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A partially decentralized EKF scheme for

cooperative localization over unreliable

communication links

Solmaz S. Kia Sonia Martı́nez

Abstract

This paper reports a partially decentralized implementation of an Extended Kalman filter for the

cooperative localization of a team of mobile robots with limited onboard resources. Unlike a fully

centralized scheme that requires, at each timestep, information from the entire team to be gathered

together and be processed by a single device, our algorithm only requires that the robots communicate

with a central command unit at the time of a measurement update. Every robot only needs to propagate

and update its own state estimate, while the central commandunit maintains track of cross-covariances.

Therefore, the computational and storage cost per robot in terms of the size of the team is of order

O(1). Moreover, when the system model is linear the algorithm is robust to occasional in-network

communication link failures while the updated estimates ofthe robots receiving the update message are

of minimum variance at that given timestep. For problems with nonlinear robot models, our algorithm

under message drop-out provides a suboptimal solutions because of the linearization approximation

similar to the Extended Kalman filter model. We demonstrate the performance of the algorithm in

simulation.

Keywords: Cooperative localization; limited onboard resources; message dropouts.

I. INTRODUCTION

The objective of cooperative localization (CL) is to increase the localization accuracy of a team

of mobile robots byjointly estimating their locations using intra-team relative measurements.
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This technique, unlike classical beacon-based localization algorithms [1] or fixed feature-based

Simultaneous Localization and Mapping algorithms [2], does not rely on external features of

the environment. As such, this approach is an appropriate localization strategy in applications

that take place in a priori inaccessible and uncharted environments where features are dynamic

or not revisited, as well as, those applications with no or intermittent GPS access. A major

concern in developing any CL algorithm with an efficient communication strategy is how to

keep an accurate account of the intrinsic cross-correlations of state estimations without resorting

to all-to-all multi-robot communications at each time-step. Accounting for the cross-correlations

is crucial for both filter consistency and also expanding thebenefit of an update of a robot-to-

robot measurement to the entire team (see [3] for further details). The problem becomes more

challenging if in-network communications fail due to external events such as obstacle blocking

or limited communication ranges. In this paper, we address such an issue by proposing a partially

decentralized filtering strategy.

Fully centralized CL schemes,at each time-step, gather and process information from the entire

team at a single device, either a leader robot or a fusion center (FC), and broadcast back the

estimated location results to each robot [4], [5]. Various decentralized CL (DCL) algorithms

have also been proposed in the literature. In [6], a suboptimal algorithm where only the robot

obtaining the relative measurement updates its states is proposed. Here, a bank of Extended

Kalman Filters (EKFs) together with an accurate book-keeping of robots involved in previous

updates is maintained by each robot to produce consistent estimates. Although this method

does not impose a particular in-network communication graph, its computational complexity,

large memory demand, and the growing size of information needed at each update time are

the main drawbacks. Other ‘loosely coupled’ DCL strategiesbased on covariance intersection

fusion method, where only either the robot that has takes themeasurement or the landmark robot

cooperatively update their state estimates, are proposed in [7], [8], [9], [10]. Although these

loosely coupled cooperative localization strategies do not impose any restrictive communication

topology on the team, they are conservative by nature, because they do not enable other agents

in the network to fully benefit from measurement updates. Moreover, even though the covariance

intersection method produces consistent estimates for a loosely coupled DCL strategy, this

method is known to produce overly conservative estimates.

Alternatively, the computation of components of a centralized CL can be distributed among
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team members. For example, this decentralization can be conducted as a multi-centralized CL,

wherein each robot broadcasts its own information to the entire team, which later reproduce the

centralized pose estimates acting as a FC [11]. Besides a high-processing cost for each robot,

this scheme requires all-to-all robot communication at thetime of each information exchange.

A DCL algorithm distributing computations of an EKF CL algorithm is proposed in [12] where

propagation stage is fully decentralized by splitting eachcross-covariance term between the

corresponding two robots. However, at update times, the separated parts should be combined,

requiring an all-to-all robot communication. Other DCL algorithm based on decoupling the

propagation stage of an EKF CL using new intermediate variables is proposed in [13] and [14].

Unlike [12], in [13] at update stage, each robot can locally reproduce the updated pose estimate

and covariance of the centralized EKF after receiving an update message only from the robot

that has made the relative measurement. In [14] at update times only the two robots involved in

the relative measurement need to communicate. However, in both of these algorithms, for a team

of N robots, each robot incurs anO(N2) processing and storage cost as they need to evolve a

variable of size of the entire covariance matrix of the robotic team. Subsequently, [15] presents

a maximum-a-posteriori (MAP) DCL algorithm in which all therobots in the team calculate

parts of the centralized CL.

The algorithms above all assume that communication messages are delivered, as prescribed,

perfectly all the time. A DCL approach equivalent to a centralized CL, when possible, that

handles both limited communication ranges and time-varying communication graphs is proposed

in [16]. This technique uses an information transfer schemewherein each robot broadcasts all its

locally available information (the past and present measurements, as well as past measurements

previously received from other robots) to every robot within its communication radius at each

time-step. The main drawback of this algorithm is its high communication and storage cost.

In another approach towards DCL, a single-beacon cooperative acoustic localization algorithm

is proposed in [17] for underwater vehicles. The reported algorithm in [17] is a decentralized

extended information filter that uses ranges and state information from a single reference source

(the server) with higher navigation accuracy to improve localization and navigation of underwater

vehicle(s) (the client(s)) independent from one another.

Motivated by the limited onboard resources in micro-robots, and at the same time, with a desire

to eliminate the communication per time-step requirement of fully centralized CLs, we propose a
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partially decentralized CL strategy with fully decoupled propagation stage and centralized update

gain calculation through a central command unit (CCU). Our algorithm is an implementation of

an EKF for CL and builds on our EKF decoupling strategy previously proposed in [3]. The fully

decentralized algorithm of [3] requires anO(N2) storage andO(N2) per measurement update

processing cost per robot, whereN is the size of the cooperative robotic team. These costs can be

reduced toO(N) with the penalty of bigger communication message sizes. Without such a cost,

maintaining the intrinsic cross-covariances of the CL strategy in a fully decentralized manner is

not possible. In our new partially decentralized algorithm, CCU is in charge of maintaining the

cross-covariances and the calculation of the update gains.Therefore, the storage and processing

cost per robot reduces toO(1) as every robot only propagates and updates its own pose estimates.

Also by fully decoupling the propagation stage, we reduce the communication incidences to

exteroceptive measurement update times. Our next contribution is to show that the proposed

partially DCL strategy is also robust to occasional messagedropouts in the network, which is

not the case in the previous fully decentralized scheme of [3]. A preliminary version of our work

was presented in [18].

Notations: the set ofn×n real positive definite matrices isSn
>0. Then×m zero matrix is0n×m

(whenm = 1, we use0n), while then×n identity matrix isIn. The transpose of matrixA∈Rn×m

is A⊤. The block diagonal matrix of set of matricesA1, . . . ,AN is Diag(A1, · · · ,AN). For block

partitioned matrixA, Ai:j,k:l wherei < j andk < l, indicates a submatrix ofA consisted of the

block in the intersection of rowsi to j and the columnsk to l. For finite setsV1 andV2, V1\V2

is the set of elements inV1, but not inV2. The cardinality of a finite setV is |V |. In a team

of N robots, the local variables of roboti are distinguished by the superscripti, e.g.,xi is the

pose (i.e., position and orientation) of roboti, x̂i is its pose estimate, andPi is the covariance

matrix of its pose estimate. We use the termcross-covarianceto refer to the correlation terms

between two robots in the covariance matrix of the entire team, and demonstrate the cross-

covariance of the pose vectors of robotsi and j by Pi,j. In algorithmic iterationsPi,i maybe

used in place ofPi. We denote the propagated and updated variables, sayx̂
i, at time-stepk

by x̂i-(k) and x̂i+(k), respectively. We drop the time-step argument of the variables as well

as matrix dimensions whenever they are clear from the context. The aggregated vector of local

vectorspi ∈ R
ni

is p = (p1, . . . ,pN ) ∈ R
d, d=

∑N

i=1 n
i. We usea

k
−→ b to indicate that robota

has taken relative measurement from robotb at timestepk.
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II. DESCRIPTION OF THE MOBILE ROBOT TEAM

We consider a team ofN mobile robots with communication, processing and measurement

capabilities. The robots are only communicating with a CCU that oversees the operation. This

CCU can also be a team member with greater processing and storage capabilities. The assumption

is that the CCU can reach every robot in the team, but the communication lines can be interrupted

from time to time. Every robot has a detectable unique identity (UID) which, without loss of

generality, we assume to be a unique integer belonging to thesetV = {1, . . . , N}. Using a set

of proprioceptive sensors every roboti ∈ V measures its self-motion and uses it to propagate its

equations of motion

xi(k + 1) = f i(xi(k),ui(k)) + gi(xi(k))ηi(k), k ∈ Z≥0, (1)

wherexi ∈ R
ni

, ui ∈ R
mi

, andη
i ∈ R

pi are, respectively, the pose vector, the input vector

and the process noise vector of roboti. Here,f i(xi,ui) andgi(xi), are, respectively, the system

function and process noise coefficient function of the roboti ∈ V. The robotic team can be

heterogeneous, nevertheless, the collective motion equation of the team reads

x(k + 1) = f(x(k),u(k)) + g(x(k))η(k), k ∈ Z≥0, (2)

where, f(x,u) = (f 1(x1,u1), · · · , fN (xN ,uN)) and g(x) = Diag(g1(x1), · · · , gN(xN)). The

process noisesηi, i ∈ V, are independent zero-mean white Gaussian processes with aknown

positive definite varianceQi(k) = E[ηi(k)ηi(k)⊤]. Every robot also carries exteroceptive sensors

to monitor the environment to detect, uniquely, the other robots in the team and take relative

measurements from them, e.g., range or bearing or both. We model the relative measurement

collected by roboti from robotj as

zi,j(k) = hi,j(x
i(k),xj(k)) + ν

i(k), zi,j ∈ R
ni
z , i

k
−→ j, k ∈ Z≥0, (3)

wherehi,j(x
i,xj) is the measurement model andνi is the measurement noise of roboti∈V,

assumed to be independent zero-mean white Gaussian processes with known covarianceRi(k)=

E[νi(k)ν i(k)⊤]. All noises are assumed to be white and mutually uncorrelated.

It is apparent that if the robots only rely on propagating their equations of motion (1) to

obtain their location because of the noise in self-motion measurements, their estimates will

grow unbounded. We show below how using an EKF, relative measurements between robots are

used to improve the propagated states of the collective robotic team system. Here, we assume

that all the sensor measurements are synchronized.
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III. SPLIT EKF, AN ALTERNATIVE REPRESENTATION OFCENTRALIZED EKF ALGORITHM

FOR CL

In this section, we review a new representation of the the centralized EKF CL algorithm. We refer

to this alternative representation as the split EKF representation. The Split EKF representation

enables our decentralized implementations discussed in the proceeding sections.

The centralized EKF CL algorithm is a straightforward application of EKF over the collective

motion model (2) using the relative measurement model (3) [12]. That is, starting at̂xi+(0) ∈

R
ni

, Pi+(0)∈Sni

>0,P
+
i,j(0) = 0ni×nj , for i ∈ V andj∈V\{i}, the propagation and update equation

of EKF-based CL fork ∈ Z≥0 is given by

x̂-(k + 1) = f(x̂+(k),u(k)), (4a)

P-(k + 1) = F(k)P+(k)F(k)⊤ +G(k)Q(k)G(k)⊤, (4b)

x̂+(k+1) = x̂-(k+1)+K(k+1)ra(k + 1), (4c)

P+(k+1) = P-(k+1)−K(k+1)Sa,bK(k+1)⊤. (4d)

K(k+1) =











0, no relative measurement atk + 1,

P-(k+1)Ha,b(k+1)⊤Sa,b(k + 1)−1, a
k+1
−−→ b,

(4e)

whereF = Diag(F1, · · · ,FN), G = Diag(G1, · · · ,GN ) andQ = Diag(Q1, · · · ,QN ), with

Fi = ∂
∂xi f(x̂

i+(k),ui(k)) andGi = ∂
∂xig(x̂

i+(k)), for all i ∈ V. Moreover, when a robota takes

a relative measurement from robotb at some given timek + 1, the measurement residual and

its covariance are, respectively,

ra(k + 1) = za,b(k + 1)− ha,b(x̂
a-(k + 1), x̂b-(k + 1)), (5a)

Sa,b(k+1)=Ra(k+1) +Ha,b(k+1)P-(k+1)Ha,b(k+1)⊤ (5b)

=Ra(k+1) + H̃a(k + 1)Pa-(k + 1)H̃a(k + 1)⊤ + H̃b(k + 1)Pb-(k + 1)H̃b(k + 1)⊤

+ H̃b(k + 1)P-
ba(k + 1)H̃a(k + 1)⊤ + H̃a(k + 1)P-

a,b(k + 1)H̃b(k + 1)⊤.

where (without loss of generality we assume thata < b)

Ha,b(k) =
[1

0
···
· · ·

a

H̃a(k)
a+1

0
···
· · ·

b

H̃b(k)
b+1

0
···
· · ·

N

0
]

, (6)

H̃a(k) =
∂

∂xa
ha,b(x̂

a-(k), x̂b-(k)), H̃b(k) =
∂

∂xb
ha,b(x̂

a-(k), x̂b-(k)).
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It is worth recalling that, if the system model is linear, at any update incident at some timestep

k, given the state update equation (4c), the Kalman gain (4e) minimizes the trace ofP+(k) =

E[e(k)e(k)⊤], wheree(k) = x(k)− x+(k) (c.f. [19, page 146]).

Let K =
[

K⊤1 , · · · ,K
⊤
N

]⊤

, whereKi ∈ R
ni×ni

z is the component of the Kalman gain used to

update the pose estimate of the roboti∈V. Then, we can express the collective centralized EKF

CL in terms of its robot-wise components, as follows, fori ∈ V,

x̂i-(k+1)= f i(x̂i+(k),ui(k)), (7a)

Pi-(k+1)= Fi(k)Pi+(k)Fi(k)⊤+Gi(k)Qi(k)Gi(k)⊤, (7b)

P-
i,j(k+1)= Fi(k)P+

i,j(k)F
j(k)⊤, j ∈ V\{i}, (7c)

x̂i+(k+1)= x̂i-(k+1) +Ki(k+1)ra(k+1), (7d)

Pi+(k+1)= Pi-(k+1)−Ki(k+1)Sa,b(k+1)Ki(k+1)⊤, (7e)

P+
i,j(k+1)= P-

i,j(k+1)−Ki(k+1)Sa,b(k+1)Kj(k+1)⊤, j ∈ V\{i}, (7f)

Ki(k+1) =











0, no relative measurement atk+1,

(P-
i,b(k+1)H̃

⊤

b +P-
i,a(k+1)H̃

⊤

a )Sa,b
−1, a

k+1
−−→ b.

(7g)

BecauseKi(k+1)Sa,b(k+1)Ki(k+1)⊤ is a positive semi-definite term, the update equation (7e)

clearly shows that relative measurement updates reduce theestimation uncertainty. Next, note

that, because of the inherent coupling in cross-covarianceterms (7c) and (7f), the EKF CL (7) can

not be implemented in a decentralized manner, without all-to-all communication. Next, we review

and offer a rigorous proof for an alternative representation of the centralized EKF CL algorithm

which was originally proposed in [3] without proof. We referto this alternative representation

as split EKF CL. We use this alternative representation, in the proceeding section, to decouple

the propagation stage of (7), and propose a decentralized implementation of the algorithm with

reduced processing and communication cost per robot. The split EKF CL is presented in the

following result.

Theorem III.1 (Split EKF CL, an alternative representation of EKF for CL). Consider the EKF

CL algorithm in(7) with initial conditionŝxi+(0)∈Rni

, Pi+(0)∈Sni

>0,P
+
i,j(0) = 0ni×nj , for i ∈ V

and j ∈V\{i}. For i ∈ V, let Φi(0) = Ini and Πi,j(0) = 0ni×nj , j ∈V\{i}. Moreover, assume

August 3, 2016 DRAFT
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that Fi(k), i ∈ V, is invertible at allk ∈ Z≥0. Next, fork ∈ Z≥0, let

Φi(k + 1) = Fi(k)Φi(k), i ∈ V, (8a)

Γi(k + 1) = 0, i ∈ V, no relative measurement atk + 1, (8b)

Γa(k + 1) =
(

Πa,b(k)Φ
b(k + 1)

⊤
H̃
⊤

b +Φa(k + 1)−1Pa-(k + 1)H̃
⊤

a

)

Sa,b
− 1

2, a
k+1
−−→ b, (8c)

Γb(k + 1) =
(

Φb(k + 1)−1Pb-(k + 1)H̃
⊤

b +Πba(k)Φ
a(k + 1)⊤H̃

⊤

a

)

Sa,b
− 1

2 , a
k+1
−−→ b, (8d)

Γi(k + 1) = (Πi,b(k)Φ
b(k + 1)

⊤
H̃
⊤

b +Πi,a(k)Φ
a(k + 1)⊤H̃

⊤

a )Sa,b
− 1

2 , i∈V\{a,b}, a
k+1
−−→ b,

(8e)

Πi,j(k + 1) = Πi,j(k) + Γi(k + 1)Γj(k + 1)⊤, i ∈ V, j∈V\{i}. (8f)

Then, we can rewrite(7c) and (7f), respectively as

P-
i,j(k + 1) =Φi(k + 1)Πi,j(k)Φ

j(k + 1)⊤, (9a)

P+
i,j(k + 1) =Φi(k + 1)Πi,j(k + 1)Φj(k + 1)⊤. (9b)

Consequently, we can represent(7d) and (7e), respectively, as

x̂i+ (k+1)= x̂i-(k+1) +Φi(k+1)Γi(k+1)r̄a(k+1), (10a)

Pi+ (k+1)= Pi-(k + 1)−Φi(k + 1)Γi(k + 1)Γ⊤i (k + 1)Φi(k + 1)⊤, (10b)

where r̄a(k+1) = Sa,b
− 1

2 ra(k+1), i ∈ V and j∈V\{i}.

Proof. First, we evaluate our statement regarding (9). Our proof isbased on mathematical

induction overk ∈ Z≥0; that is, we first verify (9) fork = 0, then we assume our claim (9)

holds fork, and evaluate it fork + 1.

Let k = 0. Then given (8) and the defined initial conditions, (9a) results in

P-
i,j(1) = Φi(1)Πi,j(0)Φ

j(1)⊤ = Fi(1) 0ni×nj Fj(1)⊤ = 0ni×nj ,

which matches exactly (7c) atk = 0. Next, we consider the first step of induction on (9a). When

there is no relative measurement at the first step, then given(8e)-(8d) and (8f), (9b) results in

P+
i,j(1) = Φi(1)Πi,j(1)Φ

j(1)⊤ = Φi(1)Πi,j(0)Φ
j(1)⊤ = 0ni×nj , matching exactly the first

step of (7f). However, when there is a robota that takes relative measurement from robotb at

the first step of the algorithm, then from (8e)-(8d), we have

Γi(1) = (Πi,b(0)Φ
b(1)

⊤
H̃
⊤

b +Πi,a(0)Φ
a(1)⊤H̃

⊤

a )Sa,b
− 1

2 = 0, i ∈ V\{a, b}
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Γa(1) =
(

Πa,b(0)Φ
b(1)

⊤
H̃
⊤

b +Φa(1)−1Pa-(1)H̃
⊤

a

)

Sa,b
− 1

2 =Fa(1)−1Pa-(1)H̃
⊤

a Sa,b
− 1

2 ,

Γb(1) =
(

Φb(1)−1Pb-(1)H̃
⊤

b +Πb,a(0)Φ
a(1)⊤H̃

⊤

a

)

Sa,b
− 1

2 = Fb(1)−1Pb-(1)H̃
⊤

b Sa,b
− 1

2 .

Then, from (9b), we obtain

P+
i,j(1) = 0, i ∈ V \ {a, b}, j ∈ V\{i, a, b},

P+
a,b(1) = P+

b,a(1)
⊤ = Φa(1)Πa,b(1)Φ

b(1)⊤ = Fa(1)(Πa,b(0)− Γa(1)Γb(1)
⊤)Fb(1)⊤

= −Fa(1)Γa(1)Γb(1)
⊤Fb(1)⊤

= −Fa(1)(Fa(1)−1Pa-(1)H̃
⊤

a Sa,b
− 1

2 )(Fb(1)−1Pb-(1)H̃
⊤

b Sa,b
− 1

2 )⊤Fb(1)⊤

= −(Pa-(1)H̃
⊤

a S
−1
a,b)Sa,b(P

b-(1)H̃
⊤

b S
−1
a,b)
⊤,

which exactly matches (7f) as shown below (recall (7g)). In each case, (7f) reduces to

P+
i,j(1) = 0, i ∈ V \ {a, b}, j ∈ V\{i, a, b},

P+
a,b(1) = P+

b,a(1)
⊤ = P-

i,j(k+1)−Ki(k+1)Sa,b(k+1)Kj(k+1)⊤

= −(Pa-(1)H̃
⊤

a S
−1
a,b)Sa,b(P

b-(1)H̃
⊤

b S
−1
a,b)
⊤.

Assume now that the theorem statement holds fork. At time stepk+1, first consider (9a). This

implies

P-
i,j(k + 1) = Φi(k + 1)Πi,j(k)Φ

j(k + 1)⊤

= Fi(k + 1)Φi(k)Πi,j(k)Φ
j(k)⊤Fj(k + 1)⊤ = Fi(k + 1)P+

i,j(k)F
j(k + 1)⊤,

which confirms validity of (9a) atk + 1. Next, consider (9b). When there is no relative mea-

surement atk + 1, we obtain from (9b) (recall (8e)-(8d) and (8f))

P+
i,j(k + 1) = Φi(k + 1)Πi,j(k + 1)Φj(k + 1)⊤ = Φi(k + 1)Πi,j(k)Φ

j(k + 1)⊤ = P-
i,j(k + 1),

using (9a). Next, we evaluate (9b) when robota takes a relative measurement from robotb at

k + 1. First notice that

Ki(k + 1) = Φi(k + 1)Γi(k + 1)S
− 1

2
a,b , i ∈ V. (11)

This follows from the following considerations

• for i ∈ V\{a, b} (recall (8e), (9a),) we have

Φi(k + 1)Γi(k + 1)S
− 1

2
a,b = Φi(k + 1)(Πi,b(k)Φ

b(k + 1)
⊤
H̃
⊤

b +Πi,a(k)Φ
a(k + 1)⊤H̃

⊤

a )Sa,b
−1

August 3, 2016 DRAFT
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= (P-
i,b(k + 1)H̃

⊤

b +P-
i,a(k + 1)H̃

⊤

a )Sa,b
−1 = Ki(k + 1);

• for i = a (recall (8c), (9a),) we have

Φi(k + 1)Γi(k + 1)S
− 1

2
a,b = Φa(k + 1)

(

Πa,b(k)Φ
b(k + 1)

⊤
H̃
⊤

b +Φa(k + 1)−1Pa-(k + 1)H̃
⊤

a

)

Sa,b
−1

= (P-
a,b(k + 1)H̃

⊤

b +Pa-(k + 1)H̃
⊤

a )Sa,b
−1 = Ka(k + 1);

• for i = b (recall (8d), (9a),) we have

Φi(k + 1)Γi(k + 1)S
− 1

2
a,b = Φb(k + 1)

(

Φb(k + 1)−1Pb-(k + 1)H̃
⊤

b +Πb,a(k)Φ
a(k + 1)⊤H̃

⊤

a

)

Sa,b
−1

= (Pb-(k + 1)H̃
⊤

b +P-
b,a(k)H̃

⊤

a )Sa,b
−1 = Kb(k + 1).

Therefore, we can rewrite (9b) (recall (8e)-(8d) and (8f)) as

P+
i,j(k + 1) = Φi(k + 1)Πi,j(k + 1)Φj(k + 1)⊤ = Φi(k + 1)Πi,j(k)Φ

j(k + 1)⊤−

Φi(k + 1)Γi(k + 1)Γj(k + 1)⊤Φj(k + 1)⊤

= P-
i,j(k + 1)−

(

Φi(k + 1)Γi(k + 1)S
− 1

2
a,b

)

Sa,b

(

Φj(k + 1)Γj(k + 1)S
− 1

2
a,b )

⊤
)

= P-
i,j(k + 1)−Ki(k + 1)Sa,bKj(k + 1)⊤,

which confirms validity of (9b) atk + 1 when robota takes relative measurement from robot

b. This completes the proof of validity of (9b) for allk ∈ Z≥0. Subsequently, (10) follows, in a

straightforward manner, from (11) now being valid for allk ∈ Z≥0.

It is worth noticing that, using the alternative representation (9a) for the cross-covariance of the

team members, the residual covarianceSa,b in (5b) can be expressed in an equivalent way as

Sa,b =Ra(k + 1) + H̃aP
a-(k + 1)H̃

⊤

a + H̃bP
b-(k + 1)H̃

⊤

b + (12)

H̃aΦ
a(k + 1)Πa,b(k)Φ

b(k + 1)⊤H̃
⊤

b + H̃bΦ
b(k + 1)Πb,a(k)Φ

a(k + 1)⊤H̃
⊤

a .

For clarity of presentation, so far, we have assumed that there is only one relative measurement

at each given timestepk. To process multiple synchronized measurements, we usesequential

updating (c.f. e.g. [20, ch. 3],[21]). In the following, we obtain a compact representation for

sequential updating procedure in split ELF CL, that will be used in the partial decentralization

scheme of proceeding section.

Let VA(k) denote the set of the robots that have made an exteroceptive measurement at time

k, V i
B(k) denote the landmark robots of roboti ∈ VA(k), and VA,B(k) represent the set of
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all landmark robots and the robots that have taken relative measurements. Then, when there

are ns =
∑|VA(k+1)|

i=1 |V i
B(k + 1)| multiple concurrent exteroceptive relative measurementsat a

timestepk + 1, the sequential updating procedure prescribes the following update equation for

the EKF CL algorithm in (7). Let̂xi+(k + 1, 0) = x̂
i-(k + 1), Pi+(k + 1, 0) = Pi-(k + 1),

i ∈ {1, · · · , N}, andP+
i,l(k + 1, 0) = Pi-

i,l(k + 1) for l ∈ {1, · · · , N}\{i}. The update at time

k+1 is x̂i+(k+1) = x̂i+(k+1, ns), P
i+(k+1) = Pi+(k+1, ns), andP+

i,l(k+1) = P+
i,l(k+1, ns),

i ∈ {1, · · · , N}, l ∈ {1, · · · , N}\{i}, obtained from executing the following steps, starting at

j = 1,

for a ∈ VA(k + 1),

for b ∈ Va
B(k + 1),

x̂i+(k+1, j)= x̂i-(k+1, j − 1) +Ki(k+1, j)ra(k+1, j), (13a)

Pi+(k+1, j)= Pi-(k+1, j − 1)−Ki(k+1)Sa,b(k+1, j)Ki(k+1, j)⊤, (13b)

P+
i,l(k+1, j)= P-

i,l(k+1, j − 1)−Ki(k+1, j)Sa,b(k+1, j)Kj(k+1, j)⊤, j ∈ V\{i}, (13c)

j ← j + 1,

wherera(k + 1, j), Sa,b(k + 1, j), andKi(k + 1, j) are calculated, respectively, from (5a), (5b),

and (7g) usinĝx-(k + 1) = x̂+(k + 1, j − 1) andP-(k + 1) = P+(k + 1, j − 1).

By direct substitution, we can show that (13a), (13b) and (13c) can be represented in Split EKF

CL form as follows

x̂i+(k+1, j)= x̂i-(k+1, j − 1) +Φi(k+1)Γi(k+1, j)r̄a(k+1, j), (14a)

Pi+(k+1, j)= Pi-(k+1, j − 1)−Φi(k + 1)Γi(k + 1, j)Γ⊤i (k + 1, j)Φi(k + 1)⊤, (14b)

P+
i,l(k+1, j)= Φi(k + 1)Πi,l(k + 1, j − 1)Φl(k + 1)⊤, l ∈ V\{i}, (14c)

whereΠi,j(k+ 1, 0) = Πi,j(k), Πi,j(k + 1, j) = Πi,j(k+ 1, j − 1) + Γi(k+ 1, j)Γj(k+ 1, j)⊤.

Here,Γi(k + 1, j) is calculated from (8e)-(8d) whereinSa,b at eachj is calculated from (12)

usingx̂-(k+1) = x̂+(k+1, j−1) andP-(k+1) = P+(k+1, j−1). Consequently,̄ra(k+1, j) =

Sa,b(k + 1, j)−
1
2 ra(k+1, j). Notice that here, we can represent the final updated variables as

x̂i+(k + 1, ns) = x̂i-(k+1, 0) +Φi(k+1)
∑ns

j=1
Γi(k+1, j)r̄a(k+1, j), (15a)

Pi+(k + 1, ns) = Pi-(k+1, 0)−Φi(k + 1)
(

∑ns

j=1
Γi(k+1, j)Γ⊤i (k+1, j)

)

Φi(k+1)⊤, (15b)
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P+
i,l(k+1, ns) = Φi(k + 1)

(

∑ns

j=1
Πi,l(k + 1, j − 1)

)

Φl(k + 1)⊤. (15c)

We use the compact representation (15) of the sequential updating procedure to develop a partially

decentralized implementation which requires only one update message broadcast from the CCU

(see Algorithm 2).

IV. PARTIALLY DECENTRALIZED IMPLEMENTATION OF THE EKF FOR CL

In this section, using the split EKF CL representation, introduced in Theorem III.1, we devise

an implementation of the EKF for CL where the propagation stage is fully decentralized but the

update gains are calculated and sent out to the robots in centralized manner.

Using split EKF CL representation, in [3] the authors proposed a fully decentralized implementa-

tion of the centralized EKF CL where each agenti ∈ V stores and evolves its local (x̂
i-(k) ∈ R

ni

,

Φi(k) ∈ R
ni×ni

, Pi-(k+1) ∈ S
ni

>0) along with alocal copyof Πl,j(k) of the entire team (i.e.,

each roboti ∈ V maintainsΠi
l,j(k) for l ∈ V, j ∈ V\{l}). This way the propagation stage of the

EKF CL algorithm is fully decentralized. Whenever there is arelative measurement in the team

at some timestepk + 1, saya
k+1
−−→ b, robot a acquires (̂xb-(k+1) ∈ R

nb

, Φb(k+1) ∈ R
nb×nb

,

Pb-(k+1) ∈ S
nb

>0) from the landmark robotb. Then, robota is designated as the interim master

which calculates and broadcasts the update message
(

a ∈ R, b ∈ R, r̄a ∈ R
na
z , Γa ∈ R

na×na
z ,

Γb ∈ R
nb×na

z , Φb⊤H̃
⊤

b Sa,b
− 1

2 ∈ R
nb×na

z , Φa⊤H̃
⊤

a Sa,b
− 1

2 ∈ R
na×na

z

)

to the entire team. In this

way, every agenti ∈ V is able to calculate a local copy ofΓi
j, j ∈ V to update its local state,

error covariance matrix and its local copy of theΠi
l,j(k). The algorithm in [3] results in an

O(N2) storage andO(N2×Nz), processing cost per robot withNz the total number of relative

measurement in the team in a given time. Also, notice that thesuccess of the algorithm of [3]

depends on maintaining perfect communication message deliveries in the team. Any incidence

of message dropout at each agent will cause disparity between the local copy ofΠl,j(k)’s at

that agent and the local copies maintained by the rest of the team. As a result, message dropout

jeopardizes the integrity of the proposed decentralized implementation.

Our goal here is to design an algorithm that imposes onlyO(1) processing and storage cost per

robot and also be robust to communication message dropouts.To accomplish these objectives, we

propose that a CCU maintains the team cross-covariances, which is the source of high processing

and storage costs. In the next section, we show that our proposed scheme is robust to message
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dropouts with the updated estimation of each robot receiving the update message being updated

to be minimum variance at that given time.

Using the split EKF CL introduced in Theorem III.1, our proposed partially decentralized CL

algorithm is as follows. Every roboti ∈ V maintains and propagates its propagated state

estimate (7a) and its corresponding covariance matrix (7b), as well as, variableΦi (8a). Notice

that all these variables depend only on local data. Therefore, the propagation stage is fully

decoupled. The CCU is in charge of maintaining and updatingΠi,j ’s. When there is a relative

measurement in the network, say robota takes relative measurement from robotb, robot a

informs the CCU. Then, the CCU starts the update procedure bytaking the following actions. It

acquires (za,b, x̂
a-(k+1), Φa(k+1), Pa-(k+1)) from robota and (̂xb-(k+1), Φb(k+1), Pb-(k+1))

from robotb. Then, using this information, which we refer to it aslandmark-message, along with

its locally maintainedΠi,j ’s, it calculatesra, Sa,b andΓi, i ∈ V, from respectively, (5a), (12)

and (8e)-(8d). Then, the CCU sends to each roboti ∈ V its corresponding update message

(r̄a,Γi) so that the robot can update its local estimates using (10). It also updates its local

Πi,j using (8f), for all i ∈ V\{N} and j ∈ {i + 1, · · · , N}–because of the symmetry of the

covariance matrix of the network we only need to save, e.g., the upper triangular part of this

matrix. Algorithm 1 presents this partially decentralizedimplementation of EKF for CL when

there is only one relative measurement incident at a time. This algorithm operates based on the

assumption that at the time of measurement update, all the robots can receive the update message

of the CCU, i.e.,Vmissed(k + 1), the set of agents missing the update message of the CCU at

timestepk+1, is empty. This requirement is relaxed in the proceeding section, where we study

the robustness of our proposed algorithm to message dropouts.

To include absolute measurements in Algorithm 1 the CCU onlyneeds the information of the

robot that has obtained the absolute measurement. It proceeds with the similar updating procedure

as outlined above and issues the corresponding update message (r̄a,Γi) to every roboti ∈ V.

For multiple synchronized measurements, we use the sequential updating procedure. One can

expect that the updating order must not dramatically changethe results (cf. [21, page 104] and

references therein). Here, we assume

Assumption 1. CCU has a pre-specifiedsequential-updating-orderguideline, which indicates

the priority order for implementing the measurement update.
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Algorithm 1 Partially DCL
Require: Initialization (k = 0): Every roboti ∈ V initializes its filter at

x̂i+(0) ∈ R
ni

, Pi+(0) ∈ S
ni

>0, Φi(0) = Ini .

The CCU initializes

Πi
i,j(0) = 0ni×nj , i ∈ V\{N}, j ∈ {i+ 1, · · · , N}.

Iteration k

1: Propagation: Every roboti ∈ V propagates the variables below

x̂i-(k+1)= f i(x̂i+(k),ui(k)),

Φi(k+1)=Fi(k)Φi(k), (16)

Pi-(k+1)=Fi(k)Pi+(k)Fi(k)⊤+Gi(k)Qi(k)Gi(k)⊤.

2: Update: while there are no relative measurements in the network, every roboti ∈ V updates its variables as:

x̂i+(k + 1) = x̂i-(k + 1), Pi+(k + 1) = Pi-(k + 1), (17)

and the CCU proceeds with

Πi,j(k + 1) = Πi,j(k), j ∈ V\{i}. (18)

If there is a robota that makes a measurement with respect to another robotb, then robota informs the CCU. The CCU asks for the

following information from robota andb, respectively,

Landmark-messagea =
(

za,b, x̂
a-(k + 1),Pb-(k + 1),Φa(k + 1)

)

,

Landmark-messageb =
(

x̂b-(k + 1),Pb-(k + 1),Φb(k + 1)
)

. (19)

Given theLandmark-message, the CCU calculates

Sa,b = Ra + H̃aP
a-H̃

⊤

a + H̃
⊤

b Pb-H̃b + H̃aΦ
aΠa,bΦ

b⊤H̃
⊤

b + H̃bΦ
bΠbaΦ

a⊤H̃
⊤

a , (20)

as well asra andΓi’s using (5a), (8e)-(8d), respectively. It obtainsr̄a =(Sa,b)
− 1

2 ra and then passes the following data to every robot

i ∈ V in the network:

update-messagei =
(

r̄a , Γ⊤
i

)

.

Every roboti ∈ V\Vmissed(k+1), upon receiving its respectiveupdate-messagei , updates its state estimate and the corresponding covariance

x̂i+(k+1) = x̂i-(k+1)+Φi(k+1)update-messagei(2) update-messagei(1), (21a)

Pi+(k+1) = Pi-(k+1)−Φi(k+1)update-messagei(2) update-messagei(2)⊤Φi(k+1)⊤. (21b)

The CCU updates its local variables, fori ∈ V\{N}, j ∈ {i+ 1, · · · , N}:

Πi,j(k + 1) = Πi,j(k)− ΓiΓ
⊤
j , if (i, j) 6∈ Vmissed(k + 1) × Vmissed(k + 1). (22)

whereVmissed(k + 1) is the set of agents missing the update message of the CCU at timestepk + 1.

3: k ← k + 1

To implement sequential updating procedure, the robots making measurements inform the CCU

and indicate to CCU what their landmark robots are. Therefore, the CCU knowsVA(k + 1)

andV i
B(k + 1)’s, and sorts both of these sets according to it’s sequential-updating-order guide-
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Algorithm 2 CCU’s sequential updating procedure for multiple in-network measurement at

time k + 1
Require: Initialization (j = 0): CCU obtains the following information from each robota ∈ VA(k+1) and all of its landmarksb ∈ Va

B (k+1),

Landmark-messagea =
(

za,b, x̂
a-(k + 1),Pb-(k + 1),Φa(k + 1)

)

,

Landmark-messageba =
(

x̂b-(k + 1),Pb-(k + 1),Φb(k + 1)
)

.

The CCU initializes the following variables

x̂+i(k + 1, 0) = x̂-i(k + 1), P̂
+i
(k + 1, 0) = P-i(k + 1), ∀i ∈ V̄(k + 1),

Πi,l(k + 1, 0) = Πi,l(k), i ∈ V\{N}, l ∈ {i+ 1, · · · , N}.

Iteration j: CCU proceeds with the following calculations.

1: for a ∈ VA(k + 1) do

2: for b ∈ Va
B (k + 1) do

3: CCU calculatesH̃a, H̃b andra using x̂-a(k + 1) = x̂+a(k + 1, j − 1) and x̂-b(k + 1) = x̂+b(k + 1, j − 1). Then, using these

measurement matrices and̂P
-a
(k + 1) = P̂

+a
(k + 1, j − 1), P̂

-b
(k + 1) = P̂

+b
(k + 1, j − 1) andΠa,b(k) = Πa,b(k + 1, j − 1),

CCU calculatesSa,b from (12) and subsequentlȳra(k + 1, j) = (Sa,b(k + 1, j))−
1

2 ra(k + 1, j) andΓi(k + 1, j) from (8e)-(8d) for

i ∈ V . Next, CCU updates the state and the covariance of all the robots in i ∈ VA,B(k + 1) as follows

x̂+i(k+1, j) = x̂+i(k+1, j) +Φi(k+1)Γi(k + 1, j) r̄a(k + 1, j), (23a)

P+i(k+1, j)=P+i(k+1, j)−Φi(k+1)Γi(k + 1, j)Γi(k + 1, j)⊤Φi(k+1)⊤. (23b)

It also updatesΠi,l for i ∈ V\{N}, l ∈ {i+ 1, · · · , N} as follows

Πi,l(k + 1, j) = Πi,l(k + 1, j − 1)− Γi(k + 1, j)Γl(k + 1, j)⊤, if (i, l) 6∈ Vmissed(k + 1)× Vmissed(k + 1).

4: j ← j + 1

5: end for

6: end for

7: CCU setsΠi,l(k + 1) = Πi,l(k + 1, ns), wherens =
∑

a∈VA(k+1) |V
a
B (k + 1)|.

8: CCU broadcasts the following update messages for roboti ∈ V

update-messagei =
(

∑ns

j=1
(Γi(k + 1, j)r̄a(k + 1, j)),

∑ns

j=1
(Γi(k + 1, j)Γi(k + 1, j)⊤)

)

. (24)

line. Then, the CCU according to its sequential-updating-order can collect, one at a time, the

Landmark-messageof the robots inVA(k + 1) and process and the measurement according to

equations (19)-(22) of Algorithm 1. After the first robot inVA(k + 1), the next robots use their

updated local estimate and error covariance to generate their Landmark-message.

An alternative implementation for sequential updating where the CCU issues only one collective

update message is possible using the compact representation of the sequential updating equa-

tions (14) and (15). Algorithm 2 describes the details of such an implementation that we use

to modify Algorithm 1 to accommodate multiple concurrent measurement processing. Here, the

CCU first collects all the landmark messages (19) of the robots in VA(k + 1) andVA(k + 1).
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Then, the CCU computes the collective update message. Note that in this implementation, the

CCU should create a local copy of the state estimate and the error covariance equations of the

robots in ¯VA,B(k + 1) (see. (23)), because these updates are needed to computeSa,b and other

intermediate variables. An alternative implementation isalso possible where the update message

for every roboti ∈ VA,B(k + 1) is

update-messagei =

(

(Φi)−1(x̂+i(k + 1, ns)− x̂-i(k + 1)),−(Φi)−1(P+i(k + 1, ns)−P
-i(k + 1))(Φi)−T

)

.

instead of (24). This is because the CCU already has computedthe update state estimates and

the corresponding covariances of roboti ∈ VA,B(k+1) as part of partial updating procedure, i.e,

x̂+i(k + 1) = x̂+i(k + 1, ns), andP+i(k + 1) = P+i(k + 1, ns).

Finally, observe that our partially decentralized algorithm is robust to permanent team member

dropouts. The CCU only suffers from a processing and communication cost until it can confirm

that the dropout is permanent. In the next section, we study the robustness of the proposed

partially DCL Algorithm 1 to occasional in-network messagedropouts.

V. ACCOUNTING FOR IN-NETWORK MESSAGE DROPOUTS

In this section, we study the robustness of Algorithm 1 against the occasional communication

link failures between robots and the CCU. We devise a modification that maintains the desired

minimum variance update property of the state estimate of the robots receiving the update

message, when the robot dynamics are linear. For nonlinear robot dynamics, the results will be

suboptimal due to the linearization approximation.

Our guarantees are based on the assumption that the two robots involved in a relative mea-

surement can both communicate with the CCU at the same time otherwise, we discard that

measurement. We base our study on analyzing a fully centralized EKF for CL in which at some

update times, we do not update the estimate of some of the robots. In our partially decentralized

implementation of the algorithm, these robots are those which miss the update-message of the

CCU and as such they are not updating their estimates.

Consider a centralized CL where we always are able to update the state estimate equations of

the robots involved in a relative measurement. Next, without loss of generality, assume that

we do not update the state estimate of robots{m + 1, · · · , N}, 2 < m < N + 1 using the
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relative measurement taken by robota /∈ {m + 1, · · · , N} from robot b /∈ {m + 1, · · · , N} at

some timek+1, (this is equivalent to assuming in the partially decentralized operation we have

Vmissed(k + 1) = {m + 1, · · · , N}). The propagation stage of the Kalman filter is independent

of the observation process and thus stays the same as the classical EKF for CL as in (7a)-(7c).

The following result gives the minimum variance update equation for robots{1, · · · , m}, when

the robotic team model is linear.

Theorem V.1 (Partial updating). Let the robotic team equations of motion and the measurement

models be linear. Consider a centralized EKF based CL where aFC uses the relative measure-

ment taken by robota /∈ Vmissed(k + 1) from robotb /∈ Vmissed(k + 1) at some timek + 1 > 0 to

only update the states of robotsV\Vmissed(k + 1) = {1, · · · , m}, i.e.,

x̂i+ (k+1) =x̂i-(k+1) +Ki(k+1)ra(k+1), i ∈ V\Vmissed(k + 1) (25a)

x̂
i+ (k+1) =x̂

i-(k+1) i ∈ Vmissed(k + 1). (25b)

LetK1:m = [K⊤1 , · · · ,K
⊤
m]
⊤. Then, the Kalman gainK1:m that minimizes the trace ofP+ (k+1)

(the minimum variance partial state update gain) is given by

Ki = (P-
i,b(k + 1)H̃

⊤

b +P-
i,a(k + 1)H̃

⊤

a )Sa,b
−1, i ∈ V\Vmissed(k + 1). (26)

Moreover, the corresponding team covariance update is given by

Pi+ (k+1) =











Pi-(k+1), i ∈ Vmissed(k + 1),

Pi-(k+1)−KiSa,b(k+1)Ki(k+1)⊤ otherwise
(27)

For cross-covariances we obtain

P+
i,j(k+1)=











P-
i,j(k+1), (i, j) ∈ Vmissed(k+1)× Vmissed(k+1),

P-
i,j(k+1)−Ki(k+1)Sa,b(k+1)Kj(k+1)⊤ otherwise

(28)

where we defined and used thepseudogain

Ki = (P-
i,b(k + 1)H̃

⊤

b +P-
i,a(k + 1)H̃

⊤

a )Sa,b
−1, i ∈ Vmissed(k+1). (29)

Proof. We can obtain Kalman gainK1:m that minimizes the trace ofP+(k+1) from ∂Tr(P+(k+

1))/∂K1:m = 0. Let x̂+
1:m = (x̂1+, · · · , x̂m+), x̂+

m+1:N = (x̂m+1+, · · · , x̂N+). Next, we obtain
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Tr(P+(k+1)). Given (25), when the system and measurement models are linear, the state error

update atk + 1 is given by




e+
1:m(k + 1)

e+
m+1:N(k + 1)



 =





x1:m(k + 1)− x+
1:m(k + 1)

xm+1:N (k + 1)− x+
m+1:N(k + 1)



 =





−K1:m 0

0 0









ν
a(k + 1)

0



+





(Im −K1:mH̄) 0

0 IN−m









x1:m(k + 1)− x-
1:m(k + 1)

xm+1:N(k + 1)− x-
m+1:N(k + 1)



,

where we used̄H =

[

1

0
···
· · ·

a

H̃a(k + 1)
a+1

0
···
· · ·

b

H̃b(k + 1)
b+1

0
···
· · ·

m

0

]

. Recall thatP+(k +

1) = E[e+(k + 1)e+(k + 1)⊤] which is equal to

P+(k + 1) =





P+
1:m,1:m(k + 1) P+

1:m,m+1:N(k + 1)

P+
1:m,m+1:N(k + 1)⊤ P+

m+1:N,m+1:N(k + 1)



=





K1:mRaK
⊤
1:m 0m×(N−m)

0(N−m)×m 0(N−m)×(N−m)





+





(Im −K1:mH̄) 0

0 IN−m









P-
1:m,1:m(k + 1) P-

1:m,m+1:N(k + 1)

P-
m+1:N,1:m(k + 1) P-

m+1:N,m+1:N(k + 1)









(Im −K1:mH̄)⊤ 0

0 IN−m



.

(30)

Then, we have

Tr(P+(k + 1)) =Tr(K1:mRaK
⊤
1:m) + Tr((Im −K1:mH̄)P-

1:m,1:m(k + 1)(Im −K1:mH̄)⊤)

+ Tr(P-
m+1:N,m+1:N (k + 1))

=Tr(P-
1:m,1:m(k + 1))− 2Tr(K1:mH̄P-

1:m,1:m(k + 1))+

Tr(K1:m(Ra + H̄P-
1:m,1:m(k + 1)H̄

⊤
)K⊤1:m) + Tr(P-

m+1:N,m+1:N (k + 1)).

As a result,

∂Tr(P+(k + 1))/∂K1:m =− 2P-
1:m,1:m(k + 1)H̄

⊤
+ 2 (Ra + H̄P-

1:m,1:m(k + 1)H̄
⊤
)K⊤1:m

=− 2P-
1:m,1:m(k + 1)H̄

⊤
+ 2Sa,bK

⊤
1:m.

Therefore, the gainK1:m that minimizes the trace ofP+
1:m(k+1) is K1:m = H̄P-

1:m,1:m(k+1)S−1a,b,

which equivalently can be extended in robot-wise components to give us (26). For the covariance

update, from (30), we obtain

P+
1:m,1:m(k + 1) = (Im −K1:mH̄)P-

1:m,1:m(k + 1)(Im −K1:mH̄)⊤ +K1:mRaK
⊤
1:m

= P-
1:m,1:m(k + 1)−K1:mSa,bK

⊤
1:m, (31a)

P+
m+1:N,m+1:N(k + 1) = P-

m+1:N,m+1:N (k + 1), (31b)
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P+
1:m,m+1:N(k + 1) = (Im −K1:mH̄)P-

1:m,m+1:N (k + 1) = (31c)

(

Im −











K1

...

Km











[

1

0
···
· · ·

a

H̃a(k)
a+1

0
···
· · ·

b

H̃b(k)
b+1

0
···
· · ·

m

0

]

)

P-
1:m,m+1:N(k + 1) =

(

Im−











K1Sa,bS
−1
a,b

...

KmSa,bS
−1
a,b











[

1

0
···
· · ·

a

H̃a(k)
a+1

0
···
· · ·

b

H̃b(k)
b+1

0
···
· · ·

m

0

]

)

P-
1:m,m+1:N(k + 1),

where

P-
1:m,m+1:N (k + 1) =

































P-
1,m+1(k + 1) · · · P-

1,N(k + 1)
... · · ·

...

P-
a,m+1(k + 1) · · · P-

a,N(k + 1)
... · · ·

...

P-
b,m+1(k + 1) · · · P-

b,N(k + 1)
... · · ·

...

P-
m,m+1(k + 1) · · · P-

m,N(k + 1)

































.

Recalling the definition of the pseudo-gains (29), then (31)results in (27) and (28).

When the robot and/or measurement models of the robotic teamare nonlinear, the guarantees

provided in Theorem (V.1) are only suboptimal due to the linearization approximation.

Comparing the developments above with the centralized CL where all the agents’ states are up-

dated, we observe that the state and the associated covariance update of robotsi ∈ V\{1, · · · , m}

and also the cross-covariance update terms using the pseudogain Km+1:N stay the same. As

such, the decomposition technique of split EKF CL used to develop the partially decentralized

algorithm of Section IV is valid here. Thus, we can implementexactly Algorithm 1 as is, while

the robots missing the update message of the CCU do not updatetheir estimates and the CCU

does not update theΠi,j when (i, j) ∈ Vmissed(k + 1)× Vmissed(k + 1). Therefore, this algorithm

is robust to message dropouts and the estimates of the robotsreceiving the update message, as

stated above, are minimum variance.
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VI. COMPARATIVE PERFORMANCE EVALUATIONS IN SIMULATIONS

We compare the performance of the proposed partially DCL algorithm with and without oc-

casional communication failure in simulations. We use a team of five robots moving on a flat

terrain of25m×25m area with constant linear velocity of0.25 m/s and the rotational velocity

drawn uniformly randomly from [0.1, 0.4] rad/s. The standard deviation of the linear (resp.

rotational) velocity measurement noise of each robot is assume to be5% of the linear (resp.

20% of the rotational) velocity of that robot. We assume that some robots can obtain absolute

position measurement from time to time;zi=[xi, yi]⊤+νi
z with σzx =σzy =0.1 m. We use relative

pose measurement whose contaminating noise is zero mean Gaussian withσzx = σzy = 0.1 m

and σzφ = 2 degree, for all robots. In our test, we compare the root mean square (RMS)

position and orientation error ofM = 30 Monte Carlo simulations, with the same relative

measurement scenarios. Letei(k) = xi − x̂i+(k), i ∈ {1, · · · , 5}. Then, we calculate RMS

usingRMSi(k)=
√

1
M

∑M

j=1 e
i
j(k)

⊤eij(k). Figure 1 shows the results for the measurement and

communication scenarios explained in Table I.

TABLE I – Time table for exteroceptive measurement times andthe disconnected robots.a→ b

indicates that robota takes relative measurement from robotb. a→ a indicates that robota has

obtained absolute measurement.

Time (sec.) [0 50] (50 52] (52 60] (60 70] (70 72] (72 80] (80 100] (100 102] (102 110] (110 300]

Measurements

1→ 2

2→ 3

3→ 4

4→ 5

1→ 2

3→ 3

1→ 2

3→ 3

1→ 2

2→ 3

3→ 4

4→ 5

1→ 2

2→ 3

3→ 3

4→ 5

1→ 2

2→ 3

3→ 3

4→ 5

1→ 2

2→ 3

3→ 4

4→ 5

1→ 2

2→ 2

3→ 4

4→ 5

1→ 2

2→ 2

3→ 4

4→ 5

1→ 2

2→ 3

3→ 4

4→ 5
Robot(s)

disconnected

from CCU, case 1

none 4, 5 none none 5 none none 4 none none

Robot(s)

disconnected

from CCU, case 2

none 4, 5 4, 5 none 5 5 none 4 4 none

VII. CONCLUSIONS

For a team of robots with limited computational, storage andcommunication resources, we

proposed a partially DCL algorithm. This localization strategy is an implementation of an EKF

for CL problem where the propagation stage is fully decentralized by decomposing the coupling

terms and the updates are carried out in a CCU. In terms of the team size, this algorithm only
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Fig. 1 – Simulation results for position RMS error for the measurement and communication

scenarios described in Table I (the orientation RMS error behaves similarly and omitted for

brevity). In plots (a)-(e), solid line shows the case of no communication failure; dashed (resp.

dash-doted) line shows case 1 (resp. case 2) communication link failure scenario of Table I. As

the simulations show the performance is very close despite occasional communication failure

between robot4 and5 with CCU. As expected, performance deteriorates more if thelink failure

duration is longer. Plot (f) shows the simulation results when no CL is applied. As expected,

the estimation error is much larger in this case.

requiresO(1) storage and computational cost per robot and the main computational burden

of implementing the EKF for CL is carried out by the CCU. Moreover, this partially DCL

algorithm is robust to communication link failures betweensome robots and the CCU and the

updated estimates of the robots receiving the CCU’s update message are minimum variance.

Here, we discarded the measurement of the robots that fail tocommunicate with the CCU.

Our future work involves utilizing these old measurements using out-of-sequence-measurement

update strategies [22] when the communication link is restored between the corresponding robot

and the CCU.
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