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ABSTRACT 

SIMULATION OF THE STEADY-STATE TRANSPORT OF RADON FROM SOIL 
INTO HOUSES WITH BASEMENTS UNDER CONSTANT NEGATIVE PRESSURE 

by 
Celso de Oliveira Loureiro 

Cochairs: James E. Martin, Linda M. Abriola 

Normal conditions in a house can produce negative pressures as high as 20 Pa  relative 

to the outside. This underpressure, which is a maximum at  the base of the house (the 

basement, for instance), can induce a flow of soil gas into the house, through cracks or any 

other openings in the understructure of the building. Radon (Rn-222), which is produced 

in the soil and mixed in the soil gas, can then be transported into the house through a 

complex combination of molecular diffusion and forced convection. In many of the cases 

where high levels of indoor radon concentrations have been observed in houses, the soil gas 

has been concluded to be the main source. 

A theoretical model was developed to simulate this phenomenon, under some specific as- 

sumptions. The model simulates: 1) the generation and decay of radon within the soil; 2) 

its transport throughout the soil due to diffusion and convection induced by the pressure 

disturbance applied a t  a crack in the basement; 3) its entrance into the house through the 

crack; and 4)  the resultant indoor radon concentration. The most important assumptions 

adopted in the model were: 1) a steady-state condition; 2) a house with a basement; 3) a 



geometrically well-defined crack at the wall-floor joint in the basement; and 4) a constant 

negative pressure applied at the crack in relation to the outside atmospheric pressure. 

Two three-dimensional finite-difference computer programs were written to solve the math- 

ematical equations of the model. The first program, cdled PRESSU, was used to calculate: 

1) the pressure distribution within the soil as a result of the applied disturbance pressure at 

the crack; and 2) the resultant velocity distribution of the soil gas throughout the soil ma- 

trix. The second program, ca!led MASTRA, was used t& 1) solve the radon mass-transport 

equation, and to calculate the concentration distribution of radon in the soil gas within the 

whole soil; and 2) to calculate the entry rate of radon through the crack into the basement, 

and the final indoor radon concentration. 

A parametric sensitivity analysis performed on the model, revealed several features of the 

mechanisms involved in the transport of radon into the house. Then, based on the the- 

oretica.1 simulations, the influences of all important parameters on these radon transport 

mechanisms were described in detail. Results of the tests showed that the model performs 

consistently with physical expectations. Among all the parameters analyzed, it was con- 

cluded that the most important are: 1) k - the soil permeability; 2) the pressure differential 

from inside to outside; and 3) the radium (Ra-226) concentration in the soil particles. For 

k 5 1.0 x 10-'"m'], the entry rate of radon into the house was dominated by diffusion, and 

consequently the resultant indoor radon concentration varied very slowly with soil perme- 

ability. For k 2 1.0 x 1 0 - ~ ~ [ r n ~ ] ,  the convective transport of radon from the soil into the 

house predominated over diffusion, and the indoor radon concentration was found to be 

strongly dependent (almost linearly) on the soil permeability. These effects were observed 

for an applied delta pressure of 5.O!Pa]. It is expected that a variation of the delta pressure 

would affect directly this turning point of k = 1.0 x 10- l2 [m2]. The indoor radon concentra- 

tion was found to be directly, though not linearly, related to the pressure differential. The 

concentration of Ra-226 in the soil particles had a direct linear effect on the indoor radon 

concentration. 
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CHAPTER I 

INTRODUCTION 

Objective and Scope. 

Normal operation of residential buildings generates small underpressure differences from 

inside to outside across the bottom of the building shell, inducing a flow of soil gas from 

the ground into the interior of the house, through cracks and other openings in the under- 

structure in contact with the soil. Radon being produced in the soil is then carried along 

with the flow of soil gas into the house, in a complex diffusive-convective transport process. 

The building acts as a trap for radon, and depending on the radon entry rate, as well as 

on the air exchange rate, the indoor radon can reach elevated concentrations, typically one 

order of magnitude larger, but ranging far higher than the outdoor concentration. 

Radon (Rn-222) is a radioactive noble gas, which decays in a sequence of short-lived decay 

products. When inhaled, these airborne short-lived radon progeny attach to the internal 

walls of the respiratory tract exposing the lung tissues to damaging alpha radiation. The 

importance of this problem comes from the fact that exposure to the radon-daughters has 

been associated with the induction of lung cancer in miners, mostly in the uranium mining 

industry. 

The objective of this thesis is to  formulate a mathematical model to simulate the problems 

of: 1) radon production and decay in the soil around the house; 3) radon transport through 

the soil; 3) radon entrance into the house through idealized openings in the understructure 



of the house; 4) and the final indoor radon concentration, as a function of an applied 

steady-state negative pressure in the basement. 

A three-dimensional numerical model based on a finite-difference approximation was de- 

veloped to solve the problem. The numerical model was then implemented in a computer 

program separated in two parts: in the first module, the distribution of the disturbance 

pressure and the flow of soil gas throughout the soil were calculated based on the negative 

pressure applied at the basement floor inside the house; in the second module, the distri- 

bution of radon concentration in the soil was calculated by solving the convective-diffusive 

radon transport equation. The radon entry rate into the house and the final indoor radon 

concentration were also evaluated' in the second module. 

In this chapter I introduce the concepts associated with the problem of indoor radon, em- 

phasizing its significance as a risk to the public health. My objective here is to characterize 

the proper dimension of the problem, and the level of knowledge about it, in order to justify 

the current interest in the subject, which resulted in the development of this thesis. I also 

describe here the evolution of the research in this area, and the statement of a hypothesis 

which underlies the execution of this work. 

Next, in Chapter 11, I review prior models which simulated the production and transport of 

radon in soil, with special interest on those models dealing with transport of radon from the 

soil into houses. Then I start describing the basics of my own model: the initial assumptions; 

the geometrical configuration; and the physical concept of the model. 

The mathematical equations expressing the model are presented in Chapter 111. Then, in 

Chapter IV, I describe the application of the finite-difference numerical method to solve the 

differential equations of the model. I also describe the computer programs written for the 

implementation of the numerical method. 

Chapter V contains the procedure adopted for the adjustment and calibration of the com- 

puter model. After being adjusted the programs are then tested for their sensitivity to 

the variation of each isolated parameter, through the full length of the expected range of 



variation. Based on theoretical simulations, the influences of all important parameters on 

the mechanisms of radon transport from soil into houses are described in detail. 

An overview of the work developed in this dissertation, with the conclusions and recom- 

mendations for further studies, as well as for improvements of the models, are presented in 

Chapter VI. 

Finally, a few observations at  this point will be appropriate. First, it should be pointed 

out that the element under concern in this work is the radioisotope radon-222. Therefore, 

in this dissertation, unless otherwise indicated, I consider that the name radon means its 

isotope radon-222. Another observation is related to the the units adopted to represent 

radioactivity, and radon concentration in air. In representing the radioactivity, I have 

decided to use the unit curie (Ci), or more specifically its 10-l2 fraction picocurie (pCi), 

instead of the SI unit becquerel (Bq). The relation between these units is such that 1 Bq 

= 27 pCi, where one becquerel represents one radioactive disintegration per second. Also, 

in representing radon concentration in air, I have adopted the unit [pCi/lj, instead of the 

SI unit [Bqjm3].  Note that 1 [Bq/rn3] = 0.027 [pCi/J. The reason for adopting these units 

is because of the still large number of reports and papers using them, facilitating then the 

intercomparison of data. 

Justification. 

Situation of the Indoor Radon Problem. 

In order to characterize the problem of indoor radon concentration in houses, it would be 

useful to start with a brief description of the origins of radon, its sources, its behavior in 

the environment, and the health impacts associated with it. 

Uranium-238 is the parent of a natural radioactive decay family, whose elements are ubiq- 

uitously distributed in trace amounts all over the earth's crust. The principal members of 

the U-238 series are shown in Figure (1.1). If it were not for the various chemical, physical, 

biological and temporal processes occurring in the environment, and affecting differently 



each element of the radioactive family, the whole series would always be in radioactive equi- 

librium, where the decay rate of any element is equal to the decay rate of its parent, and 

consequently equal to the decay rate of the first member, uranium-238. However, these sev- 

eral environmental processes affecting the radioactive family, act as selective mechanisms, 

separating the elements of the series in subgroups of elements sharing similar characteris- 

tics, and giving to these subgroups a distinct destiny and pathway through nature. Thus, 

although the secular radioactive equilibrium exists in a global sense, it is rarely observed 

in any relatively small sample of the earth's crust. The relative value of the decay rate of 

one particular element of the radioactive series, compared with the activity of its progeny, 

is a significant feature for the formation of subgroups within the family. For instance, a 

long-lived element with short-lived decay products, even when separated from the whole 

series by any environmental process, will persist together as a subgroup of the series in the 

environment. 

An important subgroup of the uranium-238 radioactive decay family is the one formed by 

the isotope radium-326, and its short-lived decay products: radon-222; polonium-218; lead- 

214; bismuth-214; and polonium-214. The head of this subgroup, the element radium-226, 

reacts with materials in nature forming solid compounds slightly soluble in water, which 

makes it available for being separated from earlier members of the series by the action 

of aquifers, facilitating its distribution through nature. Concentrations of uranium and 

radium show generally an average radioactive equilibrium. However, large deviations from 

equilibrium are also observed due to differential selection in nature caused by different 

geochemical properties of uranium and radium compounds jMy83j. Chemically, radium is 

one of the alkaline earth elements, similar to calcium and barium, and has a tendency to 

follow these elements in the environment [NC84a]. since it is easily transported throughout 

the environment, radium-226 ended up widely distributed, in trace amounts, in all materials 

of the surface of the earth such as rocks, sand, soil, and water . In the United States, 

Ra-226 concentrations in typical surface soils have been reported in the range 1.08 i .54 

[pCi/gj [Na85]. The average value of 1.0 [pCClg] has been proposed as a reference radium 

concentration in normal soil, a value which serves as a basis for comparison with other 



Figure 1.1 - Uranium (U-238) radioactive decay series. 

(Reference: Kocher, [Ko81]) 
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materials [NC84b]. In granite rocks, and in soils near phosphate and uranium mining areas, 

and uranium mill tailings piles, the Ra-226 concentration is usually much higher. 

Radium-226 has a relatively long half-life of 1600 years [Ko81], and because it is so widely 

spread on the surface of the earth, it constitutes a perennial source of its direct decay- 

product - the isotope radon-222 - the most important element of the whole radioactive 

series in relation to the associated environmental impacts. 

Radon-222 is an inert, noble gas, which undergoes radioactive decay by alpha-emission, with 

a half-life of 3.82 days. [Ko81]. It is the only gaseous element at ordinary temperature (radon 

liquefies at -62 OC) [Ev69j, of the entire uranium decay series. It presents, consequently, 

a unique ability to escape from its location of formation reaching the atmospheric air, and 

areas far from its origin. In typical soils, the radon diffusion length - the average distance 

traveled by the radon atoms diffusing in the soil, before decaying - is approximately of 

l [ml .  The decay of an atom of radium-226 within the molecular structure of its chemical 

compound in the rock, soil particle or any other medium such as the surface coatings on 

soil grains, generates an atom of radon-222 which, being inert, does not react with either 

the remnants of the former radium compound, or with any other substance present in the 

medium. Consequently, the radon atom is ready to move away from its place of birth, as 

soon as it is formed. However, not all radon atoms formed within the solid structure where 

the radium compound is located (being a soil particle, or a solid rock), will be able to escape 

to the exterior of the solid medium, reaching the air surrounding it. Only a fraction of the 

total number of radon atoms generated inside the solid is able to make it to the outside. This 

portion, called the radon emanat ing fraction, is inversely related to the physical dimension 

of the medium, being very small for large solid blocks of rock, and reaching the top of the 

range in soils with small size particles such as in clays. Measurements of emanating fraction 

of radon-222 in soils have been reported elsewhere with a range of 0.05-0.7 , and a typical 

value of 0.2. [Na85]. 

Except for a small amount of radon liberated from the water bodies on the Earth's crust, 

surface soil is essentially the only source of radon-222 to the atmospheric air. [NC84a], 



[Na85]. In the soil, the fraction of radon atoms that succeeds in escapiAg from the solid 

particles into the void space, gets mixed with the soil ,gas1 present in the pore space. For 

a typical case of radium-226 concentration of 1.0 [pCi/g]; soil particle density of 2,650 

[Kg/m3];  radon emanating fraction of 0.2; and soil porosity of 0.5; the resultant concentra- 

tion of radon in the soil gas turns out to be about2 530 [pCi/lj. So, after being mixed with 

the soil gas, the radon atoms are then transported throughout the matrix of the soil pore 

space due to basically two distinct mechanisms: molecular diffusion, caused by variations of 

the radon atoms concentrations in space; and pressure-induced flow, caused by the presence 

of any disturbance pressure field eventually added to the hydrostatic pressure distribution 

in the sdil. The value of the radon flux crossing the soil-air interface into the atmosphere 

depends on the strength of the source term in the soil, a s  well as on the strength of the 

transport mechanisms mentioned above. A representative value of 0.5 [pCi/m2s] for the 

emanation rate of radon in ordinary surface soils of the United States has been suggested 

elsewhere, [NC84b]. The soil gas escaping from the surface soil into the atmosphere, with 

a relatively high concentration of radon-222 (typically around 500 [pCi/l]), will then get 

mixed with the atmospheric air, and be diluted down to outdoor concentrations, typically 

around 0.1 [pCi/lj. [NC84b]. 

Radon-222 can also be introduced into the interior of buildings, where it becomes trapped 

and, depending on the strength of the source as well as on the air exchange rate of the house, 

it can reach elevated concentrations, much above the concentration outdoors. Sources of 

indoor radon are complex in nature, and depend not only on the concentration of radium 

(Ra-226) in materials inside and soils outside the building, but also on: 1) the physical 

characteristics of these materials, such as porosity, permeability, and moisture content; 2) 

the environmental factors such as wind, variations of atmospheric pressure, temperature, 

and precipitation; and, 3) on the structural and operational characteristics of the house. 

Figure (1.2) shows the various possible sources of indoor radon. The most important source, 

for the largest number of cases of high indoor radon (Rn-222) concentrations in single-family 

houses in the U.S., is the soil gas surrounding the building foundations. [Ne84a]. Radon in 

Soil g u  1s defined in Chapter  I1 
* This cdcul3tion was based on Eq.(3.14) - Chnprer 111. 



the soil gas can penetrate into a house due to diffusion through the foundation structures 

in contact with the soil (basement wails, and floor slab), or through any cracks and other 
. .C 

eventual openings in these structures. Also, radon in the soil gas can be brought into 

the house, through these same openings, due to a convective flow forced by small pressure 

differences created across the building shell as a result of the wind blowing against the 

external walls of the house (the wind effect), and the temperature differences between 

inside and outside the building (the stack effect), as well as the effect of any unbalanced 

mechanical ventilation (exhaust system) in the house. The possibility of a forced convective 

flow from the soil into the interior of the building, constitutes part of the hypothesis of this 

dissertation, as will be described later. 

Other possible but not very significant sources of indoor radon are the building materials 

containing elevated concentrations of radium (Ra-226). Radon-223 generated within these 

materials can diffuse through, and emanate from, the material into the interior of the build- 

ing. Some utilities in the house, such as water, can also constitute significant sources of 

indoor radon in some specific cases. Water supplies obtained from underground aquifers be- 

ing in contact, deep in the ground, with radium-containing materials that emanate directly 

into the water may contain elevated concentrations of dissolved radon-222, which can be 

liberated from the water into the interior of the house during heating and agitation, such 

as in water heaters, showers and washing machines. Surface water supplies are usually low 

in dissolved radon, and do not contribute significantly to indoor radon level. The relative 

magnitude of all these radon sources depends on specific circumstances, where either one 

of them could predominate. However it has been widely recognized that, for most of the 

cases of houses with high indoor radon concentration in the United States, soil is the major 

source [Ne84a], iBr831, [NC84a], [NC84b], [Ak84], [Ea84]. 

Concentrations of indoor radon vary over a large range, of approximately two to three orders 

of magnitude. While typical concentrations in US. residences vary around 1.0 [pCi/l], 

measurements of indoor radon in the range between 10 to several hundreds [pCi/l] have 

been often reported in the literature, and concentrations greater than 1000 [pCi/l] are not 



Figure 1.2 - Representation of the varions possible sources of indoor radon in homes. 

(Adapted from a figure presented by Nero, [Ne86]) 
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unknown. [Se87]. However, even with ail the studies and measurement data on indoor 

radon available today, there is still a lack of clear and unequivocal characterization of the 

distribution of indoor radon concentration in the United States. In a statistical analysis 

of the available measurement data on indoor radon, collected in 22 locations representing 

17 of the 48 contiguous states, Nero and a group of researchers at the Lawrence Berkeley 

Laboratory, developed a frequency distribution of radon (Rn-222) concentrations in single- 

family homes, which could be used as an approximation for the actual distribution [Ne84b]. 

Based on their conclusions, the distribution of annual-average concentration of indoor radon 

(Rn-222) in single-family homes in the U.S. could be characterized approximately by a 

geometrical mean of O .9 i  0.1 [pCi /q ,  and a geometric standard deviation of 2.8 k0.2. They 

also concluded that the average annual indoor Rn-222 concentration would be in the vicinity 

of 1.5 [pCi /4 ,  and that 2%, or approximately one million U.S. homes, would have annual- 

average indoor Rn-222 concentrations exceeding 8 [pCi / l ] .  [Ne84b]. -4 study conducted in 

Sweden indicated that about 2 to 3%, or more than 30,000 Swedish houses, have indoor 

radon concentrations exceeding 10 [pCi/I .  [Ak84]. 

Another isotope of radon, thoron (Rn-220), is also generated in the soil, on the average, at 

the same rate as radon (Rn-222). Thoron is a member of another natural radioactive decay 

series headed by the element thorium (Th-232). Because of its short half-life, about 55 

seconds, thoron has a short transport range in the soil, and consequently a lower entry rate 

into the houses as compared with the isotope radon (Rn-222), with a half-life of 3.82 days. 

Therefore, indoor concentrations of.thoron are generally much lower than concentrations of 

radon (Rn-222). The focus of this dissertation is exclusively on the more abundant isotope, 

radon (Rn-222). 

Up to this point I have described only the aspects related to radon (Rn-222), without 

mentioning its decay-products, which are, in fact, the major cause of concern as far as the 

radiological health impacts are concerned. So, in the sequence of the radioactivity decay 

series after radon-222, there are four radionuclides with half-lives shorter than 30 minutes, 

as shown in Fig.(l.l). These so called short-lived decay products of radon, or simply radon 



daughters, or radon progeny, are solid metals represented by the elements: polonium (Po- 

218); lead (Pb-214); bismuth (Bi-214); and polonium (Po-214), with half-lives of 3.05 [min] , 

26.8 [min], 19.9 [rnin], and 163.7 [p], respectively. [Ko81]. The two isotopes of polonium, 

Po-218 and Po-214, decay by alpha emission. Bismuth (Bi-214) and lead (Pb-214) decay 

by beta emission. 

Because of the technical difficulties in measuring each short-lived radon daughter separately, 

and having realized that the airborne radiation dose to the human lung is predominantly 

attributable to the radon-daughters rather than to radon, a new unit was defined for use 

in the early uranium mining industry, that could represent the concentration of the radon 

daughters as a group, instead of each radionuclide isolated. The concept of the Potential  

Alpha Energy Concentration,  (PAEC), measured in units of working level, (WL), was then 

defined and worded as: O n e  W L  is a n y  combination of the  short-lived decay products of 

radon-222, i n  one liter of air, that  will result i n  the ult imate emiss ion by t h e m  of 1.3 x lo5 

M e V  of alpha energy. [Ev69]. Adoption of the numerical factor 1.3 x lo5 MeV, comes from 

the fact that this number is equal to the total alpha-decay energy ultimately delivered from 

a mixture of the short-lived radon daughters, each one of them in radioactive equilibrium 

with 100 pCi of radon-222, after the decay of all the short-lived radon progeny, up to the 

last atom of polonium-214. In other words, it means that one liter of air with 100 pCi of 

radon-222, in complete radioactive equilibrium with its daughters, contains one WL. Yet, 

the definition of the working level is not restricted to equilibrium conditions, and applies 

to any combination of the radon progeny such that, say at 50% equilibrium, the same liter 

with 100 pCi of radon-222 contains 0.5 WL. An equilibrium factor could then be defined 

as  the ratio of the radon daughter concentration in WL, to the radon-222 concentration in 

[pCi/? ,  multiplied by the factor 100. 

Besides the PAEC, expressing the concentration of the radon-daughters, another unit had 

to be defined to represent the cumulative occupational radiation exposure of the uranium 

mining workers to the radon daughters. For this purpose, the Working Level M o n t h  (WLM) 

was then defined as the product of the concentration in WL times the exposure duration 



given in multiples of a 170-hour3 occupational month. [NC84a]. It is important to note that 

the WLM unit expresses occupational exposure. In order to adopt this concept to represent 

exposure to the population in general, it needs to be modified appropriately to account for 

the different exposure time of individuals of the public, as well as for different breathing rate 

of distinct age groups of the population. A detailed description of the methodology used 

in evaluating doses to the population exposed to radon progeny was presented elsewhere. 

[NA84b]. 

The radon daughters are formed as free atoms in the air, but have high chemical reac- 

tivity, and a strong tendency to attach to all surfaces including the surfaces of airborne 

particles and droplets in the outdoor and indoor atmosphere, room walls, and lung tissue. 

Part of the radon daughters formed in air is readily removed due to attachment to the 

surfaces of objects nearby (plate-out). Consequently, because of plate-out, the airborne 

radon daughters are almost never in radioktive equilibrium with their parent radon-222. 

The age of the mass of air is also an important factor affecting the equilibrium, because 

it determines the time available for the radon progeny to grow. The degree of disequilib- 

rium is usually larger indoors (more surfaces to plate-out, and because of the ventilation) 

than in outdoor environment. In residential buildings, the equilibrium factor is typically 0.5. 

Therefore, using this equilibrium factor, and the annual-average indoor radon concentration 

of 1.5 [pCi/l]  in single-family houses in the U.S., as mentioned above, the corresponding 

d u e  for an annual-average indoor radon-daughter concentration would be about 0.0075 

WL. An individual of the general population, living indoors 80% of the time, and with a 

breathing rate 75% of the breathing rate of a worker (typical assumptions in the litera- 

ture [Hu83]), would receive in one year a total accumulated exposure to radon-daughters of 

3G5 x 24 about 0.0075 x (T) x 0.75 x 0.8 x 0.23 WLM, resulting in a lifetime average exposure 

of 70 x 0.23 2: 16 WLM (assuming a 70-year average life for the population). 

When inhaled in the air, a fraction of the radon daughters, attached or unattached to air 

particles, will stick to the internal walls of the respiratory track, where they stay until they 

Here 1 note that the& are differences in the literature r e g d i n g  thia time factor in the WLM definition. Evans, 
jEvGD], defined t h ~ s  unit of time as an average month consisting of 40 x rJ I73 working hours. However, more 
recent papers have simplified the definition of a working month to 170 working hours. [Na84a], [ICBl]. 



are cleared by movement of mucus, or disintegrated by radioactive decay. Since the half-lives 

of the radon daughters are relatively short compared with the time for the clearance process 

of the internal mucus of the respiratory track to take place, most of the radon daughters 

end up decaying, and consequently exposing the internal walls and tissues of the lungs with 

their damaging alpha-radiation. In this respect, because radon does not get trapped in the 

respiratory track, and because the amount of time that radon stays in the air inside the 

lungs between inhalation and exhalation ( a few seconds) is very small relative to its half- 

life (3.82 days), its contribution to the internal dose to the respiratory track is very small 

when compared with the dose due to its progeny. Therefore, the radon daughters rather 

than radon itself, constitute the main source of radiation exposure to the population, and 

consequently represent the major health risk. In the context of the ultimate health impact, 

the radon gas can be considered as an environmental vector, or an intermediate vehicle, 

which transposes the risk from its potential stage represented by the radon sources in the 

soils, to its full realization represented by the exposure of radon-daughters to the respiratory 

track of the population in general. , 

The health risk associated with exposure to radon daughters is the induction of lung can- 

cer -or, more specifically, bronchial cancer - due to the absorption of alpha radiation in 

the basal-cell layer of the upper respiratory track. It should be emphasized however, that 

there is no clear indication of the existence of this risk at low exposure levels, such as those 

comparable to the average level in the environment. All evidence of the risk comes from 

studies of occupational groups exposed to extremely high concentrations. Epidemiological 

studies performed in Europe and North America, on workers in underground uranium min- 

ing (and other mining industries) exposed to elevated concentrations of radon daughters, 

have demonstrated a correlation between the incidence of excess bronchogenic cancer and 

the accumulated dose received by the exposed group. iNAS801, [ U N E ] ,  [NC84b]. 

In the early stages of operation of the uranium mining industries, the health risk associated 

with radon-daughters was not known, and no special consideration was given to the problem. 

Consequently, the working conditions in this respect were extremely adverse. For example, 



the &don-daughter concentrations in the U.S. underground uranium mines before 1960, 

ranged generally from 10 to 100 or more WL, with an average cumulative exposure of the 
..':" 

miners above 1,000 WLM, considerably in excess of the current occupational limit of 4 

WLM per year. [NAS80]. 

The elevated incidence of bronchogenic cancer among these miners constitutes the principal 

basis for establishing the numerical cause-effect relationship between radon daughter expo- 

sure and lung cancer. However, a few problems arise in estimating the dose-response factors 

for miners, and also in extending the results to the general population. The first difficulty is 

the uncertainty in the miner data, especially in relation to the assessment of doses received 

by the exposed groups. Another difficulty arises in adopting a model to extrapolate the 

results obtained in a relatively homogeneous group of miners, exposed to elevated concen- 

trations, to the general population, fundamentally heterogeneous in composition and habits, 

and exposed to environmental levels of radon daughters. Nevertheless, a few attempts have 

been made to estimate the risk of lung cancer in the population from exposure to radon 

daughters. The National Council on Radiation Protection and Measurements, estimated 

the lifetime lung cancer risk, averaged over age factors, under environmental conditions, 

[ #cases per WLM per year as 9.1 x pMn,WLMIYr] [NC84b]. Based on this figure, and on 

the estimated average environmental exposure of 0.23 [ W L M / y e a r ] ,  it is possible to esti- 

mate the lifetime environmental risk of lung cancer due to exposure to radon daughters 

as 0.0091 x 0.23 = 0.0021, or 0.2%. Assuming that the lung cancer cases induced in one 

generation are expressed uniformly over a 45 year period [NC84b], the above estimated risk 

would amount to about 10,000 lung cancer deaths per year in the U.S. population of 225 

million people. In a review of this subject, Nero considered possible variations on the av- 

erage background concentrations, and estimated a range from 1000 to 20,000 cases of lung 

cancer in the US. population caused by the exposure to radon daughters at environmental 

levels. [Ne83]. 

In order to establish a term of comparison, it should be mentioned that the lifetime lung 

cancer risk for non-smokers from natural causes, is approximately 1%. jNC84bj. Therefore, 



according to the estimation above, the risk of lung cancer attributable to the exposure to 

radon daughters at  the average environmental concentrations, is about one-fifth of the risk 

for non-smokers. Although it seems small when compared with the risk in the non-smoking 

population, the lifetime risk of 0.2% (10,000 deaths a year) is still very high compared 

with the estimated risks from other environmental pollutants. [Ne86]. Besides that, for 

the people living in those approximately one million hot houses mentioned above, where 

the annual-average indoor radon concentration is above 8 [pCi/q ,  (more than five times 

the annual-average concentration), such exposures entail risks well above the risk for the 

non-smoking population, or even similar to the risk of the smoking population. 

Formulation of the Hypothesis. 

This dissertation is inserted into the broad research efforts taking place in the Indoor En- 

vironment Program, of the Applied Science Division of the Lawrence Berkeley Laboratory, 

for the characterization of the problem of indoor radon. The specific subject of my thesis is 

part of a theoretical approach that, together with some experiments being conducted par- 

allel in the group, have the objective of explaining the mechanisms and the factors affecting 

the entrance of radon from the soil into the interior of residential buildings. In order to 

justify the formulation of the hypothesis underlying the execution of this work, it would be 

appropriate to describe some of the major findings of the group, and the evolution of the 

understanding of the problem. 

Two areas of research were initially established in the Indoor Environmental Program to 

investigate the problem of high indoor radon concentration. The first one was oriented 

to the study of materials used in buildings construction, and their ability to produce and 

liberate radon into the interior of the house. At that time it was believed that sources 

of indoor radon in most of the cases, were mainly the diffusion from soils and building 

materials, and were of a stable and constant nature. The other area of research resulted from 

the concern that the practices being adopted for sealing and tightening homes for energy 

conservation could increase the concentration of indoor pollutants (including radon) to 

levels much higher than the ones experienced so far. Then, a program for measuring indoor 



radon concentrations, ventilation rate, and some other environmental parameters in several 

locations in the U.S. was established with the objective of investigating the relationship 

between indoor radon concentrations and other parameters, especially the ventilation rate 

and the radon source strength. The main observations from this measurement program 

were that [Ne86\: 1) the indoor radon concentrations showed variations in a very large 

range; 2) the ventilation rate varied in a much smaller range than the indoor concentration; 

3) and only a weak statistical correlation existed between indoor radon concentration and 

ventilation. These facts were surprising because it was strongly suspected that ventilation 

would have a profound effect on the indoor radon concentration, which should then be 

clearly apparent in a regression analysis of these variables. Therefore, the conclusion from 

this part of the project was that although the ventilation rate, in fact, affects inversely 

the concentration of indoor radon when the amount of radon in the indoor air is fixed, or 

when the entry rate of radon into the building is constant, the large variability found in 

the indoor radon concentration could not be explained by the smaller range observed in 

the ventilation rate measurements. Consequently, the source term, or the radon entry rate 

into the buildings should be varying as well, and most significantly, the variation of the 

radon entry rate, rather than the ventilation rate, should be the most important element 

to explain variability in indoor radon concentration. 

On the other hand, results from the studies of the materials had shown that diffusion from 

the materials internally to the house could only explain the concentration at the low end 

of the observed distribution of indoor radon concentrations. In contrast, it was known 

that soil has the potential capacity of generating radon in quantity enough to produce 

high concentrations in homes. However, diffusion was supposed to be the fundamental 

mechanisms to promote escape of radon from soil into the house, but diffusion alone could 

not explain the high values in the indoor radon distribution. 

Therefore, considering that the indoor radon source should be variable, and its variability 

the main factor affecting the indoor radon concentration, then if the soil is the only radon 

source with potential to produce enough radon to explain concentrations at the high end 



of the distribution, but if the diffusion alone is not large enough to accomplish this, then 

another transport mechanism should be taking place in addition to diffusion in bringing 

radon from the soil into the house. Obtaining an answer for this problem became therefore 

the most important scientific task. 

Parallel to these research activities, investigations from other groups in the Applied Science 

Division of LBL, on the ventilation and infiltration in homes had concluded that houses are 

ventilated mainly due to uncontrolled infiltrations of air coming from outside, entering the 

lower part of the building, and leaving back to the outside at the upper part of the house, 

passing through openings in the building shell such as floor-wall joints, loose fitting pipes, 

cracks, floor drain, windows and roof. This uncontrolled infiltration is caused by small 

pressure differences between indoor and outdoor, generated by two factors: the effect of the 

wind blowing against the external walls of the the house, and the effect of the difference 

in temperature between indoor and outdoor atmosphere (called stack effect), creating an 

internal upward flux of air from the bottom to the top of the house. 

Based on these results and observations, the following hypothesis was then developed [Ne86]: 

- Radon might enter houses from soil, not only by molecular diffusion, but mainly by 

a complex mechanism of diffusive-convective flow of soil gas from the ground into the 

interior of the building through openings in the building shell; 

- The same forces responsible for the uncontrolled ventilation, causing the overall infiltra- 

tion of air through the building shell, should also bring some soil gas from the ground 

into the house; 

- These forces are small pressure differences of the order of a few pascals created between 

the indoor and outdoor environment by the wind speed and temperature differences. 

In order to test this hypothesis, several experiments with corresponding theoretical studies, 

were designed emphasizing some aspects of the problem. One of these experiments was 

undertaken to measure the disturbance of the pressure field in the ground around houses. 

These alterations in the pressure field were expected from the hypothesis of pressure-driven 

diffusive-convective flow of soil gas from the soil into the house. In the experiment, per- 



formed in a house in the Pacific Northwest, some probes were driven into the soil at distances 

up to 10 meters from homes. The objective was to see if the homes were drawing enough soil 

gas from the ground such that a depression on the pressure field in the soil could actually 

be detected. Also, tracer gases were injected at some probe points and monitored in others, 

with the objective of characterizing the pattern of the flow of the soil gas throughout the 

soil matrix toward the building. Approximate theoretical models were then proposed to 

calculate the pressure differences, air flow velocities and radon entry rates implied by this 

hypothesis. [Na86], [Ne86], !Mo86]. 

The long range objective of the work reported here was to increase the understanding of the 

complex mechanisms transporting radon from soil into homes, and to use this understanding 

to interpret experimental results and guide new experiments, leading eventually to improved 

methods for controlling indoor radon concentrations. 

Other investigators studying this problem have also reached similar conclusions and have 

proposed similar hypothesis. In a study of Swedish houses with elevated radon concentra- 

tions, Akerblom and others, [Ak84], concluded that a convective flow of soil air into the 

house, forced by pressure differences from inside to outside, was the main source of indoor 

radon. However, no further possible explanations were suggested for the development of 

these underpressure differences in the house. In a program designed to reduce the indoor 

radon concentrations in Canadian homes, Eaton and Scott, [Ea84], proposed that the ma- 

jor cause of elevated indoor radon is the entry rate of soil-generated radon due to pressure 

driven flow of soil gas into the house. They also proposed the same theories of the stack and 

wind effects to explain the mechanisms to induce underpressure and to force soil gas from 

the ground into the houses. Remedial actions adopted in these houses, by sealing the joints 

and openings in the foundation structures, and by reducing the pressure differences between 

the house and the soil, have shown good results in reducing the indoor radon concentration. 



CHAPTER I1 

BACKGROUND 

Review of the Existing Radon Transport Models. 

The element radon (Rn-222) was discovered in 1900 by Friedrich Ernst Dorn, a German 

chemist, and since then numerous papers have been published about it. A comprehensive 

review of this subject was performed by Tanner in 1964, and supplemented in 1979. [Ta64], 

[Ta79]. Also, a good reference on the radon isotopes, their chemical and physical properties, 

as well as their behavior in nature was published by Serdyukova and Kapitanov in the 

Russian literature, in 1969, and translated to English in 1978. [Se78]. 

The interest in radon and its behavior in rocks and soil, especially on the radon transport 

processes below the earth's surface, was initially on the application in the prospecting and 

mining of uranium. With increasing concern for the possible occupational and environ- 

mental impacts caused by radon daughters in the uranium industry, research on radon was 

then directed toward explaining and controlling the high concentration of radon in uranium 

mines, and emanation of radon from uranium mill tailings, as well as in understanding the 

general behavior of radon in the environment. 

Knowledge of the characteristics of porous media, and more specifically on the flow of sub- 

stances through porous media, is of fundamental importance to understanding the processes 

involved in the generation and transport of radon in rocks and soils. Dewiest, [De69], edited 

a compilation of topics on flow through porous media, more related t o  groundwater hydrol- 

ogy, and Scheidegger, (Sc741, wrote a classic monograph on the physics of flow through 



porous media. In a brief but careful review of this subject, Nazaroff and others [Na85] hkve 

described the important aspects of the general field of flow through porous media, relevant 

to the problem of generation and transport of radon in the soil. 

The general transport equation of a particular substance in a porous medium containing a 

source, such as radon in soil, can be derived from the application of the principle of conser- 

vation of mass in an elementary volume of the medium, equating the total variation of mass 

within the volume, to the net balance of mass, with all sinks and sources being considered. 

The combination of the general transport equation representing the conservation of mass, 

with Darcy's law' relating flow with the spatial variable, constitutes then the basic approach 

for the development of models expressing transport mechanisms in soil, such as the molec- 

ular diffusion and the pressure-induced convective flow, in relation to physical properties-of 

the soil as a porous medium. An adaptation of this basic approach for the formulation of a 

model for the transport of radon in the near surface of the soil containing a source, and in 

presence of a concentration gradient and a pressure gradient, was originally performed by 

Clements in his doctoral dissertation [C174a], which includes a substantive review of earlier 

works on the subject. The method and resultant equations of the model were also described 

by Clements and Wilkening in another paper [C174b]. In his work, Clements analyzed the 

effects of variation of atmospheric pressure on the flux of radon from ground surfaces. 

Other mathematical models expressing the transport of radon in rocks and soils, for different 

applications, were described in the literature. Rogers and Nielson [Ro81] proposed a one- 

dimensional model to describe radon attenuation in multilayer cover materials over uranium 

tailings, where the molecular diffusion was the only transport mechanism considered, The 

objective was to develop a procedure for calculation of the thickness of cover in order to 

reduce the radon attenuation to a minimum specified. Boundary conditions were discussed, 

and a one-dimensional analytical solution was developed and applied in several cases. A one- 

dimensional computer program was written for the solution of a general case of a multilayer 

cover. Later in another paper, Rogers and others [Ro-831 recognized the existence of a 

natural convective flow of soil gas in the geosphere, which could result in a long term 

D:vcy's Inw 1s presented In Chapter 111 and Appenduc B 



radon transport through the uranium mill tailings cover significantly higher than the values 

predicted with a model using simple diffusion theory. A new version of their model was 
.<- . .- 

then formulated, with the addition of the convective term in the general transport equation. 

An analytical solution was developed for a one-dimensional, steady-state condition, with 

constant velocity. In another study, Bates and Edwards [Ba80], [Ed80], [Ba81], applied a 

convective-diffusive radon transport equation to model the time dependent flux of radon 

from the walls into the interior of underground uranium mines as a function of the pressure 

applied at the surfaces of the walls. One of the objectives was to simulate the effectiveness of 

overpressure ventiiation on the radon concentration in the interior of mines. They also used 

their model to investigate the flux of radon through multilayer materials represented by 

the ore and the strengthened structure on the walls of the mine. The mathematical model 

was expressed in two versions: the first one in a two-dimensional cylindrically symmetric 

coordinate system [Ba80], [Ed80]; and the second in one-dimensional geometry [Ba81]. The 

model was solved with a finite difference numerical approximation in both versions. 

The models expressing the transport of radon into houses and the resultant indoor radon 

concentration are still at the early stage of development, and are not very numerous. One 

of the first attempts to develop a mathematical model for this problem was performed 

by Colle et al. [Co81], in their review on radon transport through and exhalation from 

building materials. It was common belief, at the time, that the dominant source of indoor 

radon in houses under ordinary conditions was from diffusion from building materials, as 

well as diffusion and convective flow from the ground through the materials composing 

the understructure of the building in contact with the soil. Consequently the transport 

of radon from the ground into the house, in a pressure-induced flow through openings in 

the understructure of the building was not addressed in detail in CollB's work. However, 

a diffusive-convective radon transport model was proposed, and one-dimensional analytical 

solutions presented for different configurations of sources, time-dependency and boundary 

conditions, in a simplified geometry. In his review on the sources of indoor radon in houses, 

Bruno [Br83] proposed a descriptive model for the transport of radon into houses, and sug- 

gested that the infiltration of soil gas directly into a house is generally the main source of 



indoor radon. He also suggested that the infiltration of soil gas into the houses is caused by 

the indoor heating (stack effect) and wind forces (wind effect). An important contribution 

to the subject of indoor radon modeling was given by Nazaroff and others [Na85], in their 

excellent review of the factors influencing soil as a source of indoor radon. The mathe- 

matical equations expressing the pressure-generating mechanisms (wind and stack effects), 

and the general radon transport from soil into houses were all proposed in a unified model. 

However, no solution of their model has yet been applied to a real or simulated situation - 

an undertaking that will be performed in this dissertation. 

Analytical sorutions of the equations for the transport of radon into houses through openings 

in the building shell are impossible, even for simple geometry. Consequently, the soiutions 

must be achieved numerically, and attempts in this regard have just begun. [Sco82], [DS83], 

[Ea84], [DS85], [Mo86]. Scott and Eaton have modeled time variation of the pressure 

distribution in the soil around a house with basement, as well as the soil gas convective 

flow rates and indoor radon concentrations produced by those pressures, as a function of 

the wind speed and direction. In their first approach, [DS83], a twedimensional model was 

developed, where the pressure distribution on the surface of the soil was linearized, and 

the resultant pressure distribution throughout the whole soil calculated in a steady-state 

finite-difference numerical approximation. Knowing the pressure distribution, the flow of 

soil gas through the soil and into the house through defined openings in the basement was 

then calculated using Darcy's law. A finite-element computer program was also developed 

for this configuration. [Ea84]. In another approach, [DS85], the pressure distribution on the 

surface of the soil was first simulated in a wind tunnel experiment with a reduced scale model 

of the house. Then, using the normalized results from the wind tunnel simuiation and the 

actual weather measurement data, the pressure distribution throughout the soil, the flow 

of soil gas. the entry rate of radon into the house, and the final indoor radon concentration 

were calculated with a steady-state three-dimensional finite-element computer model. The 

input data were considered constant in each hour, and the program was run for each hourly 

interval for the total length of the weather data used. According to them, a single run of the 

program involved over 60 hours of computing time. These models neglected the diffusive 



mechanism of radon transport in the soil, and considered only the convective component 

of the flux. Also, the use of the models was restricted to the simulation of houses with 

basements, and the pressure induced flow caused by the wind and temperature differences. 

Mowris [Mo86] developed simplified analytical techniques to predict the radon entry rates 

in houses with basements or crawl spaces. In his approach, the flow of soil gas from the 

soil into the house is considered dependent upon basically. two factors: the strength of the 

driving force, represented by the pressure difference from inside to outside of the house; 

and the resistance to soil gas flow offered by the soil and the openings in the building 

understructure. Mowris discussed the factors responsible for the underpressurization of 

buildings, and developed an analytical model expressing the strength of the driving force, 

or the total pressure difference in the house in relation to the temperature differences 

(stack effect pressure), the wind induced pressures, and to the pressures resulting from 

unbalanced mechanical ventilation. The resistance to soil gas flow through soil was modeled 

on a heat transfer analog, and the resistance to soil gas flow through basement gaps and 

cracks was modeled based on previous work by Jergling [Je81]. He also wrote a steady- 

state two-dimensional finite-difference computer program based on Darcy's Law and the 

continuity equation, to calculate the pressure distribution, and soil gas flow throughout the 

soil around the basement of a house. The numerical model was used for comparison with 

the predictions from the simplified analytical model. Mowris' model does not deal with 

the radon transport equation, and consequently does not answer the question of the radon 

concentration distribution in the soil. In his model, the radon entry rate into the house 

is calculated based on the assumption that the radon concentration is constant and equal 

to the level found deep in the soil. Therefore, since the radon concentration in the soil, at 

the soil-crack interface is always lower than the maximum concentration found deep in the 

ground, Mowris' model has the tendency of overestimating the radon entry rate, especially 

in extreme circumstances when: first, the underpressure difference in the basement is small, 

resulting in a small flow of soil gas, with a predominance of diffusion, and a consequent 

reduction of radon concentration at the crack interface; and second, the permeability of the 

soil is very high, resulting in an increase of flow of air from the atmosphere, diluting the 



radon concentration at the air-crack interface. 

As a starting point for the model developed in this dissertation, I assume a steady-state 

underpressure difference applied at the basement of a house. A gap formed by the concrete 

shrinkage is assumed to exist at the floor-wall joint in the basement.2 Outside the basement, 

the soil is assumed to be formed first by an aggregate region followed by the block of 

undisturbed soil. The location of the gap, the size of the aggregate regions, and all the 

geometrical dimensions of the problem are well established. The floor-wall gap, which in 

this dissertation is called the crack,' constitutes the communicating channel between the 

interior of the basement and the soil outside. The model is then developed in two parts: 

in the first part, the pressure distribution and the soil gas flow is calculated throughout 

the whole soil block; in the second part, the convective-diffusive radon transport equation 

is solved in the domain of the soil block, with the calculation of the radon concentration 

distribution throughout the soil, the radon entry rate through the crack into the basement, 

and the final indoor radon concentration. The model was written for a three-dimensional 

configuration, using a finite-difference numerical approximation. To my best knowledge, this 

model is unique in its features, and constitutes an appropriate tool for the investigation of 

the factors affecting the radon distribution in the soil around a house, and the mechanisms 

responsible for the transport of radon from the soil into the house. 

Initial Assumotions. 

The model developed in this dissertation is based on single-family houses with poured 

concrete basement floor and walls, and with a simplified geometrical design with a rectan- 

gular horizontal cross-section. A gap is assumed to exist at the junction between the floor 

and the walls all along the perimeter of the basement, resulted either by design or from 

the natural shrinkage of the concrete slab of the basement floor. This gap, (here called a 

crack), is assumed to be the only opening in the understructure of the house, and conse- 

'2 Aiso, th~a gap could be purposeful, i.e. some houses have a drainage crack system at the floor-wall interface for 
dralning away any water. 

A distinction between a gap and a crack has been made elsewhere, [Mo86], xi: 1)  c m k  is due to mechanical 
cracking on the building shell, leaving an irregular surface inside the crack; 2) gap is due to purposeful con- 
struct~on techniques, leaving 3 relatively smooth surface inside the gap. However, in this dissertation I deal 
exclus~vely with the floor-wall gap, which I have called the crack. 



quently the only communicating channel available for the soil gas to  flow from the soil into 

the house. The soil is considered to  be the only source of indoor radon. Outdoor airborne 

radon, and releases from indoor sources are not considered. Radon is assumed to penetrate 

into the house due to a diffusive-convective transport mechanism through the crack. Other 

mechanisms of radon entrance into the house, such as diffusion and flow of soil gas through 

the concrete of the basement (not through the crack) are not considered in the model. The 

house, although composed of the basement and the floor level, will be considered, for the 

matter of mixing of indoor radon, as a single chamber. In order to  allow the simulation 

of the effects of spatial variations of the parameters affecting the radon entrance into the 

house, the model was conceived in a three-dimensional configuration. Other assumptions 

and simplifications will be described. 

The first basic assumption in the model is the steady-state condition. I t  is clear though, that  

the problem of indoor radon is very dynamic in nature, being influenced by several envi- 

ronmental parameters which are variable with time, either on a random basis, or on a daily 

or annual cycle. Wind speed and direction change constantly in the atmospheric boundary 

layer following the variations of the turbulent eddies, in a random manner; temperature of 

the atmospheric air near the ground shows daily and seasonal cycles; atmospheric pressure, 

stability, and precipitation also show periodical and sporadic variations and occurrences; 

and human habits, and the operational features of a house are also intrinsically variable 

parameters. All these factors affect the sources and sinks of radon within the house, and 

consequently the steady-state assumption is not strictly valid. However, some modeling 

difficulties and, most important, the computing costs involved in a time-dependent com- 

puter program, especially in a large three-dimensional configuration, make a time-dependent 

model almost prohibitive. Therefore, for reasons of simplicity and reduction of computing 

costs, the steady-state condition is adopted in this model. Nevertheless, a few other points 

could also be mentioned to justify the steady-state assumption. The wind speed is, among 

all the pressure generating parameters, the one that shows the highest fluctuations and con- 

sequently is supposed to be most responsible for the short term variations of the radon entry 

rates into the houses. -4 study performed elsewhere and quoted by Nazaroff, [Na85], showed 



that the variation of the wind speed could be generally characterized by two frequences: a 

high frequency representing the variations of short duration in the wind speed, with period 

in the order of 1 minute; and a low frequency with period of about 4 days. According to 

this, a typical wind speed would show fast fluctuations in the order of minutes, around an 

average value that would be sustained for longer periods of about 4 days. The question is 

how fast an induced disturbance pressure would propagate through the soil, and how fast 

the flow of the soil gas would react to this new established pressure distribution in the soil. 

Nazaroff [Na85] has addressed this problem, and calculated that the characteristic times 

for propagation of pressure disturbances in soil depend on the physical properties of the 

soil such as porosity and permeability, and can vary from few minutes in cases of sandy 

silt and gravel soil, to a few days in cases of clayey soil. Yet the transport velocities of the 

soil gas for typical pressure distribution in the soil, range from few [cmlhour] for sandy and 

gravel soil, to less than 1 [pm/day] in clayey soil. [Ea84]. Therefore, the propagation of the 

disturbance pressure in the soil can be regarded as taking place almost instantly compared 

to the reaction of the soil gas flow, and conseqpently to the transport of radon in the soil. 

With all this information it is possible to conclude that since a typical average wind power 

is sustained for periods of about 4 days, the assumption of steady-state condition is not an 

unreasonable one in cases of high permeability soils, where the induced disturbance pres- 

sure is completely propagated in a much shorter period. On the other hand, for very low 

permeability soils, the convective component of the radon transport mechanism becomes 

irrelevant compared with the diffusive component, which is not affected by the variability 

of the pressure generating mechanisms. Therefore, for these cases also, since the radon 

entry rate is mainly caused by molecular diffusion and almost invariable with time, the 

assumption of steady-state, although not a strictly valid one, might be adopted as well. 

A constant negative pressure differential is assumed to exist at  the bottom of the house, 

between the basement floor and the atmospheric air at the ground level outside. The 

atmospheric pressure at the ground level is assumed constant and undisturbed. In other 

words, the absolute pressure at the floor of the basement is assumed to be constant and 

equal to the sum of the atmospheric pressure, plus the weight of the air column formed by 



the basement depth: minus the defined disturbance delta pressure. This defined disturbance 

delta pressure is assumed to be the net result of all pressure generating mechanisms acting 
.GO 

on the house, such as the wind forces, temperature differences and unbalanced mechanical 

ventilation. It is not the purpose in this dissertation to discuss these pressure generating 

mechanisms in houses. For a general description of this subject the reader is directed to the 

papers of Nazaroff [Nags], and Mowris [Mo86]. The objective here is to model the spatial 

variation of the radon transport through the soil, and the entry rate into the house, based on 

a defined steady delta pressure, assumed to be localized at the basement floor of the house. 

The idea of symmetry is implicit in this assumption, and one important consideration 

should be addressed. This is related to the fact that the disturbance pressure field is 

not symmetrically distributed in the soil around the house, mainly because of the wind 

effect. Other pressure generating mechanisms such as the stack effect, or any unbalanced 

mechanical ventilation, are likely to induce symmetrical disturbance pressure distributions 

in the ground, but the effect of the wind power on the external walls of the house adds an 

unsymmetrical component to the distribution. Therefore, it should be recognized that the 

predictions of the model assuming a symmetrical disturbance pressure distribution around 

the house constitute an approximation of the actual situation. 

The soil block around and underneath the understructure of the house is considered to be 

an unsaturated porous medium with no open channels and fractures, and to be formed of 

well defined regions of homogeneous and isotropic material. A region containing aggregate 

material soil is located immediately outside the house, between the basement walls and the 

undisturbed soil. Another aggregate region is defined underneath the basement floor slab. 

Within these regions, all soil parameters such as the porosity, permeability, soil particle 

density, concentration of radium (Ra-226), and radon emanation fraction are all considered 

constant and isotropic. However, these parameters are allowed to vary in different regions 

of the soil block. 

The moisture content of the soil is a parameter of fundamental importance, affecting the 

soil permeability, the radon diffusivity constant, and the radon emanation fraction, as well 



as the general transport of radon throughout the soil. However, because of the complexity 

involved in these interactions, the effect of the moisture content in the soil is not implicitly 
. .C 

considered in the model. The way adopted for handling this issue was to develop the 

model leaving the moisture consideration aside, and then to consider the moisture content 

of the soil in a parameterized approach, during the selection of the values for the input 

parameters of the model. In other words, the choice of the input values for the parameters 

of soil permeability, difFusivity constant, and radon emanation fraction should be made 

initially for the dry soil, and then converted to  the correspondent level of moisture content 

of the soil, according to some correction criteria. Nazaroff has discussed the effect of soil 

moisture on those parameters, and his results can be used as an approximated correction 

criteria. [Na85]. According to Nazaroff, in sandy soils the moisture content does not affect 

significantly the air permeability until the amount of moisture reaches the field capacity,4 

which for that particular kind of soil is in the range between 43 to 47% of water saturation. 

For levels of moisture beyond the field capacity, the air permeability of the soil decreases 

very rapidly down to zero at  100% moisture saturation. In clayey soils, on the other hand, 

the air permeability is more sensitive to the moisture content even at levels lower than the 

field capacity. [Na85]. The radon diffusion coefficient in soil is also strongly affected by the 

moisture content of the soil, in a way that could be described qualitatively by the following. 

For low levels of moisture content, the water is located mainly on the grain surfaces, and 

in small pores of the soil, leaving the large pores unobstructed. Since the radon diffusion in 

soils occurs mainly through the large pores, the diffusivity constant is only weakly affected 

by low levels of moisture content. However, as the moisture in the soil increases, the large 

pores become obstructed and the radon diffusion coefficient is then strongly reduced. In 

soils with 100% water saturation, the radon diffusion coefficient reaches values of up four 

orders of magnitude lower than the value at the dry soil. [Na85]. The effect of the soil 

moisture on the emanation fraction of radon from the soil particles into the soil pore space 

is rather peculiar: the presence of water around the soil particle enhances the amount of 

radon that, being produced in the soil particle, ends up in the soil pore space. The reason for 

- -  

The field capclaty IS defined as the m o u n t  of molsture remained In the sod after bang completely saturated, md 
then left to rest for two days. It u expressed aa a percentage of the sod pore space 



this phenomenon is, in simple terms, due to the fact that the water absorbs part of the recoil 

energy of the radon being emanated from the soil particle. This reduces the range of the 

radon atoms in the soil pore space, impeding many of them from reaching and penetrating 

back into the other neighbor soil particle, and consequently increasing the fraction of radon 

atoms that stay in the soil pore space. Thus, based on this qualitative information it is 

possible to reach some conclusions about the overall effect of moisture on the production 

and transport of radon in soils, which could be summarized as: 1) dry soils present the 

best condition for the radon transport, but the emanation fraction is greatly reduced, and 

consequently the total release of radon from the soil is not at its maximum; 2) in moist 

soils, the transport of radon is slightly reduced, but the radon emanation fraction is highly 

enhanced, a condition that allows the total production of radon to be at its maximum ; 

and 3) in wet soils, the emanation fraction is still high, but the diffusivity coefficient and 

the air permeability are greatly reduced, which also reduces t,he total release of radon from 

the soil. [Na85]. Therefore, when- selecting the values for the input parameters for the 

model, the moisture content of the soil should be considered, and then the values of the 

soil permeability, radon diffusion coefficient, and the radon emanation fraction adjusted 

accordingly, based on the considerations above. 

The soil gas is supposed to be formed by a mixture of airS and a very small molecular 

concentration of radon. No other gas or vapor is supposed to exist in the mixture. Con- 

sidering the relatively small concentration of radon expected in the mixture, the density 

of the soil gas is assumed to be unaltered by mixing with radon. Also, it is expected that 

under the range of the applied pressure disturbance, as well as the range of the soil depth 

in the proposed configuration of the problem, the density of the soil gas does not change 

significantly. Consequently, the soil gas is considered incompressible. Moisture migration 

through the soil is neglected, and the flow of soil gas throughout the soil block is assumed 

to occur in a single gaseous phase. 

- - 
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Geometrical Configuration of the Model. 

The geometrical configuration of the model is shown in Figure (2.1). The soil block 

under consideration is represented as a parallelepiped of dimensions 2Lz, 2Ly, and L,. The 

house is also considered a smaller parallelepiped of dimensions 24, 2lY, and (1, + h) partially 

embedded in the center and upper part of the soil block. The basement, represented by 

the part of the house embedded in the soil block has the dimensions 2lZ, 24, and 1,. A 

region of aggregate soil material is located around the basement with thickness represented 

by 4- qp. , 4- qgr. 1 and in the z, y, and z directions respectively. 

Figure 2.1 - Geometric configuration of the soil block with the house and basement. 

In fact, due to the symmetry in the zy plane, the model will be developed in a reduced geo- 

metrical configuration represented by one quarter of the figure above, with the dimensions 

L,, Ly, LZ and 4, 4 ,  lz for the soil block and the basement, respectively, as  represented in 

Figure (2.2). 

The entry route for soil gas into the basement is defined as the concrete shrinkage gap 

located at the wall-footer-floor joint along all the perimeter of the basement floor. Figure 

(2.3a) represents a vertical cross-section of the actual configuration at the gap, showing the 



Figure 2.2 - View of a quarter of the soil block where the numerical solution for the 

model is developed. 

aggregate region, the wall, the footer, the floor slab, and the soil gas pathway through the 

gap. A simplification of this configuration is assumed in the model, as represented in Figure 

(2.3b). In this simplified geometry, the footer is not considered, and the crack is assumed 

to be located between the floor slab and the wall. Figure (2.3~) represents a vertical view of 

the basement floor, showing the extension of the crack all along the perimeter of the room. 

Physical Description of the Model. 

The important features of the model, and the interdependence among its elements, are 



Figure 2.3 - Codgaration of the crack in the basement. 
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shown in the flow-chart of Figure (2.4). The sequence of events starts with an steady 

negative pressure disturbance, LIP,  added to the absolute pressure in the basement, at the 

defined crack. This disturbance underpressure propagates through the soil, establishing a 

steady disturbance pressure distribution in addition to the hydrostatic pressure distribution 

in the soil. The new established disturbance pressure distribution then induces a steady 

non-uniform flow of soil gas throughout the soil matrix. Meanwhile, since the radon source is 

assumed to be homogeneously and isotropicdy distributed in the soil matrix, radon is being 

produced at a constant rate at  any point in the soil pore space. The decay rate of radon 

at a point in the soil pore space is not constant, but depends on the radon concentration 



at that point. Then, from the total interaction of these elements of the model - which is 

expressed by the radon mass transport equation - the distribution of radon concentration, 

as well as the total flux of radon throughout the soil block are established. The radon entry 

rate into the house is then given by the distribution of the total flux of radon through the 

soil. Finally, based on the radon entry rate into house, its geometric dimension, and its 

ventilation rate, the resultant indoor radon concentration is then established. 



Figure 2.4 - General flow-chart representing the main elements of the radon transport 

model. 
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MATHEMATICAL FORMULATION OF THE MODEL 

The objective in this chapter is to formulate the mathematical expressions of the prob- 

lem, based on the proposed physical model as it was described in the last chapter. 

First I derive the equation for the disturbance pressure field in the soil, with the definition 

of the boundary conditions. Then, I define the production rate of radon in the soil pore 

space, as well as the diffusive and convective components of the radon flux throughout the 

soil block. The equation for the radon concentration field in the soil, with the proposed 

boundary conditions, are presented next. Finally I formulate the expressions for calculating 

the entry rate of radon into the house, and the resultant indoor radon concentration. 

In the last part of the chapter I present a dimensionless version of these expressions, in the 

same order that they were introduced, which will be used later in the development of the 

computer model. . . 

Disturbance Pressure Distribution in the Soil. 

The absolute pressure distribution in the soil is the result of the addition of two independent 

pressure components named the hydrostatic pressure distribution and another one here 

called the disturbance pressure distribution. 



The hydrostatic pressure distribution results from the mass of air in equilibrium (at rest) 

within the soil, and is expressed by the fact that  the vertical gradient of the hydrostatic 

pressure a t  any point is equal t o  the specific weight of the air a t  that  point. 

That means: 

Integrating the expression above, gives: 

.4t the surface of the soil, z = 0 and PH(0) = PA,  or the atmospheric pressure. Therefore, 

the constant of integration Cl can be written as: 

and Eq. (3.1) becomes: 

where, 

P H ~ )  = Absolute hydrostatic pressure a t  depth z in the soil, in [~/m']; 

PA = Atmospheric pressure (Absolute pressure at z = 0),  in [ ~ / r n ' ] ;  

P = Soil gas density, in [ K g / m 3 ] ;  

9 = Acceleration due to  gravity, in [m/s2 ] ;  

L = Depth in the soil, iri [m ] .  

The so called disturbance pressure distribution in the soil is caused by the addition of a 

pressure disturbance a t  any point in the soil, which then propagates throughout the whole 



soil block, and finally reaches a new equilibrium. This pressure distribution is independent 

of the hydrostatic pressure distribution and is added to this later one in such a way that 

the actual absolute pressure P ( z ,  y, z)  at any point ( z ,  y,  z)  in the soil is given by1: 

where, 

P(z ,  Y 1 z )  = Resultant absolute pressure at the point ( z ,  y ,  z) in the soil, in [ N / m 2 ] ;  

p(z1 Y,z)  = Disturbance pressure added to the point ( z ,  y, z )  in the soil, in [ < / m 2 ] .  

In particular, at the soil surface, z  = 0, and it is assumed that P(z ,  y, r )  = PA, so that from 

Eq.(3.4) : 

In other words, at the soil surface the pressure disturbance is zero. 

At the basement floor - (z = l,), see Fig.(2.3) - the pressure disturbance is by definition 

equal to the applied pressure differential , - A P ,  and from Eq.(3.4) the absolute pressure 

at the basement floor can be expressed as: PB = P(z ,  y ,  1,)  = PA + pg1, - A P ,  for 0 < z  5 1, 

and 0 5 y 5 l y ,  or: 

where, 

Note that i f  the pressure disturbance distribution in the soil is zero, the mass of rur is in equilibrium. 



PB = Absolute pressure at the basement floor, in [N/m2]; 

1, = Depth of the basement floor, in [m]; 

AP = Defined pressure distribution applied at the basement floor, in [JV/m2]. 

Now I proceed with the derivation of the disturbance pressure field equation2 

Since I have assumed that the soil gas is incompressible in the circumstances of this problem, 

the pressure field in the soil can be derived from the following two equations3: 1- Darcy's 

law for the velocity field; 2- Continuity equation. 

Darcy's Law. 

The general expression for the flow of gas through a porous medium is obtained from Darcy's 

Law.4 In its differential form, Darcy's law states that the velocity of the soil gas flow at any 

point (2, y ,  z )  within the soil matrix is proportional to the difference between the gradient 

of the absolute pressure in the soil and the specific weight of the soil gas. For isotropic soils, 

the differential form of Darcy's law can be expressed as (See Appendix B): 

where, 

k = Soil permeability at the point (2, y ,  z )  in the soil, in [m2]; 

P = Soil gas dynamic viscosity, in [Ns/m2]; 

- 
Q = Soil-gas seepage velocity vector, (equal to the volume of soil gas flowing per 

unit of time, per unit of geometric cross-sectional area), in [rnls]; 

In the mathematical formulation that follows, I start all the derivat~on cons~denng the absolute pressure dis- 
tnbut~on.  However, since I am interested in the effects caused by the applied disturbance pressure, and since 
the disturbance pressure distribution is independent of the hydrostatic pressure distribution, I will end up with 
mathematical expressions dealing only w ~ t h  the disturban~e pressure distribution. 
If I hnd assumed compress~bility of the soil gxi, then the model would have required n third equation (equation 
of 5tat.e) for the derivation of the pressure field in the soil. 
Justification of the applicability of Dnrcy'e law in this problem was presented elsewhere [Na85]. 



P = Absolute pressure at  the point (z, y, 2) in the soil, in [IV/rn2];  

i =  Gravity acceleration vector5, in [m/s2]; 

P = Soil gas density, in [ ~ ~ l m ~ ] ;  

- 
V = Gradient operator. 

Substituting the value of the absolute pressure from Eq.(3.4) into Darcy's expression, 

Eq.(3.7), yields: 

Therefore, the Darcy's differential expression for an isotropic soil can be expressed in terms 

of the disturbance pressure distribution only: 

Or in three-dimensional artesian coordinates, such as: 

where u, v ,  and w are the components of the seepage velocity vector y, in the z, y, and z 

directions respectively. 
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. Continuity Equation. 

The continuity equation expresses the mass balance for the soil gas in the soil matrix, and 

can be written as (See Appendix A): 

where, 

E = Soil porosity, [dimensionless]; 

d -  = Divergence operator. 

Since I have assumed a steady-state condition, the first term of Eq.(3.10) is zero, and the 

continuity equation then becomes: 

But since I have also assumed an incompressible flow regimen, the soil gas density is s u p  

posed to be invariable and the continuity equation can be finally expressed as: 

Now, substituting the velocity vector i given from Darcy's expression, Eq.(3.8), into the 

continuity equation, Eq.(3.11) yields: 

But since the soil gas dynamic viscosity is assumed to be constant, the equation above 

becomes: 



Or, in three-dimensional cartesian coordinates, it is expressed as: 

Equation above is a linear second order partial differential equation, and represents the 

disturbance pressure field distribution in the soil matrix 6. 

Boundary Conditions for the Disturbance Pressure Distribution. 

Figure (3.1) represents a quarter of the soil block. In this figure I define six distinct bound- 

aries whose conditions must be specified in order to solve Eq(3.12) for the disturbance 

pressure distribution in the soil. Table (3.1) summarizes the boundary conditions for each 

region of that configuration. A detailed description of the boundary condition imposed at 

the soil/crack interface is presented in Appendix E. 

Soil-Gas Velocity Field in the Soil. 

With the disturbance pressure field determined from Eq(3.12) and boundary conditions, 

the velocity field7 will be given directly from the differential form of Darcy's law, expressed 

in Eq.(3.8) and repeated here as: 

The permeability k is assumed to be constant within an specific region of the soil, but can take different values 
at other defined regions of the soil block. At the boundary between two regions of the soil with different 
permenbilities, the value of k should be cnlculated aa n weighted average. (See Appendix H ) .  
Here 1 note again that I have considered the z-axis oriented downward. Consequently, the positive direction of 
the velocity component w is also downward. 



Figure 3.1 - A quarter of the soil block, with the identification of the regions where the 

boundary conditions are imposed. (See Tables (3.1) and (3.2)). 
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Table 3.1 - Boundary conditions for the solution of Eq.(3.12), the disturbance pressure 

field in the soil block. 

Description 

Top of the soil block. 
(Soil-air interface). 

Interface between the 
defined crack and the 
soil underneath it. 

Interface of the soil 
and the basement walls 
and floor, except at 
the region # 2. 

Lateral sidesb of the 
soil block. 

~ o t t o m ~  of the soil 
block. 

Planes of symmetry of 
the soil block. 
nal vertical su JExter- aces 
that separate the 
quarter block from 
the whole soil block). 

Boundary Conditions 

The disturbance pressure is zero at the top 
of the soil block. (P(,~, = 0). 

No-flow boundary. 
Due to symmetry, there should be no flow 
crossing these surfaces. Therefore, the 
disturbance pressure gradient, perpendicu- 
lar to the planes of symmetry of the soil 
block is assumed to be equal to zero. 
f d ~  = 0). 

Due to continuity, the disturbance pressure 
and the velocity of the soil gas at the 
interface must be continuous 
functions of distance, such that: 
P(IN-) = P(IN+) ; 

d -  The boundary regions of the soil block are defined in Fig.(3.1). 

 IN- ) = W(IN+) ; 
as the points (IN-) and (IN+) get closer 
to the interface (IN). 
(See details in Appendix E). 

No-flow boundary. 
Permeability of concrete (walls and floor) 
is much lower than the soil permeability. 
Then, from Eq.(3.9), the soil gas velocity 
perpendicular to these structures is 
assumed to be zero. ( i j  = 0) 

No-flow boundary. 
At sufficiently large distances from the 
crack (the center of pressure disturbance) 
the pressure will be practically invariable 
with distance. Therefore the gradient of the 
disturbance pressure, perpendicular to the 
external boundaries of the soil block, is 
assumed to be equal to zero. (dp = 0). 

No-flow boundary. 
The same as in renion # 4. 

b-  To assume that at the boundaries 4 and 5 ,  the erpendicular gradient of the 
.disturbance pressure is zero, means that we consi er the dimensions of the soil 
block to be sufficiently large. 

S 

1 



Production Rate of Radon in the Soil Pore S ~ a c e .  

The production rate of radon into the soil pore space is proportional to: the concentration 

of Radium-226 in the soil; the soil density, and the radon emanating fraction. It is expressed 

as [Na85, pg.331: 

where, 

S = Production rate of radon into the pore space, in [ci/m3s]; 

Radon emanating fraction, [dimensionless]; 

Density of the soil grains, in [Kg/m3]; 

Radon decay constant, in is-']; 

Concentration of Ra-226 in the soil grains, in [CilKgj. 

Flux of Radon Throughout the Soil. 

The vectorial flux%f radon through the soil matrix is made up of two components: the 

convective and diffusive flux. 

The convective term represents the fact that atoms of radon are carried along with the bulk 

movement of soil gas through the soil matrix. It is expressed as: 

Here I observe that  the term Rndcjn Flux 1s used in this dissertation 3s a synonym of the most general term 
Rndon Flux Density. which is defined 3a the amount of radon crosslng n unit area, per unit of time. 



where, 

& = Convective component of the total radon bulk flux in the soil matrix, (equal 

to the amount of radon crossing a geometric area in the soil, per unit of 

time), in [Ci /m2s];  
- 
q = Soil gas seepage velocity vector, (equal to the volume flow of soil gas per 

unit of time, per unit of geometrical cross-sectional area), in [ m / s ] ;  

P = Density of the soil gas, in [ K g / m 3 ] ;  

8 = Ratio of radon activity to the mass of soil gas, (a relative mass concentration 

between radon and soil gas), in [Ci/Kg];  

C = Radon concentration in the soil gas, in [Ci /m3] .  

The diffusive term of the radon flux is expressed by Fick's law for molecular diffusion in 

a porous medium, and represents the movement of the radon atoms through the soil pore 

space due to differences in the radon concentration. For an isotropic9 soil the Fick's law is 

expressed as: 

Since I have assumed the flow incompressible, and since the molecular concentration of 

radon in the soil gas is considered very small, the soil gas density is supposed to be -constant 

and not affected by the presence of radon. So, the equation above can be written aslo: 

') If the soil were considered as an rrn~sotropic porous medium, Fick's law worlld have been expressed s+ilarly 
to Eq.(S.lG), except that the bulk diffus~on cwffic~ent of radon in soil would have been replaced by D  - the 
molecular diffusion tensor. 

Here I note some confusion in the literature regarding the concept and the use of the bulk and .eJective diffusion 
coefficients of radon in soil. This point was made clear first by Cullot [Cu7G]. Nazaroff (Na85] has also clarified 
r h ~ s  subject sigmficnntly. According to N3zaroff, the bulk and effectwe diffus~on coefficients of radon in soil we 
related by the soil porosity :rs: D  = c D e f f .  



where, 

Diffusive component of the total radon bulk flux in the soil matrix, (equal to 

the amount of radon crossing a geometric area in the soil, per unit of time), 

in [Cqm2s]; 

Bulk diffusion coefficient for the radon in the soil matrix, (equal to the ratio 

of the diffusive flux across a geometrical area to the gradient of the interstitial 

concentration of radon), in [m2/s]. 

An additional mass-transport phenomenon occurring simultaneously with molecular diffu- 

sion is the mechanical dispersion, in which the spreading of the tracer atoms (radon) occurs 

in the direction of the average flow of soil-gas, as well as in the transversal direction, caused 

by the variation of velocity (in magnitude and' direction) a t  microscopic level around the 

soil particles. At the macroscopic level, the resulting effect (or the total spreading) caused 

by these two phenomena - molecular diffusion and mechanical dispersion - is usually called 

the hydrodynamic dispersion in the soil. Consequently, the spreading of the tracer (radon) 

throughout the soil should be represented by an expression similar to Fick's law where D 

is replaced by the hydrodynamic dispersion coefficient of radon in soil, Dh, which is equal 

to the sum of the molecular diffusion coefficient, D, plus the mechanical dispersion coeffi- 

cient of radon in soil, Dm, [Be79]. The mechanical dispersion coefficient is directly related 

to the seepage velocity of soil gas in soil. Therefore, since the velocity of the gas in the 

configuration being studied, is expected to be very small all over the soil block, except at 

the regions very close to the soil-crack interface, the mechanical dispersion phenomenon is 

not expected to be significant, and consequently the hydrodynamic dispersion is reduced to 

the molecular diffusion. 

Thus, for the soil-house configuration treated in this dissertation, it has been assumed that 

the transport of radon in soil is caused only by molecular diffusion of radon, and convection 

flow of soil-gas containing radon. The total radon bulk flux through the soil matrix is then 

the vectorial sum of its convective and diffusive components, and can be expressed as: 



where, 

Total radon bulk flux in the soil matrix, (equal to the amount of radon 

crossing a geometric area in the soil, per unit of time), in [Ci/ rn2 s]. 

Radon Concentration Field in the Soil. 

Concentration of radon in the soil pore space is finally evaluated with the following general 

transport equation (See Appendix D): 

Substituting 5, from Eq.(3.18), into Eq(3.19) yields: 

The equation above is the general transport equation for radon through the soil matrix. 

Here I note that the velocity field ij has been already evaluated from Eq.(3.13), and it also 

satisfies the continuity equation: 

.4t steady-state and incompressible flow conditions, these equations become: 

- Mass Balance - 

- Continuity - 



which can also be written in their three-dimensional form as: 

Boundarv Conditions for the Solution of the Radon-Trans~ort Eauation. 

Considering the same configuration represented in Figure (3.1), the boundary conditions 

for the mass-balance equation are summarized in the following Table (3.2). Since the 

concentration of radon in the atmospheric air (typical values of O.l[pCi/d - [NC84a]) is 

much smaller than the radon concentration in soil gas (typical values larger than 500[pCi/ll 

- see Chapter I), and since it is expected that the flow of air at the soil-air interface, caused 

by the disturbance pressure, occurs in the direction from the air into the ground, then it is 

assumed that, as a boundary condition, the concentration of radon a t  the soil-air interface 

(region #1) is equal to zero. A detailed discussion on the boundary condition imposed on 

the soil/crack interface (region if 2) is presented in Appendix F. 



Table 3.2 - Boundary conditions for the solution of Eqs.(3.21) and (3.22), the radon 

concentration field in the soil block. 

Description 1 Boundary Conditions 

Top of the soil block. 
(Soil-air interface). 

 IN-) = C(IN+); 
J(IN-) =. J(IN+) ; 
as the points (IX-) and (IN+) get closer 
to the interface ( I N ) .  

The radon concentration is zero at  the top 
of the soil block. (C(,q = 0). 

Interface between the 
defined crack and the 
soil underneath it. 

I (See details in ~ ' p ~ e n d i x  F). 

Due to continuity, the radon concentration 
and the radon flux at the soil-crack 
interface must be both a continuous 
function of distance. such that: 

I be zero. (J = 0). 
I 

Interface of the soil 
and the basement walls 
and floor, except at 
the region # 2. 

No-flow boundary. 
At the walls and floor, the permeability 
and diffusivity constants are much smaller 
than those at the soil. Consequently, from 
Eqs. (3.8) and (3.18 , the flux J perpendi- 
cular to these boun d aries is assumed to 

Lateral sidesb of the 
soil block. 

No-flow boundary. 
At sufficiently large distances from the 
crack the disturbance pressure field and 
the radon concentration field are considered 
to be invariable in the direction perpendi- 
cular to these surfaces. Consequentiy, from 
Eqs. (3.8) and 3.18), the flux J, perpendi- 
cular to the su ace is assumed to be zero. 
( J  = 0) 

d 
~ o t t o m ~  of the soil 
block. 

g - The boundary regions of the soil block are defined in Fig.(3.1). 

No-flow boundary. 
The same as in region # 4. 

Planes of symmetry of 
the soil block. Exter- i nal vertical sur aces 
that separate the 
quarter block from 
the whole soil block). 

b-  To assume that at the boundaries 4 and 5, the perpendicular gradient of both the 
disturbance pressure and the radon concentration are zero, means that we consider 
the dimensions of the soil block to be sufficiently large. 

No-flow boundary. 
Due to symmetry, there should be no flow 
crossing these surfaces. Therefore, the 
flux of radon trough the planes of symme- 
try of the soil block is assumed to be zero. 
(J = 0). 



Entry Rate of Radon into the House. 

The total entry rate of radon into one quarter of the house will be given by the product 

of the flux of radon at the exit of the crack into the house, and the average cross-sectional 

area of the crack in a quarter of the house. It can be expressed as: 

where, 

RW = Total radon entry rate into a quarter of the house, in [ C i l s ] ;  

JEX = Flux of radon at the exit of the crack, into the house, in [ c i / m 2 . s j ;  

Acmck = Average cross-sectional area of the crack, in a quarter of the house, in [my]. 

Indoor Radon Concentration. 

The indoor radon concentration will be calculated based on a mass balance within the 

house, represented by the following differential equation:" 

where, 

Ctndoor = Indoor radon concentration, in [ C i / m 3 ] ;  

Cohor = Outdoor radon concentration, in [ ~ i / m ~ ] ;  

V = Total volume of the house, in [ m 3 ] ;  

X v  = Air exchange rate (ventilation rate), in [s-'1. 

l1 For the sake of completeness, the outdoor radon concentration is also considered in the formulation of E q . ( 3 . 2 G ) .  
However, slnce the contr ibut~on of outdoor radon to ~ n d o o r  radon conceiltrntion is usually small (less than lo%), 
the source of radon from outdoor air will be neglected in the appl~cation of the model. 



Then, at steady-state the indoor radon concentration will be expressed as: 

Dimensionless Transformation of the Mathematical Expressions. 

It will be useful. for later comput,ations to transform the mathematical equations of the 

model into a dimensionless form. In order to do this, all variables will be multiplied by the 

appropriate combinations of the following defined characteristic parameters ": 

AP = Characteristic disturbance pressure, in [ N / m 2 ] ;  

1 - - -  Characteristic time, in is] ;  
A~ n 

Lcit = Characteristic length, in [ m ] ;  

D c ~  = Characteristic bulk diffusion coefficient, in [m"s];  

u c h  = Characteristic velocity of the soil gas, in [ m / s ] ;  

k h  = Characteristic permeability, in [ m 2 ] ;  

SCh = Characteristic production rate of radon in the soil pore space, in [ C i / m 3 s ] .  

The objective here is to make each variable dimensionless. The equations will be transformed 

separately, with the dimensionless variables represented by a superscripted asterisk. 

Definition of the Dimensionless Variables. 

The following characteristic parameters and dimensionless variables are defined: 

l2 The value of the charactenstic parameters DCh, kc,,, and SCh will be selecred ns those of the most common 
material in the soil block. 



- Characteristic length - 

- Characteristic velocity - 

- Dimensionless seepage velocity vector - 

- Dimensionless disturbance pressure - 

- Dimensionless source term - 

- Dimensionless radon concentration in the soil pore space - 

- Dimensionless coordinates - 

- Dimensionless permeability - 



- Dimensionless diffusion coefficient of radon in soil - 

- Dimensionless gradient operator - 

Dimensionless Form of the Disturbance Pressure Field. 

Substituting these dimensionless variables into the disturbance field equation, as expressed 

by Eq.(3.12a), yields: 

a- 
Lch 

But, since A P ,  kch, and LCh are constant, the equation above becomes13: 

or, in three-dimensional cartesian coordinates, 

l3 T h e  dimensionless permeability k' is constant in a region of the soil block, hut  can change from one region t.o 
another. 



Dimensionless Form of the Soil Gas Velocity Field. 

.L" 

The velocity field equation given by Darcy's expression, Eq(3.8): 

can be written in terms of the dimensionless variables as it follows: 

But from Eqs. (3.28) and (3.29), Lch Uch = Dch. Then, the equation above becomes: 

which, in three-dimensional cartesian coordinates is expressed as: 

where & is the dimensionless group: 



Dimensionless Form of the Total Radon Flux in the Soil Matrix. 

The total flux given by Eq.(3.18), 7 = t C  - D ~ C ,  can be written in dimensionless form as 

follows: 

Dividing both terms of the equation above by SchLch yields: 

But using Eqs. (3.28) and (3.29) it can be shown that the coefficients Uch/(LchX~n), and 

D ~ ~ / ( L : ~ x ~ ~ ) ,  which appear in the equation above, are equal to one. Therefore, the dimen- 

sionless form of the total radon flux can be expressed as: 



Dimensionless Form of the Radon Transport Equation. 

The radon transport equation: 

G .  DGC - V - ( ? C ) + E ( S - X ~ , C )  =0, ( 1 
can be written in terms of the dimensionless variables as it follows: 

or. 

The dimensionless groups in the equation above are equal to one, according to the definitions 

of Eqs. (3.28) and (3 .29) .  Therefore, it can be simplified as: 

d -  . (D-9-C-) - V- - (ijmc.)+ .c (s-  - c.) = 0. 

The dimensionless version of the continuity equation can be expressed as: 



Dimensionless Form of the Radon Entry Rate into the House. 

The radon entry rate equation, Rtotnl = JEX - Atrack, Eq.(3.25), can be written in terms of 

the dimensionless variables as it follows. 

From Eq.(3.41a), the dimensionless form of the radon flux at the exit of the crack, into the 

house, JEX, can be expressed as: 

Also, the dimensionless form of the cross-sectional area Acrack can be expressed as: 

Therefore, substituting these values into the equation for R, yields: 

Now, dividing both terms by the characteristic radon entry rate, S,~L;~, the equation above 

becomes: 



CHAPTER IV 

DEVELOPMENT OF THE COMPUTER MODEL 

The objective of this chapter is to define a method of solution for the differential equa- 

tions of the proposed model, and also to describe the computer codes in which this method 

was implemented. 

The equations representing the disturbance pressure field the soil gas velocity field, and 

the radon concentration field in the soil block are all three-dimensional linear partial differ- 

ential equations which, together with the imposed boundary conditions can not be solved 

analytically. Consequently, a solution by a numerical method becomes mandatory. 

Solution for the disturbance pressure, and the radon concentration fields, both second order, 

linear, partial differential equations, will be achieved using the Patankar-Spalding numerical 

technique [Pa80], called Discretization Method, which is basically a control-volume approach 

to the finite difference method. In this technique, the domain of the variable under control is 

first fully divided in non-overlapping spaces called control-volumes. A node, or a grid point, 

is defined at the center of each control-volume. All together, these nodes form a grid filling 

the whole calculation domain, with a control-volume surrounding each grid point. The idea 

here is that the value of the dependent variable, over the whole space of the control-volume 

can be represented by the value at the grid point located in its center. 

The differential equation is then integrated over each control-volume individually. Piecewise 

interpolation functions expressing the spatial profile of the dependent variable between grid 

points, are defined in order to evaluate the integral properly. The result of this is a set 



of algebraic equations (discretization equations), one for each grid point, expressing the 

value of the dependent variable, as a function of the values at a group of neighbor points. 

Consequently, for a grid mesh composed of N grid nodes, the continuous domain of the 

differential equation is transformed in a set of N algebraic discretization equations which 

can now be solved by one of the appropriate methods of linear algebra. 

The main advantage of the control-volume approach in deriving the discretization equations 

is that it guarantees the conservation of the physical quantities in question, such as the mass 

in the case of the radon transport equation, over any group of control-volumes and, conse- 

quently, over the whole calculation domain. Such feature is independent of the grid mesh 

size, and even a coarse grid mesh solution would present an exact integral balance.[Pa80, 

Solution of the other differential equation of the model, the soil gas velocity field - a 

first order, linear, partial differential equation - will be obtained after the solution for 

the pressure field by a simple numerical derivative of the pressure distribution throughout 

the soil block. 

Numerical Solution (Discretization Formulation). 

Before starting the derivation of the algebraic equations representing the differential equa- 

tions of the model, it is necessary to define the coordinate system as well as the grid notation 

with which the model is developed. 

System of Coordinates. 

Because of the symmetry in this problem, only one quarter of the soil block will be considered 

for the calculations. The origin of coordinates is located at the center of the top soil surface, 



Figure 4.1 - Location of the coordinate system m the soil block. 
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which corresponds to the center of the basement ceilings, as shown in Figure (4.1). The 

quarter of the soil block, with the system of coordinates, where the numerical model will 

be developed, is represented in Figure (4.2). The vertical axis of the coordinate system is 

assumed to have its positive direction oriented downward. 

Grid Notation. 

The objective here is to describe the computational grid in its general terms. Further 

specifications about the grid mesh will be presented later with the description of the control- 

volume locations and grid generation. 

The soil block is assumed to be cut by several parallel planes in all three directions. The 

intersections of these planes form the control-volumes which constitute the basic units of the 

discretization method to applied here. The sizes of these control-volumes are not constant, 



Figure 4.2 - A quarter of the soil block, with the dehed  coordinate system for the 

three-dimensional model. 

but vary depending on the level of details, or the degree of variation we expect to find in 

each specific region of the soil. 

The common face between any two adjacent control-volumes is denominated the interface. 

.4 node is assumed to be located at the center of each control-volume, such that a line 

connecting any two adjacent nodes will intersect the interface at  its geometrical center.' 

Figure (4.3) shows a generic node P, with its neighbors at ail three directions, represented 

with the following notation: 

E - East node (x-direction) ; 

W - West node (x-direction) ; 

N - North node (y-direction); 

S - South node (y-direction); 

T - Top node (2-direction) ; 

B - Bottom node (2-direction) . 

In order to represent the control-volumes and the grid mesh the following general notation 

I t  should be emphvmd that each node is located 3t the center of its respective control-volume, but the interfaces 
of the control-voiumea are not neceasariiy located halfway between opposite nodes. 



Figure 4.3 - Grid cluster showing a generic node P, with all its neighbors E, W, N, S, 

B, and T. 

is also adopted: 

Upper case letters : Represent the nodes in the grid; 

Lower case letters : Represent the control volume interfaces; 

Az, Ay, Az : Represent the control volume dimensions; 

62, 6y, 6.2 : Represent the distances between nodes. 

Note that since the nodes are located at the geometrical center of its respective control- 

volume, then the dimensionless distance between any two adjacent nodes is equal to the 

arithmetic mean of the dimensionless sizes of these control-volumes in that specific direction. 

and can be expressed as: 

Az'p + 42-E 
(62); = 

2 I 

Az' w + Az'p 
(62); = 

3 I 



Discretization Equation for the Disturbance Pressure Field. 

The dimensionless version of the equation for the disturbance pressure field was already 

derived,(Eq.(3.39)), and is repeated here as: 

According to  the discretization method, this differential equation will be integrated over the 

whole control-volume, and then transformed to  a system of algebraic equations relating the 

value of p i ,  at the node P, to the values a t  the neighboring nodes p i ,  p>, pk,  p i ,  pg, and 

p;. These algebraic equations, here called discretization equations, will take the following 

form: 

where ap, aE, aw,  aN, as,  ag, and aT are the discretization coefficients, which will be 

defined later in Eq.(4.9). 

Figure (4.4) shows a generic node P, its neighbors, and the control-volume. Here, for 

simplicity of representation and with no lack of generalization, only two dimensions are 



Figure 4.4 - A generic control-volume (here represented with only two dimensions) 

where the discretization method is applied. 

represented. 

Thus, integrating Eq.(4.2b) over the whole control-volume yields: 

L b  [ ( k )  - ( k z ) ?  d z d r - +  

L n  [ ( k )  - ( k )  d z - d y -  = 0 

.4t this point, in order to continue with the derivation above, it is necessary to find an 



approximation for the terms k"?'px evaluated at the interfaces e, w ,  n, s, b, and t of the 

control-volume. For doing so, I assume that the terms km'?*p', evaluated at each interface, 

prevail over the entire interface of the control-volume. I also assume that the function p' is 

piecewise continuous and linear between nodes, and can be approximated as: 

In the expressions above, the permeability k' must be evaluated at the interface of the 

control volume. It was assumed that the soil permeability is constant and isotropic within 

each defined region of the soil block. Furthermore, because of the way in which the control- 

volumes are located within the soil block, matching the boundaries of those defined regions, 

the soil permeability is also assumed to be constant within any control-volume. However, a 

discontinuity in the value of permeability may exist in the interfaces between two distinct 

regions of the soil block. In order to deal with this problem, it is proposed that the per- 

meability at the control-volume interfaces can be approximated by the weighted average of 

the values of k' at the opposite nodes (see Appendix H), such as2: 

' This approximation is shown to conserve mass in Appendix H.  



Now, with these assumptions, the substitution of Eq.(4.5) into Eq.(4.4) yields: 

which can then be written in the following algebraic discretization equation: 

where. 



A y* Az* 

A y' Az' 

Az' Ax' 

A.zVAz- 
as = ki [ (by); ] ' 

Az'A y' 

hz' A y' 

Soil-Gas Velocity Field. 

Solution of the algebraic system of the discretization equations for the disturbance pressure 

field will result in the value of the disturbance pressure pv for each node of the soil block. 

Then, the next step is to calculate the soil gas velocity field for the same set of nodes, which 

will be done using Darcy's equation. Here however I make an important observation. The 

components of the velocity vector will be calculated in a displaced, or staggered, grid. (See 

[Pa80]). In this staggered grid, the velocity components are calculated not at  the nodes but 

at points that lie on the faces of the control-volume. For instance, the x-direction velocity 

components, ui and u,, are calculated at the interfaces e and w ,  respectively. This approach 

will be useful later on for the calculation of the diffusion-convection equation (the radon 

concentration field). 



Assuming a piecewise linear variation of the disturbance pressure between the nodes, the 

dimensionless velocity components at the interfaces are obtained from Eq.(3.40), and ex- 
. .- 

pressed as: 

Discretization Equation for the Radon Concentration Field. 

The concentration field of radon in the soil is given by the mass balance equation which, in 

its three-dimensional dimensionless form, Eq.(3.42), can be separated respectively into the 

diffusive, convective and source-sink terms, and expressed as: 

ac- a  a c- a a c- [& (.- a,-) + a,- (.- F )  + (.- - 

a a a - ( U ~ C )  + - ( v X C - )  + (W-C-) ] f  [a,  ay- d z  

Also, the soil-gas velocity must satisfy the continuity equation3: 

Note that the continuity equation was already satisfied with the solution of the pressure field. However, for the 
convenience of the method, it IS used again here for the derivation of the discretization equation of the radon 
mass transport equation in the soil. 



These two coupled equations will be transformed in a system of algebraic discretization 

equations, similar to the one found for the pressure field, Eq.(4.8), relating the value of C i ,  

at the node P, to the values at  the neighboring nodes C i ,  Cw, Ci, Ci ,  C i ,  and C i ,  such 

as4 : 

Rewriting the mass-balance equation, Eq.(4.11), with the dimensionless convective and 

diffusive fluxes grouped together yields: 

NOW, integrating Eq.(4.14) over the entire control volume (see Fig.(4.4)), yields: 

A general description, with an analysis, of the discretieation equations of this form was presented originally 
by Patmkar, [Pa801. In this chapter I present only the basic steps of their derivation, to support a practical 
application. A detruled derivation, applicable to this specific problem, is shown in Appendix I. 
Note that u - ,  n' ,  and r' denote the dirnens~onless velocrty components of the seepage velocity vector i' in the 
I, y, nnd w direct~ons respectively. 



At this point it is necessary to make some assumptions regarding the profile of the flux J* 

and the source-plus-sink term E(S*  - Ci) over the control-volume. Therefore I assume that: 

( 1 )  the value of the flux J' at any interface is constant (prevails) over the entire face; (2) the 

value of the source-and-sink term at the node P prevails over the entire control-volume. 

With these assumptions, Eq(4.16) becomes: 

(J,' - JJ + (J,' - J;) t (J,' - J;) = c(S' - C * ) p ( A z ' A y ' A z ' ) p ,  (4.17) 

where, 

Similarly, integrating the continuity'equation, Eq.(4.12), over the entire control volume, 

yields: 



(Fee - F;) + (F,* - FJ + (Fi - F,') = 0. (4.19) 

where F,: is the dimensionless flow rate defined at the generic interface i of the control- 

volume, and expressed as: 

Now, multiplying Eq.(4.19) by C i ,  (the value or the  radon concentration at the node P), 

and subtracting it from Eq.(4.17), yields: 

With the assumption of uniformity over the control-volume face, it is possible to demon- 

strate that (see Appendix I): 



J l  - F: C; = ag (C; - C;), 

J; - F;Ctf = aT (C; - Ctf) . 

Then, substituting Eq.(4.22) into Eq.(4.21) yields: 

Finally, the discretization equation for the mass balance equation can then be written in 

the standard format as: 

where the coefficients a,g, aW, a ~ ,  as, ag, aT, and the constant term 6 are expressed as6: 



and where the dimensionless flow rate F * ,  and conductance G , as defined at the interfacesf 

e, w ,  n, s? b, t are expressed respectively as: 

and where the Peclet numbers P, as defined at the interfaces are expressed as: 



and where A (IP,() is the selected interpolation function, (dependent on the Peclet number 

P,), used for the evaluation of the flux J; at a generic interface i. The form of the interpola- 

tion function to be used in the Eq.(4.25) depends on the scheme selected to interpolate the 

flux at the control volume interfaces. A detailed description of several different discretiza- 

tion schemes, with an analysis of their applicability in this problem is presented in Appendix 

I. Among the schemes analyzed, the so called power law scheme has been recommended the 

best formulation [Pa80], in which the interpolation function is expressed as: 

Location of the Control-Volumes (Grid Generation). 

The practice adopted here for locating the grid nodes is first to draw the control-volume 

boundaries, and then to place a grid point (the node) at the geometric denter of each 

control-volume. The attractiveness of this scheme is that it facilitates the handling of the 

discontinuities in the boundaries of the calculation domain. In this sense, the control-volume 

faces are located in such a way that they fill completely the continuous boundary, with no 

discontinuity occurring within a control-volume face. The locations of the grid nodes follow 

as a consequence. 

The physical discontinuities in the soil block are determined by the presence of the basement 

within the soil, the crack in the basement floor, as well as by the soil aggregate regions 

surrounding the basement, and are dependent on the direction being considered. In the z 



Figure 4.5 - Soil block with the number of control volumes within each segment in all 

three dimensions. 

I 

or y directions, five continuous regions may be identified: (1) from the center of the block, 

to the beginning of the crack; (2) the crack itself; (3) the vertical wall of the basement; (4) 

the aggregate region in the soil; (5) from the aggregate region, to the end of the block . In 

the vertical direction, three regions are defined within the soil block: ( I )  the upper region, 

above the basement; (2) the aggregate region under the region; (3) and the lower region, 

from the aggregate to the end of the soil block. 

Figure (4.5) shows the soil block with the specified regions, and the number of control- 

volume faces at  each defined continuous segment of the calcuiation domain in all directions. 

Thus, the number of C.V. faces in the x-direction are: 

Nrl  = # of faces under the basement floor; 

Nr2 = # of faces under the crack ; 

Nr3 = # of faces under the wall ; 



N,AG = # of faces within the soil aggregate region; 

Nz4 = # of faces in the soil, out of the aggregate region . 

Similarly to the x-direction, the number of C.V. faces in the y-direction are: Ny 1, Ny2, N,3, 

N,AG, and N,4. 

Finally, in the z-direction, the number of C.V faces are: 

N z ~  # of faces in the upper region of the soil block; 

Nz2 # of faces in the lbwer region of the soil block; 

N z A  G # of faces within the soil aggregate region. 

The location of each control-volume is identified by its position order i, j, k in the z, y, and 

z directions respectively. Specification of the control-volume dimensions is then made using 

three vectors: C V,( t ] ,  C V,(j), and C V,(k). 

The sizes of the control-volumes within each defined segment of the soil block are not equally 

distributed. Because of the difference in scale among the defined regions of the block, and 

also because the variables being studied (pressure, radon concentration) are expected to 

have larger variations at  some specific locations (closer to the crack, for instance), the 

sizes of the control-volume faces under each segment are not equally distributed. The idea 

here is to increase the number of nodes, reducing the grid mesh, in the region close to the 

crack under the basement where large variations in the dependent variable are expected to 

occur. Furthermore, although neither the disturbance pressure nor the radon concentration 

in the soil gas is expected to vary significantly near the external boundaries of the soil 

block, the grid mesh will also be reduced there in order to handle the boundary conditions. 

The concern here is that the conditions imposed on the external boundaries of the soil 

block are of the second type, where the value of the derivative of the dependent variable, 

rather than its specific value, is given at the boundaries. Therefore, in order to improve 

the approximation of the numerical derivative, the grid mesh should also be reduced at the 

external boundaries. 

In order to achieve these purposes, the grid mesh will be made finer at the extremities of 



each segment, increasing progressively toward to the center of the segment, following the 

equation of a circle. The algorithm used to calculate the size of all control-volumes, based 

on the equation of a circle, is described in Appendix G. 

It should be noted here that the actual distribution of the mesh grid can be changed at 

each run of the program. In Chapter V, during the adjustment of the computer program, 

attempts will be made in order to verify how sensitive the computer programs are to vari- 

ations of the grid mesh, and also to determine the best grid configuration, considering the 

performance of the programs and the computer costs involved. An example of a possible 

grid configuration7 is presented in Figures (4.6) and (4.7) which show the distribution of 

the control-volumes in a vertical cross-section of the soil block, both in a whole frame, and 

also in an expanded area underneath the crack. Figure (4.8) shows the same grid, but on a 

horizontal cross-section of the soil block. 

General Description of the Entire Computer Program. 

The computer model impiementing the numerical method described above was designed as 

an interactive code composed of two coupled main programs named PRESSU and MAS- 

TR-4, which are run separately. Figure (4.9) shows a block diagram of the whole code. 

The program PRESSU must be run first, because it gives the initial configuration of the 

case being modeled. PRESSU specifies the geometrical parameters of the model; generates 

the control-volumes and the computational grid within the calculation domain of the block; 

calculates the pressure distribution, as well a s  the velocity distribution of the soil gas, 

throughout the whole soil block; and stores the produced data in seven permanent files, 

(PARAM, CVX, CVY, CVZ, XVELO, YVELO, and ZVELO), which constitute the link 

with the program MASTRA. 
-- 

In fact, the gnd mesh presented here IS already the one whrch resulted from the adjustment of the computer 
programs, as d~scussed in Chapter V .  



Figure 4.6 - Two-dimensional view of the control-volumes on a vertical cross-section of 

the soil block 
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Figure 4.7 - Expanded view of the control-volumes under the soil-crack interface, on a 

vertical cross-section of the soil block. 
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Figure 4.8 - Twcdimensional view of the controLv01umes &I a horizontal cross-section 

of the soil block 
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Figure 4.9 - Block diagram of the complete computer model. 
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MASTRA then uses these data and, together with its own menu-selected input parameters, 

it calculates the distribution of radon concentration in the soil gas throughout the soil block. 

It also calculates the radon flow through the crack and into the basement, with the resultant 

indoor concentration. 

Both programs are menu-oriented, allowing the control of the input and output at each run. 

A set of default values for the parameters, representing a typical case, is internally defined 

in the code. 

The output of these programs constitutes a printout and four permanent files which can be 

used later for graphic generation purposes. The printout reproduces all the input parame- 

ters, and shows the calculated variables at specified vertical, or horizontal, layers of the soil 

block. 

In the output permanent files, both programs store the calculated values of the variables at 

two specified vertical cross sections of the soil block. For instance, PRESSU stores in the 

file PVIEWA the pressure distribution in the first defined cross section of the soil block. 

The same data are stored in the file PVIEWB, but now being framed in a smaller region 

around the crack in the basement. So, the former file allows a graphical representation of 

a cross sectional view of the whole block, while the later one allows a closer view of the 

cross section near the crack. The files PVIEWC and PVIEWD are recorded in a similar 

way, representing the pressure distribution in the second defined cross-sectional view of 

the block. Similarly, MASTRA stores in the files MVIEWA, MVIEWB, MVIEWC, and 

IMVIEWD the radon concentration distribution in two specified cross-sectional views of the 

block. 

The data in these view files can then be used to generate a graphical representation of the 

modeled variable distribution in vertical sections of the block. A program named ISOX, 

developed elsewhere at The University of Michigan [Be85], and adapted for a personal 

computer environment was used for this purpose. ISOX reads the data in those files, 

and plots the isolines for the specified values of the variable, showing then its distribution 



throughout the whole cross section of the block. 

The computer code, including PRESSU and MASTRA, was written in FORTRAN 77 (see 

list in Appendix L), and was run in the Amdahl-5860 computer of the Michigan Terminal 

System, and in the VAX-8600 computer of the Atmospheric and Oceanic Sciences Depart- 

ment of the Engineering School, at The University of Michigan. ISOX was used in an 

IBM-XT personal computer. 

Algorithm Used in PRESSU for the Solution of the Disturbance Pressure Field. 

The velocity of the soil gas within the soil, close to the soil-crack interface, wad, was 

evaluated in Appendix E. Its dimensionless form, given in Eq.(E.12), is repeated here as: 

where, 

P; = dimensionless disturbance pressure at the first control-volume underneath 

the crack; 

P;N = dimensionless disturbance pressure at the soil crack interface; 

Az- = dimensionless size, in the 2-direction, of the first control-volume underneath 

the crack; 

k' = permeability of the soil at the first control-volume underneath the crack; 

Ks = dimensionless constant, defined by Eq.(E.lPb). 

Also, the velocity of the soil gas within the crack, Wcrack, was evaluated in Appendix E. Its 

dimensionless form, given by Eq.(E.ll), is repeated here as: 



where, 

Kc = dimensionless constant, defined by Eq.(E. 11 b). 

According to the boundary conditions imposed on the soil-crack interface, the values of the 

disturbance pressure and the soil-gas velocity at the points in the soil close to the soil-crack 

interface should converge to the respective values of pressure and velocity at a point within 

the crack, as these points get closer .and closer to the soil-crack interface. In other words, 

wZrack and wid,  as calculated above, should converge to the same finite value. This condition 

constitute the basic approach of the iterative method adopted in PRESSU for the solution 

of the disturbance pressure equation in the soil block. 

Therefore, in order to implement the boundary conditions, as expressed in Table (3.1), and 

solve the pressure field equation, PRESSU uses the following iterative algorithm: 

Step # 1 - Initial assumption about the disturbance pressure distribution within the soil 

block. 

Initially, the disturbance pressure distribution is arbitrarily assumed to be zero at all points 

within the soil block. Furthermore, the initial disturbance pressure distribution at the soil 

crack interface, piN, is assumed to be such that it makes wid = wimck,, for p i  = 0. Thus, 

from the equations above, the initial values of pi,,, are expressed as: 

Step # 2 - Calculation of a new disturbance pressure at all control-volumes in the soil biock, 

including p i ,  the dimensionless disturbance pressure at  the control-volumes underneath the 

crack. 

The conditions imposed on all boundaries of the soil block, for the solution of the pressure 

field equation, are the following: 

- At the top surface: 



- First order boundary condition; 

- The disturbance pressure is assumed to be equal to zero (invariable); 

- At the soil-crack interface: 

- First order boundary condition; 

- At each iteration, the disturbance pressure at the crack interface, piN, is assumed 

to be known, either from the initial assumptions, or from the last iteration; 

- Note that the disturbance pressure at the crack interface varies at each iteration, 

but is expected to converge to a finite value as the number of iterations increase; 

- At the basement walls and floor, and all other external surfaces of the soil block: 

- Second type boundary condition; 

- The gradient of the disturbance pressure perpendicular to these surfaces is equal 

to zero, (invariable). 

-4 description of the general algorithm, used in this part of the program for calculating 

the pressure distribution throughout the soil block will be presented later in the items: 1) 

general algorithm for handling the calcuiation in the numerical grid; and 2) description of 

the program PRESSU. 

Step # 3 - Calculation of a w,oJ and  WE,,^, based on Equations (4.30) and (4.31), respec- 

tively. 

Step # 4 - Comparison of wid with 

If wid is close to w-~, within a tolerance limit, then the iteration routine is over, and 

PRESSU goes to step # 7. If not, PRESSU continues the iteration routine, moving to step 

# 5. 

Step # 5 - Calculation of the new value of piN - the disturbance pressure distribution at 

the soil-crack interface. 
-- 

a PRESSU also adopts another convergence criteria, based on the maximum variation oi the disturbance pressure 
at m y  node of the grid. According to  thia, the iterative routine is also finished when the maximum variation of 
the pressure at 3ny node in the gnd becomes lower t h m  an established tolerance limit. 



The new values of piN are calculated using the most recently calculated values of p;, in 

such a way that it makes = wrrack. Thus, from Equations (4.30) and (4.31), piN can be 

expressed as: 

Step # 6 - Repeat steps #2 to #4. 

Step # 7 - Output. 

Algorithm Used in MASTRA for the Solution of the Radon Concentration Field. 

In order to deal with the boundary conditions established at the crack interface, which were 

described in Appendix F, MASTRA uses the following iterative algorithm. 

Step # 1 - Selection of an arbitrary initial distribution of the dimensionless radon concen- 

tration within the soil block. 

Initially, the values of the radon concentration inside the soil block are made to vary expo- 

nentially, from zero at the top of the soil block, to its maximum value at the bottom of the 

block. The initial values of the radon concentration at the soil-crack interface are assumed 

to be zero. 

Step # 2 - Calcuiation of a new radon concentration at all the control-volumes within 

the soil block, including CI;, the dimensionless radon concentration at the control-volumes 

underneath the crack. 

The conditions imposed on all boundaries of the soil block, for solving the radon transport 

equation within it, are the following: 

- At the top surface: 



- First order boundary condition; 

- The radon concentration at the top surface is assumed to be zero (invariable); 
40 . .- 

- At the soil-crack interface: 

- First order boundary condition; 

- At each iteration, the radon concentration at the crack interface, C;N, is assumed 

to be known, either from the initial assumptions, or from the last iteration; 

- Note that the radon concentration at the crack interface varies at each iteration, 

but is expected to converge to a finite value a s  the number of iterations increase; 

- At the basement walls and floor, and all other external surfaces of the soil block: 

- Second type boundary condition; 

- The gradient of the radon concentration (the radon flux), perpendicular to these 

surfaces is equal to zero, (invariable). 

Step # 3 - Calculation of .lid, the dimensionless radon flux from the soil through the crack 

interface, and JiTwk, the radon flux through the crack interface, but calculated within the 

crack. 

The fluxes JioJ and J- were calculated in Appendix F. They are also expressed here as: 

where, 

C& = dimensionless radon concentration at the soil-crack interface; 

c;, = dimensionless radon concentration at the first control-volume underneath 

the crack; 

M = dimensionless constant defined in Eq.(F.43c); 



w* = dimensionless velocity of the soil gas through the crack; 

D' = dimensionless radon diffusivity coefficient in the control-volumes underneath 

the crack; 

Az- = dimensionless size, in the z-direction, of the control-volumes underneath the 

crack. 

Step # 4 - Comparison of J;& with Jkk .  

If J:d is close to JAck, within a tolerance limit, then the iteration routine is over, and 

MASTRA goes to step # 7. If not, MASTRA continues the iteration routine, moving to 

step # 5 .  

Skep # 5 - Calculation of the new value of CiN - the radon concentration distribution at 

the soil-crack interface. 

The new values of CiN are calculated using the most recently calculated values of C i ,  in 

such a way that it makes J a b  = J;rcKk. Thus, from Equations (4.34) and (4.35), CiN can be 

expressed as: 

Step # 6 - Repeat steps #2 to #4. 

Step # 7 - Output. 

General Algorithm for Handling the Calculation in the Numerical Grid. 

The whole three-dimensional configuration of the model's calculation domain can be con- 

sidered as formed by severai two-dimensional layers of control-volumes in both vertical 

' MASTRA also adopts another convergence criteria, based on the maximum variation of the radon concentration 
at m y  node of the grid. According to this, the iterative routine is also finished when the maximum variation of 
the radon concentration at m y  node in the grid becomes lower than an established tolerance l im~t .  



and horizontal cross-sections of the block. Furthermore, each one of these twedimensional 

layers is formed with lines of control-volumes. The nodes located in the center of the control- 

volumes form the grid. It is assumed that the value of the variable (disturbance pressure 

or radon concentration) within a control-volume is represented by the respective value at 

the node. Therefore, the objective is to calculate the values of the variables at these nodes. 

In order to do so, the three-dimensional grid of the model is calculated one layer at a time, 

until all layers of the grid are considered. At each layer, the calculation is performed one 

line at  a time, and the procedure is repeated until all lines of the layer are visited. 

The iterative method adopted here for the solution of the algebraic discretization equations 

at any layer of the grid can be called a mized-direction-line-by-line method. In this method, 

at some specific layer, each grid line is solved separately using a tridiagonal matrix routine, 

based on the Thomas algorithm. (An84j. The whole layer is then solved by solving all 

grid lines of opposite directions on the layer, in an alternating-direction sequence. For 

example, when calculating a horizontal layer of the grid, we first select a grid line (say, 

in the pdirection). Then, assuming that the vdues of the variable at all the neighbor 

nodes (in the z and z-directions) are known from the latest calculation, we solve the system 

of equations representing the nodes along the selected line, using the tridiagonal matrix 

routine. Following this, we select the grid line in the opposite direction (z-direction) and 

do the same thing again. This procedure is repeated until all grid lines in both opposite 

directions of the layer have been-calculated, This mixed direction iteration method was 

tested in a simplified problem of heat transfer in a two-dimensional surface of rectangular 

shape, with constant temperatures at the borders. The results compared very well with the 

analytical solution. 

In order to implement this iterative procedure, the soil block has  been divided into three 

regions: 1) the middle layers, formed by the first five horizontal layers of control-volumes 

located right underneath the basement floor; 2) the upper region, located above the middle 

layers; 3) and the lower region, located below the middle layers; 

Because of the boundary conditions imposed at the soil-crack interface, the first middle layer 



under the basement floor constitutes the most critical one for the solution of the algebraic 

discretization equations in the whole grid. Consequently, both PRESSU and MASTRA 

start the iterative process at  this first middle layer. There, the procedure is initiated by 

selecting the grid lines located under the crack, and then marching in the direction of the 

external boundaries of the soil block. So, starting from the crack, the routine first goes to 

the north and east directions. Then, starting again under the crack, the routine marches 

toward to the west and south, covering in this way the whole layer. The idea implicit in this 

approach is that since the crack constitutes the center for the disturbance in the system, 

any sweep sequence should start at the crack, or as close a s  possible to it, making possible 

in this way to transmit the useful information from the crack into the soil block domain. 

The other four middle layers are calculated using the same procedure, except that the nodes 

in these layers do not have the conditions imposed from the crack. 

After the calculation of the middle layers, the iterative routine is turned to the calculation 

of the vertical layers of the soil block, starting with those layers close to the crack lines, and 

moving away toward to the external boundaries of the soil block. The purpose of alternating 

vertical with horizontal layers is to improve the transmission, to the whole soil block, of the 

information given by the first kind boundary condition at the top of the block. 

When the calculation of all vertical layers is finished, the iterative routine returns to the 

calculation of the horizontal layers of the upper and lower regions of the soil block. In the 

lower region, the procedure for calculating the lines is the same one adopted in the middle 

layers. In the upper region, the iterative procedure is slightly modified. There, the procedure 

starts with the calculation of the grid line close to the basement (in either direction), and 

then, alternating the z and y-directions, it marches to the external boundaries of the soil 

block. 

Therefore, the iterative procedure adopted in PRESSU and MASTRA for solving the dis- 

cretization equations at the numerical grid, can be summarized as: 

Step # 1 - Solution at the five middle layers; 



Step # 2 - Solution at the vertical layers; 

Step # 3 - Solution at the horizontal layers of the lower region; 

Step # 4 - Solution at the horizontal layers of the upper region; 

Description of the Program PRESSU. 

The main program PRESSU was divided in sixteen steps which will be described next. A 

listing of the program, as well as the subroutines, are presented in Appendix L. 

Steps # 1 k 2 - Initial statements, and definition of the input parameters. The subroutine 

PMENU is called to handle the menu of input parameters to PRESSU. 

Step # 3 - Calculation of some of the constants used in the dimensionless expressions. 

These constants were defined in Chapter 3. 

Step # 4 - Calculation of the dimensionless sizes of all control-volumes in the soil block. 

The sizes of the control-volume faces are distributed in each segment, following an equation 

of a circle, as described in Appendix G. The sizes of the C.V. in the directions z, y, and z 

are stored in the vectors CVX(t], CVY(j), and CVZ(k), respectively. 

Step # 5 - Calculation of the dimensionless permeability. for all control-volumes in the soil 

block. These values are stored in the array PERM(;, j, k). Four distinct regions are defined 

in the soil block, with the following assigned permeabilities lo: 

PERMX = Permeability of the z-direction aggregate region; 

PERMY = Permeability of the Y-direction aggregate region; 

PERMZ = Permeability of the 2-direction aggregate region; 

lo V~lues  of PERM(,, j, k) inside the house w e  made equal to zero. 



PERM1 = Permeability of the rest of the soil block. 

Step # 6 - Calculation of the dimensionless coefficients aE, a w , a ~ ,  as,  ag, aT, and ap used 

in the discretization of the disturbance pressure field, as defined by Eq.(4.9). One set of 

these coefficients is assigned for each node of the grid, and stored in the arrays: AE(i, j, k); 

AW(i, j, k); AN(i, j, k); AS(( j, k); AB(i, j, k); AT(i, j, k); and AP(i, j, k). Inside the house, 

all coefficients are made equal to zero. In order to help establishing the boundary conditions 

at the external surfaces and the bottom of the soil block, the coefficients perpendicular to 

those surfaces are also made equal to zero." 

Step # 7 - Initialization of the disturbance pressure distribution in the soil. These values 

are stored in the array PRES(i, j, k). The array PRESA(i, j, k) also stores the values of 

pressure, and is used in the convergence test. Initially, all values of the arrays PRES(i, j, k) 

and PRESA(i, j, k) within the complete block are assigned zero (including their extremities). 

The values at the extremities of these arrays are meant to be the pressure at the interfaces 

of the control-volumes forming the external boundaries of the soil block. All other values 

of the array PRES(i, j, k) represent the disturbance pressure at the respective node. 

Step # 8 - Initialization of the disturbance pressure at  the soil crack interface. The initial 

value of pressure at the crack interface such that it makes w'soil = W,,~. It is given by 

Eq(4.32). 

Step # 9 - Solution of the disturbance pressure equation, first in the five horizontal &ddle 

layers, and then in all vertical layers of the soil block. 

Solution of each layer will be achieved iteratively, in ari alternating line-by-line sequence. 

In calculating a line in the middle layer, the subroutine XDIR, or YDIR (depending if it 

is an z or y-line), is called to group the nodes of the line in a system of equation with 

the coefficients in a tridiagonal matrix form. Then, either subroutine calls the subroutine 

TRIDIM, which uses a tridiagonal method (Thomas algorithm - [An84]) to solve the line. 

l1 Thls const~tutes n redundant procedure for implementing the boundnry conditions at those surfaces, because 
the gradient of the pressure perpendicular to those boundaries is also made equal to zero, as described in step 
# 0. 



A complete sweeping of the middle laykr is performed with both z and y-lines in an alternate 

sequence. After each line is calculated in the subroutine XDIR, or YDIR, the boundary 

conditions at the extremities of the line are up-to-dated, by making the value of the pressure 

the same in the last two control-volumes, at both ends of the line. 

The vertical layers are calculated first in the bulk of the soil block, starting with the layers 

close to the wall of the basement and, alternating in the z and y-directions, moving toward 

to the external surfaces of the block. Then the vertical layers under the basement are 

calculated, starting with the layers dose to the crack and, alternating in the z and y- 

directions, moving toward to the center of the block. In these vertical layers, only the 

z-lines are calculated. Thus, for each z-line the subroutine ZDIR is called to group the 

nodes of the line in a tridiagonal system. Then the subroutine TRIDIM is called to solve 

the line. 

Step # 10 - Solution of the disturbance pressure equation in the horizontal layers of the 

lower region, and then in the upper region of the soil block. 

These horizontal layers are calculated with a procedure similar to the one used for the 

middle layers, using the subroutines XDIR, YDIR, and TRIDIM. 

At the end of this step, the arrays representing the velocity of the soil gas through the 

crack interface, WCRACK(i, j )  and WSOIL(i, j), are calculated using the most recently 

calculated values of the array PRES(i, j, k). 

Step # 11 - Test the convergence of PRESSU. 

PRESSU finds the maximum difference of pressure occurring at any node in the soil block, 

since the last iteration. It also finds the maximum difference of soil gas velocity occurring 

at the soil-crack interface, since the last iteration. Then the convergence test is applied to 

check if these maximum differences in pressure and in velocity are below some established 

tolerance limit. If the results of the test show that the calculations have. either converged 

to the specified tolerance, or reached the maximum number of iterations, then PRESSU 

proceeds to step + 12, to calculate the velocity field of the soil gas throughout the soil 

block. If the convergence test fails, the program calculates the new pressure distribution at 



the soil-crack interface, based on Eq.(4.33), and then returns to step # 9, starting a new 

iteration. 
. .- 

Step # 12 - Calculation of the three components of the soil gas velocity vector in the soil 

matrix. 

In order to save computer memory, the three components of the soil gas velocity vector will 

be stored in the following arrays: AE(il j, k), in the z-direction; AN(( j, k), in the y-direction; 

and AB(i, j, k), in the z-direction. In MASTRA, these velocity components will be named 

XFLO W ( a ,  j, k), YFLO W (i, j, k), and ZFLO W (i, j, k), respectively. These components are 

calculated in adisplaced grid, which means that they are not represented at the nodes, but 

at the interface .between two nodes. 

Step # 13 - Transference of some parameters, and calculated variables, to fixed files, which 

will be used for coupling with MASTRA. 

Steps# 14, 15, and 16 - Output, format statements, and list of variables. 

The output of PRESSU is performed by calling the subroutine PREOUT. 

Description of the Program MASTRA. 

The main program MASTRA was divided in sixteen steps which will be described next. A 

listing of the program, as well as the subroutines, are presented in Appendix L. 

Steps # 1 k 2 - Initial statements and definitions. 

Step # 3 - Coupling with program PRESSU. 

Data produced by PRESSU, and stored in fixed files are read in by MASTRA. Also, the 

subroutine MMENU is called to handle the menu of input parameters to MASTRA. 

Step # 4 - Calculation of the parameters used in the dimensionless expressions of the 

program. 



Step # 5 - Calculation of the dimensionless radon diffusion coefficient in soil, the dimen- 

sionless radon source term, and the soil porosity at each control-volume in the soil block. 

The following four regions are defined within the soil block: x-aggregate; y-aggregate; z- 

aggregate; and the bulk of soil beyond the aggregate regions. Each region will be assigned 

with its own dimensionless values of soil porosity, radon diffusivity, and radon source term, 

stored in the arrays: DIFFUS(i, j, k); POROSI(i, j, k); and SOURCE(i, j, k), respectively. 

Values inside the house are made equal to zero. 

Step # 6 - Calculation of the dimensionless flow rate arrays. 

The flow rates are calculated for the three directions z, y, and z separately, and are depen- 

dent on the components of the soil gas velocity. Consequently, the components of the flow 

rates are calculated at the interfaces of the control volumes, rather than at its center (or 

nodes). 

Step # 7 - Calculation of the dimensionless coefficients aE, aw, aN, as, a ~ ,  aT, and ap used 

in the discretization of the radon concentration field, as  defined by Eq.(4.25). One set of 

these coefficients is assigned for each node of the grid, and stored in the arrays: AE(i, j, k); 

AW(i, j, k); AN(i, j, k); AS(( j, k); AB(i, j, k); AT(;, j, k); and AP(i, j, k). Inside the house, 

all coefficients are made equal to zero. In order to help establishing the boundary conditions 

at the external surfaces and the bottom of the soil block, the coefficients perpendicular to 

those surfaces are made equal to zero.12 

Step # 8 - Initialization of the radon concentration distribution in the soil. 

The dimensionless values of the radon concentration in the soil are stored in the array 

CONCEN(i, j, k). The array COTEST(;, j, k) contains the calculated values of the radon 

concentration from the last iteration (it will be used in the convergence test). Initially, the 

values of these arrays inside the soil block, are made to vary exponentially, from zero at the 

top of the block, to its maximum value at the bottom of the block. Within the house, and 

at the top of the soil block, the arrays CONCEN(i, j, k) and COTEST(i, j, k) are always 

l2 This constitutes s redundant procedure for implementing the boundary conditions st those surfaces, because 
the gradient of the radon concentration, ~s well as the velocity of the soil gas perpendiculzr to those boundaries 
are also made equal to zero. 



equal to zero. Initially, the concentration at the soil-crack interface is made equal to zero. 

Step # 9 - Calculation of the radon distribution in the soil. 

Calculations start with the middle layers. Each line in the middle layer is calculated in 

MASTRA by calling the subroutine XLINE or YLINE, which organizes the coefficients for 

that specific line, and calls the subroutine TRIDIM to solve it. 

Then, MASTRA proceeds to calculate the vertical layers. At each vertical layer, the lines 

at the z-direction are calculated by the subroutines, ZLINE and TRIDIM. 

Following this, MASTRA calcuiates the horizontal layers of the lower region, and the upper 

region of the soil block, using a procedure similar to the one used in the middle layers. 

At the end of this step, the boundary conditions at the lateral and bottom of the soil block 

are adjusted, by making the concentration gradient perpendicular to those surfaces equal 

to zero. 

Also, the dimensionless radon fluxes at  the soil-crack interface - FCRACK and FSOIL - are 

calculated based on the Equations (4.34) and (4.35), and using the new calculated values 

of radon concentration stored in the array CONCEN(i, j, k). 

Step # 10 - Test the convergence of MASTRA. 

MASTRA finds the maximum difference of radon concentration occurring at any node 

in the soil block, since the last iteration. It also finds the maximum difference of radon 

flow occurring at the soil-crack interface, since the last iteration. Then the convergence 

test is applied to check if these maximum differences in radon concentration and in radon 

flux are below some established tolerance limit. If the results of the test show that the 

calculations have, either converged to the specified tolerance, or reached the maximum 

number of iterations, then MASTRA proceeds to step # 11, to calculate the radon entry 

rate into the house. If the convergence test fails, the program calculates the new radon 

concentration at the soil-crack interface, based on Eq.(4.36), and then returns to step # 9, 

starting a new iteration cycle. 



Step # 11 - Calculate the radon entry rate into the house. 

The total radon entry rate into the house is given by the sum of the entry rate through 

the interface of all control-volumes under the crack, as expressed in Appendix J, Eq.(J.lO). 

Both the convective and the diffusive components of the radon entry rate are considered. 

Step # 12 - Calculate the indoor radon concentration. 

The indoor radon concentration is calculated based on the derivation presented in Appendix 

J,  and expressed in Eq.(J.11). 

Step # 13 - Calculate the radon flux to the atmosphere. 

The radon flux to the atmosphere, at the top of the soil block, is calculated based on the 

derivation presented in Appendix K, and expressed in Eq.(K.i'). 

Steps # 14, 15, and 16 - Output, format statements, and list of variables. 

The subroutine MASOUT is called to produce the output from MASTRA. 



CHAPTER V 

ANALYSIS OF THE MODEL 

This chapter has two goals: first, to adjust the computer model so that it behaves 

according to what is expected; second, after adjusting the program, to test its sensitivity 

to the variation of every important parameter of the model. The ultimate purpose of these 

efforts is to obtain a better knowledge of the operational limits of the model, and better 

confidence in its performance. 

Adjustment of the Computer Codes. 

The computer programs are expected to perform in such a way that their results converge to 

the solution of the algebraic discretization equations representing the differential equations 

of the model. In writing the code, a few parameters, and functions were used for controlling 

its operation, in order to assure that: 1) the numerical method is applied correctly; 2) 

the boundary conditions are satisfied; 3) the iterative process of the code converges to the 

solution of the algebraic discretization equations; 4) and finally that the solution of the 

discretization equations approximate the solution of the original differential equations of 

the model. These, so called here, operational parameters are not considered variables of the 

model in the sense that they are not related to the problem of radon transport in the soil 

and into the house. However, these parameters have a direct effect on the performance of 

the code, controlling in different aspects the execution of the programs. The adjustment of 

the computer code consists then in identifying and setting up the appropriate values of all 

operational parameters of the program. It is important to note however that, in general, 



there are no unique values for the adjustment parameters, and the selection of a particular 

value will be based on a compromise of factors underlying the convergence of the program, 

and the computer cost involved. 

The important operational parameters that must be optimized in the programs PRESSU 

and MASTRA are the following: 

1. Maximum number of iterations in the iterative process of the programs; 

2. Definition of the grid - Number of control-volumes in the calculation domain of the soil 

block; 

3. Size of the soil block; 

4. Value of the turbulent diffusion coefficient of radon in the air of the basement - here 

called the enhanced radon diffusion coefficient, as defined in Appendix F; 

5. Interpolation function used in the discretization of the radon transport equation of the 

model. 

After being adjusted, these parameters will be incorporated as default in the programs 

PRESSU and MASTRA, and will be used during the next phase of the sensitivity analysis 

of the codes. 

In the flow-chart of Fig. (5.1) I propose a procedure for adjusting the computer programs. 

It starts with the selection of the values for all the parameters of the model representing 

a typical configuration. The initial values of the operational parameters are selected arbi- 

trarily, based on reasonable judgement. Then the sequence of tests starts, and at the end 

of each test, the appropriate value of the parameter is selected and adopted as default. 

Values of the Model's Parameters for a Typical Case. 

In Table (5.1) I present the values adopted for all input parameters of the model constituting 

a basic case under which the adjustment of the computer programs will be performed. Note 

that, in this table, I have also included an initial estimation of the operational parameters, 

which will be changed later during the execution of the adjustment tests that follow. 



Figure 5.1 - Procedure for adjustment of the computer programs. 
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Table 5.1 - Input parameters for the basic case used in the adjustment of the computer 

programs. 

Parameter 

Delta pressure 
Air exchange rate 
Enhanced radon diffus. coef. 

Soil permeability 
Bulk radon dif.coef. in soil 
Ra-226 conc. in soil part. 
Soil porosity 
Radon emanating fraction 
Soil particles density 

House dimensions: 
Basement area 
Basement height 
Height of the house 
Width of the crack 

Size of the soil block 
Aggregate in the x-direction 
Aggregate in the y-direction 
Aggregate in the z-direction 

Definition of the grid: 
N z l ,  Nz2, Nr3, Nr4, N z A G  
N,1, Ny2 ,  Ny3 ,  Ny4 ,  N y A G  
N z l ,  N J ,  NZAG 

Value Unit Remark 

Defined in Apdx.F 

The aggregate 
regions are 
defined with 
the same 
parameters 
of the soil. 

See Fig.(?.l) 

See Fig.(2.2) 

Number of nodes 
under each block 
segment. 
See Fig.(4.5). 



Convergence Test of the Computer Programs. 

As it was described in Chapter IV, one algebraic discretization equation, representing either 

the disturbance pressure or the radon concentration in the soil gas, was derived for each 

node of the grid in the three-dimensional calculation domain of the soil block. All together, 

these algebraic equations form a very large system whose solution by direct methods of 

linear algebra becomes impractical. An iterative method1 was then adopted for solving 

the system. In this algorithm, at  each iteration, the system is reduced to the equations 

representing only one line of grid nodes in the calculation domain, which is then solved 

using a tri-diagonal method based on the Thomas algorithm, [.4n84]. The values of the 

function at all the nodes in the block, except at  those being calculated in the line, are 

assumed to be known either from the initial arbitrary assignment, or from the calculation 

of the previous iteration. After all nodes of the grid are calculated, a new iteration cycle 

then begins, and the process is repeated indefinitely until either; 1) the maximum allowed 

number of iterations are performed; or 2) the maximum change occurring at any node 

of the grid in the soil block becomes lower than the adopted tolerance limit; or 3) the 

maximum change of the variable representing the boundary conditions at  the soil-crack 

interface becomes lower than the adopted tolerance limit. It is expected that the process 

converges, leading to a fixed ( a finite) value of the function at all nodes of the grid. It 

is also expected that the values at which the computer programs converge represent the 

solution of the algebraic discretization equations. 

Therefore, the concept of convergence as applied here, is related to the expectation that 

the programs converge to a finite value, and this is what is going to be determined in 

this present test. It is assumed that if the programs were written correctly,' with the 

proper implementation of the numerical method, and if the calculations of the computer 

programs converge to finite values of both the distribution of the variable in the soil, as well 

as the boundary conditions at the soil-crack interface, then these finite values should also 

This iterative algorithm waa defined in Chapter IV, item: general algorithm for handling the calculation in the 
numerical grid. 
It should be noted here that the subroutine TRIDIM - the routine that solves the lines of the grid using the 
Thomils algorithm - was tested in a simplified problem of heat flow in a one-dimensional bar, 3 well 3 in a 
two-dimensional surface, nnd the results compared very well with the analytical solution. 



represent the solution of the algebraic discretization equations of the numerical model. This 

assumption could also be described with the following mathematical argument. Suppose 

that: 1) A is the matrix of the discretization coefficients of all grid nodes in the calculation 

domain; 2) X is the matrix of the values of the function at all grid nodes; and 3) B is 

the matrix of the source-sink terms and boundary conditions. Then, the whole system of 

algebraic discretization equations could be represented by the matrix equation AX = B. 

Note that A is invariable, but X and B vary at each iteration. Now, consider two consecutive 

iterations i - 1 and i, where the system of equations is expressed as = B,-l and 

A X ,  = B;, respectively. Then subtracting one from the other, yields A(X, -  = Bi- Bi-l, 

or AA,Y, = ABi.  Therefore, if in the iterative routine of the computer program, both AX, 

and AB; converge to zero as the number of iterations increases, then it is possible to conclude 

that: 1) the solution matrix X and the source-sink and boundary conditions matrix B are 

both converging to a finite value; 2) the variation of the residual ARi = AAX, - ABi is 

converging to zero, and consequently the residual R = AX - B is converging to a finite 

value; and 3) the iterative routine is evaluating the system of equations AX = B correctly. 

In order to test the convergence of the computer programs I let them run with a large number 

of iterations, and a very low tolerance limit. Then, the variations of the values of some 

selected indicators at  each iteration, as compared with the values in the previous iteration, 

were plotted as a function of the iteration number. The indicators selected for testing the 

program PRESSU were the maximum variation of the disturbance pressure at any point in 

the soil block, and the maximum variation of the soil gas velocity occurring at any point at 

the soil-crack interface. For the program MASTRA the indicators of convergence were the 

maximum variation of radon concentration at any point in the whole soil block, and the 

maximum variation of the radon flux at any point at the soil-crack interface. 

The results of the convergence test for the program PRESSU representing, at each iteration, 

the maximum variation of: 1) the pressure at some critical point in the soil block; 2) the 

soil gas velocity at some point at the soii-crack interface, are shown in Fig.(5.2), parts A 

and B respectively. I t  should be noted that both the pressure and the soil gas velocity 



differences were expressed in their dimensionless units. Since what is important in this 

test is to consider the relative variation of these variables as the program proceeds in its 

iterative cycle, the use of the dimensionless units is perfectly acceptable. So, in Fig(5.2) 

it is possible to observe that the pressure and soil gas velocity distributions calculated by 

PRESSU changed very rapidly during the first one hundred iterations, when the program 

then leveled off, approaching asymptotically the condition of negligible variation from one 

iteration to the next one. After the 200th iteration the maximum variation .of pressure 

was lower than 5 . 0 ~  and the maximum variation of the soil gas velocity was lower 

than 1.5x10-~. This suggests that, in fact, the iterative procedure in PRESSU converges 

to a finite result, leading to the actual solution of the algebraic discretization equation of 

the model. From the results shown in Fig.(5.2), I have adopted the number 200 as the 

maximum allowed number of iterations in the program PRESSU. 

Fig.(5.3) shows the results of the convergence test for the program MASTRA, where the 

maximum variation of the radon concentration in soil, and the maximum variation of the 

radon flux through the crack are plotted against the iteration number. Dimensionless 

units are again used here. Comparing Fig(5.3) with Fig.(5.2) we can see that the program 

MASTRA converges much faster than PRESSU. This result should be expected since the 

velocity distribution of the soil gas throughout the soil block, which is used as an input 

parameter to the convective-diffusive radon transport equation in MASTRA, was already 

calculated in PRESSU. According to Fig.(5.3), the iterative process in MASTRA reached a 

plateau after the 80th iteration. Maximum variations of radon concentration in the soil, and 

radon flux at the soil-crack interface after the 100th iteration were lower than 1.5 x 

and 2 . 0 ~  respectively. Based on these results I have adopted a maximum number of 

iterations in MASTRA of 100. 

Therefore. it is possible to conclude from this test that the iterative procedure of both 

programs converges to a finite value, with the convergence of MASTRA being faster than 

in PRESSU. 



Figure 5.2 - Convergence of the program PRESSU. 
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Figure 5.3 - Convergence of the program MASTRA. 
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(B) - Maximum variation of the radon flux at a node at the soil-crack interface, for 

each iteration of MASTRA. (Radon flux ,given in dimensionless units.) 



Test of the Size of the Numerical Grid. 

.GO 

The objective here is to test the effect that the size of the numerical grid has on the output 

of the programs PRESSU and MASTRA. It is expected that, in reducing the grid size, the 

discretization error of the numerical method is also reduced and consequently the solution 

of the algebraic discretization equations approximates the actual solution of the differential 

equations of the model. The ideal situation would be to have a very fine grid in order to 

reduce the discretization error to a minimum. However, the memory size available in the 

computer, as well as the CPU time involved, impose a practical limitation for the size of 

the numerical grid. 

Thus, in order to test how the computer model responds to variations in the grid size, I 

have compared five cases with numerical grids of increasing size. In Table (5.2) I describe 

for each example case, the number of nodes assigned for the defined segments of the soil 

block, at the z, y, and z directions. Reference to the notation of these defined segments 

of the soil block is presented in Fig.(4.5) of the last chapter. The total number of nodes 

assigned for each run of the programs ranged from 2,535 in the first case, to 24,389 in the 

last one. Numerical grids larger than this last one could not be employed because of the 

computer memory available. 

The results of this test will be compared by observing two indicators: 1) the average velocity 

of the soil gas at the soil-crack interface; b) the average flux of radon at the same location. 

The calculated averages in both cases were weighted to the sizes of the respective control- 

volumes at each node. Table (5.3) shows the results. Since we are interested in observing 

relative variations of the indicator variables, dimensionless units were used. 

Fig.(5.4) shows: in part (A), the variation of the average soil gas velocity at the crack 

interface: and in part (B), the variation of the average flux of radon at the same location, 

for each defined case of grid size. Although the number of cases is small, and the size of 

The use of PRESSU and MASTRA , with a numerical grid of 25,000 nodes requires an allocation of about 5.5 
megabytes of computer virtual memory. The computers in which these programs were run (Amdahl-5860, and 
V A X - 8 0 ) ,  did not accepced 3 nln of the programs with 3 grid size larger than about ?5,000 nodes. 



Table 5.2 - Distribution of control-volumes in the calculation domain of the soil block, 

for five different cases which will be used for testing the size of the numerical grid. 

Number of control-volumes 

Segments of the soil block' 

In the x-direction: 
N J  
NI2 
N13 
NI4 

N z A G  

Example Case # 

Total in the x-direction 1 l3 

In the 

1  

y-direction: 

2 3 

Total in the y-direction 1 l3 

In the d i rec t ion :  
Nz1 
Nz2 

N z A G  
(Extra nodes) 

4 

Total in the y-direction 

5 

Total Number 1 2,535 

* - For the appropriate notation, and location of these segments 
in the soil block, see Fig.(4.5). 

- Note that the physical dimensions remain the same. 



Table 5.3 - Test of the size of the numerical grid. 

the largest grid is still relatively modest, it is possible to observe some asymptotic tendency 

on both curves, which suggests that the predictions of the computer model are converging 

to a finite result, which should be the actual solution of the differential equations of the 

Case 

# 

model. Because of the limitation imposed by the available computer memory, we are forced 

to adopt the grid configuration represented in the case #5 as the default grid for the next 

applications of the model, and to consider the predictions under this circumstance as  the 

best practicable approximation to the solution of the original differential equations. 

Test of the Size of the Soil Block. 

Average Soil-Gas Velocity 
at the Soil-Crack Interface. 

[Dimensionless] 

The objective of this test is to evaluate how the size of the soil block affects the output of 

the computer models, and then to select the most appropriate size to be used as a default 

value in subsequent simulations. 

Average Radon Flux 
at the Soil-Crack Interface. 

[Dimensionless] 

As it was described in Chapter 111, the boundary condition of no flow4 imposed on the 

external surfaces, and the bottom, of the soil block requires that those surfaces be located 

far away from the crack - the center of disturbance for the system. So, considering only 

the aspect of enforcing the boundary conditions on those surfaces, it would be advisable 

to make the soil block as large as possible. However, since the size of the numerical grid 

is limited by the available computer memory, then the increase in the block size implies 

The boundnry conditions were listed in Tables (3.1) and (3.2). 



Figure 5.4 - Effect of the numerical grid size on the performance of PRESSU and 

MASTRA. 

SOIL GAS VELOCITY x GRID SIZE 

(A) - Variation of the average soil gas velocity at the soil-crack interface. for different 

cvaoQn GrVPi IN DIMENSIONLESS UNm) 
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sizes of the numerical grid. (See Table (5.3)). 
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CASE a 

(B) - Variation of the average radon flux at the soil-crack interface, for different sizes 

of the numerical grid. (See Table (5.3)). 



an increase of the control-volume sizes, resulting in a coarser grid, and consequently in a 

larger discretization error of the numerical calculation. Therefore, the selection of a size 

for the soil block is determined by a compromise between the enforcement of the boundary 

conditions on the external surfaces of the soil block, and the approximation of the numerical 

method. 

In order to perform this test, I have run six cases where the thickness of the soil layer beyond 

the aggregate regions around the basement varied from 1 to 25 meters. As indicators I have 

observed the same variables used in the last test. They are: 1) the average velocity of the 

soil gas; and 2) the average flux of radon at the soil-crack interface. The results of this test 

are grouped in Table (3.4).  and plotted in Fig.(5.5). As we can see, for small sizes of the soil 

block - lower than 10[m] - the boundary condition is not well justified and consequently 

the performance of the computer model, as measured by the soil gas velocity and the radon 

flux at the soil-crack interface, is clearly altered by variations in the thickness of the soil 

layer. Between the range of 10 to 25 [rn] of soil thickness, only a very small effect. could be 

observed on those variables, which indicates that the increase in the grid coarseness within 

this range, and in that particular region of the soil block, is not significantly affecting the 

output of the program. 

Table 5.4 - Test of the size of the soil block. 

Thickness of 
the Soil Layer 

!mi 

Average Soil-Gas Velocity 
at the Soil-Crack Interface 

[DIDimensionlessjimensionless] 

Average Radon Flux 
at the Soil-Crack Interface 

[Dimensionless] 



Based on these results I have adopted a thickness of 10[rn] as the default value for the soil 

block, which represents the beginning of the plateau shown in Fig.(5.5). The starting point 

of the plateau should satisfy the boundary conditions imposed on the external surfaces of 

the block easily well, and at the same time should provide, for a fixed grid size, the lowest 

grid spacing within the soil block. 

Test of the Enhanced Radon Diffusivity Coefficient in the Air of the Basement. 

The solution of the radon transport equation in the soil block requires the definition of 

not only the boundary conditions described in Table (3.2)) but also the specification of the 

boundary conditions imposed on the radon concentration and on the radon flux at the exit 

of the crack, or more specifically at the interface between the crack and the basement. 

As an approach for dealing with this problem I have proposed, in Appendix F, a config- 

uration in which the radon diffusion coefficient in the basement, because of the turbulent 

mixture of air inside the house, is much larger than the radon diffusion coefficient in the air 

inside the crack. This newly adopted parameter in the model was then called the enhanced 

radon diffusion coefficient in air - Do'. The idea here is that the transport of radon inside 

the basement should be totally dominated by the turbulent mixing of air, and completely 

independent of the velocity of the soil leaving the crack into the basement. The problem 

now is how to specify a value for this parameter. Since no specific reference to the subject 

has been found in the literature I have considered the enhanced radon diffusion coefficient 

in the air as another operational parameter of the computer model which should then be 

adjusted to represent as close as possible the idealized configuration. As described above 

the idealized configuration consists of a house with well mixed air such that the turbulent 

diffusion dominates the transport of radon in the air inside the basement. So, the criterion 

for adjusting the model for this particular parameter is to select the minimum value that 

makes the turbulent diffusion in the air the dominant transport mechanism. 

Thus, the purpose of this test is to observe the effect on the performance of the model as 

we adopt different values for the enhanced radon diffusion coefficient. Also. it is expected 



Figure 5.5 - Effect of the size of the soil biock on the performance of PRESSU and 

MASTRA. 

GAS VELOCITY AT THE CRACK x BLOCK SIZE 
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(A) - Variation of the average soil gas velocity at  the soil-crack interface, for different 

thickness of the soil layer around the house. (See Table (5.4)). 
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(B) - Variation of the average radon flux at the soil-crack interface, for different thick- 

ness of the soil layer around the house. (See Table (5.4)). 



Table 5.5 - Test of the enhanced radon diffnsivity coefficient. 

Case 
# 

hhanced Radon verage Badon Flux 
liffusivity Coef. t the Crack Interface 

[m2s- '1 i [Dimensionless] 

. .- 

Lverage Radon Conc. 
~t the Crack Interface 

[Dimensionless] 

that at the end of the test, a value of this parameter will be selected to best represent the 

condition of well mixed air in the basement of the house. 

In order to perform this test I have run 10 cases with the values of the enhanced radon diffu- 

sion coefficient starting with the value of radon diffusion coefficient in air, ( 1 . 2 ~  1 0 - ~ [ m * / s ] ) ,  

and spanning a range of ten orders of magnitude, from 1.2 x to 1.2 x lo4 [tn2/s]. As in- 

dicators I have selected the average radon flux, and the average radon concentration in soil 

gas at the soil-crack interface. The results of the test are grouped in Table (5.5) and plotted 

in Fig.(5.6). Note that, since the selected range of Do1 is so large, this parameter was plotted 

in a logarithmic scale. The other variables were plotted with their dimensionless units, in 

a linear scale. 

As we can see in Fig.(5.6), the change of the enhanced radon diffusion coefficient clearly 

affects the performance of the model, up the the point where D,' is between 1 . 2 ~ 1 0 ~  to 

1 . 2 ~  10' [ m 2 / s ] ,  where the predictions from the model start leveling off. Values of Do1 above 

this level have very little effect on the model's predictions. These results then suggest that 

a figure around 1 .2 [m2/s ]  would be the minimum value of the enhanced radon diffusion 



coefficient characterizing a configuration of turbulent mixing of the air inside the house. 

Therefore, I have adopted the value for the enhanced radon diffusion coefficient as 1.2[m2/s], 

which is five orders of magnitude larger than the radon diffusion coefficient in air. 

1Measurements of vertical turbulent diffusion coefficients in the atmosphere have been pub- 

lished in the literature, and could be used here for comparison with the results obtained 

above. Servant [Se66] measured the vertical profile of radon concentration in the lower 

atmosphere, between 0 and 100 meters, and calculated the mean coefficient of vertical tur- 

bulent diffusion of radon in this layer of the atmosphere. According to his results, the 

coefficient varied from to 10~[m"s], depending on the stability of the lower atmo- 

sphere. Stable conditions showed coefficients in the first half of the range, with the other 

half being observed in unstable conditions. Values of coefficients below lo-' [m" s] were 

observed only during extremely stable atmospheric conditions. 

Although there are clear differences between the radon transport mechanisms in the lower 

atmosphere, and in the indoor air, it would still be reasonable to assume that the radon dif- 

fusion coefficient in the air of a house with well mixed air indoors would be within the range 

of typical vertical turbulent diffusion coefficients, measured in the atmosphere at  different 

stability conditions. Therefore, the adoption of a value for Do' equal to 1.2[m2/s], which is 

right in the middle of the range of vertical turbulent diffusion coefficient in the atmosphere 

as  reported by Servant, would be justifiable. It should be emphasized though, that the se- 

lection of a value of the enhanced radon diffusion coefficient, D,', equal to 1.2[m2/s] reflects 

the intention of characterizing the house as a well mixed chamber, as far as the indoor air 

condition is concerned. In modeling other configurations of poorer mixing conditions of the 

indoor air, a lower value of Do' should be used for the adjustment of the computer programs. 

Test of the Interpolation Function. 

The numerical method adopted in this thesis for transforming the radon transport differ- 

ential equation into its correspondent algebraic system of discretization equations used a 

defined interpolation function to interpolate the value of the variable - radon concentration 



Figure 5.6 - Effect of the enhanced radon diffusion coefficient on the performance of the 

computer model. 

TEST OF THE ENHANCED RADON DIF. COEF. 
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(A)  - Variation of the average radon flux at the soil-crack interface, as a function of 

the enhanced radon d i h i o n  coefficient. (See Table (5.5)). 
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(B) - Variation of the radon concentration at the soil-crack interface, as a function of 

the enhanced radon diffnsion coefficient. (See Table (5.5)). 



in soil gas - at the interface of consecutive control-volumes in the soil block. The whole 

method was described in detail in Appendix I. Several different interpolation schemes were 

then suggested as possible alternatives to be used in the discretization method, including: 

central difference; upwind; hybrid; and the power law scheme.' 

So, the purpose of this test is to investigate how the choice of a particular discretization 

function, among those already suggested, would affect the performance of the computer 

program. Note that since the radon transport equation is solved in MASTRA, the changes 

of the interpolation function will affect only that particular program. Thus, in order to 

perform this test, MASTRA was run with different interpolation functions, and the results 

grouped in Table (5.6). The indicators were, again, the average radon flux and the radon 

concentration at the soil-crack interface. As we can see, there was no significant variation 

on the model's predictions, which means that, for this particular configuration of soil and 

house parameters, the choice among those proposed interpolation schemes does not affect 

the periormance of the computer program. However, for other soil-house configurations, 

especially for cases of high soil permeability, or high disturbance pressures, where the flow 

of soil gas through the soil and the crack is higher, the choice of the interpolation function 

is still expected to affect the model's prediction. Yet, the investigation of the effect of the 

interpolation function was not extended to those cases. In the original derivation of the 

discretization method, Patankar [Pa801 recommended the power law function as the best 

formulation for the interpolation scheme. Therefore, even though I have not observed any 

significant difference in the results when using the other alternatives, the power law function 

will be adopted as the default interpolation scheme in MASTRA. 

Sensitivitv Analvsis of the Computer Model. 

After the codes have been adjusted, making sure that: 1) the iterative process converges; 

2) the soil block size is the minimum value in which the boundary conditions are still 

valid; 3) the grid mesh size is the optimum value; 4) and that the enhanced radon diffusion 

coefficient and the interpolation functions are selected appropriately, we proceed with the 

See Table ( 1 . 1 )  where the interpolation functmns relative to these schemes w e  defined. 



Table 5.6 - Test of the interpolation function. 

Interpolation Average Radon Flux 
Function t the Soil-Crack Interface 

[Dimensionless] 

Average Radon Concentration 
at the Soil-Crack Interface 

[Dimensionless] 

Central Difference 
Upwind 
Hybrid 

sensitivity analysis. The objective now is to verify how sensitive the model is to variations 

introduced to each one of its input parameters, individually, when all other parameters are 

kept constant. In doing so, we expect to get a better knowledge of the behavior of the 

model. 

Power Law 

The parameters forming the base case which underlies the execution of the sensitivity anal- 

ysis are presented in Table (5.7). The following variables were selected for the sensitivity 

analysis: 

- 52.99 

- Size of the house; 

0.9217 

- Disturbance pressure applied in the basement; 

- Size of the crack; 

- Permeability of the soil. 

These variables influence the distribution, in the soil block, of the disturbance pressure and 

the soil gas velocity , as well as the radon concentration, and consequently will affect the 

output of both programs PRESSU and MASTRA. Besides the variables listed above, there 

are others that will affect only the radon concentration distribution in the soil (MASTRA 

output), and should also be included in the sensitivity analysis. They are the following: 

- Bulk diffusion coefficient of radon in soil; 

- Soil porosity. 

A list of these parameters, with typical values and expected range of variability is presented 



Table 5.7 - Input parameters for the basic case, used in the sensitivity analysis of the 

computer programs. 

Parameter Value 

Iteration Procedure : 
Maximum Iteration in PRESSU 
Maximum Iteration in MASTRA 

Unit 

Air exchange rate 
Enhanced radon diffusivity coef. 

House dimensions: 
Basement area 
Basement height 
Height of the house 

Size of the soil block 
Basement area 
Basement height 
Height of the house 

1.39 x 
1.2 

Definition of the grid: 
Nzl, Nz2, Nz3, Nz4, NzAG 
N,1, N,2, N,3, N,4, N,AG 
Nz1, NJ, NZAG 

s- 

m2s-I 

Remark 

See Fig.(2.1) 

See Fig. (2.2) 

Number of nodes 
under each block 
segment. 
See Fig.(4.5). 

in Table (5.8). Thus, in the sequence of tests that follows, each one of these parameters is 

assigned a typical value a s  listed in Table (5.8). Then each parameter is varied within its 

expected range, and the predictions of the computer model are analyzed. 

Sensitivity Analysis of the Computer Model - Size of the House. 

Variations with the size of the house could affect the model's predictions in a few aspects. 

First, because of the limitation related to the available computer memory, I have established 



I 

Table 5.8 - Range and typical values of the parameters used in the sensitivity analysis of 

the computer programs. 

Delta Pressure I 
Pararne ter 

Width of the Crack I 1 x 1 0 ‘ ~  

m i c a 1  
Value 

Soil Permeability 1 x 10-l2 

Bulk DiR. Coeff. 1 x lo-6 
of Radon in Soil 

Soil Porosity I O 3  

Ra-226 Concent. 1 x lo-g 
in Soil Particles 

Radon Emanating 
Fraction 

Soil Particle 
Density 

Range 

a fixed numerical grid and, consequently, any variation in the house size or any physical 

dimension of the calculation domain will alter the grid spacing and the discretization error 

of the numerical method. Also, altering the size of the house, especially the area of the 

basement, will affect the amount of radon entering the house, and a t  the same time will 

affect the total volume in the house available for diluting the entering radon. Therefore, 

the indoor radon concentration will also be affected. 

(0.5 - 10.0) x loh3 

So, the purpose of this test is to verify how sensitive the computer model is to variations in 

the house size, more specifically to  the variations in the basement area. The program was 

run four times with the basement area varying from 25 to  150[m2]. The results representing 

Unit Reference 

Assump tion 

10-14 - 10-10 m2 [Na85] 

m Author's 



Table 5.9 - Sensitivity analysis of the computer programs - Variation of the basement 
. .- 

area. 

Basement 
Dimensions 

the average flux of radon and the radon concentration in soil gas a t  the crack interface, as 

[m ml 

well as the indoor radon concentration are grouped in Table (5.9), indicating that neither the 

radon flux nor the radon concentration a t  the crack interface has been affected significantly 

in these four cases. The whole range of the radon flux variation was lower than 0.6%, and the 

total variation of the radon concentration a t  the soil-crack interface was lower than 0.2%. 

Therefore, we can conclude that  the variation of the basement area in the range observed, 

and the resultant variation of the grid spacing, does not affect the overall performance of 

the computer model in the soil block. 

Basement 
Area 

On the other hand, the final indoor radon concentration was reduced with the increase 

of the basement area, as expected. Since the width of the crack was kept constant, the 

increase in the basement area increases linearly the amount of radon entering the house. 

However, the volume for diluting the radon inside the house increases with the area of 

the basement. As a result, the increase of the basement area by a certain factor causes a 

decrease of the indoor radon concentration by the square root of that  specific factor. The 

model's predictions confirm this. In the extreme cases, the basement area varied from 25 

to 150[m2], a six-fold increase. Correspondently, the indoor radon concentration decreased 

from 5.99 x lo-' to 2.48 x lpCi/lJ, which is approximately a fi decrease. 

[m2] 

Average 
Radon Flux 
at the Crack 
Interface 
[ p  Ci. m - .s- '1 

Average 
Radon Concent. 

Indoor 
Radon 

at the Crack 
Interface 
[Dimensionless] 

Concent. 

[P~i.l-l] 



Sensitivity Analysis of the Computer Model - Variation of the disturbance pressure. 

The shape of the spatial distribution of the disturbance pressure throughout the soil block, 

in a steady-state condition, is not affected by the value of the negative disturbance pressure 

applied at the basement. Yet, the absolute value of the pressure gradient at  any point 

within the soil changes linearly with the applied disturbance pressure. Consequently, the 

seepage velocity of the soil gas through the soil will also changes linearly with the applied 

disturbance pressure according to Darcy's law, as expressed in Eq.(3.8). The increase of the 

soil gas velocity in the soil, which is directed toward to the crack, will bring a soil gas richer 

in radon from deeper in the soil block closer to the crack, increasing the radon concentration 

and at the same time reducing the radon concentration gradient at the soil-crack interface. 

The result, then, is an increase in the convective component of the radon flux through the 

crack, and a decrease of the diffusive component, with a net increase in the total flux of 

radon through the crack. . 

The objective of this test is to verify how the model responds to these effects as the applied 

negative disturbance pressure is varied within its expected range of variability. The test was 

performed running the programs five times with the applied disturbance pressure varying 

from practically zero (- 1.0 x to -2O(Pa] .  The observed variables were: the average 

soil gas velocity; the average radon concentration in soil gas; and the average radon flux at 

the soil-crack interface; as well as the indoor radon concentration. The results are grouped 

in Table (5.10), and plotted in Figs. (5.7) and (5.8). 

As we can see in Fig.(5.i), the average velocity of the soil gas at the soil-crack interface 

was negligible for a very small pressure, and increased linearly with the increase of the 

applied disturbance pressure, as expected. Also, the radon concentration at the crack 

interface responded positivejy to the increase of the delta pressure, showing a tendency to 

level off a s  the pressure reached its upper end of the range. In reality, the variation of the 

radon concentration in the soil gas at the soil-crack interface is expected to increase with 

the applied pressure up to a certain point where the contribution from poorer radon soil 

gas from regions of the soil closer to the top surface would tend to increase, causing the 



Table 5.10 - Sensitivity analysis of the computer programs - Variation of the 

Disturbance 
Delta 

Pressure 

[Pal 

disturbance delta pressure. 

Average Velocity 
of the Soil Gas 
at the Crack 

[rn.s-'1 

Average Radon 
Concentration 
at the Crack 
[Dimensionless] 

Average Flux 
of Radon at 
the Crack 

[pCi.m-2.s-1] 

Indoor 
Radon 
Concent. 
1pCi.l-'1 

dilution of radon concentration a t  the crack interface. However, the range of the disturbance 

pressure analyzed here, together with the value of soil permeability assumed in this test, 

was not enough to show this effect in this test. In the next test, with the variation of the 

soil permeability in a large range, this effect will be clearly demonstrated. 

In Chapter 111, the total bulk flux of radon throughout the soil matrix was described as 

being composed of two terms: the convective component, equal to the product of the 

seepage velocity of the soil gas times the concentration of radon in the soil gas; and the 

diffusive component, equal to  the negative product of the bulk diffusion coefficient of radon 

in the soil matrix times the gradient of the radon concentration in the soil gas. Thus, 

multiplying the first two columns of Table (5.10) we can calculate the average convective 

flux, which subtracted from the average total flux in column 3, will give us the average 

diffusive component of the radon flux a t  the soil crack interface. Then, plotting these 

flux components together, we can observe the variation of the average radon flux, and its 

components, as a function of the applied disturbance pressure. (See Fig.(5.8)). 

With no applied disturbance pressure, the velocity of the soil gas is zero and the flux of 

radon is reduced to its diffusive component. Then, progressively, as the the pressure in- 



Figure 5.7 - Sensitivity analysis of the numerical model - Variation of the applied 

disturbance pressure. (Part 1). 
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(A) - Average soil gas velocity at the soil-crack interface as a function of the applied 

disturbance pressure. 
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(B) 1 Average radon concentration in soil gas at the soil-crack interface as a function 

of the applied disturbance pressure. 



Figure 5.8 - Sensitivity analysis of the numerical model - Variation of the applied 

disturbance pressure. (Part 2). 
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(A)  - D W i e  and convective components of the average radon flux at the soil-crack 

interface as a function of the applied disturbance pressure. 
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(B) - Indoor radon concentration as a function of the applied disturbance pressure. 



I 
creases the diffusive component of the flux decreases slowly while the convective component 

increases very rapidly (almost linearly with the pressure) and becomes, in the middle of the 

disturbance pressure range, the dominant component of the total flux. Therefore, for this 

particular configuration of soil permeability ( 1 . 0 ~  10 - '~ [m~] ) ,  and radon bulk diffusion coef- 

ficient ( 1 . 0 ~  10 -~ [m"q ,  the flux of radon through the crack is dominated by the convective 

component, for applied disturbance pressures above 4[P a]. Note that for a configuration 

of soil with larger permeability, and approximately unchanged radon diffusion, the same 

pressure range would have caused a larger soil gas velocity variation and consequently the 

convective component of the radon flux would have dominated the total flux at an applied 

disturbance pressure lower than 4[Pa]. The reversed effect should also be expected, that is, 

with a lower soil permeability, the convective component would only predominate, if ever, 

at pressures well above 4[Paj. More of these effects will be shown with the test of the soil 

permeability. 

The indoor radon concentration, as  we can see in Fig.(5.8B), also responded positively to the 

applied disturbance pressure, although not linearly. With the present value of the soil per- 

meability, (1 .Ox 10-l2 [m2]), an increase of the delta pressure from almost zero to -20[Pa], 

caused the indoor radon concentration to increase from 1 . 4 5 ~  lo-' to 7 . 0 ~ 1 0 - ~ [ ~ C i / 4 ,  

about a 4.8-fold increase. With a higher soil permeability, the same increase in delta pres- 

sure, would have caused a higher increase in the convective flow of radon into the house, 

and consequently the indoor radon concentration would have increased by a factor higher 

than 4.8. The inverse of this effect should also be expected. 

Sensitivity Analysis of the Computer Model - Variation of the soil permeability and the 

crack width. 

The flow of soil gas throughout the soil and into the crack is basically dependent on the 

distribution of the disturbance pressure in the soil and crack, and on the resistance that the 

soil and crack offer to the transport of the soil gas. The total resistance to the flow of soil 

gas from the soil into the house can be considered as a sum of two terms - the soil resistance 

and the crack resistance - which are, both, functions of the geometrical configuration of the 



house and the physical properties of the medium. The crack resistance to the soil gas flow 

increases with the the depth of the crack as well as with the dynamic viscosity of the air, 
.I0 . .- 

and decreases with the width of the crack. On the other hand, the resistance of the soil 

increases with the depth of the basement and the viscosity of the soil gas, and decreases 

with the width of the crack and the permeability of the soil. The crack width then affects in 

the same direction but with different degree, both terms of the resistance. However, because 

of its large range of variability - five or more orders of magnitude - the soil permeability 

is the most important paraneter affecting the resistance of the soil to the flow of soil gas, 

and consequently to the whole transport of radon from the soil into the house. 

Therefore, the purpose of this test now is to verify how sensitive the model is to variations 

in the resistance for the flow of the soil gas through the soil and into the houses. More 

specifically, 1 will test the response of the model to variations of the crack width and soil 

permeability, which are the most variable parameters affecting the resistance to flow of soil 

gas. In order to perform the test, four different crack widths were selected - 0.5, 1.0, 5.0, 

and lO.O[mm] - and, for each one of them, the computer model was run six times, covering 

the range of variability of soil permeability, from 1 . 0 ~  10-l4 to 1 .Ox 1 0 - ~ [ r n ~ ] .  As indicators 

I have selected : 1) the total resistance to soil gas flow; 2) the average pressure at the 

soil-crack interface; 3) the average velocity of the soil gas at the soil-crack interface; 4) the 

average radon concentration in soil gas at the soil-crack interface; 5) the average flux of 

radon at the soil-crack interface; and 6) the indoor radon concentration. The results were 

grouped in Table (5.11). Note that the disturbance pressure and the radon concentration in 

the soil gas are given in dimensionless units. The reason for this is that since these variables 

have been normalized in the range between 0 and 1, it becomes easier to interpret the results 

in their dimensionless forms. In order to obtain the actual unit, the disturbance pressure 

and the radon concentration in soil gas have to be multiplied by their characteristic values 

of SIP a] and 53O[pCi/Il, respectively. 

The results of this test will be analyzed from two distinct perspectives: first, I will consider 

the variation of the crack width and its effects on the model's predictions for different 



Table 5.11 - Sensitivity analysis of the computer programs - Variation of the soil 

permeability and crack width. 

Model's 
Predictions psw 

Net Resistance 
to the flow 
of the Soil Gas 
into the House. 

[ ~ a . s . m - ~ ]  
Disturbance 
Pressure 
at  the Crack 
Interface. 

jDimensionless] 
Average 
Velocity 
of the Soil Gas 
at the Crack 
Interface. 

[m.s-'1 
Average 
Radon Flux 
at the Crack 
Interface. 

[pCi.m-2.s-1] 
Average Radon 
Concentration 
at the Crack 
Interface. 

/Dimensioniessi 
i indoor / 

b21 
1 x 10-l4 
1 x  1 0 - l ~  
1 x lo-'' 
1 x 10-l1 
1 x 10-lo 
1 x lo-g 
1 x l0-l4 
1 x 10 -1~  
1 x 10-l2 
1 x  lo-" 
1 x 10-lo 
1 x lo-' 
1x10-" 
i x  10-l3 
1 x lo-'' 
1 x lo-" 
1 x  10-lo 
1 x 
1 x 10-l4 
1 x 1 0 ~ ' ~  
1 x 10-l2 
1 x 10''~ 
1 x 10-lo 
1 x 
1 x.10- l4 
I x lo-'" 
1 x lo-'? 
1 x lo-" 
1 x  10-'O 
1 x lo-' 
1" 10-l4 

Radon 
Concentration 

IPCi.I-'1 

1 x 10-l3 
1 x 1 0 - ' ~  
1 x lo-" 
1 x 10-10 
1 x lo-g 



values of soil permeabilities; then, the emphasis will be placed on the variation of the soil 

permeability and the resultant effects at different crack widths. 

As a starting point for this test I show in Fig.(5.9) how the model predicts the variations 

of the net resistance to soil gas flow as a function of the crack width (Part A), and soil 

permeability (Part B). As we can see, the predicted net resistance to soil gas flow varies 

inversely with both the crack width and soil permeability. In part A of Fig.[5.9), we can 

observe that for low soil permeability (k 5 1 . 0 ~  lo-" (m2J), the net resistance to the soil gas 

flow varied with the crack width following a similar pattern. For these cases, a variation 

of the crack width from 0.5 to lO.O[mm] caused a decrease of the net resistance to soil 

gas flow by a factor of 1.55 approximately. But for the cases with high soil permeabilities 

( k  1. 1 . 0 ~  1 0 - ~ ~ [ m " ) ,  the curves deviated from the general pattern, showing a stronger 

variation in the range of the crack width between 0.5 and 5.00[mm]. In this crack width 

range the net resistance to the flow of soil gas was reduced by a factor of 1.89 for the 

soil permeability of 1 . 0 ~  1 0 - ' ~ [ r n ~ ] ,  and by a factor of 6.17, for the case of the highest 

soil permeability considered, ( k  = l . O x l ~ - ~ [ m ~ ] ) .  In the crack width range from 5.0 to 

lO.O[mm], the curves showed the same basic pattern. 

These same features can be observed from another perspective, in part B of Fig.(5.9). There, 

for crack widths larger than 5.0[mm], the net resistance to the soil gas flow varied inversely to 

the soil permeability in the whole range from 1 . 0 ~  10-14 to 1 . 0 ~  10-~[m']. For crack widths 

lower than S.O[mm], the variation of the net resistance to the soil gas flow was also inversely 

proportional to the soil permeability, but now onIy in the range of soil permeabilities up to 

1 . 0 ~  10-"[m2]. Beyond this point, the curves deviated from the original pattern, suggesting 

a decreasing dependency on the soil permeability. 

These results are consistent with the idea that the net resistance to soil gas flow is composed 

of a sum of two components: R,&, the soil resistance; and Rcrack, the crack resistance. The 

crack width affects both terms, but has a stronger effect on Rcrack than on RaOil. The soil 

permeability affects only Rad. Then, for very low permeabilities, R,& is the dominant term 

of the net resistance, and the variation of the crack width will affect the net resistance in a 



relatively small range. But for large permeabilities, R,& is comparable with, or even smaller 

than, RCmck and consequently, the variations of the crack width will affect the net resistance 

in a larger range than in the cases before. 

Continuing with the test, the model will be observed in relation to its prediction of the 

pressure distribution in the soil block, depending on the variations of the soil permeability 

and crack width. In Fig(5.10) I have .plotted the average pressure at the crack interface, 

as a function of the crack width and soil permeability. Note that the disturbance pressure 

distribution was normalized to the (- 1,O) interval, where - 1 is the pressure at the base- 

ment, and 0 is the pressure at the ground level outside. Consequently the pressure at the 

crack interface is numerically equal to the total pressure drop across the soil block, 

Thus, as  we can see in Table (5.11) and Fig.(5.10), for very small soil permeabilities ( k  5 

1 . 0 ~  10-'~[m*]), the average pressure at  the soil-crack interface is very close to -1, and 

shows the tendency to get even closer to -1 as the crack width is increased. In other words, 

'the pressure drop across the basement floor is very small compared with the pressure drop 

within the soil block, and tends to be even smaller as the crack width is increased within 

the range considered. What happens here is that the total resistance of the crack-soil 

configuration, in these ranges of soil permeability and crack width, is completely dominated 

by the value of its soil component, and consequently the pressure drop occurs almost totally 

within the soil block. Furthermore, increases in the crack width will cause a decrease to 

both the crack and soil components, and therefore to the net resistance to the soil gas flow. 

Now, since the applied disturbance pressure is constant, the total flow of soil gas will then 

increase inversely proportional to the decrease of the net resistance. But, for the same 

increase of the crack width, the decrease of the crack resistance is faster than the decrease 

of the total resistance and therefore the pressure drop across the crack length, which is 

equal to the product of the crack resistance times the flow of the soil gas, will decrease with 

the increase of the crack width. 

Now, for large soil permeabilities ( k  2 1 . 0 ~  10-"[m2]), the crack resistance for the crack 

width in the range considered, can be of the same size, or even larger, than the soil resistance. 



Figure 5.9 - Net resistance to the flow of soil gas as a function of the soil permeability 
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(A) - Net resistance to the flow of soil gas as a function of the crack width, for different 
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(B) - Net resistance to the flow of soil gas as a function of the soil permeability, for 

different values of the crack width. 



Figure 5.10 - Average pressure at the soil-crack interface as a function of the crack 

width, for different soil permeabilities. 
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Therefore, the pressure drop across the basement floor can be comparable to the pressure 

drop within the soil block. Based on Fig.(5.10) we can say that in the present configuration 

of the house, where the basement is 2(mj below the ground, and the basement floor is 0.15[m] 

thick, a crack in the basement with a width larger than 5.0[mm] will cause a pressure drop 

lower than .5%, even for the soil with the highest permeability of 1.0 x lo-' [ m 2 ] .  For crack 

widths between 1 and 5[mm], the pressure drop across the basement floor will be lower than 

35%, even in the extreme value of soil permeability. And finally, crack widths between 0.3 

and l.O!mm], would cause pressure drops in the range of: 75% to 35%, for soil permeability 

of 1.0 x 10-~[m*];  25% to 5% for soil permeability of 1.0 x lo-'' [m2]; and from 5% to lower 

than 0.5%, for soil permeability of 1 . 0 ~  lo-" [ m 2 ] .  I t  should be noted here that other house 

configuration would have affected the resuits above in such a way that, an increase in the 

basement depth would have increased the soil resistance, increasing the pressure drop in 

the soil. Also, an increase in the thickness of the basement floor would have increased the 

crack resistance and consequently the pressure drop across the basement floor. 



The effect of crack width and soil permeability on the distribution of the disturbance pres- 

sure can also be analyzed by observing the disturbance pressure distribution at specified 
. .* 

cross sections of the soil block. Thus, in Figures (5.11) to (5.18) I have plotted the distur- 

bance pressure distribution in vertical cross-sections of the soil block, for different values 

of crack widths and soil permeabilities. These vertical cross-sections correspond to a ver- 

tical cut in the z - z plane of the soil block, right at the first layer of control-volumes 

in the y-direction. The isolines in those figures correspond to the points with the same 

disturbance pressure. 

So, the sequence of four figures, from Fig.(5.11) to Fig.(5.14), represents the disturbance 

pressure distribution in a soil with a very low permeability of 1 . 0 ~  10-'~!m", for different 

crack widths of 0.5, 1.0, 5.0, and 10.0[m2] respectively. As we can see, the pressure profile 

in the soil is affected by the size of the crack width such that, as the crack width increases, 

the pressure isolines are moved far away from the crack - the center of disturbance of the 

system - and deeper into the soil block. This agrees with the discussion about Fig.(5.10), 

where it was shown that the pressure at the crack interface, or the pressure drop across the 

soil block, increased with the crack width. Therefore, a larger pressure drop within the soil 

block would result in the movement of the pressure isolines to points more distant from the 

crack, which is exactly the prediction in Figs.(5.11) to (5.14). 

Now, the next sequence of four figures, from Fig.(5.15) to (5.18), represents the pressure 

profile in a soil with a higher permeability of 1 . 0 ~ 1 0 - ' ~ [ m ~ ] ,  but with the same cases of 

crack widths. Here again, we can observe the same, or even more pronounced effect of 

expansion of the pressure isolines as the crack widths are increased. However, other details 

can also be observed if we compare the profiles for the same crack width, but different 

permeabilities. So. a comparison of Fig.(5.11) with Fig.(5.15) will show that for a small 

crack width of 0.5jmmj (or a large crack resistance to soil gas flow), an increase of soil 

permeability from 1 . 0 ~  10-l4 to 1 . 0 ~  lo-'' [m2] caused a contraction of the pressure isolines 

moving them closer to the crack. And this is because the increase in the soil permeability 

caused an increase in the total flow of soil gas, and since the crack resistance at a crack of 



this size is comparable with the soil resistance for the soil permeability at  the higher end 

( l . ~ x l ~ - ~ ~ [ r n ~ ] ) ,  the pressure drop across the crack also increased, reducing the pressure 

drop within the soil block. Then, with a lower pressure drop across the soil block, a new 

pressure distribution is established with the pressure isolines closer to the crack. The same 

effect, although not so much evident, can be observed comparing Fig(5.12) and Fig.(5.16), 

representing the crack width of l.O[mm], and the same soil permeabilities above. Now, for 

crack widths of 5.0 or lO.O[mm], the crack resistance to  flow of soil gas is so small that 

the change in the total flow of soil gas resulted from changing the soil permeability from 

1 .Ox 10-l4 to 1.0 x 10-lo [n2] does not alter significantly the pressure drop across the crack, 

and consequently the pressure profile throughout the soil block is unaffected by changes 

in the soil permeability. This effect can be observed clearly by comparing Fig(5.13) with 

Fig.(5.17), for crack width of 5.0[mm], and Fig(5.14) with Fig.(5.18), for crack width of 

lO.O[mn], where the pressure profiles are almost identical. 

From the analysis of the variation of the disturbance pressure distribution as a function of 

the crack width and soil permeability, within the ranges considered, we can conclude that: 

- About the average pressure at  the soil-crack interface - 

1) In soil with low permeability, (k 5 1 . 0 ~  10- '~[rn~]) ,  the pressure drop occurs almost 

entirely within the soil block. The pressure drop across the basement floor decreases 

with increased crack width; 

2) In soil with high permeability ( k  > 1 . 0 ~  10- '~[ rn~]) ,  the pressure drop occurs al- 

most entirely within the soil block, for crack widths larger than 5.0[ntm], and is dis- 

tributed between the crack and the soil block, for crack widths lower than 5.0!mm]; 

- About the disturbance pressure distribution throughout the soil block - 

1) The pressure distribution within the soil is affected by the size of the crack, showing 

an expansion of the pressure isolines as the crack width is increased. This effect 

occurs at either high or low permeability of the soil; 

2) For crack widths larger than 5.0[mm] the pressure distribution within the soil is 

unchanged with the soil permeability; 

3) For crack widths smaller than 5.O[mrn] the pressure distribution in the soil changes 



with the soil permeability in such a way that an increase in the soil permeability 

results in a contraction of the pressure isolines to points closer to the crack. 

Having seen how the model responds in relation to the distribution of disturbance pressure, 

I will now focus attention on the model's prediction about the soil gas velocity, radon 

concentration in the soil gas, and radon flux, as the crack width and the soil permeability 

are changed. 

Thus, using the data from Table (5.11), the average velocity of soil gas as well as the 

radon flux through the soil-crack interface, as a function of the crack width and the soil 

permeability, were plotted in Fig(5.19). In part A of that figure we can see that the 

soil gas velocity decreased with the crack width in a similar pattern for all values of soil 

permeability, except for the highest one, ( k  = 1 . 0 ~  10-"m2]). The velocity of the soil gas 

through the crack is given by the quotient of the total flow of soil gas through the crack, to 

the cross sectional area of the crack. Therefore, the variation of the soil gas velocity with 

the crack width depends on how those two variables -.the soil gas flow and the crack area 

- are affected separately by the crack width. For low soil permeabilities, we have seen that 

the soil resistance to soil gas flow shows a relatively small variation with the crack width. 

For instance, for soil permeabilities below 1 . 0 ~  lo-'' [m2], a variation of the crack width by 

a factor of 2, from 0.5 to l.O[mm], reduces the net resistance to soil gas flow by a factor of 

1.13, approximately. (See Table (5.1 1)). Consequently the total soil gas flow also increases 

by the same factor. Therefore, since the crack area was increased by a factor of 2, then the 

soil gas velocity was reduced by a factor of 1.13+2 = 0.57. But now, for high permeabilities 

and small crack widths, the net resistance. to soil gas flow shows a stronger dependency on 

the crack width.6 For example, in a case with the soil permeability equal to 1 . 0 ~  10-~[rn'], 

an increase of the crack width from 0.5 to l.o[mm] reduced the net resistance to soil gas flow 

by a factor of 3.37. Consequently in this case, instead of decreasing with the crack width, 

the velocity of the soil gas was increased by a factor of 3.37 + 2 = 1.68. This explains why, 

in Fig.(5.19), the curves representing the soil gas velocity for high soil permeabilities, and 

small crack widths, deviate from the general pattern of inverse dependency on the crack 

See Table (5 .11)  and Fig.(5.9).  



Figure 5.11 - Disturbance pressure distribution in a vertical section of the soil block, 

with soii permeability equal to 1 .Ox 10-l4 [m2], and crack width equal to 0.5[mm]. 
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Figure 5.12 

with soil 

- Disturbance pressure distribution in a vertical section of the soil block, 

permeability equal to 1 . 0 ~  10-l4 [m2],  and crack width equal to 1 .O[mm]. 
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Location of the vertical cross-section in the soil block. 
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Figure 5.13 

with soil 

- Disturbance pressure distribution in a vertical section of the soil block, 

permeability equal to 1 . 0 ~  10-14[rn2], and crack width equal to S.~[mm] .  
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Figure 5.14 - Disturbance pressure diiibution m a vertical section of the soil block, 

with soil permeability equal to 1 . 0 ~  10-"[m2], and crack width equal to lO.O(mm]. 
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Figure 5.16 - Disturbance pressure distribution in a vertical section of the soil block, 

with soil permeability equal to 1 . 0 ~  lo-'' [m2], and crack width equal to l.O[mm]. 
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Figure 5.17 - Disturbance pressure distribution in a vertical section of the soil block, 

with soil permeability equal to 1.0 x lo-'' [m2] ,  and crack width equal to 5 .O[mmj. 
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Figure 5.18 - Disturbance pressure distribution in a vertical section of the soil block, 

with soil permeability equal to l . O x l ~ - ' ~ [ r n ~ ] ,  and crack width equal to lO.O[rnm]. 
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width. 

The variation of the total radon flux at the soil-crack interface, as a function of the crack 

width, for several soil permeabilities, is shown in part B of Fig.(5.19). The reason I have 

kept the graphs of the soil gas velocity and the radon flux in the same figure is to help 

in comparing these variables, Here it should be remembered that the total radon flux is 

composed of two components - the diffusive and the convective flux. So, in Fig(5.19) we , 

can see that, for high soil permeability (k 1 1 . 0 ~  10-"[m2]), the soil gas velocity is high 

and the convective component of the radon flux predominates. Consequently, the behavior 

of the total radon flux with the crack width follows the same pattern shown by the soil gas 

velocity. However, for soil permeabilities below 1 . 0 ~  10- '~[ rn~]  the soil gas velocity is small, 

and the convective component of the radon flux becomes of the same order of magnitude, 

or even smaller than the diffusive component. Thus, for these cases, the total radon flux 

approaches a minimum value due to its diffusive component. 

In order to provide another perspective to the interpretation of the relations described 

above, it would be useful to see how, in the model's predictions, the soil gas velocity and 

the radon flux vary with the soil permeability. So, in Fig.(5.20) and Fig.(5.21) I have plotted 

the variation of the soil gas velocity and the total radon flux, respectively, as a function 

of the soil permeability, for different values of the crack width. In each figure I have used 

both linear and logarithmic scales, which I think will help emphasizing some aspects of 

those curves. So, in Fig.(5.20) we can see that for large crack width (> 5.00[mm]), the 

variation of soil gas velocity is linear with the soil permeability, within the whole range 

considered, ( 1 . 0 ~  10-l4 to 1 . 0 ~  1 0 - ~ [ m ~ ] ) .  But for small crack width, ( 5  l.O[mm]), the soil 

gas velocity varies linearly with the soil permeability only in a smaller range, from 1 . 0 ~  10-l4 

to 1 . 0 ~  10-"[m2]. Beyond that, the curves deviate from the straight line, indicating a less 

strong relationship than the linear one. 

Now, in Fig.(5.21) we can see that, differently from the velocity of the soil gas, the radon 

flux does not vary linearly with the soil permeability. And the reason for that is because of 

the extra complexity in the composition of the total flux caused by its diffusive component. 



Figure 5.19 - Soil gas velocity and radon flux as a function of the crack width, for 

different values of soil permeability. 
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(B) - Average flux of radon through the soil-crack mterface as a function of the crack 

width, for different soil permeabilities. 



Figure 5.20 - Average soil gas velocity at the soil-crack interface, as a function of the soil 

permeability, for different values of crack width. 
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Figure 5.21 - Average flux of radon at the soil-crack 'mterface, as a function of the soil 

permeability, for different values of crack width. 
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Besides this, even the convective component of the radon flux, which is given by the product 

of the soil gas velocity times the radon concentration in the soil gas, at the soil-crack 

interface, is not linearly dependent on the soil permeability, because the radon concentration 

in the soil gas is also affected by the soil permeability and crack width, as we will see later. 

So, in l?ig.(5.21), for soil permeability below 1 . 0 ~  1 0 - ~ ~ [ r n ~ ]  the diffusive component of the 

radon flux predominates, and the total radon flux becomes almost invariable with the soil 

permeability. Then, for soil permeabilities above 1 . 0 ~  10-12[m2] the convective component 

of the radon flux predominates and the total radon flux varies almost linearly with the soil 

permeability. The variation is not actually linear because, as we will see in the next figure, 

the concentration of radon in the soil gas at  the crack interface does not vary linearly with 

the soil permeability. 

In Fig.(5.22) I have plotted the radon concentration in the soil at the soil-crack interface as 

a function of the soil permeability and crack width. There we note that for soil permeabil- 

ities below 1.0 x 10-l2 jm2] the radon concentration varies slowly with the soii permeability, 

and depends more on the crack width. Then, as the soil permeability increases above 

1 . 0 ~  10-12[rn2], the radon concentration increases up to a maximum and starts to decrease 

very rapidly. The location -of these peaks of radon concentration depends of the crack 

width, but according to the model's predictions they occur with soil permeabilities between 

1 .Ox 10- l1 and 1 . 0 ~  10- '~[ rn~] .  The reason for these peaks is that, for the soil permeability 

below 1 . 0 ~  10-12[m2], the soil gas velocity is small and the radon transport occurs mainly 

by diffusion, and consequently the radon concentration is almost invariable with the soil 

permeability. But as the soil permeability increases above 1 . 0 ~  1 0 - ~ ~ [ r n ~ ]  the convection 

component of the radon flux assumes the predominant role in the radon transport process, 

bringing radon-richer soil gas from deeper in the soil and, consequently, increasing the radon 

concentration at the soil-crack interface. However, as the velocity of the soil gas through 

the crack interface increases with the soil permeability, not only the radon-rich soil gas from 

deep in the soil, but also the poor-radon air from the atmosphere and the upper part of 

the soil block are brought to the crack channel, resulting then in the dilution of the radon 

concentration in the soil gas at the soil-crack interface. It should be noted that the dilution 



Figure 5.22 - Average radon concentration in the soil gas at the soil-crack interface, as a 

function of the soil permeability, for different values of the crack width. 

RADON CONCENTRATION x SOIL PERMEABILITY 

1 

effect can also be affected by the depth of the basement, as well as by the location of the 

crack in the understructure of the house. Further insights on this dilution effect will be 

given next. with the vertical profiles of the radon concentration in soil gas within the soil 

block. 

In order to show the dependency of the soil gas radon concentration, on the soil permeability, 

I have added a sequence of six figures, from Fig.(5.23) to Fig.(5.28), representing the profile 

of radon concentration in a vertical crosssection of the soil block, for different cases of soil 

permeability. The crack width was kept constant, and equal to 5.0[mm]. The contour lines 

represent the points in the soil block with the same radon concentration, which is given in 

dimensionless units, normalized within the interval (0,l). Note that, to get the actual value 

of the radon concentration, its normalized result should be multiplied by its characteristic 



value, 530[~Ci . l -~] .  

Thus, we can see in Figs. (5.23), (5.24), and (5.25) that, for low permeabilities (k < 
1 . 0 ~  10-12[m"), the profile of radon concentration is very little affected by the variation 

of soil permeability. However, for larger soil permeabilities, as shown in Figs. (5.26), 

(5.27), and (5.28), the distribution of radon concentration is clearly affected by the soil 

permeability. For example, comparing Fig.(5.26) with Fig(5.27) we see that, increasing the 

soil from 1 .Ox 10-l1 to 1 . 0 ~  10-lo [m2], the contour lines of radon concentration 

in the upper part of the soil block, close to the house, are moved deeper into the soil, 

reflecting the dilution effect caused by the larger amount of poor radon air being transported 

from the atmosphere and the upper part of the soil. On the other hand, the contour lines 

under the basement are moved closer to the location of the crack, as a consequence of the 

richer radon soil gas being transported from deeper in the soil. Now, with a further increase 

in the soil permeability to 1 . 0 ~  10-"m2], as shown in Fig.(5.28), the flow of soil gas increases 

even more making the dilution effect more evident. 

Finally, the variation of the indoor radon concentration with the soil permeability and crack 

width was plotted in Fig.(5.29). There we can see that the indoor radon concentration is an 

increasing function of both the soil permeability and crack width. For soil permeab:llity be- 

low 1 . 0 ~  10- '~[ rn~] ,  since the radon flux is mainly due to its diffusive component, the indoor 

radon concentration varies very slowly with the soil permeability. But for soil permeability 

above 1.0 x lo-'' [m2], the-variation is strongly dependent on the soil permeability, with an 

almost linear relationship. 

Sensitivity Analysis of the Computer Model - Bulk Diffusivity Coefficient of Radon in Soil. 

In the absence of any disturbance pressure in the soil, the distribution of radon concentra- 

tion with depth increases exponentially from a small value at the soil-air i n t e r f a ~ e , ~  to its 

maximum finite value at infinite depth in the soil. The rate at which the concentration of 

radon changes with depth is determined by its dinusion length in the soil, which is defined 

As a boundary condition, the radon concentration at the soil-air interface was considered equal to zero. (See 
Table (3.2)). 



Pigure 5.23 - Distribution of radon concentration in soil gas, in a vertical cross-section of 

the soil block, with soil permeability equal to 1 . 0 ~  10-l4 [ rn2] ,  and crack width equal to 

Verticai 
Cross 
Section 

Location of the vertical cross-section in the soil block. 

.OOOO 3.912 7.825 11.74 

RADON CONCENTRATION: VERTICAL LAYER # 1 - WHOLE FRAME 

The radon concentration is normalized within the interval (0,l). 



Figure 5.24 - Distribution of radon concentration in soil gas, in a vertical cross-section of 

the soil block, with soil permeability equal to 1.0~ 10-l3 [m2] ,  and crack width equal to 

5.0[mrn]. 

Vertical 
Cross 
Section 

Location of the vertical cross-section m the soil block. 

I 

RADON CONCENTRAT ION: VERTICAL LAYER # 1 - WHOLE FRAME 

The radon concentration is normalized within the interval (0,l).  



Figure 5.25 - Distribution of radon concentration in soil gas, in a vertical cross-section of 

the soil block, with soil permeability equal to 1.0 x 10-l2 [m2], and crack width equal to 

Vertical I Cross 
Section 

Location of the ve ica l  cross-section in the soil block. 

0000 3.91 2 7 .825 11.74 

RADON CONCENTRAT ION: VERTICAL LAYER # 1 - WHOLE FRAME 

The radon concentration is normalized within the i n t e d  (0,l). 



Figure 5.26 - Distribution of radon concentration in soil gas, in a vertical cross-section of 

the soil block, with soil permeability equal to 1.0~ 10-"[rn2], and crack width equal to 

Vertical 
Cross 
Section 

Location of the vertical cross-section m the soil block. 

. 0000 3.912 7.825 11.74 15.65 

RADON CONCENTRAT ION: VERTICAL LAYER # 1 - WHOLE FRAME 

The radon concentration is normalized within the interval (0,l). 



Figure 5.27 - Distribution of radon concentration in soil gas, in a vertical cross-section of 

the soil block, with soil permeability equal to 1 . 0 ~  10-1°[m2], and crack width equal to 

Vertical 
Cross 
Section 

Location of the vertical cross-section in the soil block. 

RADON CONCENTRATION: VERTICAL LAYER # 1 - WHOLE FRAME 

The radon concentration is normaiized within the interval (0,l). 
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Figure 5.28 - Distribution of radon concentration in soil gas, m a vertical cross-section of 

the soil block, with soil permeability equal to 1.0 x lo-' [ m 2 ] ,  and crack width equal to 

Vertical 
Cross 
Section 

Location of the vertical cross-section in the soil block. 

. 0000 3.912 7.825 11.74 15.65'  

RADON CONCENTRAT ION: VERTICAL LAYER # 1 - WHOLE FRAYE 

The radon concentration is normalized within the interval (0,l). 



Figure 5.29 - Indoor radon concentration, as a function of the soil permeability, for 

diierent values of crack width. 
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(A) - Version with the indoor radon concentration in a linear scale. 
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(B) - Version with the indoor radon concentration m a logarithmic scaie. 



as the distance required for the concentration to be cdanged by a factor equal to  the nat- 

ural number e. The diffusion length of radon in soil is closely related to its bulk diffusion 

coefficient. For a small bulk diffusion coefficient, ( or a small diffusion length), the radon 

concentration reaches its limiting value at a shallow depth in the soil. On the other hand, 

for larger diffusion lengths, the atoms of radon are able to diffuse through longer distances 

in the soil before being transformed by radioactive decay. Consequently, for those cases, the 

radon concentration reaches its maximum value at a deeper depth in the soil. Therefore, the 

distribution of radon concentration with depth in the soil is mainly governed by the bulk 

diffusion coefficient of radon in soil. The presence of a disturbance pressure distribution in 

the soil block will tend to alter this natural distribution of radon concentration with depth, 

the extent of which will depend on the level of the disturbance pressure, as well as the 

values of some physical parameters of the soil, specially the soil permeability. 

The diffusive component of the radon flux from the soil into the house is directly related to 

the bulk diffusion coefficient of radon in the soil. However, since the convective component of 

the flux is dependent of the radon distribution in the soil, and since the vertical distribution 

of radon in the soil is mainly affected by the diffusion length of radon in soil, then the bulk 

diffusion coefficient of radon in soil may affect both components - diffusive and convective 

- of the radon flux into the house. 

Thus, the purpose of this test is to verify how sensitive the computer model is to variations 

of the bulk diffusion coefficient of radon in soil, within its anticipated range. In order to 

perform the test, the program MASTRA was run six times, with the bulk radon diffusion 

coefficient in soil8 varying from 0.5 to 5.0 x 1 0 - ~ [ r n ~  i s ] .  The selected indicators were the 

average radon flux and the radon concentration at the soil-crack interface, as well as the 

indoor radon concentration. The results were grouped in Table (5.12),  and plotted in 

Fig.(5.30). 

In Fig.(5.30A) we can see that, as the bulk radon diffusion coefficient increased from 

0 . 5 ~  to 1 . 0 ~  1 0 - ~ ( r n ~ j s ] ,  the absolute value of the radon flux at the crack also increased 

Note that the radon diffusion coefficient In free air is equal to 1.2 x 10-~[rn~/s], [Na85]. 



Table 5.12 - Sensitivity analysis of the computer programs - Variation of the buIk 

dihsivity coefficient of radon in soil. 

I Badon D i e  

from 49.9 to 52.7[pCi/m2 .s]. Then, with a further increase of the diffusion coefficient above 

1 . 0 ~  1 0 - ~ [ m ~ / s ] ,  the variation of the radon flux is reversed. showing an inverse correlation 

with the radon diffusion coefficient. A similar effect occurs with the radon concentration in 

soil gas a t  the soil-crack interface, as well as with the indoor radon concentration, as shown 

in Table (5.12) and Fig.(5.30). What happens here is that ,  for a small radon diffusion coef- 

ficient in the order of 0 . 5 ~  1 0 - ~ [ m ~ / s ] ,  the diffusion length is relatively small, which means 

that the vertical profile of the radon concentration in the soil block reaches its limit value 

a t  a shallow depth. Consequently, a t  the depth in the soil where the crack is located, the 

Coefficient. 
[m' .s-'1 

radon concentration is already about its limit value, and therefore the diffusion of radon 

into the crack is not affected by the presence of the air-soil interface a t  the upper part of 

the soil block. In these cases, the concentration of radon a t  the soil-crack interface increases 

with the diffusion coefficient, resulting in an increase of both the diffusive and convective 

components of the radon flux, as we have seen in the first part of the curves in Fig.(5.30). If 

it were not for the influence of the air-soil interface a t  the ground level, the radon flux would 

continually increase as a function of the bulk radon diffusion coefficient in soil. However, as 

the diffusion length is increased, the vertical profile of the radon concentration in the soil 

is altered, reducing the concentration a t  the level where the crack is located. Therefore, 

in these cases the diffusive component of the flux is increased by the increase of the radon 

Indoor Radon 
Concentration. 

[pCi.l-l] 

Average Radon Flux Average Radon Conc. 
at the Crack Interface 

[pCi.m2.s] 
at the Crack Interface 

[Dime11~ionless] 
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Figure 5.30 - Sensitivity analysis of the numerical model - Variation of the buIk diffusion 

coefficient of radon in soil. 

-53 j , , 
03 1h 2b 33 4.5 

Tuna 1084 
RADON DIFF. COEF. IN S O L  in [rnUsl 

(A) - Average radon flux at the soil-crack mterface as a function of the bulk d i i i o n  

coefficient m soil. 

(CONC GIVEN IN DIMENSIONLESS UNITS1 

(B) - Average radon concentration in soil gas at the soil-crack mterface as a function 

of the bulk difkion coefficient m soil. 



diffusion coefficient, but the convective component is decreased by the decrease of the radon 

concentration in the soil around the crack, and consequently the total variation of the net 

radon flux will be the result of these two distinct tendencies. As we can see in Fig.(5.30), 

the absolute value of the net radon flux decreased slightly from 52.7 to  52.3[pCi/m2.s], with 

a doubling of the bulk radon diffusion coefficient from 1 to 2x  1 0 - ~ [ m ~ / s ] ,  but beyond this 

point the flux decreased rapidly with the increase of the bulk radon diffusion coefficient in 

soil. 

It should be remembered here that, in the basic case for this test, the soil permeability is 

assumed equal to 1 . 0 ~  10-l2 [m2], and the applied disturbance pressure is equal to -5[Pa],  

and as it was shown before in Figs. (5.8) and (5.21), for this case, the diffusive and the 

convective components of the radon flux a t  the soil-crack interface are of the same order 

of magnitude. So, for this case, a variation on both components of the flux, as caused 

by changing the radon diffusion coefficient, will affect the net flux accordingly, depending 

on the intensity of the variation of each component separately. However, for smaller soil 

permeabilities, and smaller disturbance pressures, the diffusive component of the flux pre- 

dominates, and the net flux of radon becomes an increasing function of the bulk diffusion 

coefficient of radon in soil. On the other hand, for larger soil permeabilities, or larger 

disturbance pressures, the convective flux predominates, and the net flux of radon is then 

expected to be: 1) almost invariable with the diffusion coefficient, for values of the diffusion 

coefficient below 1.0 x 1 0 - ~ [ r n ~ / s ] ;  and 2) inversely related to the bulk diffusion coefficient 

for the values of the coefficient above 1.0 x 10-~[m*/s].  Yet, these cases were not tested 

with the model. 

Sensitivity Analysis of the Computer Model - Soil Porosity. 

.4ccording to the model, as expressed by Eq.(3.14), the production rate of radon into the 

soil pore space is inversely related to the porosity of the soil. In other words, variation of 

the soil porosity should affect inversely the amount of radon, available within the soil pore 

space, to  be transported into the house. Thus, the purpose of this last test is to verify how 

the computer model responds to the variation of the soil porosity. In order to perform the 



test, the program MASTRA was run five times with the soil porosity varying from 0.2 to 

0.6. The model's predictions of the average radon flux at the soil-crack interface, and the 

indoor radon concentration, as a function of the soil porosity were then grouped in Table 

(5.13), and plotted in Fig.(5.31). 

The results showed that the computer model performed as it was expected to do. They 

also showed that the model is quite sensitive to variations of soil porosity. For example, the 

variation of the soil porosity from 0.4 to 0.6, which is the expected range of variation of this 

parameter, caused a decrease of the radon flux, and the indoor radon concentration, by a 

factor of two, approximately. It should be remembered though, that in reality the variation 

of the soil porosity would generally imply a variation of other parameters in the soil, such 

as the soil permeability, affecting differently the transport of radon through the soil block, 

as already discussed in the other tests of the model. 

Table 5.13 - Sensitivity analysis of the computer model - Variation of the soil porosity. 

Soil 
Porosity. 

Sensitivity Analysis of the Computer Model - Other Parameters. 

Average Radon Flux 
at the Soil-Crack Interface. 

The other parameters listed in Table (5.8) - radium concentration in the soil particles; radon 

emanating fraction; and soil particle density - are all related exclusively to the production 

rate of radon into the soil pore space, as expressed in Eq.(3.14). 

Indoor Radon 
Concentration. 
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Figure 5.31 - Sensitivity analysis of the numerical model - Variation of the soil porosity. 

W O N  FLUX x SOIL POROSITY 

(A) - Average radon flux at the soil-crack interface as a function of the soil porosity. 
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(B) - Average radon concentration m soil gas at the soil-crack interface as a function 

of the soil porosity. 



Predictions of the model in relation to the distribution of radon concentration in the soil, and 

the radon entry rate into the house, as well as the indoor radon concentration are expected 

to be directly proportional to the parameter S - the production rate of radon into the soil 

pore space. Therefore, since the parameters mentioned above are related exclusively to S, 

and since S is directly proportional to each one of them (see Eq.(3.14)), then the model's 

predictions on radon concentration are also expected to be directly proportional to each 

one of these parameters , that is: 1) the' radium concentration; 2) the radon emanating 

fraction; and 3) the soil particle density. 

Yet, no actual test was made using these parameters in the computer- model. However, 

based on the considerations above, a few predictions could be made, as it follows. As shown 

in Table (5.8), concentrations of radium in soil particles vary in a relatively large range 

(0.2 x 1 0 - 9 0  4.0 x ~ O - ' [ C ~ / K ~ ] ) ,  and consequently represent a potentially large source 

of variation of indoor radon concentration. For example, using the predicted data shown 

in Table (5.11), for a value of soil permeability of 1.0 x 10-l2 [m2], this range of radium 

concentration would have caused an indoor radon concentration in the range of 1.55 x lo-' 

to 3.11 x lo-' [pCi / l ] .  Yet, for a higher soil permeability of 1.0 x 10-"m2], the same range 

of radium concentration wouid have produced a indoor radon concentration in the range of 

2.4 to 48.0[pCi/J. 

Similarly, for a case of k = 1.0 x 1 0 - ~ ~ [ m * ] ,  the variation of the radon emanating fraction, 

in the range of 0.05 to 0.7, would have caused an indoor radon concentration in the range 

1.94 x lo-* to 2.72 x 1 0 - ' [ ~ ~ i / l l .  And also, for k = 1.0 x 10-"m'], the same range of radon 

emanating fraction would have produced an indoor radon concentration in the range of 3.0 

to 42.O[pCi/l). 

Variation of the soil particle density occurs in a very small range (from 2.6 x lo3 to 2.8 x 

103[Kg/m3]). Consequently this parameter has little effect on the predictions of the model. 
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CHAPTER VI 

CONCLUSION 

Overview. 

This thesis was developed from a fundamental hypothesis that soil is the main source 

of indoor radon. Under this hypothesis, radon in the soil gas enters the house from soil, 

due to a complex diffusive-convective mechanism, through openings in the basement of the 

building. The driving forces responsible for this phenomenon are caused by small pressure 

differences of the order of a few pascals created between the inside and the outside of the 

building, due to the effects of wind speed, temperature, and any unbalanced mechanical 

ventilation in the house. 

Thus, a mathematical model was developed, based on established principles of diffusion and 

flow of gas in porous medium, to describe the effect of these phenomena on the indoor radon 

concentration in a house. The model simulates: 1) the production, decay and the diffusive- 

convective transport of radon throughout the soil; 2) the diffusive-convective entry rate 

of radon into houses, through idealized openings in the basement; 3) and the final indoor 

radon concentration, as a function of the underpressure inside the house. The differential 

equations of the problem, were then solved by a three-dimensional numerical model, based 

on a finite-difference approximation, which was implemented by two coupled computer 

programs: PRESSU and MASTRA. PRESSU was used to calculate the distribution of the 
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disturbance pressure and the soil-gas velocity field throughout the soil block, as a function 

of the applied negative pressure in the basement. MASTRA then used the soil-gas velocity 

field predicted in PRESSU to calculate: 1) the distribution of radon concentration in the 

soil; 2) the radon entry rate into the house; 3) and the final indoor radon concentration. 

The model is restricted to a steady-state condition, and to a physical configuration of a house 

with basement, containing a well defined crack at the wall-floor joint of the basement. The 

important input parameters for the model are: 

- Applied negative disturbance pressure in the basement; 

- Soil permeability; 

- Soil porosity; 

- Bulk diffusion coefficient of radon in the soil; 

- Concentration of radium (Ra-226) in the soil; 

- Radon emanating fraction in the soil; 

- Geometrical dimensions of the house, including the crack width;. 

- Air exchange rate in the house. 

The computer model was adjusted in relation to its operational parameters in order to 

assure that: 1) the numerical method was applied correctly; 2) the boundary conditions 

were satisfied; 3) the iterative process in the computer codes converged to the solution of the 

algebraic discretization equations; and 4) that the solution of the algebraic discretization 

equations approximated the solution of the original differential equations of the model. 

A parametric sensitivity analysis was then performed to examine the performance of the 

model, and to describe the phenomenon of radon transport through the soil and into the 

house under the effect of all important related parameters, within their expected range of 

variation. 

The model developed in this dissertation is expected to be used for the interpretation 

of experimental results being produced at Lawrence Berkeley Laboratory, as well as in 

designing new experiments related to the problem of transport of radon from soil into houses. 



However, data from the LBL experiments, applicable to the conditions and circumstances 

assumed in the model, are not readily available yet, and consequently at this present time the 

model's predictions could not be verified against actually measured data. Therefore, because 

of the lack of an appropriate set of measured data at the present time, this dissertation will 

be concluded without a proper validation with real data - a task left to be performed later. 

Conclusions. 

Results from the adjustment and parametric sensitivity tests showed that the model per- 

forms consistently with physical expectations. More importantly, these results also indicated 

some significant features of the mechanisms and factors which affect the entrance of radon 

from the soil into the house, leading to the following observations and conclusions: 

1). The iterative procedure adopted in PRESSU and MASTRA showed that these programs 

are effective in solving the algebraic discretization equations representing the differential 

equations of the problem. 

2). Variation of the size of the numerical grid mesh indicated that the results were converg- 

ing to a fixed value, which is supposedly the solution of the original differential equations 

of the model. However, increase in the numerical grid beyond 35,000 nodes could not 

be tried because of the limitations imposed by the computer capacity available. 

3). The size of the soil block around the house is important in assuring that the boundary 

conditions at the external surfaces of the soil block are satisfied. Results of the tests 

showed then that the soil block size should be at least 10[m] beyond the basement walls 

and Boor, in order to assure a proper implementation of the boundary conditions. 

4). The value of the turbulent diffusion coefficient of radon in the air inside the basement 

affects the overall performance of the model - a value of 1.2[m2/s] was necessary to 

represent a condition of well mixed air in the basement. 



5). Selection of the interpolation scheme used for the discretization of the radon transport 

equation showed very little effect on the model's predictions. However, the parametric 

tests were performed in cases with low soil permeability, (k = 1.0 x 10-12[m2]), and 

a disturbance delta pressure of -5[Pa], where the convective component of the total 

flux of radon is comparable with, or even smaller than, the diffusive component. For 

higher soil permeabilities, or higher disturbance delta pressures, a stronger effect of the 

choice of the interpolation function on the model's predictions would be expected. The 

power-law discretization scheme has been recommended as the best formulation, and 

was then adopted as default in the model. 

6). Variations of the size of the house, more specifically the area of the basement, have 

shown very little effect on the performance of the model, which means that the model 

can be applied reasonably well for houses of varied sizes with no addition of extra errors. 

7). Variations of the applied disturbance pressure in the basement have a direct, though 

not linear, effect on the model's predictions. For a soil permeability of 1.0 x 10- '~[ rn~] ,  

an increase of the delta pressure from almost zero to -20[Pa], caused a 4.8-fold increase 

in the indoor radon concentration, from 1.45 x to  7.0 x 10 -~ [~Ci / l l .  However, for a 

higher soil permeability, the same variation of delta pressure would have caused a higher 

increase in the indoor radon concentration. And vice-versa, for lower soil permeability, 

the increase in indoor radon concentration would have been lower. 

8). The disturbance pressure distribution throughout the soil block is affected by both the 

crack width and soil permeability. For the presently simulated configuration of the 

house, with a basement depth of 2.0[m], and a basement floor of 0.15[m] thick, these 

effects can be summarized as the following: 

- In soil with low permeability, ( k  5 1.0 x 10-l2 [m2]), the pressure drop occurs almost 

entirely within the soil block - an effect that is almost independent of the crack 

width; 

- In soil with high soil permeability, ( k  > 1.0 x 1 0 - ' ~ [ m ~ ] ) ,  the pressure drop occurs 

almost entirely within the soil block, for crack widths larger than 5.0[mm], and 



is distributed between the crack and the soil block, for crack widths lower than 

5.0[mm]; 

- The disturbance pressure distribution within the soil shows an expansion of the 

isobar lines as the crack width is increased. This general effect occurs at either 

high or low permeability of the soil; 

- For crack widths larger than S.O[mm], the disturbance pressure distribution within 

the soil is practically unchanged with the soil permeability; 

- For crack widths smaller than S.O[mrn], the disturbance pressure distribution in 

the soil is affected by the soil permeability in such a way that increasing the soil 

permeability causes a contraction of the isobar lines to points closer to  the crack. 

9). The velocity of the soil gas, as well as the flux of radon at the soil-crack interface, are 

affected by the crack width and soil permeability in the following ways: 

- Except for those configurations of very small crack width (< l.O[mm]), and very 

high soil permeability ( k  1 1.0 x 1 0 - ~ [ m ~ ] ) ,  the soil gas velocity and the radon flux 

at the soil-crack interface are inversely related to the crack width; 

- Note however that the total flow of radon into the house is always directly related 

to the crack width and soil permeability; 

- For large crack width, ( 2  5.0[mm]), the soil gas velocity varies linearly with soil 

permeability (with a one-by-one slope), within the whole range considered (1.0 x 

10-l4 to  1.0 x 1 0 - ~ [ r n ~ ] ) .  However, for smaller crack widths, (< l.O[mm]), the soil- 

gas velocity varies linearly with the soil permeability, only in a smaller range, from 

1.0 x 10-l4 to 1.0 x lo-" [m2]. Beyond that, ( k  2 1.0 x 10-l1 [m2]), the relationship 

is less strong than linear; 

- Differently from the velocity of the soil gas, the total radon flux a t  the soil-crack 

interface does not vary linearly with soil permeability. For soil permeability below 

1.0 A 10-l2 [m2], the diffusive component of the radon flux predominates, and the 

total radon flux becomes almost invariable with the soil permeability. However, for 

soil permeabilities above 1.0 x 1 0 - ~ ~ [ m ~ ] ,  the convective component of the radon 

flux predominates and the total radon flux then varies almost linearly with the soil 

permeability. 



10). The radon concentration in the soil gas throughout the soil block is affected by the 

crack width and soil permeability in the following ways: 

- The radon concentration at the soil-crack interface is inversely dependent on the 

crack width, for any value of soil permeability; , 

- For low soil permeability, ( k  5 1.0 x 10-l"rn2]), the radon concentration at the 

soil-crack interface increases very slowly with the soil permeability; 

- For larger soil permeability, ( k  2 1.0 x 1 0 - ' ~ [ m ~ ] ) ,  the radon concentration at 

the soil-crack interface increases rapidly with soil permeability, until the effect of 

dilution starts; 

- Dilution of the radon concentration at the soil-crack interface, due to mixing with 

poorer-radon soil gas coming from the upper part of the soil block, begins with soil 

permeability between 1.0 x lo-" to 1.0 x lo-'' [m2], and becomes very significant 

for k 2 1.0 x 10-'O[m2]. Also, the intensity of the dilution effect is directly related 

to the crack width; 

- Note that the dilution effect is also inversely related to the depth of the basement 

floor, and directly related to the applied disturbance pressure and the diffusion 

coefficient of radon in the soil; 

- For low permeability, ( k  < 1.0 x 10-12[m2]), the distribution of radon concentration 

throughout the soil block is very little affected by variations of the soil permeability. 

However, for large soil permeabilities, ( k  2 1.0 x 1 0 - ~ ~ [ r n ~ ] ) ,  the distribution of 

radon concentration in the soil block is highly affected by the soil permeability, 

reflecting the dilution effect in the upper part of the soil block, and a concentration 

effect in the regions closer to the crack but under the basement. 

11). The indoor radon concentration is an increasing function of both the soil permeability 

and crack width. For soil permeabilities below 1.0 x lo-'' !m2], the radon flux into the 

house is mainly due to its diffusive component, and the indoor radon concentration 

varies very slowly with the soil permeability. However, for soil permeabilities above 

1.0 x 1 0 - ' ~ [ m ~ ] ,  the convective component of the flux predominates, and the variation 

of the indoor radon concentration becomes strongly dependent on the soil permeability, 

with an almost. linear relationship. 



12). The total entrance of radon into the house may be either directly, or inversely, related 

to variations of the bulk diffusion coefficient of radon in the soil. For bulk diffusion 

coefficients lower than 1.0 x 10-~[rn~/s j ,  the indoor radon concentration is directly 

dependent on the diffusion coefficient. However, for bulk diffusion coefficients higher 

than 1.0 x 10-~[ rn~ / s ] ,  the indoor radon concentration becomes inversely dependent on 

the diffusion coefficient. It should be noted though that this effect is also dependent on 

the applied disturbance pressure as well as on the soil permeability: Thus, for a very low 

soil permeability, or a very low disturbance pressure, the indoor radon concentration is 

an increasing function of the bulk diffusion coefficient of radon in soil, within its whole 

range. On the other hand, for a very high soil permeability, or a very high disturbance 

pressure, the indoor radon concentration becomes: 1) independent of the bulk diffusion 

coefficient of radon in soil, for values of the diffusion coefficient below 1.0 x 1 0 - ~ [ r n ~ / s ] ;  

2) inversely dependent on the bulk diffusion coefficient of radon in soil for values of the 

diffusive coefficient above 1.0 x lo-' [m2/s]. 

13). The indoor radon concentration is inversely dependent on soil porosity, if this parameter 

is considered varying separately. However, variations of soil porosity are generally 

associated with variations of other parameters in the soil, such as the soil permeability, 

which affects directly the indoor radon concentration. Consequently, the overall effect 

on the indoor radon concentration is, in fact, the conjugation of the effects caused by 

the variation on the soil porosity and the associated variation of soil permeability. 

Recommendations. 

The radon transport model developed in this thesis, despite its simplified assumptions, 

constitutes an important first-generation step in the modeling effort to characterize the 

production and transport of radon in soil and its entrance into houses. It provides the 

basic theoretical framework which can be used to further explore the interrelation of the 

parameters affecting this phenomenon. 



The simulatiohs performed during the sensitivity analysis of the model have provided a 

great deal of information describing qualitatively and, up to  a certain point, quantitatively 
.L.O 

the basic features of the mechanisms involved in the radon transport in the soil and its 

entrance into the house. However, much is still left to be done, which will be suggested as 

it follows. 

1). Validation of the model is the most important task to be performed now. Predictions 

of the model need to be compared with measured results, in order to assure that its 

performance is quantitatively accurate. The appropriate data for the validation of the 

model should be collected in houses with basements, and with a well characterized gap at 

the wall-floor joint, and should be composed of the following measurements: 1) pressure 

difference between the basement and the ground level outside; 2) air-exchange rate; 3) 

and indoor radon concentration. These variables should be measured simultaneously, 

and then averaged over the same periods of time. Information about the physico- 

chemical properties of the soil should also be provided, such as soil permeability, soil 

porosity, and concentration of radium (Ra-226), in the soil particles. Other kinds of 

information, such as  the direction and speed of the wind, and the periods of rain or 

snow, would also be useful in the interpretation of the measured data, and in the 

validation of the model. 

2). After being validated, the model could be used for the investigation of other problems, 

and in helping design new experiments. For example, it could be used to simulate 

the effectiveness of employing different materials in the aggregate regions of different 

thickness around the basement, with the objective of controlling the radon entrance into 

the house. Results from this simulation could determine the best range of parameters 

to solve the problem, which could then be verified in an experimental setup. 

3). A theoretical question of great importance that could be investigated using the model, 

at its present stage of development, is related to the concept of the radon availabil- 

i ty around the house. This question could be stated as: what is the volume of soil 

contributing its radon to the indoor air of the house, under various configurations of 



disturbance delta pressure, soil permeability, and source terms, as well as the geomet- 

rical configuration of the house? A better knowledge of the concepts involved in this 
. - 

question would certainly help in the formulation of techniques for the reduction of the 

radon availability to the house. 

4). Improvements of the model could also be suggested. Among the most important are 

the following: 

- The model should be extended to include more flexibility in defining other possible 

cracks, at different locations, in the building understructure; 

- Another region should be defined at the bottom of the soil block, with different. 

physical parameters, to represent the location of the water table; 

- The applied disturbance pressure should also be modeled in terms of its generating 

mechanisms, such as the wind speed and temperature differences from inside to 

outside of the houses, as well as any unbalanced mechanical ventilation installed 

in the building. In this approach, the disturbance pressure would be calculated 

internally in the model, rather than been taken as an input parameter; 

- Asymmetrical distribution of the disturbance pressure in the soil around the house, 

due to the effect of the wind speed and direction, should also be considered. In 

this case, the numerical model should be developed in the whole soil block, instead 

of its quarter as it was done in the present version of the model. Furthermore, the 

boundary condition for the disturbance pressure distribution at the soil-air inter- 

face, instead of being fixed equal to zero as it was done here, would be established 

as a function of the wind speed and direction; 

- In this model, the radon entry rate into the house and the air exchange rate were 

considered as independent processes. However, as  it as described in Chapter I, 

most of the ventilation in the house occurs by uncontrolled infiltration induced by 

the underpressurization of the house. Consequently, the same forces inducing the 

entrance of radon from the soil into the basement are also responsible for most of 

the ventilation of the house. Therefore, as an improvement of this model, the air 

exchange rate in the house should also be treated as a function of the disturbance 



pressure generating mechanisms such as the wind speed, temperature differences, 

and the unbalanced mechanical ventilation; 

- A further improvement would be the development of a time dependent model incor- 

porating the changes suggested above. A dynarnical model would be able to account 

for all the transient effects occurring in the phenomenon of radon transport from 

soil into houses, expressing it more realistically. However, a three-dimensional time 

dependent model would be probably very expensive in terms of computer time, 

requiring for this matter the use of faster machines, such as the new generation of 

super computers. 



APPENDICES 
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APPENDIX A 

DERIVATION OF THE CONTINUITY EQUATION FOR A POROUS MEDIUM. 

The purpose of this appendix is to describe the derivation of the continuity equation 

for a porous medium, which will be used in the formulation of the model for the radon 

transport in the soil. 

Concepts of System and Control-Volume. 

SYSTEM. 

A system consists of a definite amount of mass distinguished from all other matter called its 

surroundings. The boundaries of a system form a closed surface. This closed surface may 

vary with time such that the same amount of mass of the system is kept constant. Based 

on the law of conservation of mass, the mass within a system does not change with time. 

That means: 

CONTROLVOLUME. 

A control-volume consists of a definite region whose size and shape are arbitrarily defined 

in the space. The boundaries of a C.V. are called control-surfaces. 



Figure A.l- Representation of a generic system with identical control-volume at different 

time steps, t and t - dt, in a velocity field $. 

a) Time = t br Time = t + dl 

Relation of the System and Control-Volume Concepts in Terms of a General Property of the System. 

The objective here is to formulate a general expression relating the concepts of the system 

and the C.V. in terms of a general property of the system1. 

Figure (A. l )  shows a general flow situation, with the fluid moving with a some velocity 

relative to a fixed system of coordinates. The system is represented by the figure drawn 

in dotted lines. .4t certain time t ,  a control-volume is coincident with the system which 

contains a certain mass of fluid. At a period of time dt later, the system has moved a little 

bit, and three regions can now be distinguished: region (I), occupied only by the control 

volume; region(II), simultaneously occupied by the system and the control-volume; and 

region (111) occupied only by the system. 

This derivation is described in details in the book: Fluid Mechanics, Chapter 3, by Streeter 2nd Wylie, ISt85j. 



! 
Let's now define N as the total amount of some property (mass, energy, momentum, etc) 

within the system at any specific time; I), the amount of this property per unit of mass 

throughout the fluid; and p  as the density of the fluid. 

The variation of the property N in t h e  sys tem in the time period d t  is given by: 

Summing and subtracting (II  t l p d ~ )  ,+. to the right, and dividing by d t  yields: 

-4s dt  is made infinitesimally small, the left side of the equation above becomes: 

And the first term of the right side becomes: 

And the last two terms of the right side become: 

and, 

(S, I ) P ~ v )  t+& 

d t  
+ - I ) ~ ? .  d i .  

inflow area 

Therefore, from the two expressions above we get: 



Substituting these terms back into Equation A.2, yields: 

The general expression above expresses the fact that  the time rate of change of N within 

a system is equal to the time rate of change of the property N within the control volume 

(fixed relative to  x,y,z), plus the net rate of flux of N across the control-volume surface 

(control-surface) . 

Derivation of the continuity equation. 

In the Equation A.3 above consider the following: 

N = m, the mass of the system; 

'l = - " = l , t h e m a s s p e r u n i t o f m a s s .  m 

The continuity equation is then developed from the general principle of conservation of 

mass, given by: 

Substituting the expression above into Eq.(A.S), we will get the continuity equation in its 

integral form, expressed as: 

In words, the continuity equation for a control-volume states that the time rate of increase 

of mass within a control-volume is equal to the net rate of mass inflow to the control-surface. 



Continuity Equation in a Porous Medium. 

Consider that the fluid is contained in the void space of the porous medium, and that a 

control-volume is defined in this porous medium. We also define the porosity of the medium, 

e ,  as the ratio of the volume of the void space in the control-volume to the total volume of 

the control-volume. 

Thus, the continuity equation applied to a control-volume of a porous medium states that 

the time rate of increase of mass within the void space of the control-volume is equal to the 

net rate of mass inflow to the control-surface. Therefore, based on Eq.(A.4), this concept 

is then expressed as: 

which is the integral form of the continuity equation for the porous medium. In order to 

derive the differential form of the continuity equation we apply the Gauss Theorem: 

which in this case becomes, 

Substituting Eq(A.6) into (A.5), yields: 

or. 



The equation above must be valid for any point within the C.V., as  well as for the total 

C.V., therefore the integrand must be zero poinbby-point. That means: 

Equation above is the differential form of the continuity equation in a porous medium. Note 

that the continuity equation in the porous medium, as expressed by Eq.(A.7) is defined at a 

point in the medium. However, due to the inhomogeneity of a porous medium at microscopic 

level, the variables 6, p ,  and $ in Eq.(A.7) are not defined at every point of the medium. 

Furthermore, the definition of these variables implies in a concept of average over a certain 

volume of the medium, and consequently they are meaningful only at macroscopic level. 

Therefore it should be emphasized here that although the continuity equation is defined 

at a point in the porous medium, its application is only justifiable when the medium is 

considered in a macroscopic level. 

For a rigorous derivation of the continuity equation in a porous medium, and a systematic 

treatment of averaging techniques for dealing with general multiphase systems, the reader 

is directed to the book of Jacob Bear, [Be79], and the paper of Hassanizadeh and Gray, 

[Ha83a]. 
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APPENDIX B 

DERIVATION OF THE DIFFERENTIAL FORM OF DARCY'S EQUATION. 

Consider the following figure representing Darcy's experiment.' Notice that  here we 

set the vertical coordinate (z-axis) oriented downward. Consequently, the final resultant 

mathematical expressions should reflect this notation. 

The result of Darcy's experiment shows that: 

Where Q is the total volume flow, in [rn3/s]; A is the cross section geometric area, in [m]; 

K is a constant in units of [rn/s];h, h l ,  and h2 are the heights of the columns, in [m]; and 

the minus sign indicates that  the flow is in the opposite direction t o  increasing h. 

The absolute pressure a t  any point within the column of porous material is equal to: 

where P is the absolute pressure, in [ ~ / r n : ] ;  PH is the absolute hydrostatic pressure corn- 

ponent, in I,V/m2!; and p is the disturbance pressure component due to  the flow of the fluid 

through the column. 

The absolute hydrostatic pressures a t  the points 1 and 2 in the column are: 

Reference: Schedegger, A .E . ,  7hc Phyrcs of F70w 'Ihrocyh Porow Media, Unwersit,y of Toronto Press, Third 
Edition, 1974, Chnprer 4. 



Figure B.1- Schematic of Darcy9s Experiment. 

where Prop is the absolute pressure a t  the height H. 

The disturbance pressure components a t ' the  points 1 and 2 are: 
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Substituting Eqs.(C.4) and (C.3) into Eq.(C.2), yields: 

From the equations above, the value of hl and h2 can be expressed as: 

Substituting these values into Eq.(B.l), yields: 

Now, dividing the equation above by the cross sectional area A, we obtain the seepage 

velocity q, expressed as: 

But making, 



where k is defined as the specific permeability of the porous medium, in [m2];  and p is 

the dynamic viscosity of the fluid, in [ N .  s/m2]; and then substituting Eq.(B.9) into (B.8), 

yields: 

(B. 10) 

We want now to express the equation above in differential form. In this case we would 

expect that the velocity q becomes a vector i. We would also expect that the pressure 

difference should be expressed by the pressure gradient. 

However, a priori, there is no unique way of doing this. One possibility of obtaining a 

differential form for the Darcy's expression is suggested by the equation above, by letting h 

become infinitesimal [Sc74]. Therefore, assuming the soil as an isotropic2 porous medium, 

the differential form of Darcy's law3 can be expressed as: 

where, is the seepage velocity vector, equal to the volume of soil gas flowing per unit of 

time per unit geometric area; P is the absolute pressure; and i j  is the vector in the direction 

of gravity (i.e. downward) and of the magnitude of gravity. 

Note that since the adopted system of coordinates has the vertical direction (z-axis) oriented 

downward, then the gravity vector is always positively oriented. 

If the soil were considered as an m~sotropic porous medium, m expression similar to Eq.(B.11) would have been 
obtained for the differentid fonn of Darcy's law, except that the soil permeability would have been expressed 
~a I - the pcrmeabilsty temor of the soil. (See Scheidegger [Sc74], page 79). 
The differential fonn of Dxcy's law can also be derived from examination of the momentum equation, and it 
has been verified by numeroue experiments. [Sc74], [Ha83b]. 
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APPENDIX C 

VELOCITY OF THE SOIL GAS THROUGH THE CRACK. 

In this appendix I derive an expression for the velocity of the soil gas through the crack, 

as a function of the crack geometry and the pressure difference between the basement and 

the crack-soil interface. 

The geometry of the crack is approximated by two parallel plates of infinite width, separated 

by a finite distance and with finite length. The flow regimen of the gas flowing between these 

parallel plates is assumed to be laminar, incompresssible, and in a steady-state condition. 

The flow is analyzed by taking a thin larnina of unit width as a free body, as shown in 

Fig(C.1). In steady state, the lamina moves at constant velocity w in the z-direction. But, 

due to the shear stress, the velocity w is variable in the x-direction, approximating zero 

near the crack walls, and reaching its maximum at middle distance between the plates. 

The sum of all forces applied at this lamina are (at steady-state the sum of the forces is 

zero): 

where, 

P = Absolute pressure, in [ ~ l m * ] ;  

T = Shear stress, in [ N / m 2 ] ;  

7 = Specific weight, in [N /m3] .  



Figure C.l- Representation of all forces applied to a thin lamina of unit width, moving 

in a laminar, mcompressibie, steady flow between parallel plates of infinite width. 

I crack 

'crack 

Dividing the equation above by the volume of the lamina element (equal to dzdy, and 

simplifying, yields: 

or. 

Note that the shear stress r is independent of z, and is only a function of z. Then the partial 

derivative can be transformed in the following: 

Also note that the pressure P is uniform at any section normal to the direction of the 



flow (z-direction), and that is constant for any such section and can only vary in the 

z-direction. Consequently, the partial derivative of the pressure can also be transformed in: 

The specific weight is assumed to be invariable and can then be expressed as: 

Making these substitutions into Eq.(C.2) yields: 

But from the Newton's Law of Viscosity, the shear stress r can be expressed as: 

where p is the soil gas dynamic viscosity, given in [Ns /m2] .  Now, from the two equations 

above, the derivative of the shear stress T can also be expressed as: 

Now, if in Equation (C.3) each side is a function of a separate distinct variable, then it 

results that each side is always equal to the same constant. Let's call this constant /3, and 

substitute it into Equation (C.3). Then: 



Let's now solve Eq(C.4a) for the velocity w. Integrating it twice: 

The two constants C1 and C2 can be obtained with the following boundary conditions: 

Then, 

and, 

So, Equation (C.5) becomes: 



We now want to express ,f3, the separation constant, in terms of the flow q, per unit of length 

of the crack. ' 

Thus, making: 

the flow q could then be expressed as: 

Then, solving for the separation constant P, yields: 

The next step now is to find the variation of the pressure, (P - yz), along the z-direction. 

Thus, substituting Eq.(C.10) into Eq.(C.4b), yields: 

Integrating from position 1 (where P = P I ,  and z = zl) to position 2 (where P = P2, and 

z = z2), along the whole depth lCmck of the crack, the equation above becomes: 

Note that  q is the flow per unit of length of the crack, and is given in units of [m3/m = m2/$]. 



[(& - 7 ~ 2 )  - ( P I  - 7a)] = -- 
t r a c k  

P2 - P1 - 7 ( 2 2  - z1) = - '2" ( z2  - 21) ) 

t a c k  

Solving Eq.(C.ll) for the flow q yields: 

Now, I want to find the average velocity iir 

expression: 

causing the flow q, according to the following 

where, 

- = Average gm velocity through the crack, in [m/s]; 

A = Cross-sectional area per unit of width of the crack, in [m2/m = m]. 

But the cross sectional area per unit of length of the crack is equal to: 

Consequently, the flow q can be expressed as: 

(C .  13) 

( C .  14) 

(C. 15) 



Substituting Eq. (C.12) into Eq.(C.15), yields: 

. ..- 

(C. 16) 

Now, renaming the variables: a = wCmck; P I  = PbU; and P2 = Pcrack, and substituting them 

into Eq.(C.16), yields: 

Note: 

- Equation above expresses the average gas velocity through the crack channel; 

- The system of coordinates adopted here has the vertical direction oriented downward; 

- A negative vaiue of wcmCi, means an upward direction of flow. 
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APPENDIX D 

RADON MASS-BALANCE EQUATION IN A POROUS MEDIUM. 

In this appendix I present a very simplified derivation of the radon mass-balance equa- 

tion applied in a porous medium. 

Assumptions and Definitions. 

Consider the soil (porous medium) with the following characteristics: 

Porosity, E ,  equal to the ratio of void to bulk volume; 

Radon source term, S, equal to the number of radon atoms produced into the void volume 

(pore space) per unit of time, in [Ci/rn3s]; 

Radon concentration, C, in the soil pore space (in the soil gas), in [Ci/m3]; 
- .  

Soil gas seepage velocity, i j ,  equal to the ratio of the volume flow by the geometrical cross 

sectional area, in [m/sj; 

Total (bulk) flux of radon through the soil, j ,  equal to the number of radon atoms crossing 

a geometrical cross sectional area per unit of time, in [Ci/ m2 s]; 

Bulk diffusivity constant of radon in the soil, D, equal to the ratio of the diffusive component 



of the total flux across a geometrical area, to the gradient of the interstitial concentration 

(soil gas concentration) of radon, in [ m 2 / s ] .  

Mass-Balance Principle. 

Consider a generic control-volume surrounding a porous medium, as represented in Figure 

( 1 )  Radon atoms are produced in the solid particles within the control-volume, with part 

of them reaching the soil pore space and mixing with the soil gas. Then, these atoms either 

decay inside the control-volume, or flow out through the control-volume external surface. 

The whole control-volume is supposed to be immersed in an external flow field. 

Figure D.1- A generic control-volume defined within a poruus medium immersed m a 

flow field. 

.At any instant in time, the total amount of radon atoms present within the pore space of 

the control-volume is given by integrating the elementary amount of radon, CedV, in the 

elementary volume of void space edV, over the whole void space of the control-volume. It 

can be expressed as: 



Also, the total amount of radon being produced and decaying inside the void space of the 

control-volume is given respectively by: 

Finally, the total amount of radon crossing the external surface of the control-volume per 

unit of time is given by: 

Now, due to the conservation of mass within the control-volume, the net variation of the 

amount of radon per unit of time, %, in the pore space is given by the sum of the terms 

listed above, such that: 

Using the divergence theorem, the surface integral representing the net flow through the 

external surface of the control-volume can be transformed in a volume integral, and Eq.(D.l) 

becomes: 

Now, equating the integrands, it yields: 

a 
- (CE)  = SE -ARnCc - 9 .  5 
at  



Equation above represents the general mass-balance principle applied to any point in the 

medium. At steady-state, 6 ( C r )  is zero, and the mass-balance is expressed as: 

Now, substituting the total flux, 7,  by its convective and diffusive components, GC and 

- D ~ C  respectively, the mass-balance equation is expressed as: 

and in one dimensional configuration it becomes: 

Note that the equations above are valid for any form of u, D, S, and r,  constant or not. For 

E constant with space, Eq(D.3) becomes: 

where ~ ; f f  is the total effective flux, or the total flux per unit of open pore area. 

Note that the radon mass-transport equation in the porous medium, as expressed by 

Eq.(D.4) is defined at a point in the medium. However, due to the inhomogeneity of a 

porous medium at microscopic level, the variables E ,  C, S, and ?j in Eq.(A.7) are not de- 

fined at every point of the medium. Furthermore, the definition of these variables implies 

in a concept of average over a certain volume of the medrum, and consequently they are 

meaningful only at macroscopic level. Therefore it should be emphasized here that although 



the continuity equation is defined at a point in the porous medium, its application is only 

justifiable when the medium is considered in a macroscopic level. 

For a rigorous derivation of the mass-transport equation in a porous medium, and a sys- 

tematic treatment of averaging techniques for dealing with general multiphase system, the 

reader is directed to the book of Jacob Bear, [Be79j, and the paper of Hassanizadeh and 

Gray, [Ha83a]. 



BOUNDARY CONDITIONS AT THE SOIECRACK INTERFACE FOR THE 

SOLUTION OF THE DISTURBANCE PRESSURE FIELD EQUATION. 

The objective in this appendix is to describe in details the boundary conditions imposed 

on the interface between the crack and the soil, for the solution of the disturbance pressure 

field equation in the soil block. Although all boundary conditions for this problem were al- 

ready specified in Table (3.1), it is still necessary to formulate the appropriate mathematical 

equations expressing the boundary conditions at  the soil-crack interface. 

Thus, consider Figure (E.1.), representing the crack defined at the basement floor, as  well 

as the first controi-volume in the soil underneath the crack. Also shown is the interface 

between the crack and the control-volume in the field. 

As a boundary condition imposed at this interface, it is assumed that the disturbance 

pressure and the velocity of the soil gas through the interface are both continuous functions 

of distance. So, consider a point (IN) located right a t  the interface. Then, for a point 

(IN-) located inside the crack but as near as possible to the point (IN), and for the point 

(IN+) located in the soil, but very close to the point (IN), the boundary conditions are 

expressed as: 

where, 

 IN-) = Value of the disturbance pressure within the crack as it gets closer 
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Figure E.l- Schematic representation of the soil-crack interface. 

to the interface; 

= Value of the disturbance pressure within the control-volume in the soil 

as it gets closer to the interface; 

= Average velocity of the soil gas within the crack at it gets closer to 

to the interface; 

= Average velocity of the soil gas within the control-volume of the soil 

as it gets closer to the interface. 

Here I observe that the disturbance pressure field equation will be solved numerically using 

an iterative method, in which the value of p ( ~ r - )  = P(IN+)  = pm is assumed to be known 

at each iteration (a first-order boundary condition). The method starts with an arbitrary 

choice of P I N .  Then, the pressure distribution over the whole soil block is calculated. 

Following this, the values of W ( I N - )  and W ( I N + )  are calculated, and compared. If the value 

of W ( I N - )  does not match W ( I N + )  within a tolerance limit, a new value of is assumed, 

and the whole process is repeated. 



Now I proceed with the formulation of the equations expressing the velocity w.  I have 

assumed that the regimen of the flow is at steady-state, and that the walls of the crack are 

parallel. Therefore, the average velocity of the soil gas flowing through the crack, (wCruk), 

should be constant along the crack length and, consequently, equal to the average velocity 

of the soil gas crossing the interface. That means: wc,,k = W(IN-) = constant. 

The average velocity of the soil gas through the crack was evaluated in Appendix C, and is 

expressed as: 

I want to represent the equation above in terms of the disturbance pressure p, instead of the 

absolute pressure P .  From Eq.(3.4), the absolute pressure PIN, and the absolute pressure 

at the basement Pb, are given by: 

Pbcls = PA + pglz - A P. 

Then, substituting these equations into Eq.(E.3), yields: 



where, 

Equation above gives the average velocity of the soil gas through the whole crack length, 

in terms of the difference of the disturbance pressure. 

Now, I want to formulate an expression for w(IN+) ,  the average velocity of the soil gas as 

it approaches the interface from the soil. In order to do so, I define a control-volume of 

very small thickness located in the soil, but as close as possible to the crack-soil interface, 

in which the disturbance pressure is assumed to be equal to PIN. Figure (E.2) illustrates 

this configuration. 

Figure E.2- Configuration at the crack, showing the control-volume defined in the soil 

underneath the soil-crack interface. 



The vertical component of the soil-gas velocity at any point in the soil is given by Darcy's 

expression (Eq.(3.9a)), and can be expressed as: 

For a point located in the above defined zero-thickness control-volume, the velocity of the 

soil gas becomes equal to w(m+), and can be expressed a$: 

Note that the point ( I N + )  is supposed to be inside the soil but infinitesimally close to the 

interface. Consequently, the value of the permeability k should still be the same as the one 

considered in the control-volume. Also note that the gradient of the disturbance pressure 

must be evaluated as close as possible to the interface. 

In order to evaluate the pressure gradient at  the point ( I N + ) ,  and to further develop the 

expression above, I here make the following assumptions: 

(1)- The size of the control-volumes underneath the crack interface in the z-direction, Az, 

is very small; 

(2)- The pressure profile from the center of the control-volume under the crack, to the crack 

interface, can be approximated by a linear function, such that: 

Thus, substituting Eq.(E.9) into 

- - PP - PIN 
Az - - 
2 

Eq.(E.8), yields: 

( E .  10) 

Equations (E.6) and (E.lO) above, expressing W(IN-), and W ( ~ N + )  respectively, will be used 

to implement the boundary conditions at the soil-crack interface, as expressed in Eq.(E.2). 



Using the dimensionless variables defined in Chapter 111, these equations can be transformed 

into their dimensionless versions. Thus, substituting Eqs.(3.30) and (3.31) into Eq. (E.6), 

yields: 

where Kc is the dimensionless group given by: 

Also, substituting Eqs. (3.30), (3.31), (3.34), and (3.35) into Eq.(E.10), yields: 

But from Eqs. (3.28) and (3.29), UchLch = Dch. SO, the equation above becomes: 

where Ks is the dimensionless group given by: 

(E. 11 a)  
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APPENDIX F 

BOUNDARY CONDITIONS AT THE SOILCRACK INTERFACE FOR THE 

SOLUTION OF THE CONVECTION-DIFFUSION EQUATION. 

The objective in this appendix is to propose the boundary. conditions at  the crack, and 

at the soil-crack interface, which will then be used for the solution of the radon transport 

equation in the soil. 

Convection-Diffusion of Radon Through the Crack. 

Basic Assumptions. 

The basic assumptions related to the flow of soil gas within the crack, which will be used later 

to support the proposed boundary conditions at  the soil-crack interface, are the following: 

- The flow of radon through the crack is invariable in the x and y directions. Conse- 

quently, it can be represented in one dimension (z-direction). 

- The air inside the basement (for the whole house, in fact) is well stirred. So it is 

assumed that: 

. The diffusion coefficient of radon in the air of the basement is much higher than in 

the air inside the crack; 

. As soon as the soil gas leaves the crack and gets into the basement, it becomes 

homogeneously mixed with the indoor air. 



Figure PA- Representation of the radon concentration, and radon flux at the 

soil-crack-basement configuration. 

- Concentration of radon inside the house is much smaller than the concentration in the 

soil gas passing through the crack. 

- The flow of radon from the last control-voiume in the soil and through the crack, is 

represented in Figure ( F . l ) ,  where: 

CP = Radon concentration at the node P; 

GIN = Radon concentration in the soil, a t  the crack interface; 

CEX = Radon concentration at the crack exit; 

JIN = Radon flux at the crack-soil interface; 

JEX = Radon flux at the crack exit, into the basement; 

w = Velocity of the soil gas through the crack entrance. (Since we have 

assumed a constant cross section of the crack, the value of the velocity 

w is also constant aiong the crack). 

- In the figure above we consider three regions: 

. Region #a : Control-volume under the crack; 

. Region #b : Inside the crack; 

Note that for the convenience in this appendix only, I have represented the origin of coordinates, for the =axis, 
located at the floor of the basement, at the interface between the cnck m d  the indoor air. The coordinate 
system adopted in the model w u  ddned in Chapter IV, Figa.(A.l) and (4.2). 



. Region #c : Inside the basement. 

- As an approach for the problem of establishing the boundary condition at the exit of 

the crack, I have introduced a third region representing the interior of the basement. 

- In this approach, I have assumed that the basement (region #c) can also be represented 

in one-dimension, with a geometry similar to the one representing the crack, but with 

the following particularities: 

. The length of the 3rd. region extends to infinity; 

. The diffusion coefficient in the 3rd. region is much larger than the one inside the 

crack; 

. Concentration of radon at the infinity of the 3rd. region tends to zero, due to 

radioactive decay. 

The whole configuration is then represented in Figure (F.2). The diffusion coefficients used 

in the three defined ~egions of the soil-crack-basement configuration are the following: 

D = Bulk diffusion coefficient of radon in the soil pore space; 

Do = Diffusion coefficient of radon in open air; 

o', = Diffusion coefficient of radon in a well mixed air, here called the enhanced 

radon diffusion coefficient. 

Mathematical Formulation. 

The equations for the total radon flux within the regions a, b, and c will be given respectively 

by : 

dC 
J,= wC- D-, for l I z < ( L + A z ) ,  

dz 

d C  
J a =  wC-D0- for 0 5 r  < 1, 

dz ' 
d C  

J,= W C -  a- for z S 0 .  
dz ' 



Figure P.2- Simplified representation of the soil-crack-basement configuration, where 

each defined region is assumed to have the same geometry. 

Region c (basement) 

Region b (crack:) 

Region a (connol-volume 
in the soili 

where J is the total flux of radon through a geometric area (or the bulk flux). 

Analytical Solution within Regions b and c. 

Here we seek an analytical solution for the profile of radon concentration in the regions #b 

and #c, which will be used to formulate the boundary condition at the soil-crack interface 

of the region +a, and consequently allowing the solution of the radon transport equation 

in the whole soil block. 

Within regions #b and #c (inside the crack and in the basement), the mass transport 

equations have the following form: 



Boundary Conditions. 

At the boundaries of the regions #b and #c we establish the following conditions: 

Note that the value of C will be determined iteratively as we make the flux a t  the interface, 

calculated from region #b, equal to the flux a t  the same location but calculated from region 

#a. (See the item Boundary Condition at the Crack Interface, in this appendix.) 

Dimensionless Transformations. 

Here we present the dimensionless versions of the equations above, making use of the fol- 

lowing change of variables: 

Note that this problem is similar to the problem of establishing boundary conditions of flow reactor - See paper 
of Wehner, [ W e s ~ ] .  



(F. l3a) 

(F.13 6) 

where, Sch, Uch, Lch, and Dch are the characteristic radon source, soil gas velocity, length, 

and diffusion coefficient respectively. 

However, we have further defined the characteristic length, Lch, and velocity Uch as: 

Now, substituting these variables into the mass transport equations, they become: 

Also, the equations for the total radon flux become: 

(F. 16) 

(F. 18) 

where P, is the Peclet number, defined as: 



( F .  20) 

Solution of the Mass-Transport Equation. 

The general solution of the mass-transport equation within the region #b (Eq. F-16) is 

given by : 

where rl, and rz are the roots of the auxiliary equation: 

Then, solving equation above for r l ,  and r2 we will get: 

Similarly, the general solution of Eq.(F-17) is given by: 

C I = ~ 3 e ' l " = + ~ ~ e ~ " ~ ,  O < z * < O ,  

where, 



Determination of the Coefficients KI . K?. K?. and K4- 

These constants will be found from the boundary conditions. Thus, from condition (i) and 

Eq.(F-24) we will have: 

lim C*(zS) = lim ( K ~  ea' ~4 e~4') = 0. 
2-+-m 0- --+-a) 

Since t3 1 0, and r4 >_ 0 (for all p ,  1 O), then in the equation above we must have: 

K3=0,  and & = 0 .  

Consequently, Eq. (F-24) becomes: 

Using the equation above, as well as its substitution into Eq.(F-IS), we can now find : 

Now, from boundary condition (iv), and Eq.(F-21), we will have: 



and we also have: 

(P.  3 1) 

\ 
Finally, from boundary conditions (ii) and (iii), and with equations (F-28), (F-29), (F-30), 

(F-31), and (F-32), we can write the following system of equations for the coefficients Kl , 

K2, and K4 . Thus: 

We now proceed with the solution of the system above. Thus, from Eq. (F-35) we obtain 

an expression for K2. That is: 

Substituting Eq(F.33) and Eq. (F.36) into (F.34), yields: 

(w"  - dis) [ K ~  + CINe-"2lW - ~ ~ e l . ( ~ l - l )  = I 
= (w* - D:rl) Kt + (w" - D:r2) [ciNe-ql* - ~ ~ e ' * ( ~ l - ? ) ]  , 



Now, from Eqs. (F-37) and (F-36) we will get: 

Finally, from the expression K4 = Kl + K2, Eq.(F-33), we can get th  

That is: 

.e expressic )n for K4. 

Now, with the values of the constants Kl ,  K2, and K4 given by equations (F-37), (F-38) 

and (F-39), respectively, we can write the solution for the radon profile and the radon flux 

through regions #b and #c. 
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Profile of Radon Concentration Throughout the Crack. 

The variation of radon concentration within the crack is given by: 

Profile of Radon Flux Inside the Crack. 

Substituting Eq.(F-40) into Eq.(F-18) we obtain the expression for the radon flux at 

any point 2'. inside the crack. That is: 

Flux at the Exit of the Crack into the Basement. 

In particular, for 2' = 0, the radon flux at the exit of the crack, J i x  , will be given by: 



Radon Flux a t  the Crack Interface. 

At the crack interface, z' = 1*, and the radon flux, J& is given by: 

Ji' = (w- - 11 D!) Kl eli '  + ( w x  - r2 D!) K~ e l i * .  ( F . 4 3 ~ )  

Substituting in the equation above, Kl and K2 as given by Eqs. (L-37) ,and (L-38), yields: 

where, 

Notes: . 

1)- Fluxes given by Eqs. (F-41), (F-42), (F-43) are dimensionless. To find the real value of 

the flux, these expressions must be multiplied by the characteristic flux, Jch = SchLch; 

2)- Also, the dimensionless radon concentration, C' , as given by Eq. (F-40) should be 

multiplied by Sch/XR,, in order to find its actual value; 

3)- Both the radon concentration and the flux are function of CiN, the radon concentration 

at the crack interface; 

4)- C;N will be calculated iteratively; 

5)- The flux at the entrance, J;N, as given by Eq.(F-43), will be used in the convergence 

criteria. This expression will be compared with another one derived in the next item, 

for the flux at the crack interface given by the convective-diffusive equation applied at 

the control-volume just underneath the crack; 

6)- The value of CiN will be such that makes equal both fluxes calculated at the crack 

interface; 

7)- The flux at the crack exit, as given by Eq.(F-42), will be used to calculate- the radon 

entry rate into the house. 



Figure F.3- Codgaration at the crack, showing the control-volumes defined in the soil 

underneath the soil-crack interface. 

Convection-Diffusion of Radon in the Soil, and into the Crack Through the Interface. 

The total flux of radon from the soil and through the interface between the crack and the 

control-volume can be evaluated by assuming a control-volume of very small thickness at 

the entrance interface, in which the radon concentration is assumed to be C;N. Figure (F.3) 

illustrates this configuration. 

In this figure I define a controi-volume of zero thickness around C;N, located in the soil but 

as close as possible to the crack interface. At any point in the soii, and consequently inside 

the control-volume above, the total radon flux is given by: 

For a point located in the control-volume, but as close as possible to the interface, the 



equation above becomes: 

Notes: 

1)- The point (IN) referenced in the equation above is supposed to be located inside the 

control-volume, but infinitesimally close to the interface; 

2)- Consequently, the value of the diffusion constant D' should still be the same as the one 

considered inside the control-volume; 

3)- The idea here is that as the point (IN) gets closer to the exact location of the interface, 

the flux calculated from Eq.(F-45) above should be the same as the one calculated from 

Eq. (F-43); 

4)- As noted before, the value of CiN that makes these fluxes to match will be evaluated 

iteratively; 

5)- Eq(F.45) above is in dimensionless form. To find the actual value of JIN it is necessary 

to multiply the dimensionless value, JI;J by the characteristic flux Jch = SchLch; 

6)- The velocity w' is already calculated at the interface of the control-volume; 

7)- The gradient of the radon concentration should dso  be evaluated close to the control- 

volume interface. In order to do this, we make the following assumptions: 

. The size of the control-volume in the z-direction (Dz) is very small; 

. The actual profile of the radon concentration at points between the center of the 

C.V. to its interface with the crack could be approximated by a linear function, 

such that: 

Therefore, with the assumptions above, Eq.(F-45) becomes: 



which can also be written as: 

Jiv Az* Az+ 

Boundary Condition at the Crack Interface. 

As a boundary condition applied at the surface of the crack entrance we consider that due 

to continuity at the interface we should have: 

where, 

c i ~ ~  - ) = Dimensionless radon concentration in the crack, as it gets closer to the inter- 

face with the soil; 

q ~ + )  = Dimensionless radon concentration in the soil, as it gets closer to the crack 

interface; 

- JilN-) - JiQCk = Dimensionless Radon flux, defined in the same way above; 

JGN+) = Jid = Dimensionless radon flux per unit of geometrical area in the soil matrix, 

as it gets closer to the crack interface. 

Here I notice that both terms JCIN-) and JGN+j are defined as the total radon flux per unit 

of geometrical area. Consequently, it is perfectly justifiable to make JiIN-)  = J i IN+) ,  at 

points in the interface, as it was done in Eq.(F-49b). 

The fluxes J a b  and Jkck were already expressed in Eqs. (F-48) and (F-43b), respectively. 

They are repeated here as: 



(F. SO) 

where, 

Now, substituting J;& and Jkck, obtained from the equations above, into Eq.(F-49b), we 

can find the expression for CiN which will satisfy the boundary condition. Thus, after some 

algebraic transformations, we find that: 
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APPENDIX G 

ALGORITHM FOR DISTRIBUTING THE SIZES OF THE CONTROL-VOLUME 

FACES IN AN SPECIFIED LINEAR SEGMENT OF THE SOIL BLOCK. 

I want to divide a segment L in N parts of increasing sizes based on the equation of a 

quarter of a circle. The method defined here will then be used to generate the numerical 

grid in the calculation domain of the soil block, where the sizes of the control-volumes 

within each defined region of the soil have variable values. The idea is to make the sizes of 

the control-volumes to increase from the extremity of the segment to its center. 

So, consider a quarter of a circle of radius L and center at  the point ( L ,  L), as shown in 

Figure (G.l). The variables z and y are defined in the intervals 0 5 z 5 L, and 0 5 y 5 L 

respectively. The circle touches both x and y axis at the distance L. 

Now, dividing the segment L  in the x-axis into N equal parts, the curve of the circle will then 

define N subdivisions of increasing sizes in the L segment at  the y-axis, with the smaller 

subsegments near the origin. 

The equation representing the quarter of circle, as shown in Fig.(G.l), can be expressed as: 

Now, defining the multiplication factor K, = $, where N is the number of parts the segment 

L will be divided, and i is order of each subsegment, (0 5 i 5 N), the variable z can be 

expressed as: 



Figure G.1- Division of a segment L in N segments (N = 4 in the figare) of increasing 

size, based on the equation of a circle. 

The objective is to find the resultant multiplication factor Ji that will produce the non- 

homogeneous and increasing subsegments in the y-axis such that: 

yi = JiL. 

Therefore, substituting Eqs. (G.2) and ( G . 3 )  into Eq(G.1) yields: 



i 
J j = l -  [ l -  , 

for 0 5 i < N .  

Now, substituting Eq.(G.4) into ( G . 3 ) ,  yields: 

for 0 < i <  N .  

Notes: 

1- Eq.(G.5) is used to calculate the sizes of N defined control-volumes within a specified 

segment of the caiculation domain of the soil block; 

2- In some segments of the soil block, the sizes of the control-volume increase symmetrically 

from both extremities of the segment toward to its center. In these cases, the method for 

dividing the segment, as expressed by Eq.(G.S), is applied at each half of the segment 

separately. 
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APPENDIX H 

DEFINITION OF THE VALUE OF THE PERMEABILITY AT AN INTEWACE 

BETWEEN TWO REGIONS OF DIFFERENT PEWABILITIES. 

Consider the following figure representing a generic node P, and its neighbors in the x- 

direction only. Note that since it is assumed that the nodes are located in the center of the 

control-volume, the distance between two nodes, (6z), for example, can be expressed as: 

Figure H.l- Generic representation of a node cluster in the x-direction. 

I want to represent the velocity of the flow at the interface e, (or any other), via an expression 

of the following kind: 



Yet, I need an expression for ke, (the permeability at  the interface e), that leads to a correct 

value of u,, when the permeability k has different values at the nodes P and E, as in the 

case at  the boundary of distinct regions in the soil. 

Thus, here I assume that: 

- The control-volume around P has a permeability kp; 

- The control-volume around E has a permeability kE. 

Then, at the interface e, the velocity u, would be given by the pressure difference between 

the two neighbor nodes divided by the sum of the resistivity at each half of the neighbor 

control-volumes, and can be expressed as: 

Comparing these two equations above, yields: 

which can be simplified to: 

Note: 

- Equation (H.4) above defines the permeability at an interface between regions of distinct 

permeabilities; 

- The same kind of expression is used to define the diffusivity coefficient D, at the interface 

e. 
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APPENDIX I 

DERIVATION OF THE DISCRETIZATION EXPRESSIONS FOR THE 

CONVECTION-DIFFUSION EQUATION. 

The objective here is to formulate the dgebraic discretization equations1 for the con- 

vection and diffusion differential equation representing the radon concentration field in the 

soil. 

The steady-state mass transfer differential equation expressing the transport of radon 

throughout the soil block was presented in Chapter 3. Its dimensionless form is repeated 

here a s 2  

The flow field must also satisfy the continuity equation, expressed as: 

v.;=o. 

These equations can be expressed in cartesian coordinates for a three-dimensional configu- 

ration as: 

Reference: PATANKAR, S.V.,  1980, Numencd Heat 'Damfer and Rwd Flout, Chapter Five: Convection and 
Diffusion, McGnw-Hill Book Company. 
In order to simplify the notation in this appendix, I have not used the asterisk in the dimensionless versions of 
the equations. 



Steady One-Dimensional Convection and Diffusion. 

Before we attempt to derive the discretization equation for the three-dimensional config- 

uration, with the source and sink terms, let's work with a simpler case where the basic 

procedures can be established. 

The simplest possible case is the steady one dimensional situation with no source or sink 

terms, which can be represented by (taking the x-direction as example): 

- Mass Balance Equation - 

. . 

- Continuity Equation - 

In order to derive the discretization equation, let us consider the grid represented in Figure 

(1.1). 

Note: 



Figure 1.1- Grid-point cluster for one-dimensional configuration. 
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- The node is centered in the control-volume; 

- The distances between nodes are given by: 

Now, integrating Eq.(I.5) over the control-volume, we will get: 

Equation above constitutes our basic approach for the derivation of the discretization equa- 

tion. Yet, in order to continue with this derivation, it is important to make some assump 

tions about the profile of the function C with the distance z. For the simple case of steady 

one-dimensional configuration, with no source or sink, the profile of C can be found exactly 

by solving Eq.(I.5) analytically. 



Exact Solution for the One-Dimensional Mass-Balance Equation. 

Eq.(I.5) can be solved analytically if D is assumed to be constant. We note here that, 

according to the continuity equation, Eq.(I.G), the velocity u is also constant. Eq.(I.5) can 

then be written as: 

A general solution of the equation above is given by the expression: 

- 
where Kl and Kz are constants to be determined from the following boundary conditions. 

Boundary Condition for the One-Dimensional Mass-Balance Equation. 

At, z= 0, - C(0) = Co, 

(I. 11) 

At, z= L, - C(z= L) = CL. 

Then, the constants Kl and K2 are found as: 

and, 



Substituting the constants Kl and Kz into Eq.(I.lO): 

The dimensionless term 5 is now defined as the Peclet Number: 

( I .  14) 

Note: 

1)- The Peclet number P represents the ratio of strength between convection and diffusion; 

2)- P can be positive or negative, depending on the direction of the velocity u; 

3)- In our present case, the Peclet number P was defined for the generic domain 0 5 z _< L, 

and depends on the value of L, the dimension of the domain; 

4)- Later on we will define the grid Peclet number, (see Eq.(I.60)), at  the interface between 

two control-volumes. There then, the domain to be considered will be the distance 

between the neighbor grid nodes, and the velocity, and diffusion coefficient (u, E ,  and 

D), should be defined at the interface. 

Substituting Eq.(I.14) into Eq.(I.13), yields: 

The expression above is the exact solution of the problem represented by Eq.(I.5) (Steady 

one-dimensional situation, with no source or sink, and with constant diffusivity). It r e p  

resents the actual profile of the concentration C(z) along the domain 0 < z 5 L, as a 



Figure 1.2- Actual profile of the concentration C(z), along the one-dimensional domain 

0 5 z < L, for several values of the Peclet number P. 

parametric function of the Peclet number P. Figure (1.2) shows the profiles of the concen- 

tration C(z), for several Peclet numbers. 

Thus, in Fig(I.2) we can see that when the Peclet number approaches zero, the concentra- 

tion profiles becomes linear. In other words, for cases with no source or sink, and where the 

diffusive component of the transport process predominates over the convective component, 

the variation of the concentration with distance, C(z), converges to a linear function. How- 

ever, as I PI increases, the concentration profile C(z) deviates more and more from the linear 

function. For large positive values of the Peclet number, the concentration profile will be 

unchanged along almost the entire z-domain, increasing suddenly at the end of the segment 

(0, L). On the other hand, for large negative Peclet numbers, the concentration profile will 

jump to its maximum value at the beginning of the segment (0, L), keeping that value dong 

almost the entire domain. This could be interpreted in the following way. The large Peclet 



nudber implies that convection predominates over diffusion, which means that the velocity 

has an important role in the transport process. Thus, with large positive velocities (large 
.I0 

P), the concentration C(z) at most of the points along the *domain will be given by the 

concentration at the upwind boundary. Consequently the value of Co will be unchanged 

along most of the domain. But then, for large negative velocities, (large negative Peclet 

numbers), the concentration at the upwind boundary is CL, which will then predominate 

along most of the *domain. 

We now return to the derivation of the discretization equation, represented by Eq.(I-a), 

considering first the exact profile for C(z). The resulting scheme will be called the Ezpo- 

nential Scheme. Other discretization schemes, considering different interpolation profiles 

for C(z), will be presented thereafter.. 

The Exponential Scheme. 

Let us consider the total flux J as composed with the sum of the convective term uC, and 

the diffusive term - D%, such that: 

Using this notation, the mass balance expression, Eq.(I.5), can be written as: 

Integrating the equation above over the control volume of Fig.(I.l), we will get: 

J ,  - Jw = 0. (I. 18) 

Now we need to find the value of the total flux J at the interfaces e and w. So, substituting 

the exact profile of C for the domain 0 < z 5 L, given from Eq.(I.15), into Eq.(1.16), we 



will get the actual profile of the total flux J for that specific domain, which can then be 

expressed as: 
. .- 

DP But = u (See Eq. 5-14). Then, the equation above becomes: 

( I .  19) 

Note that: 

1)- In this case, the total flux J is invariant with the distance z in any specified domain (as 

it should be expected, since there is no source or sink); 

2)- However, since for different domains, the Peclet number P can vary depending on the 

values of u, Dl and L for that specific domain, the total flux J can also vary from a 

defined domain to the other; 

3)- Here we defined a domain as the region between two neighbor nodes. Consequently L 

is going to be equal to (62) . 

Now let us evaluate the total flux J, and J, at the points of the interfaces e and w ,  in the 

domains represented by the grid nodes P-E and W-P respectively. 

Calculation of J,, the Flux at the Interface e. 

Using the exact profile from Eq.(1.19), and making: C, = Cp, and CL = CE, and replacing 

L by the distance between nodes (62),, we will get: 

where, 



is the Peclet number as defined by Eq.(I.14), and applied at the interface e. 

Note that: 

1)- Je does not depend on the location of the interface between points P and E; 

2)- The diffusion coefficient D,, is to be obtained similarly to the way the permeability 

k, was obtained, as the weighted average of the diffusion coefficients in the neighbor 

control-volumes, (See Appendix H); 

3)- Although in our derivation so far we have assumed a constant D, here we assume the 

variability of the diffusion factor D by defining an expression for D, at the interface e 

(for example). 

The appropriateness of this approach was discussed elsewhere, (see Patankar, [Pa80], 

footnote at page 87). 

Calculation of Jw, the Flux at the Interface w. 

Similarly to the procedure above, we can find the expression for Jw as: 

Then, substituting Eq(1.20) and (1.22) into Eq.(I.18), yields: 
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Now, adding u, - u, to the expression above, yields: 

which can now be written using the standard form for the discretization equation: 

where, 

U P  = a ~ +  a w + [ u , -  u , ] .  

Note that: 

1- Equations (1.24) and (1.25) define the exponential scheme; 

2- The exponential scheme, when used for the steady one-dimensional problem with no 

source or sink term produces the exact solution, independent of the Peclet number, and 

the number of grid nodes; 

3- However, this scheme is not exact for two or three-dimensional problems, nonzero 

sources (and sinks), etc.. Besides, it is important to point out that exponentials are 

expensive to compute. Consequently, the exponential scheme is not appropriate for 

multi-dimensional problems; 

4- Therefore we need to find an easy-to-compute (and cheap) scheme that can approximate 

the exponential scheme. Four possible schemes - central-difference; upwind; hybrid; and 

power law - will be presented next. 



The Central-Difference Scheme. 

In the central-difference interpolation scheme, the concentration profile C(z) is assumed to 

be piecewise-linear between nodes. Therefore, the diffusive component of the flux, DZ, 
and the convective component, uC, can be interpolated linearly a t  the interfaces e and w, 

as shown in Fig.(I.l), according to the following expressions: 

and, 

Thus, substituting Eqs. (1.26) and (1.27), into Eq.(1.8), yields: 

Note that in Fip.(l.l) the nodes are assumed to be centered in the control-volumes. Therefore, since the control- 
volumes may have different sizes, the interfaces are not necessarily located midway between nodes. 



which can now be expressed in the established standard form for the discretization equation, 

as: 

where, 

and, 

Equation (1.29) represents the centrai-difference interpolation scheme for the discretiza- 

tion formulation, which is based on the assumption of a piecewise-linear profile of C(z). 

As it was shown in Fig.(l.2), the concentration profile C(z) could be approximated by a 

piecewise-linear function, only for values of the Peclet number P close to zero. For large 

1 PI, C(z) deviates considerably from the linear function. Therefore, the central-difference 

interpolation scheme provides a reasonable approximation to the actual profile of C(z), only 

for the cases of small 1 PI. Since the Peclet number at the grid nodes is given by, P = 6, 
it can be decreased, as much as needed, by refining the grid mesh. Consequently, the 

central-difference scheme can be justified in cases of reduced grid mesh, or when diffusion 

clearly dominates the transport process. For large convective fluxes, (as compared with the 

diffusive component), or for a coarse grid mesh, the central-difference scheme is expected 

to produce unrealistic results. 



The Upwind Scheme. 

As it was shown in the last item, the weakness of the central-difference scheme occurs 

at large values of the convective flux, when the assumption of piecewise-linear profile for 

C(z) is not valid. In essence, the critical issue here is the convective component of the 

transport process. Thus, in order to solve part of the difficulties found in the central- 

difference formulation, another interpolation scheme, called upwind is presented. In the 

upwind interpolation scheme. the diffusive component of the flux, D$$, is still interpolated 

linearly at the interfaces between nodes, as it was done in the central-difference scheme. 

However, the convective component is handled in a different manner. Here, it is assumed 

that the concentration at the interface, C, or C,, is equal to the concentration at the node 

located at the upwind side of the flow. Thus, the concentrations at  the interfaces e and w 

are expressed, respectively, as: 

and, 

Therefore, the convective component of the flux at the control-volume interfaces can be 

expressed as: 



( u C ) ~  = u W C P ,  if U , < O .  

The expressions above representing the convective flux can be replaced by a condensed form 

such as: 

and, 

where the symbol [[ ]] represents the largest of the quantities within it. Now, substituting 

Eq.(I.32) into Eq.(I.8), and making a linear interpolation of the diffusive flux, yields: 

which can then be expressed in the adopted standard form of the discretization equation 

as: 



where, 

and, 

Equation (1.35) above represents the discretization formulation based on the upwind interpo- 

lation scheme. Here, a few comments should be made about using the upwind interpolation 

scheme: 

1)- In Fig.(I.2), it can observed that for large values of /PI, the concentration profile C(z) 

between two nodes is nearly constant and equal to the concentration at the node located 

upstream. This is precisely the assumption in the upwind scheme, which considers the 

concentration at the interface equal to the concentration at the node located upwind. 

Therefore, the upwind interpolation scheme can .be a satisfactory approximation, for 

cases with large 1 PI. 
2)- For large (PI ,  C(z) is almost constant along most of the segment between nodes, and 

consequently is nearly zero. Therefore, in these cases the diffusive component of the 

flux is almost absent. However, the upwind scheme always considers diffusion. Thus, 

for large /PI the upwind scheme is likely to overestimate diffusion. 

3)- For small 1 PI the upwind interpolation scheme is expected to overestimate or underes- 

timate the convective component of the flux, depending on the direction of the flow. 

If the velocity u is in the direction of the increasing concentration (represented by the 

cases of P > 0 in Fig.(I.2)), then the upwind scheme underestimates the convective 



flux. On the other hand, if the velocity u is in the direction of decreasing concentration 

( P < 0 in Fig.(I.2)), the upwind scheme overestimates the convective component of 

the flux. 

4)- As (PI approaches zero, the upwind scheme converges to the exact solution. 

The Hybrid Scheme. 

In order to define the hybrid scheme and to show its approximation with the exact solution 

given by the exponential scheme, let us plot the coefficients aE and a w  as a function of 

the Peclet numbers P, and P, respectively. Here we use, in fact, the dimensionless forms 

T&l and obtained from Eqs. (1.25a) and (1.25b) such that: 

The variation of aE and a w  with the Peclet number P, based on Eqs. (1.36a) and (1.36b), 

is shown in the next Figures (1.3) and (I.4), respectively. In these figures, we represented 

three straight lines that form an envelope of the exact curve. The hybrid scheme is derived 

then from these three straight lines. Thus, from Fig.(I.3) we can have: 

For, P, < -2 - OE =-p , ,  
(DeI(6z)e) 

For, - 2 5 ~ ~ 5 - 2 -  - PC OE - I - -  
(Del(6z) e)  2 '  

For, P, > 2 - OE 

(D./(Sz),) = O. 



Figure 1.3- Variation of the Factor with the Peclet number Pe. 

8 

These three expressions can be combined in a condensed formula such as: 

Similarly, from Fig.(I.4) we can have: 

For, Pw < -2 - aw = 0, 
CW (W w  ) 

For, - 2 5 Pw 5 - 2  - aw p w  
= I + -  

P W /  ( 6 4 w )  2 ' 



Figure 1.4- Variation of the Factor with the Peclet number P,. 

aw 
For, P: > 2 - = p w l  

(Ow/ ( W W )  

and the condensed expression representing the equation above can be expressed as: 

Therefore, substituting Eqs. (1.28) and (1.40) into Eq.(I.24), the hybrid scheme for the 

discretization equation of the steady one-dimensional, no sourcelsink , convection-diffusion 

transport equation can then be expressed as: 

where, 



The Power Law Scheme. 

As it was shown in Figs. (1.3) and (I.4), the hybrid scheme has the highest deviation from 

the exact curve for values of /PI close to 2. A more precise approximation to the exact 

curve can then be obtained with the following scheme: 

Power-law expression for a ~ .  

For, P, < - 10 - OE = - P I ,  
(De/(Sz)e) 

For, - 10 5 Pe 5 0 - aE = ( ~ + o . ~ P ~ ) ~ - P ~ ,  
(De/(bz)e) 

For, 0 5 P, 5 10 - aE = (1 + O . ~ P . ) ~ ,  
(Del(6z) e) 

For, P, > 10 - aE = 0.  
(Del(6z)e) 

The condensed expression for Eq.(I.43) above is then: 
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Similarly, the power-law expression for aw is: 

For, Pw < -10 - aw = 0, 
(DWl(WW) 

For, -10 5 Pw < 0 - aw = (1 + 0 . 1 ~ ~ ) ~ ~  
(Ow/ (64  w) 

For, 0 5 Pw 5 10 - O W  = ( I - O . ~ P ~ ) ~ + P ~ ,  
(DWI (WJ 

For, Pw > 10 - .aw = pw, 
(Dwl (6z)w) 

with a condensed form expressed as, 

Therefore, the convection-diffusion discretization equation for the power-law scheme can be 

written as: 

where, 



A Generalized Formulation. 

In this section we look for a generalized formulation for the discretization coefficients that 

could fit d l  the discretization schemes so far. Also, this generalized formulation will help 

us in extending the application of the formulation (derived so far for the one-dimensional, 

with no source or sink, configuration) to multi-dimensional problems. 

Figure 1.5- Grid cluster of two generic neighbor nodes, showing the flux J at the 

control-volume interface. 

Let us consider a simple cluster grid of two nodes represented in Fig.(I.5). The total flux 

at the interface between these control-volumes is given by Eq(1.16) and repeated here as: 

Dividing the equation above by 016, where 6 is the distance between two generic nodes, 

and noting that the Peciet number P = 6, (see Eq.(I-14)), we will get: 

Here I make the following observation: 

1- The value of the concentration C at the interface between nodes i and i+ 1 will be some 

weighted average of Ci and Ci+l; 



2- The gradient of the concentration, m, dC at the interface will be proportional to the 

difference of the concentrations at the nodes Ci and C;+l. 

Therefore, based on these assumptions, we could rewrite Eq.(I.49) substituting the concen- 

tration C, and its gradient dC/dz, by the interpolation formulas such that: 

where cr and ,B are functions of the Peclet number P ,  and represent our proposed relationship 

of the values of C and 2, at the interface, in relation to the values of C at the nodes. 

Eq.(I.50) above can also be written as: 

J' = ( p a  + p) ci - [P(= - 1) + p] ci+17 

where, 

The parameters A and B are dimensionless coefficients which depend on the value of the 

Peclet number P.  

Now, let us derive some of the properties of these coefficients. k o m  Eq.(I.52) we can get 

the first property as: 



The second property is of symmetry, and can be obtained from Eq.(I.Slb). If we reverse the 

coordinate axis, P becomes - P ,  and A and 8 will interchange their roles. Consequently 

we should have: 

Also, we will derive the following two expressions relating the coefficients A and 8 ,  with the 

total flux and the concentration at two neighbor nodes. These expressions will be useful 

later for the derivation of the discretization equation for the three-dimensional configuration, 

with source and sink terms. 

Thus, combining Eq(I.53) with Eq.(I .~lb)  we will get: 

J' - PC; = A(C; - C;+,), 

Equations (1.53) and (1.54) allow us to express both A(P) and P ( P )  in terms of only A 

and P ,  in a compact form. In order to show this transformation, first consider the negative 

values of P. 

So, for P < 0: 

A(P) = B(P) - P, from Eq.(J.53); 

= A(-P) - P, from Eq.(J.54a). 
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But, for P < 0, A(- P) = A(IP1) . Then we will have: 

Therefore, for all values of P, positive and negative, the expression above could be written 

in a condensed form such as: 

Similarly, for the coefficient B ( P )  we will have: 

B(P) = A(P) + P, from Eq. (I. 53)) 

With Eqs. (I.57), (1.58) and (1.51b) we can get now a general expression for the total flux 

between two generic nodes. That is: 

Now, applying the expression above to the interfaces e and w, and considering Eq.(I.18), 

we will get the following general formulation for the discretization equation of the mass 

transport equation: 



But since J ,  - Jw = 0, (see (Eq.I.18)), then we will have: 

where, 

UP = UE + aw + (u, - u,). 

Note That: 

1)- Equations (1.60) and (1.61) represent the general discretization scheme for the convec- 

tion diffusion equation; 

2)- Each specific scheme will result in an specific interpolation function of the kind A /PI ; ( 1 
3)- Expressions for A , related to the discretization schemes presented so far are shown 

in Table (1.1); 



Table 1.1 - Interpolation functions of the kind A (I P I ) ,  used in different discretization 

schemes. 

Interpolation Scheme 

I Central-Difference / 1 - 0.5 1 PI I 

Formula for A(IP() 

Exponential (Exact) 

1 Upwind 1 1 1 

lexp(1~ IP I 1 ) -  I ]  

Hybrid 
1 

Comparison of the Discretization Schemes. 

Power law 

Let us consider, as an example,4 a one-dimensional grid cluster composed of the nodes W, 

P ,  and E, as represented in Fig(I.1). In this grid, without loss of generality, the grid spacing 

(64 ,  and (62), are supposed to be equal to 1. Also, the diffusion constant D is supposed 

to be constant. The boundary conditions are assumed to be: Cw = 0; and CE = 1. 

[[01 [I - O ~ P I I ~ ] ]  

So, in order to compare the performance of the various interpolation schemes presented 

here, let us calculate the value of Cp, at the node P of the grid cluster described above, 

using these different discretization schemes. Thus, in Fig.(I.6) I have plotted the values of 

Cp, as a function of the Peclet number P . ~  As we can see, at /PI = 0, the predictions 

from all schemes converge to the exact solution. The results from the power law scheme 

are almost coincident with the exact solution, for the whole range of I PI. The results from 

the hybrid scheme also follow very close the exact solution, except for values of I PI around 

2. Predictions from the upwind scheme are expected to converge to the exact solution 

only for large values of jPi. The central-difference scheme was the only one to predict 

unreasonable results. For /PI > 2, its predictions were outside of the range imposed by 
-- -- - - -  - - -  

T h ~ s  example was presented on~na l ly  by Pntankar, IPdO]. 
The notat~on here lor the Peclet number P, should not be confused w ~ t h  the subscript P, In Cp, wh~ch represents 
the concentntlon at the node P 



Figure 1.6- Comparison of the predictions of various discretization schemes. 

(ALL VALUES ARE GIVEN IN DIMENSIONLESS UNITS) 

I \ - Cencral-Difference 

Power- Law 

-10 -a 4 -4 -2 0 2 4 6 8 10 

Peclet Number 

the boundary conditions. However it should be remembered that the central-difference 

interpolation scheme is strongly dependent on the grid size and, consequently, a reduction 

of the grid spacing in the example above would have resuited in better predictions from the 

central-difference scheme. 

Therefore, based on the results of this example, we can conclude that the power law dis- 

cretization scheme is the one that produces the closest approximation to the exact solution, 

for the whole range of Peclet numbers. 

Discretization Equation for Three-Dimensional Configuration. 

With the principles and the formulation presented for the one-dimensional case in the 

first section of this appendix, we can now start writing the discretization equation for the 



Figure 1.7- Two-dimensional representation of a control-volume, showing the flax 

defined at the interfaces. 

general mass-transport differential equation - Eq.(I.l). Consider then the control-volume 

represented in Fig.(I.7). (In order to simplify the visualization of the figure, it is represented 

with only two dimensions). 

Note that: 

1- The interface b (at the bottom), and t (at the top), are not represented in Fig.(I.7); 

3- The practice developed for calculating J, and Jw in the one-dimensional configuration 

will be also used here to calculate J,, Jw,J,, J,, Jb and Jt; 

3- We assume that the total flux J,, at a generic interface i, prevails over the entire control- 

volume face i. For example, the total flux J, prevails over the entire C.V. face of area 

AyAr. 

The general mass balance equation, Eq.(I.l),  can be written in terms of the total flux, such 

that: 



where, 

Integrating Eq.(1.62) over the whole control-volume shown in Fig.(I.7), yields: 

Now, assuming that: 

1- The values of E ,  S, and C at the node P, prevail over the entire control-volume; 

2- The value of the total flux J, at any interface, prevails over the entire area of that' 

interface; 

The equation above then becomes: 



where the quantities J,, Jw, Jn, J,, Jb and Jt are the integrated total fluxes over the control 

volume faces, and represent the total mass flow rate through those interfaces. That is: 

Similarly, integrating the continuity equation, Eq.(1.4), over the whole control-volume, 

yields: 

Also, assuming that the velocity component at  any interface prevails over the whole area of 

that interface, the equation above becomes: 



(F, - ~ w )  + (J'n - F3) + (F* - J't) = 0, (1.66) 

where the quantities F,, Fw, Fn, F,, Fb, and Ft are the total volume flow rates defined at 

the control-volume interfaces, such as: 

Multiplying Eq.(I.65) above by Cp , and subtracting it from Eq.(I.64) we will get: 

(Je - J ' e c ~ )  - (Jw - F ~ P )  + 

( J ~ - F ~ C P ) - ( J , - F ~ C P ) +  . 

( ~ b  - Fbc~) - ( ~ t -  F~CP) = ' 

= €(sp - C ~ ) A Z A ~ A Z  



Note that: 

I- Our assumption of uniformity over the control-volume interfaces allows us to employ 

the one-dimensional practices for the three-dimensional situation; 

2- For the one-dimensional configuration we have already developed an expression to rep- 

resent the terms like ( J ,  - Feep) which are found in the equation above.(See Eq.(I.45)). 

Before we proceed, we define the variable conductance in the three dimensional configuration 

as: 

Consequently, the grid Peclet number a t  a generic interface i is then defined as: 

Now we will use Eq.(1.55a) to represent the terms (J, - FeCp), (Jw - FwCp), etc. in the 

' three-dimensional configuration, with source and sink terms. Taking the interface e as an 

example, we multiply Eq.(I.55a) by G, which will give: 



G ~ ( J :  - pecp)  = G J e ( c p  - CE) 

But, from Eq.(I.49) we know that: 

Also we know from Eq.(I.70) that: 

which can also be transformed using Eq.(I.Gla) such that: 

Thus, substituting the expressions above into Eq.(I.71) we finally get: 

Similarly for the interface w ,  we apply Eq.(I.55b) to that interface, and then multiply the 

result by G, to get: 

But, from Eq.(I.49) we know that: 



Also we know from Eq.(I.70) that: 

Now, from Eq.(I.58) we can get: 

GWBW = GW[B(PW)]  = GW [A (1p.1) + [[pWJo]]] 

which can also be transformed using Eq.(I.Glb) such that: 

D; GwBw = - A ~ A Z  [A ( 1  P,I) + UP,, 011 = ow. 
(W w 

Thus, substituting the expressions above into Eq. (1.73) we finally get: 

The discretization expressions for the terms (J - F C) at the interfaces n, s, b, and t are 

obtained similarly to the Eqs. (1.72) and (I.74), for the interfaces e and w respectively. 

Therefore we have: 

Finally, substituting Eqs.(I.72), (I.74), and (1.75) into Eq.(I.68) we obtain the following 

discretization equation: 



where, 

and, 

where the flow rates F, and the conductances G are defined as: 



and the Peclet numbers P are defined at each interface as the ratio of F and G such that: 

The function A ( 1  P I) depends on the discretization scheme adopted, and can be selected 

from Table (1.1). The power-law scheme is the recommended one (see Patankar, [Pa80], 

pg.100), for which: 
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APPENDIX J 

CALCULATION OF INDOOR RADON CONCENTRATION. 

Radon Entry Rate into the House. 

The dimensionless flux of radon leaving the crack and entering the house, from each 

control-volume, can be evaluated from Eq.(F.42) of Appendix F, and expressed as: 

where, ( c ; ~ ~ ~ ~ ~ ~ ) ~  is the radon concentration at the soil-crack interface of each control- 

volume i. 

Now, the dimensionless radon entry rate, ( R ' ) i ,  from each control-volume i, can be obtained 

from Eq.(3.47), and expressed as the product of the radon flux into the house to the area 

of the control-volume face. That is: 

where, 

(R') i  = Dimensionless radon entry rate, from a control-volume i; 

(Airuck)i  = Dimensionless cross-sectional area of a control-volume i. 



But we have that (AZrack), = ( A x *  A y * ) , ,  where Az' and Ay' are the dimensionless size of a 

control volume i in the x and y directions, respectively. Consequently, the radon entry rate 

per control volume surface is given by: 

Note that the equation above gives the dimensionless value of the radon entry rate. In order 

to find the actual value we notice that: 

and, 

Thus, putting together, these expressions yield: 

Jezi t  A crack - Jezi t  A crack R R' = J,&ALack = - = -  
S c h L c h ( L c h ) 2  Sch L f h  R c h  ' 

( J .  5) 

where, 

Therefore, in order to find R we have to multiply its dimensionless form R' by its charac- 

teristic value s , ~ L : ~ ,  and Eq.(J .3) then becomes: 



The equation above gives the actual value of the radon entry rate from each control volume. 

In order to find the total radon entry rate, we have to sum the contribution from each control 

volume along the crack line. That means: 

where, i is the order number of a generic control-volume; and n is the total number of 

control-volumes along the crack line. 

Indoor Radon Concentration. 

According to Eq.(3.27), the indoor radon concentration is given by: 

where, 

Cindoor 

Coutdoor 

Rtotd 

v 
A R ~  

Av 

= Indoor radon concentration, in [ ~ i /  m3];  

= Outdoor radon concentration, in [c i / rn3] ;  

= Total radon entry rate into a quarter of the house volume , in [Ci/s]; 

= Total internal volume of the house, in [m3]; 

= Radon decay constant, in [s-'1; 

= Indoor air exchange rate (ventilation rate), in Is-']. 

In the numerical calculations of the computer model, the outdoor radon concentration - 

Codoo, - is neglected, and the indoor radon concentration is then expressed as: 

Cimioor = 
4Rtotd 

V(X + X v ) '  
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APPENDIX K 

CALCULATION OF THE RADON FLUX TO THE ATMOSPHERE. 

The total flux of radon from the soil to the atmosphere, through the soil/air interface 

can be evaluated by assuming a control volume of zero thickness at the soil/air interface 

within which the radon concentration is assumed to be Ct, = zero. 

Consider the control-volumes defined in the soil near the top of the block (soil-air interface), 

and represented in Figure (K.1). 

Figure K.1- Cluster of Control-Volumes at the Soil Surface 

At any point inside the soil block, and consequently inside the control volume above, the 

total radon flux in the vertical (z-axis) direction, is given by: 



For a point located inside the control volume, but as close as possible to  the interface, the 

equation above becomes: 
. ..- 

and, since Ctop = 0, the equation above can be written as: 

Note that: 

1- Equation above gives the flux through a surface of geometric area inside the soil block, 

but very close to the air/soil interface; 

2- The bulk diffusivity coefficient Dtop should be the one defined inside the block; 

3- We assume a linear profile for the radon concentration near that interface. Note however 

that it is important to make Az sufficiently small at  this first layer of control volumes, 

in order to assure that this is a reasonable assumption. 

Therefore, with the assumption above, the flux in the soil near the soil/air interface could 

be approximated by: 

which in dimensionless form becomes: 

Note that: 



1- Equation above gives the dimensionless radon flux per unit of geometric cross-sectional 

area in a surface inside the soil but very close to the soil/air interface; 

2- Therefore, the radon flux to the atmosphere is given by: 

3- In its actual value, the flux to the atmosphere is then expressed as : 

in units of [-$I. 
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APPENDIX L 

LISTING OF THE COMPUTER CODE. 

The listing of the computer programs PRESSU and MASTRA, with their subroutines, 

was presented only in the original version of this dissertation, which is available a t  the 

Graduat.e Library of The University of Michigan, in Ann Arbor. 
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APPENDIX M 

LIST OF VARIABLES AND SYMBOLS. 

a = . Represents the coefficients in the discretization equations of either the 

pressure field or the mass balance, (ap, aE, etc., represent the coeffi- 

cients for the nodes P, E, etc.); 

Average cross sectional area per unit of length of the crack line, in 

[m2 / m] ; 

Average cross sectional area of the crack in a quarter of the house, in 

[m21; 
Concentration of radon at the interface between the crack and the soil, 

in [Ci/rn3]; 

Indoor radon concentration, in [Ci /m3];  

Outdoor radon concentration, in [C i /m3] ;  

Concentration of radon at the exit of the crack into the basement, in 

[Ci/ m3] ; 

Bulk diffusivity coefficient for Rn-222 in the soil matrix, in [ m 2 / s ] ;  

Characteristic bulk diffusivity coefficient for Rn-222 in the soil matrix, 

in [ m 2 / s ] ;  

Diffusion coefficient of Rn-222 in open air, in [ m 2 / s ] ;  

Enhanced radon diffusion coefficient - diffusion coefficient of Rn-223 in 

a well mixed air, defined in Appendix F - in [ m 2 / s ] ;  

Radon emanating fraction from the soil grains into the soil pore space, 

[dimensionless]; 

Gravity accelerator vector, in [ m / s 2 ] ;  



Height of the house, in [m]; 

Convective component of the bulk flux of Rn-222 in the soil matrix, in 

[Ci/ m2 s]; 

Diffusive component of the bulk flux of Rn-222 in the soil matrix, in 

!Ci/m2s]; 

Total bulk flux of Rn-222, per unit of geometric area in the soil matrix, 

in [ci[m2s]; 

Total effective flux of Rn-222, per unit of geometric area in the soil 

matrix - defined in Appendix D - in [Ci/m%]; 

Flux of Rn-222 at the interface between the crack and the soil, in 

[Ci/ m2 s] ; 

Flux . ~ f  Rn-222 at the exit of the crack, entering the house space, in 

[ ~ i / r n ~ s ] ;  

Soil permeability, in [m2];  

Characteristic soil permeability, in [m2]; 

A constant representing the dimensionless group used in the dimension- 

less form of the equation for the gas velocity inside the crack - defined 

in Appendix E; 
A constant dependent on the geometry of the crack and on the dynamic 

viscosity of the soil gas - defined in Appendix E - in [ m 3 / ~ s ] ;  

A constant representing the dimensionless group used in the dimension- 

less form of Darcy's expression - defined in Chapter 111; 

Depth of the crack. Equal to the thickness of the basement floor, in [m];  

Characteristic length, in [m];  

Dimensions of one quarter of the soil block, in [m];  

Dimensions of one quarter of the basement, in [m];  

A dimensionless factor used in the calculation of the radon flux at the 

soil-crack interface - defined in Appendix F; 

Absolute pressure at a point (2, y, z )  in the soil matrix, in lN/m2]; 



Uch = 

v = 

z, Y , Z  = 

wcrack = 

WIN = 

Disturbance pressure component at a point (z, y ,  z) in the soil matrix, 

in [N /m2] ;  

Atmospheric pressure, in [ N /  m2];  

Differential pressure disturbance applied to the absolute pressure at the 

basement floor, in [ ~ / m ~ ] ;  

Disturbance pressure in the soil at the entrance of the crack, in [ N / m 2 ] ;  

Absolute pressure at  the basement floor, in [N /m2] ;  

Absolute pressure at  the entrance of the crack in the soil, in [h7/m2];  

Peclet number, [dimensionless]; 

Average flow of soil gas into the house through the crack line, per unit 

length of the crack line, in [m3/ms];  

Seepage velocity vector of the soil gas at  the point (2, y ,  z ) ,  in [m/ s ] ;  

Concentration of Ra-226 in the soil grains, in [Ci /Kg];  

Total radon entry rate into a quarter of the house, in [Ci / s ] ;  

Production rate of Rn-222 into the soil pore space, in [ ~ i / m ~ s ] ;  

Characteristic production rate of Rn-222 into the soil pore space, in 

[Ci /m3s];  

Width of the crack opening, in [m];  

Components of the seepage velocity vector in the z, y ,  z  directions 

respectively, in [m/ s ]  ; 

Characteristic velocity of the soil gas, in [m/ s ] ;  

Total 'internal volume of the house, in [ r n 3 ] ;  

Cartesian coordinates, in [m];  

Average velocity of the flow of soil gas through the crack, in [m/ s ] ;  

Average velocity of the soil gas through the soil-crack interface, in [m/ s ] ;  
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Greek Letters. 

Soil porosity, [dimensionless] ; .+- 

Ratio of radon activity to the mass of soil gas, (a relative mass concen- 

tration between radon and soil gas), in [Ci/ Kg]; 

Radon-222 decay constant, in [s-'I; 

Air exchange rate (or ventilation rate), in [s-'1; 

Soil gas dynamic viscosity, in [Ns/rn2];  

Soil gas density, in [Kg/m3];  

Density of the soil particles (grains), in [Kg/m3];  

Special Symbols. 

Gradient operator, in [m-'1; 

Divergence operator, in [m-'1; 

This symbol denotes the largest quantity inside it. 
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