
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Open-World 3D Understanding and Generation

Permalink
https://escholarship.org/uc/item/9g842564

Author
Liu, Minghua

Publication Date
2024
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9g842564
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Open-World 3D Understanding and Generation

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Computer Science

by

Minghua Liu

Committee in charge:

Professor Hao Su, Chair
Professor Ravi Ramamoorthi
Professor Zhuowen Tu
Professor Rose Yu

2024



Copyright

Minghua Liu, 2024

All rights reserved.



The Dissertation of Minghua Liu is approved, and it is acceptable in quality and

form for publication on microfilm and electronically.

University of California San Diego

2024

iii



TABLE OF CONTENTS

Dissertation Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Why Do We Need 3D Understanding and Generation? . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Advancements in 3D Deep Learning: Representations and Algorithms . . . . . . . . 3
1.3 Challenges in 3D Deep Learning: Data Scarcity . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 From “Chair Research” to Open World: New Opportunities . . . . . . . . . . . . . . . . . 7
1.5 Overview of Methods and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5.1 Open-World 3D Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5.2 Open-World 3D Understanding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 2 Open-World 3D Generation: Generalizability and Speed . . . . . . . . . . . . . . . . 17
2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 3D Generation Guided by 2D Prior Models . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.2 Single Image to 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.3 Generalizable Neural Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Proposed Method: One-2-3-45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Zero123: View-Conditioned 2D Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Can NeRF Optimization Lift Multi-View Predictions to 3D? . . . . . . . . . . 24
2.2.3 Neural Surface Reconstruction from Imperfect Multi-View Predictions . 25
2.2.4 Camera Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 Single Image to 3D Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.4 Text to 3D Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Failure Cases and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 3 Open-World 3D Generation: Battling Multi-View Inconsistency . . . . . . . . . 37
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

iv



3.1.1 3D Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.2 Sparse View Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Proposed Method: One-2-3-45++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.1 Consistent Multi-View Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 3D Diffusion with Multi-View Condition . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.3 Texture Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.1 Comparison on Image to 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.2 Comparison on Text to 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.3 Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5 Extension: Reconstruction and Pose Estimation from Sparse Views . . . . . . . . . . . 54

Chapter 4 Open-World 3D Generation: The Magic of 3D Native Guidance . . . . . . . . . 59
4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Proposed Method: MeshFormer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 3D Representation and Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.2 Unified Single-Stage Training: Surface Rendering with SDF Supervision 67
4.2.3 Fine-Grained Geometric Details: Normal Guidance and Geometry En-

hancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 Implementation Details and Evaluation Settings . . . . . . . . . . . . . . . . . . . . 70
4.3.2 Comparison with Single/Sparse-View to 3D Methods . . . . . . . . . . . . . . . . 72
4.3.3 Application: Text to 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.4 Analysis and Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5 Other Related Projects on Leveraging 3D Priors for Reconstruction and Generation 78

4.5.1 Learning Deformation Meta-Handles of 3D Meshes . . . . . . . . . . . . . . . . . 78
4.5.2 Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance 82

Chapter 5 Open-World 3D Understanding: Multi-Modal Representation Learning . . . 87
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1.1 CLIP for 3D Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.1.2 3D Shape Representation Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Proposed Method: OpenShape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2.1 Multi-Modal Representation Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2.2 Ensembling 3D Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.3 Text Filtering and Enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.4 Scaling Up 3D Point Cloud Backbones . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2.5 Hard Negative Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.1 Zero-Shot Shape Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.2 Few-Shot Linear Probing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.3.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

v



5.3.4 Cross-Modal Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.5 Related Project: Coordinate Frame Learning for 3D Point Clouds . . . . . . . . . . . . 106

Chapter 6 Open-World 3D Understanding: Low-Shot Part Segmentation . . . . . . . . . . . 110
6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1.1 3D Part Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.1.2 Data-Efficient 3D Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.1.3 3D Learning with Image-Language Models . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2 Proposed Method: PartSLIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2.1 Overview: 3D Part Segmentation with GLIP . . . . . . . . . . . . . . . . . . . . . . . 115
6.2.2 Detected 2D BBoxes to 3D Point Segmentation . . . . . . . . . . . . . . . . . . . . . 116
6.2.3 Prompt Tuning w/ Few-Shot 3D Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2.4 Multi-View Visual Feature Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.1 Datasets and Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.3.3 Comparison with Existing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.3.4 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.3.5 Real-World Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.5 Other Related Projects on 3D Segmentation and Decomposition . . . . . . . . . . . . . 132

6.5.1 Approximate Convex Decomposition for 3D Meshes . . . . . . . . . . . . . . . . 133
6.5.2 Label-Efficient Semantic Segmentation for LiDAR Point Clouds . . . . . . 137

Chapter 7 Conclusion and Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.2 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

vi



LIST OF FIGURES

Figure 1.1. Overview of contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 1.2. Qualitative examples of MeshFormer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 2.1. Teaser figure of One-2-3-45, which reconstructs a full 360◦ mesh of any
object in 45 seconds from a single image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 2.2. Approach overview of One-2-3-45, which consists of three primary com-
ponents: multi-view synthesis, pose estimation, and 3D reconstruction. . . . 22

Figure 2.3. Traditional NeRF-based and SDF-based optimization methods fail to recon-
struct high-quality meshes from multi-view images predicted by Zero123. 25

Figure 2.4. Analysis of the prediction quality of Zero123 by comparing its predictions
to ground truth renderings across various view transformations. . . . . . . . . 25

Figure 2.5. Qualitative examples of One-2-3-45 for both synthetic and real images. . . 29

Figure 2.6. Qualitative comparison between One-2-3-45 and baseline approaches. . . . 30

Figure 2.7. Unlike previous approaches, One-2-3-45 doesn’t suffer from the multi-face
problem (Janus problem). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 2.8. Error distribution of predicted elevations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 2.9. Ablations on training strategies of the reconstruction module and the num-
ber of views. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 2.10. Comparison of our 360◦ reconstruction method and the multi-view fusion
strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 2.11. Incorrect elevations lead to distorted reconstruction. Our elevation estima-
tion module can predict an accurate elevation of the input view. . . . . . . . . 34

Figure 2.12. Text-to-3D comparison between One-2-3-45 and baseline approaches. . . . 35

Figure 2.13. Failure cases of One-2-3-45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 3.1. Teaser image of One-2-3-45++, which is capable of transforming a single
RGB image of any object into a high-fidelity textured mesh in under one
minute. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vii



Figure 3.2. Approach overview of One-2-3-45++. It initially produce consistent multi-
view images by fine-tuning a 2D diffusion model. These multi-view images
are then elevated into 3D through a pair of 3D native diffusion networks. . 39

Figure 3.3. Illustration of consistent multi-view generation. . . . . . . . . . . . . . . . . . . . . . . 42

Figure 3.4. Illustration of multi-view local condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 3.5. Qualitative comparison between One-2-3-45++ and various single image
to 3D approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 3.6. Results of a user study involving 53 participants. . . . . . . . . . . . . . . . . . . . . . 49

Figure 3.7. More qualitative results for single-image-to-3D. . . . . . . . . . . . . . . . . . . . . . . 50

Figure 3.8. Qualitative comparison between One-2-3-45++ and various text-to-3D
approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 3.9. SpaRP handles open-world 3D reconstruction and pose estimation from
unposed sparse-view images, delivering results in approximately 20 seconds. 54

Figure 3.10. Single-view vs. sparse-view input for 3D Reconstruction . . . . . . . . . . . . . . . 55

Figure 3.11. Pipeline overview of SpaRP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 3.12. Illustration of the input and output of the multi-view diffusion model in
SpaRP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 4.1. Teaser image of MeshFormer. Given a sparse set of multi-view RGB
images and their normal maps as input, MeshFormer reconstructs high-
quality 3D textured meshes with fine-grained, sharp geometric details. . . . 60

Figure 4.2. Approach overview of MeshFormer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 4.3. Qualitative comparison of single-image-to-3D on the GSO dataset. . . . . . . 70

Figure 4.4. Application: text-to-3D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 4.5. Illustration of the geometry enhancement module, which generates sharper
details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 4.6. The triplane-based method MeshLRM has difficulty capturing words on
objects, even when ground truth multi-view RGB images are used as input. 75

Figure 4.7. Ablation study on input normal maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 4.8. Learned meta-handles for a single chair. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

viii



Figure 4.9. Learned meta-handles across different shapes. . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 4.10. Two deformations resulted from moving the red control point along the
arrow directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 4.11. Method overview of DeepMetaHandles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 4.12. The general pipeline of our remeshing algorithms from a local view. . . . . . 82

Figure 4.13. Illustration of the geodesic distance and the intrinsic-extrinsic ratio (IER). 83

Figure 4.14. The full pipeline of our reconstruction algorithm. . . . . . . . . . . . . . . . . . . . . . 83

Figure 4.15. Qualitative comparison on the ShapeNet dataset. . . . . . . . . . . . . . . . . . . . . . . 86

Figure 5.1. Teaser figure of OpenShape. Left: Zero-shot shape classification on the
Objaverse and ModelNet40 datasets. Right: OpenShape representations
encode a broad range of semantic and visual concepts. . . . . . . . . . . . . . . . . . 88

Figure 5.2. Approach overview of OpenShape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 5.3. Text filtering and enrichment examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Figure 5.4. Zero-shot classification accuracy on Objaverse-LVIS when scaling up the
parameters of different models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Figure 5.5. Few-shot linear probing on Objaverse-LVIS, ModelNet40, and ScanOb-
jectNN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 5.6. Ablation study on using different ratios of training data. . . . . . . . . . . . . . . . . 101

Figure 5.7. Ablation study on different text enrichment strategies. . . . . . . . . . . . . . . . . . 102

Figure 5.8. 3D shape retrieval from 2D images and point clouds. . . . . . . . . . . . . . . . . . . 103

Figure 5.9. Text-input 3D shape retrieval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Figure 5.10. OpenShape embeddings can be integrated with off-the-shelf pretrained
CLIP-based models to support various cross-modal applications. (a) Point
cloud captioning. (b) Point cloud-conditioned image generation. . . . . . . . . 104

Figure 5.11. More examples of point cloud captioning and point cloud-conditioned
image generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Figure 5.12. Illustration of four coordinate frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

ix



Figure 5.13. Comparison of four coordinate frames on five fully-physical manipulation
tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 5.14. Our FrameMiner takes as input a point cloud represented in multiple
candidate frames and adaptively fuses their merits, resulting in better
performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 6.1. Teaser figure of PartSLIP, a zero/few-shot method for 3D point cloud part
segmentation by leveraging pretrained image-language models. . . . . . . . . . 111

Figure 6.2. Approach overview of PartSLIP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Figure 6.3. The original GLIP pipeline and our proposed additional modules: few-shot
prompt tuning and multi-view feature aggregation. . . . . . . . . . . . . . . . . . . . . 119

Figure 6.4. Illustration of multi-view visual feature aggregation. . . . . . . . . . . . . . . . . . . 121

Figure 6.5. Qualitative comparison between our method and baseline approaches on
the PartNetE dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Figure 6.6. Instance segmentation results of PartSLIP on the PartNetE dataset. . . . . . . 127

Figure 6.7. Ablation study of few-shot prompt tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Figure 6.8. Ablation study of the number of shapes in prompt tuning and the number
of 2D views. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Figure 6.9. Segmentation results on iPhone-scanned point clouds. . . . . . . . . . . . . . . . . . 131

Figure 6.10. CoACD decompose a solid mesh into a set of components and utilize the
convex hulls of the components to represent the original shape. . . . . . . . . . 132

Figure 6.11. Failure cases of the boundary-distance-based methods. . . . . . . . . . . . . . . . . 133

Figure 6.12. Failure cases of the volume-based methods. . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Figure 6.13. Comparison of different concavity thresholds. . . . . . . . . . . . . . . . . . . . . . . . . 135

Figure 6.14. One-step greedy strategy vs. multi-step tree search. . . . . . . . . . . . . . . . . . . . 136

Figure 6.15. Comparison between LESS and baseline methods. . . . . . . . . . . . . . . . . . . . . 137

Figure 6.16. Examples of the pre-segmentation results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Figure 6.17. Overview of our LESS pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

x



LIST OF TABLES

Table 2.1. Quantitative comparison between One-2-3-45 and single-image-to-3D base-
line approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Table 3.1. Quantitative comparison between One-2-3-45++ and single-image-to-3D
baseline approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Table 3.2. Quantitative comparison between One-2-3-45++ and text-to-3D baseline
approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Table 3.3. Ablation study of One-2-3-45++ on proposed modules. . . . . . . . . . . . . . . . . 52

Table 3.4. Ablation study of One-2-3-45++ on the 3D diffusion module. . . . . . . . . . . . . 52

Table 3.5. Comparison between the multi-view generation module of One-2-3-45++
and various baseline approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Table 4.1. Quantitative comparison between MeshFormer and single-image-to-3D
baseline approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Table 4.2. Comparison between MeshLRM and MeshFormer on limited training re-
sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Table 4.3. Ablation study of MeshFormer on the GSO dataset. . . . . . . . . . . . . . . . . . . . . 75

Table 5.1. Comparison of different 3D backbones before scaling up their parameters. . 95

Table 5.2. Quantitative comparison of zero-shot classification on Objaverse-LVIS,
ModelNet40, and ScanObjectNN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Table 5.3. Ablation study of OpenShape. Top-1 zero-shot accuracies on ModelNet40
and Objaverse-LVIS are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Table 6.1. Statistics of the PartNetE dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Table 6.2. Semantic segmentation results on the PartNetE dataset. . . . . . . . . . . . . . . . . . 124

Table 6.3. Instance segmentation results on the PartNetE dataset. . . . . . . . . . . . . . . . . . . 124

Table 6.4. Ablation study of PartSLIP on proposed components. . . . . . . . . . . . . . . . . . . 127

Table 6.5. Ablation study of PartSLIP on various input point clouds. . . . . . . . . . . . . . . . 129

Table 6.6. Ablation study of PartSLIP on early vs. late fusion in multi-view feature
aggregation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xi



ACKNOWLEDGEMENTS

I want to express my deepest gratitude to my advisor, Professor Hao Su, whose guidance

and support have been instrumental in shaping not only this dissertation but also my growth

as a researcher and individual. I have been continually amazed by Professor Su’s admirable

courage in embracing uncertainty and venturing beyond his comfort zone. His foray into robotics

exemplifies his dedication to pushing the boundaries of fundamental problems. His willingness

to learn alongside his PhD students and his bold step into entrepreneurship demonstrate a

remarkable commitment to both personal and professional growth. This fearlessness in the face

of new challenges, coupled with his ethos of continuous learning, has taught me the value of

intellectual bravery and adaptability in research.

I am particularly grateful for Professor Su’s role in honing my research acumen. His

guidance in developing a discerning research taste and identifying fundamental problems has

been invaluable. His pure curiosity and relentless pursuit of truth have set a profound example

for me. His insightful vision not only illuminates the path of our field but also extends to the

broader world. Beyond his academic brilliance, Professor Su’s personal qualities have made

this journey truly enriching. His tolerance, approachability, and selflessness have created an

environment conducive to open dialogue and intellectual exploration. His genuine willingness to

support young researchers like myself has been a cornerstone of my doctoral experience.

I would like to extend my heartfelt thanks to my labmates (listed alphabetically):

Fangchen Liu, Fanbo Xiang, Isabella Liu, Jiayuan Gu, Mukund Varma T, Quan Vuong, Ruoxi

Shi, Songfang Han, Stone Tao, Tongzhou Mu, Xiaodi Yuan, Xiaoshuai Zhang, Xinyue Wei,

Xuanlin Li, Yuchen Zhou, Yulin Liu, Yunhao Fang, Yuzhe Qin, Zhan Ling, and Zhiao Huang.

You are more than just colleagues; you are friends who have made this journey both enjoyable

and rewarding. I deeply appreciate your knowledge, helpfulness, and self-motivation, as well as

the inspiring and vibrant environment we have fostered together.

I am incredibly fortunate to have collaborated with many brilliant coauthors (listed

alphabetically): Ang Li, Boqing Gong, Charles R. Qi, Dragomir Anguelov, Fatih Porikli,

xii



Hansheng Chen, Hong Cai, Kaiming Kuang, Mengqi Zhang, Minhyuk Sung, Radomir Mech,

Shizhong Han, Yangyan Li, Yin Zhou, Yinhao Zhu, Zexiang Xu, Zhaoning Wang, Zhuowen Tu,

and Zhuoyang Zhang. Special thanks are due to Chao Xu, Chong Zeng, Haian Jin, and Linghao

Chen. Your expertise, insights, dedication, and collaboration have significantly enriched this

journey. I thoroughly enjoyed the collaborations and learned a great deal from each of you.

Outside of research, I am incredibly fortunate to be surrounded by supportive friends

throughout my PhD journey, including (listed alphabetically): An Yan, Canwen Xu, Chenyang

An, Chengyu Dong, Enze Liu, Hanxian Huang, Jiarui Xu, Jiayun Zhang, Jun Yan, Ke Chen,

Li Zhong, Qinyuan Ye, Ruihan Yang, Shihan Ran, Shuheng Li, Tiange Luo, Yuanchen Guo,

Yuheng Zhi, Zexue He, Zhankui He, Zi Lin, and Zilong Wang. Their companionship, support,

and encouragement have been invaluable to me, and I am deeply grateful for their presence in

my life.

Lastly, I want to express my deepest gratitude to those who have been my pillars of

strength throughout this journey. To my parents: your unwavering support, unconditional love,

and steadfast belief in me have shaped every step of this path. The early habits you subtly

instilled and your trust in all my decisions have been the foundation upon which this work has

been built. To my girlfriend Xiyuan Zhang: your love and companionship have filled my life

with joy, and I am deeply grateful for your presence through both the highs and lows of this

journey. Your patience, emotional steadiness, and faith in me have been constant sources of

encouragement. I am especially thankful for your understanding and for the many memories

we’ve created together. A special thank you to Jojo, my loyal four-legged companion, whose

joyful presence and boundless energy have brought comfort and balance to my life, especially

during the most challenging times. Finally, a nod to the beautiful San Diego and California

weather, which provided the perfect backdrop for reflection, creativity, and much-needed breaks.

Each of you has played an indispensable role in helping me reach this milestone, and for that, I

am eternally grateful.

Chapter 2 incorporates material from the publication “One-2-3-45: Any Single Image to

xiii



3D Mesh in 45 Seconds without Per-Shape Optimization”, by Minghua Liu, Chao Xu, Haian

Jin, Linghao Chen, Mukund Varma T, Zexiang Xu, and Hao Su, published in Advances in

Neural Information Processing Systems (NeurIPS 2023). The dissertation author was primary

investigator and the lead author of this paper.

Chapter 3 incorporates material from the publication “One-2-3-45++: Fast Single Image

to 3D Objects with Consistent Multi-View Generation and 3D Diffusion”, by Minghua Liu,

Ruoxi Shi, Linghao Chen, Zhuoyang Zhang, Chao Xu, Xinyue Wei, Hansheng Chen, Chong

Zeng, Jiayuan Gu, and Hao Su, published in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR 2024). The dissertation author was primary

investigator and the lead author of this paper.

Chapter 4 has been partially submitted for peer review as the paper titled “MeshFormer:

High-Quality Mesh Generation with a 3D-Guided Reconstruction Model”, authored by Minghua

Liu, Chong Zeng, Xinyue Wei, Ruoxi Shi, Linghao Chen, Chao Xu, Mengqi Zhang, Zhaoning

Wang, Xiaoshuai Zhang, Isabella Liu, Hongzhi Wu, and Hao Su. The dissertation author was the

primary investigator and lead author of this paper.

Chapter 5 incorporates material from the publication “OpenShape: Scaling Up 3D Shape

Representation Towards Open-World Understanding”, by Minghua Liu, Ruoxi Shi, Kaiming

Kuang, Yinhao Zhu, Xuanlin Li, Shizhong Han, Hong Cai, Fatih Porikli, and Hao Su, published

in Advances in Neural Information Processing Systems (NeurIPS 2023). The dissertation author

was primary investigator and the lead author of this paper.

Chapter 6 incorporates material from the publication “PartSLIP: Low-Shot Part Segmen-

tation for 3D Point Clouds via Pretrained Image-Language Models”, by Minghua Liu, Yinhao

Zhu, Hong Cai, Shizhong Han, Zhan Ling, Fatih Porikli, and Hao Su, published in Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023). The

dissertation author was primary investigator and the lead author of this paper.

xiv



VITA

2019 Bachelor of Engineering in Computer Science and Technology, Tsinghua Univer-
sity

2024 Doctor of Philosophy in Computer Science, University of California San Diego

PUBLICATIONS

Minghua Liu∗, Chong Zeng∗, Xinyue Wei, Ruoxi Shi, Linghao Chen, Chao Xu, Mengqi Zhang,
Zhaoning Wang, Xiaoshuai Zhang, Isabella Liu, Hongzhi Wu, and Hao Su. MeshFormer :
High-Quality Mesh Generation with 3D-Guided Reconstruction Model. Under review.

Seonghun Oh, Xiaodi Yuan, Xinyue Wei, Ruoxi Shi, Fanbo Xiang, Minghua Liu, and Hao
Su. PaMO: Parallel Mesh Optimization for Intersection-Free Low-Poly Modeling on the GPU.
Under review. 2024.

Chao Xu, Ang Li, Linghao Chen, Yulin Liu, Ruoxi Shi, Hao Su†, and Minghua Liu†. SpaRP:
Fast 3D Object Reconstruction and Pose Estimation from Sparse Views. In European Conference
on Computer Vision (ECCV). 2024.

Minghua Liu∗, Ruoxi Shi∗, Linghao Chen∗, Zhuoyang Zhang∗, Chao Xu∗, Xinyue Wei, Han-
sheng Chen, Chong Zeng, Jiayuan Gu, and Hao Su. One-2-3-45++: Fast Single Image to
3D Objects with Consistent Multi-View Generation and 3D Diffusion. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2024.

Tongzhou Mu, Minghua Liu, and Hao Su. Learning Reusable Dense Rewards for Multi-Stage
Tasks. In International Conference on Learning Representations (ICLR) 2024.

Minghua Liu∗, Chao Xu∗, Haian Jin∗, Linghao Chen∗, Mukund Varma T, Zexiang Xu, and Hao
Su. One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization.
In Advances in Neural Information Processing Systems (NeurIPS). 2023.

Minghua Liu∗, Ruoxi Shi∗, Kaiming Kuang∗, Yinhao Zhu, Xuanlin Li, Shizhong Han, Hong
Cai, Fatih Porikli, and Hao Su. OpenShape: Scaling Up 3D Shape Representation Towards
Open-World Understanding. In Advances in Neural Information Processing Systems (NeurIPS).
2023.

Xuanlin Li∗, Yunhao Fang∗, Minghua Liu, Zhan Ling, Zhuowen Tu, and Hao Su. Distilling
Large Vision-Language Model with Out-of-Distribution Generalizability. In Proceedings of the

∗ indicates equal contribution, and † indicates equal advising.

xv



International Conference on Computer Vision (ICCV). 2023.

Minghua Liu, Yinhao Zhu, Hong Cai, Shizhong Han, Zhan Ling, Fatih Porikli, and Hao Su.
PartSLIP: Low-Shot Part Segmentation for 3D Point Clouds via Pretrained Image-Language
Models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR). 2023.

Xiaoshuai Zhang∗, Rui Chen∗, Fanbo Xiang∗∗, Yuzhe Qin∗∗, Jiayuan Gu∗∗, Zhan Ling∗∗,
Minghua Liu∗∗, Peiyu Zeng∗∗, Songfang Han∗∗∗, Zhiao Huang∗∗∗, Tongzhou Mu∗∗∗, Jing
Xu, and Hao Su. Close the Visual Domain Gap by Physics-Grounded Active Stereovision Depth
Sensor Simulation. In IEEE Transactions on Robotics (T-RO). 2023.

Minghua Liu∗, Xuanlin Li∗, Zhan Ling∗, Yangyan Li, and Hao Su. Frame Mining: a Free Lunch
for Learning Robotic Manipulation from 3D Point Clouds. In Conference on Robot Learning
(CoRL). 2022.

Minghua Liu, Yin Zhou, Charles R. Qi, Boqing Gong, Hao Su, and Dragomir Anguelov. LESS:
Label-Efficient Semantic Segmentation for LiDAR Point Clouds. In European Conference on
Computer Vision (ECCV). 2022.

Xinyue Wei∗, Minghua Liu∗, Zhan Ling, and Hao Su. Approximate Convex Decomposition for
3D Meshes with Collision-Aware Concavity and Tree Search. In ACM Transactions on Graphics
(TOG). 2022.

Minghua Liu, Minhyuk Sung, Radomir Mech, and Hao Su. DeepMetaHandles: Learning
Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2021.

Jiachen Li, Quan Vuong, Shuang Liu, Minghua Liu, Kamil Ciosek, Henrik Christensen, and
Hao Su. Multi-task Batch Reinforcement Learning with Metric Learning. In Advances in Neural
Information Processing Systems (NeurIPS). 2020.

Minghua Liu, Xiaoshuai Zhang, and Hao Su. Meshing Point Clouds with Predicted Intrinsic-
Extrinsic Ratio Guidance. In European Conference on Computer Vision (ECCV). 2020.

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu,
Hanxiao Jiang, Yifu Yuan, He Wang, Li Yi, Angel X Chang, Leonidas J Guibas, and Hao Su.
SAPIEN: A Simulated Part-Based Interactive Environment. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 2020.

Minghua Liu, Lu Sheng, Sheng Yang, Jing Shao, and Shi-Min Hu. Morphing and Sampling
Network for Dense Point Cloud Completion. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI). 2020.

xvi



Minghua Liu, Hang Ma, Jiaoyang Li, and Sven Koenig. Task and Path Planning for Multi-Agent
Pickup and Delivery. In Proceedings of the International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS). 2019.

Sheng Yang, Beichen Li, Minghua Liu, Yu-Kun Lai, Leif Kobbelt, and Shi-Min Hu. Het-
eroFusion: Robust Scene Reconstruction using Heterogeneous Sensors on Robots. In IEEE
Transactions on Visualization and Computer Graphics (TVCG). 2019.

Sheng Yang, Kang Chen, Minghua Liu, Hongbo Fu, and Shi-Min Hu. Saliency-Aware Real-
Time Volumetric Fusion for Object Reconstruction. In Computer Graphics Forum. 2017.

xvii



ABSTRACT OF THE DISSERTATION

Open-World 3D Understanding and Generation

by

Minghua Liu

Doctor of Philosophy in Computer Science

University of California San Diego, 2024

Professor Hao Su, Chair

3D representations model our physical world in one of the most explicit and struc-

tured ways, enabling the storage of extensive attributes. Understanding these 3D representa-

tions—including, but not limited to, their geometry, appearance, structure, semantics, mobility,

functionality, and affordances—is crucial for developing intelligent agents that can comprehend

and interact with our 3D physical environment and seamlessly integrate into human settings. Ad-

ditionally, high-quality 3D generation allows us to replicate our 3D world, creating digital twins

and supporting a wide range of downstream applications. Significant advancements have already

been made in 3D deep learning by exploring suitable representations and neural algorithms for

3D data. However, unlike many other modalities, the scale of publicly available 3D data has

xviii



been quite limited. Most previous 3D deep learning approaches have traditionally been confined

to a narrow range of common categories (such as chairs, cars, airplanes, etc.), which greatly

hinders their application to real-world scenarios with far more diverse categories and variations.

Nevertheless, in the past two years, with the rapid development of large-scale pretrained models

from 2D vision, language, and other modalities, as well as the emergence of larger and more

diverse public 3D datasets, many new opportunities for 3D deep learning have arisen.

In this dissertation, we explore how to leverage extensive priors from other modalities, as

well as how to exploit the limited but valuable 3D data to enhance the generalizability of various

3D deep learning tasks. We primarily focus on two families of tasks: 3D object understanding

and 3D object generation in an open-world context. For each family, I explore several strategies

to effectively utilize these priors and identify a series of crucial problems with proposed solutions.

My efforts have significantly improved the generalizability of many previous 3D understanding

and generation tasks, bridging the gap between the capabilities of earlier ‘chair research’ and the

complex, diverse open-world scenarios in the real physical 3D world.

xix



Chapter 1

Introduction

1.1 Why Do We Need 3D Understanding and Generation?

As we advance toward creating Artificial General Intelligence (AGI) and developing intel-

ligent agents that can seamlessly integrate into human environments, the need for comprehensive

3D understanding and generation becomes increasingly critical.

AGI involves developing machines that possess the cognitive abilities to perform any

intellectual task that a human can. Achieving AGI requires systems that can perceive and interact

with the world in a manner akin to humans. While significant progress has been made in artificial

intelligence, particularly in language models [2, 57], these advancements have largely focused

on virtual tasks, knowledge application, and abstract reasoning. However, the ultimate goal of

building intelligent agents extends beyond merely providing knowledge and suggestions. We

envision agents that can assist us with practical, everyday tasks—agents capable of performing

chores, cooking dinner, and walking the dog. For instance, while an LLM can provide detailed

instructions on how to assemble furniture, it lacks the physical grounding to understand the

spatial relationships between the parts or to interact directly with the objects. For an intelligent

agent to operate in the real world, it must be capable of understanding spatial relationships,

navigating complex environments, and interacting with physical entities, all of which require a

deep understanding of 3D spaces.

Humans live in a three-dimensional world. While 2D images and videos are valuable

tools for capturing and conveying visual information, they are inherently limited in their ability

1



to represent the full complexity of the physical world. These representations lack the depth, scale,

and spatial relationships critical for understanding and interacting with three-dimensional spaces.

In contrast, 3D representations provide a structured and explicit way to model the physical

world, capturing not only low-level features such as geometry and appearance but also high-level

information such as semantics, structure, mobility, and affordances. This richness of structure

and information is crucial for tasks that require accurate perception, reasoning, and interaction

within a 3D environment.

In addition to perceiving and understanding the physical world, 3D generation enables

us to create accurate digital representations—or “digital twins”—of objects and environments.

These digital twins are virtual replicas of physical entities, capturing their appearance, struc-

ture, and physical properties in a 3D format. This capability is critical not only for practical

applications in robotics and automation but also for broader domains like simulation [334, 385],

the metaverse, and virtual reality. Specifically, digital twins serve as the foundation for simu-

lations, allowing researchers and engineers to model, test, and optimize real-world processes

in a controlled virtual environment [140, 159, 210]. This ability to run simulations on digital

twins reduces costs, minimizes risks, and accelerates the development process, making it an

invaluable tool in various industries. The benefits of 3D generation also extend into the realm of

the metaverse—a collective virtual shared space that merges physical and digital realities. In the

metaverse, 3D generation plays a crucial role in creating immersive environments where users

can interact with digital representations of real-world objects and spaces, providing experiences

that closely mirror the physical world. This opens up new possibilities for entertainment, social

interaction, education, and commerce, where the boundaries between the real and virtual worlds

become increasingly blurred.

2



1.2 Advancements in 3D Deep Learning: Representations
and Algorithms

Traditionally, 3D computing has been an interdisciplinary endeavor, intertwining concepts

from geometry and topology in mathematics with computer vision (CV), computer graphics (CG),

robotics, and computer-aided design (CAD) in computer science. Before the advent of deep

learning, most research in this field focused on the analysis or synthesis of individual or small

collections of 3D objects or scenes [87, 98]. These classical approaches, while groundbreaking

at the time, faced significant limitations in scalability, adaptability, and efficiency, prompting

the need for more robust and generalized methods. Although there have been efforts in classical

data-driven 3D understanding algorithms [45, 120], these typically required intricate feature

engineering and handcrafted models, which were both time-consuming and limited in their

ability to generalize across diverse datasets.

In response to these challenges, the field has witnessed a paradigm shift with the advent

of deep learning. Deep learning methods, characterized by their ability to automatically learn

features and representations from data, have introduced a unified framework for solving a wide

range of data understanding problems. This shift has not only streamlined the development

process but also opened up new possibilities for tackling complex 3D data analysis and generation

tasks. Over the past few years, research in 3D deep learning has made significant advancements,

mainly centered around three key problems:

3D Representations for Deep Learning A key aspect of 3D deep learning research revolves

around the representation of 3D data. Unlike images, text, and videos, which benefit from uniform

and well-established representations, 3D data lacks a universally efficient representation. The

naive extension of 2D grids to 3D volumes, while conceptually straightforward and compatible

with convolutional neural network (CNN) architectures, suffers from cubic complexity, making

it computationally expensive and impractical for many applications. Consequently, researchers

have explored various alternative representations to better suit the needs of neural networks.

3



For example, point clouds represent 3D objects as a collection of discrete points in

space, offering a more compact and flexible alternative to volumetric grids. Another promising

representation is the mesh, which encodes the surface geometry of a 3D object as a collection

of vertices, edges, and faces. Meshes provide a more detailed and accurate representation of

an object’s surface compared to point clouds or volumes, making them ideal for tasks such

as 3D reconstruction and shape analysis. More recently, implicit field representations have

emerged as a powerful alternative for representing 3D data. These representations, including

Neural Radiance Fields (NeRF) [202] and Signed Distance Fields (SDF), model 3D shapes as

continuous functions that map spatial coordinates to scalar values, such as occupancy or distance

to the object’s surface. Implicit fields offer several advantages, including the ability to represent

complex shapes with high fidelity and the flexibility to handle varying levels of detail.

Learning Algorithms and Network Architectures for 3D Analysis The design of learning

algorithms and networks for 3D data is closely tied to the 3D representation used. Since many

3D representations are irregular or possess high complexity, it is non-trivial to design neural

networks that can effectively process and analyze 3D data. Over the past decade, a wide variety

of network architectures have been proposed to tackle the challenges posed by different 3D

representations.

For instance, 3D convolutional neural networks (3D CNNs) have become the standard for

volumetric data, with subsequent work focused on improving their efficiency and scalability. For

point cloud data, specialized architectures such as PointNet [228] and its variants [229, 231] have

been developed, which directly operate on point sets without the need for voxelization. These

architectures leverage permutation invariance to extract meaningful features from unordered

point clouds. For mesh-based data, graph neural networks (GNNs) have gained prominence

due to their ability to operate on non-Euclidean data structures and meshes can be naturally

represented as graphs.

Network Architectures and Algorithms for 3D Generation 3D deep learning also involves

the generation of 3D data, which presents unique challenges compared to traditional tasks

4



such as classification or regression. Generating a 3D representation requires the network to

produce a complex and potentially irregular output, such as an occupancy volume [199], point

cloud [62], mesh [213], or implicit field [222]. Various strategies have been proposed to address

this challenge, each tailored to the specific representation being used.

For instance, 3D (sparse) convolutional networks [276] can be utilized for generating

occupancy or SDF volumes. Some researchers have explored generating point sets by directly

outputting point sequences or deforming 2D grids [78]. Others have investigated leveraging

transformer models used for sequence generation [32, 213, 265], for the generation of polygon

meshes. More recently, there has been a focus on representing implicit fields, either by directly

using multi-layer perceptrons or by exploring data structures such as triplanes, hash grids, feature

volumes, and various decomposition strategies.

1.3 Challenges in 3D Deep Learning: Data Scarcity

As discussed in Section 1.2, the field of 3D deep learning has witnessed remarkable

advancements in recent years, with various research efforts focused on identifying the most

suitable 3D representations for deep learning, alongside the development of innovative algorithms

and architectures tailored to these representations. Despite these strides, the challenge of data

scarcity remains a persistent and significant hurdle in the advancement of 3D deep learning. This

issue of limited data availability is particularly troubling when compared to the abundance of

data in other domains such as text and images.

Complexity in 3D Data Collection Unlike text and image data, one of the primary reasons

for the scarcity of 3D data is the inherent complexity involved in its collection. A significant

portion of existing 3D data is manually constructed by skilled artists using professional software

tools like Blender or Maya. The creation of high-quality 3D models is a labor-intensive process

that can take anywhere from several hours to days, depending on the complexity and level of

detail required. This process involves intricate tasks such as modeling, texturing, rigging, and

5



rendering, all of which demand a high level of expertise and precision. As a result, the generation

of 3D data is not only time-consuming but also costly, limiting the availability of large-scale

datasets.

Additionally, the use of 3D sensors, which could potentially automate the data collection

process, is not yet widespread. While sensors like LiDAR and structured light scanners are capa-

ble of capturing 3D data, their adoption is still limited to specific industries such as autonomous

driving and industrial inspection. These sensors are expensive, and are often limited in their

ability to capture complex environments. Furthermore, 3D reconstruction techniques, such as

Structure from Motion (SfM), while promising, are also sensitive to noise and occlusions, mak-

ing it challenging to produce high-quality 3D models in uncontrolled environments [359, 360].

Consequently, the collection of 3D data remains a non-trivial task, further exacerbating the issue

of data scarcity.

Limitations of Public 3D Datasets As a result, existing public 3D datasets are often limited

in scale. One of the most widely used 3D shape datasets, ShapeNet Core [22], contains only

around 51,300 shapes covering 55 object categories. While this dataset has been instrumental in

advancing research in 3D shape analysis and generation, it falls short in terms of the diversity and

scale required for developing robust and generalizable 3D models. The limited object diversity in

datasets like ShapeNet Core is a significant concern, particularly in the context of open-world 3D

generation and understanding, where an intelligent agent is expected to encounter a vast array of

objects in real-world applications. The paucity of diverse 3D data restricts the ability of models

to generalize to unseen object categories, limiting their applicability in real-world scenarios.

Complexity in 3D Data Annotation The challenge of limited dataset scale is further amplified

when it comes to fine-grained annotations. Annotating 3D data is a far more complex and

resource-intensive task compared to annotating 2D images. For instance, in image segmentation,

annotators can use simple tools like rectangles or brushes to label regions of interest. In contrast,

annotating 3D data involves more intricate operations such as rotating, translating, and scaling

the mesh to accurately identify and label specific regions. This complexity makes it difficult

6



to scale the annotation process, resulting in a scarcity of fine-grained annotated datasets. The

PartNet dataset [206], one of the largest datasets containing fine-grained part labels for 3D shapes,

includes only 16 object categories, highlighting the challenges of producing detailed annotations

at scale. The scarcity of such datasets severely limits the ability of 3D deep learning models to

perform tasks that require detailed understanding of object parts and their relationships.

Impact on 3D-Supervised 3D Deep Learning The scarcity of 3D data has profound implications

for the performance and generalizability of 3D deep learning models. Traditional 3D deep

learning algorithms have largely followed a supervised training paradigm, where the performance

of a model is heavily dependent on the quality and quantity of the training data. In the context of

3D data, the limited availability of diverse and annotated datasets results in models that suffer

from poor generalization. These models are often trained on a narrow set of object categories,

such as chairs, planes, and cars, and struggle to perform well on unseen categories or in complex,

real-world environments.

For analysis tasks such as classification, detection, and segmentation, the lack of diverse

training data means that models are likely to overfit to the limited categories present in the dataset,

resulting in reduced accuracy and robustness when applied to new data. Similarly, for generative

tasks, such as 3D object generation and scene synthesis, the scarcity of data limits the model’s

ability to produce realistic and diverse outputs. In open-world scenarios, where an intelligent

agent is expected to generate and understand a wide range of objects and environments, this

limitation poses a significant challenge.

1.4 From “Chair Research” to Open World: New Opportu-
nities

As discussed in Section 1.3, many early approaches in 3D deep learning followed the

conventional supervised learning paradigm. While this framework proved effective in domains

with abundant data, such as image and text, it struggled in the 3D domain due to the limited

7



availability of publicly accessible datasets. As a result, these methods were often restricted

to a narrow range of object categories, with “chair” being the most frequently used category

for experiments and demonstrations. This reliance on a limited set of categories significantly

hindered the generalizability of these methods, making it challenging to extend their applicability

to open-world 3D understanding and generation.

However, the landscape of 3D deep learning has undergone a transformative shift over

the past two years. The confluence of advancements in large-scale pre-trained models and

the emergence of more extensive and diverse 3D datasets has opened up new opportunities,

transitioning the field from the so-called “chair research” to the more ambitious goal of open-

world 3D generation and understanding.

The Power of Large-Scale Pre-trained 2D/Text Models One of the critical factors driving this

transition has been the success of large-scale pre-trained models in other domains, particularly in

2D image and natural language processing. Unlike the 3D domain, where data has historically

been scarce, images and text are abundant on the internet. By leveraging vast datasets such as

LAION-5B [256], which includes over five billion image-text pairs, researchers have been able

to train scalable models like large-scale transformers and diffusion models. These models, such

as Stable Diffusion [247] and DALL-E [237] for 2D image generation, large language models

like ChatGPT [217] for text generation, and vision-language models like CLIP and Flamingo for

multi-modal interaction, have demonstrated remarkable capabilities in zero-shot learning and

open-world tasks. By pretraining on diverse and extensive image-text pairs, these models learn

rich visual concepts and knowledge, enabling them to perform a wide range of novel tasks that

were previously unattainable.

The Emergence of Large-Scale 3D Datasets In parallel with advancements in pre-trained

models, the 3D domain has witnessed the emergence of new datasets that significantly expand

the scope and diversity of available 3D data. Previously, datasets like ShapeNet [22], which

contained only tens of object categories, were the primary resources for training 3D models.

However, recent efforts to crawl and aggregate data from sources like Sketchfab have resulted

8



in the creation of much larger datasets, such as Objaverse [50] and Objaverse-XL [49]. The

scale of these datasets has grown from 51,000 objects in earlier collections to 800,000 in

Objaverse and over 10 million in Objaverse-XL. While these numbers are still several orders

of magnitude smaller than those in the image and text domains, the increase in diversity is

significant. Objaverse, for example, includes over a thousand object categories, offering a much

richer and more varied dataset for training and evaluating 3D models.

New Opportunities in Open-World 3D Research The combination of larger and more diverse

datasets with advanced pre-trained models offers unprecedented opportunities to extend the scope

of 3D research beyond the limited “chair research” of the past. These new resources provide

a more extensive prior knowledge base for tackling various 3D tasks, both in understanding

and generation. Moreover, the natural connection between 2D and 3D data opens up exciting

possibilities for leveraging the successes of 2D pre-trained models to enhance 3D deep learning.

The key challenge now lies in effectively extracting, distilling, and leveraging the knowl-

edge encoded in 2D pre-trained models and fully exploiting the larger and more diverse 3D

datasets, despite the continued limitations in the scale of 3D data. By building on the successes

of 2D and text pre-trained models, and by maximizing the potential of growing 3D datasets,

researchers can push the boundaries of what is possible in 3D deep learning. The transition from

“chair research” to open-world 3D understanding and generation represents not only a shift in

focus but also a significant step forward in the capabilities of 3D deep learning, opening up new

avenues for research and application.

1.5 Overview of Methods and Contributions

In this dissertation, we explore how to leverage extensive priors from other modalities,

such as image or text pre-trained models, while also exploiting the limited but valuable 3D

data to enhance the generalizability of various 3D deep learning tasks. We primarily focus on

two families of tasks: 3D object generation (Chapters 2, 3 and 4) and 3D object understanding

9



(Chapters 5 and 6) within an open-world context. For each family, I discuss several strategies to

effectively utilize these priors and address a series of crucial problems. Please refer to Figure 1.1

for an overview of our contribution.contribution.

1.5.1 Open-World 3D Generation

Unlike 3D reconstruction, which typically benefits from “complete” information provided

by dense views, 3D generation from a single-view image or text prompt requires more exten-

sive “hallucination” for invisible and occluded regions. As a result, these tasks demand more

comprehensive priors. While many prior works have studied the design of generative models for

various 3D representations, these models usually generate only a few object categories, such as

chairs, cars, and planes, and struggle with open-world generation. To achieve open-world 3D

generation, there are two main strategies for leveraging priors from 2D pretrained models.

The first strategy involves projecting 3D to 2D multi-view images and leveraging 2D

models to calculate a loss or gradient for guidance. This paradigm, pioneered by DreamFu-

sion [225], optimizes a 3D representation (e.g., NeRF) for each input text or image and then

uses 2D diffusion models to calculate a score distillation sampling (SDS) loss to guide the

optimization of the 3D representation. While capable of handling open-world 3D generation,

these approaches typically require hours to generate a single 3D shape and suffer from several

issues, such as the Janus problem (e.g., generating multiple heads), over-saturation, and poor

geometry.

Another strategy is to fine-tune 2D diffusion models to extend their capability by adding

various conditions and generating the 2D images that we want. For example, a small amount of

3D data can be used to stimulate 2D diffusion models to generate novel views of the object of

interest. In this dissertation, we primarily explore this strategy due to its efficiency.

Generalizability and Speed To address both the generalizability and speed challenges, we

propose a novel method, One-2-3-45 (introduced in Chapter 2), for generating 3D textured

meshes of any object from a single image in a feed-forward manner. Instead of following the

10



Open-World 3D Generation Open-World 3D Understanding

Generalizability 
& Speed

One-2-3-45 [NeurIPS 23]

Battling Multi-View 
Inconsistency

One-2-3-45++ [CVPR 24]

The Magic of 3D 
Native Guidance

MeshFormer [Under Review]

Other Related Works
SpaRP [ECCV 24] 

DeepMetaHandles [CVPR 21] 
MeshingIER [ECCV20] 

Object Level
(Multi-Modal Representation 

Learning)

OpenShape [NeurIPS 23]

Part Level
(Low-Shot Part Segmentation)

PartSLIP [CVPR 23]

Other Related Works
FrameMining [CoRL 22]

LESS [ECCV 22]
CoACD [Siggraph 22]

Figure 1.1. Overview of contributions. We primarily focus on 3D object generation and
3D object understanding in an open-world context. For each, we explore several strategies to
effectively utilize various priors and identify a series of crucial problems, offering proposed
solutions. Our efforts have significantly enhanced the generalizability of many previous 3D
understanding and generation tasks.

optimization-based paradigm, One-2-3-45 propose a novel approach to utilize 2D prior models

for 3D generation. At the core of the method is the combination of a 2D diffusion model with a

cost-volume-based 3D reconstruction technique. Specifically, we leverage a recent 2D diffusion

model, Zero123 [170], which is fine-tuned on Stable Diffusion to predict novel views of the

input image given camera transformations. We use it to generate multi-view predictions of the

input single image and then feed the predicted multi-view images into a cost-volume-based feed-

forward network for 3D reconstruction. Without costly optimizations, One-2-3-45 reconstructs

open-world 3D shapes for the first time in just 45 seconds.

Battling Multi-View Inconsistency While One-2-3-45 presents the first efficient feed-forward

pipeline for open-world 3D generation, the multi-view images predicted by 2D diffusion models

are not always perfect or 3D-consistent, which compromises the 3D reconstruction results. To

overcome these shortcomings and deliver significantly enhanced robustness and quality, we

introduce One-2-3-45++ (introduced in Chapter 3), which primarily focuses on improving the 3D

consistency of the generated multi-view images and the robustness of the reconstruction model

when faced with inconsistent multi-view images. Taking a single image of any object as input,

11



One-2-3-45++ includes two primary stages: 2D multi-view generation and 3D reconstruction.

In the initial phase, rather than predicting each view independently as in Zero123, One-2-

3-45++ predicts consistent multi-view images jointly, improving 3D consistency among the

multi-view images. In the second stage, One-2-3-45++ employs a multi-view conditioned 3D-

diffusion-based module to predict the textured mesh in a coarse-to-fine fashion. The multi-view

conditional images act as a blueprint for 3D reconstruction, facilitating a zero-shot hallucination

capability. Concurrently, the 3D diffusion network excels in lifting the inconsistent multi-view

images, thanks to its ability to harness a broad spectrum of priors extracted from the 3D dataset.

One-2-3-45++ efficiently generates 3D meshes with realistic textures in under a minute.

The Magic of 3D Native Guidance Following our proposed paradigm of combining 2D diffusion

models for multi-view prediction with feed-forward models for sparse-view 3D reconstruction,

many recent works have explored how to improve the consistency of multi-view predictions.

Regarding the feed-forward model that converts multi-view images into 3D, a family of works,

pioneered by the large reconstruction model (LRM) [97], stands out due to its impressive

performance. It combines large-scale transformer models with the triplane representation and

trains the model primarily using a rendering loss. Although straightforward, these methods

typically require over a hundred GPUs to train. Moreover, due to their reliance on volume

rendering, these methods have difficulty extracting high-quality meshes.

To address these limitations, we present MeshFormer (introduced in Chapter 4), an

open-world sparse-view mesh reconstruction model. Instead of representing 3D data as “2D

planes” and training a “black box” transformer model optimized only for rendering loss, we

find that by incorporating various types of 3D-native priors into the model design—such as 3D

representations, network architecture, supervision signals, and input guidance—our model can

significantly improve both mesh quality and training efficiency. Specifically, instead of using a

triplane representation, we store features in 3D sparse voxels and combine transformers with 3D

convolutions to leverage an explicit 3D structure and projective bias. In addition to sparse-view

RGB input, we require the network to take input and generate corresponding normal maps. The

12



Figure 1.2. Qualitative examples of MeshFormer. Given a sparse set (e.g., six) of multi-view
RGB images and their corresponding normal maps as input, MeshFormer reconstructs high-
quality 3D textured meshes with fine-grained, sharp geometric details in a feed-forward pass that
takes just a few seconds.

input normal maps can be predicted by 2D diffusion models, significantly aiding in the guidance

and refinement of the geometry learning process. Moreover, by combining Signed Distance

Function (SDF) supervision with surface rendering, we directly learn to generate high-quality

meshes without the need for complex multi-stage training processes. By incorporating these

explicit 3D biases, MeshFormer can be trained efficiently and deliver high-quality textured

meshes with fine-grained geometric details, as shown in Figure 1.2.

Other Related Projects The above three works focus on single-image-to-3D. We also propose an

extension project, SpaRP (introduced in Section 3.5), which takes unposed sparse-view images

13



as input. By following a similar strategy to exploit 2D diffusion models, SpaRP reconstructs a

3D textured mesh from sparse-view images in a feed-forward fashion and estimates the relative

camera poses for the input sparse-view images.

In addition to MeshFormer, we introduce two additional projects (introduced in Sec-

tion 4.5) that leverage 3D-native priors to reduce the need for 3D ground truth in 3D generative

models. One of the projects learns to generate all plausible deformations of a 3D mesh, which

can be used for the self-proliferation of 3D shapes. The other project explores a learning-based

point cloud meshing algorithm by explicitly learning to add triangles.

1.5.2 Open-World 3D Understanding

Unlike 3D object generation, which requires the creation of novel 3D shapes, 3D under-

standing focuses on analyzing various properties of input 3D objects. This includes low-level

aspects like appearance and geometry, as well as high-level features such as structure, semantics,

mobility, functionality, and affordance. To achieve open-world capabilities in 3D understanding,

one can leverage extensive knowledge from 2D models, often by using 2D images as intermedi-

aries and projecting 3D data into 2D space. Two primary strategies for utilizing 2D pre-trained

models in this context are inference-only multi-view fusion and knowledge distillation.

The first strategy, inference-only multi-view fusion, involves using 2D pre-trained models

exclusively during the inference stage. In this strategy, 3D objects are projected onto 2D space,

and the resulting multi-view images are processed by 2D models to generate desired outputs

such as labels or segmentation masks. These outputs are then unprojected and fused back into

3D. While this approach is relatively straightforward and typically requires minimal 3D training,

it faces challenges such as potential 3D inconsistency when fusing multi-view 2D results into

3D. Additionally, it may result in longer runtimes for processing each 3D shape.

The second strategy involves training a 3D-native network while distilling knowledge or

priors from 2D diffusion models, using 2D images as a bridge. This can be achieved through

explicit latent feature alignment between 3D-native models and 2D pre-trained models or by using

14



the 2D models to generate pseudo-labels or guidance during the 3D training process. Although

this strategy typically requires extensive 3D training and relies on large-scale 3D datasets, it

offers faster inference speeds, and successful training often produces more 3D-consistent and

robust results compared to the inference-only multi-view fusion method.

In this dissertation, we explore these two strategies across two different tasks: one

focusing on learning open-world multi-modal 3D representations, and the other concentrating on

a more localized understanding, specifically in the context of open-world 3D part segmentation.

Multi-Modal 3D Representation Learning The OpenShape project (discussed in Chapter 5)

introduces a method for learning multi-modal joint representations across text, images, and 3D

point clouds, with the aim of extending the success of 2D CLIP [234] to the 3D domain. We

specifically train a 3D-native point cloud encoder to extract 3D shape representations and align

them with CLIP text and image embeddings using a multi-modal contrastive learning framework.

The extent of knowledge that can be distilled, however, is contingent upon the size and quality

of the training triplets (3D-2D-text). To scale up 3D representations for open-world 3D shape

understanding, we focus on expanding the training dataset by ensembling multiple 3D datasets

and introducing strategies to automatically filter and enrich noisy text descriptions. We also

explore methods for scaling 3D backbone networks and introduce a novel hard negative mining

module to enhance training efficiency.

We evaluate OpenShape using zero-shot 3D classification benchmarks, demonstrating

its superior capabilities in open-world recognition. Notably, OpenShape is the first model

capable of classifying over a thousand object categories with excellent zero-shot accuracy (46.8%

compared to less than 10% for existing methods). Furthermore, we demonstrate that our learned

embeddings capture a wide range of visual and semantic concepts (e.g., subcategories, color,

shape, style) and enable fine-grained text-3D and image-3D interactions. Due to their alignment

with CLIP embeddings, these learned shape representations can also be integrated with off-the-

shelf CLIP-based models for various applications, such as point cloud captioning and point

cloud-conditioned image generation.

15



Low-Shot Part Segmentation While OpenShape learns powerful 3D representations for open-

world 3D shapes, it primarily captures global attributes of the input shape but may fail to

discern its part structure. However, open-world 3D part segmentation is crucial for enabling

a wide range of applications, such as robotic manipulation, AR/VR, and shape analysis and

synthesis. In Chapter 6, we explore a novel approach for low-shot part segmentation of 3D point

clouds by leveraging a pretrained image-language model, GLIP [377], which achieves superior

performance on open-vocabulary 2D detection. We transfer the rich knowledge from 2D to 3D

through GLIP-based part detection on point cloud renderings and a novel 2D-to-3D label lifting

algorithm. We also utilize multi-view 3D priors and few-shot prompt tuning to significantly

boost performance.

Extensive evaluations show that our method enables excellent zero-shot 3D part seg-

mentation. Our few-shot version not only outperforms existing few-shot approaches by a large

margin but also achieves highly competitive results compared to fully supervised counterparts.

Furthermore, we demonstrate that our method can be directly applied to iPhone-scanned point

clouds without significant domain gaps.

Other Related Projects: Regarding 3D representation learning, we found that when the input

consists of multiple 3D objects interacting with each other, the choice of input point cloud

coordinate frames significantly impacts learning from 3D point clouds (see Section 5.5).

Additionally, I have two other projects related to 3D part segmentation (see Section 6.5).

One focuses on segmenting LiDAR point clouds for autonomous driving, while the other aims

to decompose 3D shapes into sets of approximately convex components. Both projects aim to

minimize reliance on 3D training labels, exploring either label-efficient or label-free approaches.

These two projects, alongside the open-world 3D part segmentation work, underscore the critical

importance of part-level structure understanding of 3D data in various scenarios.

16



Chapter 2

Open-World 3D Generation: Generaliz-
ability and Speed

Single image 3D reconstruction, the task of reconstructing a 3D model of an object from

a single 2D image, is a long-standing problem in the computer vision community and is crucial

for a wide range of applications, such as robotic object manipulation and navigation, 3D content

creation, as well as AR/VR [40, 195, 355]. The problem is challenging as it requires not only the

reconstruction of visible parts but also the hallucination of invisible regions. Consequently, this

problem is often ill-posed and corresponds to multiple plausible solutions because of insufficient

evidence from a single image. On the other hand, humans can adeptly infer unseen 3D content

based on our extensive knowledge of the 3D world. To endow intelligent agents with this ability,

many existing methods [41, 43, 62, 75, 108, 123, 160, 163, 322, 336, 351] exploit class-specific

priors by training 3D generative networks on 3D shape datasets [22]. However, these methods

often fail to generalize to unseen categories, and their reconstruction quality is constrained by

the limited size of public 3D datasets.

In this work, we pursue a generic solution to turn an image of any object, regardless

of its category, into a high-quality 3D textured mesh. To achieve this, we propose a novel

approach that can effectively utilize the strong priors learned by 2D diffusion models for 3D

reconstruction. Compared to 3D data, 2D images are more readily available and scalable. Recent

2D generative models (e.g., DALL-E [236, 237], Imagen [249], and Stable Diffusion [247])

17



Figure 2.1. One-2-3-45 reconstructs a full 360◦ mesh of any object in 45 seconds given a single
image of it. In each example, we showcase the input image in the left column, alongside the
generated textured and textureless meshes from three different views.

and visual-language models (e.g., CLIP [234]) have made significant strides by pre-training

on Internet-scale image datasets. Since they learn a wide range of visual concepts and possess

strong priors about our 3D world, it is natural to marry 3D tasks with them. Consequently,

an emerging body of research [96, 110, 154, 201, 225], as exemplified by DreamField [110],

DreamFusion [225], and Magic3D [154], employs 2D diffusion models or vision language

models to assist 3D generative tasks. The common paradigm of them is to perform per-shape

optimization with differentiable rendering and the guidance of the CLIP model or 2D diffusion

models. While many other 3D representations have been explored, neural fields are the most

commonly used representation during optimization.

Although these optimization-based methods have achieved impressive results on both

18



text-to-3D [110, 154, 225] and image-to-3D tasks [196, 257], they face some common dilemmas:

(a) time-consuming. Per-shape optimization typically involves tens of thousands of iterations of

full-image volume rendering and prior model inferences, resulting in typically tens of minutes

per shape. (b) memory intensive. Since the full image is required for the 2D prior model,

the volume rendering can be memory-intensive when the image resolution goes up. (c) 3D

inconsistent. Since the 2D prior model only sees a single view at each iteration and tries to make

every view look like the input, they often generate 3D inconsistent shapes (e.g., with two faces,

or the Janus problem [196, 225]). (d) poor geometry. Many methods utilize the density field as

the representation in volume rendering. It is common that they produce good RGB renderings

but extracting high-quality mesh tends to be difficult.

In this chapter, instead of following the common optimization-based paradigm, we

propose a novel approach to utilize 2D prior models for 3D modeling. At the heart of our

approach is the combination of a 2D diffusion model with a cost-volume-based 3D reconstruction

technique, enabling the reconstruction of a high-quality 360◦ textured mesh from a single image

in a feed-forward pass without per-scene optimization. Specifically, we leverage a recent 2D

diffusion model, Zero123 [170], which is fine-tuned on Stable Diffusion [247] to predict novel

views of the input image given the camera transformation. We utilize it to generate multi-view

predictions of the input single image so that we can leverage multi-view 3D reconstruction

techniques to obtain a 3D mesh. There are two challenges associated with reconstruction from

synthesized multi-view predictions: (a) the inherent lack of perfect consistency within the multi-

view predictions, which can lead to severe failures in optimization-based methods such as NeRF

methods [25, 202]. (b) the camera pose of the input image is required but unknown. To tackle

them, we build our reconstruction module upon a cost volume-based neural surface reconstruction

approach, SparseNeuS [184], which is a variant of MVSNeRF [26]. Additionally, we introduce

a series of essential training strategies that enable the reconstruction of 360-degree meshes from

inherently inconsistent multi-view predictions. We also propose an elevation estimation module

that estimates the elevation of the input shape in Zero123’s canonical coordinate system, which

19



is used to compute the camera poses required by the reconstruction module.

By integrating the three modules of multi-view synthesis, elevation estimation, and 3D

reconstruction, our method can reconstruct 3D meshes of any object from a single image in

a feed-forward manner. Without costly optimizations, our method reconstructs 3D shapes in

significantly less time, e.g., in just 45 seconds. Our method favors better geometry due to the

use of SDF representations, and generates more consistent 3D meshes, thanks to the camera-

conditioned multi-view predictions. Moreover, our reconstruction adheres more closely to the

input image compared to existing methods. See Figure 2.1 for some of our example results. We

evaluate our method on both synthetic data and real images and demonstrate that our method

outperforms existing methods in terms of both quality and efficiency.

2.1 Related Work

2.1.1 3D Generation Guided by 2D Prior Models

Recently, 2D generative models (e.g., DALL-E [236, 237], Imagen [249], and Stable

Diffusion [247]) and vision-language models (e.g., CLIP [234]) have learned a wide range of

visual concepts by pre-training on Internet-scale image datasets. They possess powerful priors

about our 3D world and have inspired a growing body of research to employ 2D prior models for

assisting 3D understanding [162, 168] and generative tasks. Exemplified by DreamField [110],

DreamFusion [225], and Magic3D [154], a line of works follows the paradigm of per-shape

optimization. They typically optimize a 3D representation (i.e., NeRF, mesh, SMPL human

model) and utilize differentiable rendering to generate 2D images from various views. The

images are then fed to the CLIP model [9, 20, 96, 110, 114, 129, 139, 179, 201, 342] or 2D

diffusion model [51, 154, 196, 200, 225, 235, 257, 279, 297, 340, 395] for calculating the loss

functions, which are used to guide the 3D shape optimization. In addition to optimization-based

3D shape generation, some works train a 3D generative model but leverage the embedding space

of CLIP [38, 180, 252], and some works focus on generating textures or materials for input

20



meshes using 2D models’ prior [27, 200, 201, 245, 317].

2.1.2 Single Image to 3D

Before the emergence of CLIP and large-scale 2D diffusion models, people often learn

3D priors from 3D synthetic data [22] or real scans [241]. Unlike 2D images, 3D data can be

represented in various formats and numerous representation-specific 3D generative models have

been proposed. By combining 2D image encoder and 3D generators, they generate 3D data in

various representations, including 3D voxels [43, 75, 329, 335, 336, 351], point clouds [4, 62, 78,

197, 362, 373], polygon meshes [123, 213, 300, 322], and parametric models [223, 399, 400].

Recently, there has been an increasing number of work on learning to generate a 3D implicit

field from a single image [67, 84, 108, 112, 199, 204, 211, 222, 250, 327, 345].

As previously mentioned, several recent works leverage 2D diffusion models to perform

per-shape optimization, allowing for the text-to-3D task [110, 154, 225] given that diffusion

models are typically conditioned on text. To enable the generation of 3D models from a single

image, some works [51, 196, 200] utilize textual inversion [66], to find the best-matching

text embedding for the input image, which is then fed into a diffusion model. NeuralLift-

360 [101] adds a CLIP loss to enforce similarity between the rendered image and the input image.

3DFuse [257] finetunes the Stable Diffusion model with LoRA layers [101] and a sparse depth

injector to ensure greater 3D consistency. A recent work Zero123 [170, 262] finetunes the Stable

Diffusion model [249] to generate a novel view of the input image based on relative camera pose.

In addition to these methods, OpenAI trains a 3D native diffusion model Point-E [215], which

uses several million internal 3D models to generate point clouds. Very recently, they published

another model Shap-E [121] which is trained to generate parameters of implicit functions that

can be used for producing textured meshes or neural radiance fields.

21



Figure 2.2. Our method consists of three primary components: (a) Multi-view synthesis: we
use a view-conditioned 2D diffusion model, Zero123 [170], to generate multi-view images
in a two-stage manner. The input of Zero123 includes a single image and a relative camera
transformation, which is parameterized by the relative spherical coordinates (∆θ ,∆φ ,∆r). (b)
Pose estimation: we estimate the elevation angle θ of the input image based on four nearby
views generated by Zero123. We then obtain the poses of the multi-view images by combining
the specified relative poses with the estimated pose of the input view. (c) 3D reconstruction: We
feed the multi-view posed images to an SDF-based generalizable neural surface reconstruction
module for 360◦ mesh reconstruction.

2.1.3 Generalizable Neural Reconstruction

Traditional NeRF-like methods [202, 302] use a neural network to represent a single

scene and require per-scene optimization. However, some approaches aim to learn priors across

scenes and generalize to novel scenes. These methods typically take a few source views as input

and leverage 2D networks for extracting 2D features. The pixel features are then unprojected

into 3D space, and a NeRF-based rendering pipeline is applied on top of them. In this way,

they can generate a 3D implicit field given a few source views in a single feed-forward pass.

Among the methods, some [92, 135, 176, 241, 287, 291, 305, 356, 367] directly aggregate

2D features with MLPs or transformers, while others explicitly construct the 3D feature/cost

volume [26, 119, 184, 384], and utilize the voxel feature for decoding density and color. In

addition to the density field representation, some methods such as SparseNeuS [184] and

VolRecon [243] utilize SDF representations for geometry reconstruction.

22



2.2 Proposed Method: One-2-3-45

Our overall pipeline is illustrated in Figure 2.2. In Section 2.2.1, we introduce a view-

conditioned 2D diffusion model, Zero123 [170], which is used to generate multi-view images. In

Section 2.2.2, we show that traditional NeRF-based and SDF-based methods fail to reconstruct

high-quality meshes from inconsistent multi-view predictions even given ground truth camera

poses. Therefore, in Section 2.2.3, we propose a cost volume-based neural surface reconstruction

module that can be trained to handle inconsistent multi-view predictions and reconstruct a 3D

mesh in a single feed-forward pass. Specifically, we build upon the SparseNeuS [184] and

introduce several critical training strategies to support 360◦ mesh reconstruction. Additionally, in

Section 2.2.4, we demonstrate the necessity of estimating the pose of the input view in Zero123’s

canonical space for 3D reconstruction. While the azimuth and radius can be arbitrarily specified,

we propose a novel module that utilizes four nearby views generated by Zero123 to estimate the

elevation of the input view.

2.2.1 Zero123: View-Conditioned 2D Diffusion

Recent 2D diffusion models [237, 247, 249] have demonstrated the ability to learn a wide

range of visual concepts and strong priors by training on internet-scale data. While the original

diffusion models mainly focused on the task of text-to-image, recent work [101, 381] has shown

that fine-tuning pretrained models allows us to add various conditional controls to the diffusion

models and generate images based on specific conditions. Several conditions, such as canny

edges, user scribbles, depth, and normal maps, have already proven effective [381].

The recent work Zero123 [170] shares a similar spirit and aims to add viewpoint condition

control for the Stable Diffusion model [247]. Specifically, given a single RGB image of an object

and a relative camera transformation, Zero123 aims to control the diffusion model to synthesize

a new image under this transformed camera view. To achieve this, Zero123 fine-tunes the

Stable Diffusion on paired images with their relative camera transformations, synthesized from a

23



large-scale 3D dataset [50]. During the creation of the fine-tuning dataset, Zero123 assumes that

the object is centered at the origin of the coordinate system and uses a spherical camera, i.e., the

camera is placed on the sphere’s surface and always looks at the origin. For two camera poses

(θ1,φ1,r1) and (θ2,φ2,r2), where θi, φi, and ri denote the polar angle, azimuth angle, and radius,

their relative camera transformation is parameterized as (θ2 −θ1,φ2 −φ1,r2 − r1). They aim

to learn a model f , such that f (x1,θ2 −θ1,φ2 −φ1,r2 − r1) is perceptually similar to x2, where

x1 and x2 are two images of an object captured from different views. Zero123 finds that such

fine-tuning enables the Stable Diffusion model to learn a generic mechanism for controlling the

camera viewpoints, which extrapolates outside of the objects seen in the fine-tuning dataset.

2.2.2 Can NeRF Optimization Lift Multi-View Predictions to 3D?

Given a single image of an object, we can utilize Zero123 [170] to generate multi-view

images, but can we use traditional NeRF-based or SDF-based methods [25, 302] to reconstruct

high-quality 3D meshes from these predictions? We conduct a small experiment to test this

hypothesis. Given a single image, we first generate 32 multi-view images using Zero123, with

camera poses uniformly sampled from the sphere surface. We then feed the predictions to a

NeRF-based method (TensoRF [202]) and an SDF-based method (NeuS [302]), which optimize

density and SDF fields, respectively. However, as shown in Figure 2.3, both methods fail to

produce satisfactory results, generating numerous distortions and floaters. This is primarily due

to the inconsistency of Zero123’s predictions. In Figure 2.4, we compare Zero123’s predictions

with ground-truth renderings. We can see that the overall PSNR is not very high, particularly

when the input relative pose is large or the target pose is at unusual locations (e.g., from the

bottom or the top). However, the mask IoU (most regions are greater than 0.95) and CLIP

similarity are relatively good. This suggests that Zero123 tends to generate predictions that

are perceptually similar to the ground truth and have similar contours or boundaries, but the

pixel-level appearance may not be exactly the same. Nevertheless, such inconsistencies between

the source views are already fatal to traditional optimization-based methods. Although the

24



Figure 2.3. NeRF-based method [202] and SDF-based method [302] fail to reconstruct high-
quality meshes given multi-view images predicted by Zero123. See Figure 2.1 for our recon-
struction results.

Figure 2.4. We analyze the prediction quality of Zero123 by comparing its predictions to ground
truth renderings across various view transformations. For each view transformation, we report
the average PSNR, mask IoU, and CLIP similarity of 100 shapes from the Objaverse [50] dataset.
The prediction mask is calculated by considering foreground objects (i.e., non-white regions).
Zero123 provides more accurate predictions when the view transformation is small.

original Zero123 paper proposes another method for lifting its multi-view predictions, we will

demonstrate in experiments that it also fails to yield perfect results and entails time-consuming

optimization.

2.2.3 Neural Surface Reconstruction from Imperfect Multi-View
Predictions

Instead of using optimization-based approaches, we base our reconstruction module on

a generalizable SDF reconstruction method SparseNeuS [184], which is essentially a variant

of the MVSNeRF [26] pipeline that combines multi-view stereo, neural scene representation,

and volume rendering. As illustrated in Figure 2.2, our reconstruction module takes multiple

source images with corresponding camera poses as input and generates a textured mesh in a

single feed-forward pass. In this section, we will first briefly describe the network pipeline of

the module and then explain how we train the module, select the source images, and generate

textured meshes. Additionally, in Section 2.2.4, we will discuss how we generate the camera

25



poses for the source images.

As shown in Figure 2.2, our reconstruction module takes m posed source images as input.

The module begins by extracting m 2D feature maps using a 2D feature network. Next, the

module builds a 3D cost volume whose contents are computed by first projecting each 3D voxel

to m 2D feature planes and then fetching the variance of the features across the m projected

2D locations. The cost volume is then processed using a sparse 3D CNN to obtain a geometry

volume that encodes the underlying geometry of the input shape. To predict the SDF at an

arbitrary 3D point, an MLP network takes the 3D coordinate and its corresponding interpolated

features from the geometry encoding volume as input. To predict the color of a 3D point, another

MLP network takes as input the 2D features at the projected locations, interpolated features

from the geometry volume, and the viewing direction of the query ray relative to the viewing

direction of the source images. The network predicts the blending weights for each source view,

and the color of the 3D point is predicted as the weighted sum of its projected colors. Finally, an

SDF-based rendering technique is applied on top of the two MLP networks for RGB and mask

rendering [302]. In each iteration, we randomly choose one view to build the cost volume and

another view for rendering supervision.

2-Stage Source View Selection and Groundtruth-Prediction Mixed Training. Although

the original SparseNeuS [184] paper only demonstrated frontal view reconstruction, we have

extended it to reconstruct 360-degree meshes in a single feed-forward pass by selecting source

views in a particular way. Specifically, our reconstruction model is trained on a 3D object dataset

while freezing Zero123. We follow Zero123 to normalize the training shapes and use a spherical

camera model. For each shape, we first render n ground-truth RGB images from n camera

poses uniformly placed on the sphere. For each of the n views, we use Zero123 to predict four

nearby views. During training, we feed all 4×n predictions with ground-truth poses into the

reconstruction module and randomly choose one of the n ground-truth RGB images views as the

target view. We call this view selection strategy as 2-stage source view selection. We supervise

the training with both the ground-truth RGB and mask values. In this way, the module can learn

26



to handle the inconsistent predictions from Zero123 and reconstruct a consistent 360◦ mesh. We

argue that our two-stage source view selection strategy is critical since uniformly choosing n×4

source views from the sphere surface would result in larger distances between the camera poses.

However, cost volume-based methods [26, 119, 184] typically rely on very close source views to

find local correspondences. Furthermore, as shown in Figure 2.4, when the relative pose is small

(e.g., 10 degrees apart), Zero123 can provide very accurate and consistent predictions and thus

can be used to find local correspondences and infer the geometry.

During training, we utilize n ground-truth renderings in the initial stage. We find that

employing n predicted images at this stage would suffer from notable inconsistencies across

different views, complicating the network’s ability to learn sharp details (see examples in ablation

study). However, during inference, we can replace the n ground-truth renderings with Zero123

predictions, as shown in Figure 2.2, the network can automatically generalize to some extent.

We will show in the experiments that this groundtruth-prediction mixed training strategy is also

important. To export the textured mesh, we use marching cubes [185] to extract the mesh from

the predicted SDF field and query the color of the mesh vertices as described in [302]. Although

our reconstruction module is trained on a 3D dataset, we find that it mainly relies on local

correspondences and can generalize to unseen shapes very well.

2.2.4 Camera Pose Estimation

Our reconstruction module requires camera poses for the 4× n source view images.

Note that we adopt Zero123 for image synthesis, which parameterizes cameras in a canonical

spherical coordinate frame, (θ ,φ ,r), where θ , φ and r represent the elevation, azimuth, and

radius. While we can arbitrarily adjust the azimuth angle φ and the radius r of all source

view images simultaneously, resulting in the rotation and scaling of the reconstructed object

accordingly, this parameterization requires knowing the absolute elevation angle θ of one camera

to determine the relative poses of all cameras in a standard XYZ frame. More specifically, the

relative poses between camera (θ0,φ0,r0) and camera (θ0 +∆θ ,φ0 +∆φ ,r0) vary for different

27



θ0 even when ∆θ and ∆φ are the same. Because of this, changing the elevation angles of all

source images together (e.g., by 30 degrees up or 30 degrees down) will lead to the distortion of

the reconstructed shape (see Figure 2.11 for examples).

Therefore, we propose an elevation estimation module to infer the elevation angle of

the input image. First, we use Zero123 to predict four nearby views of the input image. Then

we enumerate all possible elevation angles in a coarse-to-fine manner. For each elevation

candidate angle, we compute the corresponding camera poses for the four images and calculate a

reprojection error for this set of camera poses to measure the consistency between the images

and the camera poses. The elevation angle with the smallest reprojection error is used to generate

the camera poses for all 4× n source views by combining the pose of the input view and the

relative poses.

2.3 Experiments

2.3.1 Implementation Details

For each input image, we generate n = 8 images by choosing camera poses uniformly

placed on the sphere surface and then generate 4 local images (10◦ apart) for each of the 8

views, resulting in 32 source-view images for reconstruction. During training, we freeze the

Zero123 [170] model and train our reconstruction module on the Objaverse-LVIS [50] dataset,

which contains 46K 3D models in 1,156 categories. We use BlenderProc [55] to render ground-

truth RGB images. For images with background, we utilize an off-the-shelf segmentation network

SAM [131] with bounding-box prompts for background removal.

2.3.2 Single Image to 3D Mesh

We present qualitative examples of our method in Figures 2.1 and 2.5, illustrating its

effectiveness in handling both synthetic images and real images. We also compare One-2-3-45

with existing zero-shot single image 3D reconstruction approaches, including Point-E [215],

28



Figure 2.5. Qualitative examples of One-2-3-45 for both synthetic and real images. Each triplet
showcases an input image, a textured mesh, and a textureless mesh.

Table 2.1. Quantitative Comparison on GSO [59] and Objaverse [50] datasets.

Prior F-Score CLIP Similarity
TimeSource GSO Obj. avg. GSO Obj. avg.

Point-E [215] internal 81.0 81.0 81.0 74.3 78.5 76.4 78s
Shap-E [121] 3D data 83.4 81.2 82.3 79.6 82.1 80.9 27s

Zero123+SD [170]
2D

diffusion
models

75.1 69.9 72.5 71.0 72.7 71.9 ∼15min
RealFusion [196] 66.7 59.3 63.0 69.3 69.5 69.4 ∼90min

3DFuse [257] 60.7 60.2 60.4 71.4 74.0 72.7 ∼30min
Ours 84.0 83.1 83.5 76.4 79.7 78.1 45s

Shap-E [121], Zero123 (Stable Dreamfusion version) [170], 3DFuse [257], and RealFusion [196].

Among them, Point-E and Shap-E are two 3D native diffusion models released by OpenAI, which

are trained on several million internal 3D data, while others are optimization-based approaches

leveraging priors from Stable Diffusion [247].

Figure 2.6 presents the qualitative comparison. While most methods can generate

plausible 3D meshes from a single image, notable differences exist among them in terms of

geometry quality, adherence to the input, and overall 3D consistency. In terms of geometry

quality, approaches like RealFusion [196] and 3DFuse [257], which optimize a neural radiance

field, face challenges in extracting high-quality meshes. Likewise, Point-E [215] produces a

29



Figure 2.6. We compare One-2-3-45 with Point-E [215], Shap-E [121], Zero123 (Stable
Dreamfusion version) [170], 3DFuse [257], and RealFusion [196]. In each example, we present
both the textured and textureless meshes. As 3DFuse [257] and RealFusion [196] do not natively
support the export of textured meshes, we showcase the results of volume rendering instead.

sparse point cloud as its output, resulting in numerous holes on the reconstructed meshes. In

contrast, our approach utilizes an SDF presentation and favors better geometry. Regarding

adherence to the input, we observe that most baseline methods struggle to preserve the similarity

to the input image. Although Shap-E performs slightly better, it still produces lots of failure

cases (see the backpack without shoulder straps, distorted shoe, and stool with three legs). In

contrast, our approach leverages a powerful 2D diffusion model to directly produce high-quality

multi-view images, rather than relying on 3D space hallucination. This strategy provides better

adherence to the input views, alleviates the burden of the 3D reconstruction module, and yields

results that are more finely attuned to the input. Furthermore, many approaches encounter

challenges in achieving consistent 3D results (also known as the Janus problem [196, 225]), as

30



Figure 2.7. Unlike previous approaches, One-2-3-45 doesn’t suffer from the multi-face problem
(Janus problem).

Figure 2.8. Error distribution of predicted elevations. The median and average are 5.4 and 9.7
degrees.

highlighted in Figure 2.7 (two-handle mug, multi-face Mario, and two-face backpack). One of

the contributing factors to this issue is that several methods optimize each view independently,

striving to make each view resemble the input. In contrast, our method capitalizes on the

view-conditioned 2D diffusion model, inherently enhancing 3D consistency.

We also quantitatively compare the approaches on Objaverse [50] and GoogleScannedOb-

jects (GSO) [59] datasets. For each dataset, we randomly choose 20 shapes and render a single

image per shape for evaluation. To align the predictions with the ground-truth mesh, we linearly

search the scaling factor and the rotation angle, apply Iterative Closest Point (ICP) for sampled

point clouds, and select the one with the most number of inliers. We follow RealFusion [196] to

report F-score (with a threshold of 0.05) and CLIP similarity, and the runtime on an A100 GPU.

31



Figure 2.9. Ablations on training strategies of the reconstruction module and the number of
views.

As shown in Table 2.1, our method outperforms all baseline approaches in terms of F-Score. As

for CLIP similarity, we surpass all methods except a concurrent work Shap-E [121]. We find that

CLIP similarity is very sensitive to the color distribution and less discriminative in local geome-

try variations (i.e., the number of legs of a stool, the number of handles of a mug). Regarding

running time, our method demonstrates a notable advantage over optimization-based approaches

and performs on par with 3D native diffusion models, such as Point-E [215] and Shap-E [121].

Specifically, our 3D reconstruction module reconstructs a 3D mesh in approximately 5 seconds,

with the remaining time primarily spent on Zero123 predictions, which takes roughly 1 second

per image on an A100 GPU.

2.3.3 Ablation Study

Training strategies. We ablate our training strategies in Figure 2.9. We found that without

our 2-stage source view selection strategy, a network trained to consume 31 uniformly posed

Zero123 predictions (fourth column) suffers from severe inconsistency among source views,

32



causing the reconstruction module to fail completely. If we feed only 7 source views (sixth

column) without the four nearby views, the reconstruction fails to capture local correspondence

and cannot reconstruct fine-grained geometry. During training, we first render n ground-truth

renderings and then use Zero123 to predict four nearby views for each of them. If we train

directly on 8×4 ground-truth renderings without Zero123 prediction during training (second

column), it fails to generalize well to Zero123 predictions during inference, with many missing

regions. Instead, if we replace the n ground-truth renderings with n Zero123 predictions during

training (first column), the network fail to generate sharp details (see the strips of the backpack).

Elevation estimation. Our reconstruction module relies on accurate elevation angles of the input

view. In Figure 2.11, we demonstrate the impact of providing incorrect elevation angles (e.g.,

altering the elevation angles of source views by ±30◦), which results in distorted reconstruction

results. Instead, utilizing our predicted elevation angles can perfectly match results with ground

truth elevations. We also quantitatively test our elevation estimation module by rendering 1,700

images from random camera poses. As shown in Figure 2.8, our elevation estimation module

predicts accurate elevations.

Number of source views. In Figure 2.9, we also investigate the impact of varying the number

of source views on 3D reconstruction. We observe that our method is not very sensitive to the

number of views as long as the reconstruction module is retrained with the corresponding setting.

360◦ reconstruction vs. multi-view fusion. While our method reconstructs a 360◦ mesh

in a single pass, most existing generalizable neural reconstruction approaches [26, 119, 184]

primarily focus on frontal view reconstruction. An alternative approach is to independently infer

the geometry for each view and subsequently fuse them together. However, we have observed

that this strategy often struggles with multi-view fusion due to inconsistent Zero123 predictions,

as illustrated in Figure 2.10.

33



Figure 2.10. 360◦ reconstruction vs. multi-view fusion. Meshes from different views are in
different colors.

Figure 2.11. Incorrect elevations lead to distorted reconstruction. Our elevation estimation
module can predict an accurate elevation of the input view.

2.3.4 Text to 3D Mesh

As shown in Figure 2.12, by integrating with off-the-shelf text-to-image 2D diffusion

models [236, 247], our method can be naturally extended to support text-to-image-3D tasks and

generate high-quality textured meshes in a short time.

2.4 Failure Cases and Limitations

Our method relies on Zero123 for generating multi-view images, which introduces

challenges due to its occasional production of inconsistent results. In Figure 2.13, we present

two typical cases that exemplify such inconsistencies. The first case involves an input view that

lacks sufficient information, such as the back view of a fox. In this scenario, Zero123 struggles

to generate consistent predictions for the invisible regions, such as the face of the fox. As a

34



Figure 2.12. Text to 3D. First row: “a bear in cowboy suit.” Second row: “a kungfu cat.” We
utilize DALL-E 2 [236] to generate an image conditioned on the text and then lift it to 3D. We
compare our method with Stable Dreamfusion [225] and 3DFuse [257]. For baselines, volume
renderings are shown.

Figure 2.13. Failure cases of One-2-3-45. Our method relies on Zero123 to generate multi-view
images, and we encounter challenges when Zero123 generates inconsistent results. (a) The
input view lacks sufficient information. (b) The input view contains ambiguous or complicated
structures.

consequence, our method may encounter difficulties in accurately inferring the geometry for

those regions. The second case involves an input view with ambiguous or complex structures,

such as the pulp and peel of a banana. In such situations, Zero123’s ability to accurately

infer the underlying geometry becomes limited. As a result, our method may be affected by

the inconsistent predictions generated by Zero123. It is important to acknowledge that these

limitations arise from the occasional scenarios, and they can impact the performance of our

method in certain cases. Addressing these challenges and refining the reliability of Zero123’s

predictions remain areas for further investigation and improvement.

We have also noticed slight artifacts on the back side of our generated results. As one of

the first works in combining view-conditioned 2D diffusion models with generalizable multi-

view reconstruction, we believe that there is still ample room for exploring more advanced

reconstruction techniques and incorporating additional regularizations. By doing so, we expect

to significantly mitigate the minor artifacts and further enhance results in the future.

35



2.5 Summary

In this chapter, we present a novel method for reconstructing a high-quality 360◦ mesh of

any object from a single image of it. In comparison to existing zero-shot approaches, our results

exhibit superior geometry, enhanced 3D consistency, and a remarkable adherence to the input

image. Notably, our approach reconstructs meshes in a single forward pass without the need for

time-consuming optimization, resulting in significantly reduced processing time. Furthermore,

our method can be effortlessly extended to support the text-to-3D task.

Chapter 2 incorporates material from the publication “One-2-3-45: Any Single Image to

3D Mesh in 45 Seconds without Per-Shape Optimization”, by Minghua Liu, Chao Xu, Haian

Jin, Linghao Chen, Mukund Varma T, Zexiang Xu, and Hao Su, published in Advances in

Neural Information Processing Systems (NeurIPS 2023). The dissertation author was primary

investigator and the lead author of this paper.

36



Chapter 3

Open-World 3D Generation: Battling
Multi-View Inconsistency

Although One-2-3-45 is one of the first single-image-to-3D methods to simultaneously

address the challenges of generalizability and speed, producing 3D shapes in a single forward

pass in just 45 seconds, its efficacy is often limited by the inconsistent multi-view predictions of

Zero123, leading to compromised 3D reconstruction results, as shown in Section 2.4.

In this chapter, we introduce One-2-3-45++, a novel method that effectively overcomes

the shortcomings of One-2-3-45, delivering significantly enhanced robustness and quality. Taking

a single image of any object as input, One-2-3-45++ also includes two primary stages: 2D multi-

view generation and 3D reconstruction. During the initial phase, rather than employing Zero123

to predict each view independently, One-2-3-45++ predicts consistent multi-view images jointly.

This is realized by tiling a concise set of six-view images into a single image and then finetuning

a 2D diffusion model to generate this combined image conditioned on the input reference image.

In this way, the 2D diffusion net is able to attend to each view during generation, ensuring

more consistent results across views. In the second stage, One-2-3-45++ employs a multi-view

conditioned 3D-diffusion-based module to predict the textured mesh in a coarse-to-fine fashion.

The consistent multi-view conditional images act as a blueprint for 3D reconstruction, facilitating

a zero-shot hallucination capability. Concurrently, the 3D diffusion network excels in lifting the

multi-view images, thanks to its ability to harness a broad spectrum of priors extracted from the

37



Figure 3.1. One-2-3-45++ is capable of transforming a single RGB image of any object into
a high-fidelity textured mesh in under one minute. The generated meshes closely mirror the
input image. Input image (and text prompt), textured mesh, and normal map are shown.

3D dataset. Ultimately, One-2-3-45++ employs a lightweight optimization technique to enhance

the texture quality efficiently, leveraging the consistent multi-view images for supervision.

As depicted in Fig. 3.1, One-2-3-45++ efficiently generates 3D meshes with realistic

textures in under a minute, offering precise fine-grained control. Our comprehensive evaluations,

including user studies and objective metrics across an extensive test set, highlight One-2-3-

45++’s superiority in terms of robustness, visual quality, and, most importantly, fidelity to the

input image.

3.1 Related Work

3.1.1 3D Generation

3D generation has garnered significant attention in recent years. Before the advent of

large-scale pre-trained 2D models, researchers often delved into 3D native generative models that

38



Figure 3.2. Starting with a single RGB image as input, we initially produce consistent multi-
view images by fine-tuning a 2D diffusion model. These multi-view images are then elevated
into 3D through a pair of 3D native diffusion networks. Throughout the 3D diffusion process,
the generated multi-view images act as essential guiding conditions. After extracting the 3D
mesh from the denoised volume, we further enhance the texture by employing a lightweight
optimization with multi-view images as supervision. One-2-3-45++ is capable of producing an
initial textured mesh within 20 seconds and delivering a refined one in roughly one minute
using a single A100 GPU.

learn directly from 3D synthetic data or real scans and generate various 3D representations such

as point clouds [4, 62, 197, 215, 373], 3D voxels [43, 252, 329, 335], polygon meshes [67, 78,

123, 163, 178, 213, 300], parametric models [96], and implicit fields [38, 61, 84, 121, 145, 199,

222, 327, 345, 370, 375, 390, 392]. However, given the limited availability of 3D data, these

models tended to focus on a select number of categories (e.g., chairs, cars, planes, humans, etc.),

struggling to generalize to unseen categories in the open world.

The advent of recent 2D generative models (e.g., DALL-E [237], Imagen [249], and

Stable Diffusion [247]) and vision-language models (e.g., CLIP [234]) has equipped us with

powerful priors about our 3D world, consequently fueling a surge of research in 3D generation.

Notably, models like DreamFusion [225], Magic3D [154], and ProlificDreamer [314] have

pioneered a line of approach for per-shape optimization [29, 36, 51, 110, 139, 196, 200, 201,

207, 232, 235, 257, 278, 279, 297, 340, 342, 368]. These models are designed to optimize a

3D representation for each unique input text or image, drawing on the 2D prior models for

gradient guidance. While they have yielded impressive results, these methods tend to suffer

from prolonged optimization times, the ”multi-face problem,” oversaturated colors, and a lack

39



of diversity in results. Some works also concentrate on creating textures or materials for input

meshes, utilizing the priors of 2D models [27, 245].

A new wave of studies, highlighted by works like Zero123 [170], has showcased the

promise of using pre-trained 2D diffusion models for synthesizing novel views from singular

images or texts, opening new doors for 3D generation. For instance, One-2-3-45 [164], using

multi-view images predicted by Zero123, can produce a textured 3D mesh in a mere 45 seconds.

Nevertheless, the multi-view images produced by Zero123 lack 3D consistency. Our research,

along with several concurrent studies [175, 183, 264, 323, 363], is dedicated to enhancing

the consistency of these multi-view images – a vital step for subsequent 3D reconstruction

applications.

3.1.2 Sparse View Reconstruction

While traditional 3D reconstruction methods, such as multi-view stereo or NeRF-based

techniques, often demand a dense collection of input images for accurate geometry inference,

many of the latest generalizable NeRF solutions [26, 119, 135, 176, 184, 243, 287, 301, 305, 356]

strive to learn priors across scenes. This enables them to infer NeRF from a sparse set of images

and generalize to novel scenes. These methods typically ingest a few source views as input,

leveraging 2D networks to extract 2D features. These pixel features are then unprojected and

aggregated into 3D space, facilitating the inference of density (or SDF) and colors. However,

these methods may either rely on consistent multi-view images with accurate correspondences

or possess limited priors to generalize beyond training datasets.

Recently, some methods [21, 124, 280, 395] have employed diffusion models to aid sparse

view reconstruction tasks. However, they generally frame the problem as novel view synthesis,

necessitating additional processing, such as distillation using a 3D representation, to generate 3D

content. Our work utilizes a multi-view conditioned 3D diffusion model for 3D generation. This

model directly learns priors from 3D data and obviates the need for additional post-processing.

Moreover, some concurrent works [175, 183, 264] employ NeRF-based per-scene optimization

40



for reconstruction, leveraging specialized loss functions.

3.2 Proposed Method: One-2-3-45++

In traditional game studios, the creation of 3D content encompasses a series of stages,

including concept art, 3D modeling, and texturing, etc. Each stage demands distinct and comple-

mentary expertise. For instance, concept artists should possess creativity, a vivid imagination,

and the skill to visualize 3D assets. In contrast, 3D modelers must be skilled in 3D modeling tools

and capable of interpreting and translating multi-view concept drawings into life-like models,

even when drawings contain inconsistencies or errors.

One-2-3-45++ aims to harness the rich 2D priors and the valuable yet limited 3D data

following a similar philosophy. As shown in Fig. 3.2, with a single input image of an object,

One-2-3-45++ starts by generating coherent multi-view images of the object. This is achieved

by finetuning a pre-trained 2D diffusion model and acts akin to the role of a concept artist.

These generated images are then input into a multi-view conditioned 3D diffusion model for

3D modeling. The 3D diffusion module, trained on extensive multi-view and 3D pairings,

excels at converting multi-view images into 3D meshes. Finally, the produced meshes undergo a

lightweight refinement module, guided by the multi-view images, to further enhance the texture

quality.

3.2.1 Consistent Multi-View Generation

Recently, Zero123 has demonstrated the potential of fine-tuning a pretrained 2D diffusion

network to incorporate camera view control, thereby synthesizing novel views of an object from

a single reference image. While previous studies have employed Zero123 to generate multi-view

images, they often suffer from inconsistencies across different views. This inconsistency arises

because Zero123 models the conditional marginal distribution for each view in isolation, without

considering inter-view communication during multi-view generation. In this work, we present an

innovative method to produce consistent multi-view images, significantly benefiting downstream

41



Figure 3.3. Consistent multi-view generation: We stitch multi-view images into a single
frame and fine-tune the Stable Diffusion model to generate this composite image, using the input
reference image as conditions. We utilize predetermined absolute elevation angles and relative
azimuth angles. During 3D reconstruction, we do not need to infer the elevation angle of the
input image.

3D reconstruction.

Multi-View Tiling To generate multiple views in a single diffusion process, we adopt a simple

strategy by tiling a sparse set of 6 views into a single image with a 3× 2 layout as shown in

Fig. 3.3. Subsequently, we finetune a pre-trained 2D diffusion net to generate the composite

image, conditioned on a single input image. This strategy enables multiple views to interact with

each other during the diffusion.

It’s nontrivial to define the camera poses of the multi-view images. Given that the 3D

shapes within the training dataset lack aligned canonical poses, employing absolute camera poses

for the multi-view images could lead to ambiguities for the generative model. Alternatively, if

we were to set the camera poses relative to the input view, as done in Zero123, downstream

applications would then be required to infer the elevation angle of the input image to deduce

the camera poses of the multi-view images. This additional step could introduce errors into

the pipeline. To address these, we opt for fixed absolute elevation angles paired with relative

42



azimuth angles to define the poses of multi-view images, effectively resolving the orientation

ambiguity without necessitating further elevation estimation. To be more precise, the six poses

are determined by alternating elevations of 30◦ and −20◦, coupled with azimuths commencing

at 30◦ and incrementing by 60◦ for each subsequent pose, as shown in Fig. 3.3.

Network and Training Details To fine-tune Stable Diffusion for adding image conditioning and

generating coherent multi-view composite images, we employ three crucial network or training

designs: (a) Local Condition: We adopt the reference attention technique [382] to incorporate

the local condition of the image patch features. Specifically, we process the reference input

image with the denoising UNet model and append the self-attention key and value matrices of

the image tokens from the conditional reference image to the corresponding attention layers of

the denoising multi-view image. (b) Global Condition: We leverage CLIP image embedding as

a global condition, by replacing the text token features originally used in Stable Diffusion with

the duplicated CLIP image features. These global image embeddings are multiplied by a set of

learnable weights, providing the network with an overall semantic understanding of the object.

(c) Noise Schedule: The original Stable Diffusion model was trained using a scaled-linear noise

schedule. We found it necessary to switch to a linear noise scheme in our fine-tuning process.

We fine-tune the Stable Diffusion2 v-mode using 3D shapes from the Objaverse [50]

dataset. For each shape, we generate three data points by randomly sampling the camera pose

of the input image from a specified range, and selecting a random HDRI environment lighting

from a curated set that offers uniform lighting. Initially, we fine-tuned only the self-attention

layers along with the key and value matrices of the cross-attention layers using LoRA [101].

Subsequently, we fine-tuned the entire UNet using a conservative learning rate. The finetuning

process was conducted using 16 A100 GPUs and took approximately 10 days.

3.2.2 3D Diffusion with Multi-View Condition

While prior work utilizes generalizable NeRF methods for 3D reconstruction, it primarily

depends on accurate local correspondence of multi-view images and possesses limited priors for

43



3D generation. This constrains their effectiveness in lifting intricate and inconsistent multi-view

images generated by the 2D diffusion network. Instead, we propose an innovative way to lift the

generated multi-view images to 3D by utilizing a multi-view conditioned 3D generative model.

It seeks to learn a manifold of plausible 3D shapes conditioned on multi-view images by training

expressive 3D native diffusion networks on extensive 3D data.

3D Volume Representations As shown in Fig. 3.2, we represent a textured 3D shape as two

discrete 3D volumes, a signed distance function (SDF) volume, and a color volume. The SDF

volume measures the signed distance from the center of each grid cell to the nearest shape

surface, while the color volume captures the color of the closest surface points relative to the

center of the grid cells. Additionally, we generate a discrete occupancy volume for the 3D shape,

where each grid cell stores a binary occupancy based on whether the absolute value of its SDF is

below a predefined threshold. The occupancy volume depicts the shell of the 3D shape.

Two-Stage Diffusion Capturing fine-grained details of 3D shapes necessitates the use of high-

resolution 3D grids, which unfortunately entail substantial memory and computational costs.

We thus follow LAS-Diffusion [392] to generate high-resolution volumes in a coarse-to-fine

two-stage manner. Specifically, the initial stage generates a low-resolution (e.g., n = 64) full 3D

occupancy volume F ∈ Rn×n×n×1 to approximate the shell of the 3D shape. The second stage

then focuses on the occupied shell region only and aims to generate a high-resolution (e.g., 1283)

four-channel sparse volume S, which predicts fine-grained SDF values and color for the sparsely

occupied shell region.

We employ a separate diffusion network for each stage. For the first stage, normal 3D

convolution is used within the UNet to produce the full 3D occupancy volume F , while for the

second stage, we incorporate 3D sparse convolution [276] in the UNet to yield the 3D sparse

volume S. Both diffusion networks are trained using the denoising loss [95]:

Lx0 = Eε∼N (0,I),t∼U (0,1) ∥ f (xt , t,c)− x0∥2
2

44



Figure 3.4. Multi-view local condition: We employ a pre-trained 2D backbone to extract 2D
patch features for each view. These features are then aggregated using known projection matrices
to construct a 3D feature volume. The volume is further processed by 3D convolutional neural
networks, resulting in feature volumes of varying resolutions. Subsequently, these volumes are
concatenated with the corresponding feature volumes within the diffusion U-Net to guide the 3D
diffusion.

where ε and t are sampled noise and time step, x0 is a data point (F or S) and xt is its noised

version, c is the multi-view condition, and f is the UNet. N and U denote Gaussian and

uniform distribution, respectively.

Multi-View Condition Training a conventional 3D native diffusion network can be challenging

to generalize due to the limited availability of 3D data. However, the use of generated multi-view

images can provide a comprehensive guide, greatly simplifying the imagination difficulty of 3D

generation. We integrate the multi-view images to guide the diffusion process by initially extract-

ing local image features and subsequently constructing a conditional 3D feature volume, denoted

as C. This strategy follows the rationale that local priors facilitate easier generalization [392].

As shown in Fig. 3.4, given m multi-view images, we first employ a pre-trained 2D

backbone, DINOv2, to extract a set of local patch features for each image. We then build a 3D

feature volume C by projecting each 3D voxel within the volume onto m multi-view images

using the known camera poses. For each 3D voxel, we aggregate m associated 2D patch features

through a shared-weight MLP, followed by max pooling. These aggregated features collectively

45



form the feature volume C.

In the diffusion network, the UNet consists of several levels. For example, the occupancy

UNet in the initial stage has five levels: 643, 323, 163, 83, and 43. Initially, we construct a

conditional feature volume C that matches the starting resolution, as outlined earlier. A 3D

convolution network is then applied to C, producing volumes for the subsequent resolutions.

The resultant conditional volumes are then concatenated with the volumes inside the UNet to

guide the diffusion process. For the second stage, we construct sparse conditional volumes and

utilize 3D sparse convolution. To benefit the diffusion of color volume, we also concatenate 2D

pixel-wise projected colors to the final layer of the diffusion UNet. Moreover, we integrate the

CLIP feature of the input image as a global condition.

Training and Inference Details We train the two diffusion networks using 3D shapes from the

Objaverse dataset [50]. For each 3D shape, we first convert it to a watertight manifold before

extracting its SDF volume. We unproject the multi-view renderings of the shape to get a 3D

colored point cloud, which is used to build the color volume. During training, we utilize the

ground truth renderings to serve as the multi-view conditions. Since two diffusion networks are

trained separately, we introduced random perturbations to camera poses and infused random

noises to the initial occupancy of the second stage to enhance robustness. We train the two

diffusion nets using 8 A100 GPUs for about 10 days for each stage.

During inference, a 643 grid is first initialized with Gaussian noise and then denoised

by the first diffusion net. Each predicted occupied voxel is further subdivided into 8 smaller

voxels, used to construct a high-resolution sparse volume. The sparse volume is initialized with

Gaussian noise and then denoised with the second diffusion net, resulting in predictions for

the SDF and color of each voxel. The Marching Cubes algorithm is finally applied to extract a

textured mesh.

46



Figure 3.5. Qualitative results of various single image to 3D approaches. Input images, textured
meshes, and normal maps are shown.

3.2.3 Texture Refinement

Given that multi-view images possess higher resolution than the 3D color volume, we can

refine the texture of the generated mesh through a lightweight optimization process. To achieve

this, we fix the geometry of the generated mesh while optimizing a color field represented by a

TensoRF [25]. In each iteration, the generated 3D mesh is rasterized, and the color network is

queried to produce 2D renderings. We leverage the predicted consistent multi-view images to

guide the texture optimization using a l2 loss. Lastly, we bake the optimized color field onto the

mesh, with the surface normal serving as the viewing direction.

47



Table 3.1. Comparison on single image to 3D. Evaluated on the GSO [59] dataset, which
contains 1,030 3D objects.

Method F-Sco. (%)↑ CLIP-Sim↑ User-Pref. (%)↑ Time↓

Zero123 XL [49] 91.6 73.1 58.6 30min
One-2-3-45 [164] 90.4 70.8 52.7 45s

SyncDreamer [175] 84.8 68.9 28.4 6min
DreamGaussian [278] 81.0 68.4 31.5 2min

Shap-E [121] 91.8 73.1 40.8 27s
Ours 93.6 81.0 87.6 60s

3.3 Experiments

3.3.1 Comparison on Image to 3D

Baselines: We evaluate One-2-3-45++ against both optimization-based and feed-forward meth-

ods. Within the optimization-based approaches, our baselines include DreamFusion [225] with

Zero123 XL [170] as its backbone, as well as SyncDreamer [175], and DreamGaussian [278]. For

feed-forward approaches, we compare with One-2-3-45 [164] and Shap-E [121]. We employ the

ThreeStudio [82] implementation for Zero123 XL [82] and the original official implementations

for the other methods.

Dataset and Metrics: We assess the performance of the methods using the entire set of 1,030

shapes from the GSO dataset [59], which were not exposed to any of the methods during training

to the best of our knowledge. For each shape, we generate a frontal view image to serve as

the input. In line with One-2-3-45 [164], we employ the F-Score and CLIP similarity as our

evaluation metrics. The F-Score evaluates the geometric similarity between the predicted mesh

and the ground truth mesh. For the CLIP similarity metric, we render 24 different views for each

predicted and ground truth mesh, compute the CLIP similarity for each corresponding pair of

images, and then average these values across all views. Prior to metric computation, we align the

predicted mesh with the ground truth mesh using a combination of linear search and the ICP

algorithm.

48



Figure 3.6. Results of a user study involving 53 participants. Each cell displays the probability
or preference rate at which one method (row) outperforms another (column).

User Study: A user study was also carried out. For each participant, 45 shapes were randomly

selected from the entire GSO dataset, and two methods were randomly sampled for each shape.

Participants were asked to choose the result from each pair of comparative outcomes that exhibits

superior quality and better aligns with the input image. The preference rate for all methods was

then tallied based on these selections. In total, 2,385 evaluated pairs were collected from 53

participants.

Results: As presented in Tab. 3.1, One-2-3-45++ surpasses all baseline methods regarding F-

Score and CLIP similarity. The user preference scores further highlight a significant performance

disparity, with our method outperforming competing approaches by a substantial margin. Refer

to Fig. 3.6 for an in-depth confusion matrix, which illustrates that One-2-3-45++ outperforms

One-2-3-45 92% of the time. Moreover, when compared to optimization-based methods, our

approach demonstrates notable runtime advantages. Fig. 3.5 and 3.7 show qualitative results.

3.3.2 Comparison on Text to 3D

Baselines: We compared One-2-3-45++ with optimization-based methods, specifically Pro-

lificDreamer [314] and MVDream [264], as well as a feed-forward approach, Shap-E [121].

49



Figure 3.7. Our qualitative results: top row displays input images; subsequent rows show
multi-view renderings of the generated meshes.

Figure 3.8. Qualitative results of various text to 3D approaches. Input images, textured meshes,
and normal maps are shown.

For ProlificDreamer, we utilized the ThreeStudio implementation [82], while for the remaining

methods, we employed their respective official implementations.

Dataset and Metrics: Given that many baseline approaches necessitate hours to produce a single

3D shape, our evaluation was conducted on 50 text prompts, sampled from DreamFusion [225].

We utilize CLIP similarity, calculated by comparing 24 rendered views of the predicted mesh

against the input text prompt and then averaging the similarity scores across all views.

User Study: The user study, akin to the image-to-3D evaluation, involved 30 pairs of outcomes

randomly selected for each participant. In total, 1,590 evaluation pairs were collected from 53

50



Table 3.2. Quantitative comparison with various text to 3D methods. Evaluated on 50 text
prompts from DreamFusion [225].

Method CLIP-Sim↑ User-Pref.↑ Runtime↓

ProlificDreamer [314] 25.7 39.5 10h+
MVDream [264] 24.8 66.2 2h

Shap-E [121] 22.3 11.1 27s
Ours 26.8 84.1 60s

participants.

Results: As illustrated in Tab. 3.2, One-2-3-45++ outperforms all baseline methods in terms of

CLIP similarity. This is further corroborated by user preference scores, with our method signifi-

cantly outshining rival techniques. See Fig. 3.6 for an in-depth analysis. When directly comparing

One-2-3-45++ with the second-best method, MVDream [264], our approach commands a 70%

user preference rate. Moreover, while our method delivers prompt results, MVDream [264]

requires about 2 hours to generate a single shape. Fig. 3.8 shows qualitative results.

3.3.3 Analyses

Ablation Studies of Overall Pipeline One-2-3-45++ is comprised of three key modules: consis-

tent multi-view generation, multi-view conditioned 3D diffusion, and texture refinement. We

conducted ablation studies on these modules using the complete GSO dataset [59], with results de-

tailed in Tab. 3.3. Replacing our consistent multi-view generation module with Zero123XL [49]

led to a noticeable performance decline. Furthermore, substituting our 3D diffusion module

with the generalizable NeRF used in One-2-3-45 [164] resulted in an even more significant

performance drop. However, the inclusion of our texture refinement module markedly improved

texture quality, yielding higher CLIP similarity scores.

Ablation Studies of 3D Diffusion Tab. 3.4 presents the results of an ablation study of the 3D

diffusion module. The study highlights the importance of multi-view images for the module’s

efficacy. When the module operates without multi-view conditions, relying solely on the global

CLIP feature from a single input view (rows a and f), there is a significant decline in performance.

51



Table 3.3. Ablation studies of different modules. Evaluated on the complete GSO [59] dataset.
“MultiView”, “Reconstruction”, and “Texture” indicate multi-view generation, sparse view
reconstruction, and texture refinement modules, respectively.

MultiView Reconstruction Texture F-Sc.↑ CLIP-Sim↑ Time↓

Zero123 XL [49] Ours w/o 92.9 71.9 14s
Ours SparseNeuS [184] w/o 81.2 67.2 15s
Ours Ours w/o 93.6 73.4 20s
Ours Ours w/ 93.6 81.0 60s

Table 3.4. Ablation study of the 3D diffusion module. 3D IoU of the initial-stage occupancy
prediction is reported. Note that the 3D IoU is computed for the 3D shell, excluding the solid
interior.

id multi-view cond. global cond. image source proj. perturb. 3D IoU ↑

a w/o w/ rendering N/A 18.3
b global w/ rendering N/A 24.4
c local w/o rendering w/o 41.4
d local w/ prediction w/o 41.9
e local w/ rendering w/o 44.1
f local w/ rendering w/ 45.1

Conversely, the One-2-3-45++ approach leverages multi-view local features by constructing

a 3D feature volume with known projection matrices. A mere concatenation of global CLIP

features from multiple views also impairs performance (rows b and f), underlining the value of

multi-view local conditions. Global CLIP features of the input view, however, provide global

shape semantics; their removal results in decreased performance (rows c and e). Although

One-2-3-45++ uses predicted multi-view images for 3D reconstruction, incorporating these

predicted images during training of the 3D diffusion module can lead to a performance downturn

(rows d and e) due to the potential mismatch between the predicted multi-view images and actual

3D ground truth meshes. To train the module effectively, we utilize ground truth renderings.

Recognizing that predicted multi-view images may be flawed, we introduce random perturbations

to projection matrices during training to enhance robustness when processing predicted multi-

view images (rows e and f).

52



Table 3.5. Comparison of different multi-view generation methods. Evaluated on the complete
GSO [59] dataset.

Target Elevations PSNR ↑ LPIPS ↓ Mask IoU ↑

Zero123 [170]
30◦ and −20◦

20.32 0.110 0.856
Zero123 XL [49] 20.11 0.113 0.869

Ours 22.12 0.110 0.878
SyncDreamer [175] 30◦ 21.67 0.095 0.894

Wonder3D [183] 0◦ 18.67 0.130 0.635

Comparison on Multi-View Generation We also evaluate our consistent multi-view generation

module against existing approaches, namely Zero123 [170] and its scaled variant [49], alongside

two concurrent works: SyncDreamer [175] and Wonder3D [183]. Our comparison utilizes the

GSO [59] dataset, where for each object, we render a single input image and task the methods

with producing multi-view images. For Zero123 and Zero123 XL, we utilize the same target

poses as our approach. However, for Wonder3D and SyncDreamer, we employ the target poses

preset by these methods, as they do not support altering camera positions during inference.

As presented in Tab. 3.5, our approach surpasses current methodologies in PSNR, LPIPS, and

foreground mask IoU. Notably, Wonder3D [183] employs orthographic projection in its training

phase, which compromises its robustness when dealing with perspective images during inference.

SyncDreamer [175] only generates views at an elevation of 30◦, a simpler setting than ours.

3.4 Summary

In this chapter, we introduced One-2-3-45++, an innovative approach for transforming

a single image of any object into a 3D textured mesh. This method stands out by offering

more precise control compared to existing text-to-3D models, and it is capable of delivering

high-quality meshes swiftly—typically in under 60 seconds. Additionally, the generated meshes

exhibit a high fidelity to the original input image. Looking ahead, there is potential to enhance

the robustness and detail of the geometry by incorporating additional guiding conditions from

2D diffusion models, alongside RGB images.

53



Figure 3.9. SpaRP handles open-world 3D reconstruction and pose estimation from unposed
sparse-view images, delivering results in approximately 20 seconds.

3.5 Extension: Reconstruction and Pose Estimation from
Sparse Views

In this chapter and the last, we introduced methods for converting a single image to 3D

and text to 3D. While these methods can achieve high-quality geometry and texture that match

the input view, they also introduce ambiguities in regions not visible in the input image, such as

the back view. Although these methods attempt to generate plausible interpretations of these

unseen areas, the resulting regions may not always align with users’ expectations, and users

54



Figure 3.10. Single-View vs. Sparse-View Input for 3D Reconstruction. We compare the
results of SpaRP when using single-view and sparse-view inputs.

often lack sufficient control over these ambiguous regions, as shown in Figure 3.10.

In this section, we explore a critical scenario where the input consists of one or a few

unposed 2D images of a single object. The images are captured from arbitrarily distributed

camera poses, often with little to no overlap. We tackle both the 3D reconstruction and pose

estimation of input images under this sparse view setting. Note that, in dense view setting,

traditional Structure-from-Motion (SfM) solvers (e.g., COLMAP [255]) are typically employed

for pose estimation. However, with sparse view inputs, these solvers often become unreliable

and tend to fail due to insufficient overlapping visual cues. This issue is the main reason why

existing sparse view reconstruction methods [130, 184, 395] generally require known camera

poses as input. While some recent methods have attempted pose-free reconstruction and pose

estimation for sparse views [116, 117, 153, 266, 378], they are usually trained on a predefined

small set of object categories and exhibit poor generalization to unseen object categories.

In response, we propose an innovative class-agnostic approach called SpaRP [339],

capable of processing arbitrary object categories with unposed sparse views. Our inspiration

comes from recent breakthroughs in open-domain single-image-to-3D methods. They leverage

2D diffusion models (e.g., Stable Diffusion [247]) to generate novel viewpoints of an object [170],

55



Figure 3.11. Pipeline Overview of SpaRP. We begin by taking a sparse set of unposed images
as input, which we tile into a single composite image. This composite image is subsequently
provided to the Stable Diffusion UNet to serve as the conditioning input. The 2D diffusion
model is simultaneously finetuned to predict NOCS maps for the input sparse views and multi-
view images under known camera poses. From the NOCS maps, we extract the camera poses
corresponding to the input views. The multi-view images are then processed by a reconstruction
module to generate textured 3D meshes. Optionally, the camera poses can be further refined
using the generated mesh for improved accuracy.

and even consistent multi-view images from a single input image [141, 175, 183, 262, 264], by

finetuning the diffusion models with corresponding multi-view image pairs. These discoveries

imply that 2D diffusion models harbor rich priors concerning 3D objects. Instead of merely

producing multi-view images, we contemplate leveraging 2D diffusion models to examine a

set of unposed input images from sparse viewpoints, infer their spatial interrelationships, and

recover relative camera poses and underlying 3D shapes.

As shown in Figure 3.11, we finetune a 2D diffusion model [247] to process sparse

input views by compositing them into a single image for conditioning. The diffusion model

is concurrently tuned to deduce the relative poses of the input images and the underlying 3D

objects. For the relative pose estimation branch, instead of outputting camera poses as scalars,

we task 2D diffusion models to produce a surrogate representation: the NOCS maps [298] that

embed pixel-wise correspondences across different views and are more suitable for 2D diffusion

models. From these maps, we extract the relative camera poses for the sparse views using the

traditional PnP algorithm [18], assuming known camera intrinsics. For the reconstruction branch,

the diffusion model is tasked to produce multi-view images of the object from fixed known

56



Figure 3.12. Illustration of the input and output of the multi-view diffusion model in
SpaRP. (a) Regardless of the poses of the sparse input views (in black), the output multiviews are
uniformly distributed (in red) and encompass the entire 3D object. (b) The Normalized Object
Coordinate Space (NOCS) of the object, whose orientation is aligned with the azimuth of the
first input view. (c) An example of input and output tiled images. The elevation and azimuth
of the first input view are denoted by θ0 and φ0, respectively. The camera poses of the output
multiview images are determined by φ0. The output NOCS maps correspond to the input sparse
views, and the orientation of the coordinate frame is also determined by φ0.

camera poses, covering the entire 3D object. This task requires the models to incorporate all

information from input sparse views and hallucinate invisible regions. We then feed the generated

images with fixed known poses into a pre-trained 3D reconstruction module [161] to create a

textured 3D mesh. We can further refine the estimated camera poses by aligning the input views

with the generated mesh through differentiable rendering [136]. Please refer to Figure 3.12 for

an illustration of the input and output of the multi-view diffusion model used in SpaRP.

We train SpaRP on the Objaverse [50] dataset with 1–6 unposed input views. Unlike

some previous methods that rely on costly per-shape optimization [328], our method delivers 3D

textured meshes along with camera poses in a much more efficient manner, requiring only ∼16

seconds. As shown in Figure 3.9, our approach can faithfully generate 3D assets that closely

follow the reference unposed images, effectively overcoming the ambiguity issue of single-

image-to-3D. Extensive evaluation on three datasets demonstrates the superior performance of

our method over baselines in reconstructing 3D meshes with vivid appearance and high-fidelity

57



geometry, alongside precise pose estimation of the input images.

Chapter 3 incorporates material from the publication “One-2-3-45++: Fast Single Image

to 3D Objects with Consistent Multi-View Generation and 3D Diffusion”, by Minghua Liu,

Ruoxi Shi, Linghao Chen, Zhuoyang Zhang, Chao Xu, Xinyue Wei, Hansheng Chen, Chong

Zeng, Jiayuan Gu, and Hao Su, published in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR 2024). The dissertation author was primary

investigator and the lead author of this paper.

58



Chapter 4

Open-World 3D Generation: The Magic of
3D Native Guidance

In the previous chapters, we introduced a promising strategy for open-world 3D gen-

eration, which involves first predicting a sparse set of multi-view images using 2D diffusion

models [170, 262], and then lifting these predicted images into a 3D model by training a

feed-forward network [161, 164]. As this strategy effectively addresses both the speed and

generalizability challenges, it has gradually garnered significant attention and many followers in

the community.

While many recent works explore utilizing priors from 2D diffusion models, such

as generating consistent multi-view images [262, 264] and predicting normal maps from

RGB [64, 183, 262], the feed-forward model that converts multi-view images into 3D remains

underexplored. One-2-3-45 [164] leverages a generalizable NeRF method for 3D reconstruction

but suffers from limited quality and success rates. One-2-3-45++ [161] improves on this by

using a two-stage 3D diffusion model, yet it still struggles to generate high-quality textures or

fine-grained geometry. Given that sparse-view reconstruction of open-world objects requires ex-

tensive priors, another family of works pioneered by the large reconstruction model (LRM) [97]

combines large-scale transformer models with the triplane representation and trains the model

primarily using rendering loss. Although straightforward, these methods typically require over a

hundred GPUs to train. Moreover, due to their reliance on volume rendering, these methods have

59



Figure 4.1. Given a sparse set (e.g., 6) of multi-view RGB images and their normal maps
as input, MeshFormer reconstructs high-quality 3D textured meshes with fine-grained, sharp
geometric details in a feed-forward pass of just a few seconds. Here, ground truth multi-view
images are used as input.

difficulty extracting high-quality meshes. For instance, some recent follow-up works [320, 341]

implement complex multi-stage “NeRF-to-mesh” training strategies, but the results still leave

room for improvement.

In this chapter, we present MeshFormer [165], an open-world sparse-view reconstruction

model that takes a sparse set of posed images of an arbitrary object as input and delivers

high-quality 3D textured meshes with a single forward pass in a few seconds. Instead of

representing 3D data as “2D planes” and training a “black box” transformer model optimizing

only rendering loss, we find that by incorporating various types of 3D-native priors into the

60



model design, including network architecture, supervision signals, and input guidance, our

model can significantly improve both mesh quality and training efficiency. Specifically, we

propose representing features in explicit 3D voxels and introduce a novel architecture that

combines large-scale transformers with 3D (sparse) convolutions. Compared to triplanes and

pure transformers models with little 3D-native design, MeshFormer leverages the explicit 3D

structure of voxel features and the precise projective correspondence between 3D voxels and 2D

multi-view features, enabling faster and more effective learning.

Unlike previous works that rely on NeRF-based representation in their pipeline, we utilize

mesh representation throughout the process and train MeshFormer in a unified, single-stage

manner. Specifically, we propose combining surface rendering with additional explicit 3D

supervision, requiring the model to learn a signed distance function (SDF) field. The network is

trained with high-resolution SDF supervision, and efficient differentiable surface rendering is

applied to the extracted meshes for rendering losses. Due to the explicit 3D geometry supervision,

MeshFormer enables faster training while eliminating the need for expensive volume rendering

and learning an initial coarse NeRF. Furthermore, in addition to multi-view posed RGB images,

we propose using corresponding normal maps as input, which can be captured through sensors and

photometric techniques [28, 326] or directly estimated by recent 2D vision models [64, 183, 262].

These multi-view normal images provide important clues for 3D reconstruction and fine-grained

geometric details. We also task the model with learning a normal texture in addition to the

RGB texture, which can then be used to enhance the generated geometry through a traditional

post-processing algorithm [214].

Thanks to the explicit 3D-native structure, supervision signal, and normal guidance that

we have incorporated, MeshFormer can generate high-quality textured meshes with fine-grained

geometric details, as shown in Figure 4.1. Compared to concurrent methods that require over one

hundred GPUs or complex multi-stage training, MeshFormer can be trained more efficiently and

conveniently with just eight GPUs over two days, achieving on-par or even better performance.

It can also seamlessly integrate with various 2D diffusion models to enable numerous tasks, such

61



as single-image-to-3D and text-to-3D. In summary, our key contributions include:

• We introduce MeshFormer, an open-world sparse-view reconstruction model capable of

generating high-quality 3D textured meshes with fine-grained geometric details in a few

seconds. It can be trained with only 8 GPUs, outperforming baselines that require over one

hundred GPUs.

• We propose a novel architecture that combines 3D (sparse) convolution and transformers. By

explicitly leveraging 3D structure and projective bias, it facilitates better and faster learning.

• We propose a unified single-stage training strategy for generating high-quality meshes by

combining surface rendering and explicit 3D geometric supervision.

• We are the first to introduce multi-view normal images as input to the feed-forward reconstruc-

tion network, providing crucial geometric guidance. Additionally, we propose to predict extra

3D normal texture for geometric enhancement.

4.1 Related Work

Open-world 3D Object Generation Open-world 3D object generation have recently

made significant advancements, thanks to the emergence of large-scale 3D datasets [49, 50]

and the extensive priors learned by 2D models [234, 237, 247, 249]. Exemplified by Dream-

Fusion [225], a line of work [29, 36, 51, 139, 154, 232, 257, 264, 271, 278, 297, 314] uses 2D

models as guidance to generate 3D objects through per-shape optimization with SDS-like losses.

Although these methods produce increasingly better results, they are still limited by lengthy

runtimes and many other issues. Another line of work [97, 121, 186, 215, 337, 398] trains a

feed-forward generative model solely on 3D data that consumes text prompts or single-image

inputs. While fast during inference, these methods struggle to generalize to unseen object cate-

gories due to the scarcity of 3D data. More recently, works such as Zero123 [170] have shown

that 2D diffusion models can be fine-tuned with 3D data for novel view synthesis. A line of

62



work [141, 141, 161, 277, 315, 320, 341], pioneered by One-2-3-45 [164], proposes first predict-

ing multi-view images through 2D diffusion models and then lifting them to 3D through a feed-

forward network, effectively addressing the speed and generalizability issues. Many recent works

have also explored better strategies to fine-tune 2D diffusion models for enhancing the 3D consis-

tency of multi-view images [69, 102, 133, 175, 177, 233, 262, 264, 292, 303, 323, 325, 363, 371].

In addition to the feed-forward models, the generated multi-view images can also be lifted to 3D

through optimizations [69, 175, 183].

Sparse-View Feed-Forward Reconstruction Models When a small baseline between

input images is assumed, existing generalizable NeRF methods [176, 242, 287, 356] aim to find

pixel correspondences and learn generalizable priors across scenes by leveraging cost-volume-

based techniques [26, 184, 367] or transformer-based structures [119, 135, 243, 301, 305]. Some

of methods have also incorporated a 2D diffusion process into the pipeline [21, 124, 280].

However, these methods often struggle to handle large baseline settings (e.g., only frontal-view

reconstruction) or are limited by a small training set and fail to generalize to open-world objects.

Recently, many models [141, 277, 304, 315, 320, 341, 348, 349, 380, 391] specifically aimed

at open-world 3D object generation have been proposed. They typically build large networks

and aim to learn extensive reconstruction priors by training on large-scale 3D datasets [50].

For example, the triplane representation and transformer models are often used. By applying

volume rendering or Gaussian splatting [277, 348, 380], they train the model with rendering

losses. However, these methods typically require extensive GPUs to train and have difficulty

extracting high-quality meshes. While some recent (concurrent) works [320, 341] utilize multi-

stage “NeRF-to-mesh” training strategies to improve the quality, the results still leave room for

improvement.

Geometry Guidance for 3D Reconstruction Many recent works have shown that in

addition to multi-view RGB images, 2D diffusion models can be fine-tuned to generate other

geometric modalities, such as depth maps [313], normal maps [64, 183, 187], or coordinate

maps [146, 315]. These additional modalities can provide crucial guidance for 3D generation and

63



Figure 4.2. Pipeline Overview. MeshFormer takes a sparse set of multi-view RGB and normal
images as input, which can be estimated using existing 2D diffusion models. We utilize a 3D
feature volume representation, and submodules Voxel Former and Sparse Voxel Former share a
similar novel architecture, detailed in the gray region. We train MeshFormer in a unified single
stage by combining mesh surface rendering and 5123 SDF supervision. MeshFormer learns
an additional normal texture, which can be used to further enhance the geometry and generate
fine-grained sharp geometric details.

reconstruction. While many recent methods utilize these geometric cues as inverse optimization

guidance [29, 64, 146, 183, 233, 315], we propose to take normal maps as input in a feed-

forward reconstruction model and task the model with generating 3D-consistent normal texture

for geometry enhancement of sharp details.

4.2 Proposed Method: MeshFormer

As shown in Figure 4.2, MeshFormer takes a sparse set of posed multi-view RGB and

normal images as input and generates a high-quality textured mesh in a single feed-forward pass.

In the following sections, we will first introduce our choice of 3D representation and a novel

model architecture that combines large-scale transformers with 3D convolutions (Sec. 4.2.1).

Then, we will describe our training objectives, which integrate surface rendering and explicit

3D SDF supervision (Sec. 4.2.2). Last but not least, we will present our normal guidance and

geometry enhancement module, which plays a crucial role in generating high-quality meshes

64



with fine-grained geometric details (Sec. 4.2.3).

4.2.1 3D Representation and Model Architecture

Triplane vs. 3D Voxels Open-world sparse-view reconstruction requires extensive priors, which

can be learned through a large-scale transformer. Prior arts [141, 286, 315, 320, 341] typically

utilize the triplane representation, which decomposes a 3D neural field into a set of 2D planes.

While straightforward for processing by transformers, the triplane representation lacks explicit

3D spatial structures and makes it hard to enable precise interaction between each 3D location

and its corresponding 2D projected pixels from multi-view images. For instance, these methods

often simply apply self-attention across all triplane patch tokens and cross-attention between

triplane tokens and all multi-view image tokens. This all-to-all attention is not only costly

but also makes the methods cumbersome to train. Moreover, the triplane representation often

shows results with notable artifacts at the boundaries of patches and may suffer from limited

expressiveness for complex structures. Consequently, we choose the 3D voxel representation

instead, which explicitly preserves the 3D spatial structures.

Combining Transformer with 3D Convolution To leverage the explicit 3D structure and the

powerful expressiveness of a large-scale transformer model while avoiding an explosion of

computational costs, we propose VoxelFormer and SparseVoxelFormer, which follow a 3D UNet

architecture while integrating a transformer at the bottleneck. The overall idea is that we use

local 3D convolution to encode and decode a high-resolution 3D feature volume, while the global

transformer layer handles reasoning and memorizing priors for the compressed low-resolution

feature volume. Specifically, as shown in Figure 4.2, a 3D feature volume begins with a learnable

token shared by all 3D voxels. With the 3D voxel coordinates, we can leverage the projection

matrix to enable each 3D voxel to aggregate 2D local features from multi-view images via a

projection-aware cross-attention layer. By iteratively performing projection-aware cross-attention

and 3D (sparse) convolution, we can compress the 3D volume to a lower-resolution one. After

compression, each 3D voxel feature then serves as a latent token, and a deep transformer model

65



is applied to a sequence of all 3D voxel features (position encoded) to enhance the model’s

expressiveness. Finally, we use the convolution-based inverse upper branch with skip connection

to decode a 3D feature volume with the initial high resolution.

Projection-Aware Cross Attention Regarding 3D-2D interaction, the input multi-view RGB and

normal images are initially processed by a 2D feature extractor, such as a trainable DINOv2 [218],

to generate multi-view patch features. While previous cost-volume-based methods [26, 184]

typically use mean or max pooling to aggregate multi-view 2D features, these simple pooling

operations might be suboptimal for addressing occlusion and visibility issues. Instead, we

propose a projection-aware cross-attention mechanism to adaptively aggregate the multi-view

features for each 3D voxel. Specifically, we project each 3D voxel onto the m views to interpolate

m RGB and normal features. We then concatenate these local patch features with the projected

RGB and normal values to form m 2D features. In the projection-aware cross-attention module,

we use the 3D voxel feature to calculate a query and use both the 3D voxel feature and the m

2D features to calculate m+1 keys and values. A cross-attention is then performed for each 3D

voxel, enabling precise interaction between each 3D location and its corresponding 2D projected

pixels, and allowing adaptive aggregation of 2D features.

Coarse-to-Fine Feature Generation As shown in Figure 4.2, to generate a high-resolution

3D feature volume that captures the fine-grained details of 3D shapes, we follow previous

work [161, 392] by employing a coarse-to-fine strategy. Specifically, we first use VoxelFormer,

which is equipped with full 3D convolution, to predict a low-resolution, coarse 3D occupancy

volume. Each voxel in this volume stores a binary value indicating whether it is close to

the surface. The predicted occupied voxels are then subdivided to create higher-resolution

sparse voxels. Next, we utilize a second module, SparseVoxelFormer, which features 3D sparse

convolution [276], to predict features for these sparse voxels. After this, we can interpolate the

3D feature of any near-surface 3D point, which encodes both geometric and color information,

from the high-resolution sparse feature volume. The features can then be fed into various MLPs

to learn the corresponding fields.

66



4.2.2 Unified Single-Stage Training: Surface Rendering with SDF
Supervision

Existing works typically use NeRF [202] and volume rendering or 3D Gaussian splat-

ting [127] since they come with a relatively easy and stable learning process. However, extracting

high-quality meshes from their results is often non-trivial. For example, directly applying March-

ing Cubes [185] to density fields of learned NeRFs typically generates meshes with many

artifacts. Recent methods [319, 320, 341] have designed complex, multi-stage “NeRF-to-mesh”

training with differentiable surface rendering, but the generated meshes still leave room for

improvement. On the other hand, skipping a good initialization and directly learning meshes

from scratch using purely differentiable surface rendering losses is also infeasible, as it is highly

unstable to train and typically results in distorted geometry.

In this work, we propose leveraging explicit 3D supervision in addition to 2D rendering

losses. As shown in Figure 4.2, we task MeshFormer with learning a signed distance function

(SDF) field supervised by a high-resolution (e.g., 5123) ground truth SDF volume. The SDF loss

provides explicit guidance for the underlying 3D geometry and facilitates faster learning. It also

allows us to use mesh representation and differentiable surface rendering from the beginning

without worrying about good geometry initialization or unstable training, as the SDF loss serves

as a strong regularization for the underlying geometry. By combining surface rendering with

explicit 3D SDF supervision, we train MeshFormer in a unified, single-stage training process. As

shown in Figure 4.2, we employ three tiny MLPs that take as input the 3D feature interpolated

from the 3D sparse feature volume to learn an SDF field, a 3D color texture, and a 3D normal

texture. We extract meshes from the SDF volume using dual Marching Cubes [254] and employ

NVDiffRast [136] for differentiable surface rendering. We render both the multi-view RGB and

normal images and compute the rendering losses, which consist of both the MSE and perceptual

loss terms. As a result, our training loss can be expressed as:

67



L = λ1L
color

MSE +λ2L
color

LPIPS +λ3L
normal

MSE +λ4L
normal

LPIPS +λ5Locc +λ6LSDF (4.1)

where Locc and LSDF are MSE losses for occupancy and SDF volumes, and λi denotes the weight

of each loss term. Note that we do not use mesh geometry to derive normal maps; instead, we

utilize the learned normal texture from the MLP, which will be detailed later.

4.2.3 Fine-Grained Geometric Details: Normal Guidance and Geometry
Enhancement

Without dense-view correspondences, 3D reconstruction from sparse-view RGB images

typically struggles to capture geometric details and suffers from texture ambiguity. While many

recent works [141, 320, 341] attempt to employ large-scale models to learn mappings from RGB

to geometric details, this typically requires significant computational resources. Additionally,

these methods are primarily trained using 3D data, but it’s still uncertain whether the scale of 3D

datasets is sufficient for learning such extensive priors. On the other hand, unlike RGB images,

normal maps explicitly encode geometric information and can provide crucial guidance for 3D

reconstruction. Notably, open-world normal map estimation has achieved great advancements.

Many recent works [64, 183, 262] demonstrate that 2D diffusion models, trained on billions of

natural images, embed extensive priors and can be fine-tuned to predict normal maps. Given the

significant disparity in data scale between 2D and 3D datasets, it may be more effective to use

2D models first for generating geometric guidance.

Input Normal Guidance As shown in Figure 4.2, in addition to multi-view RGB images,

MeshFormer also takes multi-view normal maps as input, which can be generated using recent

open-world normal estimation models [64, 183, 262]. In our experiments, we utilize Zero123++

v1.2 [262], which trains an additional ControlNet [381] over the multi-view prediction model.

The ControlNet takes multi-view RGB images, predicted by Zero123++, as a condition and

68



produces corresponding multi-view normal maps, expressed in the camera coordinate frame.

Given these maps, MeshFormer first converts them to a unified world coordinate frame, and

then treats them similarly to the multi-view RGB images, using projection-aware cross-attention

to guide 3D reconstruction. According to our experiments (Sec. 4.3.4), the multi-view normal

maps enable the networks to better capture geometry details, and thus greatly improve final mesh

quality.

Geometry Enhancement While the straightforward approach of deriving normal maps from

the learned mesh and using a normal loss to guide geometry learning has been commonly used,

we find that this approach makes our mesh learning less stable. Instead, we propose learning a

3D normal texture, similar to a color texture, using a separate MLP. By computing the normal

loss for MLP-queried normal maps instead of mesh-derived normal maps, we decouple normal

texture learning from underlying geometry learning. This makes the training more stable, as

it is easier to learn a sharp 3D normal map than to directly learn a sharp mesh geometry. The

learned 3D normal texture can be exported with the mesh, similar to the color texture, to support

various graphics rendering pipelines. In applications that require precise 3D geometry, such

as 3D printing, the learned normal texture can also be used to refine the mesh geometry with

traditional algorithms. Specifically, during inference, after extracting a 3D mesh from the SDF

volume, we utilize a post-processing algorithm [214] that takes as input the 3D positions of the

mesh vertices and the vertex normals estimated from the MLP. The algorithm adjusts the mesh

vertices to align with the predicted normals in a few seconds, further enhancing the geometry

quality and generating sharp geometric details, as shown in Figure 4.5.

69



4.3 Experiments
In
pu
t

O
ur
s

M
es
hL
RM

In
st
an
tM
es
h

LG
M

Tr
ip
oS
R

Figure 4.3. Qualitative Comparison of Single-Image-to-3D (GSO dataset). Both the textured
and textureless mesh renderings are shown. Please zoom in to examine details and mesh quality.

4.3.1 Implementation Details and Evaluation Settings

Implementation Details We trained MeshFormer on the Objaverse [50] dataset. The total

number of network parameters is approximately 648 million. We trained the model using 8 H100

70



Figure 4.4. Application: Text to 3D. Given a text prompt, a 2D diffusion model first predicts
multi-view RGB and normal images, which are then fed to MeshFormer for 3D reconstruction.

GPUs for about one week (350k iterations) with a batch size of 1 per GPU, although we also

show that the model can achieve similar results in just two days.

Evaluation Settings We evaluate the methods on two datasets: GSO [59] and OmniOb-

ject3D [330]. Both datasets contain real-scanned 3D objects that were not seen during training.

For the GSO dataset, we use all 1,030 3D shapes for evaluation. For the OmniObject3D dataset,

we randomly sample up to 5 shapes from each category, resulting in 1,038 shapes for eval-

uation. We utilize both 2D and 3D metrics. For 3D metrics, we use both the F-score and

Chamfer distance (CD), calculated between the predicted meshes and ground truth meshes,

71



Figure 4.5. Geometry enhancement generates sharper details. Please zoom in to see the details.

following [161, 341]. For 2D metrics, we compute both PSNR and LPIPS for the rendered color

images. Since each baseline may use a different coordinate frame for generated results, we

carefully align the predicted meshes of all methods to the ground truth meshes before calculating

the metrics.

4.3.2 Comparison with Single/Sparse-View to 3D Methods

We compare MeshFormer with recent open-world feed-forward single/sparse-view to

3D methods, including One-2-3-45++ [161], TripoSR [286], CRM [315], LGM [277], In-

stantMesh [341], and MeshLRM [320]. Many of these methods have been released recently and

should be considered concurrent methods. For MeshLRM [320], we contacted the authors for

the results. For the other methods, we utilized their official implementations.

Since input settings differ among the baselines, we evaluate all methods in a unified

single-view to 3D setting. For the GSO dataset, we utilized the first thumbnail image as the

single-view input. For the OmniObject3D dataset, we used a rendered image with a random pose

as input. For One-2-3-45++ [161], InstantMesh [341], MeshLRM [320], and our MeshFormer,

we first utilized Zero123++ [262] to convert the input single-view image into multi-view images

72



before 3D reconstruction. Other baselines follow their original settings and take a single-view

image directly as input. In addition to the RGB images, our MeshFormer also takes additional

multi-view normal images as input, which are also predicted by Zero123++ [262]. Note that

when comparing with baseline methods, we never use ground truth normal images to

ensure a fair comparison.

In Figure 4.3, we showcase qualitative examples. Our MeshFormer produces the most

accurate meshes with fine-grained, sharp geometric details. In contrast, baseline methods produce

inferior mesh quality. For example, TripoSR directly extracts meshes from the learned NeRF

representation, resulting in significant artifacts. While InstantMesh and MeshLRM use mesh

representation in their second stage, notable uneven artifacts are still observable upon a zoom-in

inspection. Additionally, all baseline methods incorrectly close the surface of the copper bell.

We also provide quantitative results in Tab. 4.1. Although our baselines include four methods

released just one or two months before the time of submission, our MeshFormer significantly

outperforms many of them and achieves the best performance on most metrics across two datasets.

For the color LPIPS metric, our performance is very similar to MeshLRM’s, despite a perceptual

loss being their main training loss term. We also highlight that many of the baselines require

over one hundred GPUs for training, whereas our model can be efficiently trained with just 8

GPUs. Please refer to Sec. 4.3.4 for analysis on training efficiency.

4.3.3 Application: Text to 3D

In addition to the single image to 3D, MeshFormer can also be integrated with 2D

diffusion models to enable various 3D object generation tasks. For example, we follow the

framework proposed by [183] to finetune Stable Diffusion [249] and build a text-to-multi-view

model. By integrating this model, along with the normal prediction from Zero123++ [262], with

MeshFormer, we can enable the task of text to 3D. Figure 4.4 shows some interesting results,

where we convert a single text prompt into a high-quality 3D mesh in just a few seconds.

73



Table 4.1. Quantitative Results of Single Image to 3D. Evaluated on the 1,030 and 1,038
3D shapes from the GSO [59] and the OmniObject3D [330] datasets, respectively. One-2-3-
45++ [161], InstantMesh [341], MeshLRM [320], and our method all take the same multi-view
RGB images predicted by Zero123++ [262] as input. CD denotes Chamfer Distance.

Method
GSO [59] OmniObject3D [330]

F-Score ↑ CD ↓ PSNR ↑ LPIPS ↓ F-Score ↑ CD ↓ PSNR ↑ LPIPS ↓

One-2-3-45++ [161] 0.936 0.039 20.97 0.21 0.871 0.054 17.08 0.31
TripoSR [286] 0.896 0.047 19.85 0.26 0.895 0.048 17.68 0.28

CRM [315] 0.886 0.051 19.99 0.27 0.821 0.065 16.01 0.34
LGM [277] 0.776 0.074 18.52 0.35 0.635 0.114 14.75 0.45

InstantMesh [277] 0.934 0.037 20.90 0.22 0.889 0.049 17.61 0.28
MeshLRM [320] 0.956 0.033 21.31 0.19 0.910 0.045 18.10 0.26

Ours 0.963 0.031 21.47 0.20 0.914 0.043 18.14 0.27

Table 4.2. We compare methods using limited training resources. Evaluated on the GSO [59]
dataset.

Method Training Resources F-Score ↑ CD ↓ PSNR-C ↑ LPIPS-C ↓ PSNR-N ↑ LPIPS-N ↓

MeshLRM [320]
8×H100 48h

0.925 0.0397 21.09 0.26 21.69 0.22
Ours 0.960 0.0317 21.41 0.20 23.01 0.15

4.3.4 Analysis and Ablation Study

Explicit 3D structure vs. Triplane In Section 4.3.2, we demonstrated that MeshFormer

outperforms baseline methods that primarily utilize the triplane representation. Here, we highlight

two additional advantages of using the explicit 3D voxel structure: training efficiency and the

avoidance of “triplane artifacts”. Without leveraging explicit 3D structure, existing triplane-

based large reconstruction models require extensive computing resources for training. For

example, TripoSR requires 176 A100 GPUs for five days of training. InstantMesh relies on

OpenLRM [90], which requires 128 A100 GPUs for three days of training. MeshLRM also

utilizes similar resources during training. By utilizing explicit 3D structure and projective bias,

our MeshFormer can be trained much more efficiently using only 8 GPUs. To better understand

the gap, we trained both MeshLRM and our MeshFormer under very limited training resources,

and the results are shown in Table 4.2. When using only 8 GPUs for two days, we found that

MeshLRM failed to converge and experienced significant performance degradation compared to

74



Figure 4.6. The triplane-based method MeshLRM [320] has difficulty capturing words on
objects, even when ground truth multi-view RGB images are used as input.

Table 4.3. Ablation Study on the GSO [59] dataset. -C denotes color renderings, and -N
denotes normal renderings. CD stands for Chamfer distance. By default, ground truth multi-view
images are used to exclude the influence of errors from 2D diffusion models.

Setting PSNR-C ↑ LPIPS-C ↓ PSNR-N ↑ LPIPS-N ↓ F-Score ↑ CD ↓

a w/o normal input 24.82 0.129 24.85 0.107 0.964 0.024
b w/o SDF supervision 20.72 0.244 20.42 0.257 0.940 0.035
c w/o transformer layer 26.63 0.101 29.80 0.036 0.992 0.013
d w/o projection-aware cross-attention 25.48 0.155 29.01 0.045 0.991 0.013
e w/o geometry enhancement 27.95 0.085 29.10 0.048 0.992 0.012
f w/ pred normal 26.84 0.096 26.99 0.067 0.987 0.017

g full 28.15 0.083 29.80 0.036 0.992 0.012

the results shown in Table 4.1, while our MeshFormer had already converged to a decent result,

close to the fully-trained version, demonstrating superior training efficiency.

We observe that the triplane typically generates results with axis-aligned artifacts, as

shown in Figure 4.3 (5th row, please zoom in). As demonstrated in Figure 4.6, these artifacts

also cause difficulties for MeshLRM [320] in capturing the words on objects. These limitations

are likely caused by the limited number of triplane tokens (e.g., 32× 32× 3), constrained by

the global attention, which often leads to artifacts at the boundaries of the triplane patches. In

contrast, MeshFormer leverages sparse voxels, supports a higher feature resolution of 2563, and

is free from such artifacts.

Normal Input and SDF supervision As shown in Table 4.3 (a), the performance significantly

drops when multi-view input normal maps are removed, indicating that the geometric guidance

75



Figure 4.7. Ablation study on input normal maps. Evaluated on the GSO dataset [59]. “w/o
normal” indicates that the model is trained with multi-view RGB images only. “w/ predicted
normal” indicates that the model is trained with ground truth normal maps but evaluated with
predicted normals by Zero123++ [262]. “w/ GT normal” indicates that the model is trained and
tested with ground truth normals.

and clues provided by normal images are crucial for facilitating network training, particularly for

local geometric details. In (f), we replace ground truth normal maps with normal predictions by

Zero123++ [262] and observe a notable performance gap compared to (g). This indicates that

although predicted multi-view normal images can be beneficial, existing 2D diffusion models still

have room for improvement in generating more accurate results. See Figure 4.7 for qualitative

examples. As shown in (b), if we remove the SDF loss after the first epoch and train the network

using only surface rendering losses, the geometry learning quickly deteriorates, resulting in poor

geometry. This explains why existing methods [141, 320] typically employ complex multi-stage

training and use volume rendering to learn a coarse NeRF in the initial stage. By leveraging

explicit 3D SDF supervision as strong geometric regularization, we enable a unified single-stage

training, using mesh as the only representation.

Projection-Aware Cross-Attention and Transformer Layers We propose to utilize projection-

76



aware cross-attention to precisely aggregate multi-view projected 2D features for each 3D

voxel. In conventional learning-based multi-view stereo (MVS) methods [26, 184], average or

max pooling is typically employed for feature aggregation. In Table 4.3 (d), we replace the

cross-attention with a simple average pooling and we observe a significant performance drop.

This verifies that projection-aware cross-attention provides a more effective way for 3D-2D

interaction while simple average pooling may fail to handle the occlusion and visibility issues.

In the bottleneck of the UNet, we treat all 3D (sparse) voxels as a sequence of tokens and

apply transformer layers to them. As shown in row (c), after removing these layers, we observe

a performance drop in metrics related to texture quality. This indicates that texture learning

requires more extensive priors and benefits more from the transformer layers.

Geometry Enhancement We propose to learn an additional normal map texture and apply a

traditional algorithm as post-processing for geometry enhancement during inference. As shown

in Figure 4.5, the geometry enhancement aligns the mesh geometry with the learned normal

texture and generates fine-grained sharp details. In some cases (such as the wolf), the meshes

output by the network are already good enough, and the difference caused by the enhancement

tends to be subtle. Row (e) also quantitatively verifies the effectiveness of the module.

4.4 Summary

We present MeshFormer, an open-world sparse-view reconstruction model that leverages

explicit 3D native structure, supervision signals, and input guidance. MeshFormer can be

conveniently trained in a unified single-stage manner and efficiently with just 8 GPUs. It

generates high-quality meshes with fine-grained geometric details and outperforms baselines

trained with over one hundred GPUs.

MeshFormer relies on 2D models to generate multi-view RGB and normal images from

a single input image or text prompt. However, existing models still have limited capabilities

to generate consistent multi-view images, which can cause a performance drop. Strategies to

77



Figure 4.8. Learned meta-handles for a single chair. Each column indicates a meta-handle and
shows three deformations along the direction of that meta-handle, with red arrows highlighting the
deformed region. Our method learns intuitive and disentangled meta-handles in an unsupervised
fashion, which factorize all the plausible deformations for the shape.

improve model robustness against such imperfect predictions are worth further exploration, and

we leave this as future work.

4.5 Other Related Projects on Leveraging 3D Priors for
Reconstruction and Generation

In MeshFormer, we find that by incorporating various types of 3D-native priors into the

model design, we can significantly improve both the mesh quality and the training efficiency of

the feed-forward sparse-view reconstruction model.

Additionally, I have two related projects that also leverage explicit 3D priors to benefit

learning-based 3D generation and reconstruction. One project aims to learn all plausible defor-

mations of a given input shape, enabling an automated approach for the self-proliferation of 3D

meshes. The other project focuses on the long-standing problem of meshing point clouds and

introduces a novel learning-based algorithm to learn priors from data that aid in reconstructing

ambiguous structures.

4.5.1 Learning Deformation Meta-Handles of 3D Meshes

3D Meshes can store sharp edges and smooth surfaces compactly. However, Learning

to generate 3D meshes is much more challenging than 2D images due to the irregularity of

78



Figure 4.9. Learned meta-handles across different shapes. The figure includes six meta-handles,
and each color indicates a distinct one. For each meta-handle, the figure demonstrates the
corresponding deformations on three different shapes, with the red arrows highlighting the
deformation direction. The meta-handles are consistent across various shapes.

mesh data structures and the difficulty in designing loss functions to measure geometrical and

topological properties. For such reasons, to create new meshes, instead of generating a mesh

from scratch, recent work assumes that the connectivity structure of geometries is known so

that the creation space is restricted to changing the geometry without altering the structure. For

example, [273, 274] create new shapes by deformations of one template mesh. They, however,

limit the scope of the shape generation to possible variants of the template mesh. We thus propose

a 3D conditional generative model that can take any existing mesh as input and produce its

plausible variants. Our approach integrates a target-driven fitting component and a conditional

generative model. At test time, it allows both deforming the input shape to fit the given target

shape and exploring plausible variants of the input shape without a target.

Our main design goals are two-fold: improving the plausibility of the output shapes

and enhancing the interpretability of the learned latent spaces. To achieve the goals, the key

79



Figure 4.10. Two deformations resulted from moving the red control point along the arrow
directions.

Source Shape
Control-Point

Handles
Biharmonic 
Coordinates

Meta-Handles
w/ Ranges

Sampled
Deformation

Geometric &
Adversarial Reg.

Meta-
Handle

Net

Deform
Net

Target Shape

Predicted 
Deformation

Disentangle
-ment Reg.

Chamfer 
Distance

Randomly 
Sample

Figure 4.11. Method overview of DeepMetaHandles. We learn the meta-handles in an unsuper-
vised fashion.

is to choose a suitable parameterization of deformations. One option is to follow the recent

target-driven deformation network [79, 272, 307, 366], which parameterizes the deformation

as new positions of all the mesh vertices. However, such a large degree of freedom often

results in the loss of fine-grained geometric details and tends to cause undesirable distortions.

Instead of following the above works, we leverage a classical idea in computational geometry,

named deformation handles, to parameterize smooth deformations with a low degree of freedom.

Specifically, we propose to take a small set of control points as deformation handles and utilize

a deformation function defined on the control points and their biharmonic coordinates [311].

Please refer to Figure 4.10 for the illustration.

Not all the translations of the control points lead to plausible deformations. Based on

the control-point handles, we aim to learn a low-dimensional deformation subspace for each

shape, and we expect the structure of this subspace to exhibit interpretability. In contrast to

80



typical generative models, where shape variations are embedded into a latent space implicitly,

our method explicitly factorizes all the plausible deformations of a shape with a small number

of interpretable deformation functions. Specifically, for each axis of our input-dependent latent

space, we assign a deformation function defined with the given set of control points and offset

vectors on them so that each axis corresponds to an intuitive deformation direction. Since each

axis is explicitly linked to multiple control-point handles, we thus call them meta-handles. We

enforce the network to learn disentangled meta-handles, in the sense that a meta-handle should

not only leverage the correlations of the control-point handles, but also correspond to a group

of parts that tend to deform altogether according to the dataset. We hope that the disentangled

meta-handles allow us to deform each part group independently in downstream applications.

Beyond choosing the parameterization of deformations, we have to overcome the chal-

lenge of examining the plausibility. In the popular adversarial learning framework, a straightfor-

ward approach would be converting the output mesh to voxels or point clouds and exploiting

voxel or point cloud based discriminators. The conversions, however, may discard some im-

portant geometric details. In our method, we instead project the shapes into a 2D space with a

differentiable soft rasterizer [171] and employ a 2D discriminator. We found that this architecture

can be trained more robustly, and it captures local details of plausible shapes.

Our deformation-based conditional generative model, named DeepMetaHandles, takes

random pairs of source and target shapes as input during training. For the source shape, the

control points are sampled from its mesh vertices by farthest point sampling, and the biharmonic

cooridnates [311] for control-point handles are pre-computed. As shown in Figure 4.11, our

network consists of two main modules: MetaHandleNet and DeformNet. The MetaHandleNet

first predicts a set of meta-handles for the source shape, where each meta-handle is represented

as a combination of control-point offsets. A deformation range is also predicted for each meta-

handle, describing the scope of plausible deformations along that direction. The learned meta-

handles, together with the corresponding ranges, define a deformation subspace for the source

shape. Then, DeformNet predicts coefficients multiplied to the meta-handles, within the predicted

81



Figure 4.12. The general pipeline of our remeshing algorithms from a local view. The candidate
triangles close to the underlying surfaces are marked in pink.

ranges, so that the source shape deformed with the coefficients can match the target shape. To

ensure the plausibility of variations within the learned subspace, we then randomly sample

coefficients within the predicted ranges and apply both geometric and adversarial regularizations

to the corresponding deformations.

Figure 4.8 shows examples of the learned meta-handles, which interestingly resemble

natural deformations of semantic parts, such as lifting the armrests or bending the back of a

chair. Our experiments also show that the learned meta-handles are consistent across various

shapes and well disentangle the shape variation space (see Figure 4.9). Finally, we compare our

approach with other target-driven deformation techniques [79, 104, 307, 366] and demonstrate

that our method produces superior fitting results.

4.5.2 Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio
Guidance

Reconstructing high-quality 3D meshes from point clouds thus has been studied for

quite a long time and serves as a prerequisite for numerous real-world applications, including

autonomous driving, augmented reality, and robotics. Despite its long history, the mesh recon-

struction problem remains unresolved. Traditional methods [16, 125, 185] typically reconstruct

the mesh either by explicitly connecting the points or implicitly approximating the surface,

82



Geodesic Distance

Intrinsic-Extrinsic Ratio

Geodesic
Distance

Intrinsic-
Extrinsic
Ratio

0

1

1

τ
Geodesic
Distance

Intrinsic-
Extrinsic
Ratio

Figure 4.13. In each example, we sample a slice from the input point cloud, and demonstrate the
geodesic distance and the intrinsic-extrinsic ratio (IER) of each point to the key point (marked in
red).

Input Point Cloud P
𝑛	×	3

k-NN Candidate 
Proposition

SparseConv
Net

Point Cloud Feature 𝜑(𝑃)
𝑛	×	128

…

∆𝐴𝑃.𝑃/

…

∆𝐴𝑃/𝑃0

∆𝐴𝑃.𝑃0

∆𝐴𝑃0𝑃1

Initial Candidates
𝑚	×	3

∆𝑃3𝑃1𝐴

Indexed-Concat 
& Pooling

Candidate Feature 
𝑚	×	128

…

MLP
MLP

… Shared

MLP
MLP

Logits 
𝑚	×	3

Deep Candidate Filtering and Scoring 

Ground-Truth Mesh
Intrinsic-Extrinsic 

Ratio Guidance

Ground Truth Label Generation 
(Training Only)

Candidate 
Label
𝑚	×		1

Loss

∆𝐴𝑃.𝑃/

…

∆𝐴𝑃/𝑃0

Filtered Candidates
𝑚′	×	3

Iterative Candidate 
Selection

Reconstructed Mesh

Inference Only ∆𝐴𝑃0𝑃1

P

Figure 4.14. The figure shows the full pipeline of our reconstruction algorithm. Given a point
cloud as input, we first propose a set of candidate triangles. During training, the network is trained
to classify the candidate triangles with intrinsic-extrinsic ratio supervision from the ground truths.
During inference, the predicted label is used to filter out and score the candidate triangles, which
are then merged into the output mesh by our iterative candidate selection algorithm.

both of which resort to local geometric hints. Without reasoning about the shape, traditional

methods may be hard to handle the ambiguous structures when the resolution of the input point

cloud is limited. For example, the ambiguous structures may include thin structures consisting

of two very close surfaces, independent but spatially adjacent parts, and corners. Traditional

methods tend to produce distortion or connect independent parts incorrectly when facing these

structures. However, the reconstruction of these fine-grained structures may be essential for

many downstream applications such as robotics grasping which needs an accurate understanding

of part-level mobility. Moreover, traditional methods are typically sensitive to hyper-parameters.

83



For most of these methods, a dedicated parameter-tuning is required for each input, making batch

processing of point clouds impractical.

With the rapid development of 3D deep learning and the availability of large-scale 3D

datasets, people tend to learn geometric or semantic priors from data. Unlike 2D images and 3D

voxels, polygon meshes is an irregular geometric representation, which prevents it from being

generated by the neural network directly. However, there are still lots of attempts to explore

the neural-network-compatible representations for mesh generation, including template meshes

with deformation [68, 76, 77, 123, 171, 220, 300, 322], 2D squares with folding [56, 78, 361],

primitives with assembly [33, 260, 288], implicit field function [35, 71, 199, 222], and meshlets

with optimization [12, 324]. Existing learning-based methods typically follow the “encoder-

decoder” paradigm. The limited capability of the network prevents existing methods from

generating fine-grained structures and details. Also, since most existing methods learn the priors

at the object level, they tend to memorize the overall shapes and typically cannot generalize to

unseen categories.

To this end, we propose a novel method that reconstructs meshes from point clouds by

leveraging the intermediate representation of triangle faces [166]. Unlike existing methods, our

method fully utilizes the input point clouds, which are on the ground truth surface in most cases,

and then estimate the local connectivity with the help of learned guidance. More specifically, as

shown in Figures 4.14 and 4.12, we first propose a set of candidate triangle faces, which could be

the elements of the reconstructed mesh, by constructing a k-nearest neighbor (k-NN) graph on

the input point cloud. We then utilize the neural network to filter out the incorrect candidates and

provide cues for sorting the remaining candidates. We find that the ratio of geodesic distance

(intrinsic metric) and Euclidean distance (extrinsic metric) between two vertices may provide

strong cues for inferring the connectivity and can naturally serve as the supervision for the

candidate classification task (see Figure 4.13). Since there are multiple ways to triangulate a

surface, we only filter out those candidates that should never appear in the reconstructed mesh,

such as the candidates linking two independent parts. A greedy post-processing algorithm is then

84



used to sort all the remaining candidates and merge them into the final mesh.

We demonstrate that our algorithm can preserve fine-grained details and handle ambigu-

ous structures with the help of learned intrinsic-extrinsic guidance, as shown in Figure 4.15.

Since our method reconstructs meshes by estimating local connectivity, which relies mainly on

the local geometric information, it can well generalize to unseen categories. In experiments

on the ShapeNet dataset, our method outperforms both the existing traditional methods and

learning-based mesh generative methods with regard to all commonly used metrics, including the

F-score, Chamfer distance, and normal consistency. We also provide extensive ablation studies

on different sampling densities, sampling strategies, noisy levels, and real scans to demonstrate

our generalizability and robustness.

Chapter 4 has been partially submitted for peer review as the paper titled “MeshFormer:

High-Quality Mesh Generation with a 3D-Guided Reconstruction Model”, authored by Minghua

Liu, Chong Zeng, Xinyue Wei, Ruoxi Shi, Linghao Chen, Chao Xu, Mengqi Zhang, Zhaoning

Wang, Xiaoshuai Zhang, Isabella Liu, Hongzhi Wu, and Hao Su. The dissertation author was the

primary investigator and lead author of this paper.

85



Figure 4.15. Qualitative comparison on the ShapeNet dataset. Poisson surface reconstruc-
tion [125, 126], marching cube (APSS) [80, 185], ball-pivoting algorithm [16], AtlasNet [78],
Deep Marching Cubes [149], DeepSDF [222], Deep Geometric Prior [324], our method, and
ground-truth meshes with input point clouds are shown from top to bottom.

86



Chapter 5

Open-World 3D Understanding: Multi-
Modal Representation Learning

In addition to open-world 3D object generation, open-world 3D object-level understand-

ing also plays a critical role in various applications, such as augmented/virtual reality, autonomous

driving, and robotics. A straightforward approach involves projecting 3D data into the 2D domain

through rendering, followed by the use of large-scale pre-trained 2D vision models, such as CLIP,

to analyze the 2D images. This enables zero-shot 3D shape classification [383, 396]. However,

these methods are hindered by occlusion, information loss during projection, and unnecessary

latency caused by point cloud rendering and multiple CLIP inferences.

To overcome the limitations caused by projection, it is necessary to train a 3D-native

model by distilling knowledge from pretrained 2D models. However, training a 3D-native model

requires a set of 3D shapes, and the amount of knowledge that can be distilled is determined by the

size of the 3D dataset. For example, ULIP [350] aims to learn a joint representation space between

language, 2D images, and 3D shapes, but uses a small-scale 3D dataset ShapeNetCore [22] for

knowledge distillation. Specifically, ULIP fixes the 2D CLIP text and image encoders and trains

a dedicated 3D-native point cloud encoder to extract 3D shape representations. The 3D encoder

strives to align the 3D shape embedding space with the CLIP image and language embedding

spaces by utilizing contrastive learning across all three modalities. However, since ULIP is only

trained on 52K shapes of 55 object categories, it still struggles with out-of-distribution shape

87



+

+

+

+

Figure 5.1. Left: Zero-shot shape classification on the Objaverse-LVIS (1,156 categories) and
ModelNet40 datasets. OpenShape outperforms previous methods by a large margin. We exclude
shapes in Objaverse-LVIS during training, and we also retrain ULIP [350] on our ensembled
training shapes for fair comparison. Right: Our shape representations encode a broad range
of semantic and visual concepts. We input two 3D shapes and use their shape embeddings to
retrieve the top three shapes whose embeddings are simultaneously closest to both inputs. See
Section. 5.3.4 for more details.

categories and fails to demonstrate an impressive open-world understanding of 3D shapes.

In this chapter, we propose a novel method called OpenShape, which follows a similar

paradigm as ULIP but aims to achieve a more generalized and scalable joint representation

space encompassing language, 2D images, and 3D shapes. Our focus mainly lies on scaling up

representation learning and addressing corresponding challenges. In OpenShape, we emphasize

four key factors during the training process: (a) data scale: we significantly increase the scale

of 3D training data by combining four public 3D shape datasets, resulting in 876k 3D shapes

covering much more diverse categories; (b) text quality: the 3D shapes from our main dataset,

Objaverse [50], is dominated with inaccurate or uninformative text descriptions. Given the

data scale, we propose three strategies to automatically filter and enrich the text descriptions;

(c) 3D backbone scaling: since most existing 3D backbones target small datasets, we find that

it’s important but non-trivial to scale up the 3D backbones; and (d) data resampling: since the

ensembled dataset is highly unbalanced, we utilize hard negative mining to improve the model’s

88



discriminative ability.

We first evaluate OpenShape on the zero-shot 3D shape classification task. As shown in

Figure 5.1, OpenShape outperforms previous zero-shot approaches on the ModelNet40 dataset by

at least 20%. Moreover, OpenShape excels at handling long-tail categories. On the challenging

Objaverse-LVIS dataset, which contains 1,156 categories, OpenShape achieves a 46.8% accuracy,

significantly surpassing previous methods. Notably, this performance gap remains even when

ULIP is retrained on our ensembled datasets, highlighting the superiority of our text enrichment

and training strategies. Besides zero-shot classification, we present demos that showcase the wide

range of visual and semantic concepts learned by OpenShape. For example, in Figure 5.1-right,

we take two 3D shapes as input and use their OpenShape embeddings to retrieve the top three

shapes whose embeddings are simultaneously closest to both inputs from our ensembled dataset.

The retrieved shapes exhibit an interesting combination of the semantic and geometric elements

from both input shapes. Furthermore, since we align our 3D shape embedding space with the

CLIP language and image embedding space, we demonstrate that OpenShape embeddings can

be easily integrated with other CLIP-based models to perform cross-modality tasks such as point

cloud captioning and point cloud-conditioned image generation.

5.1 Related Work

5.1.1 CLIP for 3D Learning

Image-language models like CLIP have achieved remarkable performance through large-

scale image-text pretraining [5, 115, 144, 147, 234, 236, 249, 377]. As these models excel at

capturing rich visual concepts and possess impressive zero-shot capabilities, they have been

applied to various 3D vision tasks. For instance, numerous recent works utilize CLIP to facilitate

zero-shot text-to-3D generation [9, 20, 96, 110, 114, 129, 139, 179, 201, 252, 342, 374], typically

through CLIP-guided per-scene optimization. From a recognition perspective, some works focus

on scene-level representation, aiming to leverage CLIP priors for zero-shot 3D segmentation

89



or detection in both indoor [58, 85, 105, 113, 128, 188, 224, 248, 358, 374, 379] and outdoor

scenes [30, 94]. Meanwhile, another line of work focuses on shape-level understanding, targeting

zero-shot shape classification [91, 230, 350, 383, 396] and part segmentation [1, 168]. There

are two primary working paradigms for these methods. The first [106, 383, 396] involves using

images as a medium representation, projecting 3D point clouds into 2D and employing 2D CLIP

for inference. However, these methods typically suffer from occlusion and information loss

during projection, along with unnecessary latency due to point cloud rendering and multiple

2D CLIP inferences. The second paradigm involves training a 3D-native encoder attempting to

distill or fuse CLIP features into 3D representations. Our paper follows this paradigm.

5.1.2 3D Shape Representation Learning

Various works have studied self-supervised pretraining for point clouds by designing

pretext tasks [3, 60, 226, 258, 282] such as self-reconstruction [4, 53, 238, 296], masked auto-

encoding [93, 221, 372], distortion reconstruction [198, 253, 269], normal estimation [238], and

contrastive learning [251, 338, 388]. These tasks enhance models’ shape representations and

improve their performance on downstream applications, although they do not involve multimodal

semantic alignments during pretraining.

Recently, some works [91, 230, 350], exemplified by ULIP [350], have explored learning

multimodal joint representations for 3D shapes. They train 3D-native shape encoders by aligning

3D shape embeddings with CLIP’s language and/or image embeddings through multimodal

contrastive learning. Works like ReCon [230] further combines cross-modal contrastive learning

with masked auto-encoding for added enhancement. While these methods allow for zero-shot 3D

classification through the computation of 3D-text similarity, the amount of distilled knowledge

and their model capability are heavily limited by the small-scale training datasets used. Our

work follows this paradigm but aims to learn more generalizable and scalable representations to

enable open-world 3D shape understanding.

90



catalog images

high-resolution geometry & texture

physically-based renderings

ShapeNet
(52.5k)

3D-FUTURE
(16.6k)

ABO
(8.0k)

(a) Ensemble Datasets (b) Text Filtering & Enrichment

Zero-Shot
Classification

Text-to-3D
(Retrieval)

3D-to-Text
(Captioning)

Image-to-3D
(Retrieval)

3D-to-Image
(Generation)

(c) Cross-Modal Alignment (d) Cross-Modal Applications

Objaverse
(798.8k)

original 
texts

filtered
textsGPT4

2D
renderings

Image
Caption

Image 
Retrieval

captions

retrieved
texts

Enriched Texts

XXL

Hard Negative
Mining

Te
xt

 
En

co
de

r
Im

ag
e 

En
co

de
r

PointCloud 
Encoder

Figure 5.2. (a) We ensemble four public 3D shape datasets, resulting in 876k shapes that
encompass diverse categories and concepts. (b) We propose three strategies to automatically
filter and enrich the noisy texts in the original datasets. (c) We train a 3D point cloud encoder
to align the 3D shape embedding space with the CLIP’s text and image embedding spaces. We
perform cross-modal contrastive learning with scaled 3D backbones and hard negative mining.
(d) OpenShape embeddings can be easily integrated with other CLIP-based models, enabling
various cross-modality tasks.

5.2 Proposed Method: OpenShape

We propose a novel method, OpenShape, for learning generalizable and scalable multi-

modal joint representation between language, 2D images, and 3D shapes, as shown in Figure 5.2.

We first introduce the multi-modal contrastive learning framework we used for aligning represen-

tations of three modalities in Section 5.2.1. We then elaborate how we create our training sets

and enrich our text data in Sections 5.2.2 and 5.2.3. In Section 5.2.4, we present how we scale

up our 3D backbone models. Finally, we propose a hard negative mining strategy to enhance

contrastive learning in Section 5.2.5.

5.2.1 Multi-Modal Representation Alignment

We aim to learn 3D shape representations that are aligned with pretrained CLIP embed-

ding spaces of language and image. As shown in Figure 5.2 (c), we train a 3D native encoder

f P that takes a 3D point cloud as input and extracts 3D shape feature. Following previous

works [91, 230, 350], such as ULIP [350], we utilize multi-modal contrastive learning for repre-

sentation alignment. Since CLIP is pretrained on a much larger scale data, we freeze both its

text encoder f T and its image encoder f I during feature alignment to preserve CLIP’s feature

priors and avoid model collapse. Specifically, given a sampled batch of triplets {(Pi,Ti, Ii)},

91



where Pi denotes a point cloud of a 3D shape, Ti and Ii denote corresponding text and image, the

contrastive loss is calculated as:

− 1
4n ∑

i

(
log

exp(hP
i ·hT

i /τ)

∑ j exp(hP
i ·hT

j /τ)
+ log

exp(hT
i ·hP

i /τ)

∑ j exp(hT
i ·hP

j /τ)
+ log

exp(hP
i ·hI

i/τ)

∑ j exp(hP
i ·hI

j/τ)
+ log

exp(hI
i ·hP

i /τ)

∑ j exp(hI
i ·hP

j /τ)

)
(5.1)

where n is the number of shapes in a batch; τ is a learnable temperature; hP
i = f P(Pi)/| f P(Pi)|,

hT
i = gT ( f T (Ti))/|gT ( f T (Ti))|, and hI

i = gI( f I(Ii))/|gI( f I(Ii))| denote normalized projected

features of Pi, Ti, and Ii, where gT and gI are two learnable linear projections. Since f T and f I

are frozen, we extract all f T (Ti) and f I(Ii) before training and cache them for acceleration. In

most of our experiments, we utilize OpenCLIP ViT-bigG-14 [109] as the pretrained CLIP model.

5.2.2 Ensembling 3D Datasets

Since the scale and diversity of training triplets play a crucial role in learning scalable

shape representations, we ensemble four currently-largest public 3D datasets for training as

shown in Figure 5.2 (a), resulting in 876k training shapes. Among these four datasets, ShapeNet-

Core [22], 3D-FUTURE [63] and ABO [46] are three popular datasets used by prior works. They

contain human-verified high-quality 3D shapes, but only cover a limited number of shapes and

dozens of categories. The Objaverse [50] dataset is a more recent dataset, containing many more

3D shapes and covering significantly more diverse categories. However, shapes in Objaverse

are mainly uploaded by web users and not verified by experts, and thus have uneven quality and

exhibit highly unbalanced distributions, necessitating further processing.

To create triplets for training, for each shape, we sample 10,000 points from the mesh

surface and interpolate the point colors according to the mesh textures. We also render 12

color images from the preset camera poses that uniformly cover the whole shape. For datasets

providing thumbnails, we include them as part of image candidates, since they typically capture

the shape from a better camera view. For the Objaverse dataset, we use the model name as the

raw text for each shape. For other datasets, we utilize provided metadata to create raw texts.

During each pretraining iteration, we randomly sample one rendered image or thumbnail for

each shape, and apply standard augmentation to the point clouds [350].

92



name: “homework xyz detailing”
GPT4: Remove

“Steampunk Goggles by MonoFlow on …”
“Steampunk Goggles Made from hand ...”

azure: “a pair of steampunk goggles”
blip: “steampunk goggles 3d model”

name: “Tue, 09 Oct 2018 17:12:39”
GPT4: Remove

“armchair”
“some of the other props done Chair10”

azure: “a blue plastic chair on a pink ...”
blip: “a 3d model of a blue shaped object”

name: “DOG A - 1of6 - for free …”
GPT4: Keep

“Black Labrador in front of a white …”
“Black Labrador puppy Vinyl Wall Mural”

azure: “a black dog sitting on a blue...”
blip: “a black dog sitting on a blue...”

name: “untitled”
GPT4: Remove “Nike AirMax 1 (Red/White)”

azure: “a close up of a shoe”
blip: “nike air max 1 - white / red”

“nike air max red and white”

Figure 5.3. Text Filtering & Enrichment Examples. In each example, the left section features
the thumbnail, model name, and GPT-4 filtering results. The upper right section shows image
captions from two captioning models, while the lower right section displays retrieved images
and their corresponding texts.

5.2.3 Text Filtering and Enrichment

We find that only applying contrastive learning between 3D shapes and 2D images

is insufficient to fuel zero-shot 3D classification, even when training on large-scale datasets.

We conjecture that this is caused by the inherent domain gap in CLIP’s language and image

embedding spaces, which is also observed by previous studies [148, 289]. Consequently, 3D-text

alignment is not guaranteed even if we obtain good 3D-image alignments via contrastive learning.

Therefore, we need to explicitly align 3D shapes with text. Along this process, to facilitate better

3D-text alignment, we introduce 3 techniques to improve the text quality: filtering, captioning,

and image retrieval, as shown in Figure 5.2 (b).

Filtering. As shown in Figure 5.3, the 3D shapes from our main dataset, Objaverse, is dominated

with noisy text descriptions (“names”) uploaded by web users. Many of the problematic texts can

be identified from the text itself without seeing the corresponding 3D shape. We thus leverage

a powerful large language model, GPT-4 [217], to filter out inaccurate or uninformative text

descriptions. We find that GPT-4 excels at recognizing irrelevant contents, such as timestamps,

pure model numbers, incomprehensible descriptions, random filenames (e.g., new project), and

93



random characters. Through GPT-4, we filter out about 30% of raw user texts. Note that we only

filter the texts, and still keep all shapes for training.

Captioning. We utilize BLIP [142] and the Azure cognition services to caption the 2D thumb-

nails (if present, or images rendered from a fixed frontal view) of the 3D models, obtaining two

texts for each shape. As shown in Figure 5.3, the captioning models can usually produce mean-

ingful and descriptive captions that either enhance user-uploaded texts or replace low-quality

ones. We also notice that the two caption models complement each other, leading to better

performance.

Image Retrieval. In addition to image captioning, we also perform image retrieval to obtain

additional descriptions of 3D models. We retrieve k-NN images of shape renderings from the

LAION-5B dataset [256] using the CLIP ViT-L retrieval index [13]. We then take the captions

of the k-NN images as the retrieved texts for our 3D models. Compared with captioning model

generations, retrieved texts cover a wider range of text styles. They can also include more

fine-grained semantics than both the user texts and the generated captions (e.g., “Labrador” in

Figure 5.3).

In each iteration of pretraining, for each shape, we first randomly sample a text source

category among the raw text (if unfiltered), the captions, and the retrieved texts. We then select a

text candidate from the selected category. We also apply the template-based prompt engineering

technique used in ULIP [350] to both training texts and test-time category names. Specifically,

we extend a word or a phrase to a collection of templated simple sentences and take their average

embedding.

5.2.4 Scaling Up 3D Point Cloud Backbones

Previous works on 3D point cloud learning have primarily focused on smaller-scale

datasets like ShapeNet. These techniques may not be directly applicable to our larger-scale

ensembled dataset and need to be scaled up accordingly. We find that different 3D backbones

may exhibit distinct behavior and scalability when trained on datasets with varying sizes. Specif-

94



Table 5.1. Comparison of different 3D backbones before scaling up their parameters. Models
are trained on ShapeNet [22] or our ensembled dataset excluding Objaverse-LVIS [50]. Zero-shot
classification performance are evaluated on ModelNet40 [333] and Objaverse-LVIS [50].

Model #Parameters.
Train on ShapeNet [22] Train on Ensemble-no-LVIS

ModelNet40 Objaverse-LVIS ModelNet40 Objaverse-LVIS

PointNet [228] 1.3M 67.0 9.3 74.9 24.4
DGCNN [312] 2.3M 67.8 9.0 74.2 24.8

PointMLP [191] 9.3M 73.5 12.9 82.9 36.6
PointNeXt [231] 2.8M 72.6 12.2 81.6 33.8
PointBERT [372] 5.1M 70.3 10.8 84.5 37.0
SparseConv [42] 5.3M 70.7 10.6 78.8 31.7

std. dev. 2.3 1.4 3.9 5.1

1M 4M 16M 48M
# Parameters

25

30

35

O
-L

VI
S 

Ac
c.

 (%
)

DGCNN
PointNet
PointNeXt
PointBERT
SparseConv

Figure 5.4. Zero-shot classification accuracy on Objaverse-LVIS [50] when scaling up the
parameters of different models.

ically, we compare six popular backbones trained on ShapeNet or our ensembled dataset by

evaluating their zero-shot classification performance on ModelNet40 [333] and Objaverse-LVIS

datasets (for now, these backbones are trained with their original configurations and without

scaling up model sizes). Objaverse-LVIS is a subset of Objaverse dataset with human-verified

category labels. With 1,156 categories, it serves as a suitable dataset for evaluating zero-shot

long-tail classification, and we exclude all shapes of Objaverse-LVIS from this experiment.

Results are shown in Table 5.1. We find that when trained on ShapeNet, all backbones share

similar performances. However, when trained on our ensembled dataset, the performance gap

95



between backbones increases significantly. This suggests that while the original versions of these

backbones share a similar number of parameters, some may have been saturated when trained on

small datasets, while others do not.

We also explore the performance and scalability of these backbones when scaling up the

model sizes and training on our ensembled dataset. As shown in Figure 5.4, we observe that all

3D backbones benefit significantly from model scaling. However, traditional backbones without

a shrinking hierarchical structure, such as DGCNN and PointNet, require operating completely

on dense points or modeling the relationships (e.g., through kNN) between dense points. As

a result, they become more time-consuming and memory-intensive when scaled up compared

to more modern backbones. We therefore select PointBERT [372] (Transformer-based) and

SparseConv [42] (convolution-based) as our 3D backbones for the remaining experiments, as

they exhibit strong performance and scalability.

5.2.5 Hard Negative Mining

Our ensembled dataset exhibits a high degree of class imbalance. Certain common

categories, such as building, may occupy tens of thousands of shapes, while many other categories,

such as walrus and wallet, are underrepresented with only a few dozen or even fewer shapes.

Consequently, when randomly constructing batches, it is unlikely that shapes from two confusing

categories (e.g., apples and cherries) will be contrasted within the same batch. Inspired by some

previous works [122, 246], we propose an offline hard negative mining strategy for improving

the training efficiency and performance. Specifically, in the first round of training, we train our

model with random batches until it is about to converge. We then compute the kNN for each

shape in the learned 3D embedding space. In the second round of training, for each iteration,

we randomly select s seed shapes and then obtain m neighbors from the kNN results of each

seed shape, resulting s×m shapes per batch. In this way, confusing pairs are more likely to

be selected in a single batch. However, this may also introduce false negative pairs (e.g., two

apples) into contrastive learning. To mitigate this issue, we leverage image and text embeddings

96



to filter out pairs sharing similar texts when calculating the contrastive loss. Specifically, for two

shapes i and j selected from the same seed shape, if hT
j ·hI

i +δ > hT
i ·hI

i , where hT and hI are

text and image embeddings, and δ is a small threshold, we believe that the text embeddings of i

and j are very close to each other, and we remove j from i’s negative examples when calculating

contrastive loss. By employing this strategy to construct batches, we observe faster and better

model learning.

5.3 Experiments

5.3.1 Zero-Shot Shape Classification

We evaluate the zero-shot classification performances of our models on three bench-

marks: the traditional ModelNet40 [333] and ScanObjectNN [290], as well as a new benchmark,

Objaverse-LVIS [50]. ModelNet40 and ScanObjacetNN consist of 40 and 15 common cate-

gories, respectively. Objaverse-LVIS is an annotated subset of Objaverse [50] and comprises

46,832 shapes among 1,156 LVIS [83] categories. With a much larger base of classes than

other benchmarks, Objaverse-LVIS presents a challenging long-tailed distribution, making it a

better reflection on models’ performance in open-world scenarios. We compare OpenShape with

existing zero-shot approaches, including PointCLIP [383], PointCLIPv2 [396], ReCon [230],

CG3D [91], CLIP2Point [106], and ULIP [350]. Among them, PointCLIP [383] and Point-

CLIPv2 [396] project point clouds into 2D images and directly utilize 2D CLIP for inference,

while other methods leverage the CLIP embedding spaces for alignment and require 3D shapes

for training. We report results on these baselines using their released checkpoints. To better

analyze the source of our performance gains, we also retrain the baseline ULIP [350] on our

ensembled shape dataset, but we use the original texts in the four constituent datasets along

with the official codebase without backbone scaling. We train OpenShape and ULIP on three

different sets of training shapes: “Ensembled” denotes using all shapes from the four datasets;

“Ensembled (no LVIS)” is the same but excludes all shapes from the Objavserse-LVIS subset;

97



“ShapeNet” only includes shapes from the ShapeNet [22] dataset. Note that even when LVIS

shapes are included in the training shapes (i.e., the “Ensembled” dataset), their test-time category

labels are probably not included in their training texts.

Table 5.2 shows the results. We observe that OpenShape consistently outperforms prior

approaches, even when trained only on ShapeNet. When models are trained on our larger-scale

ensembled dataset, they receive a significant performance boost. In this case, OpenShape still

surpasses retrained ULIP by a significant margin, demonstrating the advantages of our text

enrichment, backbone scaling, and other training strategies. Specifically, OpenShape greatly

improves the classification accuracy on the long tail categories in Objaverse-LVIS from a dull

< 10% to 46.8%, outperforming the retrained ULIP by about 20 points and reaching a decent top-

5 accuracy of 77.0%. These results demonstrate OpenShape’s capability to recognize open-world

objects effectively. As for ModelNet40, OpenShape achieves a 85.3% accuracy, surpassing

previous methods by a substantial margin of at least 20 percent. OpenShape also achieves

impressive top-3 and top-5 accuracies of 96.5% and 98.0%. To the best of our knowledge, this is

the first time zero-shot methods have matched the performance of a fully-supervised 3D learning

method on ModelNet40, where OpenShape outperforms fully-supervised 3D ShapeNets [333]

and VoxNet [194]. In addition, on ScanObjectNN, which contains challenging real scans

with noise and occlusion, OpenShape exhibits decent sim-to-real transfer capabilities. To

contextualize, OpenShape-SparseConv achieves 56.7% zero-shot accuracy on ScanObjectNN

without specific sim-to-real training, which surpasses 52.7% reported by SKPConv [321], a

recent method specially designed for sim-to-real transfer in point cloud classification tasks.

5.3.2 Few-Shot Linear Probing

In the literature, linear probing is a common way to assess the representation learning

capabilities of a model. To perform linear probing, we gather and freeze the representation

vectors from all samples in a dataset. Subsequently, we train a linear classifier using these fixed

vectors and few-shot class labels. We evaluate the accuracy of the linear classifier on three

98



Table 5.2. Zero-shot classification on Objaverse-LVIS [50], ModelNet40 [333], and ScanOb-
jectNN [289].

Method
training shape Objaverse-LVIS [50] ModelNet40 [333] ScanObjectNN [290]

source Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5

PointCLIP [383] 2D inferences,
no 3D training

1.9 4.1 5.8 19.3 28.6 34.8 10.5 20.8 30.6
PointCLIP v2 [396] 4.7 9.5 12.9 63.6 77.9 85.0 42.2 63.3 74.5

ReCon [230]

ShapeNet

1.1 2.7 3.7 61.2 73.9 78.1 42.3 62.5 75.6
CG3D [91] 5.0 9.5 11.6 48.7 60.7 66.5 42.5 57.3 60.8

CLIP2Point [106] 2.7 5.8 7.9 49.5 71.3 81.2 25.5 44.6 59.4
ULIP-PointBERT (Official) [350] 6.2 13.6 17.9 60.4 79.0 84.4 51.5 71.1 80.2

OpenShape-SparseConv 11.6 21.8 27.1 72.9 87.2 93.0 52.7 72.7 83.6
OpenShape-PointBERT 10.8 20.2 25.0 70.3 86.9 91.3 51.3 69.4 78.4

ULIP-PointBERT (Retrained)
Ensembled

21.4 38.1 46.0 71.4 84.4 89.2 46.0 66.1 76.4
OpenShape-SparseConv

(no LVIS)
37.0 58.4 66.9 82.6 95.0 97.5 54.9 76.8 87.0

OpenShape-PointBERT 39.1 60.8 68.9 85.3 96.2 97.4 47.2 72.4 84.7

ULIP-PointBERT (Retrained)
Ensembled

26.8 44.8 52.6 75.1 88.1 93.2 51.6 72.5 82.3
OpenShape-SparseConv 43.4 64.8 72.4 83.4 95.6 97.8 56.7 78.9 88.6
OpenShape-PointBERT 46.8 69.1 77.0 84.4 96.5 98.0 52.2 79.7 88.7

Objaverse-LVIS ModelNet40 ScanObjectNN

10
20
30

40
50

50

60

70

80

90

30
40
50
60
70
80

PointCLIP V2 ULIP-Official ULIP-Retrained OpenShape-PointBERT

0 1 2 4 8 16 0 1 2 4 8 16 0 1 2 4 8 16
# of labeled training samples per class

To
p-

1 
Ac

c.
 (%

)

Figure 5.5. Few-shot linear probing on Objaverse-LVIS [50], ModelNet40 [333], and ScanOb-
jectNN [289]. We report the average performance over 10 random seeds.

benchmarks: Objaverse-LVIS [50], ModelNet40 [333], and ScanObjectNN [290]. Figure 5.5

summarizes the performance of OpenShape in comparison with ULIP [350] (official release

and our retrained versions) and PointCLIPv2 [396]. On the most challenging Objaverse-LVIS

benchmark, OpenShape outperforms all other methods by a large margin. Notably, zero-shot

OpenShape beats few-shot linear probes of other methods. On ModelNet40 and ScanObjectNN,

we do not see a large performance margin between OpenShape and retrained ULIP. We hypothe-

size that for few-shot ModelNet40, the error is dominated by in-category sample bias rather than

the representation quality; while for ScanObjectNN, the domain gap plays a major role. Since

both OpenShape and retrained ULIP are exposed to the same source domain of training objects,

their few-shot out-of-domain generalization performances tend to be similar.

99



Table 5.3. Ablation study. Top 1 zero-shot accuracies on ModelNet40 [333] and Objaverse-
LVIS [50] are shown.

Variant O-LVIS MNet40

No Objaverse shapes 13.9 75.5
Only Objaverse shapes 41.6 79.2
No backbone scale up 31.7 78.7

No caption & retrieval 37.0 82.9
No text filtering 41.4 82.9

No point rgb, only xyz 39.6 83.6
No text contras. learning 23.3 67.4

No image contras. learning 41.0 81.0

Full 42.0 83.1
Full + hard mining 43.4 83.4

5.3.3 Ablation Study

We perform various ablations by training a scaled version of SparseConv [42] on the

ensembled dataset and then evaluate it on the Objaverse-LVIS [50] and ModelNet40 [333] zero-

shot classification benchmarks, unless otherwise specified. The results are shown in Table 5.3

and Figures 5.6 and 5.7.

Data and Model Scaling. We investigate the impact of training data by ablating (1) without

or with only Objaverse shapes (Tab. 5.3) and (2) with different ratios of our ensembled dataset

(Fig. 5.6). We observe that training with 1% of our ensembled dataset (about 8.8k shapes)

achieves similar or better zero-shot performance than training without Objaverse shapes (about

77.1k shapes), indicating that the diversity of training data is sometimes more crucial than

the scale. In addition, we compare the performances between scaled-up and non-scaled-up

backbones. From Tab. 5.3, we demonstrate that model scaling plays an essential role when

training on our large-scale ensembled dataset (also Fig. 5.4).

Text Filtering and Enrichment. As shown in Tab. 5.3, both text filtering and text enrichment are

beneficial for performance. We also investigate the specific text enrichment strategies to use for

the SparseConv and PointBERT backbones. In Fig. 5.7, we observe that both image captioning

100



1% 5% 25
%

50
%

75
%

10
0%

15

20

25

30

35

40

45

O
-L

VI
S 

Ac
c.

 (%
)

61

65

69

73

77

81

85

M
od

el
N

et
40

 A
cc

. (
%

)

Figure 5.6. Ablation study on using different ratios of training data.

and text retrieval are helpful, and including both yield the best results. Notably, PointBERT

improves more than 10 points from text enrichment, highlighting the significance of enhancing

text quality.

Other Aspects. We also conduct additional ablation studies on color information, contrastive

loss components, and our hard-negative mining strategy in Tab. 5.3. We observe that OpenShape

performs well with only xyz coordinates as input and no RGB color. While 3D-image contrastive

loss is also helpful, we observe that 3D shape-text alignment plays a very essential role for model

zero-shot generalization, which necessitates our text filtering and text enrichment strategies

that significantly enhance text quality. Lastly, by employing our hard negative mining strategy,

OpenShape effectively addresses the issue of unbalanced data distribution, leading to further

improvements in performance.

5.3.4 Cross-Modal Applications

Multi-modal 3D Shape Retrieval. Through OpenShape multi-modal representations, we

can index and retrieve 3D shapes from images, texts, or point clouds. In this section, we

retrieve 3D shapes from our ensembled dataset by calculating the cosine similarity between

101



Base + Cap. + Retr. Full
30

35

40

45

50

O
-L

VI
S 

Ac
c.

 (%
)

PointBERT
SparseConv

Figure 5.7. Ablation study on different text enrichment strategies.

input embedding(s) and 3D shape embeddings and performing kNN. As shown in Figure 5.8,

OpenShape is capable of retrieving visually or semantically similar shapes from a single image

or point cloud input. OpenShape embeddings encode a wide range of visual and semantic

concepts. In Figure 5.9, we show that OpenShape supports retrieving 3D shapes from detailed

text descriptions, which include fine-grained subcategories, attributes, and their combinations.

Note that these input texts are typically not present in the raw texts of the retrieved shapes,

indicating that OpenShape effectively learns generalizable concepts across shapes. In Figure 5.1,

we provide a demo which takes two 3D shapes as inputs and retrieves the shapes that are

simultaneously closest to both inputs. This is achieved by finding argmaxi min(hP
i ·hP

a ,h
P
i ·hP

b ),

where hP
a and hP

b denote normalized shape embeddings of the two input shapes. We can see that

the retrieved shapes integrate visual or semantic elements in an interesting manner, highlighting

the rich concepts and priors encoded in OpenShape embeddings.

Shape-Conditioned Multimodal Generation. As OpenShape’s 3D shape representations are

aligned with CLIP’s image and text embedding spaces, they can serve as inputs into other CLIP-

based models to facilitate various multimodal generation applications. For example, we show

that by feeding our 3D shape embeddings into ClipCap [208], an off-the-shelf image captioning

102



Figure 5.8. 3D shape retrieval from image (first 4 rows) and point cloud (last 2 rows).

model, along with Stable unCLIP [236], a text-to-image diffusion model, we can perform point

cloud captioning and point cloud-conditioned image generation (optional text prompt supported)

without extra training or finetuning. Qualitative results are shown in Figure 5.10. Please refer to

Figure 5.11 for more results.

5.4 Summary

We introduce OpenShape, a novel approach for learning scalable and generalizable

multi-modal joint representations for 3D shapes. OpenShape representations effectively capture

a wide range of semantic and visual concepts, enabling superior capabilities for open-world 3D

shape recognition. By aligning OpenShape with CLIP’s embedding space, our shape embeddings

103



Figure 5.9. Text-input 3D shape retrieval. In each row, we show input texts on the left and two
retrieved shapes for each text on the right. OpenShape embedding encodes a wide range of visual
and semantic concepts and enables (a) retrieval of fine-grained subcategories (first two rows),
and (b) control of attributes (e.g., color, shape, style) and their combinations (last two rows).

+ “in a large desert”

+ “in the woods”

1. 2.

3. 4.

Cap�ons:
1. The chair in the style of the 1920s.
2. The ladder to the second floor.
3. Goldfish in the sea - photo #.
4. The car of the day.

(a) (b)

Figure 5.10. (a) Point cloud captioning. (b) Point cloud-conditioned image generation. Our
learned 3D shape embeddings can be integrated with off-the-shelf pretrained CLIP-based models
(e.g., captioning and image generation models) to support various cross-modal applications.

can be integrated with off-the-shelf CLIP-based models for various cross-modality applications.

Moving forward, there are several directions worth further exploration: (a) More 3D data.

While we utilized 876k 3D shapes during training, this is still quite limited compared to the 2D

counterparts. We hope that our work inspires future investments in more resources to build even

more powerful 3D representations. (b) Part-level information. Our current shape representations

mainly focus on global semantic and visual features, and it would be beneficial to add more

part-level supervision during training. (c) Sim-to-real domain gap. Our model is mainly trained

on synthetic data, and it’s challenging but crucial to explore explicit designs for reducing the

domain gap with real-world shapes.

104



Figure 5.11. More examples of point cloud captioning and point cloud-conditioned image
generation.

105



Figure 5.12. Illustration of four coordinate frames, which provide different alignments across
time steps. We visualize three point clouds (three time steps) of an OpenCabinetDoor trajectory.
Each row shows the same point cloud represented in different coordinate frames. Please zoom in
for details. Robot arm, cabinet door handle, cabinet door, and cabinet body are colored in blue,
red, yellow, and brown, respectively. RGB arrows indicate the corresponding origin and axes for
each frame. Since the point clouds used for policy learning can be rather sparse, we show dense
point clouds here for better visualization.

5.5 Related Project: Coordinate Frame Learning for 3D
Point Clouds

OpenShape learns a powerful multi-modal representation for 3D point clouds, which

is particularly useful when working with 3D point clouds that describe a complete, single

static object. However, when dealing with raw point clouds that capture dynamic scenes with

multiple interacting objects, the question of how to encode the entire scene and efficiently extract

relationships between the objects becomes intriguing. We find that the choice of input point

cloud coordinate frame may play a critical role.

Specifically, 3D point cloud started to be used as the input to deep reinforcement learning

(RL) for object manipulation [31, 107, 332], which aims at learning mappings directly from raw

3D sensor observations of unstructured environments to robot action commands. When building

an agent with point cloud input, existing works [31, 107, 332] typically incorporate off-the-shelf

106



Robot-Base Frame End-Effector Frame Target-Part FrameWorld Frame 

Figure 5.13. Comparison of four coordinate frames on five fully-physical manipulation tasks.
The (fused) point cloud is transformed to a single coordinate frame before being fed to the visual
backbone network. For dual-arm tasks (i.e., PushChair and MoveBucket), we use the right-hand
frame as the end-effector frame. For PickObject, which has a fixed base, the world frame is the
same as the robot-base frame. Mean and standard deviation over 5 seeds are shown.

point cloud backbone networks (e.g., PointNet [228]) into the pipeline as a feature extractor of the

scene. However, some facets in constructing point cloud representations have been overlooked.

For example, in the literature of 3D deep learning, the choice of coordinate frame significantly

affects task performance [8, 52, 72, 155, 228, 394]. On 3D instance segmentation benchmarks

for autonomous driving, previous work such as [227] showed a pipeline to process input point

clouds in the camera frame, frustum frame, and object frame subsequently, leading to a large

performance boost in comparison to using the camera frame alone. For our goal of manipulation

skill learning, point clouds describe dynamic interactions between robots and objects, including

frequent contacts and occlusions. This is a novel and more complex setting that differs from

well-explored scenarios in 3D supervised learning (e.g., single objects, outdoor scenes for

autonomous driving). Under this setting, choices of coordinate frames are more flexible and

diverse as multiple entities (e.g., robot and manipulated object) and dynamic movements are

involved.

In this project, we first examine whether and how different coordinate frames may impact

the performance and sample efficiency of point cloud-based RL for object manipulation tasks.

We study four candidate coordinate frames: world frame, robot-base frame, end-effector frame,

and target-part frame. These frames differ in positions of origin and orientations of axes, and

canonicalize inputs in different manners (e.g., a fixed third-view, ego-centric, hand-centric,

object-centric). Please refer to Figure 5.12 for an illustration. The comparison and analysis

107



World 
Frame

End-Effector 
Frame2

Robot-Base 
Frame

Target-Part 
Frame

End-Effector 
Frame1

Input Point 
Cloud

Candidate 
Frame 1

Candidate 
Frame 2

Candidate 
Frame n

……

Transform
ation

Fram
eM

iner

Robot Action

PC in
Frame 1

PC in 
Frame 2

PC in 
Frame n

……

Figure 5.14. A 3D point cloud of a dual-arm robot pushing a chair, which can be represented
in various coordinate frames without changing camera placements or requiring extra camera
views. Our FrameMiner takes as input a point cloud represented in multiple candidate frames
and adaptively fuses their merits, resulting in better performance.

are performed on five distinct physical manipulation tasks adapted from ManiSkill [209] and

OCRTOC [182], covering various numbers of arms, robot mobilities, and camera settings. As

shown in Figure 5.13, the choice of frames has profound effects. In particular, the end-effector

frame and the target-part frames, rarely considered in previous works, lead to significantly better

sample efficiency and final convergence than the widely used world frame and robot-base frame

on many tasks. Visualization and analysis indicate that, by using different coordinate frames

to represent input point clouds, we are actually performing various alignments of input scenes

through SE(3) transformations, which may simplify the learning of visual modules.

However, the well-performing single coordinate frame may vary from task to task,

and in many cases, we may need coordination between decisions made according to multiple

coordinate frames. For example, tasks equipped with dual-arm robots may benefit from both

108



left-hand and right-hand frames. For mobile manipulation tasks involving both navigation and

manipulation, different frames could favor different skills (e.g., robot-base frame for navigation

skills, end-effector frame for manipulation skills). We thus propose three task-agnostic strategies

to adaptively select from multiple candidate coordinate frames and fuse their merits, leading to

more efficient and effective object manipulation policy learning. Please refer to Figure 5.14 for

an overview. Because we do not need to capture additional camera views or rely on task-specific

frame selections, our frame mining strategies can be used as a free lunch to improve existing

methods on point cloud-based policy learning. We call these fusion approaches as FrameMiners.

Experimentally, we find that it matters to fuse information from multiple frames, but the specific

FrameMiner to choose does not create much performance difference. In particular, we use one

of the FrameMiners, MixAction, to interpret the importance of different frames in the policy

execution process, and the interpretation agrees with our intuitions.

Chapter 5 incorporates material from the publication “OpenShape: Scaling Up 3D Shape

Representation Towards Open-World Understanding”, by Minghua Liu, Ruoxi Shi, Kaiming

Kuang, Yinhao Zhu, Xuanlin Li, Shizhong Han, Hong Cai, Fatih Porikli, and Hao Su, published

in Advances in Neural Information Processing Systems (NeurIPS 2023). The dissertation author

was primary investigator and the lead author of this paper.

109



Chapter 6

Open-World 3D Understanding: Low-Shot
Part Segmentation

In the last chapter, we introduced OpenShape. While it is adept at learning powerful

cross-modal joint representations for 3D point clouds, it learns a global embedding for each 3D

shape, which may fail to accurately capture fine-grained part-level structures. However, human

visual perception can parse objects into parts and generalize to unseen objects, which is crucial

for understanding their structure, semantics, mobility, and functionality. 3D part segmentation

plays a critical role in enabling machines with this ability, facilitating a wide range of applications

such as robotic manipulation, AR/VR, and shape analysis and synthesis [6, 158, 205, 346].

Recent part-annotated 3D shape datasets [206, 334, 364] have promoted advances in

designing various data-driven approaches for 3D part segmentation [174, 231, 312, 365]. While

standard supervised training enables these methods to achieve remarkable results, they often

struggle with out-of-distribution test shapes (e.g., unseen classes). However, compared to

image datasets, these 3D part-annotated datasets are still orders of magnitude smaller in scale,

since building 3D models and annotating fine-grained 3D object parts are laborious and time-

consuming. It is thus challenging to provide sufficient training data covering all object categories.

For example, the recent PartNet dataset [206] contains only 24 object categories, far less than

what an intelligent agent would encounter in the real world.

To design a generalizable 3D part segmentation module, many recent works have focused

110



Figure 6.1. We propose PartSLIP, a zero/few-shot method for 3D point cloud part segmentation
by leveraging pretrained image-language models. The figure shows text prompts and correspond-
ing semantic segmentation results (zoom in for details). Our method also supports part-level
instance segmentation. See Figure 6.6 and Figure 6.9 for more results.

on the few-shot setting, assuming only a few 3D shapes of each category during training. They

design various strategies to learn better representations, and complement vanilla supervised

learning [172, 261, 270, 299, 389]. While they show improvements over the original pipeline,

there is still a large gap between what these models can do and what downstream applications

need. The problem of generalizable 3D part segmentation is still far from being solved. Another

parallel line of work focuses on learning the concept of universal object parts and decomposing

a 3D shape into a set of (hierarchical) fine-grained parts [190, 309, 369]. However, these works

do not consider the semantic labeling of parts and may be limited in practical use.

In this chapter, we seek to solve the low-shot (zero- and few-shot) 3D part segmentation

problem by leveraging pretrained image-language models, inspired by their recent striking

performances in low-shot learning. By pretraining on large-scale image-text pairs, image-

language models [5, 115, 144, 234, 236, 249, 377] learn a wide range of visual concepts and

knowledge, which can be referenced by natural language. Thanks to their impressive zero-shot

capabilities, they have already enabled a variety of 2D/3D vision and language tasks [47, 96,

111, 239, 248, 252, 383].

As shown in Figure 6.1, our method takes a 3D point cloud and a text prompt as input,

111



and generates both 3D semantic and instance segmentations in a zero-shot or few-shot fashion.

Specifically, we integrate the GLIP [144] model, which is pretrained on 2D visual grounding and

detection tasks with over 27M image-text pairs and has a strong capability to recognize object

parts. To connect our 3D input with the 2D GLIP model, we render multi-view 2D images for

the point cloud, which are then fed into the GLIP model together with a text prompt containing

part names of interest. The GLIP model then detects parts of interest for each 2D view and

outputs detection results in the form of 2D bounding boxes. Since it is non-trivial to convert 2D

boxes back to 3D, we propose a novel 3D voting and grouping module to fuse the multi-view

2D bounding boxes and generate 3D instance segmentation for the input point cloud. Also,

the pretrained GLIP model may not fully understand our definition of parts only through text

prompts. We find that an effective solution is prompt tuning with few-shot segmented 3D shapes.

In prompt tuning, we learn an offset feature vector for the language embedding of each part name

while fixing the parameters of the pretrained GLIP model. Moreover, we propose a multi-view

visual feature aggregation module to fuse the information of multiple 2D views, so that the

GLIP model can have a better global understanding of the input 3D shape instead of predicting

bounding boxes from each isolated 2D view.

To better understand the generalizability of various approaches and their performances

in low-shot settings, we propose a benchmark PartNet-Ensembled (PartNetE) by incorporating

two existing datasets PartNet [206] and PartNetMobility [334]. Through extensive evaluation

on PartNetE, we show that our method enables excellent zero-shot 3D part segmentation. With

few-shot prompt tuning, our method not only outperforms existing few-shot approaches by a

large margin but also achieves highly competitive performance compared to the fully supervised

counterpart. We also demonstrate that our method can be directly applied to iPhone-scanned

point clouds without significant domain gaps. In summary, our contributions mainly include:

• We introduce a novel 3D part segmentation method that leverages pretrained image-language

models and achieves outstanding zero-shot and few-shot performance.

112



Figure 6.2. The figure shows our overall pipeline. Our proposed components are highlighted in
orange.

• We present a 3D voting and grouping module, which effectively converts multi-view 2D

bounding boxes into 3D semantic and instance segmentation.

• We utilize few-shot prompt tuning and multi-view feature aggregation to boost GLIP’s detection

performance.

• We propose a benchmark PartNetE that benefits future work on low-shot and text-driven 3D

part segmentation.

6.1 Related Work

6.1.1 3D Part Segmentation

3D part segmentation involves two main tasks: semantic segmentation and instance

segmentation. Most 3D backbone networks [229, 231, 283, 312] are capable of semantic seg-

mentation by predicting a semantic label for each geometric primitive (e.g., point or voxel).

Existing learning-based approaches solve instance segmentation by incorporating various group-

ing [44, 89, 118, 157, 293, 308, 310, 376] or region proposal [99, 353, 365] strategies into

the pipeline. Different from standard training with per-point part labels, some works leverage

weak supervision, such as bounding box [39, 173], language reference game [134], or IKEA

manual [306]. Instead of focusing on single objects, [17, 216] also consider part segmentation for

scene-scale input. Moreover, unlike the two classical tasks of semantic and instance segmentation,

113



another parallel line of works decomposes a 3D shape into a set of (hierarchical) fine-grained

parts but without considering semantic labels [190, 309, 369], which differs from our objective.

Recently, some works also propose to learn a continuous implicit semantic field [132, 393].

6.1.2 Data-Efficient 3D Segmentation

In order to train a generalizable 3D part segmentation network with low-shot data,

many existing efforts focus on leveraging various pretext tasks and auxiliary losses [7, 65, 88,

259, 281]. In addition, [86, 212] studies the compositional generalization of 3D parts. [299]

deforms input shapes to align with few-shot template shapes. [261] leverages 2D contrastive

learning by projecting 3D shapes and learning dense multi-view correspondences. [34] leverages

branched autoencoders to co-segment a collection of shapes. Also, some works aim to learn

better representations by utilizing prototype learning [389], reinforcement learning [172], and

data augmentation [270]. Moreover, there is a line of work investigating label-efficient 3D

segmentation [100, 167, 181, 347, 354, 386, 386, 387], assuming a small portion of training data

is annotated (e.g., 0.1% point labels). While the setting may be useful in indoor and autonomous

driving scenarios, it is not aligned with our goal since the number of training shapes is already

limited in our setup.

6.1.3 3D Learning with Image-Language Models

Pretrained image-language models have recently made great strides by pretraining on

large-scale image-text pairs [5, 115, 144, 234, 236, 249, 377]. Due to their learned rich visual

concepts and impressive zero-shot capabilities, they have been applied to a wide range of

3D vision tasks, such as 3D avatar generation and manipulation [20, 96, 114], general 3D

shape generation [110, 129, 201, 252], low-shot 3D shape classification [383], neural radiance

fields [111, 294], 3D visual grounding [47, 284], and 3D representation learning [248]. To the

best of our knowledge, we are one of the first to utilize pretrained image-language models to

help with the task of 3D part segmentation.

114



6.2 Proposed Method: PartSLIP

6.2.1 Overview: 3D Part Segmentation with GLIP

We aim to solve both semantic and instance segmentation for 3D object parts by leverag-

ing pretrained image-language models (ILMs). There are various large-scale ILMs emerged in

the past few years. In order to enable generalizable 3D object part segmentation, the pre-trained

ILM is expected to be capable of generating region-level output (e.g., 2D segmentation or 2D

bounding boxes) and recognizing object parts. After comparing several released pretrained ILMs

(e.g., CLIP [234]), we find that the GLIP [144] model is a good choice. The GLIP [144] model

focuses on 2D visual grounding and detection tasks. It takes as input a free-form text descrip-

tion and a 2D image, and locates all phrases of the text by outputting multiple 2D bounding

boxes for the input image. By pretraining on large-scale image-text pairs (e.g., 27M grounding

data), the GLIP model learns a wide range of visual concepts (e.g., object parts) and enables

open-vocabulary 2D detection.

Figure 6.2 shows our overall pipeline, where we take a 3D point cloud as input. Here, we

consider point clouds from unprojecting and fusing multiple RGB-D images, which is a common

setup in real-world applications and leads to dense points with color and normal. To connect the

2D GLIP model with our 3D point cloud input, we render the point cloud from K predefined

camera poses. The camera poses are uniformly spaced around the input point cloud, aiming

to cover all regions of the shape. Since we assume a dense and colored point cloud input1, we

render the point cloud by simple rasterization without introducing significant artifacts. The K

rendered images are then fed separately into the pretrained GLIP model along with a text prompt.

We format the text prompt by concatenating all part names of interest and the object category.

For example, for a chair point cloud, the text prompt could be “arm, back, seat, leg, wheel of

a chair”. Please note that unlike the traditional segmentation networks, which are limited to

1Recent commodity-grade 3D scanning devices (e.g., iPhone 12 Pro) can already capture high-quality point
clouds (see Figure 6.9).

115



a closed set of part categories, our method is more flexible and can include any part name in

the text prompt. For each 2D rendered image, the GLIP model is expected to predict multiple

bounding boxes, based on the text prompt, for all part instances that appear. We then fuse all

bounding boxes from K views into 3D to generate semantic and instance segmentation for the

input point cloud (Section 6.2.2).

The above pipeline introduces an intuitive zero-shot approach for 3D part segmentation

without requiring any 3D training. However, its performance may be limited by the GLIP

predictions. We thus propose two additional components, which could be incorporated into the

above pipeline to encourage more accurate GLIP prediction: (a) prompt tuning with few-shot

3D data, which enables the GLIP model to quickly adapt to the meaning of each part name

(Section 6.2.3); (b) multi-view feature aggregation, which allows the GLIP model to have a more

comprehensive visual understanding of the input 3D shape (Section 6.2.4).

6.2.2 Detected 2D BBoxes to 3D Point Segmentation

Although the correspondence between 2D pixels and 3D points are available, there

are still two main challenges when converting the detected 2D bounding boxes to 3D point

segmentation. First, bounding boxes are not as precise as point-wise labels. A 2D bounding

box may cover points from other part instances as well. Also, although each bounding box

may indicate a part instance, we are not provided with their relations across views. It’s not

very straightforward to determine which sets of 2D bounding boxes indicate the same 3D part

instance.

Therefore, we propose a learning-free module to convert the GLIP predictions to 3D

point segmentation, which mainly includes three steps: (a) oversegment the input point cloud

into a collection of super points; (b) assign a semantic label for each super point by 3D voting;

and (c) group super points within each part category into instances based on their similarity of

bounding box coverage.

3D Super Point Generation: We follow the method in [138] to oversegment the input point

116



cloud into a collection of super points. Specifically, we utilize point normal and color as features

and solve a generalized minimal partition problem with an l0-cut pursuit algorithm [137]. Since

points in each generated super point share similar geometry and appearance, we assume they

belong to one part instance. The super point partition serves as an important 3D prior when

assigning semantic and instance labels. It also speeds up the label assignment, as the number of

super points is orders of magnitude smaller than the number of 3D points.

3D Semantic Voting: While a single bounding box may cover irrelevant points from other parts,

we want to leverage information from multiple views and the super point partition to counteract

the effect of irrelevant points. Specifically, for each pair of super point and part category, we

calculate a score si, j measuring the proportion of the ith super point covered by any bounding

box of part category j:

si, j =
∑k ∑p∈SPi[VISk(p)][∃b ∈ BB j

k : INSb(p)]

∑k ∑p∈SPi[VISk(p)]
, (6.1)

where SPi indicates the ith super point, [·] is the Iverson bracket, VISk(p) indicates whether the

3D point p is visible in view k, BB j
k is a list of predicted bounding boxes of category j in view k,

and INSb(p) indicates whether the projection of point p in view k is inside the bounding box b.

Note that for each view, we only consider visible points since bounding boxes only

contain visible portions of each part instance. Both VISk(p) and INSb(p) can be computed based

on the information from point cloud rasterization. After that, for each super point i, we assign

part category j with the highest score si, j to be its semantic label.

3D Instance Grouping: In order to group the super points into part instances, we first regard

each super point as an individual instance and then consider whether to merge each pair of super

points. For a pair of super points SPu and SPv, we merge them if: (a) they have the same semantic

label, (b) they are adjacent in 3D, and (c) for each bounding box, they are either both included or

both excluded.

Specifically, for the second criterion, we find the k nearest neighbors for all points within

117



each super point. If any point in SPv is among the k nearest neighbors of a point in SPu, or vice

versa, we consider the super points to be adjacent. For the third criterion, we consider bounding

boxes from views where both of them are visible:

B = {b ∈ BBk|VISk(SPu)∧VISk(SPv)}, (6.2)

where VISk(SPu) indicates whether the super point SPu can be (partially) visible in view k and

BBk indicates all predicted bounding boxes of view k. Suppose B contains n bounding boxes.

We then construct two n dimensional vectors Iu and Iv, describing the bounding box coverage of

SPu and SPv. Specifically, Iu[i] is calculated as:

Iu[i] =
∑p∈SPu[VISB[i](p)][INSB[i](p)]

∑p∈SPu[VISB[i](p)]
, (6.3)

where B[i] indicates the ith bounding box of B, VISB[i](p) indicates whether p is visible in the

corresponding view of B[i], and INSB[i](p) indicates whether the projection of p is inside B[i]. If
|Iu−Iv|1

max(|Iu|1,|Iv|1) is smaller then a predefined threshold τ , we consider they satisfy the third criterion.

After checking all pairs of super points, the super points are divided into multiple

connected components, each of which is then considered to be a part instance. We found that our

super point-based module works well in practice.

6.2.3 Prompt Tuning w/ Few-Shot 3D Data

In our method, we utilize natural language to refer to a part. However, natural language

can be flexible. An object part can be named in multiple ways (e.g., spout and mouth for

kettles; caster and wheel for chairs), and the definition of some parts may be ambiguous (see the

dispenser in Figure 6.1). We thus hope to finetune the GLIP model using a few 3D shapes with

ground truth part segmentation, so that the GLIP model can quickly adapt to the actual definition

of the part names in the text prompt.

118



al
ig

nm
en

t
lo

ss

vision-
language 

fusion
image feat.

language 
feature

detection 
head

detected
BBox

de
te

ct
io

n 
lo

ss

multi-view 
feat. fusion

learnable
offset feat.

2D Rendering
W/ GT BBox

3D shape 
w/ GT seg

language 
encoder

image 
encoder image feat.

language 
feature

2D 
image

text 
prompt

original GLIP network 

original GLIP feat. 

multi-view feat. fusion

prompt tuning data/feat.

early late

Figure 6.3. The original GLIP pipeline and our proposed additional modules: few-shot prompt
tuning and multi-view feature aggregation. We find that early fusion leads to better performance
than late fusion.

Figure 6.3 shows the overall architecture of the GLIP model. It first employs a language

encoder and an image encoder to extract language features and multi-scale visual features,

respectively, which are then fed into a vision-language fusion module to fuse information across

modalities. The detection head then takes as input the language-aware image features and predicts

2D bounding boxes. During pretraining, the GLIP network is supervised by both detection loss

and image-language alignment loss.

It is not desirable to change the parameters of the visual module or the entire GLIP model

since our goal is to leverage only a few 3D shapes for finetuning. Instead, we follow the prompt

tuning strategy introduced in GLIP [144] to finetune only the language embedding of each part

name while freezing the parameters of the pretrained GLIP model. Specifically, we perform

prompt tuning for each object category separately. Suppose the input text of an object category

includes l tokens and denote the extracted language features (before VL fusion) as fl ∈ Rl×c,

where c is the number of channels. We aim to learn offset features fo ∈Rl×c for fl and feed their

summation fl + fo to the remaining GLIP pipeline. The offset features fo consist of constant

vectors for each token (part name), which can be interpreted as a local adjustment of the part

definition in the language embedding space. Note that fo is not predicted by a network but is

119



directly optimized as a trainable variable during prompt tuning. Also, fo will be fixed for each

object category after prompt tuning.

In order to utilize the detection and alignment losses for optimization, we convert the

few-shot 3D shapes with ground truth instance segmentation into 2D images with bounding

boxes. Specifically, for each 3D point cloud, we render K 2D images from the predefined

camera poses. For generating corresponding 2D ground-truth bounding boxes, we project each

part instance from 3D to 2D. Note that, after projection, we need to remove occluded points

(i.e., invisible points of each view) and noisy points (i.e., visible but isolated in tiny regions)

to generate reasonable bounding boxes. We find that by prompt tuning with only one or a few

3D shapes, the GLIP model can quickly adapt to our part definitions and generalize to other

instances.

6.2.4 Multi-View Visual Feature Aggregation

The GLIP model is sensitive to camera views. For example, images taken from some

unfamiliar views (e.g., the rear view of a cabinet) can be uninformative and confusing, making

it difficult for the GLIP model to predict accurately. However, unlike regular 2D recognition

tasks, our input is a 3D point cloud, and there are pixel-wise correspondences between different

2D views. Therefore, we hope the GLIP model can leverage these 3D priors to make better

predictions instead of focusing on each view in isolation.

In order to take full advantage of the pretrained GLIP model, we propose a training-free

multi-view visual feature aggregation module that could be plugged into the original GLIP

network without changing any existing network weights. Specifically, the feature aggregation

module takes K feature maps { fk ∈ Rm×m×c} as input, where m is the spatial resolution of the

feature map and c is the number of channels. The input feature maps { fk} are generated by the

GLIP module separately for each 2D view of the input point cloud. Our feature aggregation

module fuses them and generates K fused feature maps { f ′k} of the same shape, which are then

used to replace the original feature maps and fed into the remaining layers of the GLIP model.

120



Figure 6.4. Multi-view 2D renderings (first row) and their feature maps (second row). For a
feature cell (red), we aggregate all its corresponding feature cells (orange) across views.

As shown in Figure 6.4, for each cell (u,v) of feature map fi, we find its corresponding

cell (ui→k,vi→k) in each feature map fk and use their weighted average to serve as the fused

feature of the cell:

f ′i [u,v] =
1

∑k wi→k
u,v

∑
k

wi→k
u,v fk[ui→k,vi→k]. (6.4)

Specifically, we define Pi(u,v) as the set of 3D points that are visible in view i and whose

projections lie within cell (u,v). We then choose the cell in view k with the most overlapping

3D points as the corresponding cell: (ui→k,vi→k) = argmax
(x,y)

|Pi(u,v)∩Pk(x,y)| and define the

weights wi→k
u,v as |Pi(u,v)∩Pk(ui→k,vi→k)|

|Pi(u,v)| . Note that if all 3D points in Pi(u,v) are not visible in a view

k, then feature map fk will not contribute to f ′i [u,v]. Since the GLIP model generates multi-scale

visual features, our aggregation module fuses features of each scale level separately.

There are various options for which visual features to fuse (see Figure 6.3). One intuitive

choice is to fuse the final visual features before the detection head, and we denote this choice

as late fusion. We find that the late fusion does not improve or even degrade the original

performance. This is mainly because the final visual features contain too much shape information

of the predicted 2D bounding boxes. Directly averaging the final visual features can somehow be

seen as averaging bounding boxes in 2D, which does not make sense. Instead, we choose to fuse

the visual features before the vision-language fusion (denoted as early fusion). Since the text

121



Table 6.1. The table shows the statistics of the PartNetE dataset: category name, part names,
number of few-shot shapes, test shapes, and additional training shapes (if applicable). The 17
overlapping object categories are bolded.

category parts few-shot test extra-train category parts few-shot test extra-train

Bottle lid 8 49 471 Microwave display, door, handle, button 8 8 234
Box lid 8 20 0 Mouse button, cord, wheel 8 6 0
Bucket handle 8 28 0 Oven door, knob 8 22 0
Camera button, lens 8 29 0 Pen cap, button 8 40 0
Cart wheel 8 53 0 Phone lid, button 8 10 0
Chair arm, back, leg, seat, wheel 8 73 8000 Pliers leg 8 17 0
Clock hand 8 23 593 Printer button 8 21 0
CoffeeMachine button, container, knob, lid 8 46 0 Refrigerator door, handle 8 36 195
Dishwasher door, handle 8 40 179 Remote button 8 41 0
Dispenser head, lid 8 49 0 Safe door, switch, button 8 22 0
Display base, screen, support 8 29 954 Scissors blade, handle, screw 8 39 60
Door frame, door, handle 8 28 237 Stapler body, lid 8 15 0
Eyeglasses body, leg 8 57 0 StorageFurniture door, drawer, handle 8 338 2260
Faucet spout, switch 8 76 681 Suitcase handle, wheel 8 16 0
FoldingChair seat 8 18 0 Switch switch 8 62 0
Globe sphere 8 53 0 Table door, drawer, leg, tabletop, wheel, handle 8 93 9799
Kettle lid, handle, spout 8 21 0 Toaster button, slider 8 17 0
Keyboard cord, key 8 29 165 Toilet lid, seat, button 8 61 0
KitchenPot lid, handle 8 17 0 TrashCan footpedal, lid, door 8 62 358
Knife blade 8 36 505 USB cap, rotation 8 43 0
Lamp base, body, bulb, shade 8 37 3246 WashingMachine door, button 8 9 0
Laptop keyboard, screen, shaft, touchpad, camera 8 47 430 Window window 8 50 0
Lighter lid, wheel, button 8 20 0 45 in total 103 in total 360 1,906 28,367

prompt is not involved yet, the visual features mainly describe the geometry and appearance of

the input shape. Fusing these features across views with the 3D priors can thus lead to a more

comprehensive visual understanding of the input shape.

6.3 Experiments

6.3.1 Datasets and Metrics

To evaluate the generalizability of various approaches and their performances in the

low-shot setting, we curate an ensembled dataset named PartNet-Ensembled (PartNetE), which

consists of shapes from existing datasets PartNet [206] and PartNet-Mobility [334]. Note

that PartNet-Mobility contains more object categories but fewer shape instances, and PartNet

contains more shape instances but fewer object categories. We thus utilize shapes from PartNet-

Mobility for few-shot learning and test, and use shapes from PartNet to serve as additional

large-scale training data for transfer learning. As a result, the test set of PartNetE contains

1,906 shapes covering 45 object categories. In addition, we randomly reserve 8 shapes from

each of the 45 object categories for few-shot training. Also, we may utilize the additional

28,367 shapes from PartNet for training, which cover 17 out of 45 object categories and have

122



consistent part annotations as the test set. Some of the original part categories in PartNet (e.g.,

“back frame vertical bar” for chairs) are too fine-grained and ambiguous to evaluate unsupervised

text-driven part segmentation approaches. We thus select a subset of 103 parts when constructing

the PartNetE dataset, which covers both common coarse-grained parts (e.g., chair back and

tabletop) and fine-grained parts (e.g., wheel, handle, button, knob, switch, touchpad) that may be

useful in downstream tasks such as robotic manipulation. Please refer to Table 6.1 for the dataset

statistics.

We follow [206] to utilize category mIoU and mAP (50% IoU threshold) as the semantic

and instance segmentation metrics, respectively. We first calculate mIoU/mAP50 for each part

category across all test shapes, and then average part mIoUs/mAP50s that belong to each object

category to compute the object category mIoU/mAP50.

6.3.2 Implementation Details

For each 3D shape (i.e., ShapeNet [22] mesh), we use BlenderProc [54] to render 6

views of RGB-D images and segmentation masks with a resolution of 512×512. We unproject

the images to the world space to obtain a fused point cloud with colors, normals, and ground

truth part labels. The fused point clouds are used as the input for both our method and baseline

approaches.

For our method, we render each input point cloud into K = 10 color images with

Pytorch3D [240]. In few-shot experiments, we utilize 8 point clouds (8×10 rendered images

with 2D bounding boxes) of each object category for prompt tuning. The threshold τ in part

instance grouping is empirically set to 0.3.

6.3.3 Comparison with Existing Methods

Low-Shot Settings and Baseline Methods

We consider three low-shot settings: (a) zero-shot: no 3D training/finetuning involved;

(b) few-shot (45×8): utilize only 8 shapes for each object category during training; (c) few-shot

123



Table 6.2. Semantic segmentation results on the PartNetE dataset. Object category mIoU(%) are
shown. For 17 overlapping object categories, baseline models leverage additional 28k training
shapes in the 45x8+28k setting. For the other 28 non-overlapping object categories, there are
only 8 shapes per object category during training. Please refer to the supplementary for the full
table of all 45 categories.

#3D data method

Overlapping Categories Non-Overlapping Categories

Bottle Chair Display Door Knife Lamp
Storage

Table
Overall

Camera Cart
Dis-

Kettle
Kitchen-

Oven
Suit-

Toaster
Overall Overll

Furniture (17) Penser Pot case (28) (45)

few-shot w/
extra data

(45x8+28k)

PointNet++ [229] 48.8 84.7 78.4 45.7 35.4 68.0 46.9 63.7 55.6 6.5 6.4 12.1 20.9 15.8 34.3 40.6 14.7 25.4 36.8
PointNext [231] 68.4 91.8 89.4 43.8 58.7 64.9 68.5 52.1 58.5 33.2 36.3 26.0 45.1 57.0 37.8 13.5 8.3 45.1 50.2
SoftGroup [293] 41.4 88.3 62.1 53.1 31.3 82.2 60.2 54.8 50.2 23.6 23.9 18.9 57.4 45.5 13.6 18.3 26.4 30.7 38.1

few-shot
(45x8)

PointNet++ [229] 27.0 42.2 30.2 20.5 22.2 10.5 8.4 7.3 18.1 9.7 11.6 7.0 28.6 31.7 19.4 3.3 0.0 21.8 20.4
PointNext [231] 67.6 65.1 53.7 46.3 59.7 55.4 20.6 22.1 39.2 26.0 47.7 22.6 60.5 66.0 36.8 14.5 0.0 41.5 40.6
SoftGroup [293] 20.8 80.5 39.7 16.3 38.3 38.3 18.9 24.9 32.8 28.6 40.8 42.9 60.7 54.8 35.6 29.8 14.8 41.1 38.0

ACD [65] 22.4 39.0 29.2 18.9 39.6 13.7 7.6 13.5 19.2 10.1 31.5 19.4 40.2 51.8 8.9 13.2 0.0 25.6 23.2
Prototype [389] 60.1 70.8 67.3 33.4 50.4 38.2 30.2 25.7 41.1 32.0 36.8 53.4 62.7 63.3 36.5 35.5 10.1 46.3 44.3

Ours 83.4 85.3 84.8 40.8 65.2 66.0 53.6 42.4 56.3 58.3 88.1 73.7 77.0 69.6 73.5 70.4 60.0 61.3 59.4

zero-shot Ours 76.3 60.7 43.8 2.7 46.8 37.1 29.4 47.7 31.8 21.4 87.7 16.5 20.8 4.7 33.0 40.2 13.8 24.4 27.2

Table 6.3. Instance segmentation results on the PartNetE dataset. Category mAP50 (%) are
shown. See supplementary for the full table.

#3D data method

Overlapping Categories Non-Overlapping Categories

Bottle Chair Display Door Knife Lamp
Storage

Table
Overall

Camera Cart
Dis-

Kettle
Kitchen-

Oven
Suit-

Toaster
Overall Overll

Furniture (17) Penser Pot case (28) (45)

45x8+28k
PointGroup [118] 38.2 87.6 65.1 23.4 19.3 62.7 49.1 46.4 41.7 8.6 29.2 24.0 61.3 59.4 13.8 15.6 7.0 24.6 31.0
SoftGroup [293] 43.9 89.1 68.7 21.2 27.2 63.3 49.1 46.2 42.4 0.7 28.4 26.4 63.8 59.3 16.4 13.5 7.5 25.6 31.9

few-shot
(45x8)

PointGroup [118] 8.0 77.2 16.7 3.7 15.6 9.8 0.0 0.0 14.6 4.7 28.5 30.7 52.1 57.0 0.0 0.0 0.0 16.8 16.0
SoftGroup [293] 22.4 87.7 27.5 5.6 10.3 19.4 11.6 14.2 21.3 11.2 29.8 37.8 63.4 65.7 10.4 8.0 10.7 28.4 25.7

Ours 79.4 84.4 82.9 17.9 43.9 68.3 32.8 32.3 42.5 36.8 83.3 63.5 75.4 70.5 64.5 44.9 38.4 46.2 44.8

zero-shot Ours 75.5 54.5 32.9 1.3 22.1 35.8 10.9 36.6 20.9 8.4 79.3 9.3 18.3 1.1 25.9 34.2 4.5 16.2 18.0

with additional data (45×8+28k): utilize 28,367 shapes from PartNet [206] in addition to the

45×8 shapes during training. The 28k shapes cover 17 of the 45 object categories. Here, the

last setting (45×8+28k) describes a realistic setup, where we have large-scale part annotations

for some common categories (17 categories in our case) but only a few shapes for the other

categories. We aim to examine whether the 28k data of the 17 categories can help the part

segmentation of the other 28 underrepresented categories. All settings are tested on the same test

set.

We compare with PointNet++ [229] and PointNext [231] for semantic segmentation, and

compare with PointGroup [118] and SoftGroup [293] for instance segmentation. We train four

baseline approaches on the PartNetE dataset by taking point clouds with normals as input. For

semantic segmentation, we follow [206] to sample 10,000 points per shape as network input. For

124



instance segmentation, we sample up to 50,000 points per shape. For each pair of baseline and

setting, we train a single network.

In addition to the four baselines mentioned above, we compare against two methods

dedicated to few-shot 3D semantic segmentation: ACD [65] and Prototype [389]. In ACD, we

decompose the mesh of each 3D shape into approximate convex components with CoACD [318]

and utilize the decomposition results for adding an auxiliary loss to the pipeline of PointNet++.

In Prototype, we utilize the learned point features (by PointNext backbone) of few-shot shapes

to construct 100 prototypes for each part category, which are then used to classify each point of

test shapes.

Evaluation Results

Table 6.2 shows the results of semantic segmentation. Our method achieves impressive

zero-shot performance on some common object categories (such as bottle, chair, and table), but

also poor performances on certain categories (e.g., kettle). This is mainly due to the pretrained

GLIP model may not understand the meaning of the text prompt (e.g., spout for kettles). After

prompt tuning with 8-shot 3D data, our method achieves a 59.4% mIoU and outperforms all

baseline methods from the few-shot setting and even the 45×8+28k setting. For the 45×8+28k

setting, baseline methods are trained with additional 28k shapes covering 17 categories. For

these overlapping categories, it’s a fully-supervised setting, but our 8-shot version can

achieve highly competitive overall mIoU (56.3% vs. 58.5%). Note that the 28k training data

is of limited help for the baselines to generalize to non-overlapping categories. Our method

outperforms all baselines on non-overlapping categories by a large margin. The two few-shot

strategies ACD and Prototype improve the performance of the original backbone, but there are

still large gaps compared to our method. Please see Figure 6.1 for example results of our methods

and see Figure 6.5 for qualitative comparison.

125



Figure 6.5. Qualitative comparison between our method and baseline approaches on the PartNetE
dataset. Semantic segmentation results are shown. For baseline approaches, we randomly sample
10,000 points as input. “45x8” indicates the few-shot setting, where the model is trained with 8
shapes per object category. “45x8+28k” indicates the setting where the additional 28k shapes are
used for training .

126



Figure 6.6. Instance segmentation results of our method (8-shot) on the PartNetE dataset.
Different part instances are in different colors (zoom in for details).

Table 6.4. Ablation study of the proposed components. We show the performances of both
GLIP 2D detection (category mAP50) and 3D semantic segmentation (category mIoU) on three
categories. *3D semantic segmentation is generated by assigning part labels to all visible points
in bounding boxes.

BBox2 Prompt Feat Chair Kettle Suitcase All
3DSeg Tuning Aggre. 2D 3D 2D 3D 2D 3D 3D

50.4 50.6* 26.4 7.5* 31.9 21.1*
✓ 50.4 60.7 26.4 20.8 31.9 40.2 27.2
✓ ✓ 80.7 83.8 82.1 72.7 65.6 65.1 58.0
✓ ✓ 52.3 64.5 32.2 25.9 36.4 49.1 27.7
✓ ✓ ✓ 82.4 85.3 84.3 77.0 68.9 70.4 59.4

Table 6.3 shows the results of instance segmentation. We observe similar phenomena as

semantic segmentation. Our method achieves 18.0% mAP50 for the zero-shot setting and 44.8%

mAP50 for the 8-shot setting, which outperforms all baseline approaches from both 45×8 and

45×8+28k settings. See Figure 6.6 for qualitative examples.

6.3.4 Ablation Studies

Proposed Components:

We ablate the proposed components, and the results are shown in Table 6.4. For the

first row, we only utilize the pretrained GLIP model. In order to get 3D semantic segmentation,

127



Figure 6.7. Ablation study of few-shot prompt tuning. First row: 2D part detection results of the
GLIP pretrained model (zero-shot). Second row: detection results after 8-shot prompt tuning.

we assign part labels to all visible points within bounding boxes. The numbers indicate that

this strategy is less effective than our proposed 3D voting and grouping module (second row).

Moreover, without our proposed module, we are not able to get 3D instance segmentation. The

second and third rows compare the impact of (8-shot) prompt tuning. We observe significant

improvements, especially on the Kettle category, as the zero-shot GLIP model fails to understand

the meaning of “spout” but it adapts to the definition after few-shot prompt tuning. Please refer

to Figure 6.7 for qualitative examples. The second and fourth rows compare our multi-view

feature aggregation module. Without utilizing any extra data for finetuning, we leverage multi-

view 3D priors to help the GLIP model better understand the input 3D shape and thus improve

performance. After integrating all three modules, we achieve the final good performance (last

row).

Variations of Input Point Clouds:

Table 6.5 evaluates the robustness of our method about variations of input point clouds.

We observe that when the input point cloud is partial and does not cover all regions of the object,

our method still performs well (second row). Also, we find that after removing the textures of the

ShapeNet models and generating the input point cloud by using gray-scale images, our method

can achieve good performance as well, suggesting that textures are less important in recognizing

128



Table 6.5. Ablation study of various input point clouds. We show the semantic segmentation
results of the Chair category.

setting # views image reso. texture Chair mIoU (%)

original 6 512×512 w/ 85.3
partial pc 2 512×512 w/ 84.3
no texture 6 512×512 w/o 84.0
sparse pc 6 128×128 w/ 82.4
sparse pc 6 64×64 w/ 68.3

Figure 6.8. Ablation study of the number of shapes in prompt tuning and the number of 2D
views (K). Category mIoU of 3D semantic segmentation on the PartNetE dataset are shown.

object parts. However, we find that the performance of our method may degrade when the input

point cloud becomes sparse. On the one hand, sparse point clouds cause a larger domain gap for

2D renderings of point clouds. On the other hand, the sparsity makes it hard for our super point

generation algorithm to produce good results. That being said, we want to point out that dense

point clouds are already mostly available in our daily life (see Section 6.3.5).

Number of Shapes in Prompt Tuning:

We ablate the number of shapes used for prompt tuning, and the results are shown in

Figure 6.8 (left). We observe that only using one single shape for prompt tuning can already

improve the performance of the pretrained GLIP model a lot in some categories (e.g., Kettle).

Also, after using more than 4 shapes, the gain from increasing the number of shapes slows down.

We also find that prompt tuning is less effective for object categories that have richer appearance

and structure variations (e.g., StorageFurniture).

129



Table 6.6. Early vs. late fusion in multi-view feature aggregation. We compare GLIP detection
(mAP50) on the Suitcase category.

w/o fusion early fusion late fusion

65.6 68.9 47.3

Number of 2D Views:

We render K = 10 2D views for each input point cloud in our main experiments. We

ablate the value of K, and the results are shown in Figure 6.8 (right). We observe a significant

performance drop when K is reduced to 5 and also a mild gain when using a larger K.

Early Fusion vs. Late Fusion:

In the last paragraph of Section 6.2.4, we discuss two choices for multi-view feature

aggregation: early fusion and late fusion. Table 6.6 compares these two choices and verifies that

late fusion will even degrade the performance while early fusion is helpful.

GLIP vs. CLIP:

We have considered using other pretrained vision-language models, such as CLIP [234].

However, we find that the pretrained CLIP model fails to recognize fine-grained object parts and

has difficulty generating region-level output.

6.3.5 Real-World Demo

Thanks to the strong generalizability of the GLIP model, our method can be directly

deployed in the real world without a significant domain gap. As shown in Figure 6.9, we use an

iPhone 12 Pro Max, equipped with a LiDAR sensor, to capture a video and feed the fused point

cloud to our method. We observe similar performances as in our synthetic experiments. Please

note that existing 3D networks are sensitive to the input format. For example, they assume objects

are normalized in per-category canonical poses. Also, they need to overcome the significant

domain gap, making it hard to deploy them directly in real scenarios.

130



Figure 6.9. Each pair shows a captured point cloud by iPhone (left) and the semantic segmenta-
tion result of our method (right).

6.4 Summary

The current pipeline utilizes predicted bounding boxes from the GLIP model. We notice

that GLIPv2 [377] has 2D segmentation capabilities, but their pretrained model is not released at

the time of submission. We admit that it will be more natural to use 2D segmentation results,

which are more accurate than bounding boxes, from pretrained models. However, we want to

point out that it is still non-trivial to get 3D instance segmentation even from multi-view 2D

segmentation, and all components of our proposed method would still be useful (with necessary

adaptations). A bigger concern is that our method cannot handle the interior points of objects.

It also suffers from long running time due to point cloud rendering and multiple inferences of

the GLIP model. Therefore, using our method to distill the knowledge of 2D VL models and

131



Figure 6.10. CoACD decompose a solid mesh into a set of components and utilize the convex
hulls of the components (shown in different colors) to represent the original shape. Compared
to prior works, we can better capture the fine-grained structures of the input shape with fewer
components. See handles of the oven and the cabinet, slots of the toaster, and the spout of the
kettle (zoom in for details). The high-quality decomposition enables delicate object interaction
in downstream applications (e.g., a robot opens the drawer by grabbing the handles).

train 3D foundation models is a promising future direction, which may lead to more efficient

inferences.

6.5 Other Related Projects on 3D Segmentation and Decom-
position

In addition to open-world 3D semantic part segmentation for objects, I also have two

projects related to 3D segmentation and decomposition. The first project aims to decompose a

3D shape into a set of approximately convex components, without any semantic correspondence.

The convex properties enable many efficient geometry processing algorithms and benefit various

applications, such as physical simulation.

The other project focuses on LiDAR point cloud segmentation for autonomous driving,

where we seek to leverage 3D geometric priors during training and reduce the reliance on dense

point labels.

132



Figure 6.11. Failure cases of the boundary-distance-based methods (from HACD [192]). Fo-
cusing only on the boundary distance between the shape and its convex hull, HACD may fail to
handle the hollow structures and fill the interior space.

6.5.1 Approximate Convex Decomposition for 3D Meshes

With the development of 3D depth sensors, VR/AR, and physics simulation, large-scale

detailed 3D models have become more common. In addition to employing data structures such

as octrees and bounding volume hierarchies (BVH) to accelerate specific geometry processing

algorithms, another common strategy for handling complex 3D models is to decompose them

into simpler components. In particular, convex decomposition has aroused great interest. Many

fundamental geometry problems in rendering and physics simulation are non-trivial and compu-

tationally expensive to solve for general shapes. However, if input shapes are convex polyhedra,

many of them can be formulated as convex optimization problems, and efficient algorithms can

be specifically designed. Examples include determining whether a 3D point lies inside or outside

of a mesh [268], checking whether two meshes intersect [15, 169, 203], and calculating the

minimum distance between two meshes [74].

Decomposing a 3D solid shape into a minimum number of exact convex components is the

exact convex decomposition (ECD) problem, which has proven to be NP-hard [23, 219]. Although

many suboptimal heuristics [24] have been proposed, they usually output a large number of

small components, preventing them from practical applications. Instead, the approximate convex

decomposition (ACD) problem [151] proposes to lift the strict convexity constraint and only

requires the decomposed components to be approximately convex. Since ACD approaches [151,

192, 193, 285] typically generate a much smaller number of components, whose convex hulls

can then be used to approximate the original shape and speed up downstream applications, ACD

133



Figure 6.12. Failure cases of the volume-based methods (from V-HACD [193]). Focusing on
the volume difference, V-HACD may fill holes when the relative volume of the errors is not too
large (e.g., thin planar structures). The red rectangles highlight the error-prone regions.

works have recently received more attention. For example, V-HACD [193] is currently one of

the most popular open-source ACD methods and has been adopted by a wide range of game

engines and physics simulation SDKs.

Existing ACD methods share a similar overall pipeline. In order to quantify the de-

composition quality, they first define a concavity metric to measure the similarity between a

decomposed component and its convex hull. They then design a heuristic cost function to decom-

pose the 3D meshes greedily. There are three major shortcomings of existing ACD methods: (a)

Concavity metric: Prior works mainly utilize two types of metrics: boundary-distance-based

concavity [73, 150, 151, 152, 156, 192], which measures the distance between the boundary

surfaces of the shape and its convex hull; and volume-based concavity [11, 193, 285], which

calculates the volume difference between the solid shape and its convex hull. However, both

134



Figure 6.13. Comparison of different concavity thresholds. For each example, we show the
decomposition results under different concavity thresholds ranging from 0.02 to 0.2. Users can
intuitively balance the level of detail and the number of components by adjusting the concavity
threshold ε .

metrics may fail to preserve the collision conditions in some cases, which means some positions

in the space are unlikely to collide shape, but collide with the decomposition results. Please refer

to Figures 6.11 and 6.12 for some examples. The insensitivity of existing concavity metrics to

changes in collision conditions can be fatal for preserving object functionality. For example, they

might cause an algorithm to stuff the slots of a toaster. (b) Component representation: There

are two common strategies for representing components and decomposing shapes. The first one

is to decompose shapes by grouping the triangle faces [151, 156, 192], which results in zig-zag

boundaries of the components and intersecting convex hulls. In contrast, V-HACD [193] first

voxelizes the input mesh and then decomposes the voxels. However, the voxelization introduces

discretization artifacts, which even makes the algorithm unable to recognize already convex

shapes. (c) One-step greedy search: Most previous works [193, 285] decompose the shapes by

recursively performing locally optimal actions. They often take short-sighted actions and end up

generating more components. Furthermore, considering only one step may lead to various corner

cases, which requires different heuristic terms [193] as workarounds. Please see Figure 6.14 for

a comparison.

In this project, we introduce a novel approximate convex decomposition method for 3D

135



Figure 6.14. First row: results from a one-step greedy strategy with our proposed concavity
metric. Second row: results from our method with multi-step tree search. Both methods are
tested with the same concavity threshold.

meshes, which effectively addresses the limitations of existing approaches from three correspond-

ing perspectives: (a) We propose a novel collision-aware concavity metric that examines the

component from both the boundary surface and shape interior by sampling points and calculating

Hausdorff distance. The proposed concavity encourages preserving the collision conditions by

penalizing the inclusion of regions that are far away from the original shape. We also propose

an efficient way to calculate the concavity to speed up the decomposition. (b) We decompose

shapes by directly cutting 3D solid meshes with 3D planes, which results in flat boundaries

between components. It ensures intersection-free convex hulls and avoids the defects caused by

voxelization. We also provide a lightweight mesh cutting implementation, which is 100x faster

than off-the-shelf libraries. (c) We propose utilizing the Monte Carlo tree search to determine

cutting planes, which simulates and searches multiple future actions before each cutting. Com-

pared to the one-step greedy search, we are more likely to find cutting planes that lead to a better

global solution and avoid unnecessary cuttings. In addition, by considering multiple steps, we no

longer need various heuristic terms to prevent corner cases.

We evaluate our method on the V-HACD benchmark [193] and PartNet Mobility [334], a

large-scale articulated object dataset. We show that our method better preserves the collision

conditions and accurately approximates the fine-grained structures (e.g., drawer handles, kettle

136



mIoU

FullySup.
100%

Ours
0.1%

Ours
0.01%

SQN
0.1%

SQN
0.01%

65.9% 66.0%
61.0%

52.0%

38.3%

26.0%

OTOC
0.1%

SemanticKITTI

FullySup.
100%

Ours
0.9%

Ours
0.2%

75.4% 74.8% 73.5%

Contra.
0.9%

65.5%

nuScenes

65%

55%

45%

35%

25%

0

46.0%

Contra.
0.1%

59.8%

ReDAL
5%

Contra.
0.2%

63.5%

75%

Figure 6.15. We compare LESS with Cylinder3D [397] (our fully-supervised counterpart),
ContrastiveSceneContext [100], SQN [103], OneThingOneClick [181], and ReDAL [331] on
the SemanticKITTI [14] and nuScenes [19] validation sets. The ratio between labels used and all
points is listed below each bar. Please note that all competing label-efficient methods mainly
focus on indoor settings and are not specially designed for outdoor LiDAR segmentation.

spouts, inner rings of scissors, and toaster slots) with fewer convex components. Our decompo-

sition results thus enable delicate and fast object interaction in downstream applications. See

Figures 6.10 and 6.13 for some examples.

6.5.2 Label-Efficient Semantic Segmentation for LiDAR Point Clouds

Light detection and ranging (LiDAR) sensors have become a necessity for most au-

tonomous vehicles. They capture more precise depth measurements and are more robust against

various lighting conditions compared to visual cameras. Semantic segmentation for LiDAR

point clouds is an indispensable technology as it provides fine-grained scene understanding,

complementary to object detection. For example, semantic segmentation help self-driving cars

distinguish drivable and non-drivable road surfaces and reason about their functionalities, like

parking areas and sidewalks, which is beyond the scope of modern object detectors.

Based on large-scale public driving-scene datasets [14, 19], several LiDAR semantic

segmentation approaches have recently been developed [37, 275, 343, 352, 397]. Typically, these

137



Figure 6.16. Examples of the pre-segmentation results. First row: detected ground points of
each cell. Non-ground points are colored in gray. Each other color indicates a proposed ground
component. Second row: connected components of the non-ground points. Each color indicates
a connected component. The example is from the nuScenes dataset, where 40 scans are fused.

methods require fully labeled point clouds during training. Since a LiDAR sensor may perceive

millions of points per second, exhaustively labeling all points is extremely laborious and time-

consuming. Moreover, it may fail to scale when we extend the operational domain (e.g., various

cities and weather conditions) and seek to cover more rare cases. Therefore, to scale up the

system, it is critical to have label-efficient approaches for LiDAR semantic segmentation, whose

goal is to minimize the quantity of human annotations while still achieving high performance.

While there are some prior works studying label-efficient semantic segmentation, they

mostly focus on indoor scenes [10, 48] or 3D object parts [22], which are quite different in point

cloud appearance and object type distribution, compared to the outdoor driving scenes (e.g.,

significant variances in point density, extremely unbalanced point counts between common types,

138



Raw LiDAR Point 
Cloud Sequences

Heuristic 
Pre-segmentation

Proposed Components

Human Labeling

Weak
Labels

Sparse 
Labels

Propagated 
Labels

Multi-Scan 
Teacher Model

Pseudo Labels

Single-Scan 
Student Model(a) (b) (c) (d)

road sidewalk car

buildingterrainvegetation
other-object
trunk

other-structure

parking pole

road sidewalk car

buildingterrainvegetation
other-object
trunk

other-structure

parking pole

road sidewalk car

buildingterrainvegetation
other-object
trunk

other-structure

parking pole
road sidewalk car

buildingterrainvegetation
other-object
trunk

other-structure

parking pole

Figure 6.17. Overview of our LESS pipeline. (a) We first utilize a heuristic algorithm to
pre-segment each LiDAR sequence into a set of connected components. (b) Examples of the
proposed components. Different colors indicate different components. For clear visualization,
components of ground points are not shown. (c) Human annotators only need to coarsely label
each component. Each color denotes a proposed component, and each click icon indicates
a labeled point. Only sparse labels are directly annotated by humans. (d) We then train the
network to digest various labels and utilize multi-scan distillation to exploit richer semantics in
the temporally fused point clouds.

like ground and vehicles, and less common ones, such as cyclists and pedestrians). Besides, most

prior explorations tend to address the problem from two independent perspectives, which may be

less effective in our outdoor setting. Specifically, one perspective is improving labeling efficiency,

where the methods resort to active learning [189, 263, 331], weak labels [244, 316], and 2D

supervision [295] to reduce labeling efforts. The other perspective focuses on training, where the

efforts assume the partial labels are given and design semi/weakly supervised learning algorithms

to exploit the limited labels and strive for better performance [81, 181, 189, 244, 344, 347, 389].

We proposes a novel framework, label-efficient semantic segmentation (LESS), for

LiDAR point clouds captured by self-driving cars. Different from prior works, our method

co-designs the labeling process and the model learning, as shown in Figure 6.17. Our co-design

is based on two principles: 1) the labeling step is designed to provide bare minimum supervision,

which is suitable for state-of-the-art semi/weakly supervised segmentation methods; 2) the model

training step can tap into the labeling policy as a prior and deduce more learning targets. The

proposed method can fit in a straightforward way with most state-of-the-art LiDAR segmentation

backbones without introducing any network architectural change or extra computational com-

plexity when deployed onboard. Our approach is suitable for effectively labeling and learning

139



from scratch. It is also highly compatible with mining long-tail instances, where, in practice, we

mainly want to identify and annotate rare cases based on trained models.

Specifically, we leverage a philosophy that outdoor-scene objects are often well-separated

when isolating ground points and design a heuristic approach to pre-segment an outdoor scene

into a set of connected components. Please refer to Figure 6.16 for an example. The component

proposals are of high purity (i.e., only contain one or a few classes) and cover most of the

points. Then, instead of meticulously labeling all points, the annotators are only required to label

one point per class for each component. In the model learning process, we train the backbone

segmentation network with the sparse labels directly annotated by humans as well as the derived

labels based on component proposals. To encourage a more descriptive embedding space, we

employ contrastive prototype learning [70, 143, 181, 267, 357], which increases intra-class

similarity and inter-class separation. We also leverage a multi-scan teacher model to exploit

richer semantics within the temporally fused point clouds and distill the knowledge to boost the

performance of the single-scan model.

We evaluate the proposed method on two large-scale autonomous driving datasets,

SemanticKITTI [14] and nuScenes [19]. We show that our method significantly outperforms

existing label-efficient methods (see Figure 6.15). With extremely limited human annotations,

such as 0.1% labeled points, the approach achieves highly competitive performance compared to

the fully supervised counterpart, demonstrating the potential of practical deployment.

Chapter 6 incorporates material from the publication “PartSLIP: Low-Shot Part Segmen-

tation for 3D Point Clouds via Pretrained Image-Language Models”, by Minghua Liu, Yinhao

Zhu, Hong Cai, Shizhong Han, Zhan Ling, Fatih Porikli, and Hao Su, published in Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023). The

dissertation author was primary investigator and the lead author of this paper.

140



Chapter 7

Conclusion and Open Problems

7.1 Conclusion

In this dissertation, we have thoroughly investigated the challenges and opportunities in

3D object generation and understanding within an open-world context. Our work has significantly

advanced the state of the art by leveraging large-scale pre-trained 2D vision models and the latest

expansive 3D datasets, addressing the limitations of traditional methods that were confined to a

narrow range of object categories. Through our research, we have enabled more generalizable

and scalable approaches, empowering 3D generation and understanding systems to handle a

diverse array of open-world 3D objects.

In the domain of open-world 3D generation, we introduced One-2-3-45, a pioneering

method that generates 3D objects from a single image through a rapid feed-forward process that

takes less than a minute. Our innovative approach integrates 2D diffusion models to predict

multi-view images from a single view, followed by a sparse-view reconstruction model that

transforms these images into 3D representations. This method addresses both generalizability

and speed, setting a new paradigm in the field and inspiring subsequent research. The two major

challenges in this direction—namely, the 3D inconsistency of multi-view predictions and the

quality of the feed-forward reconstruction module—were further addressed in our follow-up

works. In One-2-3-45++, we improved the consistency of predicted multi-view images and

incorporated a multi-view conditioned 3D diffusion model to reduce reliance on consistent multi-

141



view inputs. In MeshFormer, we enhanced the sparse-view reconstruction model by integrating

various 3D native priors, leading to significantly improved training efficiency and the generation

of 3D geometries with fine-grained, sharp details.

In the area of open-world 3D understanding, our efforts focused on both the global and

local attributes of 3D shapes. We explored two strategies to leverage priors from 2D models:

training a 3D-native network through knowledge distillation and applying inference-only multi-

view fusion. In the OpenShape project, we developed a cross-modal joint representation for

3D point clouds by distilling knowledge from 2D vision models into a 3D-native encoder.

This work emphasizes scaling up cross-modal representation alignment, resulting in robust 3D

representations capable of encoding a wide range of visual concepts and knowledge. On a more

localized level, our PartSLIP project addressed the challenge of low-shot part segmentation

for 3D point clouds. By utilizing the pre-trained 2D model GLIP and employing 2D images

as intermediaries, we extended the model’s capabilities from 2D to 3D. We devised a novel

algorithm to merge multi-view predictions and integrated multiple strategies to incorporate 3D

priors into the 2D model, enhancing cross-view consistency and accuracy. Extensive evaluations

demonstrated that PartSLIP achieves remarkable zero-shot performance, with its few-shot version

rivaling or surpassing fully-supervised methods.

Through these contributions, this dissertation has provided new insights and practical

approaches for advancing 3D generation and understanding in open-world scenarios. Our work

not only extends the applicability of 3D deep learning methods to a broader range of objects but

also paves the way for future research in this rapidly evolving field.

7.2 Open Problems

Despite the advancements made in this dissertation, several open problems remain,

warranting further exploration. For open-world 3D generation, the journey forward involves

addressing several critical challenges:

142



High-Quality Physically-Based Materials: The generation of high-quality, physically-based

materials remains a challenge, particularly due to the scarcity of 3D models with high-quality

textures. Current methods often rely on baked textures rather than disentangled materials, which

limits their practical application.

Human Editability: Current AI-generated 3D shapes are often holistic, limiting artists’ ability

to refine or edit these shapes. Future methods should focus on generating part structures to

enable human editing. Additionally, ensuring that the topology of the mesh and UV unwrapping

are regular and artist-friendly will benefit post-processing.

Controllability: There is a need for more control and diverse input options beyond a single

image or text, such as sparse views, sketches, or style transfer, to generate assets that meet user

specifications. Interactive generation and conversion-based editing (e.g., selecting a region to

modify) are also promising directions.

Simulation and Interaction: Ensuring that 3D assets can support physics-based digital worlds

requires further properties, such as part structure (e.g., opening doors, pushing buttons) and

mesh quality (e.g., watertightness). These features are essential for enabling interaction between

objects and agents in simulations.

Static to Dynamic Shapes: Extending from static to dynamic shapes presents a significant

challenge, necessitating methods that can capture and generate time-varying geometries.

Object-Level to Scene-Level Generation: Transitioning from generating individual objects to

complete scenes is a critical next step, requiring models that can capture the complex relationships

and interactions within a scene.

For open-world 3D understanding, the future holds several key areas that require further

investigation to enhance the robustness and applicability:

Real-World Point Clouds: Current approaches often focus on complete, perfect point clouds

sampled from mesh surfaces. Extending these methods to handle real-world captured point

clouds, which are often incomplete, noisy, and contain background points, is essential.

Zero-Shot Feed-Forward Models for Part-Level Understanding: PartSLIP currently relies

143



on few-shot tuning and is a per-shape optimization method requiring long processing times.

Developing strong feed-forward models with good zero-shot performance could alleviate this

bottleneck.

From Object-Level to Scene-Level: As with generation, extending understanding from individ-

ual objects to entire scenes is a significant open problem, demanding models that can understand

complex spatial relationships and interactions within a scene.

Integration with LLMs and Human Interaction: Integrating 3D understanding with large

language models (LLMs) to enable dialogue and conversation with humans represents an exciting

frontier. This could open new avenues for interactive 3D applications and more natural human-

computer interactions.

While significant progress has been made, the field of open-world 3D generation and

understanding remains rich with challenges and opportunities. Addressing these challenges will

require not only advancements in computational methods but also the development of more

sophisticated datasets, models, and evaluation metrics. As the field evolves, interdisciplinary

collaboration will be crucial in pushing the boundaries of what is possible, ultimately leading to

more robust, versatile, and human-interpretable 3D systems. The open problems outlined here

provide a roadmap for future research, guiding the next generation of innovations in 3D deep

learning.

144



Bibliography

[1] Ahmed Abdelreheem, Ivan Skorokhodov, Maks Ovsjanikov, and Peter Wonka. Satr: Zero-shot semantic
segmentation of 3d shapes. arXiv preprint arXiv:2304.04909, 2023.

[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[3] Idan Achituve, Haggai Maron, and Gal Chechik. Self-supervised learning for domain adaptation on point
clouds. In Proceedings of the IEEE/CVF winter conference on applications of computer vision, pages
123–133, 2021.

[4] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Learning representations and
generative models for 3d point clouds. In International conference on machine learning, pages 40–49. PMLR,
2018.

[5] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc,
Arthur Mensch, Katie Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for few-shot
learning. arXiv preprint arXiv:2204.14198, 2022.

[6] Jacopo Aleotti and Stefano Caselli. A 3d shape segmentation approach for robot grasping by parts. Robotics
and Autonomous Systems, 60(3):358–366, 2012.

[7] Antonio Alliegro, Davide Boscaini, and Tatiana Tommasi. Joint supervised and self-supervised learning
for 3d real world challenges. In 2020 25th International Conference on Pattern Recognition (ICPR), pages
6718–6725. IEEE, 2021.

[8] Yara Ali Alnaggar, Mohamed Afifi, Karim Amer, and Mohamed ElHelw. Multi projection fusion for real-time
semantic segmentation of 3d lidar point clouds. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 1800–1809, 2021.

[9] Shivangi Aneja, Justus Thies, Angela Dai, and Matthias Nießner. Clipface: Text-guided editing of textured
3d morphable models. arXiv preprint arXiv:2212.01406, 2022.

[10] Iro Armeni, Sasha Sax, Amir R Zamir, and Silvio Savarese. Joint 2d-3d-semantic data for indoor scene
understanding. arXiv preprint arXiv:1702.01105, 2017.

[11] Marco Attene, Michela Mortara, Michela Spagnuolo, and Bianca Falcidieno. Hierarchical convex approxi-
mation of 3d shapes for fast region selection. In Computer graphics forum, volume 27, pages 1323–1332.
Wiley Online Library, 2008.

[12] Abhishek Badki, Orazio Gallo, Jan Kautz, and Pradeep Sen. Meshlet priors for 3d mesh reconstruction.

145



arXiv preprint arXiv:2001.01744, 2020.

[13] Romain Beaumont. Clip retrieval: Easily compute clip embeddings and build a clip retrieval system with
them. https://github.com/rom1504/clip-retrieval, 2022.

[14] Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke, Cyrill Stachniss, and Jurgen Gall.
Semantickitti: A dataset for semantic scene understanding of lidar sequences. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), pages 9297–9307, 2019.

[15] Gino van den Bergen. A fast and robust gjk implementation for collision detection of convex objects. Journal
of graphics tools, 4(2):7–25, 1999.

[16] Fausto Bernardini, Joshua Mittleman, Holly Rushmeier, Cláudio Silva, and Gabriel Taubin. The ball-
pivoting algorithm for surface reconstruction. IEEE transactions on visualization and computer graphics,
5(4):349–359, 1999.

[17] Alexey Bokhovkin, Vladislav Ishimtsev, Emil Bogomolov, Denis Zorin, Alexey Artemov, Evgeny Burnaev,
and Angela Dai. Towards part-based understanding of rgb-d scans. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 7484–7494, 2021.

[18] G. Bradski. Perspective-n-point (pnp) pose computation (the opencv library). https://docs.opencv.org/4.x/d5/
d1f/calib3d solvePnP.html, 2000.

[19] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan,
Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for autonomous driving.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
11621–11631, 2020.

[20] Zehranaz Canfes, M Furkan Atasoy, Alara Dirik, and Pinar Yanardag. Text and image guided 3d avatar
generation and manipulation. In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 4421–4431, 2023.

[21] Eric R Chan, Koki Nagano, Matthew A Chan, Alexander W Bergman, Jeong Joon Park, Axel Levy, Miika
Aittala, Shalini De Mello, Tero Karras, and Gordon Wetzstein. Genvs: Generative novel view synthesis with
3d-aware diffusion models, 2023.

[22] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio
Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d model repository.
arXiv preprint arXiv:1512.03012, 2015.

[23] Bernard Chazelle, David P Dobkin, Nadia Shouraboura, and Ayellet Tal. Strategies for polyhedral surface
decomposition: An experimental study. Computational Geometry, 7(5-6):327–342, 1997.

[24] Bernard M Chazelle. Convex decompositions of polyhedra. In Proceedings of the thirteenth annual ACM
symposium on Theory of computing, pages 70–79, 1981.

[25] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance fields. In
European Conference on Computer Vision, pages 333–350. Springer, 2022.

[26] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang, Fanbo Xiang, Jingyi Yu, and Hao Su. Mvsnerf:
Fast generalizable radiance field reconstruction from multi-view stereo. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 14124–14133, 2021.

146

https://github.com/rom1504/clip-retrieval
https://docs.opencv.org/4.x/d5/d1f/calib3d_solvePnP.html
https://docs.opencv.org/4.x/d5/d1f/calib3d_solvePnP.html


[27] Dave Zhenyu Chen, Yawar Siddiqui, Hsin-Ying Lee, Sergey Tulyakov, and Matthias Nießner. Text2tex:
Text-driven texture synthesis via diffusion models. arXiv preprint arXiv:2303.11396, 2023.

[28] Guanying Chen, Kai Han, Boxin Shi, Yasuyuki Matsushita, and Kwan-Yee K. Wong. Sdps-net: Self-
calibrating deep photometric stereo networks. In CVPR, 2019.

[29] Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. Fantasia3d: Disentangling geometry and appearance
for high-quality text-to-3d content creation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), October 2023.

[30] Runnan Chen, Youquan Liu, Lingdong Kong, Xinge Zhu, Yuexin Ma, Yikang Li, Yuenan Hou, Yu Qiao,
and Wenping Wang. Clip2scene: Towards label-efficient 3d scene understanding by clip. arXiv preprint
arXiv:2301.04926, 2023.

[31] Tao Chen, Jie Xu, and Pulkit Agrawal. A system for general in-hand object re-orientation. In Conference on
Robot Learning, pages 297–307. PMLR, 2022.

[32] Yiwen Chen, Tong He, Di Huang, Weicai Ye, Sijin Chen, Jiaxiang Tang, Xin Chen, Zhongang Cai, Lei
Yang, Gang Yu, et al. Meshanything: Artist-created mesh generation with autoregressive transformers. arXiv
preprint arXiv:2406.10163, 2024.

[33] Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. Bsp-net: Generating compact meshes via binary space
partitioning. arXiv preprint arXiv:1911.06971, 2019.

[34] Zhiqin Chen, Kangxue Yin, Matthew Fisher, Siddhartha Chaudhuri, and Hao Zhang. Bae-net: Branched
autoencoder for shape co-segmentation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 8490–8499, 2019.

[35] Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape modeling. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 5939–5948, 2019.

[36] Zilong Chen, Feng Wang, and Huaping Liu. Text-to-3d using gaussian splatting. arXiv preprint
arXiv:2309.16585, 2023.

[37] Ran Cheng, Ryan Razani, Ehsan Taghavi, Enxu Li, and Bingbing Liu. Af2-s3net: Attentive feature fusion
with adaptive feature selection for sparse semantic segmentation network. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 12547–12556, 2021.

[38] Yen-Chi Cheng, Hsin-Ying Lee, Sergey Tulyakov, Alexander G Schwing, and Liang-Yan Gui. Sdfusion: Mul-
timodal 3d shape completion, reconstruction, and generation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4456–4465, 2023.

[39] Julian Chibane, Francis Engelmann, Tuan Anh Tran, and Gerard Pons-Moll. Box2mask: Weakly supervised
3d semantic instance segmentation using bounding boxes. In European Conference on Computer Vision,
pages 681–699. Springer, 2022.

[40] Han-Pang Chiu, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Automatic class-specific 3d reconstruction
from a single image. CSAIL, pages 1–9, 2009.

[41] Gene Chou, Yuval Bahat, and Felix Heide. Diffusion-sdf: Conditional generative modeling of signed distance
functions. 2023.

147



[42] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets: Minkowski convolu-
tional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 3075–3084, 2019.

[43] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. 3d-r2n2: A unified
approach for single and multi-view 3d object reconstruction. In Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VIII 14, pages 628–644.
Springer, 2016.

[44] Ruihang Chu, Yukang Chen, Tao Kong, Lu Qi, and Lei Li. Icm-3d: Instantiated category modeling for 3d
instance segmentation. IEEE Robotics and Automation Letters, 7(1):57–64, 2021.

[45] Chin Seng Chua and Ray Jarvis. Point signatures: A new representation for 3d object recognition. Interna-
tional Journal of Computer Vision, 25:63–85, 1997.

[46] Jasmine Collins, Shubham Goel, Kenan Deng, Achleshwar Luthra, Leon Xu, Erhan Gundogdu, Xi Zhang,
Tomas F Yago Vicente, Thomas Dideriksen, Himanshu Arora, et al. Abo: Dataset and benchmarks for
real-world 3d object understanding. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 21126–21136, 2022.

[47] Rodolfo Corona, Shizhan Zhu, Dan Klein, and Trevor Darrell. Voxel-informed language grounding. arXiv
preprint arXiv:2205.09710, 2022.

[48] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias Nießner.
Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 5828–5839, 2017.

[49] Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo, Oscar Michel, Aditya Kusupati, Alan Fan,
Christian Laforte, Vikram Voleti, Samir Yitzhak Gadre, et al. Objaverse-xl: A universe of 10m+ 3d objects.
arXiv preprint arXiv:2307.05663, 2023.

[50] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig Schmidt,
Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of annotated 3d objects. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13142–13153,
2023.

[51] Congyue Deng, Chiyu Jiang, Charles R Qi, Xinchen Yan, Yin Zhou, Leonidas Guibas, Dragomir Anguelov,
et al. Nerdi: Single-view nerf synthesis with language-guided diffusion as general image priors. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 20637–20647,
2023.

[52] Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi, and Leonidas J Guibas.
Vector neurons: A general framework for so (3)-equivariant networks. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 12200–12209, 2021.

[53] Haowen Deng, Tolga Birdal, and Slobodan Ilic. Ppf-foldnet: Unsupervised learning of rotation invariant 3d
local descriptors. In Proceedings of the European conference on computer vision (ECCV), pages 602–618,
2018.

[54] Maximilian Denninger, Martin Sundermeyer, Dominik Winkelbauer, Youssef Zidan, Dmitry Olefir, Mohamad
Elbadrawy, Ahsan Lodhi, and Harinandan Katam. Blenderproc. arXiv preprint arXiv:1911.01911, 2019.

148



[55] Maximilian Denninger, Dominik Winkelbauer, Martin Sundermeyer, Wout Boerdijk, Markus Knauer, Klaus H.
Strobl, Matthias Humt, and Rudolph Triebel. Blenderproc2: A procedural pipeline for photorealistic
rendering. Journal of Open Source Software, 8(82):4901, 2023.

[56] Theo Deprelle, Thibault Groueix, Matthew Fisher, Vladimir Kim, Bryan Russell, and Mathieu Aubry.
Learning elementary structures for 3d shape generation and matching. In Advances in Neural Information
Processing Systems, pages 7433–7443, 2019.

[57] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding, 2019.

[58] Runyu Ding, Jihan Yang, Chuhui Xue, Wenqing Zhang, Song Bai, and Xiaojuan Qi. Language-driven
open-vocabulary 3d scene understanding. arXiv preprint arXiv:2211.16312, 2022.

[59] Laura Downs, Anthony Francis, Nate Koenig, Brandon Kinman, Ryan Hickman, Krista Reymann, Thomas B
McHugh, and Vincent Vanhoucke. Google scanned objects: A high-quality dataset of 3d scanned household
items. In 2022 International Conference on Robotics and Automation (ICRA), pages 2553–2560. IEEE,
2022.

[60] Benjamin Eckart, Wentao Yuan, Chao Liu, and Jan Kautz. Self-supervised learning on 3d point clouds by
learning discrete generative models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8248–8257, 2021.

[61] Ziya Erkoç, Fangchang Ma, Qi Shan, Matthias Nießner, and Angela Dai. Hyperdiffusion: Generating implicit
neural fields with weight-space diffusion. arXiv preprint arXiv:2303.17015, 2023.

[62] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set generation network for 3d object reconstruction
from a single image. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 605–613, 2017.

[63] Huan Fu, Rongfei Jia, Lin Gao, Mingming Gong, Binqiang Zhao, Steve Maybank, and Dacheng Tao.
3d-future: 3d furniture shape with texture. International Journal of Computer Vision, 129:3313–3337, 2021.

[64] Xiao Fu, Wei Yin, Mu Hu, Kaixuan Wang, Yuexin Ma, Ping Tan, Shaojie Shen, Dahua Lin, and Xiaoxiao
Long. Geowizard: Unleashing the diffusion priors for 3d geometry estimation from a single image. arXiv
preprint arXiv:2403.12013, 2024.

[65] Matheus Gadelha, Aruni RoyChowdhury, Gopal Sharma, Evangelos Kalogerakis, Liangliang Cao, Erik
Learned-Miller, Rui Wang, and Subhransu Maji. Label-efficient learning on point clouds using approximate
convex decompositions. In European Conference on Computer Vision, pages 473–491. Springer, 2020.

[66] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel Cohen-Or.
An image is worth one word: Personalizing text-to-image generation using textual inversion. arXiv preprint
arXiv:2208.01618, 2022.

[67] Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen, Kangxue Yin, Daiqing Li, Or Litany, Zan Gojcic, and
Sanja Fidler. Get3d: A generative model of high quality 3d textured shapes learned from images. Advances
In Neural Information Processing Systems, 35:31841–31854, 2022.

[68] Lin Gao, Jie Yang, Tong Wu, Yu-Jie Yuan, Hongbo Fu, Yu-Kun Lai, and Hao Zhang. Sdm-net: Deep
generative network for structured deformable mesh. ACM Transactions on Graphics (TOG), 38(6):1–15,
2019.

149



[69] Ruiqi Gao*, Aleksander Holynski*, Philipp Henzler, Arthur Brussee, Ricardo Martin-Brualla, Pratul P.
Srinivasan, Jonathan T. Barron, and Ben Poole*. Cat3d: Create anything in 3d with multi-view diffusion
models. arXiv, 2024.

[70] Yizhao Gao, Nanyi Fei, Guangzhen Liu, Zhiwu Lu, Tao Xiang, and Songfang Huang. Contrastive prototype
learning with augmented embeddings for few-shot learning. arXiv preprint arXiv:2101.09499, 2021.

[71] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T Freeman, and Thomas Funkhouser.
Learning shape templates with structured implicit functions. In Proceedings of the IEEE International
Conference on Computer Vision, pages 7154–7164, 2019.

[72] Martin Gerdzhev, Ryan Razani, Ehsan Taghavi, and Liu Bingbing. Tornado-net: multiview total variation
semantic segmentation with diamond inception module. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pages 9543–9549. IEEE, 2021.

[73] Mukulika Ghosh, Nancy M Amato, Yanyan Lu, and Jyh-Ming Lien. Fast approximate convex decomposition
using relative concavity. Computer-Aided Design, 45(2):494–504, 2013.

[74] Elmer G Gilbert, Daniel W Johnson, and S Sathiya Keerthi. A fast procedure for computing the distance
between complex objects in three-dimensional space. IEEE Journal on Robotics and Automation, 4(2):193–
203, 1988.

[75] Rohit Girdhar, David F Fouhey, Mikel Rodriguez, and Abhinav Gupta. Learning a predictable and generative
vector representation for objects. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam,
The Netherlands, October 11-14, 2016, Proceedings, Part VI 14, pages 484–499. Springer, 2016.

[76] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh r-cnn. In Proceedings of the IEEE International
Conference on Computer Vision, pages 9785–9795, 2019.

[77] Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C Russell, and Mathieu Aubry. 3d-coded: 3d
correspondences by deep deformation. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 230–246, 2018.

[78] Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C Russell, and Mathieu Aubry. A papier-mâché
approach to learning 3d surface generation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 216–224, 2018.

[79] Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, and Mathieu Aubry. Deep self-
supervised cycle-consistent deformation for few-shot shape segmentation. 2019.

[80] Gaël Guennebaud, Marcel Germann, and Markus Gross. Dynamic sampling and rendering of algebraic point
set surfaces. In Computer Graphics Forum, volume 27, pages 653–662. Wiley Online Library, 2008.

[81] Stéphane Guinard and Loic Landrieu. Weakly supervised segmentation-aided classification of urban scenes
from 3d lidar point clouds. In ISPRS Workshop 2017, 2017.

[82] Yuan-Chen Guo, Ying-Tian Liu, Ruizhi Shao, Christian Laforte, Vikram Voleti, Guan Luo, Chia-Hao Chen,
Zi-Xin Zou, Chen Wang, Yan-Pei Cao, and Song-Hai Zhang. threestudio: A unified framework for 3d content
generation. https://github.com/threestudio-project/threestudio, 2023.

[83] Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A dataset for large vocabulary instance segmentation.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 5356–5364,

150

https://github.com/threestudio-project/threestudio


2019.

[84] Anchit Gupta, Wenhan Xiong, Yixin Nie, Ian Jones, and Barlas Oğuz. 3dgen: Triplane latent diffusion for
textured mesh generation. arXiv preprint arXiv:2303.05371, 2023.

[85] Huy Ha and Shuran Song. Semantic abstraction: Open-world 3d scene understanding from 2d vision-language
models. In Conference on Robot Learning, 2022.

[86] Songfang Han, Jiayuan Gu, Kaichun Mo, Li Yi, Siyu Hu, Xuejin Chen, and Hao Su. Compositionally
generalizable 3d structure prediction. arXiv preprint arXiv:2012.02493, 2020.

[87] Richard I Hartley. In defense of the eight-point algorithm. IEEE Transactions on pattern analysis and
machine intelligence, 19(6):580–593, 1997.

[88] Kaveh Hassani and Mike Haley. Unsupervised multi-task feature learning on point clouds. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 8160–8171, 2019.

[89] Tong He, Dong Gong, Zhi Tian, and Chunhua Shen. Learning and memorizing representative prototypes for
3d point cloud semantic and instance segmentation. In European Conference on Computer Vision, pages
564–580. Springer, 2020.

[90] Zexin He and Tengfei Wang. Openlrm: Open-source large reconstruction models. https://github.com/
3DTopia/OpenLRM, 2023.

[91] Deepti Hegde, Jeya Maria Jose Valanarasu, and Vishal M Patel. Clip goes 3d: Leveraging prompt tuning for
language grounded 3d recognition. arXiv preprint arXiv:2303.11313, 2023.

[92] Philipp Henzler, Jeremy Reizenstein, Patrick Labatut, Roman Shapovalov, Tobias Ritschel, Andrea Vedaldi,
and David Novotny. Unsupervised learning of 3d object categories from videos in the wild. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4700–4709, 2021.

[93] Georg Hess, Johan Jaxing, Elias Svensson, David Hagerman, Christoffer Petersson, and Lennart Svensson.
Masked autoencoder for self-supervised pre-training on lidar point clouds. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pages 350–359, 2023.

[94] Georg Hess, Adam Tonderski, Christoffer Petersson, Lennart Svensson, and Kalle Åström. Lidarclip or:
How i learned to talk to point clouds. arXiv preprint arXiv:2212.06858, 2022.

[95] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

[96] Fangzhou Hong, Mingyuan Zhang, Liang Pan, Zhongang Cai, Lei Yang, and Ziwei Liu. Avatarclip: Zero-shot
text-driven generation and animation of 3d avatars. arXiv preprint arXiv:2205.08535, 2022.

[97] Yicong Hong, Kai Zhang, Jiuxiang Gu, Sai Bi, Yang Zhou, Difan Liu, Feng Liu, Kalyan Sunkavalli, Trung
Bui, and Hao Tan. Lrm: Large reconstruction model for single image to 3d. arXiv preprint arXiv:2311.04400,
2023.

[98] Berthold KP Horn and Brian G Schunck. Determining optical flow. Artificial intelligence, 17(1-3):185–203,
1981.

[99] Ji Hou, Angela Dai, and Matthias Nießner. 3d-sis: 3d semantic instance segmentation of rgb-d scans. In

151

https://github.com/3DTopia/OpenLRM
https://github.com/3DTopia/OpenLRM


Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 4421–4430,
2019.

[100] Ji Hou, Benjamin Graham, Matthias Nießner, and Saining Xie. Exploring data-efficient 3d scene understand-
ing with contrastive scene contexts. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 15587–15597, 2021.

[101] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021.

[102] Hanzhe Hu, Zhizhuo Zhou, Varun Jampani, and Shubham Tulsiani. Mvd-fusion: Single-view 3d via
depth-consistent multi-view generation. In CVPR, 2024.

[103] Qingyong Hu, Bo Yang, Guangchi Fang, Yulan Guo, Ales Leonardis, Niki Trigoni, and Andrew Markham.
Sqn: Weakly-supervised semantic segmentation of large-scale 3d point clouds with 1000x fewer labels. arXiv
preprint arXiv:2104.04891, 2021.

[104] Haibin Huang, Evangelos Kalogerakis, Siddhartha Chaudhuri, Duygu Ceylan, Vladimir G. Kim, and Ersin
Yumer. Learning local shape descriptors from part correspondences with multiview convolutional networks.
ACM Transactions on Graphics, 2017.

[105] Rui Huang, Xuran Pan, Henry Zheng, Haojun Jiang, Zhifeng Xie, Shiji Song, and Gao Huang. Joint
representation learning for text and 3d point cloud. arXiv preprint arXiv:2301.07584, 2023.

[106] Tianyu Huang, Bowen Dong, Yunhan Yang, Xiaoshui Huang, Rynson WH Lau, Wanli Ouyang, and
Wangmeng Zuo. Clip2point: Transfer clip to point cloud classification with image-depth pre-training. arXiv
preprint arXiv:2210.01055, 2022.

[107] Wenlong Huang, Igor Mordatch, Pieter Abbeel, and Deepak Pathak. Generalization in dexterous manipulation
via geometry-aware multi-task learning. arXiv preprint arXiv:2111.03062, 2021.

[108] Zixuan Huang, Stefan Stojanov, Anh Thai, Varun Jampani, and James M Rehg. Planes vs. chairs: Category-
guided 3d shape learning without any 3d cues. In Computer Vision–ECCV 2022: 17th European Conference,
Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part I, pages 727–744. Springer, 2022.

[109] Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori, Achal
Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali Farhadi, and Ludwig
Schmidt. Openclip, July 2021. If you use this software, please cite it as below.

[110] Ajay Jain, Ben Mildenhall, Jonathan T Barron, Pieter Abbeel, and Ben Poole. Zero-shot text-guided object
generation with dream fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 867–876, 2022.

[111] Ajay Jain, Matthew Tancik, and Pieter Abbeel. Putting nerf on a diet: Semantically consistent few-shot view
synthesis. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 5885–5894,
2021.

[112] Wonbong Jang and Lourdes Agapito. Codenerf: Disentangled neural radiance fields for object categories. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 12949–12958, 2021.

[113] Krishna Murthy Jatavallabhula, Alihusein Kuwajerwala, Qiao Gu, Mohd Omama, Tao Chen, Shuang Li,
Ganesh Iyer, Soroush Saryazdi, Nikhil Keetha, Ayush Tewari, et al. Conceptfusion: Open-set multimodal 3d

152



mapping. arXiv preprint arXiv:2302.07241, 2023.

[114] Nikolay Jetchev. Clipmatrix: Text-controlled creation of 3d textured meshes. arXiv preprint
arXiv:2109.12922, 2021.

[115] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung,
Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with noisy text
supervision. In International Conference on Machine Learning, pages 4904–4916. PMLR, 2021.

[116] Hanwen Jiang, Zhenyu Jiang, Kristen Grauman, and Yuke Zhu. Few-view object reconstruction with
unknown categories and camera poses. arXiv preprint arXiv:2212.04492, 2022.

[117] Hanwen Jiang, Zhenyu Jiang, Yue Zhao, and Qixing Huang. Leap: Liberate sparse-view 3d modeling from
camera poses. arXiv preprint arXiv:2310.01410, 2023.

[118] Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-Wing Fu, and Jiaya Jia. Pointgroup: Dual-set point
grouping for 3d instance segmentation. In Proceedings of the IEEE/CVF conference on computer vision and
Pattern recognition, pages 4867–4876, 2020.

[119] Mohammad Mahdi Johari, Yann Lepoittevin, and François Fleuret. Geonerf: Generalizing nerf with geometry
priors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
18365–18375, 2022.

[120] Andrew E Johnson. Spin-images: a representation for 3-d surface matching. 1997.

[121] Heewoo Jun and Alex Nichol. Shap-e: Generating conditional 3d implicit functions. arXiv preprint
arXiv:2305.02463, 2023.

[122] Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe Weinzaepfel, and Diane Larlus. Hard negative
mixing for contrastive learning. Advances in Neural Information Processing Systems, 33:21798–21809,
2020.

[123] Angjoo Kanazawa, Shubham Tulsiani, Alexei A Efros, and Jitendra Malik. Learning category-specific mesh
reconstruction from image collections. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 371–386, 2018.

[124] Animesh Karnewar, Andrea Vedaldi, David Novotny, and Niloy J Mitra. Holodiffusion: Training a 3d
diffusion model using 2d images. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 18423–18433, 2023.

[125] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface reconstruction. In Proceedings of
the fourth Eurographics symposium on Geometry processing, volume 7, 2006.

[126] Michael Kazhdan and Hugues Hoppe. Screened poisson surface reconstruction. ACM Transactions on
Graphics (ToG), 32(3):1–13, 2013.

[127] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for
real-time radiance field rendering. ACM Transactions on Graphics, 42(4), July 2023.

[128] Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo Kanazawa, and Matthew Tancik. Lerf: Language
embedded radiance fields. arXiv preprint arXiv:2303.09553, 2023.

153



[129] Nasir Khalid, Tianhao Xie, Eugene Belilovsky, and Tiberiu Popa. Text to mesh without 3d supervision using
limit subdivision. arXiv preprint arXiv:2203.13333, 2022.

[130] Mijeong Kim, Seonguk Seo, and Bohyung Han. Infonerf: Ray entropy minimization for few-shot neural
volume rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 12912–12921, 2022.

[131] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. arXiv preprint
arXiv:2304.02643, 2023.

[132] Amit Pal Singh Kohli, Vincent Sitzmann, and Gordon Wetzstein. Semantic implicit neural scene representa-
tions with semi-supervised training. In 2020 International Conference on 3D Vision (3DV), pages 423–433.
IEEE, 2020.

[133] Xin Kong, Shikun Liu, Xiaoyang Lyu, Marwan Taher, Xiaojuan Qi, and Andrew J Davison. Eschernet: A
generative model for scalable view synthesis. arXiv preprint arXiv:2402.03908, 2024.

[134] Juil Koo, Ian Huang, Panos Achlioptas, Leonidas J Guibas, and Minhyuk Sung. Partglot: Learning shape part
segmentation from language reference games. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 16505–16514, 2022.

[135] Jonáš Kulhánek, Erik Derner, Torsten Sattler, and Robert Babuška. Viewformer: Nerf-free neural rendering
from few images using transformers. In European Conference on Computer Vision, pages 198–216. Springer,
2022.

[136] Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo Aila. Modular
primitives for high-performance differentiable rendering. ACM Transactions on Graphics, 39(6), 2020.

[137] Loic Landrieu and Guillaume Obozinski. Cut pursuit: Fast algorithms to learn piecewise constant functions
on general weighted graphs. SIAM Journal on Imaging Sciences, 10(4):1724–1766, 2017.

[138] Loic Landrieu and Martin Simonovsky. Large-scale point cloud semantic segmentation with superpoint
graphs. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4558–4567,
2018.

[139] Han-Hung Lee and Angel X Chang. Understanding pure clip guidance for voxel grid nerf models. arXiv
preprint arXiv:2209.15172, 2022.

[140] Jiachen Li, Quan Vuong, Shuang Liu, Minghua Liu, Kamil Ciosek, Henrik Christensen, and Hao Su. Multi-
task batch reinforcement learning with metric learning. Advances in neural information processing systems,
33:6197–6210, 2020.

[141] Jiahao Li, Hao Tan, Kai Zhang, Zexiang Xu, Fujun Luan, Yinghao Xu, Yicong Hong, Kalyan Sunkavalli, Greg
Shakhnarovich, and Sai Bi. Instant3d: Fast text-to-3d with sparse-view generation and large reconstruction
model. arXiv preprint arXiv:2311.06214, 2023.

[142] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-training for
unified vision-language understanding and generation. In International Conference on Machine Learning,
pages 12888–12900. PMLR, 2022.

[143] Junnan Li, Pan Zhou, Caiming Xiong, and Steven CH Hoi. Prototypical contrastive learning of unsupervised

154



representations. In Proceedings of the International Conference on Learning Representations (ICLR), 2020.

[144] Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu Zhong, Lijuan
Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al. Grounded language-image pre-training. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10965–10975, 2022.

[145] Muheng Li, Yueqi Duan, Jie Zhou, and Jiwen Lu. Diffusion-sdf: Text-to-shape via voxelized diffusion. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12642–12651,
2023.

[146] Weiyu Li, Rui Chen, Xuelin Chen, and Ping Tan. Sweetdreamer: Aligning geometric priors in 2d diffusion
for consistent text-to-3d. arxiv:2310.02596, 2023.

[147] Xuanlin Li, Yunhao Fang, Minghua Liu, Zhan Ling, Zhuowen Tu, and Hao Su. Distilling large vision-
language model with out-of-distribution generalizability. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 2492–2503, 2023.

[148] Victor Weixin Liang, Yuhui Zhang, Yongchan Kwon, Serena Yeung, and James Y Zou. Mind the gap:
Understanding the modality gap in multi-modal contrastive representation learning. Advances in Neural
Information Processing Systems, 35:17612–17625, 2022.

[149] Yiyi Liao, Simon Donne, and Andreas Geiger. Deep marching cubes: Learning explicit surface repre-
sentations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
2916–2925, 2018.

[150] Jyh-Ming Lien and Nancy M Amato. Approximate convex decomposition. In Proceedings of the twentieth
annual symposium on Computational geometry, pages 457–458, 2004.

[151] Jyh-Ming Lien and Nancy M Amato. Approximate convex decomposition of polyhedra. In Proceedings of
the 2007 ACM symposium on Solid and physical modeling, pages 121–131, 2007.

[152] Jyh-Ming Lien and Nancy M Amato. Approximate convex decomposition of polyhedra and its applications.
Computer Aided Geometric Design, 25(7):503–522, 2008.

[153] Amy Lin, Jason Y Zhang, Deva Ramanan, and Shubham Tulsiani. Relpose++: Recovering 6d poses from
sparse-view observations. arXiv preprint arXiv:2305.04926, 2023.

[154] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang, Karsten Kreis,
Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution text-to-3d content creation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 300–309,
2023.

[155] Venice Erin Liong, Thi Ngoc Tho Nguyen, Sergi Widjaja, Dhananjai Sharma, and Zhuang Jie Chong. Amvnet:
Assertion-based multi-view fusion network for lidar semantic segmentation. arXiv preprint arXiv:2012.04934,
2020.

[156] Guilin Liu, Zhonghua Xi, and Jyh-Ming Lien. Nearly convex segmentation of polyhedra through convex
ridge separation. Computer-Aided Design, 78:137–146, 2016.

[157] Jinxian Liu, Minghui Yu, Bingbing Ni, and Ye Chen. Self-prediction for joint instance and semantic
segmentation of point clouds. In European Conference on Computer Vision, pages 187–204. Springer, 2020.

155



[158] Minghua Liu, Xuanlin Li, Zhan Ling, Yangyan Li, and Hao Su. Frame mining: a free lunch for learning
robotic manipulation from 3d point clouds. arXiv preprint arXiv:2210.07442, 2022.

[159] Minghua Liu, Hang Ma, Jiaoyang Li, and Sven Koenig. Task and path planning for multi-agent pickup
and delivery. In Proceedings of the International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 2019.

[160] Minghua Liu, Lu Sheng, Sheng Yang, Jing Shao, and Shi-Min Hu. Morphing and sampling network for
dense point cloud completion. In Proceedings of the AAAI conference on artificial intelligence, volume 34,
pages 11596–11603, 2020.

[161] Minghua Liu, Ruoxi Shi, Linghao Chen, Zhuoyang Zhang, Chao Xu, Xinyue Wei, Hansheng Chen, Chong
Zeng, Jiayuan Gu, and Hao Su. One-2-3-45++: Fast single image to 3d objects with consistent multi-view
generation and 3d diffusion. arXiv preprint arXiv:2311.07885, 2023.

[162] Minghua Liu, Ruoxi Shi, Kaiming Kuang, Yinhao Zhu, Xuanlin Li, Shizhong Han, Hong Cai, Fatih Porikli,
and Hao Su. Openshape: Scaling up 3d shape representation towards open-world understanding. Advances
in Neural Information Processing Systems, 36, 2024.

[163] Minghua Liu, Minhyuk Sung, Radomir Mech, and Hao Su. Deepmetahandles: Learning deformation
meta-handles of 3d meshes with biharmonic coordinates. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12–21, 2021.

[164] Minghua Liu, Chao Xu, Haian Jin, Linghao Chen, Mukund Varma T, Zexiang Xu, and Hao Su. One-2-3-45:
Any single image to 3d mesh in 45 seconds without per-shape optimization. Advances in Neural Information
Processing Systems, 36, 2024.

[165] Minghua Liu, Chong Zeng, Xinyue Wei, Ruoxi Shi, Linghao Chen, Chao Xu, Mengqi Zhang, Zhaoning
Wang, Xiaoshuai Zhang, Isabella Liu, et al. Meshformer: High-quality mesh generation with 3d-guided
reconstruction model. arXiv preprint arXiv:2408.10198, 2024.

[166] Minghua Liu, Xiaoshuai Zhang, and Hao Su. Meshing point clouds with predicted intrinsic-extrinsic ratio
guidance. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part VIII 16, pages 68–84. Springer, 2020.

[167] Minghua Liu, Yin Zhou, Charles R Qi, Boqing Gong, Hao Su, and Dragomir Anguelov. Less: Label-efficient
semantic segmentation for lidar point clouds. In European Conference on Computer Vision, pages 70–89.
Springer, 2022.

[168] Minghua Liu, Yinhao Zhu, Hong Cai, Shizhong Han, Zhan Ling, Fatih Porikli, and Hao Su. Partslip:
Low-shot part segmentation for 3d point clouds via pretrained image-language models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 21736–21746, 2023.

[169] Rong Liu, Hao Zhang, and James Busby. Convex hull covering of polygonal scenes for accurate collision
detection in games. In Graphics Interface, pages 203–210, 2008.

[170] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick. Zero-
1-to-3: Zero-shot one image to 3d object. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 9298–9309, 2023.

[171] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft rasterizer: A differentiable renderer for image-based
3d reasoning. 2019.

156



[172] Xueyi Liu, Xiaomeng Xu, Anyi Rao, Chuang Gan, and Li Yi. Autogpart: Intermediate supervision search
for generalizable 3d part segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 11624–11634, 2022.

[173] Yan Liu, Qingyong Hu, Yinjie Lei, Kai Xu, Jonathan Li, and Yulan Guo. Box2seg: Learning semantics of 3d
point clouds with box-level supervision. arXiv preprint arXiv:2201.02963, 2022.

[174] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong Pan. Relation-shape convolutional neural network
for point cloud analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8895–8904, 2019.

[175] Yuan Liu, Cheng Lin, Zijiao Zeng, Xiaoxiao Long, Lingjie Liu, Taku Komura, and Wenping Wang.
Syncdreamer: Generating multiview-consistent images from a single-view image. arXiv preprint
arXiv:2309.03453, 2023.

[176] Yuan Liu, Sida Peng, Lingjie Liu, Qianqian Wang, Peng Wang, Christian Theobalt, Xiaowei Zhou, and
Wenping Wang. Neural rays for occlusion-aware image-based rendering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 7824–7833, 2022.

[177] Yuxin Liu, Minshan Xie, Hanyuan Liu, and Tien-Tsin Wong. Text-guided texturing by synchronized
multi-view diffusion. arXiv preprint arXiv:2311.12891, 2023.

[178] Zhen Liu, Yao Feng, Michael J Black, Derek Nowrouzezahrai, Liam Paull, and Weiyang Liu. Meshdiffusion:
Score-based generative 3d mesh modeling. arXiv preprint arXiv:2303.08133, 2023.

[179] Zhengzhe Liu, Peng Dai, Ruihui Li, Xiaojuan Qi, and Chi-Wing Fu. Iss: Image as stetting stone for
text-guided 3d shape generation. arXiv preprint arXiv:2209.04145, 2022.

[180] Zhengzhe Liu, Peng Dai, Ruihui Li, Xiaojuan Qi, and Chi-Wing Fu. Iss++: Image as stepping stone for
text-guided 3d shape generation. arXiv preprint arXiv:2303.15181, 2023.

[181] Zhengzhe Liu, Xiaojuan Qi, and Chi-Wing Fu. One thing one click: A self-training approach for weakly
supervised 3d semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1726–1736, 2021.

[182] Ziyuan Liu, Wei Liu, Yuzhe Qin, Fanbo Xiang, Minghao Gou, Songyan Xin, Maximo A Roa, Berk Calli, Hao
Su, Yu Sun, et al. Ocrtoc: A cloud-based competition and benchmark for robotic grasping and manipulation.
IEEE Robotics and Automation Letters, 7(1):486–493, 2021.

[183] Xiaoxiao Long, Yuan-Chen Guo, Cheng Lin, Yuan Liu, Zhiyang Dou, Lingjie Liu, Yuexin Ma, Song-Hai
Zhang, Marc Habermann, Christian Theobalt, et al. Wonder3d: Single image to 3d using cross-domain
diffusion. arXiv preprint arXiv:2310.15008, 2023.

[184] Xiaoxiao Long, Cheng Lin, Peng Wang, Taku Komura, and Wenping Wang. Sparseneus: Fast generalizable
neural surface reconstruction from sparse views. In European Conference on Computer Vision, pages
210–227. Springer, 2022.

[185] William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface construction
algorithm. ACM siggraph computer graphics, 21(4):163–169, 1987.

[186] J. Lorraine, K. Xie, X. Zeng, C. Lin, T. Takikawa, N. Sharp, T. Lin, M. Liu, S. Fidler, and J. Lucas. Att3d:
Amortized text-to-3d object synthesis. In 2023 IEEE/CVF International Conference on Computer Vision

157



(ICCV), pages 17900–17910, Los Alamitos, CA, USA, oct 2023. IEEE Computer Society.

[187] Yuanxun Lu, Jingyang Zhang, Shiwei Li, Tian Fang, David McKinnon, Yanghai Tsin, Long Quan, Xun Cao,
and Yao Yao. Direct2.5: Diverse text-to-3d generation via multi-view 2.5d diffusion, 2024.

[188] Yuheng Lu, Chenfeng Xu, Xiaobao Wei, Xiaodong Xie, Masayoshi Tomizuka, Kurt Keutzer, and Shang-
hang Zhang. Open-vocabulary point-cloud object detection without 3d annotation. arXiv preprint
arXiv:2304.00788, 2023.

[189] Huan Luo, Cheng Wang, Chenglu Wen, Ziyi Chen, Dawei Zai, Yongtao Yu, and Jonathan Li. Semantic
labeling of mobile lidar point clouds via active learning and higher order mrf. IEEE Transactions on
Geoscience and Remote Sensing, 56(7):3631–3644, 2018.

[190] Tiange Luo, Kaichun Mo, Zhiao Huang, Jiarui Xu, Siyu Hu, Liwei Wang, and Hao Su. Learning to group: A
bottom-up framework for 3d part discovery in unseen categories. arXiv preprint arXiv:2002.06478, 2020.

[191] Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. Rethinking network design and local geometry in
point cloud: A simple residual mlp framework. arXiv preprint arXiv:2202.07123, 2022.

[192] Khaled Mamou and Faouzi Ghorbel. A simple and efficient approach for 3d mesh approximate convex
decomposition. In 2009 16th IEEE international conference on image processing (ICIP), pages 3501–3504.
IEEE, 2009.

[193] Khaled Mamou, E Lengyel, and AK Peters. Volumetric hierarchical approximate convex decomposition. In
Game Engine Gems 3, pages 141–158. AK Peters, 2016.

[194] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural network for real-time object
recognition. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS), pages
922–928. IEEE, 2015.

[195] Oier Mees, Maxim Tatarchenko, Thomas Brox, and Wolfram Burgard. Self-supervised 3d shape and
viewpoint estimation from single images for robotics. In 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 6083–6089. IEEE, 2019.

[196] Luke Melas-Kyriazi, Iro Laina, Christian Rupprecht, and Andrea Vedaldi. Realfusion: 360deg reconstruction
of any object from a single image. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8446–8455, 2023.

[197] Luke Melas-Kyriazi, Christian Rupprecht, and Andrea Vedaldi. Pc2: Projection-conditioned point cloud
diffusion for single-image 3d reconstruction. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12923–12932, 2023.

[198] Benedikt Mersch, Xieyuanli Chen, Jens Behley, and Cyrill Stachniss. Self-supervised point cloud prediction
using 3d spatio-temporal convolutional networks. In Conference on Robot Learning, pages 1444–1454.
PMLR, 2022.

[199] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. Occupancy
networks: Learning 3d reconstruction in function space. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 4460–4470, 2019.

[200] Gal Metzer, Elad Richardson, Or Patashnik, Raja Giryes, and Daniel Cohen-Or. Latent-nerf for shape-guided
generation of 3d shapes and textures. In Proceedings of the IEEE/CVF Conference on Computer Vision and

158



Pattern Recognition, pages 12663–12673, 2023.

[201] Oscar Michel, Roi Bar-On, Richard Liu, Sagie Benaim, and Rana Hanocka. Text2mesh: Text-driven neural
stylization for meshes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 13492–13502, June 2022.

[202] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng.
Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

[203] Brian Mirtich. V-clip: Fast and robust polyhedral collision detection. ACM Transactions On Graphics (TOG),
17(3):177–208, 1998.

[204] Paritosh Mittal, Yen-Chi Cheng, Maneesh Singh, and Shubham Tulsiani. Autosdf: Shape priors for 3d
completion, reconstruction and generation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 306–315, 2022.

[205] Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka, Niloy Mitra, and Leonidas J Guibas. Structurenet:
Hierarchical graph networks for 3d shape generation. arXiv preprint arXiv:1908.00575, 2019.

[206] Kaichun Mo, Shilin Zhu, Angel X Chang, Li Yi, Subarna Tripathi, Leonidas J Guibas, and Hao Su. Partnet:
A large-scale benchmark for fine-grained and hierarchical part-level 3d object understanding. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 909–918, 2019.

[207] Nasir Mohammad Khalid, Tianhao Xie, Eugene Belilovsky, and Tiberiu Popa. Clip-mesh: Generating
textured meshes from text using pretrained image-text models. In SIGGRAPH Asia 2022 conference papers,
pages 1–8, 2022.

[208] Ron Mokady, Amir Hertz, and Amit H Bermano. Clipcap: Clip prefix for image captioning. arXiv preprint
arXiv:2111.09734, 2021.

[209] Tongzhou Mu, Zhan Ling, Fanbo Xiang, Derek Yang, Xuanlin Li, Stone Tao, Zhiao Huang, Zhiwei Jia, and
Hao Su. Maniskill: Generalizable manipulation skill benchmark with large-scale demonstrations. arXiv
preprint arXiv:2107.14483, 2021.

[210] Tongzhou Mu, Minghua Liu, and Hao Su. Drs: Learning reusable dense rewards for multi-stage tasks. arXiv
preprint arXiv:2404.16779, 2024.

[211] Norman Müller, Andrea Simonelli, Lorenzo Porzi, Samuel Rota Bulò, Matthias Nießner, and Peter
Kontschieder. Autorf: Learning 3d object radiance fields from single view observations. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3971–3980, 2022.

[212] Muhammad Ferjad Naeem, Evin Pınar Örnek, Yongqin Xian, Luc Van Gool, and Federico Tombari. 3d
compositional zero-shot learning with decompositional consensus. In European Conference on Computer
Vision, pages 713–730. Springer, 2022.

[213] Charlie Nash, Yaroslav Ganin, SM Ali Eslami, and Peter Battaglia. Polygen: An autoregressive generative
model of 3d meshes. In International conference on machine learning, pages 7220–7229. PMLR, 2020.

[214] Diego Nehab, Szymon Rusinkiewicz, James Davis, and Ravi Ramamoorthi. Efficiently combining positions
and normals for precise 3d geometry. ACM Trans. Graph., 24(3):536–543, jul 2005.

[215] Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela Mishkin, and Mark Chen. Point-e: A system for

159



generating 3d point clouds from complex prompts. arXiv preprint arXiv:2212.08751, 2022.

[216] Alexandr Notchenko, Vladislav Ishimtsev, Alexey Artemov, Vadim Selyutin, Emil Bogomolov, and Evgeny
Burnaev. Scan2part: Fine-grained and hierarchical part-level understanding of real-world 3d scans. arXiv
preprint arXiv:2206.02366, 2022.

[217] OpenAI. Gpt-4 technical report, 2023.

[218] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre
Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Woj-
ciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma,
Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski.
Dinov2: Learning robust visual features without supervision, 2023.

[219] Joseph O’Rourke and Kenneth Supowit. Some np-hard polygon decomposition problems. IEEE Transactions
on Information Theory, 29(2):181–190, 1983.

[220] Junyi Pan, Xiaoguang Han, Weikai Chen, Jiapeng Tang, and Kui Jia. Deep mesh reconstruction from single
rgb images via topology modification networks. In Proceedings of the IEEE International Conference on
Computer Vision, pages 9964–9973, 2019.

[221] Yatian Pang, Wenxiao Wang, Francis EH Tay, Wei Liu, Yonghong Tian, and Li Yuan. Masked autoencoders
for point cloud self-supervised learning. In Computer Vision–ECCV 2022: 17th European Conference, Tel
Aviv, Israel, October 23–27, 2022, Proceedings, Part II, pages 604–621. Springer, 2022.

[222] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. Deepsdf:
Learning continuous signed distance functions for shape representation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 165–174, 2019.

[223] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed AA Osman, Dimitrios Tzionas,
and Michael J Black. Expressive body capture: 3d hands, face, and body from a single image. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 10975–10985, 2019.

[224] Songyou Peng, Kyle Genova, Chiyu Jiang, Andrea Tagliasacchi, Marc Pollefeys, Thomas Funkhouser, et al.
Openscene: 3d scene understanding with open vocabularies. arXiv preprint arXiv:2211.15654, 2022.

[225] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d diffusion.
In ICLR, 2023.

[226] Omid Poursaeed, Tianxing Jiang, Han Qiao, Nayun Xu, and Vladimir G Kim. Self-supervised learning
of point clouds via orientation estimation. In 2020 International Conference on 3D Vision (3DV), pages
1018–1028. IEEE, 2020.

[227] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J Guibas. Frustum pointnets for 3d object
detection from rgb-d data. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 918–927, 2018.

[228] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 652–660, 2017.

[229] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature

160



learning on point sets in a metric space. Advances in neural information processing systems, 30, 2017.

[230] Zekun Qi, Runpei Dong, Guofan Fan, Zheng Ge, Xiangyu Zhang, Kaisheng Ma, and Li Yi. Contrast
with reconstruct: Contrastive 3d representation learning guided by generative pretraining. arXiv preprint
arXiv:2302.02318, 2023.

[231] Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai, Hasan Hammoud, Mohamed Elhoseiny, and Bernard
Ghanem. Pointnext: Revisiting pointnet++ with improved training and scaling strategies. arXiv:2206.04670,
2022.

[232] Guocheng Qian, Jinjie Mai, Abdullah Hamdi, Jian Ren, Aliaksandr Siarohin, Bing Li, Hsin-Ying Lee, Ivan
Skorokhodov, Peter Wonka, Sergey Tulyakov, and Bernard Ghanem. Magic123: One image to high-quality
3d object generation using both 2d and 3d diffusion priors. In The Twelfth International Conference on
Learning Representations (ICLR), 2024.

[233] Lingteng Qiu, Guanying Chen, Xiaodong Gu, Qi Zuo, Mutian Xu, Yushuang Wu, Weihao Yuan, Zilong
Dong, Liefeng Bo, and Xiaoguang Han. Richdreamer: A generalizable normal-depth diffusion model for
detail richness in text-to-3d, 2023.

[234] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural
language supervision. In International Conference on Machine Learning, pages 8748–8763. PMLR, 2021.

[235] Amit Raj, Srinivas Kaza, Ben Poole, Michael Niemeyer, Ben Mildenhall, Nataniel Ruiz, Shiran Zada,
Kfir Aberman, Michael Rubenstein, Jonathan Barron, Yuanzhen Li, and Varun Jampani. Dreambooth3d:
Subject-driven text-to-3d generation. ICCV, 2023.

[236] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional
image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

[237] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya
Sutskever. Zero-shot text-to-image generation. In International Conference on Machine Learning, pages
8821–8831. PMLR, 2021.

[238] Yongming Rao, Jiwen Lu, and Jie Zhou. Global-local bidirectional reasoning for unsupervised representation
learning of 3d point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5376–5385, 2020.

[239] Yongming Rao, Wenliang Zhao, Guangyi Chen, Yansong Tang, Zheng Zhu, Guan Huang, Jie Zhou, and
Jiwen Lu. Denseclip: Language-guided dense prediction with context-aware prompting. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 18082–18091, 2022.

[240] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia
Gkioxari. Accelerating 3d deep learning with pytorch3d. arXiv preprint arXiv:2007.08501, 2020.

[241] Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler, Luca Sbordone, Patrick Labatut, and David
Novotny. Common objects in 3d: Large-scale learning and evaluation of real-life 3d category reconstruction.
In International Conference on Computer Vision, 2021.

[242] Konstantinos Rematas, Ricardo Martin-Brualla, and Vittorio Ferrari. Sharf: Shape-conditioned radiance
fields from a single view. arXiv preprint arXiv:2102.08860, 2021.

161



[243] Yufan Ren, Tong Zhang, Marc Pollefeys, Sabine Süsstrunk, and Fangjinhua Wang. Volrecon: Volume
rendering of signed ray distance functions for generalizable multi-view reconstruction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 16685–16695, 2023.

[244] Zhongzheng Ren, Ishan Misra, Alexander G Schwing, and Rohit Girdhar. 3d spatial recognition without spa-
tially labeled 3d. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 13204–13213, 2021.

[245] Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes, and Daniel Cohen-Or. Texture: Text-guided
texturing of 3d shapes. arXiv preprint arXiv:2302.01721, 2023.

[246] Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. Contrastive learning with hard
negative samples. arXiv preprint arXiv:2010.04592, 2020.

[247] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis with latent
diffusion models. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 10674–10685, Los Alamitos, CA, USA, jun 2022. IEEE Computer Society.

[248] David Rozenberszki, Or Litany, and Angela Dai. Language-grounded indoor 3d semantic segmentation in
the wild. arXiv preprint arXiv:2204.07761, 2022.

[249] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic text-
to-image diffusion models with deep language understanding. Advances in Neural Information Processing
Systems, 35:36479–36494, 2022.

[250] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Morishima, Angjoo Kanazawa, and Hao Li. Pifu: Pixel-
aligned implicit function for high-resolution clothed human digitization. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 2304–2314, 2019.

[251] Aditya Sanghi. Info3d: Representation learning on 3d objects using mutual information maximization and
contrastive learning. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XXIX 16, pages 626–642. Springer, 2020.

[252] Aditya Sanghi, Hang Chu, Joseph G Lambourne, Ye Wang, Chin-Yi Cheng, Marco Fumero, and Ka-
mal Rahimi Malekshan. Clip-forge: Towards zero-shot text-to-shape generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 18603–18613, 2022.

[253] Jonathan Sauder and Bjarne Sievers. Self-supervised deep learning on point clouds by reconstructing space.
Advances in Neural Information Processing Systems, 32, 2019.

[254] Scott Schaefer and Joe Warren. Dual marching cubes: Primal contouring of dual grids. In 12th Pacific
Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings., pages 70–76. IEEE,
2004.

[255] Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-motion revisited. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 4104–4113, 2016.

[256] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti,
Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An open large-scale
dataset for training next generation image-text models. arXiv preprint arXiv:2210.08402, 2022.

162



[257] Junyoung Seo, Wooseok Jang, Min-Seop Kwak, Jaehoon Ko, Hyeonsu Kim, Junho Kim, Jin-Hwa Kim,
Jiyoung Lee, and Seungryong Kim. Let 2d diffusion model know 3d-consistency for robust text-to-3d
generation. arXiv preprint arXiv:2303.07937, 2023.

[258] Charu Sharma and Manohar Kaul. Self-supervised few-shot learning on point clouds. Advances in Neural
Information Processing Systems, 33:7212–7221, 2020.

[259] Gopal Sharma, Bidya Dash, Aruni RoyChowdhury, Matheus Gadelha, Marios Loizou, L Cao, Rui Wang,
EG Learned-Miller, Subhransu Maji, and Evangelos Kalogerakis. Prifit: Learning to fit primitives improves
few shot point cloud segmentation. In Computer Graphics Forum, volume 41, pages 39–50. Wiley Online
Library, 2022.

[260] Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu Maji. Csgnet: Neural
shape parser for constructive solid geometry. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5515–5523, 2018.

[261] Gopal Sharma, Kangxue Yin, Subhransu Maji, Evangelos Kalogerakis, Or Litany, and Sanja Fidler.
Mvdecor: Multi-view dense correspondence learning for fine-grained 3d segmentation. arXiv preprint
arXiv:2208.08580, 2022.

[262] Ruoxi Shi, Hansheng Chen, Zhuoyang Zhang, Minghua Liu, Chao Xu, Xinyue Wei, Linghao Chen, Chong
Zeng, and Hao Su. Zero123++: a single image to consistent multi-view diffusion base model. arXiv preprint
arXiv:2310.15110, 2023.

[263] Xian Shi, Xun Xu, Ke Chen, Lile Cai, Chuan Sheng Foo, and Kui Jia. Label-efficient point cloud semantic
segmentation: An active learning approach. arXiv preprint arXiv:2101.06931, 2021.

[264] Yichun Shi, Peng Wang, Jianglong Ye, Mai Long, Kejie Li, and Xiao Yang. Mvdream: Multi-view diffusion
for 3d generation. arXiv:2308.16512, 2023.

[265] Yawar Siddiqui, Antonio Alliegro, Alexey Artemov, Tatiana Tommasi, Daniele Sirigatti, Vladislav Rosov,
Angela Dai, and Matthias Nießner. Meshgpt: Generating triangle meshes with decoder-only transformers. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 19615–19625,
2024.

[266] Samarth Sinha, Jason Y Zhang, Andrea Tagliasacchi, Igor Gilitschenski, and David B Lindell. Sparsepose:
Sparse-view camera pose regression and refinement. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 21349–21359, 2023.

[267] Jake Snell, Kevin Swersky, and Richard S Zemel. Prototypical networks for few-shot learning. In Advances
in Neural Information Processing Systems (NeurIPS), 2017.

[268] Jack Snoeyink. Point location. In Handbook of discrete and computational geometry, pages 1005–1028.
Chapman and Hall/CRC, 2017.

[269] Chao Sun, Zhedong Zheng, Xiaohan Wang, Mingliang Xu, and Yi Yang. Point cloud pre-training by mixing
and disentangling. arXiv e-prints, pages arXiv–2109, 2021.

[270] Chun-Yu Sun, Yu-Qi Yang, Hao-Xiang Guo, Peng-Shuai Wang, Xin Tong, Yang Liu, and Heung-Yeung
Shum. Semi-supervised 3d shape segmentation with multilevel consistency and part substitution. arXiv
preprint arXiv:2204.08824, 2022.

163



[271] Jingxiang Sun, Bo Zhang, Ruizhi Shao, Lizhen Wang, Wen Liu, Zhenda Xie, and Yebin Liu. Dreamcraft3d:
Hierarchical 3d generation with bootstrapped diffusion prior, 2023.

[272] Minhyuk Sung, Zhenyu Jiang, Panos Achlioptas, Niloy J. Mitra, and Leonidas J. Guibas. DeformSyncNet:
Deformation transfer via synchronized shape deformation spaces, 2020.

[273] Qingyang Tan, Lin Gao, Yu-Kun Lai, and Shihong Xia. Meshvae: Variational autoencoders for deforming 3d
mesh models. 2018.

[274] Qingyang Tan, Lin Gao, Yu-Kun Lai, Jie Yang, and Shihong Xia. Mesh-based autoencoders for localized
deformation component analysis. 2018.

[275] Haotian Tang, Zhijian Liu, Shengyu Zhao, Yujun Lin, Ji Lin, Hanrui Wang, and Song Han. Searching
efficient 3d architectures with sparse point-voxel convolution. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 685–702. Springer, 2020.

[276] Haotian Tang, Shang Yang, Zhijian Liu, Ke Hong, Zhongming Yu, Xiuyu Li, Guohao Dai, Yu Wang, and
Song Han. Torchsparse++: Efficient training and inference framework for sparse convolution on gpus. In
IEEE/ACM International Symposium on Microarchitecture (MICRO), 2023.

[277] Jiaxiang Tang, Zhaoxi Chen, Xiaokang Chen, Tengfei Wang, Gang Zeng, and Ziwei Liu. Lgm: Large
multi-view gaussian model for high-resolution 3d content creation. arXiv preprint arXiv:2402.05054, 2024.

[278] Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. Dreamgaussian: Generative gaussian
splatting for efficient 3d content creation. arXiv preprint arXiv:2309.16653, 2023.

[279] Junshu Tang, Tengfei Wang, Bo Zhang, Ting Zhang, Ran Yi, Lizhuang Ma, and Dong Chen. Make-it-
3d: High-fidelity 3d creation from a single image with diffusion prior. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages 22819–22829, October 2023.

[280] Ayush Tewari, Tianwei Yin, George Cazenavette, Semon Rezchikov, Joshua B Tenenbaum, Frédo Durand,
William T Freeman, and Vincent Sitzmann. Diffusion with forward models: Solving stochastic inverse
problems without direct supervision. arXiv preprint arXiv:2306.11719, 2023.

[281] Ali Thabet, Humam Alwassel, and Bernard Ghanem. Mortonnet: Self-supervised learning of local features
in 3d point clouds. arXiv preprint arXiv:1904.00230, 2019.

[282] Ali Thabet, Humam Alwassel, and Bernard Ghanem. Self-supervised learning of local features in 3d point
clouds. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops,
pages 938–939, 2020.

[283] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François Goulette, and
Leonidas J Guibas. Kpconv: Flexible and deformable convolution for point clouds. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 6411–6420, 2019.

[284] Jesse Thomason, Mohit Shridhar, Yonatan Bisk, Chris Paxton, and Luke Zettlemoyer. Language grounding
with 3d objects. In Conference on Robot Learning, pages 1691–1701. PMLR, 2022.

[285] Daniel Thul, L’ubor Ladickỳ, Sohyeon Jeong, and Marc Pollefeys. Approximate convex decomposition and
transfer for animated meshes. ACM Transactions on Graphics (TOG), 37(6):1–10, 2018.

[286] Dmitry Tochilkin, David Pankratz, Zexiang Liu, Zixuan Huang, Adam Letts, Yangguang Li, Ding Liang,

164



Christian Laforte, Varun Jampani, and Yan-Pei Cao. Triposr: Fast 3d object reconstruction from a single
image, 2024.

[287] Alex Trevithick and Bo Yang. Grf: Learning a general radiance field for 3d representation and rendering. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 15182–15192, 2021.

[288] Shubham Tulsiani, Hao Su, Leonidas J Guibas, Alexei A Efros, and Jitendra Malik. Learning shape
abstractions by assembling volumetric primitives. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2635–2643, 2017.

[289] Vishaal Udandarao. Understanding and fixing the modality gap in vision-language models.

[290] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua, Thanh Nguyen, and Sai-Kit Yeung. Revisiting point
cloud classification: A new benchmark dataset and classification model on real-world data. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 1588–1597, 2019.

[291] Mukund Varma, Peihao Wang, Xuxi Chen, Tianlong Chen, Subhashini Venugopalan, and Zhangyang Wang.
Is attention all that nerf needs? In The Eleventh International Conference on Learning Representations,
2022.

[292] Vikram Voleti, Chun-Han Yao, Mark Boss, Adam Letts, David Pankratz, Dmitrii Tochilkin, Christian Laforte,
Robin Rombach, and Varun Jampani. SV3D: Novel multi-view synthesis and 3D generation from a single
image using latent video diffusion. arXiv, 2024.

[293] Thang Vu, Kookhoi Kim, Tung M Luu, Thanh Nguyen, and Chang D Yoo. Softgroup for 3d instance
segmentation on point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2708–2717, 2022.

[294] Can Wang, Menglei Chai, Mingming He, Dongdong Chen, and Jing Liao. Clip-nerf: Text-and-image driven
manipulation of neural radiance fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 3835–3844, 2022.

[295] Haiyan Wang, Xuejian Rong, Liang Yang, Jinglun Feng, Jizhong Xiao, and Yingli Tian. Weakly supervised
semantic segmentation in 3d graph-structured point clouds of wild scenes. arXiv preprint arXiv:2004.12498,
2020.

[296] Hanchen Wang, Qi Liu, Xiangyu Yue, Joan Lasenby, and Matt J Kusner. Unsupervised point cloud pre-
training via occlusion completion. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 9782–9792, 2021.

[297] Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A Yeh, and Greg Shakhnarovich. Score jacobian chaining:
Lifting pretrained 2d diffusion models for 3d generation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12619–12629, 2023.

[298] He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin, Shuran Song, and Leonidas J Guibas. Normalized
object coordinate space for category-level 6d object pose and size estimation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 2642–2651, 2019.

[299] Lingjing Wang, Xiang Li, and Yi Fang. Few-shot learning of part-specific probability space for 3d shape
segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 4504–4513, 2020.

165



[300] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang. Pixel2mesh: Generating
3d mesh models from single rgb images. In Proceedings of the European conference on computer vision
(ECCV), pages 52–67, 2018.

[301] Peihao Wang, Xuxi Chen, Tianlong Chen, Subhashini Venugopalan, Zhangyang Wang, et al. Is attention all
nerf needs? arXiv preprint arXiv:2207.13298, 2022.

[302] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang. Neus: Learning
neural implicit surfaces by volume rendering for multi-view reconstruction. arXiv preprint arXiv:2106.10689,
2021.

[303] Peng Wang and Yichun Shi. Imagedream: Image-prompt multi-view diffusion for 3d generation. arXiv
preprint arXiv:2312.02201, 2023.

[304] Peng Wang, Hao Tan, Sai Bi, Yinghao Xu, Fujun Luan, Kalyan Sunkavalli, Wenping Wang, Zexiang Xu, and
Kai Zhang. Pf-lrm: Pose-free large reconstruction model for joint pose and shape prediction. arXiv preprint
arXiv:2311.12024, 2023.

[305] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P Srinivasan, Howard Zhou, Jonathan T Barron,
Ricardo Martin-Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet: Learning multi-view image-based
rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
4690–4699, 2021.

[306] Ruocheng Wang, Yunzhi Zhang, Jiayuan Mao, Ran Zhang, Chin-Yi Cheng, and Jiajun Wu. Ikea-manual:
Seeing shape assembly step by step. In Thirty-sixth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2022.

[307] Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ulrich Neumann. 3dn: 3d deformation network. 2019.

[308] Weiyue Wang, Ronald Yu, Qiangui Huang, and Ulrich Neumann. Sgpn: Similarity group proposal network
for 3d point cloud instance segmentation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2569–2578, 2018.

[309] Xiaogang Wang, Xun Sun, Xinyu Cao, Kai Xu, and Bin Zhou. Learning fine-grained segmentation of 3d
shapes without part labels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10276–10285, 2021.

[310] Xinlong Wang, Shu Liu, Xiaoyong Shen, Chunhua Shen, and Jiaya Jia. Associatively segmenting instances
and semantics in point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4096–4105, 2019.

[311] Yu Wang, Alec Jacobson, Jernej Barbič, and Ladislav Kavan. Linear subspace design for real-time shape
deformation. 2015.

[312] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions On Graphics (tog), 38(5):1–12, 2019.

[313] Zhen Wang, Qiangeng Xu, Feitong Tan, Menglei Chai, Shichen Liu, Rohit Pandey, Sean Fanello, Achuta
Kadambi, and Yinda Zhang. Mvdd: Multi-view depth diffusion models, 2023.

[314] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Prolific-
dreamer: High-fidelity and diverse text-to-3d generation with variational score distillation. arXiv preprint

166



arXiv:2305.16213, 2023.

[315] Zhengyi Wang, Yikai Wang, Yifei Chen, Chendong Xiang, Shuo Chen, Dajiang Yu, Chongxuan Li, Hang
Su, and Jun Zhu. Crm: Single image to 3d textured mesh with convolutional reconstruction model. arXiv
preprint arXiv:2403.05034, 2024.

[316] Jiacheng Wei, Guosheng Lin, Kim-Hui Yap, Tzu-Yi Hung, and Lihua Xie. Multi-path region mining for
weakly supervised 3d semantic segmentation on point clouds. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 4384–4393, 2020.

[317] Jiacheng Wei, Hao Wang, Jiashi Feng, Guosheng Lin, and Kim-Hui Yap. Taps3d: Text-guided 3d textured
shape generation from pseudo supervision, 2023.

[318] Xinyue Wei, Minghua Liu, Zhan Ling, and Hao Su. Approximate convex decomposition for 3d meshes with
collision-aware concavity and tree search. arXiv preprint arXiv:2205.02961, 2022.

[319] Xinyue Wei, Fanbo Xiang, Sai Bi, Anpei Chen, Kalyan Sunkavalli, Zexiang Xu, and Hao Su. NeuManifold:
Neural Watertight Manifold Reconstruction with Efficient and High-Quality Rendering Support. arXiv
preprint, 2023.

[320] Xinyue Wei, Kai Zhang, Sai Bi, Hao Tan, Fujun Luan, Valentin Deschaintre, Kalyan Sunkavalli, Hao Su, and
Zexiang Xu. Meshlrm: Large reconstruction model for high-quality mesh. arXiv preprint arXiv:2404.12385,
2024.

[321] Jean-Baptiste Weibel, Timothy Patten, and Markus Vincze. Sim2real 3d object classification using spherical
kernel point convolution and a deep center voting scheme. arXiv preprint arXiv:2103.06134, 2021.

[322] Chao Wen, Yinda Zhang, Zhuwen Li, and Yanwei Fu. Pixel2mesh++: Multi-view 3d mesh generation
via deformation. In Proceedings of the IEEE/CVF international conference on computer vision, pages
1042–1051, 2019.

[323] Haohan Weng, Tianyu Yang, Jianan Wang, Yu Li, Tong Zhang, CL Chen, and Lei Zhang. Consistent123:
Improve consistency for one image to 3d object synthesis. arXiv preprint arXiv:2310.08092, 2023.

[324] Francis Williams, Teseo Schneider, Claudio Silva, Denis Zorin, Joan Bruna, and Daniele Panozzo. Deep
geometric prior for surface reconstruction. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 10130–10139, 2019.

[325] Sangmin Woo, Byeongjun Park, Hyojun Go, Jin-Young Kim, and Changick Kim. Harmonyview: Harmoniz-
ing consistency and diversity in one-image-to-3d, 2023.

[326] Robert J. Woodham. Photometric method for determining surface orientation from multiple images, page
513–531. MIT Press, Cambridge, MA, USA, 1989.

[327] Chao-Yuan Wu, Justin Johnson, Jitendra Malik, Christoph Feichtenhofer, and Georgia Gkioxari. Multiview
compressive coding for 3d reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9065–9075, 2023.

[328] Chin-Hsuan Wu, Yen-Chun Chen, Bolivar Solarte, Lu Yuan, and Min Sun. ifusion: Inverting diffusion for
pose-free reconstruction from sparse views, 2023.

[329] Jiajun Wu, Yifan Wang, Tianfan Xue, Xingyuan Sun, Bill Freeman, and Josh Tenenbaum. Marrnet: 3d shape

167



reconstruction via 2.5 d sketches. Advances in neural information processing systems, 30, 2017.

[330] Tong Wu, Jiarui Zhang, Xiao Fu, Yuxin Wang, Jiawei Ren, Liang Pan, Wayne Wu, Lei Yang, Jiaqi Wang,
Chen Qian, et al. Omniobject3d: Large-vocabulary 3d object dataset for realistic perception, reconstruction
and generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 803–814, 2023.

[331] Tsung-Han Wu, Yueh-Cheng Liu, Yu-Kai Huang, Hsin-Ying Lee, Hung-Ting Su, Ping-Chia Huang, and
Winston H Hsu. Redal: Region-based and diversity-aware active learning for point cloud semantic segmenta-
tion. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), pages 15510–15519,
2021.

[332] Yueh-Hua Wu, Jiashun Wang, and Xiaolong Wang. Learning generalizable dexterous manipulation from
human grasp affordance. arXiv preprint arXiv:2204.02320, 2022.

[333] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1912–1920, 2015.

[334] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao Jiang,
Yifu Yuan, He Wang, et al. Sapien: A simulated part-based interactive environment. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11097–11107, 2020.

[335] Haozhe Xie, Hongxun Yao, Xiaoshuai Sun, Shangchen Zhou, and Shengping Zhang. Pix2vox: Context-
aware 3d reconstruction from single and multi-view images. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 2690–2698, 2019.

[336] Haozhe Xie, Hongxun Yao, Shengping Zhang, Shangchen Zhou, and Wenxiu Sun. Pix2vox++: Multi-scale
context-aware 3d object reconstruction from single and multiple images. International Journal of Computer
Vision, 128(12):2919–2935, 2020.

[337] Kevin Xie, Jonathan Lorraine, Tianshi Cao, Jun Gao, James Lucas, Antonio Torralba, Sanja Fidler, and Xiao-
hui Zeng. Latte3d: Large-scale amortized text-to-enhanced3d synthesis. arXiv preprint arXiv:2403.15385,
2024.

[338] Saining Xie, Jiatao Gu, Demi Guo, Charles R Qi, Leonidas Guibas, and Or Litany. Pointcontrast: Unsu-
pervised pre-training for 3d point cloud understanding. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16, pages 574–591. Springer, 2020.

[339] Chao Xu, Ang Li, Linghao Chen, Yulin Liu, Ruoxi Shi, Hao Su, and Minghua Liu. Sparp: Fast 3d object
reconstruction and pose estimation from sparse views. arXiv preprint arXiv:2408.10195, 2024.

[340] Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Yi Wang, and Zhangyang Wang. Neurallift-360: Lifting
an in-the-wild 2d photo to a 3d object with 360° views. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4479–4489, 2023.

[341] Jiale Xu, Weihao Cheng, Yiming Gao, Xintao Wang, Shenghua Gao, and Ying Shan. Instantmesh: Efficient
3d mesh generation from a single image with sparse-view large reconstruction models. arXiv preprint
arXiv:2404.07191, 2024.

[342] Jiale Xu, Xintao Wang, Weihao Cheng, Yan-Pei Cao, Ying Shan, Xiaohu Qie, and Shenghua Gao. Dream3d:
Zero-shot text-to-3d synthesis using 3d shape prior and text-to-image diffusion models. In Proceedings of

168



the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 20908–20918, 2023.

[343] Jianyun Xu, Ruixiang Zhang, Jian Dou, Yushi Zhu, Jie Sun, and Shiliang Pu. Rpvnet: A deep and efficient
range-point-voxel fusion network for lidar point cloud segmentation. arXiv preprint arXiv:2103.12978, 2021.

[344] Katie Xu, Yasuhiro Yao, Kazuhiko Murasaki, Shingo Ando, and Atsushi Sagata. Semantic segmentation of
sparsely annotated 3d point clouds by pseudo-labelling. In Proceedings of the International Conference on
3D Vision (3DV), pages 463–471. IEEE, 2019.

[345] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ulrich Neumann. Disn: Deep implicit
surface network for high-quality single-view 3d reconstruction. Advances in neural information processing
systems, 32, 2019.

[346] Xianghao Xu, Yifan Ruan, Srinath Sridhar, and Daniel Ritchie. Unsupervised kinematic motion detection for
part-segmented 3d shape collections. In ACM SIGGRAPH 2022 Conference Proceedings, pages 1–9, 2022.

[347] Xun Xu and Gim Hee Lee. Weakly supervised semantic point cloud segmentation: Towards 10x fewer
labels. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
13706–13715, 2020.

[348] Yinghao Xu, Zifan Shi, Wang Yifan, Sida Peng, Ceyuan Yang, Yujun Shen, and Wetzstein Gordon. Grm:
Large gaussian reconstruction model for efficient 3d reconstruction and generation. arxiv: 2403.14621, 2024.

[349] Yinghao Xu, Hao Tan, Fujun Luan, Sai Bi, Peng Wang, Jiahao Li, Zifan Shi, Kalyan Sunkavalli, Gordon
Wetzstein, Zexiang Xu, et al. Dmv3d: Denoising multi-view diffusion using 3d large reconstruction model.
arXiv preprint arXiv:2311.09217, 2023.

[350] Le Xue, Mingfei Gao, Chen Xing, Roberto Martı́n-Martı́n, Jiajun Wu, Caiming Xiong, Ran Xu, Juan Carlos
Niebles, and Silvio Savarese. Ulip: Learning unified representation of language, image and point cloud for
3d understanding. arXiv preprint arXiv:2212.05171, 2022.

[351] Farid Yagubbayli, Yida Wang, Alessio Tonioni, and Federico Tombari. Legoformer: Transformers for
block-by-block multi-view 3d reconstruction. arXiv preprint arXiv:2106.12102, 2021.

[352] Xu Yan, Jiantao Gao, Jie Li, Ruimao Zhang, Zhen Li, Rui Huang, and Shuguang Cui. Sparse single sweep
lidar point cloud segmentation via learning contextual shape priors from scene completion. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI), 2020.

[353] Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen Wang, Andrew Markham, and Niki Trigoni.
Learning object bounding boxes for 3d instance segmentation on point clouds. Advances in neural information
processing systems, 32, 2019.

[354] Cheng-Kun Yang, Ji-Jia Wu, Kai-Syun Chen, Yung-Yu Chuang, and Yen-Yu Lin. An mil-derived transformer
for weakly supervised point cloud segmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11830–11839, 2022.

[355] Daniel Yang, Tarik Tosun, Benjamin Eisner, Volkan Isler, and Daniel Lee. Robotic grasping through
combined image-based grasp proposal and 3d reconstruction. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 6350–6356. IEEE, 2021.

[356] Hao Yang, Lanqing Hong, Aoxue Li, Tianyang Hu, Zhenguo Li, Gim Hee Lee, and Liwei Wang. Contranerf:
Generalizable neural radiance fields for synthetic-to-real novel view synthesis via contrastive learning. In

169



Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 16508–16517,
2023.

[357] Hong-Ming Yang, Xu-Yao Zhang, Fei Yin, and Cheng-Lin Liu. Robust classification with convolutional
prototype learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3474–3482, 2018.

[358] Jihan Yang, Runyu Ding, Zhe Wang, and Xiaojuan Qi. Regionplc: Regional point-language contrastive
learning for open-world 3d scene understanding. arXiv preprint arXiv:2304.00962, 2023.

[359] Sheng Yang, Kang Chen, Minghua Liu, Hongbo Fu, and Shi-Min Hu. Saliency-aware real-time volumetric
fusion for object reconstruction. In Computer Graphics Forum, volume 36, pages 167–174. Wiley Online
Library, 2017.

[360] Sheng Yang, Beichen Li, Minghua Liu, Yu-Kun Lai, Leif Kobbelt, and Shi-Min Hu. Heterofusion: Dense
scene reconstruction integrating multi-sensors. IEEE transactions on visualization and computer graphics,
26(11):3217–3230, 2019.

[361] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Foldingnet: Interpretable unsupervised learning on 3d
point clouds. arXiv preprint arXiv:1712.07262, 2017.

[362] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Foldingnet: Point cloud auto-encoder via deep grid
deformation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
206–215, 2018.

[363] Jianglong Ye, Peng Wang, Kejie Li, Yichun Shi, and Heng Wang. Consistent-1-to-3: Consistent image to 3d
view synthesis via geometry-aware diffusion models. arXiv preprint arXiv:2310.03020, 2023.

[364] Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla
Sheffer, and Leonidas Guibas. A scalable active framework for region annotation in 3d shape collections.
ACM Transactions on Graphics (ToG), 35(6):1–12, 2016.

[365] Li Yi, Wang Zhao, He Wang, Minhyuk Sung, and Leonidas J Guibas. Gspn: Generative shape proposal
network for 3d instance segmentation in point cloud. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 3947–3956, 2019.

[366] Wang Yifan, Noam Aigerman, Vladimir Kim, Siddhartha Chaudhuri, and Olga Sorkine-Hornung. Neural
cages for detail-preserving 3d deformations. 2020.

[367] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf: Neural radiance fields from one
or few images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 4578–4587, 2021.

[368] Chaohui Yu, Qiang Zhou, Jingliang Li, Zhe Zhang, Zhibin Wang, and Fan Wang. Points-to-3d: Bridging the
gap between sparse points and shape-controllable text-to-3d generation. In Proceedings of the 31st ACM
International Conference on Multimedia, MM ’23, page 6841–6850, New York, NY, USA, 2023. Association
for Computing Machinery.

[369] Fenggen Yu, Kun Liu, Yan Zhang, Chenyang Zhu, and Kai Xu. Partnet: A recursive part decomposition
network for fine-grained and hierarchical shape segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 9491–9500, 2019.

170



[370] Wang Yu, Xuelin Qian, Jingyang Huo, Tiejun Huang, Bo Zhao, and Yanwei Fu. Pushing the limits of 3d
shape generation at scale. arXiv preprint arXiv:2306.11510, 2023.

[371] Wangbo Yu, Li Yuan, Yan-Pei Cao, Xiangjun Gao, Xiaoyu Li, Wenbo Hu, Long Quan, Ying Shan, and
Yonghong Tian. Hifi-123: Towards high-fidelity one image to 3d content generation, 2024.

[372] Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie Zhou, and Jiwen Lu. Point-bert: Pre-training 3d
point cloud transformers with masked point modeling. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 19313–19322, 2022.

[373] Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, and Karsten Kreis. Lion:
Latent point diffusion models for 3d shape generation. arXiv preprint arXiv:2210.06978, 2022.

[374] Yihan Zeng, Chenhan Jiang, Jiageng Mao, Jianhua Han, Chaoqiang Ye, Qingqiu Huang, Dit-Yan Yeung,
Zhen Yang, Xiaodan Liang, and Hang Xu. Clipˆ 2: Contrastive language-image-point pretraining from
real-world point cloud data. arXiv preprint arXiv:2303.12417, 2023.

[375] Biao Zhang, Jiapeng Tang, Matthias Niessner, and Peter Wonka. 3dshape2vecset: A 3d shape representation
for neural fields and generative diffusion models. arXiv preprint arXiv:2301.11445, 2023.

[376] Biao Zhang and Peter Wonka. Point cloud instance segmentation using probabilistic embeddings. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8883–8892,
2021.

[377] Haotian Zhang, Pengchuan Zhang, Xiaowei Hu, Yen-Chun Chen, Liunian Harold Li, Xiyang Dai, Lijuan
Wang, Lu Yuan, Jenq-Neng Hwang, and Jianfeng Gao. Glipv2: Unifying localization and vision-language
understanding. arXiv preprint arXiv:2206.05836, 2022.

[378] Jason Y Zhang, Deva Ramanan, and Shubham Tulsiani. Relpose: Predicting probabilistic relative rotation
for single objects in the wild. In European Conference on Computer Vision, pages 592–611. Springer, 2022.

[379] Junbo Zhang, Runpei Dong, and Kaisheng Ma. Clip-fo3d: Learning free open-world 3d scene representations
from 2d dense clip. arXiv preprint arXiv:2303.04748, 2023.

[380] Kai Zhang, Sai Bi, Hao Tan, Yuanbo Xiangli, Nanxuan Zhao, Kalyan Sunkavalli, and Zexiang Xu. Gs-lrm:
Large reconstruction model for 3d gaussian splatting. arXiv, 2024.

[381] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion
models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 3836–3847,
2023.

[382] Lyumin Zhang. Reference-only control. https://github.com/Mikubill/sd-webui-controlnet/discussions/1236,
2023.

[383] Renrui Zhang, Ziyu Guo, Wei Zhang, Kunchang Li, Xupeng Miao, Bin Cui, Yu Qiao, Peng Gao, and
Hongsheng Li. Pointclip: Point cloud understanding by clip. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8552–8562, 2022.

[384] Xiaoshuai Zhang, Sai Bi, Kalyan Sunkavalli, Hao Su, and Zexiang Xu. Nerfusion: Fusing radiance fields
for large-scale scene reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5449–5458, 2022.

171

https://github.com/Mikubill/sd-webui-controlnet/discussions/1236


[385] Xiaoshuai Zhang, Rui Chen, Ang Li, Fanbo Xiang, Yuzhe Qin, Jiayuan Gu, Zhan Ling, Minghua Liu, Peiyu
Zeng, Songfang Han, et al. Close the optical sensing domain gap by physics-grounded active stereo sensor
simulation. IEEE Transactions on Robotics, 39(3):2429–2447, 2023.

[386] Yachao Zhang, Zonghao Li, Yuan Xie, Yanyun Qu, Cuihua Li, and Tao Mei. Weakly supervised semantic
segmentation for large-scale point cloud. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 3421–3429, 2021.

[387] Yachao Zhang, Yanyun Qu, Yuan Xie, Zonghao Li, Shanshan Zheng, and Cuihua Li. Perturbed self-
distillation: Weakly supervised large-scale point cloud semantic segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 15520–15528, 2021.

[388] Zaiwei Zhang, Rohit Girdhar, Armand Joulin, and Ishan Misra. Self-supervised pretraining of 3d features
on any point-cloud. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
10252–10263, 2021.

[389] Na Zhao, Tat-Seng Chua, and Gim Hee Lee. Few-shot 3d point cloud semantic segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8873–8882, 2021.

[390] Zibo Zhao, Wen Liu, Xin Chen, Xianfang Zeng, Rui Wang, Pei Cheng, Bin Fu, Tao Chen, Gang Yu, and
Shenghua Gao. Michelangelo: Conditional 3d shape generation based on shape-image-text aligned latent
representation. arXiv preprint arXiv:2306.17115, 2023.

[391] Xin-Yang Zheng, Hao Pan, Yu-Xiao Guo, Xin Tong, and Yang Liu. Mvd2: Efficient multiview 3d reconstruc-
tion for multiview diffusion. In SIGGRAPH, 2024.

[392] Xin-Yang Zheng, Hao Pan, Peng-Shuai Wang, Xin Tong, Yang Liu, and Heung-Yeung Shum. Locally
attentional sdf diffusion for controllable 3d shape generation. arXiv preprint arXiv:2305.04461, 2023.

[393] Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and Andrew J Davison. In-place scene labelling and
understanding with implicit scene representation. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 15838–15847, 2021.

[394] Yin Zhou, Pei Sun, Yu Zhang, Dragomir Anguelov, Jiyang Gao, Tom Ouyang, James Guo, Jiquan Ngiam, and
Vijay Vasudevan. End-to-end multi-view fusion for 3d object detection in lidar point clouds. In Conference
on Robot Learning, pages 923–932. PMLR, 2020.

[395] Zhizhuo Zhou and Shubham Tulsiani. Sparsefusion: Distilling view-conditioned diffusion for 3d recon-
struction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
12588–12597, 2023.

[396] Xiangyang Zhu, Renrui Zhang, Bowei He, Ziyao Zeng, Shanghang Zhang, and Peng Gao. Pointclip v2:
Adapting clip for powerful 3d open-world learning. arXiv preprint arXiv:2211.11682, 2022.

[397] Xinge Zhu, Hui Zhou, Tai Wang, Fangzhou Hong, Yuexin Ma, Wei Li, Hongsheng Li, and Dahua Lin.
Cylindrical and asymmetrical 3d convolution networks for lidar segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 9939–9948, 2021.

[398] Zi-Xin Zou, Zhipeng Yu, Yuan-Chen Guo, Yangguang Li, Ding Liang, Yan-Pei Cao, and Song-Hai Zhang.
Triplane meets gaussian splatting: Fast and generalizable single-view 3d reconstruction with transformers,
2023.

172



[399] Silvia Zuffi, Angjoo Kanazawa, and Michael J Black. Lions and tigers and bears: Capturing non-rigid, 3d,
articulated shape from images. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pages 3955–3963, 2018.

[400] Silvia Zuffi, Angjoo Kanazawa, David W Jacobs, and Michael J Black. 3d menagerie: Modeling the 3d shape
and pose of animals. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 6365–6373, 2017.

173


	Dissertation Approval Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Why Do We Need 3D Understanding and Generation?
	Advancements in 3D Deep Learning: Representations and Algorithms
	Challenges in 3D Deep Learning: Data Scarcity
	From ``Chair Research'' to Open World: New Opportunities
	Overview of Methods and Contributions
	Open-World 3D Generation
	Open-World 3D Understanding


	Open-World 3D Generation: Generalizability and Speed
	Related Work
	3D Generation Guided by 2D Prior Models
	Single Image to 3D
	Generalizable Neural Reconstruction

	Proposed Method: One-2-3-45
	Zero123: View-Conditioned 2D Diffusion
	Can NeRF Optimization Lift Multi-View Predictions to 3D?
	Neural Surface Reconstruction from Imperfect Multi-View Predictions
	Camera Pose Estimation

	Experiments
	Implementation Details
	Single Image to 3D Mesh
	Ablation Study
	Text to 3D Mesh

	Failure Cases and Limitations
	Summary

	Open-World 3D Generation: Battling Multi-View Inconsistency
	Related Work
	3D Generation
	Sparse View Reconstruction

	Proposed Method: One-2-3-45++
	Consistent Multi-View Generation
	3D Diffusion with Multi-View Condition
	Texture Refinement

	Experiments
	Comparison on Image to 3D
	Comparison on Text to 3D
	Analyses

	Summary
	Extension: Reconstruction and Pose Estimation from Sparse Views

	Open-World 3D Generation: The Magic of 3D Native Guidance
	Related Work
	Proposed Method: MeshFormer
	3D Representation and Model Architecture
	Unified Single-Stage Training: Surface Rendering with SDF Supervision
	Fine-Grained Geometric Details: Normal Guidance and Geometry Enhancement

	Experiments
	Implementation Details and Evaluation Settings
	Comparison with Single/Sparse-View to 3D Methods
	Application: Text to 3D
	Analysis and Ablation Study

	Summary
	Other Related Projects on Leveraging 3D Priors for Reconstruction and Generation
	Learning Deformation Meta-Handles of 3D Meshes
	Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance


	Open-World 3D Understanding: Multi-Modal Representation Learning
	Related Work
	CLIP for 3D Learning
	3D Shape Representation Learning

	Proposed Method: OpenShape
	Multi-Modal Representation Alignment
	Ensembling 3D Datasets
	Text Filtering and Enrichment
	Scaling Up 3D Point Cloud Backbones
	Hard Negative Mining

	Experiments
	Zero-Shot Shape Classification
	Few-Shot Linear Probing
	Ablation Study
	Cross-Modal Applications

	Summary
	Related Project: Coordinate Frame Learning for 3D Point Clouds

	Open-World 3D Understanding: Low-Shot Part Segmentation
	Related Work
	3D Part Segmentation
	Data-Efficient 3D Segmentation
	3D Learning with Image-Language Models

	Proposed Method: PartSLIP
	Overview: 3D Part Segmentation with GLIP
	Detected 2D BBoxes to 3D Point Segmentation
	Prompt Tuning w/ Few-Shot 3D Data
	Multi-View Visual Feature Aggregation

	Experiments
	Datasets and Metrics
	Implementation Details
	Comparison with Existing Methods
	Ablation Studies
	Real-World Demo

	Summary
	Other Related Projects on 3D Segmentation and Decomposition
	Approximate Convex Decomposition for 3D Meshes
	Label-Efficient Semantic Segmentation for LiDAR Point Clouds


	Conclusion and Open Problems
	Conclusion
	Open Problems

	Bibliography



