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ABSTRACT

g .‘ A possible phase transition in liquid  He3 has been ihvéStigatédv
£heoreticaiijvby gehéfalizing the Bardeen,'Coopag and Schrieffer equatioﬁsv
féibthe transition temperature in the manner suggested by Cooper, Hillsa
and Sessler. The'equétions are transformed into A form suitable for

numerical solution and an expression is glven for the transition temperature

3

Cat which'liquid He” will change to highly correlated phase,

Following a suggestion of'Mottelsén, it is shown ﬁhat the phase
transitibn is a consequence of the interaction of particles in relative
D-states.

The predictéd value of the transition temperature depends on the

assumed form of the effective singlé-particle potential and the interaction

~ between He3 atoms., The most important aspects of'thevsingle-particle

potential are related to the thermodynanic properties of the ligquid just

above the‘transition temperatuie. Two choices of the two-particle interaction,
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~ consistent Qith aXperiments” yield a second~order transition at a
: temperature between approximately é%é%&oﬁ' énd O.l? K. The

highly correlated phase should exhibit enhanced fluidity,

This research was euppérted'in part by-the National Science

Foundation and in part by the U,.S. Atomic Energy Commission.

Pennanent‘Address: Department of Physice, The Ohio State University,

Columbus, Ohio.
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A POSSIBLE PHASE TRANSITION IN LIQUID He?

V.‘Jo‘Emery‘.
" Physics Department

University of' California
Berkeley, California

and

A, M, Sessier

‘Lawrence Radiation Laboratory
University of California
Berkeley, California

I. INTRODUCTION

Quantum fluids have been the object of intense experimental and |

thepretiéal.investigation for many years. At low temperatures, both the

I

boson liquid He* and the fermion system of electrons in metals exhibit

- a phaSe transition to a superfluid state but, for the rare isotope of -

helium,'Hég, which liquéfies at 3.2 K, no phase transition has been

observed above 0.085o K - the lowest temperature at which experimehts

'have beén'performed.

Indeed, Landau and his schooll describe liquid HQB as a fluid

whiqh has a "Fermi type spectrum! which is tantamount to assuming that the

system does not exhibit 'a phase transition to a highly correlated state.

Recently, an extensioﬁ? of' the successful theory of_superfluidity

'»of'elec;rbns3’h indicated‘that liqﬁid He? - was unlikely to exhibit a

phaseltransitiog,although this poésibility was not demonstrated conclusively
within thé scope of the theory, In the présent paper, the Bcs

theory atnﬁqﬁzercx temperature is generaliéed in thé\manner suggested'by

CMS - . and it_is shown that this thebry doeé in fact predict a phése

transition for liquid He3 at a temperature which should be attainable
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experimentally. The essential point is that the eq’uations#-- which arise
A-.inv. the theory, possess D-state solutionis but not the S—staté%\ﬂa?lutions\; '
which had been sought previously without success. |

| A brief description of the theory and the associated !chermodynamics
is _given in Section II and, in Section III, the problem is expresged in
a form suitable for numerical célculat_,ion. The results are presented in

Section IV and discussed in Section V.
II' BASIC ‘EQUATIONS AND- THERMODINAMICS

In the second,quant)jZatidn notation, the Hamiltonian H for

a system of femibns may be written as

~J_

u;z *c;"/é.-,cr.)c*cA,o:.)u,:w\s,»)-,
chw e

Xl m)eth),
W

where CT{ ) - and C[ ;.ll U") are respectively the creation
andarihilation oparators for a particle of momentum H k and spin direction
_{I__’ « The thermodynamic properties of the system are to be calculated ffo‘m

the entropy ‘§’ and the free energy F of the system‘.,
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In the method of BCS, F is evaluated in an ensemble of wave

-~

functions of the type

,_H"&- ,",é = Chy Cher = | (3)

.&; » R and ,4/ speci.fy states occupied by ground pairs, excited pairs,
_— ‘ _ : #. v _
and single particles respectively and (_lg‘) indicates either,ga, Tqr é ,Jh The

,wave function ﬂj is normalized by requiring

{

i
r—
&
o
\—
.

and X, ,6; ,which is real positive and less than unit;} is to be determined

el
0o

by minimizing F. The wave fﬁhctions of Eq.'(z) allow a quite detailed
treatment of the interactions between pgu'ticleé‘ of equal and cpposite

momenta which are thoughtto be responsible for the phase transition‘.
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Introducing the- distribution’ function, %%&. for the system, it

S-- MQ 2{%««&% F Cz %/)&(1—-%’))3

and

g[ ?'/\'«:([5:4%[1 ln%}'ze,{:(

-’2,214..\ .Ué L [}A *‘( 15&\4&][5-4/{—(1 2.%4,/):@:(

e ) A

th 219 [L{ 0—4{@ ﬂ(’ 4&')]

. X[l :L%é )(l 2§A’ﬂe£.(}0ﬁ ) |
_TS, &
~ whe re T 1is the temperatare'. K 1is Boltenann’s constant /Q the

chemical p otenti: l and

Ury - (At &1 1|41 4T) - (41 &1 4 A1)
(bt Bilvlds, L) - (M—Mlvl Ao bt

\/M,um <A #4@4@_&)--‘(@7;"@“ 4L AT,
' | (7)
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Introducing the definitions

L(5)- [‘44(“44>1‘Q(1—1&48¢63é , @
Fib)- - & Vo L), W

E[!"’)’ &4 St 2 U ZJPA’*[J—-A%’MN:(.{
' (10)

e [gm&,) -] o

it is easy to show that on m1n1m1z1ng F ‘with respect to 9&_ ’ 4{4&
and '§‘A s We find that, except for the normal state,

E&==*11, 0

1]

| [ '_
T - RFE BN
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M YAE L) -
y , A’ L
CEW) % V“ L,

(h)=-

with£= 1/kT, and n an intcger.
J-her'e is a phase transition if there is a value of /é

for which s. (9, Ll),, end{l4) have a nontrivial. solution 'S (.A)

wheneverﬁ >A3¢)and no solution otherw;se,_ Te= i/,é/éc, is. the

transition temperature,
/Ao is that value of A for which the .equat,ion

' has a solution. This equation may be obtained from Eqsr.,.. (L) and -

(L4) by putting F(k) =0 in E(k). Equation (15) may then have a
nontrivial solutioh__![_ ( 'é‘) which is made identically zero by the

normalization required by Eq. (9).
It will be seen that Eq, ¢L5)} when transformed to coordinate space,

can possess solutions if Vﬁ)ﬁ,/ - 1s the (formal) Fourier transform

of a singular potential. If, however, Ué‘J M/ is the (formal)

Fourier transform of a singular potential, then € (/&.) defired in Eq.

Q.O) will be infinite in general. A more elaborate theory is necessary to

circunvent this difficulty and, in the manner of CiS, we anticipate the



-9 - : ; UCRL-9067

result of such a theory by introducing the sing,le-particle energles

-Q.( A) and writing

3(‘_)-,-‘@,(44,)7«,\,' o D,

~and then##ﬁ(&?)follows from the requirement that the nuinﬁer of particles
correspond to a Fermi momentum i’&p .

The form ofz@,} is not to be calculated here but is to be
determined from ot,hver cons.ideraﬁions. However, it is cleér from Eq. (15)
that the valu'e of éo is strongly dependent on the properties of &[‘éx),
and, v'indeed, it will be shown in the next sle.ctior.z ﬁhat the derivative
| 'o.f-@(fl&) at the Fermi ‘su’rface is of dominant importance in this' conneétion
but that the result is insens:.tlve to the other detailed properties of
elb) .

We shall now / show that the value of d'a[‘&}//c.lﬁu L& ﬂ . i
determlned by the specific heat of the liquid Just above the transition
so that, since V,é“.é" is the only other assumed quantity in :Eq. ngJ,

_ the value of /éc, will be made to depend on -two empi'ri.caliy dete‘rmiﬁable
factors. | |

Using Egs. gs) and(l3), the specific heat C is given by

C= T %‘%‘
g 2 | oy, 4o\l E/é/}
cahgt 2 Y (-5) [E6)+s EU)5E
C=2hp ol %) LE (& +p Elb Yy

(17)
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Above the transition temperaturey; E (k)= 1 (k)7 and the righte
~ hand side of Eq. (17) may be evaluated in the usual way (see)e.,g., Mayer

and Mayer’ ),and it is found that

v

/ de) o) )
Kb

C.

. Y . t,-’ . N . . , Co

(Cn is the specified hedt foré 4'@&._. he., for the normal fluid J.
Thus, for sufficiently low temperatures, Cn is a linear function of T,
and this relationship holds down to the trisrsition temperature. Now,th_e

properties of the normal fluid do not undergo any discontinuous. change at

Léo) 80 ‘_t.hat.v'

Lim  elh)= Lin el $o ol 4

Conseqﬁently we may use the value of ol%(é@/ja ! A é = ‘obt\ained.for

. /_é, [./3¢ in the solution of Iq. (15) for é -/_3@ .

| : The experiments of Brewer, Daunt, and Sr'eedhaz,b ~ which extend down
to 0. 08‘? K, show that the specific heat hd.S become a linear functlon of
: temperature which extrapolates to zero at absolute zero,” If CF is
the specific heat of an ideal Fermi Gas and C, is the obs'efved specific |

heat’ then it is found that
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— 1600 .‘:k ¢05. ' : (Jq)

If we défine the effective mass m * at the Fermi surface to ::

be given by :

[ .'L_,;.- Cordew (o
bk |

then it is clear from Eq. " (18) that, for small T s

Cn_ _ ot (2D

which implies that we must use a single-partlcle spectrwn with effective
| 'mass of 2m 'at the Fermi surface. | |

Finally, Eq. (‘17) mnay be us ed to obtain ‘an express:.on for the
discontinuity of the specific heat which is the diiference between the
specific heat (cK) of the highly correla‘oed state (for/é>’éc1> and
that (c ) of the normal sta.te (for léé/éc,)

Neglecting terms- of order T 5 We .find,at 'the: transition temperature;
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il

Ck-Cn 3 3 .
- ‘TT‘,_/:% E , e

where&is the angular average of F/f). ) é—l—;@ evaluated at ! .& , A
andlé "'/éo . : : . :

III EXPRESSIONS FOR THE TRANSITION TEMPERATURE AND THS SPECIFIC HEAT

DISCONTINUITY

1, Rearrangzement of the Equations

When e[ﬁ;) has a given forxn, Eq. (J.S)becemes a linear integral
equat.lon which may be separated int.o a set of equations sach referring
to a definlte angular momentum 2 (The formal manipulation is precisely
the same as that used to separate the.SChr‘o‘diﬁ’ger equation.)

CMS sought ,é,-— & solutions of Iq.{ - )(wlth/,¢~?0'3 ) and showed
that it was unlikely that such .;olutlons of that equatlon (and hence of
Eq. 1(15-) existed Indeed this conclusion is confirmed by the numerical
work described later. |

However, it was suggested by Dr. B. Mottelson (privete communication)
that the_re might be an ,Q, = 2 solution. The plausibility of this‘ suggestion
may be seen atonce from the results of Emem"7 who show_ed that a sufficient -

cohdition for the exisﬁence of a solution of }Bq.{J.S) is that the phase
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shift in the sblution of the correspohd:mg Schrodinger equation (with
- e i & ‘p FEN e QM‘
angula.r momentum L and with l;linetic energy L(Jg,)) should be positive at the
S c end pivaeteet e eneeyy 4 ff/) showl i
: Fermi surface and "that the energy gap increases a8 the pha.se shift increases.:

3"

at kF are -361-.,0

for,@ = 0, -2° for,@ =1, +l9° i‘or,@, =2 and +11° i‘orL= 3. Higher

low the free-space shift58 for the He

angular momentum states show a steady decrease in phase shiit as ,Q,
~ increases. In L(h) the effectiv,e mass 1s ‘v21n at the Fermi ~urface
and is evérywh_ere»greater thanvv or equal to o m. This is equivalent
tc. streng“theﬁiﬁg. the potential and _suggcsts £hat therc should be a
‘phase transition for A =2 and,e = 3, possibly for L= 1 but |
probably not for.z = 0, The icrgest transition temperature should be
Aobtained forl, = 2, These qualitat.ive conslusions are born out by our
numerical results. and the predicted transition te'npera.ture corresponds
to the calculated D-state value. (It shoula be noted that, since the
.e=2 and ,Q_ 3 phase shii'ts are so nearly equal, changes in the'conventional
twc~particle potential could result in the largest transition temperatﬁre'e
arising for .e_ = 3,) | | | |
Consequently, we = seek  a D-state solution of Eq. (15)
~a1though for I§->/9“ ; the solution of the nonhnear equation QA) has a
much more complicated angular dependence& which becomes more nearly pure
D-state as/_A.-ééc, . o
In Dirac'b notation, the nonangular part, - ).Z> , of Eq. (15) for

. .e_ =2, satisfies
#>= -6 rlr>, (23)

where
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o | ;éagw/:, Y ,é% E(h) |
ﬁan £ ] 2o [T5 “. . :
Coy (ot sl ZELLED oy,

- @

and

CALLS = ’é””d //@/»)

’ 43' _fz/,,) being the spherical Bessel function of order 2. |
The most obvious method of solving Eq (23)would be t.o introduce

an eigenvalue lg/g)multlplying G and to determine the value /éo of o
/__'._",_ for which one eigenvalue A 01/6 =] . It turns out, however,
that these are several negative eigenvalwes of smaller magnitude than

| 2: 0 2nd this .L&Ct makes it diffigult to determine )'a , w1th suff_ici.ent .
“accuracy Cons'equ'entiy we reﬁrite the critcrion deter'uining /ép in a'_ |
more convenient form which also dlsplays in a most striking way ‘ohe

"sensitivity of/g to .a(k) and to the two-partlcle potential.

l% H*’a,zs & v-l > | - v(z":)v

where

L ) Aaol Y pe €th)
o= 4 OSJ o =

Then from Egs. (23) and Qb) ,

(f‘lvlz>': ~Lglvrev|#>
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Livie> = Cebrl2> = g1 v—é-ov-lz>
- =

'I‘hua, definixig

we find from Eq. (27) that - ' I . "

Lig) = - Lo 1] e

(29

. brovided !Z)_is not identically zero, i.e. ahighly correlated state
mustvexist. “The e‘valuvati‘on of ﬁc_ now rests upoﬁ the determination of the-
integral in Eq. {28)and the solution of the inhomogeneous mtegral equation
(25) which is not beset by the numerical alfficulties associated with the o
solution of the eigenvalue equation Q.Q The numerical procedures used tov
obtain (ﬁ} 'v’l '&F"> : are described in Appendix I.

2. Evalﬁation of L-léﬁ') A |

In this section we de‘scribe gthe. evaluation of L(£C§ in

the effective mass approximation.. This approximation is quite good)sincé'

the integral in Eq. (28) is most sensitive to the values of £(k) for k
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near to kF' The modifications of the're'sult, are quoted in Section IV

for the specific forms of £Z.(k) which are used. Thus we take

\g~{,l,,)= A | (30)

Then for /@c. large there exists a K such that both

e .

A pe bt >y,

" and | | ' " : o ' LBD
| lﬁ_-./i’,léé-{j)' o

80 ‘that L( é‘ ) may be approximated by

| . _%' | &F‘ﬁ '“
Lipe) = 220 \ _d& e
/é mES ?)S Ak + "&%"fé;-'," )

hevis

;a..f'ax

F «&:«A( APK) Jy} | 3:.3‘
-k

The third integral on the right~hand side of Eq. (32)has been evaluated by

BCS (for large [._‘1 c) and it is found that (the value of [ not appearing
in the result):
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amf 'zoze‘iaﬁliéé_ |
Le)= S5 T ) e

8o that

in the éffective mase approximation. A more 'cgreful’evaluation 6f/'
L(é& ) shows t.hét thé effective mass at the Fermi Surface' app'eai's in
the result just as in Eq. (}3) and that a more general form of é’__(k)
a.way from k,, mnrely alters the factor 2,28 sl‘ig-htly., to give a_‘ ,small
rchange,in the transition t.emperature:- (since as will be seen ‘i,n Séé‘tion
@ | v[ kp> scarcely depends on the Iiner details of .L(k) de |
!(31.;/ shows the precise manner in which T s detemined by -
m 'r(which is an experimentally deternined property of -Q_(k ) ) and byv
é‘fél vi kF>3 which is calculated for the experimen.tally‘determiﬁed |
'vinteracition and which is very insensitive tc the value of /@ c (gee

Prpendix - 'I) .

3. Specific-Heat Discontinuity

To calculate the specific-heat discontinuity given by Eq. {23)
we rearrange Eq. G.lf} by the method used in this section to transform Eq. (15}.

To first order in F'Q'Qg) it is found that
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"‘#S% fak 4 p B _ | (35)
X = b CLylvlheSy T

. where -

R : -
Ey- [ e+ FH] (3¢)

a very good approximation. Thus the deriva‘bive of the leftohand 31de of

Eq.(_BS) with respect to /ﬁ is approximately zero., For F(k) small it
- makes an appreciable change in E(k) for k near to KF only. Consequently
we replace’ F(k)' by F(kF) for all k. With these approximations, the
-expression for ”& E 'x‘ i% independent of the form of the interaction
, 3Q§;- F éé%s | .

v and has been evaluated by BCS. It is found that

Ly ZI?L_ ke ) ) NER
R = e T
L L |

proviaed that F(k) is not identically zero for[ kj==l< [}or further

discussion see Appendix II.j The left-hand side of Eq. (037) is equal t.o
-———'E, in Eq. (,,22)"50 that '
20

, / -
c, =%4#  Cn R 12

at the transition temperature.
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IV RESULTS

1. One-and Two-Body Potentials

The transition temperature hés been evaluated for two choices of
L2 (k) and of v in order to detennine the sensitivity of the result
to the assumptions.
The first form of v(r) is & Lennard-Jones 6-12 potential with

- parameters determined by de Boex9

«}(/»), Ve { ‘...... (%.)‘ 1, - (39)

~lywith'.V" =‘10;229K, ry = 2. 869 A°, This potential is presumably the best
d'now available in that it haa been fitted to a wide range of experimental
‘data in the low temperature regionjoy

‘As an alternative, the Yntema-Schneider potential

v | | wgah | ’ 9 |
V‘(h) 7;.50 [[100@, - sz‘j_ _. -87 | K (A—;D)

has been.used (r is meisured in A®). This interaction has not been studied
 in the quantum’mechanical ‘region although it is known to have too little
‘attraction by at least 10%, 10 |

For a form  of . . @ (k), we have used the results of Brueckner

12,13

and Gammel. Thcir potential does not include rearrangement energies

which, on nuclear matter, thb an appreciable effect. Consequently, we
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have taken their potential for a particle excited from the Fermi surface

B (f = 1.0; see Ref. 12) and kept the same general shape whilst altering the
. scale so that '.é,(lgF')‘ is. équal to the mean binding eriergy, and aiso.‘requi'fi‘ing
t‘,he‘ effective mass at the Fermi Surface to be —, 2.0 rather than 1.85-}';' ,

which was obtaxined.lf2 A good approximation tothe curve was found t.;vc;.be given

by the following analytic functiong

—o632+ 0,50 A For o04hd 6.9,

 hiroys vloslb—-09)  Sor 0.948L1.913,
3 N TN K IE7Y 5
B - )

where k is in units of A% and K.

Calculations: wérve"' also performed with no single-particle’ potential‘) ig,

has been taken as 0.8 A° ‘1.

L S
elhys EA, TSN

wde P

The value of L(éc') for £(k) given by Eq. @8} is detemine’d

by putting m =m in Eq. (33, For £(k) given by Eq. (37

#

LYy = 22 b [ 127 Lhe fe)

lf.':"‘&%F | % ?

(3]

with mﬂ:‘ = 2m, Thus thé more complicated potential of Eq. Q;,l) simply
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causes a facfor 3'5%,1_33 0.6% in the expression (34) for T('.;:'

2. The Transition Temperature

The results of the numerical calculations are suanarized in Table I. , "
_ “The Schrodinger equation has also been used to evalua*be 4’2 I'V"/A F>

(see A ppendix I). It can be seen in Table I that L_Q_f_[ v ks is not
-sensitive to (i) the influence of the exclusion 'principie (¢ f. first and
second entrieé‘ for L) 14,;:>)‘or @) to the dispersive effect of

A (k) (cf. ‘the second and third entries for 4{25 | v| KF> Yo The
dispersive effect would be important, however if. V‘M,) were a hard core

plue attraction o At the same time, since kT depends exponentiallv on

Lg ] vl ¥ 5 there is an order.of—magnitude difference between the

correspondi_ng values of kT o*
..V DISCUSSION

The values of T for m = m ‘indicate the sensitivity of '1‘
to the slope of Q_(k) at the Fermi surface., " A change in the specific=
heat curve at Low temperatures could change the experimental value of

m'*‘ and ‘chus have a large effect on the calculated value of T

The resul’t,s indicate a considerable eensit_ivity_' to the assumed
form of  v(r), the m;f:tween I, obtained from the 6-12

potential and the ¥ntema-Sclhineider pctential being ent.irely consistent with

the -different D-state scattering which they predict,'ll‘
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It should be noted thet these potentials are primerily obtained.
from the second virial coefficient which depends on the scattering for ali
‘angular momentum states and does not determine tne potential accurately for
any one angnlar momentum state, Certainl& a emall change in thevpetenfial_:
¢ould have a large effeCtxon T, >Without causingvan appreciable change in
- the calculated value of the secondfvirial coefficiént.

Probabiy the best value of" T' which we can quote at present is
0. ll ‘K which is obtained using the (adjusted) Brueckner and Gaumel
potential (Egs. {4;]} and (9@) and the 6-12 ‘potential of de Boer (Eq. (39).

_ This value for the transition temperature lies in the reglon'where
no transition has'beenobservedaexperimentally. However, nhis reeult does
not .necessarily imply a contradiction beween the theory and experiment, sineé
it has been shown that a small change in the two-body potentlal or in the |
low-temperature specific heat (in the normal state) can have a rather
‘large effect on the predicted value of the transition temperature.»

"At the same time, it is'true.that the validity ef the theoty -;g
'dependseon the assumption that the normal fluid can be described as a
system of weakly interacting quasiparticles,° It is possible thaﬁ the
temperature at whlch this description becomes good is somewhat lower than )
our best predicted value of T | In this connection it is 1mportant |
to note the linear behaviour of the specific heai,6 and the rapid ineneasev
~of the self-diffussion coefficient.16 at lew temperatures. These
experiments lend strong support te the increaéing validity of the quasi-
particle deecription of the normzl fluid, at decreasing temperatures,

We have not investigated in this paperp the properties of the
highly correlated phase other than to calculate the dlscontlnuity in the
specific heat There are, however; many propertles of the state which should

be subject to experimental investigation. 1In particular, there should be
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interesting spatially.dependeﬁt properties acssociated with‘orientation of
the liquid, as well as etriking effects in the magnetic susceptibility.
- The. -excitation energy near the Ferni.surface is given by

2|F (k)). for'lk] = ke. bince F(k) is a function of the directioe of

k, 4t will be zero for some directions unless, when F(k) is expanded in
spherical harmonics, the spherically symmetric part ie dominant, é:The
angular ayverage of the non»sphericallyasymmetric part ie zero)- This is
" certainly not the case near to. /é.c’ where the D-state solution dominates,
| and seems to be unlikely foﬂéijzga although the essential non-linear ;ﬁ
' character of Lq.é}ﬁ}makes it difficult to make a precise statement.
| ' In these circumetances the highly correlated prhase is expected to
exhibit a etrongly enhanoed fluidity with a viecoeity which decreases

v_with fluid velocity. However, perfect superfluidity should not: be observed
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APPENDIX I

To evaluate Lgl v) ka> s the cooi‘oinate space représentati\re .
of Eq. {25) was solved numerioaliy using the ' IBM 70l+ at the Computérﬁ
Center of the University of California in berkeley, and a program written

by means of the FORTRM‘J II systen, |
‘For very émall transition ternperatm'eé s E c is large and the
hyperbohc tangent in Eq. @6>d1ffers Lroii unit.y only for k very near
Sto kF' ‘Thus, since the mest of the mtegrand in fq. €20 is non-pingular
‘near K.F, the exact value of é is unimportan’c in the evaluation of

(}._Mm ‘}b Y (provided ﬁ is large) and tmxh(l/ﬁ)é € (k) may be o
replaced by unity for this purpose.

In coordmdte space, Eq. (23 beco'neb - | |
ygmc- & A ulhet) - S b’ (& ropn )_gu ERCDE

' 'I‘his equation was solved by replac:mg the integ:,ral by a Gaussian quadrature
o approximation, the ensuing set of linear 1nhomogeneous equations being solved -
*by means of a llbrary subromtinm].'5 | |
| For ‘the- quadrature, the range of inte&ratlon was broken :mto three
| parts bounded by a4 bdc ( d in veac,h of whicn an nl-po:Lnt'Gaussian
quadrature formula was used. The. best locations of a, b, cyand d were
deterxhined by trial.. .The,values used were a =1,0 AO_ (sin_ce .._g(r). was
essentially zero at this point), b'r = ie997 A°  (since .v(r) j_f(r) had
its_ ma.xiinum at this point so that .the greatést number of ‘Gauss‘ poivnts fell
i'nto' the region.in which v(r) #(r) was rapidly varyihg), ¢ = 3.5 .Ag(results

were insensitive to this value) and d = 7.0 &° (increasing d beyond this
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- value caused no change in Lm l kF> owmg to the short range of . v(r) ).

The difference in Lm v] k > for n; =10 and nl = 16 was

1
1%. : .
| To evaluate 4&, | é},, 14/ > write

CA\ ClLA > = G (aA) + 6 I, A) M*z.).
WHere :

%,;-A} («épi} aa [jv,f&} s /v’{f,{) '. ALK ‘
G M g );: "’N f&;x) (h24") 3). (e 47 /ﬂw&) /{»{_' |

(3

Where: (é;, (»fa,s/s\ and vﬁl_ lai“é“,p»%) are spherical Besselk |

functions of order 2 ),

. and

]

(o WA) = = g«% e@M U.,[N)Q;JM) -4 /éF,c}(}gL/&@J

o | g
S T
N
f-ﬁi&)-—ﬁﬁ&ﬁf '}&“"( ‘i’ ) }

(A)
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In this form, the inte’gr'él over k could be terminated at
k=¥ =4.5 A° -1 with good accuracy and the integral evaluated by

an n2—point Gaussian quadrature in each of the ranges 04 kéka and

ko 4 kEK - (= 0.8 4% )

1/2% change in L?_} vi kF> . The integral LQ’H v) kp> was performed by

Changing n, from 6 to 10 caused a.

. a 351'7}’)01‘1‘5 Gauss qua,dr'ature formula.,

The- timé required to solve the problem with ny = 16 and n, = 10
was approximately 30 minutes. Of course this time could havez been reduced
considerably by decreasing the nunber of Gauss points in the regions in
which the integrand was varying slowly. However, since so few different
: vaiués of L{M v k n 7 Were required;the tofal computer time was less than
would have been used by economizing triais.

The calculations were expected to be sensitive to the singular
. regions of v(r) ‘which becomes . sharply repulsive near r = 2, 56 A%,

.'If v(r) had been a hard core plus outside attraction. v(r)g’(r) ‘would

: have had'a §—-functlon be.h.aV10‘ur:8.t_ the core., In fact’ v(r)ﬂ?(r) -did-

| not vary too sharply in the. core region and the accuracy of the solution
:i.n t.hi’s”xj‘egio:ni was checked ('L) by "chaﬁging n, from 10 to 16 and
(4%) by putting Gz(r,rl)' = (0 so that the problem reduced to the
S.chr'sdir;ger equation for which an approximate analytic solution could be

o 6btained in the region in which v(r) was .'repulsive. The pfogrqmmih.g
accuvr.acy Ya.md to some extent, the numerical accuracy were checked by
ievaluat:lng the Schrédinger equatlon phase shifts (tan SG‘AF z - L}(J)lvl > )

and comparing them with the known Values.
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Solutions Below the Transition Temperature

In this paper we have not éolved the non-»lihear equa:c.ion(lh)

which describeé' the correléfed staﬁe, but have only examined the linear
equétion /15) for the tran'éitionv temperature, which is thﬁ_s indepéndent of , |
the nature of' the non-a_linear‘ solution. _Hoyevér’, the préaic;téd vp.rope.rties. .
of the cérrelated svtateg such as the gﬁecii’ic@heat'diécontinuity at tﬁe 1
transition t'empera‘ture‘and ﬂhe fl_ow prbpefties , depend- éﬁcpliqifly', upén* phe:
‘solution of the nén,vlinefar‘ equation. | ” o

| There exi.st.a a solution F'(‘_k_) to_th'e non linear equation wﬁﬁh
is non@zér’o fqr ‘ ‘El = kF’ for at least some directions. For this:
_solution »the coefficienﬁs éﬂl_{_ in the tr:ial function 'f‘ afe discontinuous
”‘ functions of angle for lgl= kF . We know of no reason to impose-the
'feé;uirement that "f‘ - be continuous, but observe that'f‘;v;ould be continuous
if F(k) were identi‘caliy zero for lk]= kF . There -appe_arﬁx,,to: be a
sdlution of -thev-nonc-linear equation of this nature, whichwould :lmply a
2ero energy:ga‘p,:a consequent reduction in the specific~heat discontir;uity

at the transition temperature,and an increase in viscosity in the correlated

p
‘state., Ve reject this sollutionﬂhoivever, in favor of the solution with
F(}_c‘) non-zero for |}_<\= kF, since the latter, gives a lower value for

the free energy at any temperature.
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 CAPTION

Table I =~ Values of(.(ﬁ!'u’lé'f\i%q 25, 26 >and the t ransition temperature,

for various input functions.
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