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ABSTRACT OF THE DISSERTATION

Search for the Optimum Variance Components Estimates in Mixed Effects Models

by

Luyao Peng

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, September 2019

Dr. Subir Ghosh, Chairperson

This dissertation aims at searching for the optimum variance components estimates in the

mixed-effects model. Traditional estimation methods of the variance components include

the analysis of variance/method of moment (ANOVA/MoM) estimation, which is the op-

timum estimation (OPE) when the data are balanced, the maximum likelihood estimation

(MLE) and the restricted maximum likelihood estimation (REMLE). However, when the

data have small sample sizes and unbalanced structures, the optimum estimates do not ex-

ist, ML estimates are biased, MLE and REMLE cannot provide the closed-form expressions

of the estimates to study their small-sample statistical properties. To solve those prob-

lems, we proposed the near optimum estimation (NOPE) method and the average optimum

estimation (AOPE) method when the data are unbalanced in DOE. When estimating σ22

and a linear function of variance components σ21 + p2σ
2
2 in SAE, we proposed methods of

finding the unbiased quadratic estimators with smaller variances than the corresponding

MoM estimators. We presented simulation studies to evaluate the estimation performance

of our proposed methods and compare them with MoM, ML and REML. All of our pro-
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posed estimators have closed-form expressions and do not require the functional form in the

distributional assumptions.
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Chapter 1

Introduction

1.1 Literature Review

Mixed-effects models are widely used in analyzing correlated data, especially the data with

repeated measurements made on the same observational unit or the measurements are

made within clusters of related observational units. When drawing statistical inferences

with respect to the fixed effects on the dependent variable, the estimates of the fixed effects

coefficients are dependent on the estimated variance components in the mixed-effects model,

therefore, the estimation of the variance components is important in drawing inferences in

mixed-effects models.

A large literature is available for the estimation methods of variance components in the

mixed-effects model. Optimum estimation (OPE) method is the best quadratic unbiased

estimator among the class of unbiased quadratic estimators for the variance components.

When the data are balanced, the optimum estimators exist and include the analysis of

variance (ANOVA) estimators / Method of Moment (MoM) estimators12. Under the nor-
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mality assumptions, the optimum estimators include the Minimum Variance (MINVAR)

quadratic estimators20, the Minimum Mean Square (MIMS) quadratic estimators16. Other

standard estimation methods are the Maximum Likelihood (ML) estimation methods (9

(), 10 ()), and the Restricted Maximum Likelihood (REML) method18. Both MLE and

REMLE are based on distributional assumptions and they have some nice properties such

as asymptotically consistency, efficiency and normality under some regularity conditions.

Despite the merits of those estimation methods, there are two major problems. First, when

the data are unbalanced, the OP estimators do not exist, even though ML and REML

can give numeric values of the estimated variance components under certain distributional

assumptions, the explicit forms of those estimators remain unknown, so the small-sample

statistical properties of the estimators cannot be studied, which is not desirable for the fields

of study where small samples are common, such as the experimental design and the small

area estimation. Second, both ML and REML estimators require normality assumptions

and may not be robust in estimation when the normality assumption is not valid.

We aim to solve for those problems in two areas, the design of experiment (DOE) and the

small area estimation (SAE). In DOE, we propose the method of near optimum estimation

(NOPE), which do not require the functional form of the distribution assumptions and

is near optimum with explicit form when the optimum estimators do not exist. When

the experimental design is replicated, the average optimum estimation (AOPE) method

is proposed. In SAE, we propose to use the MoM estimators as a benchmark to find

the unbiased estimators with explicit forms and smaller variances than the corresponding

MoM estimators. We also propose to find the approximated A matrix for ML and REML

2



estiamtes.

1.2 Thesis Contribution

This thesis searches for the optimum quadratic estimator, y′Ay, to estimate the variance

components in the mixed-effects model.

In SAE, our proposed estimators are unbiased and having smaller variances than correspond-

ing MoM estimators when the optimum estimates do not exist, which is demonstrated by

using an example. Our proposed estimators also have closed-form expressions and do not

require functional form of the distribution assumption. In addition, we found approximated

A matrix for ML and REML estiamtes.

In DOE, we proposed the NOPE and AOPE using replications. The simulations demon-

strated the comparable estimation performance of our methods with ML and REML un-

der normality assumptions. Simulations also demonstrated the robustness of our methods

against the departure from normality by using the skew normal distrubution for both AOPE

and NOPE compared with MoM, ML and REML.

1.3 Thesis Outline

In Chapter 2, the quadratic forms, the expecation, variance and covariance expressions

are introduced. In Chapter 3, the mixed-effects models are introduced first, the unbiased

quadratic estimators for the variance components in the mixed-effects model as well as the

variance of the quadratic estimators will be reviewed and illustrated using an example.

In Chapter 4, for the mixed-effects models in DOE, the NOPE and AOPE methods are

3



introduced using the Unbalanced Incomplete Block Design (UIBD) and the UIBD with

replications. In Chapter 5, two mixed-effects models in SAE, Fay-Herriot model and the

nested-error mixed-effects model, are introduced. For each SAE model, the algorithmic way

of finding the class of unbiased quadratic estimators for the variance components is intro-

duced using the MoM estimators as a benchmark, then the procedures of finding a subclass

of unbiased quadratic estimators with smaller variance than that of the corresponding MoM

estimators are illustrated using an example.

4



Chapter 2

The Quadratic Forms

2.1 Introduction

Let B be a real and symmetric k×k matrix and b be a k×1 random vector. An expression

of the form b′Bb is called a quadratic form. We can write the quadratic form as

b′Bb =

k∑
i=1

k∑
j=1

biBi,jbj . (2.1.1)

2.2 Expectation

Theorem 2.1. For b = (b1, b2, . . . , bk)
′, we assume that bi’s are independent with mean 0

and variance σ2i . Then, we have

E(b′Bb) = tr(B∆1), (2.1.2)

5



where

∆1 =



σ21 0 . . . 0

0 σ22 . . . 0

...
...

. . .
...

0 0 . . . σ2k


.

Proof:

Since bi’s are independent with mean 0, variance σ2i , we have

V ar(b) = ∆1 =



σ21 0 . . . 0

0 σ22 . . . 0

...
...

. . .
...

0 0 . . . σ2k


,

E(b′Bb) =
k∑
i=1

k∑
j=1

E(biBi,jbj)

=
k∑
i=1

k∑
j=1

Bi,jE(bibj)

=
k∑
i=1

k∑
j=1

Bi,j [V ar(b)]i,j .

Since V ar(b) = ∆1, which is a diagonal matrix, only the terms with index i = j are

non-zero, then we have

k∑
i=1

k∑
j=1

Bi,j [V ar(b)]i,j =
k∑
i=1

[B∆1]i,i

= tr(B∆1).

6



2.3 Variance

Theorem 2.2. For b = (b1, b2, . . . , bk)
′, we assume that bi’s are independent with the mean

of 0, variance σ2i and kurtosis γi. Then, we have

V ar(b′Bb) = 2tr(B∆1B∆1) + tr(B̃∆2B̃), (2.3.1)

where B̃ is the diagonal matrix with the same diagonal elements as the matrix B and

∆1 =



σ21 0 . . . 0

0 σ22 . . . 0

...
...

. . .
...

0 0 . . . σ2k


,∆2 =



γ1σ
4
1 0 . . . 0

0 γ2σ
4
2 . . . 0

...
...

. . .
...

0 0 . . . γkσ
4
k


.

Proof:

For a scalar b′Bb, it is known that

V ar(b′Bb) = E[(b′Bb)2]− [E(b′Bb)]2. (2.3.2)

Since b′Bb =
k∑
i=1

k∑
j=1

biBi,jbj in (2.1.1), we can write

(b′Bb)2 =
∑∑

1≤i,j

∑
,m,n≤k

∑
Bi,jBm,nbibjbmbn. (2.3.3)

Because bi’s are independent with mean 0 and variance σ2i , we have E(bi) = 0, E(b2i ) =

σ2i , E(b4i ) = (γi + 3)σ4i ,

E(bibjbnbm) =



(γi + 3)σ4i , for i = j = k = l,

σ2i σ
2
j , for i = j 6= m = n or i = m 6= j = n or i = n 6= m = j,

0, otherwise,

7



and B is symmetric matrix, i.e. Bi,j = Bj,i, the first term in (2.3.2) is equal to

E[(b′Bb)2] =
k∑
i=1

B2
i,i(γi + 3)σ4i +

∑
1≤i 6=

∑
m≤k

Bi,iBm,mσ
2
i σ

2
m +

∑
1≤i 6=

∑
j≤k

Bi,jBi,jσ
2
i σ

2
j

+
∑
1≤i 6=

∑
m≤k

Bi,mBm,iσ
2
i σ

2
m

=
k∑
i=1

B2
i,iγiσ

4
i + 3

k∑
i=1

B2
i,iσ

4
i +

∑
1≤i 6=

∑
j≤k

Bi,iBj,jσ
2
i σ

2
j + 2

∑
1≤i 6=

∑
j≤k

Bi,jBi,jσ
2
i σ

2
j .

(2.3.4)

It is previously shown that

E(b′Bb) =
k∑
i=1

Bi,iσ
2
i ,

[E(b′Bb)]2 =
k∑
i=1

k∑
j=1

Bi,iBj,jσ
2
i σ

2
j .

(2.3.5)

Then, we have

V ar(b′Bb) = E[(b′Bb)2]− [E(b′Bb)]2

=

k∑
i=1

B2
i,iγiσ

4
i + 3

k∑
i=1

B2
i,iσ

4
i +

∑
1≤i 6=

∑
j≤k

Bi,iBj,jσ
2
i σ

2
j

+2
∑
1≤i 6=

∑
j≤k

Bi,jBi,jσ
2
i σ

2
j −

 k∑
i=1

k∑
j=1

Bi,iBj,jσ
2
i σ

2
j


=

k∑
i=1

B2
i,iγiσ

4
i + 2

k∑
i=1

B2
i,iσ

4
i + 2

∑
1≤i 6=

∑
j≤k

Bi,jBi,jσ
2
i σ

2
j

=
k∑
i=1

B2
i,iγiσ

4
i + 2

∑
1≤i,

∑
j≤k

Bi,jBi,jσ
2
i σ

2
j

= tr(B̃∆2B̃) + 2tr(∆1B∆1B).

(2.3.6)

2.4 Covariance

Theorem 2.3. For b = (b1, b2, . . . , bk)
′, we assume that bi’s are independent with the mean

of 0, variance σ2i and kurtosis γi. For two quadratic forms b′Bb and b′Fb, where B and F

8



are both k × k symmetric matrices, we have

Cov(b′Bb, b′Fb) = tr(B̃∆2F̃ ) + 2tr(∆1B∆1F ), (2.4.1)

where B̃ is the diagonal matrix with the same diagonal elements as the matrix B, F̃ is the

diagonal matrix with the same diagonal elements as the matrix F , ∆1 and ∆2 are given in

(2.3.1).

Proof:

For scalar b′Bb and b′Fb, we have

Cov(b′Bb, b′Fb) = E[(b′Bb)(b′Fb)]− E(b′Bb)E(b′Fb). (2.4.2)

Since b′Bb =
k∑
i=1

k∑
j=1

biBi,jbj and b′Fb =
k∑
i=1

k∑
j=1

biFi,jbj , we can write

(b′Bb)(b′Fb) =
∑∑

1≤i,j

∑
,m,n≤k

∑
Bi,jFm,nbibjbmbn. (2.4.3)

Since bi’s are independent with mean 0 and variance σ2i , E(bi) = 0, E(b2i ) = σ2i , E(b4i ) =

(γi + 3)σ4i , and

E(bibjbnbm) =



(γi + 3)σ4i , for i = j = k = l,

σ2i σ
2
j , for i = j 6= m = n or i = m 6= j = n or i = n 6= m = j,

0, otherwise.

Because B and F are both symmetric matrix, therefore, the first term in (2.4.2) is equal to
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E[(b′Bb)(b′Fb)] =
k∑
i=1

Bi,iFi,i(γi + 3)σ4i +
∑
1≤i 6=

∑
m≤k

Bi,iFm,mσ
2
i σ

2
m +

∑
1≤i 6=

∑
j≤k

Bi,jFi,jσ
2
i σ

2
j

+
∑
1≤i 6=

∑
m≤k

Bi,mFm,iσ
2
i σ

2
m

=
k∑
i=1

Bi,iFi,iγiσ
4
i + 3

k∑
i=1

Bi,iFi,iσ
4
i +

∑
1≤i 6=

∑
j≤k

Bi,iFj,jσ
2
i σ

2
j

+2
∑
1≤i 6=

∑
j≤k

Bi,jFi,jσ
2
i σ

2
j .

(2.4.4)

It is previously shown that

E(b′Bb) =
k∑
i=1

Bi,iσ
2
i ,

E(b′Fb) =
k∑
i=1

Fi,iσ
2
i ,

[E(b′Bb)] [E(b′Fb)] =

k∑
i=1

k∑
j=1

Bi,iFj,jσ
2
i σ

2
j ,

(2.4.5)

we have

Cov(b′Bb, b′Fb) = E[(b′Bb)(b′Fb)]− E(b′Bb)E(b′Fb)

=
k∑
i=1

Bi,iFi,iγiσ
4
i + 3

k∑
i=1

Bi,iFi,iσ
4
i +

∑
1≤i 6=

∑
j≤k

Bi,iFj,jσ
2
i σ

2
j

+2
∑
1≤i 6=

∑
j≤k

Bi,jFi,jσ
2
i σ

2
j −

 k∑
i=1

k∑
j=1

Bi,iFj,jσ
2
i σ

2
j


=

k∑
i=1

Bi,iFi,iγiσ
4
i + 2

k∑
i=1

Bi,iFi,iσ
4
i + 2

∑
1≤i 6=

∑
j≤k

Bi,jFi,jσ
2
i σ

2
j

=

k∑
i=1

Bi,iFi,iγiσ
4
i + 2

∑
1≤i,

∑
j≤k

Bi,jFi,jσ
2
i σ

2
j

= tr(B̃∆2F̃ ) + 2tr(∆1B∆1F ).

(2.4.6)
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2.5 Example

Consider an illustrative example to compute the expectation, variance and covariance of a

quadratic form.

For a random vector b = (b1, b2, b3)
′, we assumed that bi’s are indpendent with mean 0,

common variance σ2 and kurtosis γ, we have

E(b) = 0, V ar(b) = ∆1 = σ2I3, (2.5.1)

where I3 is an identity matrix of order 3.

Consider the quadratic form b′Bb with B given as

B =


B1,1 B1,2 B1,3

B1,2 B2,2 B2,3

B1,3 B2,3 B3,3

 . (2.5.2)

The expectation of b′Bb is

E(b′Bb) = tr(B∆1)

= σ2(B11 +B22 +B33).

(2.5.3)

The variance of b′Bb is

V ar(b′Bb) = tr(B̃∆2B̃) + 2tr(∆1B∆1B)

= σ4(B2
11γ + 2B2

11 + 4B2
12 + 4B2

13 +B2
22γ + 2B2

22 + 4B2
23 +B2

33γ

+2B2
33).

(2.5.4)

Consider another quadratic form b′Fb, where F is given as

11



F =


F1,1 F1,2 F1,3

F1,2 F2,2 F2,3

F1,3 F2,3 F3,3

 . (2.5.5)

The covariance of b′Bb and b′Fb is

Cov(b′Bb, b′Fb) = 2tr(B∆1F∆1) + tr(B̃∆2F̃ )

= σ4(B11F11γ + 2B11F11 +B22F22γ + 2B22F22 +B33F33γ

+2B33F33).

(2.5.6)
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Chapter 3

The Unbiased Estimation of the

Variance Components in the

Mixed Effects Model

3.1 Introduction

Statistics is concerned with the partitions and the estimations of the observed variation

of data due to different sources, which is an important step in the procedure of drawing

statistical inferences about the effects of certain factors on the response variables.

Variation among data can be studied through different classes of linear models, one of which

is called the mixed-effects model. The mixed-effects model is widely used in analyzing

the correlated data, especially the data with repeated measurements made on the same

observational unit or the measurements are made on clusters of related observational units.
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In the mixed-effects model, the effects of a factor have two kinds. The first are fixed effects,

whose effects on the response variable are attributable to a finite set of levels of a factor.

The second kind of effects are random effects, whose effects on the response variable are

attributable to a infinite set of levels of a factor, the levels selected in the data are only a

random sample of those infinite levels of the factor.

Here is an example of the fixed effects and the random effects. Consider an experiment with

balanced incomplete block design to evaluate the effects of two hormones on the duration of

the reepithelisation of cornea in rabbits. The effects of cortisone and desoxycorticosterone

are compared with the control treatment (saline solution). It is assumed that the two eyes

of a rabbit are two independent experimental units forming a block, it is also assumed that

the block effects follow certain distribution. The resulting design is arrayed in Table 3.1:

Table 3.1: Example of the Fixed Effects and the Random Effects in Experiment

Blocks
Rabbit1 Rabbit2 Rabbit3
1 2 1 2 1 2

Treatments
cortisone
desoxycorticosterone
control

In this experiment, the effects for the treatment factor are the fixed effects, because the

researcher is only interested in the effects of the two hormones by estimating the treatment

effects. The effects due to the rabbit blocks are considered as the random effects if the

rabbits in the experiments are a random sample from the pool of rabbits with assumed

distributions. The effects of the random errors are also considered as the random effects

with certain distributional assumptions in the experiment.
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Since distributional assumptions are made to those random effects, the statistical interests

in them lie in estimating the variances of those effects. Those variances are known as the

variance components, their sum is the variance of the variable being observed26.

A large literature are available for the estimation methods of variance components in the

mixed-effects model, including the Method of Moment (MoM), the maximum likelihood

(ML) method and the restricted maximum likelihood (REML) method. All of those methods

have some nice properties under some regularity conditions. However, when the data are

finite, such as the data in DOE, ML estimators are generally biased. Besides, ML and

REML require distributional assumptions and do not have closed-form expressions for the

estimators of the variance components, so the finite-sample properties of those estimators

cannot be studied.

In this section, we will find the class of unbiased quadratic estimators for the variance

components with explicit forms under the general mixed-effects model.

3.2 The Mixed Effects Model

Consider the linear mixed effect model

y = Xβ +U1b1 + · · ·+Us−1bs−1 + e, (3.2.1)

where y is a n × 1 vector of observations, X is a n × p known matrix, β is a p × 1 vector

of fixed effect coefficients. For i = 1, 2, . . . , s− 1, bi is a qi × 1 vector of random effects. Ui

is a n × qi known incidence matrices, e is a n × 1 vector of random errors. It is assumed

the qi components in bi are independent with mean 0, variance σ2i and kurtosis γi, the n

components in e are independent with mean 0, variance σ2e and kurtosis γe, and the vectors
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bi’s and e are independent, then we have V ar(y) =
s−1∑
i=1

σ2iUiU
′
i +σ2eIn. Here, σ21, σ

2
2, . . . , σ

2
e

are the unknown variance components in the mixed-effects model (3.2.1).

Define



qs = n,

Us = In,

bs = e,

(3.2.2)

the mixed-effects model in (3.2.1) can also be expressed as

y = Xβ +U1b1 + · · ·+Us−1bs−1 +Usbs. (3.2.3)

Define

16





U = [U1,U2, . . . ,Us],

b′ = [b′1, b
′
2, . . . , b

′
s],

V ar(b) =



σ21Iq1 0 . . . 0

0 σ22Iq2 . . . 0

...
...

. . .
...

0 0 . . . σ2sIn


,

Vi = UiU
′
i , i = 1, 2, . . . , s− 1,

Vs = In,

V = V ar(y),

(3.2.4)

the mixed-effects model in (3.2.3) can be expressed as

y = Xβ +Ub. (3.2.5)

The variance of y is

V = UV ar(b)U ′

=

s−1∑
i=1

σ2i Vi + σ2sIn

(3.2.6)
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3.3 The Unbiased Quadratic Estimators of the Variance Com-

ponents

We have introduced the general mixed-effects model and the variance components in the

general mixed-effects model. In this section, we will present the unbiased quadratic estima-

tors for the variance components in the general mixed-effects model.

Recall that in the general mixed-effects model (3.2.1), σ21, σ
2
2, . . . , σ

2
e are s unknown variance

components. Consider using a quadratic function y′Ay to estimate a linear function of the

variance components, p′σ2 =

s∑
i=1

piσ
2
i , where pi’s are known constants and σ2s = σ2e , The

matrix A in y′Ay is chosen according to the following criteria:

• Symmetry: A should be a n× n symmetric matrix, i.e. A = A′.

• Unbiasedness: y′Ay is an unbiased estimator for p′σ2, i.e. E(y′Ay) = p′σ2.

For the general mixed-effects model in (3.2.1), and based on the expectation in (2.1.2), we

have

E(y′Ay) = E[(Xβ +Ub)′A(Xβ +Ub)]

= E(β′X ′AXβ + β′X ′AUb+ b′U ′AXβ + b′U ′AUb)

= E(b′U ′AUb) + E(β′X ′AXβ)

= tr(AV ) + (β′X ′AXβ)

=
s∑
i=1

tr(AUiU
′
i)σ

2
i + (β′X ′AXβ).

(3.3.1)

If requiring AX = 0 and tr(AUiU
′
i) = pi for i = 1, 2, . . . , s, then E(y′Ay) = p′σ2, i.e. the

quadratic estimator y′Ay is an unbiased estimator for p′σ2.
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Consider a class of matrices A satisfying the conditions for unbiasedness. The class of

matrices A is defined as

A =
{
A|A = A′,AX = 0, tr(AVi) = pi, i = 1, 2, . . . , s

}
. (3.3.2)

For any A ∈ A , y′Ay is an unbiased estimator of p′σ2, see 5 ().

3.4 The Variance of the Quadratic Estimators for the Vari-

ance Components

For the matrix U in (3.2.4), and any A ∈ A in (3.3.2), define

B = U ′AU . (3.4.1)

Let B̃ be a diagonal matrix with the same diagonal elements of the matrix B in (3.4.1).

Define

∆1 =



σ21Iq1 0 . . . 0

0 σ22Iq2 . . . 0

...
...

. . .
...

0 0 . . . σ2sIqs


,∆2 =



γ1σ
4
1Iq1 0 . . . 0

0 γ2σ
4
2Iq2 . . . 0

...
...

. . .
...

0 0 . . . γsσ
4
sIqs


. (3.4.2)

For any A ∈ A in (3.3.2), the variance of y′Ay is

V ar(y′Ay) = tr(B̃∆2B̃) + 2tr(∆1B∆1B). (3.4.3)
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3.5 Example of the Unbiased Quadratic Estimators and Their

Variance

Consider an illustrative example presented in Table 3.2. The data are obtained from an

experiment with split-plot design, the design evaluates the effects of two treatment factors,

which are curing temperature and coating material. Because it is expensive to replicate

the experiment on each single bar for each temperature and coating material, the two

treatment factors are applied to two different experimental units. Among 24 bars, six bars

are randomly assigned to each of the four coating materials, the experimental unit for

coating materials is the individual bar. Each curing temperature is applied to a group of

four bars and is replicated twice, the experimental unit for curing temperature is a group

of four bars (Heat). Because the design has two different experimental units for the two

treatment factors, it also has two random errors corresponding to the two experimental

units, which are the random effects of the group of four bars (Heat) and radom error of

each individual bar.

Table 3.2: Split Plot Design

Temperature Heat Coating1 Coating2 Coating3 Coating4

360F
1 67 73 83 89
6 33 8 46 54

370F
2 65 91 87 86
5 140 142 121 150

380F
3 155 127 147 212
4 108 100 90 153
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Consider the following mixed-effects model,

yijk = µ+ Ti + e1ij + Ck + (TC)ik + e2ijk, i = 1, 2, 3, j = 1, 2, k = 1, 2, 3, 4, (3.5.1)

where µ is the grand mean, Ti is the fixed effect of the ith temperature, Ck is the fixed

effect of the kth coating material, (TC)ik is the interaction between the ith temperature

and the kth coating material, e1ij is the random effect of the jth replication (heat) in the

ith temperature, e2ijk is the random error of individual bar in the kth coating materials in

the jth replication in the ith temperature. It is assumed that e′1ijs are independent with

mean 0, common variance σ21 and kurtosis γ1, e
′
2ijks are independent with mean 0, common

variance σ22 and kurtosis γ2, e
′
1ijs and e′2ijks are independent. Note that the functional form

of the distribution is not needed for the random effects.

Define



jb = an column vector of order b with all entries equal to 1 ,

0b = an column vector of order b with all entries equal to 0 ,

Ib = an identity matrix of order b ,

0b,b = a b× b matrix with all entries equal to 0,

Jb = a b× b matrix with all entries equal to 1.

(3.5.2)

The model can also be expressed in the matrix notation as

y = Xβ +U1b+ e, (3.5.3)
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where

y =

y1
y2

 with y1 =



y111

y112

y113

y114

y211

y212

y213

y214

y311

y312

y313

y314



=



67

73

83

89

65

91

87

86

155

127

147

212



,y2 =



y121

y122

y123

y124

y221

y222

y223

y224

y321

y322

y323

y324



=



33

8

46

54

140

142

121

150

108

100

90

153



,β =



µ

T1

T2

C1

C2

C3

T1C1

T1C2

T1C3

T2C1

T2C2

T2C3



,

X =

X1

X1

 with X1 =



j3 j3 03 I3 I3 03,3

1 1 0 0′3 0′3 0′3

j3 03 j3 I3 03,3 I3

1 0 1 0′3 0′3 0′3

j3 03 03 I3 03,3 03,3

1 0 0 0′3 0′3 0′3



,
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U1 =

Z1 0

0 Z1

 with Z1 =


j4 0 0

0 j4 0

0 0 j4

 , b =



b11

b21

b31

b12

b22

b32



.

Under the model (3.5.3), we have

E(y) = Xβ,

V ar(y) = V = σ21U1U
′
1 + σ22I24,

(3.5.4)

where U1U
′
1 =

Z1Z
′
1 0

0 Z1Z
′
1

 =



J4 0 0 0 0 0

0 J4 0 0 0 0

0 0 J4 0 0 0

0 0 0 J4 0 0

0 0 0 0 J4 0

0 0 0 0 0 J4



.

For the model (3.5.3), σ21 and σ22 in (3.5.4) are the unknown variance components to be

estimated.

3.5.1 The Unbiased Quadratic Estimator for σ2
1

Consider y′Ay as an estimator of σ21, where A is a 24× 24 symmetric matrix defined as
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A =

A11 A12

A′12 A22

 . (3.5.1.1)

A11, A12 and A22 are matrices of order 12 × 12, A11 and A22 are symmetric matrices.

Under the model in (3.5.3), if A satisfy the following conditions for unbiasedness,

A =
{
A : A = A′,AX = 0, tr(AU1U

′
1) = 1, tr(A) = 0

}
, (3.5.1.2)

for any A ∈ A in (3.5.1.2), y′Ay will be an unbiased estimator of σ21.

For the conditions AX = 0 in (3.5.1.2), it can be shown that

A =

 A11 −A11

−A11 A11

 , (3.5.1.3)

where A11 is any symmetric matrix of order 12× 12.

For the condition tr(A) = 0 and tr(AU1U
′
1) = 1 in (3.5.1.2), we have


tr(A11) = 0,

tr(A11U1U
′
1) = 1

2 ,

(3.5.1.4)

where U1U
′
1 =


J4 0 0

0 J4 0

0 0 J4

. In other word, as long as we find a matrix A11 that is a

symmetric matrix with tr(A11) = 0 and tr(A11U1U
′
1) = 1

2 , the matrix A will satisfy the

unbiasedness conditions in (3.5.1.2) and give an unbiased quadratic estimator y′Ay for σ21.
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3.5.2 The Unbiased Quadratic Estimator for σ2
2

Let y′Ay be an estimator of σ22, where A is a 24× 24 symmetric matrix defined as

A =

A11 A12

A′12 A22

 . (3.5.2.1)

A11, A12 and A22 are matrices of order 12 × 12, A11 and A22 are symmetric matrices.

Under the model in (3.5.3), if A satisfy the following conditions for unbiasedness

A =
{
A : A = A′,AX = 0, tr(AU1U

′
1) = 0, tr(A) = 1

}
, (3.5.2.2)

for any A ∈ A in (3.5.2.2), y′Ay will be an unbiased estimator of σ22.

To satisfy the condition AX = 0 in (3.5.2.2), it can be shown that

A =

 A11 −A11

−A11 A11

 (3.5.2.3)

where A11 is any symmetric matrix of order 12× 12.

For the condition tr(A) = 1 and tr(AU1U
′
1) = 0 in (3.5.2.2), we have


tr(A11) = 1

2 ,

tr(A11U1U
′
1) = 0.

(3.5.2.4)

As long as we find a matrix A11 that is symmetric with tr(A11) = 1
2 and tr(A11U1U

′
1) = 0,

the matrixA will satisfy the conditions in (3.5.2.2) and give an unbiased quadratic estimator

y′Ay for σ22.
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Chapter 4

The Near Optimum Estimation of

the Variance Components in the

Mixed Effects Model in

Experimental Design

4.1 Introduction

The mixed-effects models are frequently used in experimental design. When the design is

balanced, the Optimum Estimator (OPE) exists and are often used to estimate the variance

components in the mixed-effects model. However, when the design is unbalanced, OPE does

not exist, therefore, the near optimum estimation (NOPE) method is proposed to estimate

the variance components.
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When the experiment involves replications, it is difficult to find out the NOPE for the full

data, therefore, the average optimum estimation (AOPE) method is proposed based on the

NOPE and the replications in the experiment.

In this section, the method of NOPE will be introduced first in the unbalanced experimental

design with one replication, following which the method of AOPE will be introduced under

the unbalanced experimental design with replications.

4.2 Unbalanced Incomplete Block Design (UIBD)

Consider an UIBD with 1 replication in Table 4.1

Table 4.1: Unbalanced Incomplete Block Design with One Replication

Block1 Block2 Block3

TreatmentA A A A

TreatmentB B B

TreatmentC C

The data are

Table 4.2: Data for Unbalanced Incomplete Block Design with One Replication

Block1 Block2 Block3

TreatmentA y11 y21 y31
TreatmentB y12 y32
TreatmentC y23

We fit the following mixed-effects model to the data

y = Xβ +U1b1 + e, (4.2.1)
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where

y =



y11

y12

y21

y23

y31

y32



,X =



1 0 0

0 1 0

1 0 0

0 0 1

1 0 0

0 1 0



,β =


β1

β2

β3

 ,U1 =



1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1



, b =


b1

b2

b3

 .

Let b′ = (b′1, e
′),U = (U1, I),V1 = U1U

′
1,V2 = I6, then it is assumed that



E(b1) = 0, E(e) = 0,

V ar(b1) = σ21I3, V ar(e) = σ22I6,

Kurtosis(b1) = γ113,Kurtosis(e) = γ216,

V ar(b) = V ar



b1

e


 = ∆1 =


σ21I3 0

0 σ22I6

 ,

E(y) = Xβ,

V ar(y) = σ21U1U
′
1 + σ22I6 = σ21V1 + σ22V2.

(4.2.2)

Note that the functional forms of the random effects distributions are not needed. σ21 and

σ22 are the unknown variance components to be estimated.
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4.3 Near Optimum Estimation

4.3.1 The Unbiased Estimators for σ2
1 and σ2

2

Consider using a quadratic estimator y′Ay to estimate the variance components.

For the design matrices X and U1 in (4.2.1), a class of matrices A satisfying the conditions

for unbiasedness is defined as

A =
{
A|A = A′,AX = 0, tr(AVi) = pi, i = 1, 2

}
. (4.3.1.1)

For any A ∈ A with p1 = 1, p2 = 0, the quadratic estimator y′Ay is an unbiased estimator

of σ21. For any A ∈ A with p1 = 0, p2 = 1, the quadratic estimator y′Ay is an unbiased

estimator of σ22.

Consider another class of matrices C defined as

C =
{
C|C = C ′,CX = 0, tr(CVi) = 0, i = 1, 2

}
. (4.3.1.2)

For any C ∈ C , the quadratic estimator y′Cy is an unbiased estimator of 0.

For any A ∈ A , if y′Ay satisfies

Cov(y′Ay,y′Cy) = 0, for all C ∈ C and σ2i > 0, i = 1, 2, (4.3.1.3)

y′Ay will be the uniformly minimum variance quadratic unbiased estimator (UMVQUE/OPE)

for σ2i , i = 1, 2, see 21 ().

However, the design in Table 4.1 is unbalanced, so the OPEs do not exist. Therefore,

we propose NOPE method to find the estimates that are near optimum for the variance
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components being estimated.

4.3.2 The Near Optimum Estimation of σ2
1 and σ2

2

Under the mixed-effects model in (4.2.1), any A ∈ A for p1 = 1, p2 = 0 in (4.3.1.1) satisfy

A =
{
A|A = A′,AX = 0, tr(AV1) = 1, tr(AV2) = 0

}
,

and can be expressed as

A =



a1 a2 −a1 − a3 − a4 0 a3 + a4 −a2

a2 a3 1/2− 2a2 0 a2 − 1/2 −a3

−a1 − a3 − a4 1/2− 2a2 a4 0 a1 + a3 2a2 − 1/2

0 0 0 0 0 0

a3 + a4 a2 − 1/2 a1 + a3 0 −a1 − a3 − a4 1/2− a2

−a2 a3 2a2 − 1/2 0 1/2− a2 a3



,

(4.3.2.1)

where a1, a2, a3, a4 are any reals. y′Ay will be an unbiased estimator for σ21.

Any C ∈ C defined in (4.3.1.2) can be written as
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C =



c1 c2 −c1 − c3 − c4 0 c3 + c4 −c2

c2 c3 −2c2 0 c2 −c3

−c1 − c3 − c4 −2c2 c4 0 c1 + c3 2c2

0 0 0 0 0 0

c3 + c4 c2 c1 + c3 0 −c1 − c3 − c4 −c2

−c2 c3 2c2 0 −c2 c3



, (4.3.2.2)

where c1, c2, c3, c4 are any reals. y′Cy will be an unbiased estimator for 0.

Define

B = UAU ′, B̃ = diag(B),F = UFU ′, F̃ = diag(F ),

∆1 =

σ21I3 0

0 σ22I6

 ,∆2 =

γ1σ41I3 0

0 γ2σ
4
2I6

 .
According to Theorem 2.4, the general form of Cov(y′Ay,y′Cy) under the mixed-effects

model in (4.2.1) is

Cov(y′Ay,y′Cy) = tr(B̃∆2F̃ ) + 2tr(∆1B∆1F ). (4.3.2.3)

For A in (4.3.2.1) and C in (4.3.2.2), the Cov(y′Ay,y′Cy) in (4.3.2.3) can be expressed as

Cov(y′Ay,y′Cy) = (Qη − g)′δ, (4.3.2.4)
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where

g =



g1

g2

g3

g4


=



γ1σ
4
1 + 6σ21

(
σ21 + σ22

)
2γ1σ

4
1 + 12

(
σ21 + σ22

)2
γ2σ

4
1 + 6σ21σ

2
2 + 6σ41

γ2σ
4
1 + 6σ21σ

2
2 + 6σ41


,

Q =



2g2 + 6g3 − 8g4 4g1 2g2 + 6g3 − 8g4 g2 + 3g3 − 4g4

4g1 8g2 4g1 2g1

2g2 + 6g3 − 8g4 4g1 g2 + g3 g2 + g4

g2 + 3g3 − 4g4 2g1 g2 + g4 2g2 + 6g3 − 8g4


,

η =



a1

a2

a3

a4


, δ =



c1

c2

c3

c4


.

If there exists an η that makes Qη− g to be a vector close to a null vector, then regardless

of δ, we declare that Cov(y′Ay,y′Cy) will be close to 0, and the η will yield an A matrix

resulting in a near optimum estimator for σ21.

Consider η =



0

1/4

0

0


, we have
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φ = Qη − g

=



0

0

0

−g1/2


,

Cov(y′Ay,y′Cy) = −σ21
(
3σ21 + 3σ22 + 1

2γ1σ
2
1

)
c4.

(4.3.2.5)

We declare that φ will be close to a null vector if the value g1 is small, then the value of

the covariance will be close to 0.

The corresponding NOPE under the model in (4.2.2) for σ21 is

σ̂21 = 1
2(y11 − y31)(y12 − y32) (4.3.2.6)

The procedures of finding the A in y′Ay for σ22 are similar as the procedure of finding the

A in y′Ay for σ21.

Under the mixed-effects model in (4.2.1), any A ∈ A for p1 = 0, p2 = 1 in (4.3.1.1) satisfy

A =
{
A|A = A′,AX = 0, tr(AV1) = 0, tr(AV2) = 1

}
,

and can be written as
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A =



a1 a3 a2 − a1 0 a2 −a3

−a3 1/2− a1 + a2 − a4 −1/2− 2a3 0 a3 + 1/2 −1/2 + a1 − a2 + a4

a2 − a1 −1/2− 2a3 a1 − 2a2 + a4 0 a2 − a4 1/2 + 2a3

0 0 0 0 0 0

−a2 1/2 + a3 a2 − a4 0 a4 −1/2− a3

−a3 −1/2 + a1 − a2 + a4 1/2 + 2a3 0 −1/2− a3 1/2− a1 + a2 − a4



,

(4.3.2.7)

where a1, a2, a3, a4 are any reals. y′Ay will be an unbiased estimator for σ22.

C ∈ C is defined in (4.3.2.2).

For A in (4.3.2.7) and C in (4.3.2.2), Cov(y′Ay,y′Cy) in (4.3.2.3) can be expressed as

Cov(y′Ay,y′Cy) = (Qη − g)′δ. (4.3.2.8)

Consider η =



1/4

1/4

−1/4

1/4


, we have

φ = Qη − g

=



−σ42(γ2 + 6)/4

σ42(γ2 + 6)/2

0

−σ42(γ2 + 6)/4


,

Cov(y′Ay,y′Cy) = σ42(γ2 + 6)/4(−c1 − 2c2 − c4).

(4.3.2.9)
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If σ42(γ2 + 6) is small, then both σ42(γ2 + 6)/4 and σ42(γ2 + 6)/2 are close to 0, we declare

that φ is close to null vector, and the covariance will be close to 0.

The corresponding NOPE under the model in (4.2.2) for σ22 is

σ̂22 =
1

4
(y11 − y12 − y31 + y32)

2. (4.3.2.10)

4.3.3 Simulations of NOPE

In section 4.2, under the UIBD in Table 4.1 with the mixed-effects model in (4.2.1), the

NOPE for σ21 and σ22 are

σ̂21NOPE = 1
2(y11 − y31)(y12 − y32),

σ̂22NOPE = 1
4(y11 − y12 − y31 + y32)

2

.

Simulations of NOPEs for σ21 and σ22 are conducted by the following steps:

• Assuming the mixed-effects model in (4.2.1) with the variance components, σ21 and

σ22, set to (0.05, 0.005), (0.005, 0.05), (1, 0.5), (0.5, 1). The fixed effects are β1 = 5, β2 =

7, β3 = 10.

• For each set of the values of the variance components, generate 3 block random effects

in the vector b from N(0, σ21) and generate 6 random errors in the vector e from

N(0, σ22) for each dataset.

• Creating the observation vectors by yij = βi + bj + eij .

• 100,000 datasets are simulated.
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• For each simulated data, calculate NOPE for σ21 and σ22, respectively, using σ̂21NOPE

and σ̂22NOPE above.

• σ̂21NOPE can be negative, then replace the negative σ̂21NOPE by 0. σ̂22NOPE will always

be non-negative.

• Using the same simulated data, the ML and REML estimators are also computed. All

negative estimates on σ21 are replaced by 0.

• The critera to evaluate the estimation performances of MLE, REMLE and NOPE are

Root Mean Squared Error (RMSE) =

√
1
n

∑n
i=1

(
θ̂i − θ

)
Mean Absolute Deviation (MAD) = 1

n

∑n
i=1

∣∣∣θ̂i − θ∣∣∣
Absolute Bias(AB) =

∣∣∣ 1n∑n
i=1 θ̂i − θ

∣∣∣
The performance comparisons of NOPE, MLE, and REMLE for σ21 and σ22 are given in

Table 4.3 using the three criterion functions RMSE, MAD and AB. Smaller value of criterion

function means better the estimate performance.

Table 4.3: Simulations for σ21 = 1, σ22 = 0.5

Parameters True Values Criteria MLE REMLE NOPE

σ21 1 RMSE 0.94189 1.35247 1.7929

MAD 0.75511 0.96801 1.22631

AB 0.23329 0.09039 0.00197

σ22 0.5 RMSE 0.40785 0.55735 0.7076

MAD 0.37897 0.41879 1.22631

AB 0.32882 0.08328 0.00111
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Table 4.4: Simulations for σ21 = 0.5, σ22 = 1

Parameters True Values Criteria MLE REMLE NOPE

σ21 0.5 RMSE 0.82351 1.22267 1.57486

MAD 0.57231 0.77899 1.04633

AB 0.08431 0.31208 0.00169

σ22 1 RMSE 0.79572 0.90738 1.40633

MAD 0.74516 0.74201 0.96255

AB 0.32882 0.08328 0.00111

Table 4.5: Simulations for σ21 = 0.05, σ22 = 0.005

Parameters True Values Criteria MLE REMLE NOPE

σ21 0.05 RMSE 0.03927 0.0539 0.07463

MAD 0.03284 0.03953 0.05091

AB 0.01578 0.00026 0.017

σ22 0.005 RMSE 0.00702 0.007 0.00702

MAD 0.00483 0.00474 0.00483

AB 0.00002 0.00015 0.00002

Table 4.6: Simulations for σ21 = 0.005, σ22 = 0.05

Parameters True Values Criteria MLE REMLE NOPE

σ21 0.05 RMSE 0.02913 0.04224 0.00702

MAD 0.01627 0.02308 0.00483

AB 0.23329 0.09039 0.00197

σ22 0.005 RMSE 0.0383 0.04167 0.07083

MAD 0.03535 0.03511 0.04864

AB 0.01134 0.01824 0.00028

The performance of NOPE for estimating σ21 and σ22 under the criterion function AB

is better than both MLE and REMLE as demonstrated in Table 4.3 for σ21 and σ22 =

(1, 0.5), (0.5, 1). The performances of MLE and REMLE are better than NOPE under the

criterion function RMSE and MAD. However, the differences between NOPE and REMLE

or MLE with respect to RMSE and MAD become very small for the values of σ21 and

σ22 = (0.05, 0.005), (0.005, 0.05), respectively.
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Comparisons are also made between the estimations under normality assumtions and non-

normality assumptions for the random errors on criteria of MSE, MAD and AB. The sim-

ulation procedures are

• Assuming the mixed-effects model in (4.2.1) with the variance components of the

random effects are σ21 = 0.5, σ22 = 0.5, the fixed effects are β1 = 5, β2 = 7, β3 = 10.

• Generate 3 block random effects in the vector b from N(0, σ21 = 0.5). Generate 6

random errors in the vector e from SkewNormal(0, σ22 = 0.5, α), where α is the

skewness and equal to 0, 0.2, 0.5, 0.8, respectively.

• Creating the observation vectors by having yij = βi + bj + eij .

• For each simulated data, calculate the NOPE for σ21 and σ22, respectively, using

σ̂21NOPE and σ̂22NOPE .

• σ̂21NOPE can be negative, then replace the negative σ̂21NOPE by 0. σ̂22NOPE will be

non-negative.

• Using the same simulated data, the estimates using MoM, ML and REML are also

computed. All negative estimates on σ21 are replaced by 0.

Constraints are that we select the rows with both estimates are between 0 and 1 for all

methods.
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Table 4.7: Simulations for Skew Normal Assumption of the Random Errors for Skewness=0,
0.2

skewness=0 skewness=0.2

σ21 σ22 σ21 σ22

MSE

ML 0.1406987 0.1507905 0.1410539 0.1502407
REML 0.1428146 0.1206559 0.1429001 0.1208729
MoM 0.177789 0.1270317 0.1772525 0.1268744
NOPE 0.1541742 0.1289118 0.1538197 0.1287292

MAD

ML 0.3375406 0.3617736 0.338001 0.3606924
REML 0.3401189 0.3115702 0.3401595 0.311835
MoM 0.3536078 0.3222834 0.3529085 0.321595
NOPE 0.3594773 0.3253927 0.3589814 0.3247065

AB

ML 0.245857 0.3320308 0.2478642 0.3311886
REML 0.2313799 0.2204798 0.2323231 0.2201566
MoM 0.2314204 0.2304625 0.2309076 0.2306565
NOPE 0.2783875 0.2382985 0.2765637 0.2381765

Table 4.8: Simulations for Skew Normal Assumption of the Random Errors for Skew-
ness=0.5, 0.8

skewness=0.5 skewness=0.8

σ21 σ22 σ21 σ22

MSE

ML 0.141179 0.150242 0.1411782 0.1503219
REML 0.1428403 0.1208147 0.1430371 0.1209708
MOM 0.1765556 0.1270954 0.1764622 0.1274011
NOPE 0.153747 0.128984 0.1538815 0.1292965

MAD

ML 0.3383945 0.360726 0.3384362 0.3608316
REML 0.3400015 0.3116567 0.3402305 0.3117297
MoM 0.3526914 0.3218177 0.3524321 0.3224994
NOPE 0.358954 0.325065 0.3591034 0.3256738

AB

ML 0.2469016 0.331376 0.247268 0.3313993
REML 0.2334383 0.2193637 0.2334936 0.2191658
MoM 0.2305244 0.2314463 0.2316282 0.2315001
NOPE 0.2763293 0.2389698 0.2766649 0.23941

Under the departure from normality assumption using skew normal distribution, NOPE

performs better in estimating σ22 than that of MLEs under all three criterion functions for

all skewness. NOPE also has smaller MSE than MoM estimators for all four skewness.
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4.4 The Average Optimum Estimation

4.4.1 Introduction

In section 4.3, we introduced an UIBD with one replication. Consider a block design with

more than one replication, the number of observations will become large, and the dimension

of the A matrix in the NOPE will be large too, which is computationally difficult to find

the A matrix for the full data. When data are in replicated unbalanced block design, an

averaged A matrix can be obtained by averaging the A matrix in NOPE for each of the

possible combinations of blocks with the same design, the resulted quadratic estimator is

called the average optimum estimator (AOPE).

Two things are important in deriving AOPE, one is the NOPE introduced in section 4.3,

another one is the replication in the block design, because replication is a convenient way

of increasing sample size and precision of the estimation of variance components.

Consider a randomized block design D0 with n observations. The NOPE for the ith variance

component can be obtained under D0, denoted by y′0Ai0y0, for i = 1, 2, . . . , s. Consider an-

other block design D with r replications of D0, let the total number of possible combinations

of the blocks that form D0 design be R.

Definition 4.1. Let yj,0 be the vector of observations for the jth replicated D0 among

R combinations, j = 1, 2, . . . R, the NOPE for the ith variance component for the jth

combination is y′j,0Ai,0yj,0, then the AOPE for the ith variance component under D is the

average of the NOPEs across R combinations of blocks, which can be expressed as
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σ̂2iAOPE = 1
R

R∑
j=1

y′j,0Ai,0yj,0 (4.4.1.1)

4.4.2 Example

Consider UIBD in Table 4.1 with replication of 3:

Table 4.9: Unbalanced Incomplete Block Design with Replication of 3

Block1 Block2 Block3 Block4 Block5 Block6 Block7 Block8 Block9

A
B

A
C

A
B

A
B

A
C

A
B

A
B

A
C

A
B

The data are

Table 4.10: Data under Unbalanced Incomplete Block Design with Replication of 3

Block1 Block2 Block3 Block4 Block5 Block6 Block7 Block8 Block9

y11
y12

y21
y23

y31
y32

y41
y42

y51
y53

y61
y62

y71
y72

y81
y83

y91
y92

In this design, Block1, 2 and 3 for a D0. In section 4.3, we obtained the NOPEs for σ21

and σ22, respectively, for one replication. Under the data in Table 4.10, we will compute the

AOPEs in the following steps.

• In Table 4.10, there are 6 blocks taking treatment A and B, 3 blocks taking treatment

A and C. The number of combinations of blocks forming a D0 is R =
(
6
2

)(
3
1

)
=

45. But notice that NOPEs for σ21 and σ22 in (4.3.2.6) and (4.3.2.10) only involve

the observations within the blocks taking treatment A and B, then we can make

combinations among the 6 blocks with treatment A and B by
(
6
2

)
, which results in

R = 15 possible combinations of blocks.
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• NOPEs are calculated for σ21 and σ22 for each of the 15 combinations.

• Among the 15 NOPEs for σ21, the negative values among are deleted. For the 15

NOPEs of σ22, all of them are positive.

• Take the average of the NOPEs for σ̂21 and σ̂22, respectively, then the averaged NOPEs

are the AOPEs under UIBD with replications, denoted by σ̂21,AOPE and σ̂22,AOPE ,

respectively.

4.4.3 Simulations of AOPE

Simulation is conducted under UIBD with 3 replications to compare the performance of

AOPE, MLE and REMLE. Three performance measures are used, which are RMSE, MAD

and AB.

Assuming the mixed-effects model in (4.2.1) for the UIBD with 3 replications in Table 4.9,

the fixed effects are the effects of three treatments and are set to be β1 = 5, β2 = 7, β3 = 10,

the variance components of the random effects are σ21 = 1, σ22 = 0.5. 100000 datasets were

simulated, each of which has 18 observations in 9 blocks. We estimated σ21 and σ22 using

MLE, REMLE and AOPE, respectively. Different constraints for the estimation results are

illustrated in Table 4.11:

Based on the results, if all positive estimates from three methods are compared, REMLE

has the smallest AB for σ21, while AOPE has smallest AB for σ22; AOPE has relatively larger

RMSE and MAD for both σ21 and σ22 compared to REMLE, but has smaller RMSE and

MAD compared to MLE.
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Table 4.11: Simulations for AOPEs under Different Constraints

σ̂21 > 0, σ̂22 > 0 RMSE MAD AB
number σ21 σ22 σ21 σ22 σ21 σ22

ML 86246 6.7702039 0.2653412 1.6850741 0.2075662 1.21615089 0.0921169127

RML 97510 0.6409854 0.258142 0.498303 0.2031989 0.02772392 0.0088170505

AOPE 99999 0.9981198 0.3167611 0.7107089 0.2447469 0.41937281 0.0009931301

σ̂21<2, σ̂22<1 RMSE MAD AB
number σ21 σ22 σ21 σ22 σ21 σ22

ML 72345 0.4854838 0.2215651 0.4092232 0.1884476 0.12349361 0.1020785

REML 85530 0.4871395 0.2158477 0.4099007 0.1802718 0.08827059 0.0373453

AOPE 72268 0.4888204 0.2399181 0.4111224 0.2037107 0.04022179 0.0634323

σ̂1
2<2.5, σ̂22<1.5 RMSE MAD AB

number σ21 σ22 σ21 σ22 σ21 σ22
ML 77531 0.5465144 0.2394244 0.4502371 0.1985373 0.06533076 0.08973339

REML 94490 0.5539084 0.2520327 0.4556334 0.2007752 0.02760647 0.01017646

AOPE 87331 0.6236932 0.2900552 0.5063284 0.2338359 0.17667736 0.01494005

σ̂1
2<3, σ̂22<2 RMSE MAD AB
number σ21 σ22 σ21 σ22 σ21 σ22

ML 79441 0.5963306 0.2481871 0.4774922 0.2018711 0.029131999 0.087485111

REML 96576 0.5981806 0.2576327 0.4800423 0.2030464 0.005110412 0.00843176

AOPE 93713 0.7369966 0.310142 0.5786544 0.2425551 0.268230017 0.003120061

When comparing the estimates within the intervals [0,2] and [0,1] for σ21 and σ22, respectively,

AOPE has smallest AB for σ21, REMLE has the smallest AB for σ22; REMLE and MLE have

smaller RMSE and MAD for both σ21 and σ22 than that of AOPE.

When we widen the right bound of the interval, the AB of AOPE gets larger for σ21 and

smaller for σ22, while REMLE and MLE’s AB become smaller for both σ21 and σ22; the RMSE

and MAD of AOPE also get larger for both σ21 and σ22.
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Chapter 5

Mixed Effects Model in Small Area

Estimation

5.1 Introduction of Small Area Estimation

Surveys are used to provide reliable predictions for certain characteristics not only for the

total population of interest but also for a variety of subpopulations, those subpopulations

are called domains. Examples of domain include a geographical domain (state, county or

school district within a geographic area), a socio-demographic domain (a specific age-sex-

race group) or an industrial domain (a set of firms belonging to a spe1,cific industry).

In sample surveys, a ’direct’ domain estimator is only based on domain-specific sample

data. A domain is regarded as ’large’ if the sample within the domain is large enough to

yield ’direct estimates’ of adequate precison. A domain is regarded as ’small’ if the domain-

specific sample is not large enough to provide direct estimates at adequate precision. In
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this study, we will refer to those small domains as small areas (SAs).

There are various reasons for the scarcity of domain-specific data available in SAs. Typically,

when the sampling design aims to provide reliable estimation for large areas and pays little

attention to SAs of interest, the samples for those SAs could be small or even unavailable.

For example, the overall sample size of a statewide telephone survey in the state of Nebraska

is 4300, which is large enough to produce reliable direct estimates of the prevalance of alcohol

abuse for the state or some large counties, but there are only 14 observations available in

Boone county, a small county in Nebraska. The problem is even more severe for direct

survey estimation of the prevalence for white female in the age-group 25-44 in this county,

since only one observation is available from the survey, see 17 ().

When the sample sizes in SAs are too small, the traditional direct survey estimation meth-

ods are likely to yield large sampling errors. In order to reduce the samping errors, it is

necessary to borrow information on related characteristics of the SAs from administrative

data records, and/or combine the survey outcomes from relavant domains or period. Those

information are called auxilliary information. Small Area Estimation (SAE) is the method

of incorporating auxiliary variables to produce more reliable estimates of characteristics

such as means, counts, quantiles, etc. for SAs and assessing the precision of estimations.

5.2 Examples

Consider M mutually exclusive domains in a population, a sample is drawn from the total

population based on a specific sampling design. Some domains out of those M domains

could have large sample sizes while others have small sample sizes (SAs). Suppose there
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are m SAs and each has sample size ni, i = 1, . . . ,m . The data are given below

Table 5.1: Survey Data in SA

SA Sampled Observations

1 y11 y12 . . . y1n1

2 y21 y22 . . . y2n2

...
...

...
...

...
...

m ym1 ym2 . . . ymnm

Since the sample sizes in SAs (ni, i = 1, . . . ,m) are small, it is necessary to incorporate

auxiliary variables from other data sources or related domains. The SA data could be at

either area level or unit level. Data at different level impiy the application of different models

for variance component estimations and statistical inferences, which will be introduced in

the following sections.

5.2.1 Area-level Data

Consider the auxiliary variable (X) is the average gross income of firms, the characteristics

to predict (Y ) is the average wages and salaries of firms, the goal is to predict the true

average wages and salaries of firms for each of the m SAs. For i = 1, . . . ,m, the number

of sampled firms in the ith SA is ni and is small. Suppose only area-specific auxiliary

information is known, that is the average gross income of firms for the ith SA, denoted as

xi, the direct estimators of the true average wages and salaries of firms for each SA are also

known, denoted as ŷi, the data in Table 5.2 illustrate an example of area-level data
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Table 5.2: Area-level Data for m SAs

SA Sample Size xi ŷi
1 n1 x1 ŷ1
2 n2 x2 ŷ2
...

...
...

...
m nm xm ŷm

5.2.2 Unit-level Data

Consider the survey data at unit level. Suppose the auxiliary variable (average gross income)

for each sampled firm is available, the average wages and salaries of each firm (yij) is also

available from the survey data, the data in Table 5.3 illustrates an example of unit-level

data

Table 5.3: Unit-level Data for m SAs

Area Sample Size xij yij

1 n1

x11 y11
...

x1n1 y1n1

2 n2

x21 y21
...

...
x2n2 y2n2

...
...

...
...

m nm

xm1 ym1
...

...
xmnm ymnm
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5.3 The Estimation Methods in SAE

5.3.1 The Indirect Estimation Methods

When making predictions for SAs, it is very common that the sample sizes in SAs are too

small to provide reliable direct estimates, so indirect estimation methods are commonly

used. The indirect estimation methods improve the prediction precision by borrowing the

’strength’ from other related areas or time periods with more reliable predictions on the

same characteristics. There are four common indirect SAE methods, they are synthetic

estimators, composite estimators, James-Stein estimators and model-based indirect estima-

tors.

An estimator is called synthetic estimator if a reliable direct estimator for a large area,

covering several SAs, is used to derive an indirect estimator for a SA under the assumption

that the SAs have the same estimated characteristics as the large area6. For example, a

synthetic estimator for the ith SA total (ŷi,Synthetic) without auxiliary information is

ŷi,Synthetic = ŷ, (5.3.1.1)

where ŷ is the direct estimator of the total of the larger domain. However the estimator in

(5.3.1.1) can be biased if the true SA total is not approximately equal the true total of the

larger area.

A synthetic estimator can also be obtained by using auxiliary variables. For example, for

i = 1, . . . ,m out of M SAs, when the direct estimator (ŷi) for the area total and the related

area-level auxiliary variables (xi1, . . . , xip) are available, a linear regression model can be

applied to the data (ŷi, xi1, . . . , xip) and the resulted β̂0, . . . β̂p lead to regression-synthetic
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predictors for M areas

ŷi,Synthetic = β̂0 + β̂1xi1 + · · ·+ β̂pxip, i = 1, . . . ,M. (5.3.1.2)

However, the estimator in (5.3.1.2) can be heavily biased if the underlying model assump-

tions are not valid, see 23 ().

Synthetic estimation (ŷi,Synthetic) has potential bias if the underlying model assumptions

are violated. Even though the direct estimator (ŷi,Direct) is unbiased estimator, it has large

sampling errors for SAs due to small sample sizes. To balance the drawbacks of the two

estimators, a combination of the two estimators lead to the composite estimator, which is

expressed as

ŷi,Composite = φiŷiS + (1− φi)ŷiD, i = 1, . . . ,M, (5.3.1.3)

for a suitably chosen weight φi, (0 < φi < 1) for the ith SA, see 23 ().

Another approach of composite estimation is using a common weight for all areas, that is

φi = φ, and then minimizing the total MSE with respect to φ. This estimation method

is called James-Stein method. Using common weight ensures good overall efficiency in

estimation but not necessarily for each of the SAs, see 23 ().

The above indirect estimation methods reduce the sampling errors due to small sample sizes

by only incorporating the auxiliary variables into the model. The model-based estimation

methods not only incorporate auxiliary information, but also take into account the between-

area variations that could not be explained by the auxiliary variables, which also help reduce

the sampling errors, see 14 (). In the next section, the model-based estimation methods
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will be introduced.

5.3.2 Models in SAE

The model-based estimation methods in SAE are based on the mixed-effects models. There

are two commonly used mixed-effects models in SAE, they are the nested-error mixed-effects

model and the Fay-Herriot model.

1 () were interested in estimating the area of corn and soybeans for each of the 12 counties

in North-Central Iowa. Each county was then divided into area segments (sampling unit),

and there were 37 area segments sampled from the entire North-Central Iowa to ascertain

the area under corn and soybean by interviewing farm operator. The number of sampled

segments in a county, ni, ranged from 1 to 6. They also collected the auxiliary information,

which are the number of pixels classified as corn and soybeens for each segment by satellite

readings. Since the sampled survey data and the auxiliary data are available for each

segment, and the area segments are nested within each county (SA), Battese and Fuller

proposed the nested-error mixed-effects model. For the jth unit in the ith SA, the general

form of the nested-error mixed-effects model is

yij = β0 + xijβ + bi + eij ; i = 1, . . .m; j = 1, . . . , ni, (5.3.2.1)

where m is the number of the SAs in the survey data, and ni is the number of sampled units

from the ith SA, yij is the reported value of the study characteristics for the jth observation

in the ith SA, xij is the vector of corresponding values of p auxiliary variables for the jth

observation in the ith SA. In this example, m = 12, ni ranges from 1 to 6, yij is the reported

50



area for the jth segment in the ith county, xij1, xij2 are the number of pixels classified as

corn or soybean, respectively. The effects of the auxiliary variables are assumed to be fixed,

β is the 2 × 1 coefficients of these auxiliary variables, bi is the random effects of the ith

county, and eij is the random error of the jth observation in the ith SA. It is assumed that

bi
iid∼ N(0, σ21), eij

iid∼ N(0, σ22), bi’s and eij ’s are independent.

Another commonly used model is the Fay-Herriort model (F-H model) proposed by 4 () in

the context of estimating per capita income (PCI) for SAs with populations less than 1000.

Specifically, the direct estimate of the PCI for the ith SA, ŷi,Direct, is available based on

past studies, the auxiliary variables for each SA were obtainied from the associated county

PCI, the tax return data for 1969, and the data on housing from the 1970 census. Since the

direct estimates and the auxiliary variables are all area-specific, the F-H model is applicable.

The general form of the F-H model is:

ŷi,Direct = x′iβ + bi + ei, i = 1, . . . ,m (5.3.2.2)

ŷi,Direct is the direct survey estimate for the mean PCI in the ith SA, x′i is a 1 × p vector

of values of the auxiliary variables for the ith SA (places with population less than 1000),

β is a p × 1 vector of the coefficients of auxiliary variables, ei is the sampling error of the

survey estimate in the ith SA, bi is the random effect of the ith SA. It is assumed that

bi
iid∼ N(0, σ21), ei

iid∼ N(0, σ22/ni), where ni is the number of sampled observations in the ith

SA, σ22 is assumed to be known, bi’s and ei’s are independent.
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5.3.3 The Best Linear Unbiased Prediction (BLUP) in SAE

The interest in SAE is to predict the true means µ (or totals) of an interested variable in

SAs. In the corn and soybean example, the total area of corn and soybeans for each county

are estimated; in the CPI example, the mean CPI for each area with population less than

1000 are estimated. Under the mixed-effects model, the Best Linear Unbiased Prediction

(BLUP) is commonly used to predict the true SA mean (or total).

Consider the general mixed-effects model in (3.2.1) under normality assumptions, it is as-

sumed that bi ∼ MVN(0, σ2i Iqi), i = 1, 2, . . . , s − 1, e ∼ MVN(0, σ2sIn), bi’s and e are

independent. Define

b′ = (b′1, b
′
2, . . . , b

′
s−1),

U = (U1,U2, . . . ,Us−1),

V ar(b) = diag(σ2i Iqi) = G,

V ar(e) = R,

we have

V = V ar(y) = UGU ′ +R. (5.3.3.1)

Under the general mixed-effects model in (3.2.1), the true SA means we are interested in

predicting can be represented as a linear combination of the fixed effects and the random

effects, which is

µ = λ′β +m′b, (5.3.3.2)
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where λ and m are vectors of known constants.

Assuming the variance components are known under the general mixed-effects model with

normality assumptions, the Best Linear Unbiased Predictor (BLUP) of the random effects

of b by 13 () is

b̂BLUP = GU ′V −1(y −X ′β̂), (5.3.3.3)

where β̂ = (X′V −1X)−1X′V −1y.

The BLUP of µ is

µ̂BLUP = λ′β̂ +m′b̂

= λ′β̂ +m′GU ′V −1(y −X ′β̂).

(5.3.3.4)

Under the F-H model, true mean for the ith SA is represented as µi = x′β + bi, its BLUP

is

µ̂i =
σ22/ni

σ22/ni + σ21
x′β̂ +

σ21
σ22/ni + σ21

ŷi,Direct,

where ŷi,Direct is the direct estimate for the ith SA, see 19 ().

Under the nested-error mixed-effects model, assuming the population means of auxiliary

variables for the ith SA, X̄i, are known , the BLUP of µi is

µ̂i = X̄ ′iβ̂ + γi(ȳi − x̄′iβ̂),

where ȳi, x̄i are the sample averages of the dependent variable and auxiliary variables,

respectively, γi =
σ2
1

σ2
1+σ

2
2/ni

, see 19 ().
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5.4 A Class of Unbiased Estimators for the Variance Com-

ponents in the F-H Model

The results of BLUPs under the mixed-effects models are based on the assumption that the

variance components are known. When the variance components are not known, the BLUPs

need to be estimated by replacing the estimated values of those variance components. When

the variance components in BLUP are replaced by their estimated values, the predictor in

(5.3.3.4) becomes the Empirical Best Linear Unbiased Predictor (EBLUP). The estimation

of the variance components is an important step in deriving EBLUPs for SAs.

In this section, we will find a class of unbiased quadratic estimators for the variance com-

ponents in the F-H model.

5.4.1 F-H Model

When the data (ŷi,Direct,xi) are area-specific, the F-H model applied is

ŷi,Direct = x′iβ + bi + ei, i = 1, 2, . . . ,m. (5.4.1.1)

It is assumed that b′is are independent with mean 0, variance σ21 and kurtosis γ1, e
′
ijs are

independent with mean 0, variance
σ2
2
ni

and kurtosis γ2, bi’s and ei’s are independent. Note

that the functional form of normality is not needed to derive the unbiased estimators for

the variance components using our methods.

In matrix form, (5.4.1.1) can be expressed as

ŷDirect = Xβ + b+ e, (5.4.1.2)

54



where ŷDirect =



ŷ1

ŷ2

...

ŷm


, X =



1 x12 . . . x1p

1 x22 . . . x2p

...
...

. . .
...

1 xm2 . . . xmp


.

It is assumed that X has full column rank, E(b) = 0, V ar(b) = σ21Im, Kurtosis(b) = γ11m,

E(e) = 0, V ar(e) = σ22D, Kurtosis(e) = γ21m, where Im is an identity matrix of order m,

D is an diagonal matrix of order m with 1
ni

as the ith diagonal element, 1 is a vector of

ones. It is also assumed that b and e are independent. V = V ar(y) = σ21I + σ22D.

In this model, σ21 and σ22 are the unknown variance components to be estimated.

5.4.2 The Method of Finding the Class of Unbiased Quadratic Estimators

To estimate σ21 and σ22 in (5.4.1.2), define for X and V in (5.4.1.2) a class of Au matrices

of order m, which satisfy the following conditions for unbiasedness,

For u = 1, 2,Au =
{
Au : Au = A′u,AuX = 0, tr(Au) = 2− u, tr(AuD) = u− 1)

}
,

(5.4.2.1)

for all Au ∈ Au, we have E(y′Auy) = σ2u, in other words, y′Auy is an unbiased estimator

of σ2u, u = 1, 2.

For the condition Au = A′u,AuX = 0 in (5.4.2.1), we can partition Au and X as

Au11 Au12

A′u12 Au22


X1

X2

 =

0

0

 , (5.4.2.2)
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where Au11 has full rank with order (m−p)× (m−p), Au12 has order (m−p)×p and Au22

has order p× p, X1 contains (m− p) rows in X, X2 contains the remaining p rows in X.

Note that the order of the observations may be permuted such that X can be partitioned

in a way that X2 must be a full rank p× p matrix.

From (5.4.2.2), we have


Au11X1 +Au12X2 = 0, 1©

A′u12X1 +Au22X2 = 0. 2©

(5.4.2.3)

Rearrange (5.4.2.3), we have
X1 = −A−1u11Au12X2, 3©

Au22X2 = A′u12A
−1
u11Au12X2. 4©

(5.4.2.4)

From 3© , Au11 and X2 have full rank, we can represent Au12 in terms of A11,X1 and X2

as

Au12 = −Au11X1X
−1
2 . (5.4.2.5)

Rearranging 4© in (5.4.2.4), we have

(
Au22 −A′u12A−111 Au12

)
X2 = 0. (5.4.2.6)

Again, since X2 in (5.4.2.6) has full rank, then (5.4.2.6) becomes

Au22 = A′u12A
−1
u11Au12. (5.4.2.7)

Plugging Au12 in (5.4.2.5) into (5.4.2.7), we can also express Au22 in terms of Au11,X1,X2

Au22 = X
′−1
2 X ′1Au11X1X

−1
2 . (5.4.2.8)
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Using (5.4.2.5) and (5.4.2.8), we have

Au =

 Au11 −Au11X1X
−1
2

−X ′−1
2 X

′
1Au11 X

′−1
2 X

′
1Au11X1X

−1
2

 . (5.4.2.9)

For the condition tr(Au) = 2 − u in (5.4.2.1), using the expression of Au in (5.4.2.9), we

have

tr(Au11) + tr(X
′−1
2 X ′1Au11X1X

−1
2 ) = 2− u, (5.4.2.10)

implying

tr(Au11) + tr[Au11X1(X
′
2X2)

−1X ′1] = 2− u. (5.4.2.11)

Let U = X1(X
′
2X2)

−1X ′1, (5.4.2.11) can be written as

tr(Au11) + tr(Au11U) = 2− u,

tr[Au11(I +U)] = 2− u.
(5.4.2.12)

Let W = I +U , (5.4.2.12) can be written as

tr(Au11W ) = 2− u. (5.4.2.13)

Define

Au11 =



a11 a12 . . . a1,(m−p)

a12 a22 . . . a2,(m−p)

...
...

. . .
...

a1,(m−p) a2,(m−p) . . . a(m−p),(m−p)


,
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W =



w11 w12 . . . w1,(m−p)

w12 w22 . . . w2,(m−p)

...
...

. . .
...

w1,(m−p) w2,(m−p) . . . w(m−p),(m−p)


,

Au11 and W are both symmetric, Au11 has full rank. From (5.4.2.12), we have

tr(Au11W ) =
∑
i=j

aijwij + 2
∑
i<j

aijwij = 2− u. (5.4.2.14)

For the condition tr(AuD) = u − 1 in (5.4.2.1), we partition D in (5.4.1.2) according to

the partition of X as

D =

D1 0

0 D2

 ,
where D1 has order (m− p)× (m− p), D2 has order p× p.

Using the expression of Au in (5.4.2.9), we have

tr(Au11D1) + tr(X
′−1
2 X ′1Au11X1X

−1
2 D2) = u− 1, (5.4.2.15)

implying

tr(Au11D1) + tr[Au11X1X
−1
2 D2X

′−1
2 X ′1] = u− 1. (5.4.2.16)

Define E = X1X
−1
2 D2X

′−1
2 X ′1, (5.4.2.16) can be written as

tr(Au11D1) + tr(Au11E) = 1− u,

tr[Au11(D1 +E)] = 1− u.
(5.4.2.17)
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Define F = D1 +E, (5.4.2.17) can be written as

tr(Au11F ) = 1− u. (5.4.2.18)

Define

F =



f11 f12 . . . f1,(m−p)

f12 f22 . . . f2,(m−p)

...
...

. . .
...

f1,(m−p) f2,(m−p) . . . f(m−p),(m−p),



tr(Au11F ) =
∑
i=j

aijfij + 2
∑
i<j

aijfij = u− 1. (5.4.2.19)

We need to choose a symmetric Au11 satisfying equation (5.4.2.14) and equation (5.4.2.19),

then the resulted quadratic estimator y′Ay with Au11 will be unbiased for σ2u, u = 1, 2.

5.4.3 Example

In this section, we present a numerical example to illustrate the procedure of finding the

unbiased class of matrices A in (5.4.2.1).

Consider the following data, which contain four SAs. For i = 1, 2, 3, 4, the auxiliary variable

xi is the sample average of the gross income of firms in the ith SA, ŷi,Direct is the direct

estimates of the true average wages and salaries of firms in the ith SA:

Table 5.4: Numeric Data for F-H Model

SA ni xi ŷi,Direct
1 2 35 14.143
2 3 31 7.258
3 3 95 24.211
4 2 135 18.519
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Since only area-level information of the auxiliary variable and area-specific direct estimates

are available, we apply F-H model to this data, which is

ŷDirect = Xβ + b+ e, (5.4.3.1)

where ŷDirect =



14.143

7.258

24.211

18.519


, X =



1 35

1 31

1 95

1 135


.

The rank of X is 2. It is assumed that E(b) = 0, V ar(b) = σ21I4, E(e) = 0, V ar(e) = σ22D,

where D = diag(1/2, 1/3, 1/3, 1/2), b and e are independent. V = Var(y) = σ21I4 + σ22D.

To estimate σ21 and σ22 in (5.4.3.1), define for X and V in (5.4.3.1) a class of Au matrices

with order of 4 as

for u = 1, 2,Au =



a1 a2 a3 a4

a2 a5 a6 a7

a3 a6 a8 a9

a4 a7 a9 a10


. (5.4.3.2)

If the class of Au matrices satisfy the following conditions,

u = 1, 2,Au =
{
Au : Au = A′u,AuX = 0, tr(Au) = 2− u, tr(AuD) = u− 1)

}
. (5.4.3.3)

For all Au ∈ Au, we have E(y′Auy) = σ2u, in other words, y′Auy is an unbiased estimator

of σ2u.
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For the condition AuX = 0 in (5.4.3.3), we can partition Au and X such that X2 has full

rank, that is

Au11 Au12

A′u12 Au22


X1

X2

 =

0

0

 , (5.4.3.4)

where Au11 =

a1 a2

a2 a3

, X1 =

1 35

1 31

, X2 =

1 95

1 135

.

From (5.4.2.9), we have

Au =



a1 a2 −5a1
2 −

13a2
5

3a1
2 + 8a2

5

a2 a3 −5a2
2 −

13a3
5

3a2
2 + 8a3

5

−5a1
2 −

13a2
5 −5a2

2 −
13a3
5

25a1
4 + 13a2 + 169a3

25 −15a1
4 −

79a2
10 −

104a3
25

3a1
2 + 8a2

5
3a2
2 + 8a3

5 −15a1
4 −

79a2
10 −

104a3
25

9a1
4 + 24a2

5 + 64a3
25


,

(5.4.3.5)

and

U =

17
2

89
10

89
10

233
25

 ,W =

19
2

89
10

89
10

258
25

 ,E =

3.2083 3.3667

3.3667 3.5333

 ,F =

3.7083 3.3667

3.3667 3.8667

 .
(5.4.3.6)

From W and F , we have

tr(Au11W ) =
19a1

2
+

89a2
5

+
258a3

25
= 2− u, (5.4.3.7)

tr(Au11F ) = 3.7083a1 + 6.7333a2 + 3.8667a3 = u− 1. (5.4.3.8)
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From (5.4.3.7) and (5.4.3.8), we can express a1, a3 in terms of a2, that is


a1 = −0.430368763557484a2 − 2.51626898047722,

a3 = −1.32863340563991a2 + 2.41323210412148.

(5.4.3.9)

Therefore, for u = 1, 2, Au satisfying the conditions in (5.4.3.3) can be expressed as

Au =

[−0.4304a2+9.232u−11.75 a2 −1.524a2−23.08u+29.37 0.9544a2+13.85u−17.62
a2 −1.329a2−8.595u+11.01 0.9544a2+22.35u−28.62 −0.6258a2−13.75u+17.61

−1.524a2−23.08u+29.37 0.9544a2+22.35u−28.62 1.329a2−0.4046u+0.9913 −0.759a2+1.137u−1.74
0.9544a2+13.85u−17.62 −0.6258a2−13.75u+17.61 −0.759a2+1.137u−1.74 0.4304a2−1.232u+1.748

]
,

(5.4.3.10)

where a2 is any reals.

For u = 1, (5.4.3.10) is

A1 =



−0.4304a2 − 2.516 a2 −1.524a2 + 6.291 0.9544a2 − 3.774

a2 −1.329a2 + 2.413 0.9544a2 − 6.274 −0.6258a2 + 3.861

−1.524a2 + 6.291 0.9544a2 − 6.274 1.329a2 + 0.5868 −0.759a2 − 0.603

0.9544a2 − 3.774 −0.6258a2 + 3.861 −0.759a2 − 0.603 0.4304a2 + 0.5163


,

(5.4.3.11)

where a2 is any reals.

For u = 2, (5.4.3.10) is

A2 =



−0.4304a2 + 6.716 a2 −1.524a2 − 16.79 0.9544a2 + 10.07

a2 −1.329a2 − 6.182 0.9544a2 + 16.07 −0.6258a2 − 9.891

−1.524a2 − 16.79 0.9544a2 + 16.07 1.329a2 + 0.1822 −0.759a2 + 0.5336

0.9544a2 + 10.07 −0.6258a2 − 9.891 −0.759a2 + 0.5336 0.4304a2 − 0.7158


,

(5.4.3.12)
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where a2 is any reals.

A1 and A2 in (5.4.3.11) and (5.4.3.12) are within the unbiased class of matrices A1 and

A2, so the quadratic estimators, y′A1y and y′A2y are unbiased quadratic estimators for

σ21 and σ22, respectively.

5.5 Search for the Optimum Estimator for the Variance Com-

ponents in the Nested Error Mixed-effects Model

Consider another example for predicting the average wages and salaries of firms for 4 SAs.

A sample of 10 firms were collected from the 4 SAs, 2 firms in the sample were from each

of SAs 1 and 4, 3 firms in the sample were from each of SAs 2 and 3. The records of the

average gross income of a firm (the auxiliary variable X) and the average wage and salary

of a firm (the dependent variable Y ) were collected in the sample. The data are presented

in Table 5.5.

Table 5.5: Firm Data for 4 SAs

Area Sample Size X Y

1 2
30 6
40 12

2 3
35 2
28 3
30 10

3 3
100 40
110 25
75 10

4 2
150 23
120 17

63



5.5.1 The Nested Error Mixed-effects Model

To obtain the predictions of the average wages and salaries of firms for the 4 SAs when

firm-specific data are available, we consider the following linear mixed-effects model,

yij = x′ijβ + bi + eij , i = 1, 2, 3, 4, j = 1, . . . , ni, (5.5.1.1)

where yij is the dependent variable (the average wage and salary) for the jth firm from

the ith SA, x′ij = (xij1, xij2) is a vector of the corresponding values for the intercept and

the auxiliary variable for the jth firm from the ith SA, β = (β0, β1)
′ is a vector of fixed

unknown parameters, bi is the random effect of the ith SA on the dependent variable for

the jth firm from the ith SA, eij is the random error for the jth firm from the ith SA.

It is assumed that E(bi) = 0, V ar(bi) = σ21, kurtosis(bi) = γ1, E(eij) = 0, V ar(eij) = σ22,

kurtosis(eij) = γ2, bi and eij are independent. Note the functional forms of the distribution

are not needed here. Based on the variances and the independence assumptions of bi’s and

eij ’s, we have

Cov(yij , yi′j′) =



σ21 + σ22, i = i′, j = j′,

σ21, i = i′, j 6= j′,

0, i 6= i′, j 6= j′.

(5.5.1.2)

To express the model in (5.5.1.2) in matrix form, define
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y =



6

12

2

3

10

40

25

10

23

17



,X =



1 30

1 40

1 35

1 28

1 30

1 100

1 110

1 75

1 150

1 120



, U =



1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 1



,

the model (5.5.1.2) can be expresses as

y = Xβ +U1b+ e, (5.5.1.3)

where y is a vector of 10 observations, X is the known matrix with values corresponding to

the fixed effects parameters, β is the vector of the fixed effects parameters, U is the known

incidence matrix, each row of U1 has one on the ith element and zeroes on the remaining

elements, which represents the jth firm belongs to the ith SA, b and e are the vectors of

independent random variables. It is assumed that E(b) = 0, V ar(b) = σ21I4, Kurtosis(b) =

γ114, E(e) = 0, V ar(e) = σ22I10, Kurtosis(e) = γ2110. b and e are independent. Define

V1 = U1U
′
1, by the variances and the independence of b and e, the variance of y can be

expressed as

V ar(y) = σ21U1U
′
1 + σ22I10 = σ21V1 + σ22I10. (5.5.1.4)

65



In this model, σ21 and σ22, are the unknown variance components to be estimated.

5.5.2 Search for the Optimum Unbiased Quadratic Estimators for σ2
2

In this section, we propose three methods to construct a matrix A2 within the unbiased

class of A2 by using the MoM estimator as a benchmark. Then we compare the variances

of the proposed estimators with that of the MoM estimators.

Method 1

Consider y′A2y as a quadratic estimator of σ22, where A2 is a 10 × 10 matrix. To have

an unbiased estimator for σ22, the A2 matrix in the estimator y′A2y for σ22 will satisfy the

conditions for unbiasedness

• A2 is a symmetric matrix, that is

A2 = A′2. (5.5.2.1)

• For X and U1 in (5.5.1.3), define [X,U1] as the concatenation of X and U1 colum-

nwise. Note the last column in [X,U1] is dependent on the column 1, 3, 4 and 5, so

we drop the last column in [X,U1] so that the matrix [X,U1] has full column rank

when estimating σ22. Denote the U1 matrix without the last column as U∗1 and define

W = [X,U∗1 ], the second unbiased requirement for A2 is

A2W = 0. (5.5.2.2)

• The trace of A2 is equal to 1

tr(A2) = 1. (5.5.2.3)
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• For V1 in (5.5.1.4), the trace of the matrix A2V1 is equal to 0

tr(A2V1) = 0. (5.5.2.4)

Consider a class A2 of matrices satisfying the conditions for unbiasedness as

A2 =
{
A2|A2 = A′2,A2W = 0, tr(A2) = 1, tr(A2V1) = 0

}
, (5.5.2.5)

for any A2 ∈ A2, y
′A2y is an unbiased estimator of σ22, i.e. E(y′A2y) = σ22.

Based on the variance of a quadratic form in (3.4.3), given the X and U1 in (5.5.1.3), we

have

V ar(y′A2y) = tr(B̃∆2B̃) + 2tr(∆1B∆1B), (5.5.2.6)

where

B =

U ′1
I10

A2[U1, I10],

∆1 =

 σ21I4 0

0 σ22I10

 ,∆2 =

 γ1σ
4
1I4 0

0 γ2σ
4
2I10

 .
(5.5.2.7)

Since the A2 matrix in the MoM estimator for σ22, denoted by A2MoM , is a member in the

class A2 matrices, we will first present the A2MoM matrix26, and then we will present the

method of constructing a general A2 matrices satisfying all the unbiasedness conditions in

(5.5.2.5) by using the matrix structure of A2MoM .

Define H = W (W ′W )−1W ′, we have

A2MoM =
I10 −H

tr(I10 −H)
, (5.5.2.8)
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where

I10 −H = 1
1176



563 −563 20 −15 −5 25 75 −100 75 −75

−563 563 −20 15 5 −25 −75 100 −75 75

20 −20 768 −380−388 −20 −60 80 −60 60

−15 15 −380 775 −395 15 45 −60 45 −45

−5 5 −388−395 783 5 15 −20 15 −15

25 −25 −20 15 5 759 −467−292 −75 75

75 −75 −60 45 15 −467 559 −92 −225 225

−100 100 80 −60 −20 −292 −92 384 300 −300

75 −75 −60 45 15 −75 −225 300 363 −363

−75 75 60 −45 −15 75 225 −300−363 363



,

tr(I10 −H) = 5

(5.5.2.9)

To express A2MoM in (5.5.2.8) in the block matrix form, define

A11 = 563

 1 −1

−1 1

 ,A12 = 5

 4 −3 −1

−4 3 1

 ,A13 = 25

 1 3 −4

−1 −3 4

 ,

A14 = 75

 1 −1

−1 1

 ,A22 =


768 −380 −388

−380 775 −395

−388 −395 783

 ,A23 = 5


−4 −12 16

3 9 −12

1 3 −4

 ,

A24 = 15


−4 4

3 −3

1 −1

 ,A33 =


759 −467 −292

−467 559 −92

−292 −92 384

 ,A34 = 75


−1 1

−3 3

4 −4

 ,
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A44 = 363

 1 −1

−1 1

 .
The A2MoM in (5.5.2.8) can be expressed as

A2MoM =
1

5880



A11 A12 A13 A14

A′12 A22 A23 A24

A′13 A′23 A33 A34

A′14 A′24 A′34 A44


. (5.5.2.10)

Using the formula V ar(y′Ay) in (5.5.2.6),

V ar(y′A2MoMy) = 0.1080867γ2σ
4
2 + 0.4σ42. (5.5.2.11)

In order to construct a general A2 matrices for σ22 satisfying all the unbiasedness conditions

in (5.5.2.5) by using the structure of A2MoM , we need to make some elements in A2MoM

free while maintain the structure of A2MoM so that the constructed A2 still satisfy the

unbiasedness conditions.

Suppose the common elements in block matrix A11,A12,A13,A14,A23,A24,A34,A44, and

the elements in A22 and A33 are unknown, then the block matrices become

A11 = a11

 1 −1

−1 1

 ,A12 = a12

 4 −3 −1

−4 3 1

 ,A13 = a13

 1 3 −4

−1 −3 4

 ,

A14 = a14

 1 −1

−1 1

 ,A22 =


−w1 − w2 w1 w2

w1 −w1 − w3 w3

w2 w3 −w2 − w3

 ,
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A23 = a23


−4 −12 16

3 9 −12

1 3 −4

 ,A24 = a24


−4 4

3 −3

1 −1

 ,

A33 =


−w4 − w5 w4 w5

w4 −w4 − w6 w6

w5 w6 −w5 − w6

 ,A34 = a34


−1 1

−3 3

4 −4

 ,A44 = a44

 1 −1

−1 1

 .

Replace the block matrices in A2MoM in (5.5.2.10) by those corresponding block matrices

A11,A12,A13,A14,A23,A24, A34,A44 with unknown elements, denote the new matrix as

A2OE , where OE indicates our estimator, we have

A2OE =
1

C



A11 A12 A13 A14

A′12 A22 A23 A24

A′13 A′23 A33 A34

A′14 A′24 A′34 A44


, (5.5.2.12)

where C = 2a11 + 2a44 − 2w1 − 2w2 − 2w3 − 2w4 − 2w5 − 2w6.

The unknown elements in A2 are a11, a12, a13, a14, a23, a24, a34, a44, w1, w2, w3, w4, w5, w6.

Note that when a11 = 563, a12 = 5, a13 = 25, a14 = 75, a23 = 5, a24 = 15, a34 = 75, a44 =

363, w1 = −380, w2 = −388, w3 = −395, w4 = −467, w5 = −292, w6 = −92, A2OE is exactly

equal to A2MoM .

It can be shown that A2 in (5.5.2.12) satisfies all the unbiasedness conditions in (5.5.2.5)

except A2OEW = 0.

Presenting A2OEW explicitly, we have
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A2W =



0 −10a11 + 26a12 + 130a13 + 30a14 0 0 0

0 10a11 − 26a12 − 130a13 − 30a14 0 0 0

0 −40a12 − 520a23 − 120a24 − 7w1 − 5w2 0 0 0

0 30a12 + 390a23 + 90a24 + 7w1 + 2w3 0 0 0

0 10a12 + 130a23 + 30a24 + 5w2 − 2w3 0 0 0

0 −10a13 − 26a23 − 30a34 + 10w4 − 25w5 0 0 0

0 −30a13 − 78a23 − 90a34 − 10w4 − 35w6 0 0 0

0 40a13 + 104a23 + 120a34 + 25w5 + 35w6 0 0 0

0 −10a14 − 26a24 − 130a34 + 30a44 0 0 0

0 10a14 + 26a24 + 130a34 − 30a44 0 0 0



. (5.5.2.13)

To satisfy the condition that A2OEW = 0, the system of equations in the second column

of the matrix in (5.5.2.13) needs to be equal to a null vector. Now the problem becomes

equating the expressions in the second column in (5.5.2.13) to 0 and solved for the 14

unknown elements (a11, a12, a13, a14, a23, a24, a34, a44, w1, w2, w3, w4, w5, w6). Note that 6

equations out of these 10 equations are independent, so we can solve for 6 unknown elements

and expressed them in terms of the remaining 8 unknown elements. The system of equations

to be solved is
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

−10a11 + 26a12 + 130a13 + 30a14 = 0,

10a11 − 26a12 − 130a13 − 30a14 = 0,

−40a12 − 520a23 − 120a24 − 7w1 − 5w2 = 0,

30a12 + 390a23 + 90a24 + 7w1 + 2w3 = 0,

10a12 + 130a23 + 30a24 + 5w2 − 2w3 = 0,

−10a13 − 26a23 − 30a34 + 10w4 − 25w5 = 0,

−30a13 − 78a23 − 90a34 − 10w4 − 35w6 = 0,

40a13 + 104a23 + 120a34 + 25w5 + 35w6 = 0,

−10a14 − 26a24 − 130a34 + 30a44 = 0,

10a14 + 26a24 + 130a34 − 30a44 = 0.

(5.5.2.14)

To solve (5.5.2.14), define

M1 =



−10 26 0 0 0 0

0 −40 −520 −120 −7 0

0 30 390 90 7 0

0 0 −26 0 0 10

0 0 −78 0 0 −10

0 0 0 −26 0 0



,
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M2 =



130 30 0 0 0 0 0 0

0 0 0 0 −5 0 0 0

0 0 0 0 0 2 0 0

−10 0 −30 0 0 0 −25 0

−30 0 −90 0 0 0 0 −35

0 −10 −130 30 0 0 0 0



,

α1 =



a11

a12

a23

a24

w2

w5



,α2 =



a13

a14

a34

a44

w1

w3

w4

w6



.

Since M1 is constructed to have full rank, then (5.5.2.14) can be rewritten as

[M1,M2]

α1

α2

 = 0, (5.5.2.15)

which implies
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α1 = −M−1
1 M2α2

=



26a13 + 3a14 − 39a24
5 + 39a34 − 91w1

150 −
13w3
75 + 13w4

3 + 91w6
6 ,

5a13 − 3a24 + 15a34 − 7w1
30 −

w3
15 + 5w4

3 + 35w6
6 ,

−5a13
13 −

15a34
13 −

5w4
39 −

35w6
78 ,

a14
3 + 13a24

15 + 13a34
3 ,

7w1
15 + 8w3

15 ,

8w4
15 + 7w6

15 .

(5.5.2.16)

Plugging (5.5.2.16) back into A2OE in (5.5.2.12) and define

C = 52a13 + 20a14
3 − 208a24

15 + 260a34
3 − 311w1

75 − 256w3
75 + 28w4

5 + 137w6
5 ,

A11 =
(
26a13 + 3a14 − 39a24

5 + 39a34 − 91w1
150 −

13w3
75 + 13w4

3 + 91w6
6

) 1 −1

−1 1

 ,

A12 =
(
5a13 − 3a24 + 15a34 − 7w1

30 −
w3
15 + 5w4

3 + 35w6
6

) 4 −3 −1

−4 3 1

 ,

A13 = a13

 1 3 −4

−1 −3 4

 ,

A14 = a14

 1 −1

−1 1

 ,
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A22 =


−w1 −

(
7w1
15 + 8w3

15

)
w1

7w1
15 + 8w3

15

w1 −w1 − w3 w3

7w1
15 + 8w3

15 w3 −
(
7w1
15 + 8w3

15

)
− w3

 ,

A23 =
(
−5a13

13 −
15a34
13 −

5w4
39 −

35w6
78

)

−4 −12 16

3 9 −12

1 3 −4

 ,

A24 = a24


−4 4

3 −3

1 −1

 ,

A33 =


−w4 −

(
8w4
15 + 7w6

15

)
w4

8w4
15 + 7w6

15

w4 −w4 − w6 w6

8w4
15 + 7w6

15 w6 −
(
8w4
15 + 7w6

15

)
− w6

 ,

A34 = a34


−1 1

−3 3

4 −4

 ,

A44 =
(
a14
3 + 13a24

15 + 13a34
3

) 1 −1

−1 1

 .
A2OE in (5.5.2.12) becomes

A2OE =
1

C



A11 A12 A13 A14

A′12 A22 A23 A24

A′13 A′23 A33 A34

A′14 A′24 A′34 A44


. (5.5.2.17)
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Now the A2OE matrix in (5.5.2.17) satisfies all the unbiased consitions in (5.5.2.5), i.e.

E(y′A2OEy) = σ22.

Note that there are 8 unknown elements in theA2 matrix in (5.5.2.17), which are a13, a14, a24, a34,

w1, w3, w4, w6. To further reduce the number of unknown elements, we impose the following

relations for those 8 unknown elements,



a13 = 5
3a24,

a14 = 5a24,

a34 = 5a24,

w1 = −76
3 a24,

w4 = −467
15 a24,

w3 = −79
3 a24.

(5.5.2.18)

Plugging (5.5.2.18) into A2OE in (5.5.2.17), define p = w6
a24

and

C = 42004
75 + 137p

5 ,A11 =
(
1175
9 + 91p

6

) 1 −1

−1 1

 ,A12 =
(
325
9 + 35p

6

) 4 −3 −1

−4 3 1

 ,

A13 = 5
3

 1 3 −4

−1 −3 4

 ,A14 = 5

 1 −1

−1 1

 ,A22 =


256
5 −76

3 −388
15

−76
3

155
3 −79

3

−388
15 −79

3
261
5

 ,

A23 =
(
−283

117 −
35p
78

)

−4 −12 16

3 9 −12

1 3 −4

 ,A24 =


−4 4

3 −3

1 −1

 ,
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A33 =


10741
225 −

7p
15 −467

15 −3736
225 + 7p

15

−467
15

467
15 − p p

−3736
225 + 7p

15 p 3736
225 −

22p
15

 ,A34 = 5


−1 1

−3 3

4 −4

 ,A44 = 121
5

 1 −1

−1 1

 .

A2OE in (5.5.2.17) becomes

A2OE =
1

C



A11 A12 A13 A14

A′12 A22 A23 A24

A′13 A′23 A33 A34

A′14 A′24 A′34 A44


. (5.5.2.19)

Now p is the only unknown elements in A2OE . The general A2OE satisfy all the unbiased

conditions in (5.5.2.5).

Given A2OE in (5.5.2.19) and y in (5.5.1.3), the quadratic estimator of σ22 can expressed as

σ̂22 = y′A2OEy = 50(−1353p+488260)
13(2055p+42004)

, (5.5.2.20)

which is a function of p.

Theorem 5.1. For the general matrix A2 in (5.5.2.19), σ̂22 is positive if and only if

−42004

2055
< p <

488260

1353
. (5.5.2.21)

By using the formula V ar(y′Ay) in (5.5.2.6), we have

V ar(y′A2OEy) =
σ42 (c1γ2 + c2)

d
, (5.5.2.22)

where
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c1 = 46921725p2 + 786190260p+ 4738540304,

c2 = 180p (5329155p+ 70204328) + 47644195776,

d = 18
(
4223025p2 + 172636440p+ 1764336016

)
.

It is worth noting that for each set of observations y, one can obtain σ̂22 using A2OE in

(5.5.2.20) and σ̂22MoM using A2MoM in (5.5.2.10). If equating y′A2OEy to its corresponding

MoM estimate, σ̂22MoM , to solve for p, we can always get the same p = −92
15 for different

y. Because A2MoM is dependent on the fixed design matrices X and U1, A2MoM will not

change with different y, and A2OE is constructed based on the structure of A2MoM , so A

will not change with y either.

When p = −92
15 , A2OE = A2MoM . We will run simulations to compare the MSE, MAD and

AB of A2OE by varying the value of p to see if there exists a set of p values in A2OE that

give better estimation performances than that of the MoM estimators.

Under the mixed-effects model in (5.5.1.3), keep xi the same as in (5.5.1.3), the coefficients of

the intercept and the fixed effect are set to be β0 = 1.03, β1 = 0.19, the variance components

of the random effects are σ21 = 14, σ22 = 65. For each dataset, simulate 4 independent random

effects, bi, from N(0, σ21), simulate 10 independent random errors, eij , from N(0, σ22), then

the jth simulated observation in the ith SA is yij = xiβ + bi + eij . 100000 datasets are

simulated, each of which has 10 observations. We estimated σ22 using our method and MoM

method for each dataset.

Table 5.6 shows the comparisons of the estimation performances of the quadratic estimators

for σ22 by using A2OE with p and A2MoM ,
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Table 5.6: Simulations in Estimating σ22

p MAD MSE AB

-6.3 31.714079 1692.397825 64.831730

-6.25 31.689239 1688.415453 64.831031

-6.2 31.674003 1685.751993 64.830336

-6.15 31.667689 1684.380098 64.829646

-6.1 31.669250 1684.272988 64.828961

-6.05 31.677989 1685.404439 64.828281

-6 31.694280 1687.748773 64.827606

-5.95 31.718212 1691.280841 64.826935

−92
15 (MoM) 31.667327 1684.205169 64.829417

From Table 5.6, since A2OE and A2MoM are both within the class of unbiased matrices A2,

the resulted quadratic estimators y′A2OEy and y′A2MoMy are unbiased for σ22. However,

the MoM estimates for σ22 has slightly better estimation performances in MSE and MAD

compared to the estimates with other values of p in A2OE matrix.
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Method 2

Recall in (5.5.2.2),

W = [X,U∗1 ],

H = W (W ′W )−1W ′,

(5.5.2.23)

the rank of H is 5.

Let H1 be a matrix consisting the 5 independent columns in I −H, then

H1 =
1

1176



563 20 −15 25 75

−563 −20 15 −25 −75

20 768 −380 −20 −60

−15 −380 775 15 45

−5 −388 −395 5 15

25 −20 15 759 −467

75 −60 45 −467 559

−100 80 −60 −292 −92

75 −60 45 −75 −225

−75 60 −45 75 225



, (5.5.2.24)

the rank of H1 is 5 and H ′1W = 0 .

Let Q be a class of 5× 5 full rank symmetric matrices, for any matrix Q ∈ Q, define

P = H1Q, (5.5.2.25)

since H ′1W = 0, then P ′W = 0.
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By using P in (5.5.2.25), our proposed A2OE matrix that satisfies the unbiasedness condi-

tions in (5.5.2.5) is

A2OE =
PP ′

tr(PP ′)
. (5.5.2.26)

Consider a Q matrix as

Q =



a b b b b

b a b b b

b b a b b

b b b a b

b b b b a


, (5.5.2.27)

we have

A2OE = PP ′

tr(PP ′)

=
H1QQ′H′

1
tr(H1QQ′H′

1)
,

(5.5.2.28)

the variance for y′A2OEy in (5.5.2.28) is

V ar(y′A2OEy) = σ42
(c1γ2 + c2)

c3
, (5.5.2.29)

where

c1 = 9205207903a4 − 24064788374a3b+ 62262239567a2b2 − 22105876784ab3 + 58509553738b4,

c2 = 34004008836a4 − 98509034736a3b+ 341287532712a2b2 + 257020903440ab3

+441302714748b4,

c3 = 86436(732736a4 − 1304544a3b+ 4485716a2b2 − 3476244ab3 + 5202961b4).
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Define d = a
b , dividing the numerator and denomenator of (5.5.2.29) by b4, (5.5.2.29)

becomes

V ar(y′A2OEy) = σ42
c1γ2 + c2

c3
, (5.5.2.30)

where

c1 = 58509553738− 22105876784d+ 62262239567d2 − 24064788374d3 + 9205207903d4,

c2 = 441302714748 + 257020903440d+ 341287532712d2 − 98509034736d3

+34004008836d4,

c3 = 86436(5202961− 3476244d+ 4485716d2 − 1304544d3 + 732736d4).

Notice the coefficients in V ar(y′A2OEy) is a function of d, and recall the coefficients with

and without γ2 in the variance of the y′A2MoMy is 0.1080867 and 0.4, respectively. By

changing the value of d in (5.5.2.30), the comparisons of the coefficients with and without

γ2 are displayed in Figure 5.1 and Figure 5.2, respectively,
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Figure 5.1: Comparison of the Coefficients in Variances with Kurtosis

Figure 5.2: Comparison of the Coefficients in Variances without Kurtosis
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Both coefficients, c1d ,
c2
d in (5.5.2.30), are greater than that of the corresponding coefficients

in variances for MoM estimators for d ∈ (−20, 20). (d is not equal to 4 and d not equal to

1, otherwise Q will not be full rank matrix). The Q in (5.5.2.27) matrix is special class in

the class of full rank 5 × 5 symmetric matrix Q, the coefficients in V ar(y′A2OEy) based

on those Q is not smaller than the corresponding coefficients in V ar(y′A2MoMy) over the

tested range of d. However, other classes of Q in Q may be considered to construct a matrix

A2 with V ar(y′A2OEy) smaller than that of the MoM estimators.

Method 3

Recall in (5.5.2.2),

W = [X,U∗1 ],

H = W (W ′W )−1W ′,

(5.5.2.31)

the rank of H is 5.

Let H1 be a matrix consisting the 5 independent columns in I −H, then
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H1 =
1

1176



563 20 −15 25 75

−563 −20 15 −25 −75

20 768 −380 −20 −60

−15 −380 775 15 45

−5 −388 −395 5 15

25 −20 15 759 −467

75 −60 45 −467 559

−100 80 −60 −292 −92

75 −60 45 −75 −225

−75 60 −45 75 225



. (5.5.2.32)

the rank of H1 is 5.

Let H2 be a matrix consisting the remaining 5 columns not included in H1,
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H2 =
1

1176



−563 −5 −100 75 −75

563 5 100 −75 75

−20 −388 80 −60 60

15 −395 −60 45 −45

5 783 −20 15 −15

−25 5 −292 −75 75

−75 15 −92 −225 225

100 −20 384 300 −300

−75 15 300 363 −363

75 −15 −300 −363 363



. (5.5.2.33)

Consider a Q matrix as

Q =



a 0 0 0 0

0 a 0 0 0

0 0 a 0 0

0 0 0 a 0

0 0 0 0 a


. (5.5.2.34)

Define a P matrix as

P = [H1,H2Q] (5.5.2.35)

It can be shown that P
′
W = 0, tr(PP ′) = 307a2

147 + 428
147 .

By using P in (5.5.2.35) , our proposed A2OE matrix in the unbiased quadratic estimatior
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y′A2OEy for estimating σ22 is

A2OE =
PP ′

tr(PP ′)
. (5.5.2.36)

It can be shown that A2OE in (5.5.2.36) satisfy all the unbiased conditions in (5.5.2.5), i.e.

y′A2OEy is an unbiased estimator for σ22.

Using the formula V ar(y′Ay) in (5.5.2.6), we have

V ar(y′A2OEy) = σ42
c1γ2 + c2

c3
, (5.5.2.37)

where

c1 = 4120975645a4 + 6862197574a2 + 9205207903,

c2 = 21704511780a4 + 19003300344a2 + 34004008836,

c3 = 345744(94249a4 + 262792a2 + 183184).

Notice that the coefficients in V ar(y′A2OEy) are functions of a, and recall the coefficients

with and without γ2 in the variance of y′A2MoMy is 0.1080867 and 0.4, respectively. By

changing the value of a in (5.5.2.37), the comparisons of the coefficients with and without

γ2 are displayed in Figure 5.3 and Figure 5.4, respectively.
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Figure 5.3: Comparison of the Coefficients in Variances without Kurtosis

Figure 5.4: Comparison of the Coefficients in Variances with Kurtosis

We compare σ−42 V ar(y′A2OEy) and σ−42 V ar(y′A2MoMy) by varying the value of a for

γ2 = 3, which is shown in Figure 5.5,
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Figure 5.5: Comparison of the Variances between OE and MoM

From Figure 5.5, when a ∈ (1.22539257845605, 1.00104933271506), the variance of our

estimator is smaller than that of the MoM estimator. Since V ar(y′A2OEy) in (5.5.2.37)

is a symmetric function, when a ∈ (−1.22539257845605,−1.00104933271506), the values of

V ar(y′A2OEy) will be the same as that of the corresponding positive value of a. When a =

1.1082739093703766, γ2 = 3, σ−42 V ar(y′A2OEy) = 0.721313, which reaches the minimum

in Figure 5.5, (recall σ−42 V ar(y′A2MoMy) = 0.724201 for γ2 = 3).

Figure 5.6 shows the comparison of σ−42 V ar(y′A2OEy) and σ−42 V ar(y′A2MoMy) by chang-

ing the value of γ2 ∈ (2.96, 3.04) and the value of a,
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Figure 5.6: Comparison of the Coefficients in Variances of OE and MoM Estimators

For γ2 ∈ (2.96, 3.04), some part of σ−42 V ar(y′A2OEy), which is the blue curved plain, are

always smaller than the corresponding σ−42 V ar(y′A2MoMy).

Figure 5.7 shows the comparison of the coefficients in variances of our estimators at the value

of a giving the minimum coefficients in variances for our estimators ( min
a=amin

σ−42 V ar(y′A2OEy))

and MoM estimates (σ−42 V ar(y′A2MoMy)) for 2.9 < γ2 < 3.1,
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Figure 5.7: Comparison of the Coefficients in Variances of OE and MoM Estimators at amin
and different γ2

For 2.9 < γ2 < 3.1, min
a=amin

σ−42 V ar(y′A2OEy) for our estimators are always smaller than

σ−42 V ar(y′A2MoMy) of the corresponding MoM estimators.

For γ2 > 0, the following table shows the comparison of min
a=amin

σ−42 V ar(y′A2OEy) for our

estimators and σ−42 V ar(y′A2MoMy) for MoM estimators,

Table 5.7: Comparison of the Coefficients in Variances of OE and MoM Estimators at
different γ2

γ2 Range of a amin OE MoM Differences

0 (1, 1) 1 0.4 0.4 0

1 (1, 1.0909) 1.0454 0.5077 0.5081 0.0004

2 (1, 1.1649) 1.0824 0.6147 0.6162 0.0015

3 (1, 1.2267) 1.1083 0.7213 0.7243 0.0030

4 (1, 1.2792) 1.1396 0.8276 0.8323 0.0047

5 (1, 1.3247) 1.1623 0.9337 0.9404 0.0067

It can be seen that our estimators have smaller coefficients in variances than the correspond-
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ing MoM estimators for γ2 ∈ (0, 5], and as γ2 increases, the differences in the coefficients in

variances become larger.

Compared with ML and REML, which do not provide closed-form expression of the esti-

mates, we can find the approximated A2 matrix for ML and REML estimates for σ22 using

our proposed estimators.

Table 5.8: Approximating the A2 Matrices for REML and ML Estimates for σ22 at γ2 = 3

(a, OE) REML ML

(± 1.0095, 64.8106) 64.8106
(±1.4377, 59.1236) 59.1236

With a in A2OE equal to ± 1.0095 and ± 1.4377, the estimates closest to REMLE and

MLE, respectively, can be found.

Table 5.9: Comparison of the Estimated Variances with the Approximated A2 matrix for
γ2 = 3

a Estimate σ−42 Var(Estimate) ˆV ar(Estimate)

OE ±1.1082 63.3127 0.7213 2891.3295

MoM 64.9605 0.7243 3056.4493

ML∗ ±1.4377 59.12356 0.7400 2586.5770

REML∗ ±1.0095 64.81062 0.7237 3040.0462

where ML∗ and REML∗ are the approximated ML and REML estimates using A2OE

matrix. In Table 5.9, the estimated variance for ML∗ are smaller than that of REML∗.

Consider a more general Q matrix, that is
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Q =



a b b b b

b a b b b

b b a b b

b b b a b

b b b b a


. (5.5.2.38)

Using Q in (5.5.2.38), we can obtain P from (5.5.2.35) and A2OE from (5.5.2.36), the

resulted variance of y′A2OEy is

V ar(y′Ay) = σ42
c1γ2+c2

c3
, (5.5.2.39)

where

c1 = 4120975645a4 − 3363619902a3b+ 31574726299a2b2 + 6862197574a2

−2497426632ab3 − 968351910ab+ 53971680640b4 + 25996262431b2

+9205207903,

c2 = 21704511780a4 − 27758748528a3b+ 256714401384a2b2 + 19003300344a2

+263114295696ab3 − 499600080ab+ 461331664668b4 + 75263801256b2

+34004008836,

c3 = 86436(376996a4 − 341384a3b+ 2581176a2b2 + 1051168a2 − 1133684ab3

−475936ab+ 4157521b4 + 3490768b2 + 732736.

By fixing a = 1.1082739093703766 (the a value giving the minimum variance compared

to that of MoM estimators for Q = diag(a)), γ2 = 3, b is the only unknown elements in

σ−42 V ar(y′A2OEy).

Figure 5.8 shows the comparison of σ−42 V ar(y′A2OEy) and σ−42 V ar(y′A2MoMy) by varying
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the value of b in σ−42 V ar(y′A2OEy) at a = 1.1082739093703766, γ2 = 3,

Figure 5.8: Comparison of the Coefficients in Variances between OE and MoM Estimator

For a = 1.1082739093703766, γ2 = 3, when b = −0.0205697543545269, σ−42 V ar(y′A2OEy) =

0.721019908439413, which reaches the minimum in Figure 5.8 (recall σ−42 V ar(y′A2MoMy) =

0.724201 for γ2 = 3).

5.5.3 Search for the Optimum Unbiased Quadratic Estimators for σ2
1+p2σ

2
2

In order to estimate σ21, we first obtain σ̂22, which is introduced in Section 5.5.2, then we

need to estimate σ21 + p2σ
2
2, by subtracting p2σ̂

2
2 from ̂σ21 + p2σ22, the estimate for σ21 can be

obtained.

Let y′A12y be an estimator of σ21 + p2σ
2
2, where A12 is a 10 × 10 matrix. To have an

unbiased estimatr for σ21, the A12 in the estimator y′A12y will satisfy the conditions for

unbiasedness
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• A12 is a symmetric matrix, that is

A12 = A′12. (5.5.3.1)

• For X in (5.5.1.3),

A12X = 0. (5.5.3.2)

• The trace of A1 is equal to 0,

tr(A12) = p2. (5.5.3.3)

• For V1 in (5.5.1.4), the trace of A1V1 is equal to 1,

tr(A12V1) = 1. (5.5.3.4)

Consider a class A12 of matrices satisfying the conditions for unbiasedness as

A12 =
{
A12|A12 = A′12,A12X = 0, tr(A12) = p2, tr(A12V1) = 1

}
. (5.5.3.5)

For any A12 ∈ A12, y
′A12y is an unbiased estimator of σ21 + p2σ

2
2, i.e. E(y′A12y) =

σ21 + p2σ
2
2.

Since the A12 matrix in the MoM estimator for σ21 +p2σ
2
2, denoted by A12MoM , is a member

in the class A12 matrices, we will first present A12MoM matrix26.

For X in (5.5.1.3), define H = X(X ′X)−1X ′, the rank of H is 2.

A12MoM =
I −H

tr((I −H)U1U ′1)
, (5.5.3.6)

A12MoM is a member of the unbiased class of A12.

Using the formula V ar(y′Ay) in (5.5.2.6), define r = σ1
σ2
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V ar(y′A12MoMy) =
(
1.7685r4 + 0.7737r2 + 1.3250

)
σ42. (5.5.3.7)

Let H1 be a matrix consisting the 8 independent columns in I −H, then

H1 =
1

92408



74431 −15887 −16932 −18395 −17977 −3347 −1257 −8572

−15887 78111 −15092 −16205 −15887 −4757 −3167 −8732

−16932 −15092 76396 −17300 −16932 −4052 −2212 −8652

−18395 −16205 −17300 73575 −18395 −3065 −875 −8540

−17977 −15887 −16932 −18395 74431 −3347 −1257 −8572

−3347 −4757 −4052 −3065 −3347 79191 −14627 −9692

−1257 −3167 −2212 −875 −1257 −14627 75871 −9852

−8572 −8732 −8652 −8540 −8572 −9692 −9852 83116

7103 3193 5148 7885 7103 −20267 −24177 −10492

833 −1577 −372 1315 833 −16037 −18447 −10012



, (5.5.3.8)

the rank of H1 is 8.

Let H2 be a matrix consisting the remaining 2 columns not included in H1,
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H2 =
1

92408



7103 833

3193 −1577

5148 −372

7885 1315

7103 833

−20267 −16037

−24177 −18447

−10492 −10012

52591 −28087

−28087 71551



. (5.5.3.9)

Consider a Q matrix as

Q =

a 0

0 a

 . (5.5.3.10)

Define a P matrix as

P = [H1,H2Q]. (5.5.3.11)

By using P in (5.5.3.11) , our proposed quadratic estimatior for σ21 + p2σ
2
2 is

A12OE =
PP ′

tr(PP ′U1U ′1)
. (5.5.3.12)

It can be shown thatA12OE satisfy all the unbiased conditions in (5.5.3.5), i.e. E(y′A12OEy) =

σ21 + p2σ
2
2.
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Using the formula V ar(y′Ay) in (5.5.2.6) for γ1 = 3, γ2 = 3,

V ar(y′A12OEy) =

(
c1 + c2 + c3

c4

)
σ42, (5.5.3.13)

where

c1 = 6.2762 · 1014a4r4 + 3.9297 · 1014a4r2 + 9.2930 · 1014a4

c2 = 2.6074 · 1015a2r4 + 9.8917 · 1014a2r2 + 6.0184 · 1014a2

c3 = 7.1527 · 1015r4 + 3.2264 · 1015r2 + 6.2516 · 1015

c4 = 1.9303 · 1014a4 + 1.7436 · 1015a2 + 3.9372 · 1015

Note that σ−42 V ar(y′A12MoMy) is a function of r and σ−42 V ar(y′A12OEy) is a function of

a and r. Figure 5.9 shows the comparison of σ−42 V ar(y′A12OEy) and σ−42 V ar(y′A12MoMy)

for a ∈ (0.7, 1.3), r ∈ (0.1, 0.3), γ1 = 3, γ2 = 3

Figure 5.9: Comparison of the Coefficients in Variances of OE and MoM Estimators for
σ21 + p2σ

2
2
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At ratio ∈ (0.1, 0.3), there always exists a set of a yielding σ−42 V ar(y′A12OEy) smaller than

σ−42 V ar(y′A12MoMy).

Table 5.10 shows the comparison of min
a=amin

σ−42 V ar(y′A12OEy) and σ−42 V ar(y′A12MoMy)

at different ratios (r) for γ1 = 3, γ2 = 3,

Table 5.10: Comparison of the Minimum Coefficients in Variances at Different Ratios for
γ1 = 3, γ2 = 3

Ratio (r) Range of a amin OE MoM

0.15 (1, 1.1180) 1.059 1.3358 1.3432

0.21 (1, 1.1167) 1.058 1.3551 1.3625

1.00 (1, 1.0406) 1.0203 3.8647 3.8672

5.00 (0.8911, 1) 0.9123 1125.0793 1125.9606

From Table 5.10, it can be seen that at ratio = (0.15, 0.21, 1, 5), the minimum coefficients of

our estimators, min
a=amin

σ−42 V ar(y′A12OEy), are always smaller than the coefficients of MoM

estimators σ−42 V ar(y′A12MoMy) at each ratio.
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Chapter 6

Conclusions

This dissertation aims at searching for the optimum variance components estimates in the

mixed-effects model. Methods are illustrated in DOE and SAE.

When the optimum estimates do not exist, we propose the near optimum estimators for

the variance components in DOE. The simulation results show that under the normality

assumptions for both variance components, NOPE for estimating σ21 and σ22 are better un-

der the criterion function AB than both MLE and REMLE, while MLE and REMLE are

better than NOPE under the criterion function RMSE and MAD across 4 sets of simu-

lated variance components. Under the departure from normality by using the skew normal

distrubution, NOPE performs better in estimating σ22 than that of MLEs under all three

criterion functions for all skewedness. NOPE also has smaller MSE than MoM estimators

for all four skewness for both σ21 and σ22.

When the experimental design is replicated, we propose AOPE to estimate the variance

components for the full data. Simulation results show that when considering all positive
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estimates, AOPE has smallest AB for σ22, AOPE has relatively larger RMSE and MAD for

both σ21 and σ22 compared to REMLE, but has smaller RMSE and MAD compared to MLE.

To estimate the variance components in SAE, our proposed estimators for the variance com-

ponents are unbiased and have smaller variances than the corresponding MoM estimators

for both σ22 and σ21 + p2σ
2
2 at tested range of γ1, γ2 and ratio r.

All of our proposed estimators have closed-form expressions and do not require the func-

tional form in the distributional assumptions.
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