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graded angular backfill sand, modular facing blocks, and uniaxial geogrid
reinforcement to investigate the effects of applied surcharge stress, reinforcement
vertical spacing, and reinforcement tensile stiffness for working stress, static loading
conditions.  Facing displacements increased for the upper section of the walls after the
application of surcharge stress and were greater for larger reinforcement vertical
spacing and reduced reinforcement tensile stiffness.  Bridge seat settlements were
proportional to the applied surcharge stress, strongly affected by larger reinforcement
vertical spacing, and only slightly affected by reduced reinforcement tensile stiffness.
Measured vertical and lateral soil stresses generally were lower than calculated values
for static loading conditions. The maximum tensile strain in each reinforcement layer
occurred near the facing block connection for lower layers and under the bridge seat
for higher layers.  A companion paper presents experimental results for the same GRS
bridge abutment specimens under dynamic loading conditions.
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Physical Model Tests of Half-Scale Geosynthetic Reinforced 1 

Soil Bridge Abutments. I: Static Loading 2 

 3 

Yewei Zheng, A.M.ASCE1; Patrick J. Fox, F.ASCE2; P. Benson Shing3, M.ASCE; and  4 

John S. McCartney, F.ASCE4 5 

  6 

Abstract:  This paper presents experimental results from physical model tests on four half-scale 7 

geosynthetic reinforced soil (GRS) bridge abutment specimens constructed using well-graded 8 

angular backfill sand, modular facing blocks, and uniaxial geogrid reinforcement to investigate the 9 

effects of applied surcharge stress, reinforcement vertical spacing, and reinforcement tensile 10 

stiffness for working stress, static loading conditions.  Facing displacements increased for the 11 

upper section of the walls after the application of surcharge stress and were greater for larger 12 

reinforcement vertical spacing and reduced reinforcement tensile stiffness.  Bridge seat settlements 13 

were proportional to the applied surcharge stress, strongly affected by larger reinforcement vertical 14 

spacing, and only slightly affected by reduced reinforcement tensile stiffness.  Measured vertical 15 

and lateral soil stresses generally were lower than calculated values for static loading conditions. 16 

The maximum tensile strain in each reinforcement layer occurred near the facing block connection 17 

for lower layers and under the bridge seat for higher layers.  A companion paper presents 18 

experimental results for the same GRS bridge abutment specimens under dynamic loading 19 

conditions. 20 

 21 

Keywords: Geosynthetic reinforced soil; Bridge abutment; Retaining wall; Model test; Static 22 

loading.  23 

24 

                                                 
1 Assistant Professor, Department of Civil and Environmental Engineering, Old Dominion University, Norfolk, VA 

23529 USA (corresponding author). ORCID: https://orcid.org/0000-0001-9038-4113. Email: y1zheng@odu.edu 
2 Shaw Professor and Head, Department of Civil and Environmental Engineering, Pennsylvania State University, 

University Park, PA 16802 USA. Email: pjfox@engr.psu.edu 
3 Professor, Department of Structural Engineering, University of California, San Diego, La Jolla, CA 92093-0085 

USA. Email: pshing@ucsd.edu 
4 Professor and Chair, Department of Structural Engineering, University of California, San Diego, La Jolla, CA 92093-

0085 USA. Email: mccartney@ucsd.edu 

Manuscript Click here to access/download;Manuscript;JGGE I R2 -
Manuscript.docx

https://www.editorialmanager.com/jrngteng/download.aspx?id=463042&guid=48e2b65d-8acb-403f-8037-1ccd8d2dee81&scheme=1
https://www.editorialmanager.com/jrngteng/download.aspx?id=463042&guid=48e2b65d-8acb-403f-8037-1ccd8d2dee81&scheme=1


Revised Manuscript - ASCE Journal of Geotechnical and Geoenvironmental Engineering                                             April 2019 

 

2 

 

Introduction 25 

In recent years, geosynthetic reinforced soil (GRS) retaining walls have been adapted to 26 

serve as bridge abutments with bridge structure loads applied directly on top of the reinforced soil 27 

mass. This technology offers many advantages over traditional pile-supported designs and is 28 

becoming widely used for transportation infrastructure applications. Several case histories have 29 

been reported for in-service GRS bridge abutments and indicate good performance in terms of 30 

facing displacements and bridge seat settlements (Won et al. 1996; Wu et al. 2001; Abu-Hejleh et 31 

al. 2002; Adams et al. 2011a; Budge et al. 2014; Saghebfar et al. 2017).  32 

Many experimental studies, including physical model tests and instrumented field 33 

structures, have been conducted for GRS walls under static loading conditions (e.g., Runser et al. 34 

2001; Bathurst et al. 2006, 2009; Ehrlich et al. 2012; Ehrlich and Mirmoradi 2013; Allen and 35 

Bathurst 2014a, 2014b; Jiang et al. 2016, Mirmoradi and Ehrlich 2017). However, experimental 36 

studies on the static behavior of GRS bridge abutments are limited. For example, Abu-Hejleh et 37 

al. (2002) measured the field response of the Founders/Meadows GRS bridge abutment in Castle 38 

Rock, Colorado, and reported good performance during construction and under service conditions.  39 

Similarly, Saghebfar et al. (2017) reported small facing displacements and bridge seat settlements 40 

for a GRS-IBS abutment in Louisiana during construction and service. Although these 41 

investigations have indicated good field performance of GRS bridge abutments, controlled 42 

laboratory tests are needed to evaluate the effects of different design parameters in a systematic 43 

manner.   44 

This paper presents experimental results on the static response of four half-scale GRS 45 

bridge abutment specimens constructed using well-graded backfill sand, modular facing blocks, 46 

and uniaxial geogrid reinforcement to understand the effects of applied surcharge stress, 47 
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reinforcement vertical spacing, and reinforcement tensile stiffness for working stress, static 48 

loading conditions.  Wall facing displacements, bridge seat settlements, soil stresses, and 49 

reinforcement tensile strains were measured for different instrumented sections to evaluate multi-50 

directional response.  The data illustrate behavior of these structures under service load conditions 51 

and can be used for validation of three-dimensional (3D) numerical models. A companion paper 52 

(Zheng et al. 2019) presents the dynamic response of the same GRS bridge abutment specimens 53 

from shaking table tests for a series of scaled earthquake motions in the longitudinal direction.  54 

 55 

Background  56 

Field and laboratory loading tests have been conducted on GRS bridge piers and abutments, 57 

and generally indicate relatively small deformations under service load conditions and large 58 

bearing capacity (Adams 1997; Gotteland et al. 1997; Ketchart and Wu 1997; Wu et al. 2001, 2006; 59 

Lee and Wu 2004; Adams et al. 2011b; Nicks et al. 2013, 2016; Adams et al. 2014; Iwamoto et al. 60 

2015; Xu et al. 2019). Lee and Wu (2004) reviewed the results of several loading tests and 61 

suggested that bearing capacity can be as high as 900 kPa for closely spaced geosynthetic 62 

reinforcement and well-graded, well-compacted backfill soil. Wu et al. (2006) reported results for 63 

full-scale loading tests on a GRS bridge abutment with two instrumented sections in a back-to-64 

back configuration. The two sections were reinforced using woven geotextiles with ultimate 65 

strengths of 70 kN/m and 21 kN/m, and the measured abutment compressions were 40 mm and 72 66 

mm, respectively, under an applied vertical stress of 200 kPa. The section with stronger 67 

reinforcement did not reach failure for applied vertical stresses in excess of 800 kPa, while the 68 

other section with weaker reinforcement experienced excessive deformations for an applied 69 

vertical stress of approximately 400 kPa. Nicks et al. (2013, 2016) conducted a series of loading 70 
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tests on 2 m-high GRS mini-piers and found that reinforcement vertical spacing and reinforcement 71 

strength have the most important effects on the deformation response and ultimate bearing capacity.  72 

Numerical studies also have been conducted for GRS bridge piers and abutments, and 73 

generally indicate relatively small facing displacements and bridge seat settlements (e.g., Helwany 74 

et al. 2003, 2007; Ambauen et al. 2015; Leshchinsky and Xie 2015; Zheng and Fox 2016, 2017; 75 

Ardah et al. 2017; Rong et al. 2017; Abu-Farsakh et al. 2018; Zheng et al. 2018a, 2018b; Shen et 76 

al. 2019). Parametric studies indicate that the relative compaction of backfill soil, reinforcement 77 

vertical spacing, reinforcement tensile stiffness, and bridge load have the most significant effects 78 

on the performance of GRS bridge abutments under static loading (Helwany et al. 2007; Zheng 79 

and Fox 2016, 2017). Helwany et al. (2003) found that facing displacements, bridge seat 80 

settlements, and differential settlements between the bridge and approach roadway were 81 

acceptable for sand and medium-to-stiff clay foundation soils.  Zheng and Fox (2016) simulated a 82 

full bridge system with GRS bridge abutments on both ends and found that lateral restraining 83 

forces due to friction at the bridge structure-bridge seat interface can have an important effect on 84 

abutment deformations. Rong et al. (2017) conducted a 3D numerical simulation for a GRS bridge 85 

abutment and found that the application of bridge surcharge stress produced multi-directional 86 

deformation, including outward displacements of the front wall facing and smaller outward 87 

displacements of the side wall facings. 88 

 89 

Experimental Program 90 

The experimental program consisted of four GRS bridge abutment specimens, including a 91 

baseline case specimen (Specimen 1), a specimen with lower surcharge stress (Specimen 2), a 92 

specimen with larger reinforcement vertical spacing (Specimen 3), and a specimen with reduced 93 
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reinforcement tensile stiffness (Specimen 4). Details are provided in Table 1, along with the global 94 

stiffness of each GRS bridge abutment specimen, as calculated using the method of Bathurst et al. 95 

(2009).  Values of global stiffness for Specimen 3 and Specimen 4 are approximately equal and 96 

one-half of the corresponding value for Specimen 1 and Specimen 2. 97 

 98 

Specimen Configuration 99 

The GRS bridge abutment specimens were constructed on the indoor uniaxial servo-100 

hydraulic shaking table in the Charles Lee Powell Structural Research Laboratory at the University 101 

of California, San Diego (UCSD), which was refurbished prior to this study to increase the fidelity 102 

of dynamic motion (Trautner et al. 2017).  Details of the experimental design and specimen 103 

construction are provided by Zheng et al. (2018c). The configuration of the GRS bridge abutment 104 

system is shown in Figure 1. A concrete beam represents a longitudinal slice of a prototype bridge 105 

structure, and rests on a GRS bridge abutment with a concrete bridge seat at one end and on a 106 

concrete support wall at the other end.  The abutment has modular block facing on three sides, 107 

including facing on the front wall (perpendicular to the bridge beam) and the two side walls 108 

(parallel to the bridge beam).  The back of the abutment specimen was supported by a reaction 109 

wall consisting of a steel frame with plywood facing, which was designed to be sufficiently stiff 110 

to maintain at-rest lateral earth pressures during construction (Zheng et al. 2018c). 111 

Top and cross-sectional views for the GRS bridge abutment baseline case specimen 112 

(Specimen 1) are shown in Figure 2. Horizontal coordinate x is measured toward the south from 113 

the back of the front wall facing in the longitudinal section (Figure 2b), horizontal coordinate y is 114 

measured toward the east from the back of the west side wall facing in the transverse section 115 

(Figure 2c), and vertical coordinate z is measured upward from the top of the foundation soil. The 116 
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abutment specimen has plan dimensions of 2.35 m × 2.10 m. The bridge seat has plan dimensions 117 

of 0.65 m × 1.30 m on the bottom surface and a setback distance of 0.15 m from each of the three 118 

wall facings. The GRS bridge abutment specimen has a total height of 2.7 m, consisting of a 2.1 119 

m-high lower GRS fill and a 0.6 m-high upper GRS fill, and was constructed on a 0.15 m-thick 120 

foundation soil layer placed directly on the shaking table (Zheng et al. 2018c, 2018d). The lower 121 

GRS fill consists of fourteen 0.15 m-thick soil lifts, with each lift including reinforcement layers 122 

in both the longitudinal and transverse directions. The longitudinal reinforcement layers extend 123 

1.47 m from the front wall facing into the backfill soil. The transverse reinforcement layers extend 124 

0.8 m from each side wall facing to meet, without connection, at the center. The transverse 125 

reinforcement layers and side wall facing blocks for each lift are offset by 25 mm vertically from 126 

the longitudinal reinforcement layers and front wall facing blocks. Limited by geometry and 127 

payload constraints of the shaking table, the retained soil zone (i.e., from the end of longitudinal 128 

reinforcement layers to the reaction wall) has a length of 0.63 m and reinforcement layers only in 129 

the transverse direction. The upper GRS fill consists of four 0.15 m-thick soil lifts with 130 

reinforcement layers only in the transverse direction.  131 

The concrete beam has a weight of 65 kN and dimensions of 6.4 m × 0.9 m × 0.45 m (length 132 

× width × height), and the bridge seat has a weight of 7 kN.   Additional dead weights (steel plates) 133 

equal to 33 kN were evenly distributed and rigidly attached to the concrete beam to produce a total 134 

weight of 98 kN.  Elastomeric bearing pads with plan dimensions of 0.45 m × 0.90 m and a 135 

thickness of 25 mm were placed under both ends of the beam (Zheng et al. 2018c, 2018d).  For 136 

Specimens 1, 3, and 4, the total weight of the bridge beam and dead weights produced an average 137 

applied surcharge stress of 66 kPa (Table 1) on the lower GRS fill (contact area = 0.85 m2).  For 138 

Specimen 2, the concrete beam was used with no additional dead weights and the average applied 139 
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surcharge stress on the lower GRS fill was 43 kPa.  These surcharge stresses are at the lower end 140 

of the typical range, yet representative of service load conditions for GRS bridge abutments 141 

supporting a single-span bridge.  For example, the GRS-IBS abutment for the Huber Road Bridge 142 

reported by Adams et al. (2011a) has a similar applied surcharge stress of 73 kPa.  143 

 144 

Soil and Reinforcement 145 

The soil used for construction of the GRS bridge abutment specimens is a clean angular 146 

sand, consisting primarily of crushed rock, with no gravel and a low fines content. The sand has 147 

coefficient of uniformity uC  = 6.1 and coefficient of curvature zC  = 1.0 and is classified as 148 

well-graded sand (SW) according to the Unified Soil Classification System (USCS). The specific 149 

gravity sG  = 2.61, the fines content (passing No. 200 sieve) = 2.5%, and the maximum and 150 

minimum void ratios are maxe  = 0.853 and mine  = 0.371, respectively (Zheng 2017, Zheng et al. 151 

2018c, 2018d). This sand satisfies the AASHTO and FHWA backfill material requirements for 152 

GRS bridge abutments (AASHTO 2012; Adams et al. 2011b). For construction of the GRS bridge 153 

abutment specimens, the target backfill soil compaction conditions were gravimetric water content 154 

cw  = 5% and relative density rD  = 70%. This target relative density was selected to meet 155 

similitude relationships for 1g shaking table testing, as described in the companion paper (Zheng 156 

et al. 2019). 157 

Consolidated-drained triaxial compression tests were performed on dry sand specimens 158 

compacted at rD  = 70% for effective confining stress 3   = 13.8, 34.5, and 69.0 kPa, and the 159 

results are shown in Figure 3.  The sand has a peak friction angle of p   = 51.3° and no cohesion. 160 

Based on volumetric strains from the point of maximum contraction to an axial strain of 5%, the 161 
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average dilation angle   = 13° (Zheng et al. 2018c, 2018d).  A summary of soil properties is 162 

provided in Table 2.  163 

To construct the GRS bridge abutment specimens, the soil was compacted in the 164 

unsaturated condition. Unsaturated conditions produce apparent cohesion, which was estimated 165 

using the soil-water retention curve (SWRC) and the suction stress concept of Lu et al. (2010).  A 166 

hanging column test was performed on a sand specimen with rD  = 70% to measure the drying and 167 

wetting path SWRCs, which were fitted using the van Genuchten (1980) model: 168 

1
(1 )

max= ( ) 1 ( ) vG vG
N N

r r vGs    
 

      (1) 

where   = volumetric water content (volume of water/volume of soil), s = matric suction, max  = 169 

volumetric water content at zero matric suction for either path, r  = residual saturation, and vG  170 

and vGN  = model parameters. The measured SWRC data and fitted relationships are shown in 171 

Figure 4. 172 

A uniaxial high-density polyethylene (HDPE) geogrid (Tensar LH800) was used as soil 173 

reinforcement.  Tensile tests were conducted on single rib specimens at a strain rate of 10%/min 174 

according to ASTM D6637. Results are shown in Figure 5 and indicate that the geogrid has secant 175 

stiffness at 5% strain 5%J  = 380 kN/m and ultimate strength ultT  = 38 kN/m in the machine 176 

direction, and 5%J  = 80 kN/m and ultT  = 4 kN/m in the cross-machine direction. For Specimens 177 

1, 2, and 4, reinforcement was placed with each soil lift to give a vertical spacing vS  = 0.15 m.  178 

For Specimen 3, reinforcement layers were placed with every other soil lift to give vS  = 0.3 m.  179 

For Specimen 4, every other rib of the geogrid in the transverse direction was removed to yield a 180 

reduced secant stiffness of 5%J  = 190 kN/m and reduced ultT  = 19 kN/m.   181 
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Construction 182 

A foundation sand layer with a thickness of 0.15 m was first compacted within a perimeter 183 

wooden frame on the shaking table and at a higher relative density ( rD  = 85%) than the backfill 184 

sand to provide a firm base for the GRS bridge abutment. Facings for the front and side walls 185 

consisted of concrete modular blocks with plan dimensions of 0.30 m × 0.25 m and a height of 186 

0.15 m. The first course of the front wall facing blocks was placed and leveled on the foundation 187 

layer, with the side wall blocks offset vertically by 25 mm above the front wall blocks. This offset 188 

allowed for the placement of a thin (25 mm-thick) soil lift and avoid direct contact between the 189 

longitudinal and transverse geogrid layers. This technique was needed to support the front and side 190 

walls with uniaxial geogrid, which is generally preferred over biaxial geogrid in seismic regions 191 

due to the higher tensile stiffness. As a result of the 25 mm offset, the side wall and front wall 192 

facing blocks were not interlocked in a typical masonry pattern at the corners. Geogrid layers were 193 

placed between facing blocks with frictional connections and extended horizontally into the 194 

backfill soil.  Fiberglass pins were used between the blocks for alignment purposes. Although 195 

typically grouted in the field (Helwany et al. 2012), the upper course of blocks for each wall 196 

remained ungrouted in the current study. The bridge seat was placed on the lower GRS fill and the 197 

upper GRS fill was constructed in four lifts using only transverse geogrid layers. Finally, the 198 

concrete beam, with or without additional dead weights, depending on the abutment specimen, 199 

was placed on the bridge seat and support wall.  200 

Sand cone tests were performed on the compacted backfill soil for selected lifts to measure 201 

gravimetric water content and dry unit weight, and random soil samples were collected from each 202 

lift to measure gravimetric water content. Resulting profiles of relative density and gravimetric 203 

water content are shown in Figure 6, with target values indicated using dashed lines. Relative 204 
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densities range from 54% to 86%, relative compactions range from 87% to 97%, and gravimetric 205 

water contents range from 3.2% to 9.1%. Table 3 provides average soil properties for each GRS 206 

bridge abutment specimen and indicates that average relative density ranges from 64% to 73% and 207 

average gravimetric water content ranges from 4.3% to 6.7%, which are generally close to the 208 

corresponding target values ( rD  = 70% and cw  = 5%). Considering that the compaction curve is 209 

essentially flat for this sand (Zheng et al. 2018c), the variation in water content is unlikely to 210 

significantly affect the compacted dry unit weight.   211 

Apparent cohesion for unsaturated soils can have a significant effect on soil shear modulus 212 

(Khosravi et al. 2010) and the stability of GRS walls (Vahedifard et al. 2014, 2015).  The 213 

gravimetric water content profile in Figure 6(b) can be combined with the SWRCs in Figure 4 to 214 

calculate a range of apparent cohesion ac  as (Lu et al. 2010): 215 

tan tans

a ec S s       (2) 

where s  = suction stress,    maxe r rS        = effective saturation, and   is calculated 216 

from Equation (1). For the abutment specimens, matric suction ranges from 3 kPa to 10 kPa and 217 

corresponding values of apparent cohesion are relatively uniform with elevation and have an 218 

average of 2 kPa.  219 

 220 

Instrumentation 221 

Instrumentation for the abutment specimens included string potentiometers, linear 222 

potentiometers, accelerometers, total pressure cells, strain gauges, and load cells.  Figure 7 shows 223 

typical instrumentation layouts for the longitudinal centerline section L1, located at distance y  = 224 

0.8 m from the west side wall facing, longitudinal off-centerline section L2, located at y  = 0.35 225 

m, and transverse section T1 under the bridge seat, located at distance x  = 0.48 m from the front 226 
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wall facing, as indicated in Figure 2(a).  Horizontal displacements for the front wall facing blocks 227 

were measured using string potentiometers and horizontal displacements for the west side wall 228 

facing blocks were measured using linear potentiometers. String potentiometers were used to 229 

measure settlements at the four corners of the bridge seat (Figure 2a). Accelerometers were 230 

attached to the facing blocks, placed within the backfill soil, and attached to structural components 231 

to measure horizontal accelerations in the longitudinal direction.  Earth pressure cells were placed 232 

in the backfill soil to measure vertical and lateral total stresses. Reinforcement tensile strains were 233 

measured using strain gauges mounted in pairs at the mid-point of longitudinal ribs of the geogrid, 234 

with one gauge mounted on top and the other on the bottom to correct for bending (Runser et al. 235 

2001; Bathurst et al. 2002). Tensile strains were measured along five geogrid layers for section L1 236 

(Figure 7a) and three geogrid layers for section L2 (Figure 7b) in Specimens 1, 2, and 4, and were 237 

measured along seven layers for section L1 and one layer at mid-height for section L2 in Specimen 238 

3. All measured geogrid strains were adjusted using a correction factor (CF), defined as the ratio 239 

of global strain to gauge strain. Based on laboratory tensile test results for the same geogrid, CF = 240 

1.1 for the current study and is not significantly affected by strain rate (Zheng et al. 2018c).   241 

  242 

Experimental Results 243 

Experimental results are presented for three instrumented sections (L1, L2, and T1) of each 244 

GRS bridge abutment specimen to evaluate static loading response during construction, including 245 

wall facing displacements, bridge seat settlements, soil stresses, and reinforcement tensile strains. 246 

The data from each section are evaluated after construction of the lower GRS fill (Stage 1), after 247 

placement of the bridge seat and construction of the upper GRS fill (Stage 2), and after placement 248 

of the bridge beam (Stage 3). Outward displacements for the front wall and side wall facings and 249 
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downward displacements (i.e., settlements) for the bridge seat are defined as positive. 250 

 251 

Facing Displacements 252 

Profiles of wall facing displacement for longitudinal sections L1 and L2, and transverse 253 

section T1 after the three stages of construction are shown in Figures 8 and 9, respectively, and 254 

the maximum value from each profile is presented in Figure 10.  Maximum displacements for 255 

sections L1 and L2 were similar at corresponding stages of construction.  The only exception is 256 

the value of maximum displacement for Specimen 4, section L1, at elevation z  = 0.975 m, which 257 

appears to be anomalous and is not included in Figure 10.  For each abutment specimen, Figure 8 258 

shows similar profile shapes for sections L1 and L2, with maximum displacements measured near 259 

the mid-height of the wall for Stages 1 and 2 and near the top for Stage 3.  Facing displacements 260 

increased slightly due to placement of the bridge seat and construction of the upper GRS fill (Stage 261 

2), and increased more significantly due to placement of the bridge beam (Stage 3).  For Stage 3, 262 

Specimen 1 experienced larger displacements in the upper section of the wall than Specimen 2 due 263 

to the higher applied surcharge stress.  The data also show that, compared to the baseline case 264 

(Specimen 1), facing displacements generally increased with larger reinforcement vertical spacing 265 

(Specimen 3) and reduced reinforcement tensile stiffness (Specimen 4). This finding is consistent 266 

with numerical simulation results reported by Helwany et al. (2007), Ambauen et al. (2015), Zheng 267 

and Fox (2016, 2017), and Zheng et al. (2018a). 268 

Corresponding profiles of wall facing displacement for transverse section T1 are shown in 269 

Figure 9.  Although the specimen configuration in Specimens 1 and 2 was the same for Stages 1 270 

and 2, displacements in Specimen 2 were larger than those in Specimen 1.  This may be attributed 271 

to greater compaction of the backfill soil near the side walls for Specimen 2.  Similar to Figure 8, 272 
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facing displacements for section T1 in Specimens 3 and 4 were larger than in Specimen 1 after 273 

placement of the bridge beam (Stage 3) due to the effects of larger reinforcement vertical spacing 274 

and reduced reinforcement tensile stiffness, respectively. 275 

Total facing displacements, as presented in Figures 8 to 10, may reflect unintended 276 

variations during construction and instrumentation of the GRS bridge abutment specimens. To 277 

eliminate these effects, incremental facing displacements due to placement of the bridge beam (i.e., 278 

from Stage 2 to Stage 3) are plotted in Figure 11 for all three sections.  The incremental 279 

displacement profiles show better consistency and provide clearer information than the total 280 

displacement profiles.  In Figure 11(a) for the front wall and section L1, the profiles show 281 

consistent trends for the four specimens, with displacements increasing with elevation and 282 

maximum values measured near the top of the wall.  Incremental displacements for the upper 283 

section of the wall in Specimen 1 were larger than those in Specimen 2 due to the higher applied 284 

surcharge stress.  Incremental displacements for Specimen 4 were substantially larger than for 285 

Specimen 1, and were consistently the largest for Specimen 3, with a maximum value of 2.0 mm 286 

at z  = 1.575 m.  Figure 11(b) shows similar trends for longitudinal section L2 with a maximum 287 

value of 2.8 mm for Specimen 3.  For the west side wall and section T1, Figure 11(c) also indicates 288 

similar trends and generally smaller values with a maximum of 1.3 mm for Specimen 3.  Figure 289 

11 shows that incremental facing displacements increased with higher surcharge stress and were 290 

consistently larger for Specimen 3 than for Specimen 4.  Thus, for the conditions tested, larger 291 

reinforcement vertical spacing had a greater effect on facing displacements than reduced 292 

reinforcement tensile stiffness.  293 

 294 

 295 
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Bridge Seat Settlements 296 

Time histories of the settlements measured at the four top corners of the bridge seat during 297 

placement of the bridge beam (Stage 3) for Specimen 1, along with the average settlement, are 298 

presented in Figure 12.  The string potentiometer on the southeast (SE) side of the bridge seat 299 

malfunctioned for this stage and was replaced prior to the shaking table tests described in the 300 

companion paper (Zheng et al. 2019).  Bridge seat settlements occurred immediately on placement 301 

of the bridge beam and experienced a small amount of creep with time.  After 92 hours, the average 302 

settlement on the west side of the bridge seat (NW and SW) was 3.1 mm, and the settlement on 303 

the east (NE) was 0.7 mm.  This indicates tilting of the bridge seat toward the west side due to 304 

placement of the bridge beam.  The final average bridge seat settlement was 2.3 mm based on the 305 

three measurements, which corresponds to a vertical strain of 0.11% for the 2.1 m-high lower GRS 306 

fill.  307 

Final values of average bridge seat settlement due to placement of the bridge beam for each 308 

GRS bridge abutment specimen are provided in Table 4.  Specimen 2 yielded the smallest 309 

settlement (1.5 mm) due to the lower applied surcharge stress.  Interestingly, the ratio of settlement 310 

for Specimens 2 and 1 (1.5 mm/2.3 mm = 0.652) is equal to the ratio of applied stress (43 kPa/66 311 

kPa = 0.652), which indicates a linear relationship between bridge seat settlement and applied 312 

surcharge stress of 0.035 mm/kPa for these working stress conditions.  This linearity would not be 313 

expected to hold for higher applied surcharge stress conditions approaching failure (Zheng et al. 314 

2018a).  The bridge seat for Specimen 3 experienced the largest average settlement (3.5 mm) due 315 

to the larger reinforcement vertical spacing.  The ratio of settlement in this case (3.5 mm/2.3 mm 316 

= 1.52) is not proportional to the spacing ratio of 2.0, and suggests that the backfill soil carried a 317 

greater fraction of the applied stress for Specimen 3 as compared to Specimen 1.  The average 318 
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settlement of the bridge seat for Specimen 4 (2.4 mm) was only slightly larger than for Specimen 319 

1 (2.3 mm), which indicates that reduced reinforcement tensile stiffness had only a small effect on 320 

bridge seat settlement for the current study. 321 

 322 

Soil Stresses 323 

Profiles of vertical soil stress behind the front wall facing for longitudinal centerline section 324 

L1 after Stage 1 and Stage 3 are shown in Figure 13 for the four abutment specimens.  Vertical 325 

stress profiles obtained from the AASHTO (2012) method also are shown for comparison, in which 326 

values for Stage 1 were calculated using soil self-weight and values for Stage 3 were calculated 327 

using soil self-weight plus a fraction of the applied surcharge stress from a 2:1 stress distribution.  328 

Figure 13(a) shows that measured vertical stresses for Stage 1 increased with depth and were 329 

similar for the four specimens.  The measurements are in close agreement with AASHTO (2012) 330 

calculated values near the top of the fill and progressively diverge toward lower values at the 331 

bottom. The difference is attributed to friction developed at the back of facing blocks and partial 332 

support of backfill soil weight from reinforcement near the facing, similar to the findings of Runser 333 

et al. (2001). 334 

Measured vertical stress profiles for Stage 3, after placement of the bridge beam, are shown 335 

in Figure 13(b).  Values are similar at lower elevations and then diverge significantly near the top.  336 

The highest value (70.1 kPa, z  = 1.875 m) was measured for Specimen 1 and is nearly equal to 337 

the applied surcharge stress (66 kPa) plus the small additional vertical stress (3.9 kPa) due to the 338 

thin (0.225 m) layer of cover soil.  Values at the top for Specimens 3 and 4 were lower than for 339 

Specimen 2, even though the applied surcharge stress for Specimens 3 and 4 (66 kPa) was higher 340 

than for Specimen 2 (43 kPa).  The discrepancies in measured vertical stress near the top are 341 
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attributed to variability in placement of pressure cells and bridge seats during construction and 342 

irregularities in contact stress between the bridge seats and backfill soil (McCartney et al. 2018).  343 

Measured vertical stresses for Stage 3 were generally larger than AASHTO (2012) values for Stage 344 

1 and smaller than AASHTO (2012) values for Stage 3, with the exception of Specimen 1 at the 345 

top.  The assumed 2:1 stress distribution used in the AASHTO (2012) method is a first 346 

approximation and does not account for lateral distance from the wall facing, which affects the 347 

stress state near the top of the lower GRS fill for the abutment specimens. 348 

Corresponding profiles of measured and calculated lateral soil stress behind the front wall 349 

facing are shown in Figure 14.  To obtain the AASHTO (2012) calculated values, the AASHTO 350 

(2012) vertical stress profiles in Figure 13 were multiplied by the Rankine active earth pressure 351 

coefficient aK  (= 0.12).  In Figure 14(a), measured lateral stresses for Stage 1 were smaller than 352 

5 kPa and show a general but inconsistent trend of increasing magnitude with depth.  Measured 353 

lateral stresses near the top of the wall were larger than the AASHTO (2012) values, which is 354 

attributed to the effects of soil compaction, and smaller than the AASHTO (2012) values near the 355 

bottom, which is attributed to reduced vertical stress in Figure 13(a).  For Stage 3 in Figure 14(b), 356 

measured lateral stresses increased near the top of the wall due to placement of the bridge beam 357 

and generally were larger at top and bottom than at mid-height, which is similar to the trend of 358 

AASHTO (2012) calculated lateral stress profiles.  All measured lateral stresses behind the wall 359 

facing were smaller than AASHTO (2012) calculated values, and thus indicates that the AASHTO 360 

(2012) lateral stress profiles for Stage 3 static loading are conservative for this study. 361 

 362 

 363 

 364 
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Reinforcement Strains 365 

Distributions of measured reinforcement tensile strain for the three instrumented sections 366 

of Specimen 1 are shown in Figure 15.  Zero strain at the free end of each reinforcement layer is 367 

also plotted.  For longitudinal section L1 and Stage 1, maximum tensile strains occurred near the 368 

facing block connections in layers 1, 4, and 7, and at a distance of x  = 0.8 m from the facing in 369 

layer 10.  Tensile strains in layer 13 were small and do not indicate a clear maximum.  Strains 370 

increased slightly due to placement of the bridge seat and construction of the upper GRS fill (Stage 371 

2), and then increased substantially due to placement of the bridge beam (Stage 3).  For Stage 3, 372 

the maximum tensile strain occurred near the facing connections in lower layers 1, 4, and 7, and 373 

under the bridge seat in upper layers 10 and 13.   374 

Reinforcement tensile strains for longitudinal section L2 are shown in Figure 15(b) and 375 

display similar magnitudes and trends for Stages 1 and 2.  For Stage 3, tensile strains were similar 376 

to the L1 values in layers 1 and 7 and much larger than the L1 values in layer 13 under the bridge 377 

seat.  This is attributed to tilting of the bridge seat toward the west side of the abutment (i.e., section 378 

L2) for Stage 3, as indicated in Figure 12.  Reinforcement tensile strains for transverse section T1 379 

are shown in Figure 15(c). Similar to the observations for sections L1 and L2, the maximum tensile 380 

strain in each reinforcement layer for Stage 1 occurred near the facing connection in layers 1 and 381 

7, and the strains were generally small in layer 13.  For Stage 3, the application of surcharge stress 382 

caused a significant increase in tensile strain for layers 7 and 13.  Interestingly, the two points of 383 

maximum strain for the uppermost reinforcement layers in sections T1 and L2 (i.e., 0.14% at x  = 384 

0.48 m, y  = 0.33 m, z  = 1.98 m for T1, and 0.15% at x  = 0.45 m, y  = 0.35 m, z  = 1.95 m for 385 

L2), were nearly co-located within Specimen 1 and indicate essentially the same tensile strain 386 

values in both longitudinal and transverse directions. 387 
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Similar to Figure 11, plots of incremental strain provide clearer information.  Distributions 388 

of incremental reinforcement tensile strain due to placement of the bridge beam (i.e., from Stage 389 

2 to Stage 3) for longitudinal section L1 are shown in Figure 16(a) for the four abutment specimens.  390 

The trends are consistent with previous plots.  The effect of applied surcharge stress was most 391 

clearly observed for layer 7, in which incremental strains for Specimen 1 were larger than for 392 

Specimen 2 near the wall facing, and incremental strains for Specimen 4 were larger than for 393 

Specimen 1 and largest for Specimen 3.  For the conditions tested, larger reinforcement vertical 394 

spacing had a more significant effect than reduced reinforcement tensile stiffness.  Similar trends 395 

are observed for section T1, as shown in Figure 16(b). 396 

 397 

Conclusions 398 

This paper presents experimental results from physical model tests on four half-scale 399 

geosynthetic reinforced soil (GRS) bridge abutment specimens constructed using well-graded 400 

backfill sand, modular facing blocks, and uniaxial geogrid reinforcement for working stress, static 401 

loading conditions.  The specimens included a baseline case (Specimen 1), lower surcharge stress 402 

(Specimen 2), larger reinforcement vertical spacing (Specimen 3), and reduced reinforcement 403 

tensile stiffness (Specimen 4).  Results are presented after construction of the lower GRS fill (Stage 404 

1), after placement of the bridge seat and construction of the upper GRS fill (Stage 2), and after 405 

placement of the bridge beam (Stage 3). The following conclusions are reached for the conditions 406 

of the study:  407 

1. The abutment specimens experienced similar profiles of wall facing displacement, with 408 

maximum displacements measured near the mid-height for Stages 1 and 2 and near the top 409 

for Stage 3.  For the front wall and Stage 3 loading, incremental displacements increased 410 
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with elevation along the wall, higher surcharge stress, reduced reinforcement tensile 411 

stiffness, and larger reinforcement vertical spacing.  Corresponding incremental facing 412 

displacements for the west side wall were smaller in magnitude and showed similar trends. 413 

2. Bridge seat settlements occurred immediately on placement of the bridge beam and 414 

experienced a small amount of creep with time.  Settlement was proportional to the applied 415 

surcharge stress, strongly affected by larger reinforcement vertical spacing, and only 416 

slightly affected by reduced reinforcement tensile stiffness. 417 

3. Measured vertical and lateral soil stresses behind the wall facing generally were lower than 418 

values calculated using the AASHTO (2012) method for Stage 1 and Stage 3.  Lateral soil 419 

stresses increased near the top of the wall due to placement of the bridge beam, and were 420 

larger at top and bottom sections of the wall than at mid-height. 421 

4. Tensile strains increased significantly in the higher reinforcement layers during Stage 3 422 

loading. The maximum tensile strain occurred near the facing block connection for lower 423 

reinforcement layers and under the bridge seat for higher layers in both longitudinal and 424 

transverse sections.  Incremental reinforcement tensile strains due to placement of the 425 

bridge beam increased with larger reinforcement vertical spacing and reduced 426 

reinforcement tensile stiffness. 427 
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 438 

Notation 439 

The following symbols are used in this paper: 440 

ac  = apparent cohesion 441 

cC  = compression index 442 

rC  = recompression index 443 

uC  = coefficient of uniformity 444 

zC  = coefficient of curvature 445 

50D  = mean particle size  446 

rD  = relative density  447 

oe  = initial void ratio 448 

maxe  = maximum void ratio 449 

mine  = minimum void ratio 450 

sG  = specific gravity of solids 451 

h  = height of lower GRS fill 452 

5%J  = secant stiffness of reinforcement at 5% tensile strain  453 

iJ  = tensile stiffness of the ith reinforcement layer in the longitudinal direction 454 
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aK  = Rankine coefficient of active earth pressure  455 

n  = number of reinforcement layers in the longitudinal direction 456 

vGN  = van Genuchten (1980) SWRC model parameter 457 

s  = matric suction 458 

eS  = effective saturation 459 

vS  = reinforcement vertical spacing 460 

ultT  = ultimate strength of reinforcement 461 

cw  = gravimetric water content 462 

x  = distance from front wall facing  463 

y = distance from west side wall facing  464 

z  = elevation above foundation soil  465 

vG  = van Genuchten (1980) SWRC model parameter 466 

γd = dry unit weight 467 

p   = peak friction angle  468 

3   = minor principal effective stress 469 

s  = suction stress 470 

  = volumetric water content 471 

d  = drying curve volumetric water content at zero suction 472 

max  = volumetric water content at zero matric suction 473 

r  = residual volumetric water content 474 

w  = wetting curve volumetric water content at zero suction 475 
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  = dilation angle 476 

 477 
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Table 1. Experimental program. 

 

Specimen Variable 

Average 

surcharge stress 

(kPa) 

Reinforcement 

vertical 

spacing 

(m) 

Reinforcement 

tensile 

stiffness 

(kN/m) 

Global 

stiffness 

(kN/m) a 

1 Baseline case 66 0.15 380 2352 

2 
Reduced surcharge 

stress 
43 0.15 380 2352 

3 
Increased reinforcement 

vertical spacing 
66 0.30 380 1267 

4 
Reduced reinforcement 

tensile stiffness 
66 0.15 190 1176 

a defined as 
1

1 n

i

i

J
h 

 , where iJ  = tensile stiffness of the ith reinforcement layer in the longitudinal direction, n  = 

number of longitudinal reinforcement layers, and h  = height of lower GRS fill (after Bathurst et al. 2009). 
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Table 2. Soil properties. 

 

Property Value  

Specific gravity, sG  2.61 

Coefficient of uniformity, uC  6.1 

Coefficient of curvature, zC  1.0 

Mean particle size, 50D  (mm) 0.85 

Compression index, cC  0.10 

Recompression index, rC  0.025 

Maximum void ratio, maxe  0.853 

Minimum void ratio, mine  0.371 

Peak friction angle, p   (°) 51.3 

Dilation angle,   (°) 13.0 

  



 

Table 3. Average soil properties for GRS bridge abutment specimens. 

 

Specimen 

Average 

dry unit weight 

(kN/m3) 

Average  

relative compaction  

(%) 

Average 

relative density 

(%) 

Average 

gravimetric water 

content 

(%) 

1  16.6 90 64 4.7 

2 17.1 93 73 6.7 

3 17.1 93 73 5.5 

4 16.7 91 67 4.3 

  



 

Table 4. Average values of bridge seat settlement due to placement of bridge beam. 

 

Specimen 
Average surcharge 

stress (kPa) 

Average settlement  

(mm) 

Average vertical strain 

of lower GRS fill 

(%) 

1 66 2.3 0.11 

2 43 1.5 0.07 

3 66 3.5 0.17 

4 66 2.4 0.11 

 



 

 
 

Figure 1. Configuration of GRS bridge abutment system for Specimen 1.  
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Figure 2.  Specimen 1: (a) top view; (b) longitudinal cross-sectional view; (c) transverse cross-

sectional view.  Note: dashed lines indicate reinforcement layers perpendicular to diagram. 
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Figure 3. Experimental results from consolidated-drained triaxial compression tests on well-

graded angular sand: (a) deviator stress; (b) volumetric strain.  

  

Figure 3 Click here to access/download;Figure;Figure_3.pdf

https://www.editorialmanager.com/jrngteng/download.aspx?id=463048&guid=1f6f2797-8176-4fd8-a294-7b996fbff7c8&scheme=1
https://www.editorialmanager.com/jrngteng/download.aspx?id=463048&guid=1f6f2797-8176-4fd8-a294-7b996fbff7c8&scheme=1


 

0

10

20

30

40

0.1 1 10 100 1000

Drying
Wetting
van Genuchten (1980)

V
ol

um
et

ri
c 

W
at

er
 C

on
te

nt
 (%

)

Matric Suction (kPa)

αvG  = 0.5 kPa-1

NvG = 2.1
θd = 0.32
θw = 0.20
θr = 0.00

 
 

Figure 4. Wetting-path and drying-path SWRC data with fitted relationships. 
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Figure 5.  Experimental results from tensile tests on geogrid reinforcement. 
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Figure 6. Soil property profiles for GRS bridge abutment specimens: (a) relative density; (b) 

gravimetric water content. 
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Figure 7. Instrumentation for Specimen 1: (a) longitudinal centerline section L1 (y = 0.8 m); (b) 
longitudinal off-centerline section L2 (y = 0.35 m); (c) transverse section T1 (x = 0.48 m).
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Figure 8. Profiles of facing displacement for front wall and longitudinal sections L1 and L2: (a) 

Stage 1; (b) Stage 2; (c) Stage 3.
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Figure 9. Profiles of facing displacement for west side wall and transverse section T1: (a) Stage 

1; (b) Stage 2; (c) Stage 3. 
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Figure 10. Maximum facing displacements: (a) L1, front wall; (b) L2, front wall; (c) T1, west 

side wall. 
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Figure 11. Profiles of incremental facing displacement due to placement of bridge beam: (a) L1, 

front wall; (b) L2, front wall; (c) T1, west side wall. 
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Figure 12.  Time histories of settlement for bridge seat due to placement of bridge beam for 

Specimen 1. 
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Figure 13. Profiles of vertical soil stress near front wall facing for longitudinal section L1: (a) 

Stage 1; (b) Stage 3. 
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Figure 14. Profiles of lateral soil stress behind front wall facing for longitudinal section L1: (a) 

Stage 1; (b) Stage 3. 
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Figure 15. Distributions of tensile strain in reinforcement layers for Specimen 1: (a) L1; (b) L2; (c) T1.  
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Figure 16. Distributions of incremental tensile strain in reinforcement layers due to placement of 

bridge beam: (a) L1; (b) T1. 
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