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ABSTRACT 

A possible phase transition in liquid He 3  has been investigated 

theoretically by generalizing the Bardeert, Coopox and Schrieffer equations 

for the transition temperature in the manner suggested by Cooper, MiUs 

and Sessler. The equations are transformed into a form suitable for 

numerical solution and an expression is given for the transition temperature 

at which liquid He3  will change to highly correlated phase. 

Following a suggestion of Mottelson, it is shown that the phase 

transition is a consequence of the interaction of particles in relative 

D-states. 

The predicted value of the transition temperature depends on the 

assumed form of the effective single-particle potential and the interaction 

between He3  atoms. The most important aspects of the single-particle 

potential are related to the therniodynamic properties of the liquid just 

above the transition temperature. Two choices of the two...particle interaction, 
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oonsiL3tent with exporirnezits yield a second.order transition at a 

temperature between approximately 	K and 0.10 
 K. The 

hihir correlated phaae should exhibit erihancd. fluidity.> 

This research was supported in part by the National Science 

Foundation and in part by the U. S. Atomic Enerr Commission.> 

Perinanent address; Department of Physics, The Ohio State University, 

Colurnbu3, Ohio. 
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A POSSIBLE PHASE TRANSITION IN LIQUID Hd 

J. Dnery, 

Physics Department 
University of California 
Berkeley, California 

and 

A, .M, Sessler 

Lawrence Radiation Laboratory 
University of California 
Berkeley, California 

I. INTRODUCTION 

Quantum fluids have been the object of intense experimental and 

theoretical investigation for many years. At low temperatures, both the 

boson liquid Ho4  and the fermion system of electrons in metals exhibit 

a phase transition to a superfluid state but, for the rare isotope of 

•0 helium, He3  , which liquefies at 3.2 K, no phase transition has been 

observed above 0,0850  i 	the lowest temperature at which experiments 

have been performed. 

Indeed, Landau and his school describe liquid He as a fluid 

which has a rvFenni  type spectrum' which is tantamount to assuiing that the 

system does not exhibit a phase transition to a highly correlated state. 

Recently, an extension 2  of the successful thea ry of superfluidity 

of electrons'4  indicated that liquid He 3  was unlikely to exhibit a 

phase transitions  although this possibility was not demonstrated conclusively 

within the scope of the theory. In the present paper, th,e BCS 

theory at nonzero: temperature is generalized in the manner suggested by 

CMS 	and it is shown that this theory does in  fact predict a phase 

transition for liquid He 3  at a temperature which should be attainable 
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experimentally. The essential point is that the equations, which arise 

in the theory, possess D-state solutions but not the S-statë8olutions 

which had been sought previously without success. 

A brief description of the theory and the associated the'rnod3Jnamjcs 

is given in Section II and, in Section XII, the problem is expressed in 

a form suitable for numerical ôalculation. The results are presented in 

Section ]N and discue8ed in Section V.. 

II BASI.0 EQUATIONS AND THERMODYNAMICS 

In the second.quantzation notation, the Hazniltonián H for 

a system of fer7aions may be written as 

c- t 	ct(L) CIJX Nr13j ): 

X C I -kit J )4A))  
(I) 

where C1i& .V 	and - IA 	are respectively the creation 

and arrhilation operators for a particle of momentum 	k and spin direction 

(I. The thermodynamic properties of thesystern are to be calculated from 

the entropy S and the free energy F of the system. 
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In the method of ECS, I  is evaluated in an ensemble of wave 

functions of the typo 

C 	 4-16,4 

X T. c4 1 ) 
U) 

= •- 
	 '1- 	 (3) 

and 	specify states occupied by ground pairs, excited pairs 

and single particles respectively and (kit)  indicates either 	f or 	The 

wave function 	is nortnalized by requiring 

1K. 

and,L ,which is real positive rind less than unit,is to be determined 

byminimizingF. The wave functions of Eq.(2)allow a quite detailed 

treatment of the interactions between particles of equal and opposite 

momenta which are thoughtto be responsible for the phase transition. 
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Introducing th distributionfunctiOfl j,4j forthe systn, it 

can be shown, in the manner of BCS, that 

SL 	 * U 

and 

F 2 LL  

(3) 

U4 i 

f 	1'L4  

5~ 	
P 

 . ' 
c 	 Ad 

TS  2 
	 (4) 

where T is the temperature, k is Bolt zrnann s  constant , 	 the 

chemical potential,  and 

iv 	r 4'Id Wr1  4) 
(tS'  

vt '  

17) 
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Introducing the definitions 

F V-L k/ 
 

ENO='£k-4 f  

/ 

(1) 

U4 /1 
U°) 

I- 

E (A 	f PTA ' 
	

(11) 

it is easy to show that on minimizing F with respect to  

and 	we find that, except for the normal state, 

-es' 
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&4) 
	

y-J 4/Jg)I UqJ 

withg= l/kT, and n an integer. 

there is a phase transition if there is a value 	of 

for which 	Eqs. (, 	and4 have a nontrivial., solution £ (L) 
whenever >,&.,and  no solution otherwise0 	 Is the 

transition temperature0 

18 that value of/ for which the equation 

=  

has a solution. This equation may be obtained from 	Eqs.. U)and 

by putting F(k) 0 in E(k). Equation (15)  may then have a 

nontrivial. soution() wlich is made identically zero by the 

normalization required by Eq. (9). 

It will be seen that Eq. 4Lj when transformed to coordinate space, 

can possess solutions if A~4 ii 	Is the (formal) Fourier transform 

of a singular potential. If, however, 	 is the (formal) 

Fourier transform of a singular potential, then 	defird in Eq. 

will be infinite in general. A more elaborate theory is necess:try to 

circumvent this difficulty and, in the manner of CMS, we anticipate the 

lLr) 
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result of such a theory by introducing the single."particle energies 

and writing 

and then)L..(4follows from the requirement that the number of particles 

correspond to a Fermi momentum 

The form or.e,LZ.)is not to be calculated here but is to be 

determined from other considerations. However, it is clear from Eq. (15) 

that the value of C, is strongly dependent on the properties of 

and, indeed, it will be shown in the next section that the derivative 

offat the Fermi surface is of dominant importance in this connection 

but that the result is insensitive to the other detailed properties of 

We shall now show that the value of 	 is 

determined by the specific heat of the liquid just above the transition 

so that,. since V4 .,L' is the only other assumed quantity in Eq. 

the value of 	will be made to depend on two empirically determinable 

factors. 

Using Eqs. (5), and(13)', the specific heat 	C is given by 

c=T AT 

 iE  
(17) 
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Above the transition temperature s  E (k) 	(k)2  and the right.. 

hand side of Eq. (17) may be evaluated in the usual way (see 1 e.g., Mayer 

and Mayer 5  ),and it is found that 

£L 	 0 ( ) U 

is the specified heat for1 /fl 	.&) for the normal fluid 

Thus, for sufficiently low temperatures, C is a linear function of T, 

and this relationship holds down to the tr3nition temperature. Now,the 

prpperties of the normal fluid do not undergo any discontinuous change at 

80 that. 

L 	- CA) 	L i,,(k) 

g?  CIO g Co 

Consequently we may use the value of 	

42, 
	oained for 

A 4 /0 	in the solution of Eq 15 for 

• 	The experiments of Brewer, Daunt 1 and Sreedhar,b which extnd down 

to 0.08 °  5 X. show that the specific heat has become a' linear function of 

temperature which extrapolates to zero at absolute zero, If CF  is 

•the specific heat of an ideal Fermi Gas and C0  is the observed specific 

heatthen it is found that 

'A 
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(JV 
cp 

If we dfine the effective mass m at the Fermi surfaceto 

be given by 	 . 

J- 4e,!4).  
4716, 

then it is clear from Eq. (la) that, for small Y, 

c-. 
• 	. 	,w_ 	....... 

• 	which' implies that we must use a single—particle spectrum with effective 

mass of 2m "at the FermiSurface.. 

Firaliy, Eq.17)may be ted.to obtain an expressionfor the 

discontinuIty of the specific heat which is the difference between the 

specific heat (cs ) of the highly correlated state (for, >gc,) and 

that (cu ) of the normal state (for .4,&.). 

Neglecting terms of order T7, we find7  at the transition temperature)  

I.' 
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3 
JL 	C-? 

where is the angular average of Ff4) EI4_ evaluated at 14 J AF 
and 	 r 

III EXPRESSIONS FOR THE TRkNSIT1ON TEMPERATIJRE AND TH SPECIFIC HEAT 

DISCONTINUITY 

1. Rearrangement of the Equations 

When 	has a giv(eh form, Eq. 15 becomes a lineaY integral 

equation which may be separated into a set of equations each referring 

to a definite angular momentum 	(The formal manipulatIon is precisely 

the same as that used to separate the Schrc5diriger equation.) 

GMS. sought- 	solutions of Eq. ]4 (with10 ) and showed 

that it was unlikely that such solutions of that equation (and hence of 

Eq. (15) existed. Indeed this conclusion is confirmed by the numerical 

work described later. 

However, it was suggested by Dr. B. Mottelson (private comiunication) 

that there might be an 	= 2 solution, Th€ plausibility of this suggestion 

may be seen atoncefrom the results of Ernery 7  who showed that a sufficient 

condition for the existence of a solution ofq./i5is that the phase 
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shift in the eblutlon of the correspoIiding Schx1dinger equation (with 

angular momentum 	and with kinetic energy 	should be positive at the 

Fermi surface and that the energy gap increases as the phase shift increases. 

Now the free -space shifts8  for the He at k 	are -610 
 

for 	0, -2 rorL =1, +19 forL 2  and +110 forL 3. Iiigier 

angular momentum states show a steady decrase in phase shift as 

increases. In (4) the effective mass is 2m at the Fexmi urface 

and is everywheregreater than or equal to m. This is equivalent 

to strengthening the potential and suggests that there should be a 

phase transition for t =2 anu2 3, possibly forL 1 but 

probably not £orL = 0. The largest transition temperature should be 

obtained forL = 2. These qualitative conslusions are born out by our 

numerical results. and the predicted transition temperature corresponds 

to the calculated 1)-state value. 	(It shoula be noted that, since the 

2 andj_, 3 phase shifts are so nearly equal, changes in the conventional 

two.particie potential could result in the largest transition temperatur&s 

arising  for  

Consequently, we 	seek 	a 1)-state solut±on of Eq. 

although for4>,4  the solution of the nonlinear equation(li has a 

much more complicated angular dependence which becomes more nearly pure 

D-state  as 

In Dirac Is notation, the nonangular part, j> , of Eq. (i for 

.se 2 )  satisfies 

13,11,  '> = - C-f~ 7-  1 4e> ,p 	(23) 

where 
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i 	 L) 
	

I ) 

being the spherical Bessel function of order 2. 

The most obvious method of solving Eq. (23wou1d beto introduce 

an eigenvaiue)muitipiying G and to determine the value ftc. of 

for which one eigenvalué 04)It turns out, however, 
that these are several negative eigenva1s of smaller magnitude than 

and this fact makes it difficult to determine 	with sufficient 

accuracy. 	Consequbntly we rewrite the criterion determining 	in a 

more convenient form which also displays in a most striking way the 

sensitivity of S, to 	and to the two-particle potential. 

Define. 

1F 	co  

where 

co 

Then from Eqs. 	arid (5) 

/)>=-5) -1J-j> 
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irtt> =  14fr> 
(7) 

ThU8 defining 

CPO 

Lc)S 	
;ea~ 

 

we find from Eq.. (7) that 

L IJ 

provided j>.is not identically zero )  i.e. a highly correlated state 

must exist. The evaluation of A  C.  now rests upon the determination of the 

integral in Eq. (28)and the solution of the inhomogeneous integral equation 

(25),which is not beset by:thé numerical difficulties associated with the 

solution of the elgenvalue equation 	The numerical procedures used to 

obtain 	irJ.1tp'> 	are described in Appendix I, 

2. Evaluation of  

In this section we describe the evaluation of L() in 

the effective mass approximation. This approxiration is quite good1 since 

the integral in Eq. (8)is most sensitive to the values of .a(k), for k 
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near to kF.  The modifications of the result are quoted in Section IV 

for thespecific forias of .L(k) which are used0 Thus we take 

• 	e..fi2) 
	

(3o) 

Then for 	large there exists a tj such that bth 

•.I -4I >1, 
and 

80 that L( 	
) may be approxinated by 

00 

L 

 

ic 

3 ) 

—tc 

The third integral on the riglit-hand side of Eq. (32has been evaluated by 

BCS (for large 	and it is found that (the value of j  not appearing 

in the result): 
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L( 
) 	

—Th- 

so that 

72—  
:t~4~ 	 )~  A_ 	F 3) 

in the effective mass approximation. A more careful evaluation of ,  

L(j) shows that the effective mass at the Fermi surface appears in 

the result just as in Eq 	and that a more general form of..(k) 

away from kF  merely alters the factor 2.28 s1ight1y, to give a. small 

change in the tmnsition teniperatur 	(since as will be seen in Seàtion 

ui; 44dh jv ( k?> scarcely depends on the iiner details of .L.(k) ) 

Eq. 	shows the precise manner in which Tc  is determined by 

m* (which is an experm'ntally deternned property of L(k) ) and by 

I k)3  which is calculated for the experimentally determined 

interaction and which is very insensitive to the value of
/ 	

(see 

flppendix I) 

. 	 pecificHe;at Discontinuity 

T0 calculate the specific..heat discontinuity given by Eq. c24 

we rearrange Eq. L4 by the me thod used in this section to transform Eq. 41.  

To first order in F2 (k) it is found that 
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AL!9 	- 	 1 
	

(3s.) 

0 

where 

FIL)+ 	i'L)7 
	

L) 

k) being the angular average of Fz(k;l.  It is shown in Appendix 	that 

fort very large, the right—hand side of Eq (35) is independent of ,  to 

a very good approximation. Thus the derivative of the 1eft'hand side of 

Eq.(3 with respect to 	is approximat..ly zero0 For (k) small, it 

makes an appreciable change in E(k) for k near to 14 only. Consequently 

we replace F(k) by F(kF)  for all k. With these approximations, the 

expression for L. FLp) is independent of the form of the interaction 
v and has been evaluated by BSO It is found that 

• 	 F2 14tr ) = - 4- 
CIO 

provided that .F(k) is not identically zero for I jk 	kF. [For further 
discussion see Appendix II. 	The 1eft-hand side of Eq. 	is equal to 

in Eq. ç22so that 

.7 	 . C_ fl  

at the transition temperature. 
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IV RESULTS 

i One-and Two-BOdy Potentials 

The transition temperature has been evaluated for two choices of 

(k) and of v in order to determine the sensitivity of the restilt 

to the assumptions.. 

The first form of v(r) is a Lannard-Jônes 6-12 potential with 

parameters determined by de Boex,9  

(1z) 	(4)' J 	(39) 

with V0  10.22°9, iO 2.869 A 0. This potential is presumably the best 

now available in that it has been fitted to a wide range of experimental 

data in the lowtemperature region.10  

As an alternative, the Yntema-Schriejder potential 

r(A7s  

has been used (r is measured in A° ). This interaction has not been studied 

in the quantum-mechanical region although it is Irnown to have too little 

attraction by at least 

For a form 	 (k), we have used the results of Bruecer 

and Garnmel. 12 ' 13  Their potential does not include rearrangement energies 

which, on nuclear matter, have an appreciable effect. Consequently, we 
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have taken their potential for a particle excited from the Fermi surface 

(f = 1.0; see Ref. 12) and kept the same general shape w}tlst altering the 

scale so that 	(k.) is equal to the mean binding energ and also requii'ing 

the effective mass at the Fermi. 9urface to be 2.0 rather than 1.85; 

which was obtained) 2  A good approximation to the curve was found to be given 

by the following analytic function: 

+ 	4 3c L 

1 	. 

... 

where k is in units of A.• and kF. has been taken as 0. A 

Calculations were also performed with no single-particle potentia i 

-() 	 02) 

The value of L() . for ,.(k) given by Eq. 8)is determined 

' by putting r 	m in Eq. Oj  For Z (k) given by Eq. 

L(±
It 	ru L[7APg. 

with rn" 2m. Thus the more complicated potential of Eq. 	simply 
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causes a factor 	/,g_-0 1 6 in the expression (34) for T 0 . 

2, The Transition Temperature 

The results of the numerical calculations are summarized in Table I. 

The Schrdinger equation has also been used to evaluate 

(see Appendix I). It can be seen in Table I that jØ v) kF') is not 

sensitive to i) the influence.of the exclusion principle (cf. fir8t and 

second entrie8 for L(i') .p)or (i) to the disp"sive effect of 

.e. (k) (cf  the second and third entries for jØ f v 4'> ), The 

dispersive effect would be impOrtant, however if irfA, were a hard core 

plus attraction • At the same time, sine kT0  depends exponentially or 

Z 'I v) 1),there is an order-of-magnitude difference between the 

corresponding values of kT0 . 

V DISCUSSION 

• The values of T  for m' = m indicate the sensitivity of TC 

to the slope of .€.(k) at the Fermi surface A change in the spec1fic 

heat curve at low temperatures could change the experimental value of 
* 

rn and thus have a large effect on the calculal .ed value of T.. 

The results indicate ansiderab1e sensitivity to the assumed 

	

form of v(r), the e between 	obtained from the 6-12 

potential and the Yntema-Schnejder potential being entirely consistent wLth 

therrE D-state scattering which they predict.14 
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It should be noted that these potentials are primarily obtained. 

from the second virial coefficient which depends on the scattering for all 

angular momentum states and does not deterraine the potential accurately for 

any one angular momentum state. Certainly a srnil change in the potential 

øould have a large effect on T a without causing an appreciable change in 

the calculated value of the second virial coefficient, 

l'robably the best value of 	which we can quote at present is 

O.11°K which is obtained using the (adjusted) Brüeckner and Ganmel 

potenti1 (Eqs. (4i) and (44) and the 6-12 potential of de Boer (E q .  

This value for the transition temperature lies in. the region where 

no transition has been observed,experimentálly. However, this result does 

not necessarily imply acontradiction beween the theory and experiment, since 

it has beeri shown that a small change in the two-body potential or in the 

low-temperature specific heat (in the normal state) can have a rather 

large effect on the predicted value of the transition temperature. 

At the same time, it is true that the validity of the theory 

depends, on the assumption that the normal fluid can be described as a 

system of weakly interacting quasiparticles. It is possible that the 

temperature at which this description becomes good is somewhat lower than 

our best predicted value of T. 	In this connection it is important 

to note the linear behaviour of the specific heat 6  and the rapid increase 

of the self-djffusjon coefficient 16  at low temperatures. These 

experiments 1erd strong support to the increasing validity of the quasi-

particle description of the normal fluid, at decreasing temperatures. 

We have not investigated in this paper, the properties of the 

highly corelated phase other than to calculate the discontinuity in the 

specific heat. There ar howev ~'e_r j  many prope±ties of the state which should 

be subject to experimental investigation. In particular, there should be 
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interesting spatia.11y dependent properties associated with orientation of 

the liquid, as well as striking effects in the magnetic susceptibility. 

The.excitation energy near the Fernhisurf?.ce is given by 

2.1? (k)) 	for 1k) kF. bince F(k) is a function of the direction of 

Ic, it will be zero for, some directions unleis, when F(k) is expanded in 

spherical harmonics, the spherically syrnnxetricpartisdomjnt, 	The 

angular average of the non-spherica1lysyrnnaetric part is zero) This is 

. certainly ot the case near t,o. 	where the D-state solution domates )  

and seems to be unlikely tor)ft 	although the essentialnon-linear 

character of Eq. 4niakes it difficult to make a precise statement. 

In the8e circumstances the highly correlated phase is expected to 

ethibit a strongly enhanced fluidity with a vecosity which decreases 	. 

with fluid velocity. However, perfect superfluidity should not be observed, 
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APPENDIX I 

NUjcrical 1'roeedure 

To evaluate /Ø_ I V1 k) , the coordinate space representative 

of Eq. 	was solved numerically using the IBMi 704 at the Computer. 

Center of the University Of California in berkeley, and a program written 

by means of the F0RTRIN II sy8tem, 

For very small transition torznperatures,. 	c  is large and the 

hyperbolic tangent in Eq. (6)differ from unity only for k very near 

to 1c,,. Thus, sInce the ,est of the integrarid in Eq. ?6) is. non-pingular 

•near 4, the exact value f 	is unimportant in the evaluation of 

Z./tJ&-') (provided j 
	

is large) and tank(1/2)E.(k) may be 

replaced by unity for this purpose. 

In coordinate space, Lq (2 becones 

04 

j) t it L 	(Ii) - 	 (ft 
This equation was solved by replacing the integral by a Gaussian quadrature 

approximation, the ensuing set of linear inhoinogeneous equations being solved 

by means of a library sübroutne, 15  

For the quadrature, the range of integration was broken into three 

• 

	

	parts bounded by a ., b 4 c d in each of which an r 1—point Gaussian 

quadratureformula was used. The. best locations, of a, b, c ) and d were 

determined by trial. The values used were a 1.0 A°  (since J(r) was 

essentially zero at this point), b 1,997 A ° ' (since .v(r)Ø(r) had 

its maximuni at this potht so that the greatest number of Gauss points fell 

into the region in which v(r) 0(r) was rapidly varying), c = 3.5 A(results 

were insensitive to this value) and d = 7.0 I (increasing d beyond this 
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value caused no change in 401 v I k, owing to the short range of v(r) ). 

The difference in 	vi kF'> for n = 10 and 	16 ws 

1%. 

To evaluate (Ai.. 1 &, 	write 

G-  

where 

1tA) (h 	 (4,4-) 4t !4 6L') 	 -')4A /  

, 	.AF 
tA)1h) 	

[4')4f41t) 	AM.' 

Lft& 

were 	 and 'L 
	

are spharical Bessel 

functions of order 2.))  

tul E13 	1iJ44-)j 

x - - , 
L7. 

- 	 Iv. 

Li~ lk) 
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In this form, the integral over k could be terminated at 

-1 
k 	4.5 

o 	with good accuracy and the integral evaluated by 

an n2-poiTlt Gaussian quadrature in each of the ranges 0 kA k 	and 

kff 4 k 	(kF = 0.8 A°' 3  ). Changing n2  from 6 to 10 caused a 

1/2% change in iJ$1vt k1 ) . The integraiØL v) kF)was  performed by 

a 3n1-p0.nt Gauss quairature formula. 

The time required to solve the problem with n 1  = 16 and n2  = 10 

was approximately 30 minutes. or course this time could have been reduced 

considerably by decreasing the number of Gauss points in the regions in 

which the integrand was varying slowly. However, since so few different 

values of (61 v\ 	were required1 the total computer time was less than 

would have been used by economizing trials. 

The. calculations were expected to be sensitive to the singular 

regions of v(r) which becomes sharply repulsive near .r = 2.56 A0 . 

If v(r) had been a hard core plus outside attraction V(r)?(r) would 

have had a f-function behaviour at the core. In fact v(r)Ø(r) did 

not vary too sharply in the core region and the accuracy of the solution 

in this region was checked () by changing n1  from 10 to 16 and 

.(i) by putting 	 = 0 so that the prohleni reduced to the 

Schr'bdinger equation for which an approximate analytic solution could be 

obtained in the region in which v(r.) was repulsive. The programming 

accuracy and,. to some extent, the numerical accuracy were checked by 

evaluating the Schrdinger equation phase shifts (tan3 	- LfLv k> ) 

and comparing them with the known values. 
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APPENDIX II 

Solutions Below the Transition 

In thispaper we have not solved the non-linear equation14 

which describes the correlated state, but have only examined the linear 

equation {) for the tranàition temperature, which is thus independent of 

the nature of the non1inear solutiOn. However, the predicted properties 

of the correlated stato such a s the spcific-theat discontinuity at the 

transition temperature and the flow properties, depera explicitly, upon the 

solution of the no'linear equation. 

There exists a solution F(k) to the non linear equation which 

is norizero for 	k, for at least some directions. For this 

solution the coefficients 	1k in the trial function 	are discontinuous 

function of angle for 	I k I =  kF . We know of no reason to impose the 
requirement that 	be continuous, but observe that would be continuous 

if 	F(k) were identically zero for kF . There appearsto be a 

solution of the non-linear equation of this nature, which would imply a 

zero energy gap, a consequent reduction in the specific-heat discontinuity 

at the transition temperature and an increase in viscosity in the correlated 

state. We reject this solution,however, in favor of the solution with 

F(k) nonzero for 1k k, since the latter, gives a loweI value for 

the free energy at any temperature. 
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CAPTION 

Table I 	Values 	 25, 26)arid the transition  tenperature, 

for various input functions. 
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