DT ])

)
|b=0 + n.p.

= −ϵTrs (L exp(−ϵ□Tf − b[DT , ĉ(df)])) |b=0 + n.p.

= −ϵTrs
(
L exp(−ϵ□Tf − b

(
c(ei)ĉ(∇ei∇f)) + 2T |∇f |2

))
|b=0 + n.p.

= −ϵTrs
((
c(ei)ĉ(∇ei∇f)) + 2T |∇f |2

)
exp(−ϵ□Tf − bL

)
|b=0 + n.p.

= −ϵTrs
((
∇2

ei,ek
fc(ei)ĉ(ek)) + 2T |∇f |2

)
exp(−ϵ□Tf − bL

)
|b=0 + n.p.

= −ϵTrs
((
−∇2

ei,ek
f ĉ(ek)c(ei)) + 2T |∇f |2

)
exp(−ϵ□Tf − bL

)
|b=0 + n.p.

= −ϵTrs
((
−∇2

ei,ek
f ĉ(ei)c(ek)) + 2T |∇f |2

)
exp(−ϵ□Tf − bL

)
|b=0 + n.p..

(5.33)

Now let PTf (t, x, y) be the kernel of ∂
∂b
exp(−t□Tf + bL)|b=0.

For fix ϵ > 0, integrate by part (we will prove this rigorously in Remark 5.2.10), one
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has

∂bTrs ((∆f − 2∇∇f ) exp(−ϵ□Tf − bL)) |b=0 =

∫
M

(∆f −∇∇f )trs(PTf (ϵ, x, x))dvol = 0.

(5.34)

By (5.32), (5.33) and (5.34), one has

• When n is odd: First, notice that

∂

∂l
Trs[N exp(−t□

t−
1
2 f
)] + n.p. = −t ∂

∂t
Trs[L exp(−t□Tf )]|T=t−

1
2
+ n.p. (5.35)

Moreover, by a straightforward computation,

− 2t
∂

∂t
Trs(L exp(−t□Tf ))|T=t−

1
2
+ n.p.

= −2t
∂

∂t
Trs(L exp(−t□

t−
1
2 f
)) + t−

1
2
∂

∂T
Trs(L exp(−t□Tf ))|T=t−

1
2
+ n.p.

(5.36)

Now

∂

∂l
ψ2,1,f (s) + n.p. =

1

Γ(s)

∫ 1

0

ts−1 ∂

∂l
Trs(N exp(−t□

t−
1
2 f
))dt+ n.p.

= − 1

Γ(s)

∫ 1

0

ts
∂

∂t
Trs(L exp(−t□Tf ))|T=t−

1
2
dt+ n.p.

= − 1

Γ(s)

∫ 1

0

ts
∂

∂t
Trs(L exp(−t□

t−
1
2 f
))

+ 2ts−
3
2
∂

∂l
Trs[f exp(−t□t−

1
2 f
)]dt+ n.p. (By (5.35) and (5.36))
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Hence, when s >> 0

∂

∂l
ψ2,1,f (s)+n.p. = − s

Γ(s)

∫ 1

0

ts−1Trs(L exp(−t□
t−

1
2 f
))dt+Trs[L exp(−□f )]−

∂

∂l
ψ2,2,f (s)+n.p..

If n is odd, by our previous results in [49], Trs[L exp(−t□
t−

1
2 f
)]+Trs[L exp(−t□

−t−
1
2 f
)]

has no constant term, hence

d

ds

∂

∂l
ψ2,f |s=0 + n.p. = 0.

Consequently,

∂

∂l
R(M, gl, h, f) = 0.

• When n is even, proceed as in the proof of Theorem 4.20 in [20], one can show that

Trs[L exp(−t□
t−

1
2 f
)] + Trs[L exp(−t□

−t−
1
2 f
)] has constant term

2

∫
M

tr

[
(hl)

−1 ∂h
F
l

∂ℓ

]
(−1)[

n+1
2 ]

π
n
2

∫ B

exp

(
−R̃(x) + |∇f |2 − ∇̃2f(x)

2

)

− 2

∫
M

θl (F, hl) ẽl
(
TM,∇TM ,∇TM

l , f
)
,

which finish the proof.

Remark 5.2.10. We are going to prove that if t > 0 is small enough,

∫
M

∆ftrs(exp(−t□Tf ))dvol =

∫
M

∇∇f trs(exp(−t□Td))dvol.

To this end, fix a bump function η, s.t. η|[0,1] ≡ 1, supp(η) ⊂ [0, 2]. Let ψk(p) :=

η( |∇f |2(p)
k

).
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By Stoke formula,

∫
M

div(ψk∇f)trs(exp(−t□Tf ))dvol =

∫
M

ψk∇∇f trs(exp(−t□Tf ))dvol. (5.37)

By the short asymptotic expansion of heat kernel, polynomial tameness of (M, g, f)

and dominated convergence theorem, let k → ∞, the right hand side of (5.37) goes to

∫
M

∇∇f trs(exp(−t□Tf ))dvol.

Notice that |∇ψk| ≤ C|∇2f ||∇f |
k

, for the same reason, as k → ∞, the left hand side of

(5.37) goes to ∫
M

∆ftrs(exp(−t□Tf ))dvol.

5.3 Nine Intermediary Results

Let (M, g, f) be strongly polynomial tame. Let f :M → R be a Morse function. Let

Crit(f) be the set of critical points of f . If x ∈ Crit(f), recall that the index ind(x) is

the number of negative eigenvalues of the quadratic form d2f(x) on TxM .

Definition 5.3.1. For T ≥ 1, let F[0,1]
T (resp. F(0,1]

T , resp. F{0}
T ) be the direct sum of the

eigenspaces of □Tf associated to eigenvalues λ ∈ [0, 1] (resp. λ ∈]0, 1], resp. λ = 0). Let

□[0,1]
Tf (resp. □(0,1]

Tf ) be the restriction of □Tf to F[0,1]
T (resp. to F(0,1]

T ). For T ≥ 0, let P
[0,1]
T

(resp. P
(0,1]
T , resp. PT ) be the orthogonal projection operator from L2Ω∗(M,F ) on F[0,1]

T

(resp. F(0,1]
T , resp. F{0}

T ) with respect to the scalar product ⟨·, ·⟩F. Here ⟨·, ·⟩F is the inner

product induced by gTM and gF . Set P
(1,+∞)
T = 1− P

[0,1]
T .

By Hodge theory, we know that for 0 ≤ i ≤ n,H i(M,F, dFTf ) and F{0},i
T are canonically

isomorphic. As finite dimensional vector subspaces of the Fi
T , the F

{0},i
T inherit the scalar
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product ⟨·, ·⟩F. Thus the line detH∗(M,F, dFTf ) inherits a metric | · |RS
det H∗(M,F,dFTf )

, which

is also called the L2 metric.

Let ∇f ∈ TM be the gradient vector field of f . Consider the differential equation

dy

dt
= −∇f(y),

which defines a group of diffeomorphism (ψt)t∈R of M .

If x ∈ Crit(f), set

W u(x) = {y ∈M : limt→−∞ ψt(y) = x} ,

W s(x) = {y ∈M : limt→+∞ ψt(y) = x} .

The cells W u(x) and W s(x) will be called the unstable and stable cells at x. We assume

that the vector field ∇f verifies the Smale transversality conditions. Let x, y ∈ Crit(f)

with ind(y) = ind(x) − 1. Take γ ∈ Γ(x, y). Then TyW
u(y) is orthogonal to TyW

s(y)

and is oriented. So for t ∈ (−∞,+∞), the orthogonal space T⊥
γtW

s(y) to TγtW
s(y)

in TγtM carries a natural orientation. Also for t ∈ (−∞,+∞), the orthogonal space

T ′
γtW

s(x) to −∇f (γt) in TγtW u(x) can be oriented in such a way that s is an oriented

base of T ′
γtW

u(x) if (−∇f (γt) , s) is an oriented base of TγtW
u(x). Finally since W u(x)

and W s(y) are transversal along γ, for t ∈ (−∞,+∞), T⊥
γtW

s(y) and T ′
γtW

u(x) can be

identified, and their orientations can be compared. Set

nγ(x, y) =


+1 if the orientations are the same,

−1 if the orientations differ.

If x ∈ Crit(f), let [W u(x)] be the real line generated by W u(x). Let F be a flat vector
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bundle on M , and let F ∗ be its dual. Set

C• (W
u, F ∗) =

⊕
x∈Crit(f)

[W u(x)]⊗R F
∗
x ,

Ci (W
u, F ∗) =

⊕
x∈Crit(f)
ind (x)=i

[W u(x)]⊗R F
∗
x .

If x ∈ Crit(f), the flat vector bundle F ∗ is canonically trivialized onW u(x). In particular,

if x, y ∈ Crit(f) are such that ind(y) = ind(x) − 1, and if γ ∈ Γ(x, y) s∗ ∈ F ∗
x , let

τγ (s
∗) ∈ F ∗

y be the parallel transport of s∗ ∈ F ∗
x into F ∗

y along γ with respect to the flat

connection of F ∗.

If x ∈ B, s∗ ∈ F ∗
x , set

∂′ (W u(x)⊗ f ∗) =
∑

y∈Crit(f)
ind(y)=ind(x)−1

∑
γ∈Γ(x,y)

nγ(x, y)W
u(y)⊗ τγ (f

∗) .

Then ∂′ maps Ci (W
u, F ∗) into Ci−1 (W

u, F ∗).

If x ∈ Crit(f), let [W u(x)]∗ be the line dual to the line [W u(x)]. Let (C• (W u, F ) , ∂)

be the complex which is dual to (C• (W
u, F ∗) , ∂′). For 0 ≤ i ≤ n, we have the identity

Ci (W u, F ) =
⊕

x∈Crit(f)
in(x)=i

[W u(x)]∗ ⊗R Fx.

Then by [25], we know that

H• (C∗ (W u, F ) , ∂) ≃ H•
(2)(M,F, dFf ),

where H•
(2)(M,F, dFf ) is F -valued L

2-cohomology.
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As a result, we know that

detC• (W u, F ) ≃ detH•
(2)(M,F, dFf ). (5.38)

Now we equip C∗ (W u) with a metric such that for any x, z ∈ Crit(f) with x ̸=

z,W u(x)∗ and W u(z)∗ are orthogonal to each other, and that

⟨W u(x)∗,W u(x)∗⟩ = 1

for each x ∈ Crit(f). For x ∈ Crit(f), let ∥ · ∥detFx be a metric on the line detFx. The

metrics ∥ · ∥detFx(x ∈ Crit(f)) induce a metric ∥ · ∥detC•(Wu,F ) on detC• (W u, F ) .

Definition 5.3.2. The Milnor metric ∥·∥M,∇f

det H•(M,F,dFf )
on the line detH•(M,F, dFf ) is the

metric corresponding to the metric ∥ · ∥detC•(Wu,F ) via the canonical isomorphism (5.38).

We now further assume that for any x ∈ Crit(f), there exists a sufficiently small open

neighborhood Ux of x and a coordinate system y = (y1, . . . , yn.) on Ux such that on Ux

f(y) = f(x)− 1

2

(
y1
)2 − · · · − 1

2

(
yind(x)

)2
+

1

2

(
yind(x)+1

)2
+ · · ·+ 1

2
(yn)2 ,

gTM =
(
dy1
)2

+ · · ·+ (dyn)2 ,

∇F preserves the metric gF in Ux. Certainly we can assume that for any x, y ∈ zero(∇f)

with x ̸= y, Ux ∩ Uy = ∅ We still assume that ∇f verifies the Smale transversality

conditions. Let K = ∪x∈Crit(f)Ūx, δ0 := infp∈M−K |∇f |2(p).
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Theorem 5.3.1. The following identity holds,

lim
T→+∞

Trs

[
N log

(
□(0,1]

Tf

)]
+ log

( | · |RS
detH∗(M,F,dFTf )

| · |RS
detH•(M,F,dFf )

)2

+ 2rk(F ) TrCrit
s [f ]T +

(n
2
χ(F )− χ̃′(F )

)
log

(
T

π

)}
= log

∥ · ∥M,∇f

detH•(M,F,dFf )

| · |RS
detH•(M,F,dFf )

2

.

Theorem 5.3.2. Given ε, A with 0 < ε < A < +∞, there exists C > 0 such that if

t ∈ [ε, A], T ≥ 1, then

∣∣Trs [N exp
(
−tD2

T

)]
− χ̃′(F )

∣∣ ≤ C√
T
.

Theorem 5.3.3. For any t > 0,

lim
T→+∞

Trs

[
N exp (−t□Tf )P

(1,+∞)
T

]
= 0.

Moreover there exist c > 0 such that for t ≥ 1, T ≥ 0, then

∣∣∣Trs [N exp (−t□Tf )P
(1,+∞)
T

]∣∣∣ ≤ c exp(−t/2).

Theorem 5.3.4. For T ≥ 0 large enough, then

dimF[0,1],i
T = rk(F )M i,

where Mi is the number of critical points with Morse index i.

Also

lim
T→+∞

Tr
[
□[0,1]

Tf

]
= 0.
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Theorem 5.3.5. As t→ 0, the following identity holds,

Trs

[
N exp

(
−t□

t−
1
2 f

)]
= rk(F )

∫
M

∫ B

L exp

(
−B1

2

)
1√
t
+
n

2
χ(F ) +O(

√
t),

where for any T > 0, BT = R̃TM

2
+
√
T
∑n

1 e
i ∧ ∇̂TM

ei
∇f + T |df |2 ∈ Ω∗(M)⊗ Ω∗(M).

Proof. This follows from Theorem 1.1 and rescaling techniques in [49].

Theorem 5.3.6. For any t > 0, there is c > 0 such that as T → +∞,

Trs [f exp (−t□Tf )] = rk(F ) TrCrit
s [f ] +

(
n

4
χ(F )− 1

2
χ̃′(F )

)
1

T
+O

(
e−cT

)
.

Proof. Let KT (t, x, y) be the heat kernel of exp(−t□Tf ), c = δ0/3. By Theorem 4.1 in

[49] and Proposition 5.2.2, when T > 1
t
, one has

|
∫
M−K

trs(fKT (t, x, x))dvol(x)| ≤ CT n

∫
M−K

|f ||∇f |2n exp(−T |∇f |2)dvol(x)

≤ CT n exp(−Tδ0
2

)

∫
M−K

|f ||∇f |2n exp(−T |∇f |
2

2
)dvol(x)

≤ C ′ exp(−cT )

For the estimation of

∣∣∣∣∫
K

trs(fKT (x, x))dvol(x)− rk(F ) TrBs [f ]−
(
n

4
χ(F )− 1

2
χ̃′(F )

)
1

T

∣∣∣∣ ,
see section 12 in [20].

Theorem 5.3.7. For any d > 0, there exists C > 0 such that for 0 < t ≤ 1, 1 ≤ T ≤ d
t
,

then
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∣∣∣∣ 1t2 {Trs [f exp (−(tD + T ĉ(∇f))2
)]

−

rk(F )

∫
M

f

∫ B

exp (−BT 2) + t

∫
M

θ

2

(
F, gF

) ∫ B

d̂f exp (−BT 2)

}∣∣∣∣ ≤ C.

Proof. Still, this follows from Theorem 1.1 and rescaling techniques in [49].

Theorem 5.3.8. For any T > 1, the following identity holds,

lim
t→0

1

t2

{
Trs

[
f exp

(
−
(
tD +

T

t
ĉ(∇f)

)2
)]

− rk(F ) TrCrit
s [f ]

}

=

(
n

4
χ(F )− 1

2
χ̃′(F )

)
1

T tanh(T )

Proof. By a similar arguments in Theorem 5.3.6,

|
∫
M−K

trs(fK T
t2
(t2, x, x))dvol(x)| ≤ C exp(−c

t
)

as long as t < 1
T
.

For the estimation of

∣∣∣∣∫
K

trs(fK T
t2
(t2, x, x))dvol(x)− rk(F ) TrBs [f ]− t2

(
n

4
χ(F )− 1

2
χ̃′(F )

)
1

T tanh(T )

∣∣∣∣ ,
see Section 14 in [20].
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Theorem 5.3.9. There exist c > 0, C > 0 such that for t ∈ (0, 1], T ≥ 1, then

∣∣∣∣∣ 1t2
{
Trs

[
f exp

(
−
(
tD +

T

t
ĉ(∇f)

)2
)]

− rk(F ) TrCrit
s [f ]

−t
2

T

(
n

4
χ(F )− 1

2
χ̃′(F )

)}∣∣∣∣ ≤ C exp(−cT )

Proof. By a similar arguments in Theorem 5.3.6,

|
∫
M−K

trs(fK T
t2
(t2, x, x))dvol(x)| ≤ C exp(−cT

t
)

as long as t ∈ (0, 1], T ≥ 1.

For the estimation of

∣∣∣∣∫
K

trs(fK T
t2
(t2, x, x))dvol(x)− rk(F ) TrBs [f ]−

t4

T

(
n

4
χ(F )− 1

2
χ̃′(F )

)∣∣∣∣ ,
see Section 15 in [20].

5.3.1 Proof of Theorem 5.3.1, 5.3.2, 5.3.3 and 5.3.4

if T > 1 is large enough, then the map

P∞,T : F[0,1]
T −→ C∗ (W u, F )

defined by

ω ⊗ s 7→

 ∑
x∈Crit(f)

[W u(x)]∗
∫
W ∗(x)

exp(Tf)ω

⊗ sx.

Without loss of generality we assume that each Ux, p ∈ Crit(f), is an open ball around

p with radius 4. Let γ : R → [0, 1] be a smooth function such that γ(z) = 1 if |z| ≤ 1
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and that γ(z) = 0 if |z| ≥ 2. For any x ∈ Crit(f), set

αx,T =

∫
Ux

γ(|y|)2 exp
(
−T |y|2

)
dvol(y),

ρx,T =
γ(|y|)
√
αx,T

exp

(
−T |y|2

2

)
· ρx,

where ρx = dy1 ∧ · · · ∧ dyind(x).

Let JT be the unitary map from C∗ (W u, F ) into Ω∗(M) such that for any x ∈ Crit(f)

and T ≥ T0

JT ([W u(x)]∗ ⊗ sx) (z) = ρx,T ⊗ τγ(sx),

where γ is a curve connecting x and z in Ux, τγ is the parallel transform along γ.

Let eT = P
[0,1]
T JT , then both eT : (C•(W u, F ), ∂) → (Ω∗(M), dTf ) and JT : (C•(W u, F ), ∂) →

(Ω∗(M), dTf ) are quasi-isomorphic. Proceed as what we did in [], we have

Proposition 5.3.3. There exists c > 0 such that as T → +∞, for any ϕ ∈ C∗ (W u, F )

(eT − JT )ϕ = O
(
e−cT (ρ+1)

)
∥ϕ∥0 uniformly on M

In particular, eT is an isomorphism.

Let F ∈ End (C∗ (W u, F )) which, for x ∈ Crit(f), acts on [W u(x)]∗ by multiplication

by f(x). Let Ñ ∈ End (C∗ (W u, F )) which acts on Ci (W u) , 0 ≤ i ≤ n, by multiplication

by i. By Proposition 5.3.3, proceed as in [20], one has

Proposition 5.3.4. There exists c > 0 such that as T → +∞,

P∞,T eT = eTF
(π
T

)N/2−n/4 (
1 +O

(
e−cT

))
.

In particular, P∞,T is an isomorphism for T > 0 large enough.
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By Proposition 5.3.4, proceed as in [20], one can prove Theorem 5.3.1.

Proceed as Proposition 2.4 in [49], one can show that the k-th eigenvalue λk of□Tf has

at least polynomial growth, i.e., there exists α0(n, α, κ) > 0, s.t. λk ≤ C(δf ,M,A)(Tk)α0 ,

where δf = supp∈M
|Hess(f)|
1+|∇f |2 . It’s easy to see that δTf ≤ Tδf when T ≥ 1.

Hence, by Proposition 5.3.3, Theorem 5.3.2, 5.3.2, 5.3.3 follow.

5.4 Cheeger-Muller/Bismut-Zhang Theorem

With nine intermediary results above, proceeding as in Chapter 7 of [20], one has

Theorem 5.4.1. The following identity holds

log

∥ · ∥RS
detH•

(2)
(M,F,dFf )

∥ · ∥M,∇f

detH•(M,F,dFf )

2

= −
∫
M

θ
(
F, gF

)
∇f ∗ψ

(
TM,∇TM

)
,

where ψ =
∫ +∞
1

βTdT , βT =
∫ B ∇̂f#

2
√
T
exp (−BT ) , BT = R̃TM

2
+

√
T
∑n

1 e
i ∧ ∇̂TM

ei
∇f +

T |df |2 ∈ Ω∗(M)⊗ Ω∗(M).
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Chapter 6

LG/CY Correspondence for

Weil-Peterson-type Metric and tt∗

Structures

In this chapter, we show LG/CY correspondence for tt∗ structures and Weil-Peterson

type metric.

Let f : Cn → C be a quasi-homogeneous polynomial, i.e., there exist q1, . . . , qn ∈ Q

such that for any λ ∈ C∗,

f(λq1z1, . . . , λ
qnzn) = λf(z1, ..., zn).

Each qi is called the weight of zi.

Let qi = ai/bi with (ai, bi) = 1, and d = lcm (b1, . . . , bn), i.e., d is the least common

multiple of b1, ..., bn. We put Qi = qid. Then we say f is quasi-homogeneous with weights

(Q1, ..., Qn), and has degree d.
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Let F (z, u) be a marginal deformation of f :

F (x, u) = f(x) +
ν∑

i=1

uiψi(x),

i.e. l(ψidz1...dzn) = l(fdz1...dzn), i = 1, . . . , ν (Recall Definition 1.2.12 for the definition

of l). We denote by M the space of parameters ui, which should be a small neighbor-

hood of the origin in Cl. Therefore, we have a family of operators ∂̄F , ∂F , ∂̄
∗
F , ∂

∗
F ,∆F

parameterized by u ∈M .

For convenience, now we assume that F (·, u) is non-degenerate, i.e. we require that

1. F (·, u) contains no monomial of the form zizj for i ̸= j,

2. F (·, u) has only an isolated singularity at the origin.

First, we have the following trivial complex Hilbert bundle L2Λ∗(X)×M →M . For

simplicity, denote by L2A its L2-integrable section space. There are two natural parings,

h : L2A× L2A −→ C∞(M) h(α, β) =

∫
X

α ∧ ∗β̄,

η : L2A× L2A −→ C∞(M) η(α, β) =

∫
X

α ∧ ∗β.

In addition, if for differential forms u, v, such that u∧∗v̄ is integrable, we still denote

h(u, v) :=

∫
Cn

u ∧ ∗v̄.

Moreover, there is a canonical real structure on the Hilbert bundle, which is denoted

by τR. Then h(α, β) = η(α, τRβ)

Let Hn := Hn
F be the Hodge bundle over M , and its fiber at u ∈ M is the space of

all harmonic n-forms of ∆F (u). We denote the space of its section by H.
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Let Πu : L2A → H be the harmonic projection, G be the inverse operator of ∆F

on im(∂̄F ) ⊕ im(∂̄∗F ), then G commutes with the operators ∂̄F , ∂F , ∂̄
∗
F , ∂

∗
F ,∆F , and the

operator form of Hodge decomposition reads

Id = Πu +∆FG = Π+G∆F .

Let u = (u1, ..., us) be local coordinates of M , and ∂i := ∂ui
. On the Hodge bundle,

we have

(1) The connection D, D̄

Notice that the Hodge bundle is embedded into the Hilbert bundle, so we can define

D, D̄ in a natural way:

Di = Πu ◦ ∂i, D̄ī = Πu ◦ ∂̄ī i = 1, ..., s.

(2) The operators Ci, C̄ī

We define Ci = Πu ◦ ∂iF = Πu ◦ ψi, C̄ī = Πu ◦ ∂iF = Πu ◦ ψi. We can also compute

that

Ci = (∂iF )− ∂̄F ∂̄
∗
FG(∂iF ), C̄ī = (∂iF )− ∂F∂

∗
FG(∂iF ).

By definition, C̄ī is the adjoint operator of Ci with respect to the tt∗ metric h, i.e.

h(Ciα, β) = h(α, C̄īβ).

Proposition 6.0.1 (tt∗ equation,[37, 23, 14, 51]). The operators Di, D̄j̄, Ci, C̄j̄ satisfy

the following equations

1. [Ci, Cj] = 0, [C̄ī, C̄j̄] = 0, [Di, C̄j̄] = [D̄ī, Cj] = 0;
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2. [Di, Cj] = [Dj, Ci], [D̄ī, C̄j̄] = [D̄j̄, C̄ī];

3. [Di, Dj] = 0, [D̄ī, D̄j̄] = 0, [Di, D̄j̄] = −[Ci, C̄j̄].

Fix a homogeneous basis {ϕa}µ−1
a=0 of Jac(f), such that l(Aa) ≤ l(Ab) if a < b, and

ϕ0 = 1. Moreover, assume that {ϕai}
µ′−1
i=0 is a basis of Jac(f)′. If f is homogeneous

of degree n. Let |u| be small enough, such that {ϕa}µ−1
a=0 is still a basis of Jac(F (·, u)),

{γk}µk=0 constructed in Subsection 1.2.3 is still a basis of Hn(Cn, F (·, u)−∞).

6.1 Weil-Peterson-type Metric on LG Moduli

First, we will show that: for each Aa = ϕadz1...dzn, there exists a harmonic form

wa = wa(u) ∈ ker(∆F (·,u)) (c.f. Proposition 6.1.2), s.t.

wa(u) = Aa + ∂̄F (·,u)νa(u) (6.1)

for some νa. Moreover, νa has at most polynomial growth.

To do this, we follow the method in [52] to show that

Hn(Cn, ∂̄F (·,u)) ∼= Hn
c (Cn, ∂̄F (·,u)),

where Hn(Cn, ∂̄F (·,u)) is the cohomology of smooth complex (i.e. smooth forms with dif-

ferential ∂̄F (·,u)), and H
n
c (Cn, ∂̄F (·,u)) is the cohomology of smooth complex with compact

support ( i.e. compactly supported smooth forms with differential ∂̄F (·,u)).

Consider the operator

VF =
(∂F )∗

|∇F |2
: Ap,q((Cn)∗) → Ap−1,q((Cn)∗),
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where (Cn)∗ = Cn − {0}, Ap,q(X) is the space of smooth p, q forms on X. Next, fix a

bump function ρ near 0, and let

Tρ : A∗((Cn)∗) → A∗
c((Cn)∗), Rρ : A∗((Cn)∗) → A∗((Cn)∗)

be

Tρ(A) = ρA+ (∂̄ρ)VF
1

1 + [∂, VF ]
(A), Rρ(A) = (1− ρ)VF

1

1 + [∂, VF ]
(A).

It can be checked easily that (c.f. [52])

Lemma 6.1.1. [∂̄F , Rρ] = 1 − Tρ as operators on A(Cn). Moreover, the embedding

(Ac(Cn), ∂̄F ) ↪→ (A(Cn), ∂̄F ) is a quasi-isomorphism.

As a result, Tρ(Aa) is L2-integrable (since it has a compact support), then we set

wa := Πu(Tρ(Aa)). Consequently

wa = Π(Tρ(Aa)) = (Id−G∆F )Tρ(Aa) = Aa − ∂̄FRρ(Aa)− ∂̄FG∂̄
∗
FTρ(Aa).

Now set νa = −Rρ(Aa)−G∂̄∗FTρ(Aa), we have (6.1).

Moreover, let S := Π ◦ Tρ, then

Proposition 6.1.2. The map S satisfies the following properties:

1. S is a C∞(M)-linear map;

2. S is well defined, that is, S is independent of the choice of the representative in

C∞(M)⊗ Ωn
X×M/M/dF ∧ Ωn−1

X×M/M and also independent of the cut-off function ρ.

Proof. (1) The C∞(M)-linearity follows from the definitions of Tρ and Πu.

(2)
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• The independence of the choice of the representative:

Let A′ = A+ dF ∧ B, for some B ∈ C∞(M)⊗ Ωn−1
Cn×M/M with polynomial growth.

By definition, there exist n− 1 forms ν and ν ′ with polynomial growth such that

w := S(A) = A+ ∂̄Fν, w′ := S(A′) = A′ + ∂̄Fν
′.

Moreover, since B is holomorphic in the Cn direction,

w′ := S(A′) = A+ dF ∧B + ∂̄Fν
′ = A+ ∂̄F (B + ν ′).

Then one has

w − w′ = ∂̄F (·,u)(ν +B − ν ′),

where (ν+B−ν ′) has polynomial growth. Then by Agmon estimate and integration

by parts, one has

h(w − w′, w − w′) = h(w − w′, ∂̄F (·,u)(ν − ν ′)) = h(∂̄∗F (·,u)(w − w′), ν − ν ′) = 0,

which implies that w = w′.

• The independence of the choice of the cut-off function:

Let S and S ′ be the map with respect to the cut-off functions ρ and ρ′ respectively.

Then

A = S(A)− ∂̄F (·,u)ν = S ′(A)− ∂̄F (·,u)ν
′

for some differential forms ν and ν ′ with polynomial growth. Then repeat the same

argument as above, one shows that S(A) = S ′(A) easily.
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Proposition 6.1.3. The section wa(u) is a holomorphic section, i.e. D̄īwa = 0

Proof. Let ∂̄ī :=
∂

∂ūi
, then it’s straightforward that [∂̄ī, ∂̄F (·,u)] = 0. Hence

∂̄īwa(u) = ∂̄īAa − ∂̄ī∂̄F (·,u)νa = −∂̄ī∂̄F (·,u)νa = −∂̄F (·,u)∂̄īνa.

Following the same arguments as in the proof of Proposition 6.1.2, one shows that

for any harmonic form w, h(∂̄īwa, w) = 0. As a result,

D̄īw0(u) = Πu∂̄īwa(u) = 0.

6.1.1 U(1) Actions on A(Cn)

Cn admits a unitary U(1) action associated with f , which is given by

eiθ · (z1, . . . , zn) =
(
eiθQ1z1, . . . , e

iθQnzn
)
.

In particular, if f is homogeneous,

eiθ · (z1, . . . , zn) =
(
eiθz1, . . . , e

iθzn
)
.

This action induces a unitary action T of U(1) on differential forms, such that for any

p, q form α = α(z1, z̄1..., zn, z̄n)dzi1 ...dzipdz̄j1 ...dz̄jq ,

T (θ)α = eiθ(−
∑p

k=1 Qik
+
∑q

k=1 Qjk
)α(e−iQ1θz1, e

iQ1θz̄1, ..., e
−iQnθzn, e

iQnθz̄n)dzi1 ...dzipdz̄j1 ...dz̄jq .
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In particular, if f is homogeneous,

T (θ)α = ei(q−p)θα(e−iθz1, e
iθz̄1, ..., e

−iθzn, e
i]θz̄n)dzi1 ...dzipdz̄j1 ...dz̄jq .

Now consider the following U(1) action P on L2Λp,q(Cn),

P(θ)(α) = eidpθT (θ)α, α ∈ L2Λp,q(Cn).

Similarly, we have another U(1) action Q(θ) := eidqθT (−θ) on L2Λp,q(Cn), where d is the

degree of quasi-homogeneous polynomial f.

Remark 6.1.4. One can see later that the infinitesimal action of P and Q plays the roles

of p, q degree in LG models. Comparing with CY’s case, let X be a compact Calabi-Yau

manifold, on Ap,q(X), one defines PCY (θ)w = eipθw, QCY (θ)w = eiqθw for w ∈ Ap,q(X).

Immediately, we have,

Lemma 6.1.5. The U(1) action P and Q satisfy the following properties:

(1) P and Q are unitary, i.e.,

h(Q(θ)α,Q(θ)β) = h(P(θ)α,P(θ)β) = h(α, β), α, β ∈ L2Λp,q(Cn).

(2) [P(θ), ∂̄F ] = 0, [P(θ), ∂̄∗F ] = 0, [P(θ),∆F ] = 0.

(3) P(θ)∂FP(θ)−1 = eidθ∂F , P(θ)∂∗FP(θ)−1 = e−idθ∂∗F .

(4) [Q(θ), ∂F ] = 0, [Q(θ), ∂∗F ] = 0, [Q(θ),∆F ] = 0.

(5) Q(θ)∂̄FQ(θ)−1 = eidθ∂̄F , P(θ)∂̄∗FP(θ)−1 = e−idθ∂̄∗F .

Moreover, (2) and (4) imply that P : H → H, Q : H → H.
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Remark 6.1.6. In CY’s case, one can also see that PCY ,QCY are unitary; PCY com-

mutes with ∂̄; PCY (θ)∂PCY (θ)−1 = eiθ∂.

Recall that

Definition 6.1.7. For A = zβ1

1 · · · zβn
n dz1 ∧ · · · ∧ dzn, we define

l(A) :=
n∑

i=1

(βi + 1)Qi.

Moreover, let la = l(Aa).

Lemma 6.1.8. The U(1) action P and Q commute with the map S, that is

S(P(θ)A) = P(θ)(S(A)), A ∈ C∞(M)⊗ Ωn/dF (·, u) ∧ Ωn−1

and

S(Q(θ)A) = Q(θ)(S(A)), A ∈ C∞(M)⊗ Ωn/dF (·, u) ∧ Ωn−1.

More explicitly,

P(θ)(wa) = ei(nd−l(Aa))θwa,

Q(θ)(wa) = ei(l(Aa))θwa.

Thus, we could define the U(1) charge of wa to be la. This lemma could be rephrased

as follows: if a harmonic form w has U(1) charges l, that is, w = S(A) for some

homogeneous n-form A with l(A) = l, then

P(θ)(w) = ei(nd−l)θw,

Q(θ)(w) = eilθw.
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Remark 6.1.9. If f contains a unique isolated singularity at the origin, the strong

nullstellensatz implies the existence of a sufficiently large N such that zNi ∈ ⟨∂z1f, ..., ∂znf⟩

for all i = 1, 2, ..., n. As a result, if ϕ is homogeneous with a sufficient large degree D,

ϕ ∈ ⟨∂z1f, ..., ∂znf⟩. In fact, lemma 6.1.5 could provide an explicit description of D.

To keep things simple, we will consider only the case where f satisfies the Calabi-Yau

condition. A harmonic form’s U(1) charge cannot exceed n(n − 1) in this case. Thus,

if w = S(ϕdz1...dzn) for some homogeneous polynomial ϕ of degree n(n − 2) + 1, w

must have a U(1) charge of n(n− 1) + 1. As a result, w should be trivial, implying that

ϕ ∈ ⟨∂z1f, ..., ∂znf⟩. As a result, we have D = n(n− 2) + 1 in this case.

Proof. It suffices to check the result for Aa = ϕadz1 ∧ · · · ∧ dzn. First, notice that

P(θ)Aa = ei(nd−l(Aa))θAa. (6.2)

Since

Aa = S(Aa)− ∂̄F (·,u)νa, (6.3)

by Lemma 6.1.5, we have

P(θ)Aa = P(θ)S(Aa)− ∂̄F (P(θ)γa); (6.4)

then multiply ei(n
2−la)θ on the both sides of (6.3), one has

ei(nd−l(Aa))θAa = ei(nd−l(Aa))θS(Aa)− ∂̄F
(
ei(nd−l(Aa))θγa

)
. (6.5)

(6.2), (6.4) and (6.5) imply that

ei(nd−l(Aa))θS(Aa)− P(θ)S(Aa) = ∂̄Fµa
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for some differential form µa with at most polynomial growth.

By Agmon estimate and the fact that [P(θ),∆f ] = 0 , we get

P(θ)S(Aa) = ei(nd−l(Aa))θS(Aa) = S(P(θ)Aa).

In CY’s case, if u ∈ Ap,n−p(X), v ∈ Ap′,n−p′(X), then
∫
X
u ∧ ∗v̄ ̸= 0 iff p = p′.

Similarly, by unitary property of P and Lemma 6.1.8, it is easy to obtain

Corollary 6.1.1. If h(wa, wb) ̸= 0, then l(Aa) = l(Ab).

Proof. Just notice that, by Lemma 6.1.8,

h(wa, wb) = h(P(θ)wa,P(θ)wb) = h(ei(nd−la)θwa, e
i(nd−lb)θwb) = ei(lb−la)θh(wa, wb).

Hence, if h(wa, wb) ̸= 0, we must have lb = la.

Definition 6.1.10. We define the bi-grading p̂, q̂ : H → Q as follows,

p̂(wa) = n− la
d
−

n∑
i=1

qi,

q̂(wa) =
la
d
−

n∑
i=1

qi.

Then one can see that, restricted to H,

d

dθ
P(θ)|θ=0 = d× p̂(wa) +

n∑
i=1

Qi

and

d

dθ
Q(θ)|θ=0 = d× q̂(wa) +

n∑
i=1

Qi,
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Then Corollary 6.1.1 could be interpreted as if p̂(wa) ̸= p̂(wb), then h(wa, wb) = 0.

Let h00̄ = h(w0, w0),

0 = h0ā = h(w0, wa),

then by Proposition 6.1.3

∂ih(w0, w0) = h(Diw0, w0) + h(w0, D̄īw0) = h(Diw0, w0),

0 = ∂ih(w0, wa) = h(Diw0, wa) + h(w0, D̄īwa) = h(Diw0, wa).

Hence, we have

Diw0 =
(
h−1
0̄0
∂ih00̄

)
w0, (6.6)

which means that we have a line subbundle L of Hn with connection D+ D̄(Comparing

with LCY and DCY + D̄CY in Section 2.5).

Similarly, for each wa = S(Aa), Diwa is a linear combination of {wb} with lb = la, i.e.

D and D̄ preserve the bi-grading (p̂, q̂)

In Section 2.5, one can see that CCY shifts the bi-grading (p, q) → (p− 1, q+1), and

C̄CY shifts the bi-grading (p, n − p) → (p + 1, q − 1). Similarly, one can check easily

that P(θ)(Ciwa) = ei(nd−la−d)θwa; and correspondingly, P(θ)(C̄iwa) = ei(nd−la+d)θwa.

Hence C shiftes the bi-grading (p̂, q̂) → (p̂ − 1, q̂ + 1), and C̄ shiftes the bi-grading

(p̂, q̂) → (p̂ + 1, q̂ − 1). Again, since w0 is the unique section with the fiberwise lowest

q̂-grading (up to a multiplication of C∞(M)), we have

C̄īw0 = 0. (6.7)
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Proof of Theorem 1.3.8. First, by Proposition 6.1.3, one computes

∂i log(h(w0, w0)) =
h(Diw0, w0)

h(w0, w0)
.

Then

∂̄j̄∂i log(h(w0, w0)) =
h(D̄j̄Diw0, w0) + h(Diw0, Djw0)

h(w0, w0)
− h(Diw0, w0)h(w0, Djw0)

h(w0, w0)2

=
h(D̄j̄Diw0, w0)

h(w0, w0)
( By (6.6))

=
h([D̄j̄, Di]w0, w0)

h(w0, w0)
( By Proposition 6.1.3)

= −
h([C̄j̄, Ci]w0, w0)

h(w0, w0)
( By Proposition 6.0.1)

=
h(Ciw0, Cjw0)

h(w0, w0)
( By (6.7)).

=
h(wi, wj)

h(w0, w0)
.

6.2 Real Structures

Now assume that f is homogeneous of degree n, i.e. Qi ≡ 1, d = n.

In this case,

p̂(wa) = n− la
n
− 1,

q̂(wa) =
la
n
− 1.

Using the isomorphism S, we define a real structure κ on C∞(M)Ωn/dF (·, u)∧Ωn−1 :
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Since τR(wa) = w̄a ∈ H, there exists a µ× µ matrix M(u, ū), s.t.

τR(wa) := w̄a =M b
ā(u, ū)wb,

then we define an anti-linear map κ by

κ(Aa) :=M b
ā(u, ū)Ab. (6.8)

One can check easily that if wa = S(Aa), then w̄a = S(κ(A)), moreover:

Proposition 6.2.1. Let A ∈ C∞(M)⊗Ωn/df ∧Ωn−1 has homogeneous degree l(A), then

κ(A) is also homogeneous with degree l(κ(A)). Furthermore,

l(A) + l(κ(A)) = n2.

Proof. It suffices to prove it for {Aa}µ−1
a=0 .

Let wa = S(Aa), i.e.

w = A+ ∂̄Fνa for some (n− 1)-form νa(with polynomial growth).

Then

w̄a = Āa + ∂F ν̄a. (6.9)

First by Lemma 6.1.5, (6.9), and P(θ)∂F = eiθ∂FP(θ), proceeding as what we did in

Lemma 6.1.8, one has

P(θ)w̄a = eilaθw̄a = eila
∑
b

M b
awb. (6.10)
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On the other hand,

w̄a = κ(Aa) + ∂̄F ν̃a for some (n− 1)-form ν̃a (with polynomial growth),

and κ(Aa) =
∑

bM(u, ū)baAb. Hence

P(θ)w̄a =
∑
b

ei(n
2−lb)θM b

awb. (6.11)

(6.10)−(6.11), one has ∑
b

(ei(n
2−lb) − eila)M b

awb = 0.

Since {wa} is a basis, one has M b
a = 0 if n2 − lb ̸= la, which implies that κ(Aa) is

homogeneous of degree n2 − la.

One can also interpret Proposition 6.8 as p̂(wa) = q̂(w̄a).

Hence, the small tt∗ structure for LG model is well defined:

Proposition/Definition 6.2.2 (small tt∗ structure in the Landau-Ginburg B models

[23]). Let f be a quasi-homogeneous polynomial and F be its marginal deformation with

parameter space M . Let H′ ⊂ H be the subbundle generated by wka = S(Aka), where

l(Aka)/n ∈ Z. By Proposition 6.2.1, restriction of τR, h,D,C, C̄ to H′ defines a tt∗ struc-

ture, called small tt∗ geometry structure in the Landau-Ginzburg B models.

Proof. The restriction gives a well defined tt∗ structure, since

(1) D preserves the bi-grading of each wa:

Since wa is holomorphic, i.e. D̄īwa = 0, we have

∂ih(wa, wb) = h(Diwa, wb) + h(wa, D̄īwb) = h(Diwa, wb).
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By the non-degeneracy of h and Corollary 6.1.1, we can see that D and D̄ preserve

the bi-grading.

(2) Ci shifts the bi-grading (p̂, q̂) → (p̂− 1, q̂ + 1).

(3) H′ is stable under τR by Proposition 6.2.1. Combining with (1) and (2), (3) also

implies that H′ is stable under D̄ī and C̄ī.

6.3 Residue Maps

Set q̂a = q̂(wa). Then for each ϕa ∈ Jac(f)′, p̂a ∈ Z+. Let Ω :=
∑n

i=1(−1)i+1zidz1 ∧

. . . d̂zi . . . dzn, and denote Ωa := ϕaΩ
fna . Then one can see that Ωa ∈ Hn−1(CP n−1 − Xf ),

where Xf := {[z] ∈ CP n−1 : f(z) = 0}. Let res : Hn−1(CP n−1−Xf ) → Hn−2(Xf ) be the

residue map, then it was shown that (c.f. [21])

res(Ωa) ∈ F p̂aHn−2(Xf )0, (6.12)

where Hn−2(Xf )0 denotes the space of primitive forms in Hn−2(Xf ). In particular,

res(Ω0) is a nowhere vanishing holomorphic (n− 2, 0) form on Xf .

Moreover, let τ : Hn−2(Xf ) → Hn−1(CP n−1 − Xf ) be the Leray coboundary map,

then for any cycle δ ∈ Hn−2(Xf ),

2πi

∫
δ

res(Ωa) =

∫
τ(δ)

Ωa.

Definition 6.3.1. We define the map : Jac(F )′ → Hn−2(XF ) via

R(ϕa) := res(
ϕaΩ

F na
).

170



LG/CY Correspondence for Weil-Peterson-type Metric and tt∗ Structures Chapter 6

In particular, R(1) is a nowhere vanishing holomorphic (n− 2, 0) form on XF .

6.4 Intersection Matrix and Riemann Bilinear For-

mula

Before moving on, let’s recall the construction of γk: Let ct(s) := te2πis, 0 ≤ s ≤ 1,

then ct induces a monodromy operator M : Hn−1(Vt) → Hn−1(Vt). Following [23], we fix

a basis {σk}µ−1
k=0 of Hn−1(V−1), such that σk ∈ ker(M − Id) for 0 ≤ k ≤ µ′ − 1. Hence,

there exists δk ∈ Hn−2(V∞)0 := (Hn−2(V∞)0)
∗, s.t. σk = τ(δk) for 0 ≤ k ≤ µ′ − 1. For

t > 0, let Φt : V−t → V−1 be the map (z1, .., zn) → (t−
1
n z1, ..., t

− 1
n zn), and set

γk := ∪t>0(Φt)
∗σk,

then one can see easily that {γk}µ−1
k=0 is a basis of Hn(Cn, f−∞) (called Lefchetz thimble).

Similarly, one can construct a basis {γ̃k}µ−1
k=0 of Hn(Cn, f+∞).

Now we would like to define intersection matrix, first, we show that:

For each γk ∈ Hn(Cn, F−∞), w 7→
∫
γk
eF+F̄w is linear for all w ∈ ker∆F (·,u), hence by

Riesz representation, there exists αk ∈ ker∆F (·,u), s.t.

∫
γk

eF+F̄w =

∫
Cn

w ∧ ∗αk =

∫
Cn

eF+F̄w ∧ e−F−F̄ ∗ αk.

Then set PD(γk) := e−f−f ∗ αk ∈ Hn(Cn, F+∞). Similarly, we could define PD(γ̃k),

such that ∫
γ̃k

e−F−F̄ ∗ w =

∫
Cn

PD(γ̃k) ∧ e−F−F̄ ∗ w

for all w ∈ ker∆F (·,u).
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Definition 6.4.1. The intersection matrix I is defined by

Iij =

∫
γi

PD(γ̃j) =

∫
Cn

PD(γ̃j) ∧ ∗PD(γi).

for 0 ≤ i, j ≤ µ− 1.

While I ′ is a submatrix of I, that is I ′ij = Iij for 0 ≤ i, j ≤ µ′ − 1. Now set I =

I−1, I ′ = (I ′)−1.

From the definition, it seems that PD(γk) depends on u, however,

Proposition 6.4.2. I is locally constant, i.e. when |u| is small, ∂I = ∂̄I = 0.

Proof. Suppose w is ∆F (·,u)-harmonic, then if |u| is small, by Agmon estimate, w′ :=

e(F (·,u)−f)+F (·,u)−fw has exponential decay and is d2Re(f)-closed. Then proceed as what

we did in Section 7.5 of [25], we can find ν, s.t. w′−Π0w
′ = d2Re(f)ν, and ν has exponential

decay. Here Πu is the projection L2 → ker∆F (·,u). Hence,

∫
γk

eF+F̄w =

∫
γk

ef+f̄w′ =

∫
γk

ef+f̄Π0w
′.

Again, proceeding as what we did in Section 7.5 of [25], Π0◦e(F (·,u)−f)+ ¯F (·,u)−f : H∗
(2)(Cn, dF (·,u)) →

H∗
(2)(Cn, df ) is isomorphic. For a similar reason, one can see that PD(γk)(u, ū) −

PD(γk)(0) = dµ for some differential form µ with exponential decay on Re(f) < 0.

Hence, I is locally constant.

By the definition of intersection matrix, the following Riemann bilinear formula is

straightforward:

Proposition 6.4.3. If w and w′ are harmonic, then

∫
Cn

w ∧ ∗w′ =
∑
k,l

(∫
γk

eF+F̄w

)
(I)kl

(∫
γ̃l

e−F−F̄w′
)
.
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Actually, one also have

Proposition 6.4.4. If w is harmonic,

∫
Cn

e−F̄Aa ∧ ∗w =
∑
k,l

(∫
γk

eFAa

)
(I)kl

(∫
γ̃l

e−F−F̄w

)
.

We will prove this proposition in the appendix.

6.5 Period Integrals

Next, we would like to study period integrals on LG models. There are two different

notions of period integrals. This section is dedicated to proving Theorem 1.3.9.

Firstly, by [25] or Theorem 1.3.3, one can see that {eF+F̄wa} ({e−F−F̄ ∗wa}) is a basis

of Hn(Cn, F (·, u)−∞) (Hn(Cn, F (·, u)+∞)). Consequently, the matrix

(A)ka :=

∫
γk

eF+F̄wa

and

(Ã)ka :=

∫
γ̃k

e−F−F̄ ∗ wa

are invertible.

Secondly,

(B)ka :=
∫
γk

eFAa,

and

(B̃)ka :=
∫
γk

e−F ∗ Aa.

As a result, there exist matrix T and T̃ , such that B = T A and B̃ = T̃ Ã. More

specifically,
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∫
γk

eFAa =
∑
b

(T )ab

∫
γk

eF+F̄wb

Proof of Theorem 1.3.9. By Riemann bilinear formula, on the one hand,

h(e−FAa, wc) =

(∫
γk

eFAa

)
Ikl

(∫
γ̃l

e−F−F̄ ∗ wc

)
. (6.13)

On the other hand,

(∫
γk

eFAa

)
Ikl

(∫
γ̃l

e−F−F̄ ∗ wc

)
=

∑
b:l(Ac)=l(Ab)

(T )abh(wb, wc). (6.14)

Let t = eiθ, then

h(e−F̄Aa, wc) = h(P(θ)e−F̄Aa,P(θ)wc) = tlc−lah(e−t̄−nF̄Aa, wc). (6.15)

• If lc−la
n

/∈ Z, then take t to be the n-th root of 1, such that tlc−la ̸= 1. By (6.15),

we can see that

h(e−F̄Aa, wc) = 0.

This together with (6.13), (6.14), and the fact that the matrix (h(wb, wc))lb=lc is

invertible implies that (T )ab = 0 if la−lb
n

/∈ Z.

• If lc − la = nlca for some integer lca, then we consider the function

vac(s) = h(e−sF̄Aa, wc).

By Lemma 6.5.1, it is holomorphic when |s| < 2. Then

– if lca > 0: when |s| = 1, by (6.15) slcavac(s) = vac(1), which implies vac(s) =
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s−lcavac(1) when |s| = 1. However, by the properties of holomorphic functions,

we must have vac(s) = s−lcavac(1) when 0 < |s| < 2. Since vac is a holomorphic

function on |s| < 2, we must have vac(1) = h(e−F̄Aa, wc) = 0.

hsk = 0, l(As) = l(Aj).

– if lca ≤ 0: follows from the same argument as above, one has vac(s) =

s−lcavac(1) when |s| < 2. In particular, one must have

vac(1) =
1

(−lca)!
(
d

ds
)−lca |s=0vac(s),

i.e. h(e−F̄Aa, wc) =
1

(−lca)!

∫
Cn F̄

−lcaAa ∧ ∗w̄c.

In particular, when lca = 0,

h(e−F̄Aa, wc) = h(Aa, wc) = h(wa, wc)− h(∂̄F (·,u)νa, wc) = h(wa, wc).

As a result, Theorem 1.3.9 follows.

Lemma 6.5.1. The function vac(s) =
∫
Cn e

−sF̄Aa∧∗w̄c is holomorphic on the disk |s| < 2.

Proof. This is because [∂̄F (·,u), ∂̄
∗
F (·,u)] =

1
2
[d2Re(F ), d

∗
2Re(F )], and by Agmon estimate, there

exists Cb > 0 for any b ∈ (0, 1), s.t.

|wc| ≤ Cbe
−bρ∥wc∥L2 ,

where ρ(z) is the Agmon distance between z and 0 with respect to Agmon metric

2|∇Re(F )|2. It follows from the properties of Agmon distance and holomorphic func-
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tions that ρ(z) ≥ 2|Re(eiθF )| for any θ ∈ R. As a result, for any a < b, if |s| ≤ 2a,

∫
Cn

e−sF̄Aa ∧ ∗w̄c ≤ C

∫
Cn

e2aRe(F )e−bρdvolCn ≤ C

∫
Cn

e−(b−a)ρdvolCn <∞.

Hence vac(s) is holomorphic when |s| < 2.

6.6 LG/CY Correspondence for Period Integral

By Theorem 1.3.9, we also have

∫
γk

eF+F̄wa =

∫
γk

(
eFAa −

∑
b:lb<la

(T )abe
FAb

)
. (6.16)

Definition 6.6.1. Now we define the map r : H′ → Hn−2(Xu)0 via

r(wa) = 2πi

(
(−1)na−1(na − 1)!R(ϕa)−

∑
b:lb<la

(T )ab(−1)nb−1(nb − 1)!R(ϕb)

)
,

where Xu := {[z] ∈ CP n−1 : F (z, u) = 0}.

Remark 6.6.2. Then by (6.12), one can see that if p̂(w) = p ∈ Z, then r(w) ∈

F pHn−2(Xu)0.

Lemma 6.6.3. For 0 ≤ k ≤ µ′ − 1, ϕa ∈ Jac(F )′,

∫
γk

eFAa = 2πi(−1)na−1(na − 1)!

∫
δk

R(ϕa),

and ∫
γ̃k

e−F ∗ Aa = 2πi(−1)na(na − 1)!

∫
δk

∗R(ϕa).

Here na =
la
n
.
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Proof. It suffices to compute at u = 0.

Let σk(t) = (ΦT )
∗σk ∈ Hn(V−t). For each t ̸= 0, let c̃t(θ) := −t + teiθ

2
, T (σk)(t) :=

∪θPθ(σk(− t
2
)), where Pθ : Hn(V− t

2
) → Hn(Vc̃t(θ)) is the parallel transport along c̃t. Then

∫
γk

efAa =

∫ ∞

0

e−t

∫
σk(t)

Aa

df
dt

=
1

2πi

∫ ∞

0

e−t

∫
T (σk(t))

Aa

f + t
dt.

(6.17)

Let v(t) =
∫
T (σk(t))

Aa

f+t
, then v(t) = tna−1v(1) (recall that na = la

n
), proceed as in the

proof of Lemma A.2 in [17], differential t, one has

v(t) = (−1)na−1tna−1

∫
T (σk(t))

Aa

(f + t)na

It follows from Theorem 4.2 in [23] that

∫
T (σk(t))

Aa

(f + t)na
= lim

t→0

∫
T (σk(t))

Aa

(f + t)na
= (2πi)2

∫
δk

R(ϕa).

Proposition 6.6.4. For 0 ≤ k ≤ µ′ − 1, one has

∫
γk

eF+F̄w =

∫
δk

r(w) (6.18)

and ∫
γ̃k

e−F−F̄ ∗ w =

∫
δk

∗r(w) (6.19)

for any w ∈ H′.

Moreover, let p̂a = p̂(wa), q̂a = q̂(wa), then r(wa) ∈ H p̂a,q̂a(Xu)0 and r(w̄a) = r(wa)
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for any ϕa ∈ Jac(f)′. As a result, by (6.12) and the definition of r and R,

r(wa) = (2πi)(−1)na−1(na − 1)!R(ϕa)
p̂a,q̂a , (6.20)

where for α ∈ Ak(Xu), α
p,q denotes the p, q part of α

Proof. By Lemma 6.6.3 and (6.16), for 0 ≤ k ≤ µ′ − 1, ∀w ∈ H′,

∫
γk

eF+F̄w =

∫
δk

r(w). (6.21)

As a result,

∫
γk

eF+F̄ w̄a =

∫
δk

r(w̄a).

Moreover, ∫
γk

eF+F̄ w̄a =

∫
γk

eF+F̄wa =

∫
δk

r(wa) =

∫
δk

r(wa).

Thus,

r(w̄a) = r(wa) ∈ F p̂aHn−2(Xu)0, (6.22)

One the other hand, since w̄a = S(κ(ϕ)adz1...dzn), by Remark 6.6.2 and Proposition

6.8, r(w̄a) ∈ F q̂aHn−2(Xu)0 = F n−p̂aHn−2(Xu)0. As a result,

r(w̄a) ∈ F p̂aHn−2(Xu)0 ∩ F n−p̂aHn−2(Xu)0 = H p̂a,q̂a(Xu)0. (6.23)

(6.22) and (6.23) tell us that r(wa) ∈ H p̂a,q̂a(Xu)0.

Theorem 6.6.1. If ϕa, ϕb ∈ Jac(F )′, then
∫
Cn wa ∧ ∗wb =

(2π)2

2n−2

∫
Xu
r(wa) ∧ ∗r(wb).

Proof. By Lemma 6.1.1 and Lemma 6.2.1, if la + lb ̸= n2,
∫
Cn wa ∧ ∗wb = 0. While by

Proposition 6.6.4, if la + lb ̸= n2,
∫
Xu
r(wa) ∧ ∗r(wb) = 0 too.
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By (6.20), Theorem 3.4 in [53] and Theorem 3 in [21],

∫
Cn

wa ∧ ∗wb =
(−1)(na−1)(nb−1)+1(na − 1)!(nb − 1)!

2n−2

∫
Xu

R(ϕa)
p̂a,q̂a ∧ ∗R(ϕb)

p̂b,q̂b

=
(2π)2

2n−2

∫
Xu

r(wa) ∧ ∗r(wb).

6.7 LG/CY Correspondence for Intersection Matri-

ces

Let (I)ij(0 ≤ i, j ≤ µ− 1) be the intersection matrix (see Definition 6.4.1), I = I−1;

I ′ij(0 ≤ i, j ≤ µ′ − 1) be a submatrix of I, and I ′ = (I ′)−1; (ICY )ij = δi ∩ δj be the

intersection matrix, and ICY = (ICY )−1.

If ϕa ∈ Jac(f)′, ∫
γk

eFAa =

∫ ∞

0

e−t

∫
σk

Aa

dF
,

where Aa

dF
is the Gelfand-Leray form (c.f. Lemma 10.3 in [54]).

Integration by substitution tells us that

∫
σk

Aa

dF
= 0

if Mσk ̸= σk, which implies if k ≥ µ′

∫
γk

eFAa = 0. (6.24)

Theorem 6.7.1. I ′ = π2

2n−4ICY .
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Proof. On the one hand, by (6.24) and Riemann bilinear formula,

∫
Cn

wa ∧ ∗wb =

(∫
γk

eF+F̄wa

)
(I ′)kl

(∫
γ̃l

e−F−F̄ ∗ wb

)
=

(∫
δk

r(wa)

)
(I ′)kl

(∫
δl

∗r(wb)

)
(By (6.16) and Lemma 6.6.3).

On the other hand, by Theorem 6.6.1

∫
Cn

wa ∧ ∗wb =
π2

2n−2

∫
Xu

r(wa) ∧ ∗r(wb)

=
π2

2n−2

(∫
δk

r(wa)

)
(ICY )kl

(∫
δl

∗r(wb)

)
.

Hence, I ′ = π2

2n−2ICY .

Proof of Theorem 1.3.10. By Theorem 6.7.1 and Lemma 6.6.3, it’s easy to see that

∫
Cn

w0 ∧ ∗w̄0 =
π2

2n−2

∫
Xu

r(w0) ∧ ∗r(w0).

Moreover, noticing that Gij̄ = ∂i∂̄j̄ log(
∫
Cn w0 ∧ ∗w̄0), G

CY
ij̄ = ∂i∂̄j̄ log(

∫
Xu
r(w0) ∧

∗r(w0)), we have Theorem 1.3.10.

To show LG/CY correspondence for tt∗ geometry, we first show that:

Lemma 6.7.1.

∂i

∫
γk

eF+F̄wa =

∫
γk

eF+F̄ (Di + Ci)wa,

∂̄ī

∫
γk

eF+F̄wa =

∫
γk

eF+F̄ (D̄ī + C̄ī)wa.
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Proof. First, notice that

∂i

∫
γk

eF+F̄wa =

∫
γk

∂i(e
F+F̄wa) =

∫
γk

eF+F̄ (∂i + ϕi)wa. (6.25)

Since deF+F̄wa is d-closed for all u, eF+F̄ (∂i + ϕi)wa is also d-closed, which implies

that (∂i + ϕi)wa is d2Re(F )-closed. Proceeding as in the proof of Proposition 6.4.4, one

shows that

(∂i + ϕi)wa = Πu((∂i + ϕi)wa) + d2Re(F )α = (Di + Ci)wa + d2Re(F )α

for some differential form α with exponential decay.

As a result, ∫
γk

eF+F̄ (∂i + ϕi)wa =

∫
γk

eF+F̄ (Di + Ci)wa. (6.26)

By (6.25) and (6.26), one has

∂i

∫
γk

eF+F̄wa =

∫
γk

eF+F̄ (Di + Ci)wa.

Similarly, one can show that

∂̄ī

∫
γk

eF+F̄wa =

∫
γk

eF+F̄ (D̄ī + C̄ī)wa.

Proof of Theorem 1.3.11. First, let r′ = 2
4−n
2 πr. By Theorem 6.6.1 and Proposition 6.6.4,
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it suffices to prove

r′(Dwa) = DCY r′(wa), r
′(D̄wa) = D̄CY r′(wa)

r′(Cwa) = CCY r′(wa), r
′(C̄wa) = C̄CY r′(wa)

(6.27)

for ϕa ∈ Jac(f)′.

Then r′ : H′ → Hn−2(Xu)0 induced an isomorphism of tt∗ structure.

By (6.18), one has

∂i

∫
γk

eF+F̄w = ∂i

∫
δk

r′(w),

∂̄ī

∫
γk

eF+F̄w = ∂̄ī

∫
δk

r′(w).

Hence by Lemma 6.7.1,

r′ ((D + C)wa) = (DCY + CCY )r′(wa), r
′ ((D̄ + C̄)wa

)
= (D̄CY + C̄CY )r′(wa). (6.28)

Suppose w = A = ϕdz1...dzn such that l(A) = l(Aa), then By Riemann bilinear

formula and Proposition 6.6.4,

∫
Cn

wa ∧ ∗w̄ =

∫
Xu

r′(wa) ∧ ∗r′(w).

As a result,

∂i

∫
Cn

wa ∧ ∗w̄ = ∂i

∫
Xu

r′(wa) ∧ ∗r′(w).

Then noticing that

∂i

∫
Cn

wa ∧ ∗w̄ =

∫
Cn

Diwa ∧ ∗w̄,

and

∂i

∫
Xu

r′(wa) ∧ ∗r(w) =
∫
Xu

DCY
i r′(wa) ∧ ∗r′(w),
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one has,

r′(Dwa) = DCY r′(wa).

Similarly,

r(D̄wa) = D̄CY r(wa).

Together with (6.28), we have (6.27).
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Kodaira-Hodge Decomposition

In this section, we investigate the decomposition (4.1). For this purpose we first have to

understand the Friedrichs extension of ∆H,f . Here we assume that all operators consid-

ered in this section are closable, as are our dTf , δTf (Cf. [55, Theorem VIII.1]).

A.1 Review on Friedrichs Extension

Let A be a nonnegative, symmetric (unbounded) operator on Hilbert space H, with

Dom(A) = V, i.e.

(Aα, β)H = (α,A β)H, ∀α, β ∈ V ; (Aα, α)H ≥ 0.

Define a norm ∥ · ∥V1 on V by

∥α∥2V1
= (α, α)H + (α,Aα)H.

Let V1 to be the completion of V under ∥ · ∥V1 . Then for any β ∈ H, one can construct a
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bounded linear functional Lβ on V1 as follows

Lβ(ϕ) = (ϕ, β)H, ϕ ∈ V1. (A.1)

Since |(ϕ, β)H| ≤ ∥ϕ∥H∥β∥H ≤ ∥ϕ∥H∥β∥V1 , Lβ is indeed bounded functional on V1. By

Riesz representation, there exist γ ∈ V1, s.t. (ϕ, γ)V1 = (ϕ, β)H.

Let B : H → V1, β 7→ γ, then B is bounded and injective. Taking □ = B−1− I,

where I is the identity (inclusion) map, then □ is the Friedrichs extension of A, with

Dom(□) = Im(B).

Remark A.1.1. From the construction of Friedrichs extension □ of A, we can see that

Dom(□) = Im((I+□)−1).

Let T, S be two unbounded operators on Hilbert space H, s.t.

(i)

V = Dom(T) = Dom(S),TV ⊂ V.

(ii) S is a formal adjoint of T : ∀α, β ∈ V ,

(Tα, β)H = (α, S β)H,

Let ∥ · ∥W be the norm on V given by

∥α∥2W = (α, α)H + (Tα,Tα)H, α ∈ V,

and W be the completion of V under the norm ∥ · ∥W . Then we can extend T to T̄min

with Dom(T̄min) = W.
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Let S̄max be the closure of S with Dom(S̄max) = {α ∈ H : |(α,Tϕ)H| ≤Mα∥ϕ∥H,∀ϕ ∈

V }. Namely, for any α ∈ Dom(S̄max), since V is dense in H, by Riesz representation,

there exists a unique ν ∈ H, such that (ν, ϕ)H = (α,Tϕ). Now define S̄max(α) = ν.

Since TV ⊂ V , ST is symmetric and nonnegative with Dom(ST ) = V.

Proposition A.1.2. The Friedrichs extension ∆ of ST is just S̄maxT̄min.

Proof. Since TV ⊂ V, we see that V1 constructed in (A.1) is the same as W. Indeed, for

any ϕ, ψ ∈ V, we have

(ψ, ϕ)H + (Tψ,Tϕ)H = (ψ, ϕ)H + (STψ, ϕ)H

Hence, we have

Dom(∆) = {α ∈ W : α = (I +∆)−1f, f ∈ H},

Dom(S̄maxT̄min) = {α ∈ W : T̄minα ∈ Dom(S̄max)}.

We now divide our discussion in two cases.

(a) We first prove that DomS̄maxT̄min ⊂ Dom(∆), and ∀α ∈ Dom(S̄max), S̄maxT̄minα =

∆α.

For any α ∈ DomS̄maxT̄min, let

β = α + S̄maxT̄minα. (A.2)
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Then for any ϕ ∈ W, we have

(α, ϕ)W = lim
n→∞

(α, ϕn)W

= lim
n→∞

(α, ϕn)H + (T̄minα,Tϕn)H

= lim
n→∞

(α, ϕn)H + (S̄maxT̄minα, ϕn)H (Since ϕn ∈ V, T̄minα ∈ Dom(S̄max) )

= lim
n→∞

(α + S̄maxT̄minα, ϕn)H = (α + S̄maxT̄minα, ϕ)H

= (β, ϕ)H, (A.3)

where ϕn ∈ V , and ϕn → ϕ in ∥ · ∥W norm. By the construction of Friedrichs extension

and (A.3), we deduce that α ∈ (I + ∆)−1H and (I + ∆)α = β. Comparing with (A.2),

we obtain S̄maxT̄minα = ∆α.

(b) We then show that Dom(∆) ⊂ Dom(S̄maxT̄min).

Take any α ∈ Dom(∆) ⊂ W, we can find f ∈ H, s.t. α = (I + ∆)−1f. We now

just need to show that T̄minα ∈ Dom(S̄max). For this, it suffices to prove that ∀g ∈ V,

|(T̄minα,T g)H| ≤M∥g∥H for some M > 0.

In fact, by standard functional calculus,

|(T̄minα,T g)H| = |(α, STg)H| (via αn ∈ V, αn → α in ∥∥W )

= |((I +∆)−1f,∆g)H|

= |(f, (I +∆)−1∆g)H|

≤M∥g∥H
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A.2 The Friedrichs Extension of ∆H,f

By Proposition A.1.2, the Friedichs extension □f of ∆H,f is

(df + δf )max(df + δf )min.

If 0 is an eigenvalue of □f with finite multiplicity, we have the following decomposition

L2Λ∗(M) = ker□f ⊕ Im(df + δf )max. (A.4)

Could we say more about decomposition (A.4)?

Proposition A.2.1. Let T, S be two unbounded operators on Hilbert space H, such that

1.

V = Dom(T) = Dom(S),TV ⊂ V.

2. Im(T ) is orthogonal to Im(S), and

(Tα, β)H = (α, S β)H.

3. T + S is essential self-adjoint, i.e. (T + S)min = (T + S)max.

Then

T + S = T̄min|DomS̄min∩DomT̄min
+ S̄min|DomS̄min∩DomT̄min

= T̄max|DomS̄max∩DomT̄max
+ S̄max|DomS̄max∩DomT̄max

Proof. Since Dom(T + S)min is the closure of V under metric

(ϕ, ϕ)H + ((T + S)ϕ, (T + S)ϕ)H = (ϕ, ϕ)H + (Tϕ, Tϕ)H + (Sϕ, Sϕ)H, (∗∗)
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we have Dom(T + S)min ⊂ DomS̄min ∩DomT̄min. Also, for any ϕ ∈ Dom(T + S)min

(T + S)minϕ = lim
n→∞

(T + S)ϕn = lim
n→∞

Tϕn + Sϕn = Tmin ϕ+ Smin ϕ,

where ϕn ∈ V → ϕ in the metric (∗∗).

For each ϕ ∈ DomS̄max ∩DomT̄max, ψ ∈ V ,

(ϕ, (T + S)ψ)H = (ϕ, Tψ)H + (ϕ, Sψ)H

= (T̄maxϕ, ψ)H + (S̄maxϕ, ψ)H

≤ C∥ψ∥H.

Therefore ϕ ∈ Dom((T + S)max), and (T + S)maxϕ = T̄maxϕ + S̄maxϕ, which means

that DomS̄min ∩DomT̄min ⊂ Dom((T + S)max).

Our Theorem 3.1.3, the Kodaira decomposition for the Witten decomposition, follows

from (A.4), Theorem 3.1.1 and Proposition A.2.1 above.
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Appendix B

More Refined Agmon Estimate

This chapter establishes a more precise Agmon estimate, which will be needed in Chapter

6. Following that, we move on to prove Proposition 6.4.4.

B.1 Agmon estimate

In this section, we let V ∈ C∞(Rn) be a nonnegative function with finite isolated

zeros. Moreover

lim
|x|→∞

|∇V |
(V + 1)3/2

(x) = 0.

The metric g̃ := V g0 is called Agmon metric with respect to V , where g0 is the

standard metric on Rn. Let d̃ is the distance function induced by the Agmon metric, and

ρ(x) := d̃(x, 0). We summarize several nice properties of Agmon distance here (c.f. [25] )

Lemma B.1.1. 1. |∇ρ|2 = V , a.e.

2. If |∇f | ≤ V , then |f(x)− f(y)| ≤ d̃(x, y). In particular, if f(0) = 0, |f |(x) ≤ ρ(x).

Lemma B.1.2. Assume that w ∈ L2(Rn), 0 ≤ u ∈ L2(M), s.t. (∆ + V )u ≤ w outside a

compact subset K ⊂M in the weak sense (where the interior of K contains all the zeros
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of V ). That is

∫
Rn−K

∇u∇v + V uvdvol ≤
∫
Rn−K

w · vdvol, ∀ 0 ≤ v ∈ C∞
c (M −K).

If
∫
Rn−K

|w|2V −1 exp(2bρ)dvol < ∞ for some b ∈ (0, 1), then for any compact set such

that L◦ ⊃ K, one has

∫
Rn−L

V |u|2 exp(2bψ)dvol ≤ C(b,K, L)

∫
Rn−K

|w|2V −1 exp(2bψ)dvol

+ C(b,K, L)

∫
L−K

V |u|2 exp(2bψ)dvol.
(B.1)

Proof. This is exactly Lemma 3.1 in [25].

First, let’s recall the De Giorgi-Nash-Moser theorem:

Theorem B.1.1. Let Br := {x ∈ Rn : |x| < r}. Suppose that u ∈ L2(Br), w ∈ LN(Br)

for some N > n/2, s.t. ∆u ≤ w in the weak sense (and u ≥ 0.). Then

sup
y∈Br

u(y) ≤ C(r−n/2∥u∥L2(B2r) + r−n/N∥w∥LN (B2r)),

where C > 0 is a constant depending on n and N.

Proof. See Theorem 4.1 in [41] for a reference.

Lemma B.1.3. Suppose u,w satisfy the same conditions as in Lemma B.1.2 for any

compact set containing the zeros of V . Moreover, assume that w and satisfies

∥w∥NLN
wt

:=

∫
M

|w|N exp(Nbρ)dvol <∞,

∥w∥2L2
wt

:=

∫
M

|w|2 exp(2bρ)dvol <∞,
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where N∗ = N
N−1

. Then for a ∈ (0, b)

|u| ≤ C(ψ, V, n,N, a, b)
(
∥u∥L2 + ∥w∥LN

wt
+ ∥w∥L2

wt

)
exp(−aρ)

Proof. Fist, we fixed a compact subset K, such that outside K, |∇V |
(V+1)3/2

≤ (b−a)
2
, and let

L := {x ∈ Rn : d̃(x,K) ≤ 3}.

Denoted B̃r(x) := {y ∈ Rn : d̃(y, x) < r}. For x0 /∈ L, set l = supx∈B̃2(x0)
V (x), and

r = 1/(2l). Then one can easily verify that B2r(x0) ⊂ B̃1(x0).

Choose y0 ∈ B̃2(x0) so that V (y0) ∈ (l/2, l]. By Lemma B.1.2 and de Giorgi-Nash-

Moser estimate (Theorem B.1.1),

|u(x0)|2e2bρ(x0) ≤ C(n,N)(r−n∥u∥2L2(B2r(x0))
e2bρ(x0) + r−2n/N∥w∥2LN (B2r(x0))

e2bρ(x0))

≤ C(n,N, b)

(
r−n

∫
B̃1(x0)

|u|2(y)e2bρ(y)dy + r−2n/N(

∫
B̃1(x0)

|w(y)|NeNbρ(y)dy)2/N
)

≤ C(n,N, b, a, V )

(
r−n

∫
L−K

|u|2e2bρdy + r−n

∫
Rn−K

|w|2e2bρdy + r−2n/N∥w∥2LN
wt

)
≤ C(n,N, b, a, V )

(
|V (y0)|n∥u∥2L2 + |V (y0)|n∥w∥2L2

wt
+ |V (y0)|2n/N∥w∥2LN

wt

)

Proceeding as in [25], one has

|V (y0)|2 ≤ C(V, a, b) exp((b− a)ρ(y0)). (B.2)

Hence, the result follows.

For x0 ∈ L, we have classical de Giorgi-Nash-Moser estimate

|u|(x0) ≤ C(a, b, V,N, n)(∥u∥L2 + ∥w∥LN ).

Since in L, exp(−aρ) has an upper and a lower bound depending on a, b and V , the
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result follows.

B.2 Witten deformation and Agmon estimate

Suppose that f is a non-degenerate homogeneous polynomial on Cn, then for any

a ∈ (0, 1), there exists r0 := r0(a) > 0, s.t outside Br0 := {x ∈ Rn : |x| ≤ r0}, the Witten

Laplacian ∆2Re(f) ≥ ∆+ a|2∇Re(f)|2 (c.f. [25] and [27]), i.e. for any smooth form w,

g0(∆2Re(f)w,w)(p) ≥ g0((∆ + a|2∇Re(f)|2)w,w)(p)

for any point p /∈ Br0 .

Then if ∆2Re(f)u = v for some differential forms u and v, Bochner formula and Kato’s

inequality tells us that

(∆ + a|2∇Re(f)|2)|u| ≤ |v| (B.3)

weakly.

In this case, let ρ be the Agmon distance with respect to V := |∇2Re(f)|2. The

Agmon estimate discussed in the previous section is applicable for Witten deformation.

B.3 Proof of Proposition 6.4.4

It suffices to prove the case of u = 0.

Recall that by our construction, γk = supt>0Φ
∗
t (σk) for some σk ∈ Hn−2(V−1). Let

ϵ1 := (2 sup
z∈∪µ−1

k=0σk

|z|)−n.
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Let

V := {z ∈ Cn : |z| = 1, |Re(f)| ≥ ϵ1},

and U be the cone

U := {z ∈ Cn :
z

|z|
∈ V },

then one has ∪µ−1
k=0γk ⊂ U.

Lemma B.3.1. For every sufficiently small ϵ > 0, there exists a smooth function f̃ :

Cn → R, s.t.

• f̃ ≥ |Re(f)|. Moreover, f̃ = |Re(f)| in U.

• |∇f̃ | ≤ (1 + ϵc(n, f))|∇Re(f)| for some c(n, f) > 0. Hence by Proposition B.1.1,

we also have

f̃ ≤ (1 + ϵc(n, f))

2
ρ. (B.4)

• f̃ ≥ ϵ|z|n.

Proof. Let η ∈ C∞(R), ϵ < ϵ1, s.t.

• ϵ/2 ≤ η(x) ≤ ϵ if |x| ≤ ϵ, and η(x) = |x|, if |x| ≥ ϵ;

• η ≥ ϵ/2;

• |η′| ≤ 1.

Let (r, θ) be the polar coordinates of Cn, and ∇θ be gradient with respect to the

standard metric on S2n−1 := {z ∈ Cn : |z| = 1}. Now set f̃(r, θ) := rnη ◦ Re(f)(1, θ).

By our construction, one can see that

•

ϵ|z|n/2 ≤ f̃ ≤ ϵ|z|n if z /∈ U , and f̃(z) = |Re(f)|(z) if z ∈ U (B.5)
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•

f̃ ≥ ϵ|z|n/2; (B.6)

•

|∇θf̃ | ≤ |∇θRe(f)|. (B.7)

Note that in U , |∇f̃ | = |∇Re(f)|. In polar coordinates,

|∇Re(f)|2(r, θ) = n2r2n−2|Re(f)|2(1, θ) + r2n−2|∇θRe(f)(1, θ)|2,

|∇f̃ |2(r, θ) = n2r2n−2f̃(1, θ) + r2n−2|∇θf̃(1, θ)|2.
(B.8)

Let ϵ2 := inf |z|=1 |∇Re(f)|, then by (B.5), (B.7) and (B.8), one can see easily that

outside U ,

|∇f̃ | ≤ (1 +
ϵ

nϵ2
)|∇Re(f)|.

Notice that e−f̄Aa is d2Re(f) closed, although e
−f̄Aa is not L

2 integrable, one still have

the following formulation of Hodge decomposition:

Lemma B.3.2. One has the following decomposition

e−f̄Aa = w′ + d2Re(f)β,

where w′ is a harmonic form. Moreover, β satisfies

• ef+f̄β has exponential decay on U , i.e., there exists c, C > 0, s.t. |ef+f̄β| ≤ Ce−c|z|n

in U.

• There exists a ∈ (0, 1), C > 0, such that |β| ≤ Ce2aρ, where ρ is the Agmon distance.
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Once we have the decomposition in the lemma, one can see

∫
γk

efAa =

∫
γk

ef+f̄w′

and ∫
Cn

e−f̄Aa ∧ ∗w =

∫
Cn

w′ ∧ ∗w.

(This is because, since β satisfied the estimate above, by Stoke formula

∫
γ−
k

def+f̄β = 0,

and integration by parts,

∫
Cn

d2Re(f)β ∧ ∗w =

∫
Cn

β ∧ ∗d†2Re(f)w = 0.)

By Proposition 6.4.3, one has Proposition 6.4.4.

Now it suffices to prove Lemma B.3.2.

Proof of Lemma B.3.2. We fix a function f̃ that satisfies the conditions in Lemma B.3.1

for a fixed ϵ < min{ϵ1, 1
16c(n,f)

}.

Step 1 Let dtw,0 := e−2Re(f)−3f̃/2 ◦ d ◦ e2Re(f)+3f̃/2 = e−3f̃/2 ◦ d2Re(f) ◦ e3f̃/2, and ∆tw,0 :=

dtw,0d
∗
tw,0+d

∗
tw,0dtw,0 be the Witten Laplacian with respect to dtw,0. Then one can

see that e−3f̃/2−f̄Aa ∈ L2(Cn) (since |e−3f̃/2−f̄Aa| ≤ Ce−f̃/2|z|la ≤ Ce−ϵ|z|n/2|z|la),

and

dtwe
−3f̃/2−f̄Aa = 0.

As a result, we have Hodge decomposition (c.f. [25])

e−3f̃/2−f̄Aa = w0 + dtw,0β0,
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where w0 is ∆tw,0-harmonic, and we can also assume that β0 ∈ Im(d∗tw,0).

Since
∣∣∣∇(2Re(f) + 3f̃/2

)∣∣∣ ≥ 2|∇Re(f)| − 3/2|∇f̃ | ≥ 13/32|∇Re(f)|, Agmon

estimate tells us that

|w0| ≤ Ce−3ρ/16 (B.9)

for some C > 0.

Moreover, by our choice of β0, one has

d∗tw,0e
−3f̃/2−f̄Aa = d∗tw,0w̃0 + d∗tw,0dtw,0β0 = d∗tw,0dtw,0β0 = ∆tw,0β0.

Let ϵ3 := n sup|z|=1 |∇2Re(f)|, then ρ ≤ ϵ3|z|n. Hence, there exists b > 0, s.t.

ebρd∗tw,0e
−3f̃/2−f̄Aa is both LN and L2 integrable for some N > n. Hence, by

Agmon estimate again,

|β0| ≤ Ce−bρ. (B.10)

Now let β̃0 := e3f̃/2β0, w̃0 = e3f̃/2w0, then e
−f̄Aa = w̃0 + d2Re(f)β̃0. Moreover, w̃0

is d2Re(f)-closed. In U , f̃ = |Re(f)|, hence |ef+f̄ β̃0| ≤ Ce−f/2−aρ ≤ Ce−c|z|n ; and

|β̃0| ≤ Ce3f̃/2−bρ ≤ Ce(3(1+ϵ)/4−b)ρ. Hence β̃0 satisfies the estimate stated above.

Step 2 However, although w̃0 is d2Re(f)-closed, it is not harmonic. Also, w̃0 may not be

L2 integrable. To continue, we will use techniques similar to those used in Section

7.5 of [25]. Let dtw,1 = e−f̃/4 ◦ dtw,0 ◦ ef̃/4 = e−5/4f̃−2Re(f) ◦ d ◦ e5/4f̃+2Re(f), and

∆tw,1 be the Witten Laplacian with respect to dtw,1.

By (B.9) and (B.4), α1 := ef̃/4w0 is dtw,1 closed and L2-integrable. Hence, we

have Hodge decomposition

α1 = w1 + dtw,1β1,
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where w1 is ∆tw,1 harmonic, and we may assume β1 ∈ Im(d∗tw,1).

Since

∣∣∣∇(5/4f̃ + 2Re(f)
)∣∣∣ ≥ 2|∇Re(f)| − 5/4|∇f̃ |

≥ 2|∇Re(f)| − 3/2|∇f̃ | ≥ 13/32|∇Re(f)|,

we also have |w1| ≤ Ce−3ρ/16.

Then, let w̃1 = e5f̃/4w1, β̃1 = e5f̃/4β1, then we have

w̃0 = w̃1 + d2Re(f)β̃1.

Here β̃1 satisfies the estimates stated above, and w̃1 is d2Re(f) closed (but may not

be L2 integrable).

Step 3 Now let dtw,k = e−kf̃/4 ◦ dtw,0 ◦ ekf̃/4. Repeating the arguments in Step 2 for 6

times, eventually we get α6 = ef̃/4w5 is dtw,6(= d2Re(f)) closed and L2 integrable.

Hence we have Hodge decomposition α6 = w6 + dRe(f)β6, where w6 is ∆2Re(f)

harmonic, and β6 satisfies the estimates stated above.

Eventually, set w′ = w6, β := β̃0 + ...β̃5 + β6, we finish the proof.
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