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A partially decentralized EKF scheme for
cooperative localization over unreliable

communication links

Solmaz S. Kia Sonia Martez

Abstract

This paper reports a partially decentralized implemeotatf an Extended Kalman filter for the
cooperative localization of a team of mobile robots withited onboard resources. Unlike a fully
centralized scheme that requires, at each timestep, iattomfrom the entire team to be gathered
together and be processed by a single device, our algoritiiynrequires that the robots communicate
with a central command unit at the time of a measurement epéatery robot only needs to propagate
and update its own state estimate, while the central commaitdnaintains track of cross-covariances.
Therefore, the computational and storage cost per robotrimg of the size of the team is of order
O(1). Moreover, when the system model is linear the algorithmoisust to occasional in-network
communication link failures while the updated estimatethefrobots receiving the update message are
of minimum variance at that given timestep. For problem$wionlinear robot models, our algorithm
under message drop-out provides a suboptimal solutionaulsecof the linearization approximation
similar to the Extended Kalman filter model. We demonstrate performance of the algorithm in

simulation.

Keywords Cooperative localization; limited onboard resourcesssage dropouts.

. INTRODUCTION
The objective of cooperative localization (CL) is to ingeahe localization accuracy of a team

of mobile robots byjointly estimating their locations using intra-team relative nueasents.
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CA 92697, USAsol naz@ici . edu, the second author is with the Department of Mechanical asgpace Engineering,
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This technique, unlike classical beacon-based locatimagigorithms|[1] or fixed feature-based
Simultaneous Localization and Mapping algorithrns [2], Zlo®t rely on external features of
the environment. As such, this approach is an appropriaigifation strategy in applications
that take place in a priori inaccessible and uncharted emments where features are dynamic
or not revisited, as well as, those applications with no derimittent GPS access. A major
concern in developing any CL algorithm with an efficient coomcation strategy is how to
keep an accurate account of the intrinsic cross-corr@lgatof state estimations without resorting
to all-to-all multi-robot communications at each timepst@ccounting for the cross-correlations
is crucial for both filter consistency and also expandinglikaefit of an update of a robot-to-
robot measurement to the entire team (see [3] for furtheaildt The problem becomes more
challenging if in-network communications fail due to extarevents such as obstacle blocking
or limited communication ranges. In this paper, we addrash an issue by proposing a partially

decentralized filtering strategy.

Fully centralized CL schemeat each time-stepgather and process information from the entire
team at a single device, either a leader robot or a fusiorec€RC), and broadcast back the
estimated location results to each robot [4], [5]. Varioexehtralized CL (DCL) algorithms
have also been proposed in the literature. In [6], a sub@btatgorithm where only the robot
obtaining the relative measurement updates its statesojgoped. Here, a bank of Extended
Kalman Filters (EKFs) together with an accurate book-kegmf robots involved in previous
updates is maintained by each robot to produce consisteéimatss. Although this method
does not impose a particular in-network communication lgrafs computational complexity,
large memory demand, and the growing size of informationrdedeat each update time are
the main drawbacks. Other ‘loosely coupled’ DCL stratediased on covariance intersection
fusion method, where only either the robot that has takesi@surement or the landmark robot
cooperatively update their state estimates, are propasdd],i [8], [9], [10]. Although these
loosely coupled cooperative localization strategies doimpose any restrictive communication
topology on the team, they are conservative by nature, Isecthiey do not enable other agents
in the network to fully benefit from measurement updates.édweer, even though the covariance
intersection method produces consistent estimates foroselp coupled DCL strategy, this

method is known to produce overly conservative estimates.

Alternatively, the computation of components of a cerzedi CL can be distributed among
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team members. For example, this decentralization can béucted as a multi-centralized CL,
wherein each robot broadcasts its own information to theestéam, which later reproduce the
centralized pose estimates acting as a [FC [11]. Besideshaphagessing cost for each robot,
this scheme requires all-to-all robot communication attthee of each information exchange.
A DCL algorithm distributing computations of an EKF CL algbm is proposed in[12] where
propagation stage is fully decentralized by splitting eacbss-covariance term between the
corresponding two robots. However, at update times, tharaggd parts should be combined,
requiring an all-to-all robot communication. Other DCL @alghm based on decoupling the
propagation stage of an EKF CL using new intermediate viasais proposed in [13] and [14].
Unlike [12], in [13] at update stage, each robot can locadigroduce the updated pose estimate
and covariance of the centralized EKF after receiving anatgpdnessage only from the robot
that has made the relative measurement. In [14] at updagstanly the two robots involved in
the relative measurement need to communicate. Howeveagtinds these algorithms, for a team
of N robots, each robot incurs an(N?) processing and storage cost as they need to evolve a
variable of size of the entire covariance matrix of the rabtdam. Subsequently, [15] presents
a maximum-a-posteriori (MAP) DCL algorithm in which all thhebots in the team calculate

parts of the centralized CL.

The algorithms above all assume that communication message delivered, as prescribed,
perfectly all the time. A DCL approach equivalent to a cditesl CL, when possible, that
handles both limited communication ranges and time-vgrgmmmunication graphs is proposed
in [16]. This technique uses an information transfer scheinerein each robot broadcasts all its
locally available information (the past and present measents, as well as past measurements
previously received from other robots) to every robot witits communication radius at each
time-step. The main drawback of this algorithm is its highmoaunication and storage cost.
In another approach towards DCL, a single-beacon cooperatioustic localization algorithm
is proposed in[[17] for underwater vehicles. The reportgg@thm in [17] is a decentralized
extended information filter that uses ranges and statenrgton from a single reference source
(the server) with higher navigation accuracy to improvalaation and navigation of underwater

vehicle(s) (the client(s)) independent from one another.

Motivated by the limited onboard resources in micro-ropatsd at the same time, with a desire

to eliminate the communication per time-step requireméntlly centralized CLs, we propose a
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partially decentralized CL strategy with fully decoupledpagation stage and centralized update
gain calculation through a central command unit (CCU). Qgorithm is an implementation of
an EKF for CL and builds on our EKF decoupling strategy praslg proposed in [3]. The fully
decentralized algorithm of [3] requires @ N?) storage and)(N?) per measurement update
processing cost per robot, whekeis the size of the cooperative robotic team. These costsean b
reduced taO (V) with the penalty of bigger communication message sizeshdiitsuch a cost,
maintaining the intrinsic cross-covariances of the CLtstyg in a fully decentralized manner is
not possible. In our new partially decentralized algoriff®CU is in charge of maintaining the
cross-covariances and the calculation of the update géhmeyefore, the storage and processing
cost per robot reduces (1) as every robot only propagates and updates its own posea¢stim
Also by fully decoupling the propagation stage, we reduae ¢bmmunication incidences to
exteroceptive measurement update times. Our next cohtibis to show that the proposed
partially DCL strategy is also robust to occasional messageouts in the network, which is
not the case in the previous fully decentralized scheme]o®dreliminary version of our work

was presented in_[18].

Notations the set ofn xn real positive definite matrices 8. Thenxm zero matrix is0,,x,
(whenm = 1, we use0,,), while thenxn identity matrix isI,,. The transpose of matrix € R"*™

is A" The block diagonal matrix of set of matricds;, ..., Ay is Diag(A4,--- , Ay). For block
partitioned matrixA, A;.; x; Where: < j andk < [, indicates a submatrix oA consisted of the
block in the intersection of rowsto j and the columng to [. For finite setsV; and V5, Vi\ V4

is the set of elements i}, but not inV5. The cardinality of a finite set” is [V|. In a team
of N robots, the local variables of robotare distinguished by the superscripte.g.,x’ is the
pose (i.e., position and orientation) of robptk’ is its pose estimate, arll’ is the covariance
matrix of its pose estimate. We use the terross-covarianceo refer to the correlation terms
between two robots in the covariance matrix of the entirenteand demonstrate the cross-
covariance of the pose vectors of robeétand j by P, ;. In algorithmic iterationsP,; maybe
used in place ofP!. We denote the propagated and updated variablesxsagt time-stepk
by %" (k) and §<i+(k), respectively. We drop the time-step argument of the viglbs well
as matrix dimensions whenever they are clear from the coniée aggregated vector of local
vectorsp’ € R" isp = (p!,...,p") e R, d:ZL ni. We usea - b to indicate that robot:

has taken relative measurement from robaeit timestepk.
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II. DESCRIPTION OF THE MOBILE ROBOT TEAM

We consider a team oN mobile robots with communication, processing and measeném
capabilities. The robots are only communicating with a C@#t toversees the operation. This
CCU can also be a team member with greater processing argstoapabilities. The assumption
is that the CCU can reach every robot in the team, but the corrgation lines can be interrupted
from time to time. Every robot has a detectable unique iderft!ID) which, without loss of
generality, we assume to be a unique integer belonging teehg = {1,..., N}. Using a set

of proprioceptive sensors every robot ¥V measures its self-motion and uses it to propagate its

equations of motion

x'(k+1) = £(x'(k), u' (k) + g'(x' (k)0 (k), Kk € Zxo, 1)
wherex! € R", u' € R™, andn’ € R are, respectively, the pose vector, the input vector
and the process noise vector of roboHere,f’(x’, u’) andg’(x’), are, respectively, the system

function and process noise coefficient function of the robat V. The robotic team can be

heterogeneous, nevertheless, the collective motion equat the team reads
x(k+1) = f(x(k),u(k)) + g(x(k))n(k), k€ Zx, )

where, f(x,u) = (f'(x',u),--- , f¥(x", u")) and g(x) = Diag(g'(x!),---,g"(x")). The
process noiseg’, i € V, are independent zero-mean white Gaussian processes \kitbven
positive definite varianc€’ (k) = E[n’(k)n’(k)T]. Every robot also carries exteroceptive sensors
to monitor the environment to detect, uniquely, the othdrote in the team and take relative
measurements from them, e.g., range or bearing or both. WieIntbe relative measurement

collected by robot from robot; as
zi(k) = hi;(x'(k), <7 (k) + V' (k), zi; €R™, iS4 ke Zs, 3)
whereh; ;(x’, x7) is the measurement model apd is the measurement noise of robat V,

assumed to be independent zero-mean white Gaussian preceisis known covariancR’ (k) =

E[vi(k)vi(k)T]. All noises are assumed to be white and mutually uncormtlate

It is apparent that if the robots only rely on propagatingirtterjuations of motion[{1) to

obtain their location because of the noise in self-motiorasneements, their estimates will
grow unbounded. We show below how using an EKF, relative oreasents between robots are
used to improve the propagated states of the collectivetiobesam system. Here, we assume

that all the sensor measurements are synchronized.
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IIl. SPLIT EKF, AN ALTERNATIVE REPRESENTATION OFCENTRALIZED EKF ALGORITHM

FORCL

In this section, we review a new representation of the th&rakkred EKF CL algorithm. We refer
to this alternative representation as the split EKF repriag®n. The Split EKF representation

enables our decentralized implementations discusseckipriticeeding sections.

The centralized EKF CL algorithm is a straightforward apgiion of EKF over the collective
motion model [(R) using the relative measurement mddel[(3). [Ihat is, starting afc"+(0) €
R™ P"+(0) 68;”0, ijj(()) = 0,ixni, fOri € ¥V andj € V\{i}, the propagation and update equation
of EKF-based CL fork € Z~, is given by

X (k+1) = £(&F(k), u(k)), (42)
P (k+1)=Fk)P (RFKk)T +G(k)QK)G(K)T, (4b)
KT (k41) = % (k+1) +K(k+1)r(k + 1), (4c)
P (k+1) = P (k+1)—K(k+1)S, K (k+1)". (4d)

Kkt 1) — 0, no relative measurement at+ 1, (4¢)

k+1

P (k+1)H,(k+1)TSus(k + 1)1, o b,

whereF = Diag(F',--- | FY), G = Diag(G',---,G") and Q = Diag(Q',---,Q"), with
F' = 2f(&7(k),ui(k)) andG' = -Zg(x""(k)), for all i € V. Moreover, when a robat takes

T oxt x?

a relative measurement from roblotat some given timé: + 1, the measurement residual and

its covariance are, respectively,
r(k+ 1) = zgp(k + 1) — hepy (X (k 4+ 1), %" (k + 1)), (5a)
Sap(k+1)=R(k+1) + Hop(k+1)P (k+1)H,p(k+1)" (5b)
=R(k+1) + Hy(k + VP (b + DH,(k + 1)7 + Hy(k + )P (b + DHy(k +1)"
+Hy(k + V)P, (k + DH,(k + 1) T + Hy(k + 1)P, (b + 1)Hy(k + 1) 7.

where (without loss of generality we assume that b)

Ho,() = [0 5 Hak) 0 w0 o), (6)
FLa(k) = o p(&(R), 57 (R)), (k) = oo (S (k). (k)

August 3, 2016 DRAFT



It is worth recalling that, if the system model is linear, alyaipdate incident at some timestep
k, given the state update equatidn](4c), the Kalman (4eimizes the trace oP™ (k) =
Ele(k)e(k)T], wheree(k) = x(k) — x* (k) (c.f. [19, page 146]).

T . .
Let K= |K/,--- K} |, whereK; € R"*": is the component of the Kalman gain used to
update the pose estimate of the robefV. Then, we can express the collective centralized EKF

CL in terms of its robot-wise components, as follows, fat V,

X (k+1)= £/ (k), u'(k)), (7a)
P (k+1)= F'(k)P™ (k)F (k)+G'(k)Q (k)G (k) (7b)
P, (k+1)=TF' (k)P (R)F/ (k) j € V\{i}, (7¢)
KT (k+1)= %" (k+1) + Ki(k+1r*(k+1), (7d)
P (k+1)= P (k+1)—K;(k+1)Sas(k+ 1)K (k+1)T (7e)
Pl (k+1)=P;(k+1)~K;(k+1)S.s(k+DK;(k+1)] j € W\{i}, (7f)
K, (k1) = 0, no relative measurement at-1, 79)

~ T k+1

(P, (k+1)H, + P, (k+1)H,)S., ™ a =50,
BecauseK;(k+1)S,,(k+1)K;(k+1)" is a positive semi-definite term, the update equatioh (7€)
clearly shows that relative measurement updates reducestit@ation uncertainty. Next, note
that, because of the inherent coupling in cross-covariterees [7t) and (7f), the EKF CLI(7) can
not be implemented in a decentralized manner, withoutad communication. Next, we review
and offer a rigorous proof for an alternative representatibthe centralized EKF CL algorithm
which was originally proposed in [3] without proof. We refier this alternative representation
as split EKF CL. We use this alternative representationhenpgroceeding section, to decouple
the propagation stage df|(7), and propose a decentralizpkinentation of the algorithm with
reduced processing and communication cost per robot. ThieEsfF CL is presented in the

following result.

Theorem 111.1 (Split EKF CL, an alternative representation of EKF for COonsider the EKF
CL algorithm in(7) with initial conditionsx'*(0) € R" P™(0) €S2y, P;(0) = 0,1, fori € v
andjeV\{i}. Fori € V, let ®(0) = L, and IT; ;(0) = 0,54, j € V\{i}. Moreover, assume
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that F'(k), i € V, is invertible at allk € Z,. Next, fork € Z-, let

®'(k+1)=F(k)®'(k), icV, (8a)
I'i(k+1)=0, i€V, no relative measurement &t+ 1, (8b)
ok 4+ 1) = (T (k)@ (k + 1) H, +®°(k+ 1)~ P (k + 1)1?) S.i% athb, (8¢
p(k+1) = (8(k + 1)'PY (k + DH, + T ()3 (k + 1) H, ) Sap?, a5, (8d)
Tk +1) = (Tp(k)®(k + 1) H, +TL,,(k)®"(k + 1) H,)Sui 3, i€V\{ab}, a2y,
(8e)

I j(k+1)=TL,;(k) + Ty(k + )T, (k+ 17, i€V, jeV\{i}. (8f)

Then, we can rewritg/d) and (7f), respectively as
P (k+1)=®"(k+ 1)IL;(k) ®'(k+1)", (9a)
Pl (k+1) =0 (k+ 1) IL;(k+1)®/(k+ 1) (9b)
Consequently, we can represdfdd) and (7€), respectively, as
KT (k4+1)= %" (k+1) + ® (k+ 1Ty (k+ 1) (k+1), (10a)
P (k+1)= P (k+1) — ®(k + )Ti(k + DI, (k+ 1)@ (k +1)] (10b)
wherei®(k+1) = S,;2r*(k+1), i € V and j e V\{i}.
Proof. First, we evaluate our statement regardihg (9). Our proobased on mathematical

induction overk € Zo; that is, we first verify [(B) fork = 0, then we assume our clairil (9)

holds fork, and evaluate it fok + 1.
Let £ = 0. Then given[(B) and the defined initial conditioris,| (9a) hesin
Pzg(l) (ﬁl(l) HLJ(O) (ﬁj(l)—r = Fz(l) 0 xni FJ(]')T = O0pisxcni,

which matches exactly ('c) &= 0. Next, we consider the first step of induction énl(9a). When
there is no relative measurement at the first step, then @B&R(8d) and[(8f),[(9b) results in
PZj(l) = ®'(1)IL;(1)®/(1)T = &'(1)I1,;(0) ®/(1)T = 0,i,;, Matching exactly the first
step of [Zf). However, when there is a rohothat takes relative measurement from robaitt

the first step of the algorithm, then froin_[8€)4(8d), we have

(1) = (Hi,b(0)<1>b(1)TfIbT+Hi,a(0)q>a(1)T}~IZ) S.;2 =0, icV\{a,b}
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T.(1) = (IL,(0)®%(1) H, +&°(1)"'P* ()H
Ty(1) = (@"(1) P (1)H, +T1,,(0)8(1) 'H,)
Then, from [[9b), we obtain

PI(1)=0, ieV\{a,b}, j€V\{i,a,b},
P, (1) = Py, (1)T = @ (1)IL,,(1)®"(1) " = F*(1)(IL,,(0) — To(1) Ty (1) )F*(1)"
= —F(1)T,(1) Ty(1) 'F*(1)"

= —F(1)F (1) P (1)H, S, 4)(F(1) P (1)H, S, 4) (1)

= —(P"()H, S, })S.,(P"(DH, S )7,

a~a,b

which exactly matches ([7f) as shown below (redall (79)). astecase [(¥f) reduces to

Pi,j(1> = 07 (S V \ {CL, b}7 J S V\{Zv a, b}7
PL(1) =P (1) =P (k+1)—K;(k+1)Se,(k+ 1)K, (k+1)"
= —(P"(1)H, S73)Sas (P ()H, S;}) 7.
Assume now that the theorem statement holds:fokt time stepk + 1, first consider[(9a). This
implies
P (k+1)=®"(k+ DIL;(k)® (k+1)"

= F'(k+1)® (k)L ;(k)® (k) Fi(k+1)" = Fi(k + VP (H)F (k+ 1),
which confirms validity of [(9a) at + 1. Next, consider[(9b). When there is no relative mea-
surement ak + 1, we obtain from[(9b) (recall(8e)-(8d) and(8f))
Pl (k+1) =& (k+ DIL;(k+ D@ (k+1)7 = &' (k + DIL (k)@ (k + 1) = P} (k + 1),

using [9&). Next, we evaluate _(9b) when rolaotakes a relative measurement from robait

k + 1. First notice that
Ki(k+1)=®'(k+1)Ti(k+1)S, 7, ieV. (11)
This follows from the following considerations

. for i € V\{a,b} (recall (8¢),[(9a),) we have

®'(k+ 1)y (k + 1)8;5 = ®'(k + 1)(TL; (k) ®°(k + 1)T}~I;+Hi7a(k)<1>“(k: + 1)Tf1§) Sap !
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— (P;y(k+ DH, + P, (k+ DH,)S,;" = Kk + 1);
. for i =a (recall (8¢), [9h),) we have
&' (k+ DTi(k+ 1)S, 2 = ®“(k + 1) (o (k) ®"(k + 1) H, +8°(k+1)"'P (k + 1)?12) Sap !
= (P}, (k+ DH, + P (k+1)H,)S.;" = Ka(k+1);

« for i = b (recall (8d), [9h),) we have

Bk + )ik + 1)S,7 = ®(k + 1)(®"(k + 1) P (k + 1)E, +T1,,, (k)" (k + 1) TH, ) S,

T
a

— (P"(k+ )H, +P; (k)H,) S5 = Ky(k + 1).
Therefore, we can rewrité (Bb) (recdll [8&)4(8d) ahd (88) a
P (k+1) =& (k+ DIk + D)@ (k+1)" = ®'(k + DIL (k)@ (k +1)" —

O (k+ Dk + DTk +1) @ (k+1)T

o

. _1 . _1
=P (k+1)— (®'(k+ 1)Li(k+1)S,7) Sap (®/(k + DT (k+1)S,2) ")
=P (k+1) - Ki(k+1)Sa K;(k+1)7,
which confirms validity of [(9b) a& + 1 when robota takes relative measurement from robot

b. This completes the proof of validity of (Bb) for all € Z-,. Subsequently[(10) follows, in a
straightforward manner, froni_(I11) now being valid for &AlE Z-,. O

It is worth noticing that, using the alternative represgéata(9a) for the cross-covariance of the

team members, the residual covariaiszg in (50) can be expressed in an equivalent way as
Sup =R%(k + 1) + H,P (k + DH, + P (k + 1)H, + (12)
FL,3" (k + 1)TL, (k)@ (k + 1) TH, + H,®°(k + 1)IT, ,(k)®"(k + 1) H,
For clarity of presentation, so far, we have assumed thae tiseonly one relative measurement
at each given timestep. To process multiple synchronized measurements, wesegaential
updating(c.f. e.g. [20, ch. 3].[21]). In the following, we obtain aropact representation for

sequential updating procedure in split ELF CL, that will ksed in the partial decentralization

scheme of proceeding section.

Let Va(k) denote the set of the robots that have made an exteroceptasurement at time
k, Vi(k) denote the landmark robots of robote Va(k), and Vag(k) represent the set of
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all landmark robots and the robots that have taken relatieasurements. Then, when there
areng = ZLZ‘;(“”' |Vi(k + 1) multiple concurrent exteroceptive relative measurementa
timestepk + 1, the sequential updating procedure prescribes the fatipwipdate equation for
the EKF CL algorithm in[(7). Le&’" (k + 1,0) = & (k + 1), P (k + 1,0) = P"(k + 1),
ie{l,--- N}, andPZl(k +1,0) =P (k+1) for I € {1,---,N}\{i}. The update at time
k+1isx ™ (k+1) = T (k+1,n,), P (k+1) = P (k+1,n,), andP}, (k+1) = P}, (k+1,n,),
ie{l,---,N}, L e{l,---,N}\{i}, obtained from executing the following steps, starting at
J=1
for a € VA(k‘ + 1),
for b e V§(k+1),

KT (k41 )= %" (k+1,j — 1) + Ki(k+1, ))r*(k+1, ), (13a)

P (k+1,j)=Pk+1,j — 1)~ Ki(k+1)Sap(k+1, /) Ki(k+1,5)7, (13b)

Pj-,l(k_‘_laj): P;,l(k+1>] - 1)_Kz(k+1a])Sa,b(k+1>])Kj(k+17])T] € V\{Z}v (13C)

J<J+1L
wherer®(k + 1, j), Sa.p(k +1,7), andK;(k + 1, j) are calculated, respectively, froin {54).1(5b),
and [7¢) usingk” (k+ 1) = (k+1,j—1) andP (k+1) =P (k+1,j—1).
By direct substitution, we can show that (13a), (13b) and{tan be represented in Split EKF
CL form as follows

K (41, )= &7 (k41,5 — 1) + D (k+ D)Ti(k+1, ))F*(k+1, ), (14a)

PF(k+1,5) =P (k+1,j — 1) — ®(k + DTi(k+ 1, )T (k+1,/)®(k+1)T,  (14b)

P;fl(k:%—l,j): ‘I>i(k + D) IL(k+1,5—1) <I>l(k: + 1),T e V\{i}, (14c)
whereIl, ;(k+1,0) =TIL; ;(k), I ;(k+ 1,5) =, ;(k+ 1,5 — 1) + Ty(k+ 1, /) T;(k+ 1,5) .
Here,T';(k + 1,7) is calculated from[(8e}J-(8d) wherei®,, at each; is calculated from[(12)

usingx (k+1) = X" (k+1,j—1) andP™(k+1) = P*(k-+1,j—1). Consequently;®(k+1, ) =
Sas(k + 1,j)—%r“(k+1,j). Notice that here, we can represent the final updated vagad

K (k4 1,n) = X7 (k+1,0) + @' (k+1) Y Tu(k+1,5)r(k+1, ), (15a)

J=1

Pk + Ln) = P4 1,0) -2k + 1) ( Y2

=

1I‘i(k:+1,j)FiT(k+1,j))<I>i(k+1)T, (15b)
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Pl (k1,m) = @' (k+ 1) (3"

Tk 1, - 1))<I>l(k;+1)T. (15c)
J:

We use the compact representation (15) of the sequentiatimgdorocedure to develop a partially
decentralized implementation which requires only one tgdsessage broadcast from the CCU

(see AlgorithmR).

V. PARTIALLY DECENTRALIZED IMPLEMENTATION OF THE EKF FORCL

In this section, using the split EKF CL representation,ddtrced in Theorem 1lTl1, we devise
an implementation of the EKF for CL where the propagatiogestia fully decentralized but the

update gains are calculated and sent out to the robots inatieatt manner.

Using split EKF CL representation, in/[3] the authors pragaba fully decentralized implementa-
tion of the centralized EKF CL where each agest) stores and evolves its locat’{ (k) € R",
®'(k) € R, P"(k+1) € S%,) along with alocal copyof II, ;(k) of the entire team (i.e.,
each robot € V maintainstJ(k) for i € V, j € V\{l}). This way the propagation stage of the
EKF CL algorithm is fully decentralized. Whenever there ieekative measurement in the team
at some timestep + 1, saya ~ b, robota acquires £ (k+1) € R, ®'(k+1) € R*>"",

P (k+1) € S%,) from the landmark robok. Then, robotu is designated as the interim master
which calculates and broadcasts the update mesgageR, b € R, r* € R", T, € R™*"%,

I, € RVxnt, tI)bTﬁbTS,Lb‘% e RVxne, (I)”fi:Sa,b‘% € R™*"%) to the entire team. In this
way, every agent € V is able to calculate a local copy (FI'; j € V to update its local state,
error covariance matrix and its local copy of tm{j(k). The algorithm in [[3] results in an
O(N?) storage and)(N? x N,), processing cost per robot wit, the total number of relative
measurement in the team in a given time. Also, notice thastloeess of the algorithm of|[3]
depends on maintaining perfect communication messageedel in the team. Any incidence
of message dropout at each agent will cause disparity batiee local copy oflI; ;(k)'s at
that agent and the local copies maintained by the rest ofeidu@.t As a result, message dropout

jeopardizes the integrity of the proposed decentralizepléementation.

Our goal here is to design an algorithm that imposes 6Hly) processing and storage cost per
robot and also be robust to communication message droplugcomplish these objectives, we
propose that a CCU maintains the team cross-covariancédh veithe source of high processing

and storage costs. In the next section, we show that our peapscheme is robust to message
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dropouts with the updated estimation of each robot recgithie update message being updated

to be minimum variance at that given time.

Using the split EKF CL introduced in Theordm 1ll.1, our preed partially decentralized CL
algorithm is as follows. Every robot € V maintains and propagates its propagated state
estimate[(7Za) and its corresponding covariance mdirik, @b)well as, variabl@’ (8d). Notice
that all these variables depend only on local data. Thezefthre propagation stage is fully
decoupled. The CCU is in charge of maintaining and updalings. When there is a relative
measurement in the network, say rohotakes relative measurement from roligtrobot «
informs the CCU. Then, the CCU starts the update procedutakiyg the following actions. It
acquires £, X (k+1), ®*(k+1), P* (k+1)) from robota and & (k+1), ®°(k+1), P (k+1))
from robotb. Then, using this information, which we refer to it @mdmark-messagealong with

its locally maintainedLl, ;'s, it calculatesr,, S,, andT';, i € V, from respectively,[(8a)[ (12)
and [8e){(8d). Then, the CCU sends to each rabeat V its corresponding update message
(r*,T;) so that the robot can update its local estimates using (1®lsb updates its local
IT; ; using [8F), for alli € V\{N} andj € {i +1,---, N}-because of the symmetry of the
covariance matrix of the network we only need to save, elg,upper triangular part of this
matrix. Algorithm[1 presents this partially decentralizetblementation of EKF for CL when
there is only one relative measurement incident at a times algorithm operates based on the
assumption that at the time of measurement update, all t@g@an receive the update message
of the CCU, i.e.,.Vmissed ¥ + 1), the set of agents missing the update message of the CCU at
timestepk + 1, is empty. This requirement is relaxed in the proceedingi@@cwhere we study

the robustness of our proposed algorithm to message dmpout

To include absolute measurements in Algorithm 1 the CCU melgds the information of the
robot that has obtained the absolute measurement. It pisedth the similar updating procedure

as outlined above and issues the corresponding update gedséal’;) to every roboti € V.

For multiple synchronized measurements, we use the segueaptating procedure. One can
expect that the updating order must not dramatically chahgeesults (cf. [[21, page 104] and

references therein). Here, we assume

Assumption 1. CCU has a pre-specifiedequential-updating-ordeyuideline, which indicates

the priority order for implementing the measurement update
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Algorithm 1 Partially DCL

Require: Initialization (¢ = 0): Every robot: € V initializes its filter at

2 (0) e R™, P™(0) €Sty @9(0) =1

nt-

The CCU initializes

I (0) = 0,0, i € V\{N}, jE{i+1,--- N}

Iteration k

1: Propagation: Every robat € V propagates the variables below
X7 (k41) = £ (%" (k), u’ (k)),
B (k+1)=F(k)®"(k), (16)
P7 (k+1) =F(k)P™(k)Fi(k) + Gi(k)Qi(k)G(k)"
2: Update: while there are no relative measurements in theankhevery roboti € V updates its variables as:
T k+1)=%"(k+1), PTk+1)=P"(k+1), (17)
and the CCU proceeds with
IL j(k+ 1) =10 5 (k), j € V\{i}. (18)

If there is a robota that makes a measurement with respect to another rgbibten robota informs the CCU. The CCU asks for the
following information from robota andb, respectively,

Landmark-messafje= (za,b, X (k+1),P" (k+ 1), ®%(k + 1)>7
Landmark-messafe= (ib'(k +1),P"(k +1), ®°(k + 1)). (19)
Given theLandmark-messagdéhe CCU calculates
S., =R+ H,P"H, +H, P"H, + H,®"M, ,®" H, + H,®"I,, & H, , (20)

as well asr® andT';’s using [5&), [(Be)E(8d), respectively. It obtainé = (Sa,b)iéra and then passes the following data to every robot
1 € V in the network:

update-message= (%, T} ).
Every roboti € V\Vmissed K+ 1), Upon receiving its respectivgpdate-messageupdates its state estimate and the corresponding covarian
#F(k+1) = 27 (k+1)+ & (k+1)update-messafe2) update-messabel ), (21a)
Pt (k+1) = P(k+1)— & (k+1)update-messade2) update-messabe) " ®/(k+1)". (21b)
The CCU updates its local variables, foe V\{N}, j e {i+1,--- ,N}:
I j(k+1) =TI j(k) = T5T ], if (i,5) & Vinissedk + 1) X Vinissed k + 1). (22)

where Vmissed k + 1) is the set of agents missing the update message of the CChhestépk + 1.
3 k+k+1

To implement sequential updating procedure, the robotdangakeasurements inform the CCU
and indicate to CCU what their landmark robots are. Theegftiie CCU knowsVa(k + 1)
andVj;(k + 1)'s, and sorts both of these sets according to it's sequempidating-order guide-
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Algorithm 2 CCU’s sequential updating procedure for multiple in-netkvoneasurement at

timek +1
Require: Initialization (j = 0): CCU obtains the following information from each rohote Va(k+1) and all of its landmarké € Vg (k+1),

Landmark-messafe= (Za,b, X(k+1),P" (k+1), ®%(k + 1)),
Landmark-messafje= (fc”'(k +1),P"(k+1), 8%k + 1)).
The CCU initializes the following variables
k41,00 =% (k+1), P (k+1,0)=Pi(k+1), VieV(k+1),
Hi,l(k+ 170) = Hi,l(k)vi € v\{N}v le {Z + 17 t 7N}
Iteration j: CCU proceeds with the following calculations.
1: for a € Va(k+1) do
2: forbeVg(k+1)do
3: CCU calculatesH,,, H, andr® usingz™®(k +1) = %t*(k+ 1,5 — 1) andx®(k + 1) = x*°(k 4+ 1,5 — 1). Then, using these
measurement matrices aii”(k +1) = P “(k+1,j — 1), Pk + 1) = P '(k + 1,j — 1) andTL, ,(k) = I, p(k+1,5—1),
CCU calculatesS,, , from (I2) and subsequentli” (k + 1,5) = (Sq,5(k + 1,j))’%r“(k +1,5) andT';(k + 1, 5) from (88)-{8d)) for
¢ € V. Next, CCU updates the state and the covariance of all thetsdb: € Vag(k + 1) as follows
T (k+1,5) =% (k+1,5) + @ (k+ 1) Ti(k + 1,5) 2 (k + 1, ), (23a)

P (k+1,5) =PV (e+1,5) =& (k+DTi(k + 1,5)Ti(k + 1,5) T ®'(k+1)". (23b)
It also updatedT; ; for i € V\{N}, l € {i+1,---,N} as follows
M (k+1,5) =T (k+ 1,5 — 1) = Ti(k+ L, )Ty (k+1,5) ", if (4,1) & Vinissedk + 1) X Viissed k + 1).

jj+1
end for
. end for
i CCU setsIT, ;(k + 1) = IL; 1 (k + 1,ns), wherens = 3° oy, (og1y VS (R + 1)].
: CCU broadcasts the following update messages for rolgod)

update-messaie= (3" (Ti(k +1,5)F (k+1,5)), 3" (Ti(k + 1, )Ti(k +1,5)")). (24)

line. Then, the CCU according to its sequential-updatirdgo can collect, one at a time, the
Landmark-messagef the robots inVa(k + 1) and process and the measurement according to
equations[(19):(22) of Algorithml 1. After the first robot Wa(k + 1), the next robots use their

updated local estimate and error covariance to generaite ltaedmark-message

An alternative implementation for sequential updating sehthe CCU issues only one collective
update message is possible using the compact representditibe sequential updating equa-
tions (14) and[(15). Algorithmal2 describes the details ofhsan implementation that we use
to modify Algorithm[1 to accommodate multiple concurrentas@rement processing. Here, the
CCuU first collects all the landmark messagles| (19) of the oW (k + 1) and Va(k + 1).
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Then, the CCU computes the collective update message. Natert this implementation, the
CCU should create a local copy of the state estimate and tbe @variance equations of the
robots inVag(k + 1) (see. [(2B)), because these updates are needed to cofpusnd other
intermediate variables. An alternative implementatioalso possible where the update message

for every roboti € Vag(k + 1) is
update-messafe-
((@i)_l(fcﬂ(k +1,n4) — f(_i(k +1)), —(‘I>i)_1(P+i(k +1, ns)—P'i(k + 1))(<I>i)_T).

instead of [(24). This is because the CCU already has comphéedpdate state estimates and
the corresponding covariances of robat Vag(k+ 1) as part of partial updating procedure, i.e,
KT k+1) =" (k+1,n,), andPY(k+1) = PT(k + 1,n,).

Finally, observe that our partially decentralized aldoritis robust to permanent team member
dropouts. The CCU only suffers from a processing and comaation cost until it can confirm
that the dropout is permanent. In the next section, we sthdyrobustness of the proposed

partially DCL Algorithm[1 to occasional in-network messatyepouts.

V. ACCOUNTING FOR INNETWORK MESSAGE DROPOUTS

In this section, we study the robustness of Algorithm 1 agtaihe occasional communication
link failures between robots and the CCU. We devise a modtiificghat maintains the desired
minimum variance update property of the state estimate efrtbots receiving the update
message, when the robot dynamics are linear. For nonlimdat dynamics, the results will be

suboptimal due to the linearization approximation.

Our guarantees are based on the assumption that the twosrlvotved in a relative mea-
surement can both communicate with the CCU at the same tilmervaise, we discard that
measurement. We base our study on analyzing a fully cergchlEKF for CL in which at some
update times, we do not update the estimate of some of théstdinoour partially decentralized
implementation of the algorithm, these robots are thosehvimiss the update-message of the

CCU and as such they are not updating their estimates.

Consider a centralized CL where we always are able to uptietstate estimate equations of
the robots involved in a relative measurement. Next, withogs of generality, assume that
we do not update the state estimate of robpts+ 1,--- ,N}, 2 < m < N + 1 using the
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relative measurement taken by robkot? {m + 1,---, N} from robotb ¢ {m +1,--- N} at
some timek + 1, (this is equivalent to assuming in the partially deceiteal operation we have
Vmissedk + 1) = {m + 1,--- , N}). The propagation stage of the Kalman filter is independent
of the observation process and thus stays the same as teealdsKF for CL as in[(Za)t(7c).
The following result gives the minimum variance update éguafor robots{1,--- ,m}, when

the robotic team model is linear.

Theorem V.1 (Partial updating)Let the robotic team equations of motion and the measurement
models be linear. Consider a centralized EKF based CL whdr€aises the relative measure-
ment taken by robat ¢ Vyissedk + 1) from robotd ¢ Viyissed ¥ + 1) at some timek +1 > 0 to
only update the states of robotd Vmissedk + 1) = {1,--- ,m}, i.e.,

KT (k41) =% (k+1) + Ki(k+Dr*(k+1), i € V\Viissedk + 1) (25a)

T (k+1) =X (k+1) i € Vmissedk + 1). (25b)
LetK.,, = [K],--- , K ]T. Then, the Kalman gaik,.,, that minimizes the trace @& (k+1)
(the minimum variance partial state update gain) is given by

K; = (P, (k + DH, + P; o (k+ DH, )Sas ™, i € V\Vinissedk + 1). (26)

Moreover, the corresponding team covariance update isrgwe

, P (k+1), i € Vnissedk + 1),
PZ+ <k+1) _ ( ) mlsse<( ) (27)

P"(k+1)—K;S.,(k+1)K;(k+1)T otherwise

For cross-covariances we obtain

P, (k+1)—K;(k+1)S.5(k+1)K;(k+1)"T otherwise
(28)
where we defined and used thgeudogain
K; = (P,(k+ )H, + P} (k+ 1)H,)S.,™", i € Viissedk+1). (29)

Proof. We can obtain Kalman gaiK;.,, that minimizes the trace @™ (k+1) from oTr(P™ (k+

1))/0Kym = 0. Let %, = &, %), 17, v = & ... V). Next, we obtain
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Tr(P*(k+1)). Given [25), when the system and measurement models age, lthe state error
update att + 1 is given by

el (k+1) B Xim(k+1) —x7 (k+1)

e+ 1)| [ b+ 1) —xh (B D)

K., of[vek+1) | -xLm o ik +1) =5 (k+1)

0 0 0 0 Iv || Xmyrn(E+1) =% v (B +1)
where we usedI = {6 I:;:a<k+ 1) - I:lib(k+ 0 6" 7.0 Recall thatP™* (k +
1) = Ele*(k + 1)e* (k + 1)T] which is equal to
Bt 1) < | Dm0 | Phopisy+1) | |KoRK O

Pl onminn(k+ 1T ‘ Prinmirn(E+1) ONemyxm  O(N=m)x(N=m)

(Lo~ KimH) 0 || Pi (k1) | Pl (k1) ||~ KinH)T 0

0 Ivom | | Prginvim(k+1) ‘ P inmiry(E+ 1) 0 Iyom |
(30)

Then, we have
TI’(P+(/{: + 1)) = Tr(KlszaK]—:m) + Tr((Im - Kl:mI:I)PI:m,lzm(k + 1)(Im - Kl:mI:I)T)

+ Tr(P;n-l-lzN,m-i—l:N(k + 1))
= Tr(PLm,lzm<k + 1)) -2 Tr(KlimI:IPI:m,lzm<k + 1))_'_

TN (K (R + HPY,, 1 (b + DKL) + TH(P;, oy iy (b + 1))

1:m,1:m

As a result,

OTr(PY(k+1)) /0K . = — 2P}

1:m,1:m

(k+1DH' +2 (R, +HP,,, .. (k+ DHK],,

= 2P, 1ok + 1DH' +2S,,K] .

1:m,1:m

Therefore, the gailK,.,, that minimizes the trace & (k+1) isKj., = HP7, 1..(k+1)S;;

a,b?

which equivalently can be extended in robot-wise companangive us[(26). For the covariance
update, from[(30), we obtain

PIm,l:m(k + ]') = (Im - KlimI:I)PI:m,lzm(k + 1)(Im - KlimI:I)T + KlimRaKIm
= PI:m,l:m(k + 1) - Klimsll,bKI:m’ (31a)
+ -
Pm+1:N,m+1:N(k + 1) = Pm+1:N,m+1:N(k + 1)’ (31b)
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PIm,m—i—l:N(k + 1) = (Im - KlimI:I>P1:m,m+1:N(k + 1) = (31C)

K,

1 8 at1 b b+l ..m -
(Im - [0 H,(k) 0 H,(k) 0 -~0] )Plzm,mﬂw(/ﬂ +1) =
K,
KiS.:S,;
: T .. @ at1 .. b b+1 m -
(Im_ : |f) cee Ha(l{?) o .- Hb(k) 0 O:| )Plzm,m—l—l:N(k + 1)7
K.,SaS,,
where
(Pla(k+1) - Piy(k+1)]
Pomup(k+1) - P, y(k+1)
P;:m,m+1:N(k + 1) = : :
P (k1) o Pkt 1)
Pk +1) o PL(h+1)]
Recalling the definition of the pseudo-gainsl(29), tHen (@s)lts in [(2V) and (28). O

When the robot and/or measurement models of the robotic ss@mmonlinear, the guarantees

provided in Theorem (V|1) are only suboptimal due to thednmation approximation.

Comparing the developments above with the centralized Cergvhall the agents’ states are up-
dated, we observe that the state and the associated caetipdate of robotsc V\{1,--- ,m}
and also the cross-covariance update terms using the pg=udd<,, ;.5 Stay the same. As
such, the decomposition technique of split EKF CL used tceligvthe partially decentralized
algorithm of Sectiom IV is valid here. Thus, we can implemexactly Algorithm[1 as is, while
the robots missing the update message of the CCU do not ufigatesstimates and the CCU
does not update thH; ; when (i, j) € Viissed K + 1) X Vmissed k + 1). Therefore, this algorithm
is robust to message dropouts and the estimates of the reu®iving the update message, as

stated above, are minimum variance.
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VI. COMPARATIVE PERFORMANCE EVALUATIONS IN SIMULATIONS

We compare the performance of the proposed partially DClordlgn with and without oc-
casional communication failure in simulations. We use anted five robots moving on a flat
terrain of 25mx 25m area with constant linear velocity 6f25 m/s and the rotational velocity
drawn uniformly randomly from [0.1,0.4] rad/s. The standard deviation of the linear (resp.
rotational) velocity measurement noise of each robot isimassto be5% of the linear (resp.
20% of the rotational) velocity of that robot. We assume that eqwbots can obtain absolute
position measurement from time to time;= [z, 4’| "+, with ., =0, =0.1 m. We use relative
pose measurement whose contaminating noise is zero measi@awitho,, = 0., =0.1 m
and o, = 2 degree, for all robots. In our test, we compare the root mepare (RMS)
position and orientation error of/ = 30 Monte Carlo simulations, with the same relative
measurement scenarios. Let(k) = x' — %7 (k), i € {1,---,5}. Then, we calculate RMS
using RMSi(k):\/ﬁ Ej‘il e’(k)e}(k). Figure[l shows the results for the measurement and

communication scenarios explained in Table I.

TABLE | — Time table for exteroceptive measurement times tireddisconnected robots.— b
indicates that robot takes relative measurement from rolbott — « indicates that robot has

obtained absolute measurement.

Time (sec.) [050] | (5052] | (5260] | (6070] | (70 72] | (7280] | (80 100] | (100 102]| (102 110]| (110 300]
1—2 1—2 1—2 1—2 1—2 1—2 1—2 1—-2
2—3 1—2 1—2 2—3 2—3 2—3 2—3 22 22 2—3

Measurements
3—4 3—+3 3—+3 3—4 3—3 3—+3 3—4 3—4 3—4 3—4
4—5 4—5 4—5 4—5 4—5 4—5 4—5 4—5

Robot(s)

disconnected none 4,5 none none 5 none none 4 none none

from CCU, case 1

Robot(s)

disconnected none 4,5 4,5 none 5 5 none 4 4 none

from CCU, case 2

VIlI. CONCLUSIONS

For a team of robots with limited computational, storage aodmunication resources, we
proposed a partially DCL algorithm. This localization s&gy is an implementation of an EKF
for CL problem where the propagation stage is fully decéiagd by decomposing the coupling
terms and the updates are carried out in a CCU. In terms ofetlra size, this algorithm only
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Fig. 1 — Simulation results for position RMS error for the m@@ment and communication
scenarios described in Taldle | (the orientation RMS errdrakies similarly and omitted for
brevity). In plots (a)-(e), solid line shows the case of nonawunication failure; dashed (resp.
dash-doted) line shows case 1 (resp. case 2) communicatlofallure scenario of Tablg I. As
the simulations show the performance is very close desgitasional communication failure
between robot and5 with CCU. As expected, performance deteriorates more ifithefailure

duration is longer. Plot (f) shows the simulation resultsewmo CL is applied. As expected,

the estimation error is much larger in this case.

requiresO(1) storage and computational cost per robot and the main catipuoal burden
of implementing the EKF for CL is carried out by the CCU. Moveqn this partially DCL
algorithm is robust to communication link failures betwesme robots and the CCU and the
updated estimates of the robots receiving the CCU’s updassage are minimum variance.
Here, we discarded the measurement of the robots that fasbtomunicate with the CCU.
Our future work involves utilizing these old measuremergmag out-of-sequence-measurement
update strategies [22] when the communication link is restdetween the corresponding robot
and the CCU.
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