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Fracture Toughness of Metallic Glasses: Ductile-to-Brittle Transition?

Chris H. Rycroft1,2 and Eran Bouchbinder3

1 Department of Mathematics, University of California, Berkeley, CA 94720, United States
2 Department of Mathematics, Lawrence Berkeley Laboratory, Berkeley, CA 94720, United States

3 Chemical Physics Department, Weizmann Institute of Science, Rehovot 76100, Israel

Quantitative understanding of the fracture toughness of metallic glasses, including the associated
ductile-to-brittle transitions, is not yet available. Here we use a simple model of plastic deformation
in glasses, coupled to an advanced Eulerian level set formulation for solving complex free boundary
problems, to calculate the fracture toughness of metallic glasses as a function of the degree of
structural relaxation corresponding to different annealing times near the glass temperature. Our
main result indicates the existence of an elasto-plastic crack tip instability for sufficiently relaxed
glasses, resulting in a marked drop in the toughness, which we interpret as a ductile-to-brittle
transition similar to experimental observations.

The mechanical properties of glassy materials still pose
challenges of great scientific and technological impor-
tance. One such fundamental property is the fracture
toughness – the ability of a material to resist failure in
the presence of a crack [1]. Theoretically predicting the
fracture toughness of materials, which is lacking in gen-
eral, is a particularly pressing problem in the context
of metallic glasses. Metallic glasses constitute a promis-
ing new class of materials, possessing superior properties,
whose usage in structural applications is severely limited
by their relatively low fracture toughness [2–9].

Recent observations demonstrated a marked drop in
the fracture toughness of metallic glasses as a function
of composition and degree of structural relaxation (con-
trolled through annealing near the glass temperature Tg)
[6, 9–11]. The drop in the toughness, which is commonly
correlated with Poisson’s ratio [9–11], is interpreted as a
kind of ductile-to-brittle transition [9, 11]. To the best
of our knowledge, no basic theoretical understanding of
this important observation is currently available.

In this Letter we calculate the fracture toughness of
metallic glasses based on the low-temperature Shear-
Transformation-Zone (STZ) model, using an advanced
Eulerian level set formulation for solving complex free
boundary problems. We demonstrate the existence of
an elasto-plastic crack tip instability as a function of in-
creasing degree of structural relaxation, which results in
a drop in the fracture toughness. We propose to interpret
this instability as a ductile-to-brittle transition similar to
the one observed experimentally.

The Shear-Transformation-Zone (STZ) model of amor-
phous plasticity [12–15] has recently been shown
to emerge within a systematic formulation of non-
equilibrium thermodynamics [16, 17] and to capture a
wide range of glassy deformation phenomena [15, 18–22].
Its main advantage in the present context is that it of-
fers a way to quantify the degree of structural relaxation
and the deformation-driven evolution of structural dis-
order. Our goal here is to use the STZ model in a way
that goes beyond previous analyses; rather than fixing
the model parameters to quantitatively describe a given

phenomenon, we treat it as a predictive model where its
parameters are estimated from independent sources and
another phenomenon – crack initiation – is studied.

We focus here on a simple version of the STZ model,
retaining only salient physical ingredients. As we are
interested in the fracture toughness of metallic glasses
at temperatures well below the glass temperature Tg, we
neglect all spontaneous, non-driven, relaxation processes
and set the plastic rate of deformation Dpl to zero for
stresses below the shear yield stress sy. For s̄ ≥ sy we
have

Dpl(s, T, χ)=τ−1
0 Λ(χ) C(s̄, T ) [1− sy/s̄] s/s̄ , (1)

where s=σ− 1
3 trσ 1 is the deviatoric stress tensor (σ is

the Cauchy stress) and
√

2 s̄ ≡ √sijsij [14, 15]. Dpl is
expressed as a product of physically meaningful terms.
τ−1
0 is a molecular vibration rate. Λ(χ) is the probability

to find a structural fluctuation that is particularly sus-
ceptible to shear-driven rearrangements – an STZ. It is
a function of an effective disorder temperature χ, to be
discussed below. C(s̄, T ) quantifies the (dimensionless)
rate in which STZs actually undergo shear transforma-
tions as a function of stress and temperature. The last
terms represent deformation-induced anisotropy (“back
stress”) and also make the whole expression tensorially
consistent.

The effective temperature χ characterizes the out-of-
equilibrium structural degrees of freedom of a glass [16].
It satisfies an effective heat equation of the form [13, 16]

τ0χ̇ = Γ(s̄, χ) (χ∞ − χ) , (2)

where again spontaneous thermally activated relaxation
is excluded. χ∞ is the steady state value of χ and Γ(s̄, χ)
is a dimensionless strength of mechanically-generated
noise that tends to rejuvenate the glass (when χ<χ∞).
The very same theoretical framework predicts that Λ(χ)
in Eq. (1) is given by a generalized Boltzmann factor,
Λ(χ) = exp (−ez/kBχ), where ez is a typical STZ for-
mation energy. It is this physical description of struc-
tural disorder that makes the STZ model most suitable
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for studying the fracture toughness as a function of the
degree of structural relaxation.

To complete the presentation of the model in Eqs.
(1)-(2), we need to specify explicit forms for C(s̄, T )
and Γ(s̄, χ). The latter has been proposed to be pro-

portional to the rate of plastic work Dpl
ijsij [15], i.e.

Γ(s̄, χ) = τ0D
pl
ijsij/sy. C(s̄, T )≡ 1

2 [R(s̄, T )+R(−s̄, T )] is
the average of forward and backward STZ transition rates

R(±s̄, T )=exp
(
−∆∓Ω ε0 s̄

kBT

)
, which we assume to follow

a linearly stress-biased thermal activation process. Here
∆ is the typical energy activation barrier, Ω is the typi-
cal activation volume and ε0 is the typical local strain at
the transition [6, 23]. In the presence of the high stresses
near a tip of a crack, Ω ε0s̄ may become larger than ∆, in
which case we assume the exponential thermal activation
form crosses over to a much weaker dependence associ-
ated with a linear, non-activated, dissipative mechanism
[20]. Hence,

C(s̄, T )=

{
e−∆/kBT cosh [Ω ε0 s̄/kBT ] for Ω ε0s̄ < ∆

Ω ε0 s̄/2∆ for Ω ε0s̄ ≥ ∆ .
(3)

As ∆� kBT , the two expressions connect continuously
(but not differentiably). The slope of the linear relation
was chosen so as not to introduce additional parameters.
These details do not affect the qualitative nature of the
results to follow.

To proceed, we adopt an Eulerian formulation and
write the total rate of deformation tensor as a sum of
elastic and plastic contributions, Dtot=Del+Dpl, where
Dtot= 1

2 [∇v+(∇v)
T

], Del=∂tε+v · ∇ε+ε ·ω−ω · ε and

ω= 1
2 [∇v−(∇v)

T
]. The strain tensor ε is related to σ

through Hooke’s law σ=K trε1+ 2µ
(
ε− 1

3 trε1
)
, where

K and µ are the bulk and shear moduli, respectively.
The velocity field v(r, t), where r is the spatial coordi-
nate, evolves through the momentum balance equation
ρ0 (∂tv+v ·∇v)=∇·σ, where ρ0 is the mass density (as-
sumed constant hereafter).

Consider a straight notch (crack) with root radius ρ
(see Fig. 1) under plane-strain conditions. A polar co-
ordinate system (r, θ) is set a distance ρ/5 behind the
notch root and θ= 0 is the symmetry axis. We adopt a
boundary layer formulation in which the following univer-
sal mode I (tensile) crack tip velocity fields are imposed
on a scale much larger than ρ [24–29]

vx(r, θ, t) =
K̇I(t)

4µ

√
r

2π

[
(5− 8ν) cos

(
θ

2

)
−cos

(
3θ

2

)]
,

vy(r, θ, t) =
K̇I(t)

4µ

√
r

2π

[
(7− 8ν) sin

(
θ

2

)
−sin

(
3θ

2

)]
,(4)

where KI(t) is the mode I stress intensity factor and ν is
Poisson’s ratio [1]. The main advantage of this approach
is that the stress intensity factor uniquely couples the
inner scales near the tip to the outer scales and hence can

be controlled independently without solving the global
crack problem [1].

The linear elastic fracture toughness is the critical
value of the stress intensity factor, KIc, at which the crack
initiates and global failure occurs. There is ample exper-
imental and numerical evidence that metallic glasses un-
der tension fail locally near crack tips by the nucleation
of voids [30–34]. We interpret this at the continuum level
(atomistic aspects might be also relevant [35]) as a local
cavitation instability initiating at a structural fluctuation
when the hydrostatic tension 1

3 trσ exceeds a threshold,
which for non-hardening materials is estimated as [36]

σc ' 2sy

(
1 + log

[
2E/(3

√
3 sy)

])
/
√

3 , (5)

where E is Young’s modulus and sy/E�1.
The model parameters for Vitreloy 1, a widely studied

metallic glass for which the annealing time dependence
of the fracture toughness was measured [10, 11], are es-
timated from independent sources. we set µ = 37GPa,
ν = 0.35, ρ0 ' 6g/cm3 and sy ' 0.85GPa [3, 6]. The
basic vibrational timescale is τ0 ' 10−13s. The activa-

tion volume of an STZ was estimated to be Ω' 1000Å
3

[37] and typically ε0 ' 0.1 [6], hence Ωε0 ' 100Å
3
. The

typical activation barrier is of the order of 1eV; we set
∆ = 0.7eV [37]. The STZ formation energy should be
somewhat larger than ∆ and we choose ez = 1.8eV. Fi-
nally, the steady state value of the effective temperature
is expected to be between Tg=623K and the melting tem-
perature Tm'1000K. Previous works suggest χ∞'900K
[20]. We set T =400K, well below Tg.

We set K̇I = 10MPa
√

m s−1 and ρ= 65µm [10, 11]. A
key parameter is the initial value of the effective tem-
perature, χ(r, t=0)≡χ0. In [10, 11], Vitreloy 1 was an-
nealed for different times at Tg and the fracture toughness
dropped by an order of magnitude, fromKIc'85MPa

√
m

for the as-cast samples to KIc ' 8.5MPa
√

m for the 12
hours annealed samples. Within the model, we represent
the effect of increasing annealing times by decreasing val-
ues of the initial effective temperature, and focus on the
range χ0 = 600−660K. All other parameters remained
fixed.

We numerically solved the equations for σ, v and χ us-
ing the recently proposed Eulerian finite-difference sim-
ulation framework, where free boundaries are implicitly
tracked by the level set method [38]. A key advantage
of this method is its ability to naturally handle topolog-
ical changes, such as those involved in material failure.
The combination of finite-difference and level set meth-
ods provides a flexible platform to study complex physi-
cal phenomena such as crack initiation and propagation.

The widely separated timescales of elastic and plas-
tic deformations make our equations stiff. In [22], an
explicit update procedure, in which the timestep was
chosen to be small enough to resolve elastic waves, was
employed. It would be prohibitively computationally ex-
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FIG. 1. (Color online) The normalized hydrostatic pres-
sure field p/sy near a notch at various loading levels KI =
20, 40, 60MPa

√
m (from top to bottom) for χ0 =600K (panels

a-c) and χ0 =660K (panels d-f). A movie is available at [43].

pensive to access physically relevant timescales using this
procedure. We therefore constructed a new numerical
scheme in which σ and χ are explicitly updated, but v
is solved for implicitly using quasi-static force balance
∇·σ=0. Details of the quasi-static scheme and its veri-
fication will be given elsewhere. Here we just stress that
this scheme allows us to use physically realistic loading
rates and to dynamically switch to the explicit scheme
when rapid failure initiates. The calculations presented
here employed a −20 < x/ρ, y/ρ < 20 domain, using a
1025×1025 grid. Increasing grid resolution and/or do-
main size did not significantly affect the results.

In Fig. 1 we plot a sequence of three snapshots of the
hydrostatic pressure field p(r, t) =− 1

3 trσ for χ0 = 600K
(more relaxed) and χ0 = 660K (less relaxed), taken at
the same value of KI . The two sequences seem to ex-
hibit a similar qualitative behavior in which p attains
a minimum ahead of the notch root at a distance that
increases with KI [26–29]. There are, however, marked

quantitative differences; the lower χ0 exhibits a signifi-
cantly smaller minimum (accompanied by a sharp spatial
variation) and the local notch root radius of curvature
decreases, suggesting the onset of a localization process.

To further explore the crack tip dynamics, we plot in
Fig. 2 two snapshots of the effective temperature χ(r, t)
for each χ0. Recall that χ(r, t) quantifies structural dis-
order – the higher χ, the higher the disorder and the
easier it is to flow. Both the spatial distribution of χ
and the notch geometry are markedly different in the two
cases. In the higher χ0 case, χ(r, t) is rather smoothly
distributed in the near tip region and the notch under-
goes continuous blunting – its radius of curvature grows
continuously and uniformly with KI .

The lower χ0 case is qualitatively different. Initially,
at small loads, there is little plastic deformation and χ
remains nearly constant at its initial value χ0. As KI

increases, plastic deformation localizes in the notch root
vicinity, resulting in a more sharply and inhomogeneously
distributed χ, featuring small scale filamentary struc-
tures. These dynamics are strongly coupled to the notch
geometry; the radius of curvature of the notch varies spa-
tially, with a pronounced reduction near the root. It is
this localization process – an elasto-plastic crack tip in-
stability – that is responsible for the marked differences
in the minima of p in Fig. 1.
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FIG. 2. (Color online) The effective temperature field χ at
KI = 40MPa

√
m (top) and KI = 80MPa

√
m (bottom) for

χ0 =600K (panels a-b) and χ0 =660K (panels c-d). A movie
is available at [43].

What are the implications of this instability for the
fracture toughness? As discussed above, large |p| may
induce the nucleation of voids, which might lead to catas-
trophic failure. Therefore, we focus our attention on the
minimum of the pressure pmin(t)≡Min{p(r, t)}. In Fig.
3a we plot pmin vs. KI for the two χ0’s. At small KI



4

both samples respond linear elastically (and hence identi-
cally). As KI increases, local near tip yielding occurs and
the curves progressively and significantly deviate from
the elastic line. Already here we observe some quantita-
tive differences: the lower χ0 sample exhibits less plastic
deformation and consequently less stress relaxation and
tip blunting, resulting in more negative pmin. As KI

further increases, a clear signature of the tip instability
discussed above is observed, where pmin drops abruptly
for the lower χ0, while the curve for the higher one ex-
hibits smooth and moderate variation with KI .
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FIG. 3. (Color online) (a) pmin/sy vs. KI for χ0 =600K (solid
blue line) and χ0 = 660K (dashed red line). The horizontal
line at pmin/sy = −4.5 is the threshold for void nucleation.
(inset) χmax vs. KI (b) A snapshot of the system (p/sy is
plotted) when a void (small white circle) nucleates. (c) The
subsequent catastrophic failure. A movie is available at [43].

A complementary view on the elasto-plastic nature
of the instability is obtained by plotting χmax(t) ≡
Max{χ(r, t)}, which quantifies the magnitude of plas-
tic deformation, vs. KI in the inset of Fig. 3a. For
χ0 = 660K, a linear elastic regime (χmax = χ0) is fol-
lowed by a smooth and moderate increase of χmax to-
ward χ∞. For χ0 = 600K the linear elastic regime is
followed by an accelerated and very sharp increase of
χmax, which is mirrored in the drop of pmin in the main
panel. To make things quantitative, we use E/sy ' 85

for Vitreloy 1 in Eq. (5) to get σc ' 5sy [39]. In Fig.
3a, we chose 4.5sy as the threshold (horizontal line) for
void nucleation, which suggests a large difference in the
fracture toughness, KIc ' 30MPa

√
m for χ0 = 600K and

KIc ' 80MPa
√

m for χ0 = 660K. Varying σc will not
change the qualitative nature of this main result, though
the flatness of the χ0 =660K curve suggests quantitative
implications.

Does the nucleation of a void lead to catastrophic fail-
ure? i.e. can we interpret KI at which pmin meets the
threshold as the fracture toughness KIc? To address this
issue we take advantage of the model’s dynamical nature
and the numerical method’s flexibility to study the post
void nucleation dynamics. A void nucleation is shown in
Fig. 3b. The subsequent dynamics, a snapshot of which
is shown in panel (c), proceed through a rapid succession
of void nucleations, leading to the coalescence of the ini-
tial void with the notch root and to rapid crack propaga-
tion which results in catastrophic failure. The emerging
crack pattern is reminiscent of some experimental obser-
vations (random fluctuations in the void nucleation loca-
tions were introduced to avoid artificial grid effects) [40].
In light of this catastrophic failure, we interpret the large
variation in KI at which the threshold is met in Fig. 3a
for the two different χ0’s as a kind of ductile-to-brittle
transition similar to the experimental observations.

The crack tip instability, which leads to the marked
drop in the fracture toughness discussed above, has both
constitutive and geometric origins. The central physi-
cal question here is how efficiently a material can tame
the linear elastic stress singularity, associated with the
universal crack tip fields of Eqs. (4), by stress relaxation
processes [41]. Stress relaxation is mediated both by bulk
plastic deformation and by the accompanying geometri-
cal changes in the shape of the notch – the higher the ra-
dius of curvature, the lower the stress concentration. As
a glass becomes progressively more structurally relaxed
(less disordered), these stress relaxation processes be-
come progressively more limited and below some thresh-
old a tip instability sets in.

As mentioned above, the ductile-to-brittle transition
is commonly correlated with Poisson’s ratio ν [6, 9, 11].
We suspect that this correlation might not be deep, but
rather represents the fact that both the elastic and plas-
tic responses of a glass depend on its state of disorder,
quantified here by χ. Hence, while there should exist a
configurational equation of state of the form ν(χ) [18, 42]
(which was neglected in our calculations), its effect on the
fracture toughness is expected to be secondary compared
to the strong exponential dependence of Dpl on ez/kBχ0

through Λ(χ). Indeed, for our parameters Λ drops by
more than an order of magnitude when χ0 decreases from
660K to 600K.

The typical fracture toughness values that emerge from
our calculations seem to be in the right ballpark, with-
out fine-tuning the model’s parameters. We would not,



5

however, take this to imply that the present model has
quantitative predictive powers as there are still uncertain-
ties about the details of the model (e.g. the form of the
rate factor) and the values of the parameters. On the
other hand, we do advocate the view that the model can
be used to qualitatively predict new phenomena, such as
the crack tip instability discussed above.
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Young Scientist Fund. C.H.R. was supported by the
Director, Office of Science, Computational and Technol-
ogy Research, U.S. Department of Energy under contract
number DE-AC02-05CH11231.
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