
UC Davis
UC Davis Previously Published Works

Title
Accuracy Assessments of Stochastic and Deterministic Interpolation Methods in Estimating Soil 
Attributes Spatial Variability

Permalink
https://escholarship.org/uc/item/9g71v0d8

Journal
Communications in Soil Science and Plant Analysis, 50(20)

ISSN
0010-3624

Authors
Martins, Rodrigo Nogueira
Dos Santos, Fernando Ferreira Lima
De Moura Araújo, Guilherme
et al.

Publication Date
2019-11-13

DOI
10.1080/00103624.2019.1670836
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9g71v0d8
https://escholarship.org/uc/item/9g71v0d8#author
https://escholarship.org
http://www.cdlib.org/


Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=lcss20

Communications in Soil Science and Plant Analysis

ISSN: 0010-3624 (Print) 1532-2416 (Online) Journal homepage: https://www.tandfonline.com/loi/lcss20

Accuracy Assessments of Stochastic and
Deterministic Interpolation Methods in Estimating
Soil Attributes Spatial Variability

Rodrigo Nogueira Martins, Fernando Ferreira Lima Dos Santos, Guilherme
De Moura Araújo, Lucas De Arruda Viana & Jorge Tadeu Fim Rosas

To cite this article: Rodrigo Nogueira Martins, Fernando Ferreira Lima Dos Santos,
Guilherme De Moura Araújo, Lucas De Arruda Viana & Jorge Tadeu Fim Rosas (2019) Accuracy
Assessments of Stochastic and Deterministic Interpolation Methods in Estimating Soil
Attributes Spatial Variability, Communications in Soil Science and Plant Analysis, 50:20,
2570-2578, DOI: 10.1080/00103624.2019.1670836

To link to this article:  https://doi.org/10.1080/00103624.2019.1670836

Published online: 26 Sep 2019.

Submit your article to this journal 

Article views: 251

View related articles 

View Crossmark data

Citing articles: 3 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=lcss20
https://www.tandfonline.com/loi/lcss20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00103624.2019.1670836
https://doi.org/10.1080/00103624.2019.1670836
https://www.tandfonline.com/action/authorSubmission?journalCode=lcss20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=lcss20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00103624.2019.1670836
https://www.tandfonline.com/doi/mlt/10.1080/00103624.2019.1670836
http://crossmark.crossref.org/dialog/?doi=10.1080/00103624.2019.1670836&domain=pdf&date_stamp=2019-09-26
http://crossmark.crossref.org/dialog/?doi=10.1080/00103624.2019.1670836&domain=pdf&date_stamp=2019-09-26
https://www.tandfonline.com/doi/citedby/10.1080/00103624.2019.1670836#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/00103624.2019.1670836#tabModule


Accuracy Assessments of Stochastic and Deterministic
Interpolation Methods in Estimating Soil Attributes Spatial
Variability
Rodrigo Nogueira Martins a, Fernando Ferreira Lima Dos Santos a,
Guilherme De Moura Araújo b, Lucas De Arruda Viana a, and Jorge Tadeu Fim Rosas a

aAgricultural Engineering Department, Federal University of Viçosa, Viçosa, Brazil; bBiological and Biosystems
Engineering Department, University of California Davis, Davis, CA, USA

ABSTRACT
Spatial interpolation methods are frequently used to characterize soil attri-
butes’ spatial variability. However, inconclusive results, about the comparative
performance of thesemethods, have been reported in the literature. Therefore,
the present study aimed to analyze the efficiency of ordinary kriging (OK) and
inverse distance weighting (IDW) methods in estimating the soil penetration
resistance (SPR), soil bulk density (SBD), and soil moisture content (SM) using
two distinct sampling grids. The soil sampling was performed on a 5.7 ha area
in Southeast Brazil. For data collection, a regular grid with 145 points (20
x 20 m) was created. Soil samples were taken at a 0.20 m layer depth. In
order to compare the accuracy of OK and IDW, another grid was created from
the initial grid (A), by eliminating one interspersed line, which resulted in a grid
with 41 sampled points (40 x 40 m). Results showed that sampling grid
A presented less errors than B, proving that the more sampling points, the
lower the errors that are associated with both methods will be. Overall, the OK
was less biased than IDW only for SBD (A) and SM (B) maps, whereas IDW
outperformed OK for the other attributes for both sampling grids.
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Introduction

Several factors can interfere in the spatial variability of soil attributes. Some of them are inherent in
nature due to geologic and pedologic soil-forming factors, but others are induced by tillage and some
management practices (Iqbal et al. 2005). Soil attributes, such as soil penetration resistance (SPR),
soil bulk density (SBD) and soil moisture content (SM) have proven to interact with each other
across spatial and temporal scales and are dependent on an ideal sampling grid size for Spatio-
temporal analysis (Beutler et al. 2007; Silveira et al. 2010).

Therefore, there is a need of adequate information about the spatial variability of these soil
attributes, since uniform field management is not the most effective management approach
(Moral, Terrón, and Da Silva 2010; Peralta et al. 2013). However, soil sampling and analysis are
expensive and time-consuming. Consequently, the number of soil samples in a given area is often
relatively sparse and does not represent the actual spatial variability. Thus, to provide a sufficiently
detailed representation of the real spatial variability of soil properties for a Site-specific
Management System, an appropriate sampling strategy with a spatial prediction method is needed
for better planning and management. Moreover, depending on the soil attribute, the sampling grid
density is dictated by convenience and the trade-off between resolution and cost (Whelan,
Mcbratney, and Viscarra Rossel 1996).
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There are several studies on the influence of sampling densities regarding soil attributes and
related errors in sampling management (Liu et al. 2013; Nanni et al. 2011; Siqueira et al. 2014).
However, there have been inconclusive results in the literature about the comparative performance
of interpolation methods, especially about two of the most common methods: ordinary kriging (OK)
and inverse distance weighting (IDW).

The OK method is a stochastic (also called geostatistical) interpolator that provides an estimate at
an unobserved location of a specific variable, based on the weighted average of adjacent observed
sites within a given area. The modeling of the correlation among neighboring values depends on the
geographic distance between the points across the study area, defined by a variogram. On the other
side, IDW is a deterministic method that does not provide any assessment of the error made on the
interpolated value. This procedure has been used primarily because it is simple and quicker, while
kriging has been used because it provides the best linear unbiased estimates (Miller, Franklin, and
Aspinall 2007).

Several researchers have compared IDW and kriging methods. In some works, the performance of
kriging was generally better than IDW. Adhikary and Dash (2017) concluded that kriging presented
better accuracy than IDW when predicting spatial variation on groundwater depth. In addition,
Shahbeik et al. (2014) compared both interpolation methods on the estimation of mineral reserves
and concluded that estimation errors from OK were smaller than IDW.

On the other hand, some studies presented mixed results. Maroufi, Toranjeyan, and Zare (2009)
and Costa and Bofana (2017) evaluated the performance of OK and IDW methods in estimating pH
and soil electrical conductivity values. While the first concluded that IDW was the best interpolator,
the second ones stated that OK was more accurate and less biased than the other method. Therefore,
the present study aimed to, comparatively, analyze the efficiency of OK and IDW methods in
estimating SPR, SBD, and SM attribute levels using two distinct sampling grids.

Material and methods

The study was conducted on a farm located in the city of Januária-MG, Brazil (15° 28ʹ 55ʹ’ S and 44°
22ʹ 41ʹ’ W). The climate of the region is classified as tropical wet (Aw) with dry winter and rainy
summers, according to Köppen classification. The annual rainfall average is 900 mm with a mean
relative humidity of 60% and a mean annual temperature of 27ºC. The soil of the experimental area
is classified as Quartzarenic Neosol (Empresa Brasileira de Pesquisa Agropecuária (Embrapa) 2013).
Also, the area is characterized by the presence of flat relief.

Prior to the study, soil sampling was performed on a 5.7 ha area, previously cultivated by
sorghum (Sorghum bicolor (L.) Moench) and maize (Zea mays) in a crop rotation system. For the
data collection, a regular grid of 20 × 20 m with 145 points was implemented. Soil samples were then
collected at a 0–20 cm layer depth. Each sampling point was composed by four sub-samples,
collected within a 5 m radius from the georeferenced point.

After that, the samples were sent to the Soil Laboratory of the Federal Institute of Northern Minas
Gerais for SM and SBD analysis. The thermogravimetric method was used for determining the SM
content. Moreover, soil samples for SBD analysis were collected using a soil auger, for undisturbed
soil samples, and determined through the volumetric ring method (Empresa Brasileira de Pesquisa
Agropecuária (Embrapa) 1997). The SPR levels were determined in situ using a portable digital
penetrometer (PenetroLOG, Falker).

In order to compare the accuracy of OK and IDW methods in estimating SPR, SBD and SM
attributes, another grid was created from the initial grid (A). The new grid (B) was composed by
41 sampled points (40 x 40 m). The grid B was originated by eliminating one interspersed line
from grid A using the QGIS software, version 2.8 (QGIS Development Team 2018) as shown in
Figure 1.

Results of SPR, SBD, and SM analysis were submitted to descriptive statistical analysis and
then to spatial dependence analysis. Spatial dependence of all soil attributes using grids A and
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B was evaluated using the GS+ software, version 7 (Gamma Design Software 2004) by adjusting
variograms, where the stationarity of the intrinsic hypothesis was assumed, as defined in
Equation (1).

bγðhÞ ¼ 1
2NðhÞ

XNðhÞ

i¼1

Zðxi þ hÞ½ �2 (1)

wherebγ(h) = Semivariance as a function of the distance (h) between pairs of points; h = Distance
between pairs of points, m; N (h) = Number of pairs of observations Z (xi) and Z (xi + h) separated
by a distance h.

The model that best fit the theoretical variogram was chosen based on the highest coefficient of
determination (R2) and the smallest residual sum of squares (RSS). Then, parameters, such as nugget
effect (C0), sill (C0 + C1) and range (A), were determined in the analysis. Moreover, the spatial
dependence index (SDI) was determined according to Zimback (2001) using the relation C1/(C0+
C1) and then classified in the following intervals: low spatial dependence for SDI < 25%; moderate
for 25% < SDI < 75%; and strong for SDI > 75%.

In order to compare OK and IDW accuracies, the difference between the known and predicted
data by each method and grids (A and B) was accessed using three cross-validation parameters:
mean absolute error (MAE), mean squared error (MSE) and root mean squared error (RMSE). The
accuracy of spatial interpolation methods is higher when the values of those parameters are lower.
Moreover, the MAE provides an absolute measure of the size of the error, while MSE and RMSE give
a measure of prediction accuracy and a measure of the error size that is sensitive to outliers. The
parameters were calculated by Equations (2), (3), and (4) using the R software, version 3.4.4, and the
caret package (Kuhn 2008; R Core Team 2018).

Figure 1. Sampling grids evaluated: (A) 145 points and (B) 41 points.
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MAE ¼ 1
n

XZ xið Þ�Z�ðxiÞ½ �
(2)

MSE ¼ 1
n

Xn
i¼1

Z xið Þ�Z�ðxiÞ½ �2 (3)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

X
Z xið Þ�Z�ðxiÞ½ �2

r
(4)

here Z (xi) the observed (known) value at location xi; Z * (xi) is the predicted value at location xi;
and; N is the sample size.

Results and discussion

The summary statistics of soil penetration resistance (SPR), soil bulk density (SBD), and soil
moisture content (SM) data from sampling grids A and B are shown in Table 1. It can be observed
that all attributes presented low variation on mean, minimum, maximum, standard deviation (SD),
and CV values. It indicates that the sampling grid approach did not have a significant impact when
determining the soil attributes’ descriptive statistics. In addition, it was observed that sampling grid
A presented high range of attributes’ values, which was expected as this grid evaluated a greater
number of points compared to grid B.

SBD coefficient of variation was classified as low (0% < CV < 12%), while SPR and SM presented
CV values were classified as medium for both sampling grids (12% < CV < 62%), which is an
indicator of high spatial variability (Webster and Oliver 2007). Higher variation in SPR values might
be related to management practices previously adopted in the area. As the area occupational record
showed that it was previously used mainly for crop cultivation, under conventional planting system,
the major soil structural modification was more likely to occur in the 0–20 cm layer, due to the
mechanical action of plant roots and machinery/equipment traffic.

The coefficient of kurtosis (Ck) measures the peakedness of a distribution. High values, such as
those observed for SM (grid A), indicate that there are several observations around the mean
(distribution is peaked). On the other hand, negative values such as for SPR, SBD, and SM (grid
B) indicate a greater dispersion of the data in relation to the normal distribution. Along with the Ck,
the skewness (Sk) of a distribution is a measure of its asymmetry.

For both sampling grids, soil attributes’ Sk values were close to zero, indicating that values were
mostly well spread around its mean. Even though it was not evaluated, the existence of normal
distribution is not a requirement for using OK. However, it is convenient that the distribution does
not have very elongated tails, which could compromise the analyses (Isaaks and Srivastava 1989).

Table 1. Descriptive statistics of SPR (MPa), SBD (g/cm3) and SM (%) using sampling grids A and B in Januária, Northern Minas
Gerais, Brazil.

Statistical parameters

Sampling grid

20 x 20 m 40 x 40 m

SPR SBD SM SPR SBD SM

n 145 145 145 41 41 41
Mean 2.07 1.65 5.20 2.45 1.63 5.27
Minimum 0.90 1.41 3.23 1.24 1.41 3.36
Maximum 3.66 1.90 7.18 3.66 1.85 7.18
SD 0.61 0.11 0.98 0.64 0.11 1.03
CV (%) 29.68 6.72 19.12 28.77 6.72 19.79
Sk 0.30 0.18 0.09 −0.01 −0.19 −0.05
Ck −0.52 −1.08 0.83 −0.79 −1.07 −0.77

SD: standard deviation; CV: coefficient of variation; Ck: coefficient of kurtosis; Sk: skewness; SPR: soil penetration resistance; SBD:
soil bulk density; SM: soil moisture.
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Results of the geostatistical analysis are shown in Table 2. The Spherical, Gaussian, and
Exponential models were fitted to the soil attributes. All soil attributes presented SDI greater than
75% for both sampling grids, which proved that the studied attributes were strongly spatial
dependent, i.e. data distribution across the area was not random. Nugget values for all attributes
were generally low, indicating low sampling errors. Among the soil attributes, SM presented the
higher spatial dependence, as it was the attribute with higher values of SDI for both sampling grids.

The range is the semivariogram parameter that sets the limit distance (lag) to which sampling
points influence each other, i.e. the maximum spatial correlation among variables (Machado et al.
2007). It was observed that, except for SPR (grid A) and SBD (grid B), every range value was higher
than the smallest distance between points for both sampling strategies, which ensured that the
collected data could be used to estimate the values of any point within a circle with radius equals to
the range value. Moreover, the range value is of great use to be considered as standard distance when
setting sampling grid sizes (Corá et al. 2004).

In order to evaluate which interpolation method performed better, cross-validation analysis was
run on data using MAE, MSE, and RMSE parameters, as shown in Table 3. According to Li and
Heap (2011), OK usually outperforms IDW with better interpolation results, at least in theory.
However, in this study, OK was outperformed by IDW in most of the studied attributes. Regarding
grid A, except for SBD levels, OK was outperformed by IDW for SPR and SM, which resulted in
smaller errors. Moreover, all attributes presented errors close to 0 (especially SBD), which indicates
that all of them are relatively unbiased.

Interpolation methods proved to be a key factor when analyzing a greater number of points, as
observed in grid A. However, when sampling grid B was used, results of MAE, MSE and RMSE for
OK and IDW did not present significant differences between them. Although IDW outperformed

Table 2. Parameters of the theoretical models fitted to empirical semivariance values of SPR (MPa), SBD (g/cm3) and SM (%) using
sampling grids A and B in Januária, Northern Minas Gerais, Brazil.

Statistical parameters

Sampling grid

20 x 20 m 40 x 40 m

SPR SBD SM SPR SBD SM

Model Gaussian Spherical Exponential Spherical Gaussian Spherical
Range (m) 19.20 69.30 23.50 69.20 32.60 83.20
Sill (Co + C) 0.352 0.013 1.007 0.439 0.013 1.140
Nugget (Co) 0.004 0.003 0.079 0.016 0.001 0.031
SDI 92.15 76.95 98.86 97.28 88.41 96.35

SDI: spatial dependence index.

Table 3. Results of cross-validation parameters for SPR (MPa), SBD (g/cm3) and SM (%) using sampling grids A and B in Januária,
Northern Minas Gerais, Brazil.

Statistical parameters

Sampling grid

20 x 20 m 40 x 40 m

OK

SPR SBD SM SPR SBD SM

MAE 0.4572 0.0656 0.6457 0.5580 0.1009 0.6974
MSE 0.3059 0.0072 0.6115 0.4403 0.0146 0.7660
RMSE 0.5531 0.0849 0.7819 0.6636 0.1208 0.8752

IDW

SPR SBD SM SPR SBD SM

MAE 0.1059 0.0720 0.2225 0.5508 0.0947 0.7697
MSE 0.0587 0.0079 0.2312 0.4329 0.0126 0.9313
RMSE 0.2424 0.0890 0.4808 0.6580 0.1124 0.9650

OK: ordinary kriging; IDW: inverse distance weighting; MAE: mean absolute error; MSE: mean squared error; RMSE: root mean
squared error.
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OK for SPR and SM as observed in grid A. Similar findings were reported by Liu et al. (2016), who
found that OK performed similarly or was outperformed by IDW when a secondary attribute was
used for mapping potassium levels.

Silva et al. (2008) observed that OK was less biased than IDW. However, the resulting errors of
both methods were quite similar. Differently, Reza et al. (2010) reported smaller errors for OK over
IDW when studying soil properties in Dhalai district of Tripma, India. As the semivariogram
adjustments by OK is more sensitive and requires a larger number of sampling points, IDW
presented higher accuracy for spatial prediction of soil attributes.

Overall, errors were small for all cross-validation parameters, independently of sampling strategy
and interpolation method utilized. Nevertheless, sampling grid A, presented lower errors than B,
proving that the more sampling points, the lower the errors that are associated with both methods
will be.

The spatial interpolation maps generated by OK and IDW for grids A and B are shown in Figures
2 and 3, respectively. Regarding grid A (Figure 2), both methods were able to capture similar major
spatial patterns and trends of SPR, SBD, and SM, respectively. In addition, the results from OK were
smooth for all attributes, while the predictions of IDW displayed “bull’s eyes” patterns at high and
low attribute values. These results are in accordance with other studies where “bull’s eyes” patterns
and smoothening effects were reported for both methods after mapping pH, potassium, and soil
pollution levels (Shi et al. 2009; Liu et al. 2013; Qiao et al. 2018).

Results from grid B (Figure 3) show that the spatial distribution patterns of SPR, SBD, and SM
levels presented changes of great magnitude from those observed in Figure 2. Furthermore, the SPR
spatial distribution was the most influenced by the lack of sampling points. It can be observed that

Figure 2. Thematic maps of SPR, SBD, and SM obtained by OK (A1, A2, A3) and IDW (A4, A5 and A6) using sampling grid A in
Northern Minas Gerais, Brazil.
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using a less dense grid increased the smoothing effect between classes and reduced the spatial
variability of these attributes in the field. Thus, as the number of points decreased, the accuracy of
the OK and IDW maps for estimating unsampled locations decreased as well. Silva et al. (2014) and
Cherubin et al. (2015), observed the same behavior after mapping soil chemical attributes using
different sampling approaches.

Also, it is essential to point out that in areas where there was less data (e.g., number of neighbors),
especially in grid B, interpolation results moved toward the overall mean, which increased the
smoothing effect on the map. According to other authors, this is not only controlled by the number
of neighbors, but also by the methods and their parameters (e.g., semivariogram parameters in
kriging) (Costa and Bofana 2017; Falivene et al. 2010). Overall, the results originated from the
comparison between the two applied interpolation methods indicated that OK was less biased than
IDW only for SBD (grid A) and SM (grid B) mapping, whereas IDW outperformed OK for the other
attributes for both sampling grids.

Conclusion

The studied soil attributes presented strong spatial dependence (SDI > 75%) for both sampling grids,
indicating that estimates based on mean values would fail to represent the spatial distribution in the field.

All cross-validation parameters showed low errors, independently of the sampling grid and the
interpolation method used. Nevertheless, sampling grid A, presented smaller errors than B, proving
that the more sampling points, the lower the errors that are associated with both methods will be.

Overall, the results indicated that OK was less biased than IDW only for SBD (grid A) and SM
(grid B) maps, whereas IDW outperformed OK for the other attributes for both sampling grids.

Figure 3. Thematic maps of SPR, SBD, and SM obtained by OK (B1, B2, B3) and IDW (B4, B5, and B6) using sampling grid B in
Northern Minas Gerais, Brazil.
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