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ESSENTIAL DIMENSION VIA PRISMATIC

COHOMOLOGY

BENSON FARB, MARK KISIN AND JESSE WOLFSON

Abstract. For X a smooth, proper complex variety we show that for
p ≫ 0, the restriction of the mod p cohomology Hi(X,Fp) to any Zariski

open has dimension at least h0,i
X . The proof uses the prismatic cohomol-

ogy of Bhatt-Scholze.
We use this result to obtain lower bounds on the p-essential di-

mension of covers of complex varieties. For example, we prove the p-
incompressibility of the mod p homology cover of an abelian variety,
confirming a conjecture of Brosnan for sufficiently large p. By combin-
ing these techniques with the theory of toroidal compactifications of
Shimura varieties, we show that for any Hermitian symmetric domain
X, there exist p-congruence covers that are p-incompressible.
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1. Introduction

Let f : Y → X be a finite map of complex algebraic varieties. The essen-
tial dimension ed(Y/X) of f is the smallest integer e such that, over some
dense open of X, the map f arises as the pullback of a map of varieties of di-
mension e. The motivation for studying this invariant goes back to classical
questions about reducing the number of parameters in a solution to a general
nth degree polynomial. It first appeared in work of Kronecker [Kr1861] and
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Klein [Kl1884] on the quintic, and was formally defined by Tschebotarow
[Tsc34], and in a modern context by Buhler-Reichstein [BR97], [BR99].

An idea which goes back to Arnol’d [Arn70a], [Arn70b], is to use char-
acteristic classes to obtain a lower bound for essential dimension: if f has
covering group G then the cohomology of G sometimes contributes to the
cohomology of X - such classes on X are called characteristic. If they con-
tribute to the cohomology of X in some degree i, and X is affine, then f
cannot arise as a pullback of a G-cover of dimension < i. The main difficulty
with this approach is that to get a lower bound for ed(Y/X) one needs to
know that (some of) the classes coming from G continue to be nontrivial
on any Zariski open in X. Indeed in loc. cit. Arnol’d was able to address
the question only without restricting to open subsets. For the universal Sn-
cover, this problem was solved by Buhler-Reichstein [BR99]. Following a
suggestion of Serre, they showed the Stiefel-Whitney classes which arise in
that situation are nonzero at the generic point.

In this paper we introduce a new method, which solves this restriction
problem in many cases. In particular, it allows us to give lower bounds on
ed(Y/X) in many cases when X is proper. Previously, lower bounds on the
essential dimension of coverings of proper varieties were known only in very
special cases [CT02,FKW21,FS22]. In fact our results apply to the so called
p-essential dimension ed(Y/X; p) (p a prime), where one is allowed to pull
back the covering not just to Zariski opens, but to auxiliary coverings of
degree prime to p [RY00]. A first example of our results is the following,
which appears as Cor. 2.3.12 below.

Theorem 1. Let X be a smooth proper complex variety of maximal Albanese
dimension, and Y → X its mod p homology cover. Then for p≫ 0, Y → X
is p-incompressible, i.e.

ed(Y/X; p) = dimX.

Recall that the mod p homology cover is the covering corresponding to the
maximal elementary abelian p-group quotient of the fundamental group of
X, and that X has maximal Albanese dimension if the image of its Albanese
map has dimension equal to dimX. The condition p ≫ 0 can be made
effective in terms of the behavior of X and its Albanese map under reduction
mod p.

There are clearly a plethora of varieties to which Theorem 1 applies. This
includes the following:

• X an abelian variety.
• X = C1 × · · · × Cr for curves Ci with genus(Ci) ≥ 1.
• Certain cocompact, n-dimensional ball quotients for n ≥ 2; see
[BW00, p. 167, Cor. 5.9].

When X is an abelian variety, this confirms (almost all of) a conjecture of
Brosnan [FS22, Conj. 6.1], which was previously known only for either a very
general abelian variety, or in dimension at most 3 for a positive density set
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of primes [FS22], compare also [Bog92, Cor. p14]. The result for a product
of curves was known only for a generic product of elliptic curves, by a result
of Gabber [CT02]. If X is a generic abelian variety, or a product of generic
curves, then the effective version of Theorem 1 actually implies that the
conclusion of the theorem holds for all p. We leave it to the reader to find
further examples.

Our results are not actually limited to elementary abelian p-covers. One
can apply them to G-covers for any finite group G, but the conditions which
have to hold are rather more restrictive:

Theorem 2. Let X be a smooth, proper complex variety, G a finite group,
and Y → X a G-cover. Suppose that X has unramified good reduction at p,
and let i < p− 2. If H0(X,Ωi

X) 6= 0 and the map H i(G,Fp)→ H i(X,Fp) is
surjective then

ed(Y/X; p) ≥ i.

We refer the reader to 2.2.12 for the definition of unramified good reduc-
tion. This is a condition that holds for p sufficiently large. If X is defined
over a number field F, the condition means that there is an unramified
prime of F over p at which X has good reduction. The condition holds for
all primes if X is a generic member of a sufficiently good moduli space, see
2.2.14 below.

We also work with open varieties, and not just proper ones, in which case
the formulation of the above results involves logarithmic differentials, see
2.3.3, 2.3.8 below. Note that the condition on surjectivity in Theorem 2 is
quite restrictive. If X is an étale K(π, 1), then there always exists a G, and
a G-cover satisfying the condition, but this is not true in general.

In §3.2 we explain how to apply our results to torus torsors over abelian
schemes. Here the fundamental group is a generalized Heisenberg group - a
central extension of finitely-generated free abelian groups - and there is a
natural notion of “reduction mod p” for such a group. We use Theorem 2
to show that for p ≫ 0, the corresponding covers are p-incompressible; see
3.2.7. The verification of the surjectivity hypothesis in Theorem 2 involves
a somewhat intricate calculation of the cohomology of mod p Heisenberg
groups. This uses, in particular, that these groups carry a kind of mod p
weight filtration, which is somewhat suggestive of the mod p weight filtration
introduced by Gillet-Soulé [GS96].

We then use Theorem 2 to deduce the p-incompressibility of certain covers
of locally symmetric varieties. These have the form Γ1\X → Γ\X, where
X is a Hermitian symmetric domain and Γ is an arithmetic lattice in the
corresponding real semisimple Lie group. Thus, Γ is a congruence subgroup
of G(Q) for a semi-simple Q-group G. We consider principal p-congruence
covers which means, roughly speaking, that there are no congruences mod
p involved in the definition of Γ, and Γ1 is the subgroup of elements which
are trivial mod p. A sample of our results is the following.
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Theorem 3. Suppose X is an irreducible Hermitian domain and that the
Q-rank of G (the rank of its maximal Q-split torus) is equal to its R-rank.
For any principal p-congruence cover Γ1\X → Γ\X, we have

ed(Γ1\X → Γ\X; p) = dimX,

provided p satisfies the following conditions if X is not a tube domain:

• If X is of classical type, then p > 3
2dimX.

• If X is of type E6, then p is sufficiently large.

Note that for any irreducible Hermitian domain there are many examples
where Theorem 3 applies. Our results actually apply to many examples of
quotients of reducible Hermitian domains by irreducible lattices, for example
the case of Hilbert modular varieties. See Lemma 3.3.8 and the discussion
in 3.3.9. The study of the (p-)incompressibility of congruence covers goes
back to work of Klein [Kl1888,Kl1890], and our results here add to a recent
body of work [FKW21,FS22,FKW23,BF23], and prove new cases of [BF23,
Conjecture 1] in the context of locally symmetric varieties.

Theorem 3 is not proved directly using our results on characteristic classes.
Rather, we relate principal p-congruence covers to the covers of torus torsors
over abelian varieties, with covering group a generalized mod p Heisenberg
group mentioned above, and we then apply our results about the latter
covers. The connection between these two kinds of covers makes use of the
theory of toroidal compactifications of Shimura varieties.

We remark that when X is a tube domain, the corresponding torus torsor
is just a torus; the abelian variety is 0-dimensional. In this case, one does not
need our results on characteristic classes (this is why there is no restriction
on p in this case). The theorem can be deduced from a result of Burda
[Bur12] on coverings of tori. The result when X is a tube domain has also
been independently proven by Brosnan-Fakhruddin [BF23], who used the
fixed-point method instead of Burda’s results.

The conditions on G and p in Theorem 3 are completely different from
those considered in [FKW21,FS22]. For example, in many cases when the
results of loc. cit. apply, they give p-incompressibility not for sufficiently
large primes, but only for an explicit set of primes of positive density. They
are also restricted to groups of classical type. On the other hand, proper
varieties pose no special problem for these results, whereas they cannot be
handled by Theorem 3. This also shows, that one should not expect the
bounds on p in Theorem 3 to be sharp, as there are also many cases which
are covered by both Theorem 3 and [FKW21, FS22], but where the latter
results impose no similar lower bound on p.

As mentioned above, our lower bounds on essential dimension rely on
results that assert that cohomology classes do not vanish on restriction to
any Zariski open. An example of such a statement is the following, which
appears as Cor. 2.2.13 below:
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Theorem 4. Let X be a smooth, proper, complex variety, with unramified
good reduction at p. Let i < p − 2, and W ⊂ X a Zariski open. Then the
image of the map

H i(X,Fp)→ H i(W,Fp)

has dimension at least h0,iX = dimH0(X,Ωi
X).

To get a feel for what such a statement entails, suppose that the inte-
gral cohomology H•(X,Z) is torsion free. Then Theorem 4 asserts that
certain classes in the image of H i(X,Z)→ H i(W,Z) are not divisible by p.
Although this is a statement about the topology of complex algebraic vari-
eties, it appears to be out of reach of classical methods. The analogue with
Q-coefficients can be proved using Hodge theory, but this does not suffice for
applications to essential dimension. We remark that the theorem could also
be formulated in terms of the stable cohomology introduced by Bogomolov
[Bog92, p.2], which is the image of the cohomology of X in the cohomology
of its generic point.

For X ordinary, Theorem 4 was established by Bloch-Esnault [BE96, The-
orem 1.2] using more classical p-adic Hodge theory. Our proof of Theorem 4
makes use of prismatic cohomology, recently introduced by Bhatt-Scholze
[BS22]. This is a cohomology theory that takes as an input a smooth formal
scheme X over a p-adic base and, in some sense, interpolates between the
mod p (or more generally p-adic) étale cohomology of its generic fiber, and
the de Rham cohomology of its special fiber Xk. Using it, we translate the
statement of Theorem 4 into the analogous statement for de Rham cohomol-
ogy of Xk, and then into a statement about differentials using the Cartier
isomorphism. In light of [BE96, Theorem 1.2], this proof shows the strength
of the prismatic theory.

The theorem of Bloch-Esnault [BE96, Theorem 1.2] has played a role in
a number of applications, including the study of torsion and divisibility in
Chow groups as in [Sch02, Tot16, Dia21], Lefschetz type theorems [PR17]
and Galois actions on fundamental groups of curves [HM05]. We expect
that Theorem 4 should allow for strengthenings of many of these results.
For example, Scavia [Sca23] has recently applied Theorem 4 to extend the
main result of [Sch02] from p ≡ 1mod 3 to all primes p > 5.

To deduce Theorem 2 from Theorem 4 one considers the composite

H i(G,Fp)→ H i(X,Fp)→ H i(W,Fp).

Theorem 4 and the assumptions of Theorem 2 guarantee this map is nonzero.
However if Y |W → W arises from a covering of varieties of dimension < i,
then we may assume that these varieties are affine, and it follows that the
above map must vanish since the cohomological dimension of affine varieties
is at most their dimension.

We also prove a variant of Theorem 4 where we consider the image of the
map ∧iH1(X,Fp) → H i(W,Fp) given by the cup product and restriction.
This leads to Theorem 1. Using the trace map, it is easy to deduce from
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Theorem 4 a version where one allows restriction to a prime-to-p covering
of W, so we obtain lower bounds on p-essential dimension.

The paper is organized as follows. In §2.1 we review the results we need
from prismatic and crystalline cohomology. In §2.2 we prove Theorem 4 and
its variants, and in §2.3 we apply this to characteristic classes to deduce lower
bounds on p-essential dimension. Throughout §2 we work with schemes or
formal schemes equipped with a normal crossings divisor, and we consider
coverings of the complement. This greater level of generality is needed for the
applications in §3. In §3.1, we carry out an analysis of the mod p cohomology
of (generalized) finite Heisenberg groups. This is used in §3.2 to apply our
results on characteristic classes to torus embeddings over abelian varieties,
by verifying the surjectivity assumption in Theorem 2 (or more precisely
its logarithmic analogue) in this case. Most of §3.2 is actually concerned
with a variant of Theorem 4 for torus embeddings over an abelian scheme,
where we restrict not just to Zariski opens, but to analytic neighborhoods
of the boundary. This is then applied in §3.3 to obtain our results on the
p-essential dimension of congruence covers: the analytic neighborhoods map
to our locally symmetric varieties and we can restrict the congruence covers
to them.

Acknowledgments. We thank Dave Benson, Bhargav Bhatt, Hélène Es-
nault, Keerthi Madapusi Pera, Alexander Petrov, Mihnea Popa, Gopal Prasad
and Chris Rogers for useful discussions and suggestions. We thank Patrick
Brosnan, Najmuddin Fakhruddin, Federico Scavia and Peter Scholze for
helpful comments on a draft. We thank the anonymous referees for numer-
ous helpful comments and suggestions.

2. Essential dimension and characteristic classes

2.1. Review of mod p cohomology.

2.1.1. In this subsection we review the results we will need on de Rham
and prismatic cohomology. We begin with the former, see Deligne-Illusie
[DI, 4.2.3].

Let k be a perfect field of characteristic p, and let X be a smooth k-
scheme. Suppose that X is equipped with a normal crossings divisor D ⊂ X.
Let Ω•

X/k(logD) denote the logarithmic de Rham complex with poles in D.

Let X(1) = X ×Spec k,Fk
Spec k and let D(1) = D ×Spec k,Fk

Speck, where

Fk denotes the Frobenius on k. Let FX/k : X → X(1) denote the relative

Frobenius; it is a finite flat map of k-schemes taking D to D(1).

Lemma 2.1.2. Suppose that (X,D) admits a lift1 to a smooth formal scheme

X̃ over W (k), equipped with a normal crossing divisor D̃ relative to W (k).

1In fact for what follows only a lifting to the Witt vectors of length 2, W2, is required,
but we will not need this greater generality.
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Then for j < p, H0(X(1),Ωj

X(1)/k
(logD(1))) is canonically a direct summand

of the de Rham cohomology Hj(X,Ω•
X/k(logD)).

Proof. For n ≥ 0, recall the truncation τ<nFX/k∗Ω
•
X/k(logD), whose coho-

mology agrees with that of FX/k∗Ω
•
X/k(logD) in degrees < n and is zero oth-

erwise. By [DI87, 4.2.3], the complex of OX(1)-modules τ<pFX/k∗Ω
•
X/k(logD)

is canonically (in a way which depends on the chosen lifting of (X,D))
quasi-isomorphic to the direct sum of its cohomology sheaves, so that the
Cartier isomorphism induces an isomorphism in the derived category of
OX(1)-modules

⊕i<pΩ
i
X(1)/k

(logD(1))[−i] ≃ τ<pFX/k∗Ω
•
X/k(logD).

Hence H0(X(1),Ωj

X(1)/k
(logD(1))) is a direct summand in

Hj(X(1), τ<pFX/k∗Ω
•
X/k(logD)) ≃ Hj(X, τ<pΩ

•
X/k(logD))

which agrees with Hj(X,Ω•
X/k(logD)), as j < p and the cohomology of the

cone of τ<pΩ
•
X/k(logD)→ Ω•

X/k(logD) vanishes in degree < p. �

2.1.3. Let K be a field of characteristic 0. By a p-adic valuation on K,
we mean a rank one valuation v on K, with v(p) > 0. We suppose that
K is complete with respect to such a valuation, with ring of integers OK

and perfect residue field k. We now recall the facts we will need about the
prismatic cohomology of smooth formal schemes over OK .

We do not recall the general formalism of prisms, as developed by Bhatt-
Scholze [BS22], and Koshikawa [Kos20] in the logarithmic case, but consider
only the two examples we will need. First suppose that the valuation on K
is discrete. Set A = W (k)[[u]], equipped with a Frobenius ϕ which extends
the Frobenius on W by sending u to up. We equip A with the map A →
OK sending u to some chosen uniformizer π. Its kernel is generated by an
Eisenstein polynomial E(u) ∈ W (k)[u] for π. Then (A,E(u)A) is the so
called Breuil-Kisin prism. In fact, in applications we will assume OK =
W (k), and π = p.

Next suppose that K is algebraically closed. Let R = lim←−OK/p with

the maps in the inverse limit being given by the absolute Frobenius. We
take A = Ainf = W (R), with its canonical Frobenius. Any element x =
(x0, x1, . . . ) ∈ R lifts uniquely to a sequence (x̂0, x̂1, . . . ) in OK with x̂pi =
x̂i−1. There is a natural surjective map of rings θ : A → OK , which sends
the Teichmüller representative of an element x as above to x̂0. The kernel
of θ is principal, generated by ξ = p − [p], where p = (p, p1/p, . . . ) for some
choice of these roots. Then (A, ξA) is an example of a perfect prism.

2.1.4. In the rest of this section we will make use of logarithmic formal
schemes over OK , logarithmic schemes over K, and logarithmic adic spaces
over K. In particular, when K is algebraically closed we will consider the
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étale cohomology of logarithmic schemes and adic spaces over K with coef-
ficients in Fp. We refer the reader to [Kat89] for a general introduction to
logarithmic geometry, and to [Ill02] and [DLLZ19] for étale cohomology in
this context.

2.1.5. Now assume thatK is either discretely valued or algebraically closed.
Let X be a formally smooth, p-adic formal OK-scheme, equipped with a
relative normal crossings divisor D. We write XD for the formal scheme
X equipped with the logarithmic structure given by D. We will denote by
XD,K the associated logarithmic adic space. When the divisor D is empty
we drop it from the notation.

By [BS22] and [Kos20], the prismatic cohomology of XD is a complex
of A-modules RΓ∆(XD/A), equipped with a ϕ-semi-linear map endomor-
phism, which we again denote by ϕ. Note that [Kos20], considers a more
general situation where A is equipped with a possibly non-trivial log struc-
ture. Here we always consider the trivial log structure on A. As we will only
be interested in mod p cohomology we set

RΓ
∆̄
(XD/A) = RΓ∆(XD/A)⊗

L
A A/pA,

and we will denote by H i

∆̄
(XD/A) the cohomology of RΓ¯

∆
(XD/A). Then

we have the following properties, where for a ring B we denote by D(B)
derived category of B-modules.

(1) There is a canonical isomorphism of commutative algebras in D(k).

RΓ(Xk,Ω
•
Xk/k

(logDk)) ≃ RΓ
∆̄
(XD/A)⊗

L
A/pA,ϕ k.

(2) If K is algebraically closed then there is an isomorphism of commu-
tative algebras in D(Fp)

RΓét(XD,K ,Fp) ≃ RΓ
∆̄
(XD/A)[1/ξ]

ϕ=1

Here XD,K denotes the adic space XK associated to X, equipped
with the log structure given by DK , and the complex on the left is
the cohomology of the Kummer étale site of XD,K which is denoted
by RΓkét in [KY23]. The complex on the right is the fiber of ϕ − 1
acting on RΓ

∆̄
(XD/A)[1/ξ],

(3) Let d be a generator of ker (A→ OK). The linearization

ϕ∗(RΓ
∆̄
(XD/A))→ RΓ

∆̄
(XD/A)

becomes an isomorphism in D(A/p) after inverting d. For each i ≥ 0,
there is a canonical map

Vi : H
i
¯
∆
(XD/A)→ H i(ϕ∗RΓ

∆̄
(XD/A))

with Vi ◦ ϕ = ϕ ◦ Vi = di.
(4) Let K ′ be a field complete with respect to a p-adic valuation, and

which is either discretely valued or algebraically closed. Let A′ →
OK ′ be the corresponding prism, as defined above. Suppose we are
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given map of valued fields K → K ′, and a map A→ A′ compatible
with the projections to OK → OK ′ , and with Frobenius maps. Then
there is a canonical isomorphism in D(A′/p)

RΓ¯
∆
(XD/A)⊗̂

L
AA

′ ≃ RΓ¯
∆
(XD,OK′

/A′)

Here ⊗̂
L
A means we take the derived completion of the tensor product

with respect to either the u-adic or ξ-adic topology on A′, depending
on whether K ′ is discretely valued or algebraically closed. We shall
apply this when K is discretely valued and K ′ is algebraically closed.
When X is proper one can simply take the tensor product without
completing as one has the following:

(5) When X is proper over OK , then RΓ
∆̄
(XD/A) is a perfect complex

of A/p-modules.

In the non-logarithmic case, when D is empty, this is [BS22, Thm. 1.8].
For the logarithmic case, see the recent work of Koshikawa-Yao [KY23,
Thm. 2, Rem. 6.3]. Actually (1), (4) and (5) were proved in the earlier
work of Koshikawa [Kos20, Rmk. 5.6, Cor. 5.5, and Thm. 5.3 respectively].
Note that (5) follows from the Hodge-Tate comparison in these references,
cf. [Kos20, Example 1.6].

Using (5), when X is proper, we have the following more explicit form of
(2) above.

Lemma 2.1.6. Suppose that K is algebraically closed, and that X is proper
over OK . Then for each i ≥ 0 there is a natural isomorphism

H i
ét(XD,K ,Fp)⊗Fp (A/pA)[1/ξ] ≃ H i

¯
∆
(XD/A)[1/ξ].

Proof. By (2) above there is an exact sequence in cohomology

H i
ét(XD,K ,Fp)→ H i

∆̄
(XD/A)[1/ξ]

1−ϕ
→ H i

∆̄
(XD/A)[1/ξ]→ H i+1

ét (XD,K ,Fp)

Now A/pA[1/ξ] = FracR is an algebraically closed field, andH i

∆̄
(XD/A)[1/ξ]

is a finite dimensional A/pA[1/ξ] vector space by (5) above. Hence 1 − ϕ
is surjective on H i

¯
∆
(XD/A)[1/ξ], and this space is spanned by its Frobenius

invariants [Kat73, Prop. 4.1.1]. �

2.1.7. We will need some facts about derived complete modules, which we
now recall [BS15, §3.4]. Keeping the notation of 2.1.5(3), a complex C in
D(A/p) is called derived complete if the natural map

C → Rlimn(C ⊗
L
A/p A/(p, d

n)A)

is a quasi-isomorphism. An A/pA-module M is called derived complete,
if it is derived complete as a one term complex. A complex C is derived
complete if and only if its cohomology groups are [BS15, Prop. 3.4.4].

Now suppose we are in the situation of 2.1.5(4), and for an A/p-module
M, write

M⊗̂
L
AA

′ = RlimnM ⊗
L
A/p A

′/(p, dn)A′.
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Lemma 2.1.8. With the notation of 2.1.5(4), suppose that K is discretely
valued. Then we have

(1) If M is derived complete, then M⊗̂
L
AA

′ is concentrated in degree 0.

(2) The functor M 7→ H0(M⊗̂
L
AA

′) on derived complete A/p-modules is
exact.

(3) We have H i

∆̄
(XD,OK′

, A′) ≃ H0(H i

∆̄
(XD,OK

, A)⊗̂
L
AA

′)

Proof. (2) is a formal consequence of (1). Note that 2.1.5(4) applied with
A′ = A, implies that H i

¯
∆
(XD,OK

, A) is derived complete. Hence (3) follows

from (1) and 2.1.5(4). It remains to show (1).
Write MA′ = M ⊗A A′ for the ordinary, non-completed, tensor product.

We have

M⊗̂
L
AA

′ = Rlimn(MA′

dn
→MA′),

where the transition maps are given by the identity in degree 0, and multi-
plication by d in degree −1. Since Rlimi

n = 0 for i > 1, and the transition

maps on H0(MA′

dn
→ MA′) are surjective, the cohomology of M⊗̂

L
AA

′ is
concentrated in degrees −1, 0, and

H−1(M⊗̂
L
AA

′) = lim
n

MA′ [dn] = lim
n

M [dn]⊗A A′ = Td(MA′),

the d-adic Tate module of MA′ . Thus we have to show Td(MA′) = 0.
Since M is derived complete, the same argument with A in place of A′,

shows that Td(M) = 0. If m ∈ Td(MA′), write m = (m1,m2, . . . ) with
mi ∈ MA′ [di]. If m 6= 0, then mi0 6= 0, for some i0. Let N ⊂ A′/p be a
finitely generated, saturated A/p-submodule such that mi0 ∈M [di0 ]⊗A N.
We claim that the inclusion of A-modules N ⊂ A′/p admits a continuous
splitting f : A′/p → N. Assuming this, we see that f(m) ∈ Td(M) ⊗A N is
non-zero, a contradiction. It remains to show the existence of f.

Choose a complement N̄ ′ to the k-subspace N ⊗A k ⊂ A′ ⊗A k, and a
k-basis {ēj}j∈J for N̄ ′. Let ej ∈ A′/p be a lift of ēj , and let N ′ denote
the d-adic completion of the free A/p-module with basis indexed by a set of
elements {êj}j∈J . Then there is a unique continuous map h : N⊕N ′ → A′/p,
which is the identity on N, and sends êi to ei. The d-completeness of the
source of h, combined with the fact that K is discretely valued, implies that
h is surjective. If C = ker (h) then, since A′/p is d-torsion free, and h⊗A k
is an isomorphism, we have C/dC = 0. As N ⊕ N ′ is d-adically separated,
this implies C = 0, so h is an isomorphism, and we may take f to be the
projection of N ⊕N ′ onto N ′. �

2.1.9. We do not know if Lemma 2.1.8 continues to hold without assuming
K is discretely valued.

2.2. Restriction of mod p étale cohomology. The goal of this subsec-
tion is to prove a result on restriction of étale cohomology classes to open
neighborhoods. We begin with a technical lemma. As above, k denotes a
perfect field of characteristic p.
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Lemma 2.2.1. Let M be a finitely generated k[[u]]-module, equipped with a
Frobenius semi-linear map ϕ : M → M, and a linear map V : M → ϕ∗M
such that ϕ ◦ V = V ◦ ϕ = ud for some integer d. If d + 1 < p, then M is
torsion free.

Proof. Suppose that M contains nontrivial torsion. Since M is finitely gen-
erated over k[[u]], there is a minimal integer m ≥ 1 such that um · x = 0 for
any torsion element x ∈M. Choose a torsion element x so that um−1 ·x 6= 0.
Then in ϕ∗M we have

ud+m(1⊗ x) = V ◦ (1⊗ ϕ)(um ⊗ x) = V (umϕ(x)) = 0,

since upmϕ(x) = 0, so that ϕ(x) is torsion in M. On the other hand, as ϕ is
finite flat over k[[u]], the smallest power of u which kills 1⊗ x ∈ ϕ∗M is pm.
Thus d+m ≥ pm, which implies p ≤ 1 + d/m ≤ 1 + d. �

2.2.2. Now let K be as in 2.1.3 and suppose that K is discretely valued,
and that OK = W (k). Let C be an algebraically closed field equipped with
a complete p-adic valuation, and K ⊂ C an inclusion of valued fields. As
before, for a formal scheme or formal log scheme X over OK , we denote
by XK and XC the associated adic spaces over K and C respectively. We
denote by XOC

= X⊗̂OK
OC the base change of X to OC , as a formal

scheme, and by Xk the special fiber (i.e the reduced subscheme) of X.
Unless otherwise indicated, for the rest of this subsection, we let X be

a proper, smooth formal scheme over OK , equipped with a relative normal
crossings divisor D ⊂ X. Let

h0,iX,D := dimKH0(XK ,Ωi
XK/K(logD)).

Proposition 2.2.3. Let W ⊂ X − D be a dense open formal subscheme.
Then for 0 ≤ i < p− 2,

dimFpIm (H i
ét(XD,C ,Fp)→ H i

ét(WC ,Fp)) ≥ h0,iX,D.

Proof. Let kC be the residue field of C. We may replace K by W (kC)[1/p]
and assume that kC = k. As W ⊂ X −D, we will omit the divisor D from
the notation when writing the cohomology of W.

Set

M∆ = Im (H i
¯
∆
(XD/A)→ H i

¯
∆
(W/A)),

which is a finitely generated A/pA = k[[u]]-module. Using 2.1.5(3), one sees
that there are maps

M∆

V
→ ϕ∗M∆

ϕ
→M∆

with ϕ ◦ V = V ◦ ϕ = ui. Hence Lemma 2.2.1 and our assumptions on i
imply that M∆ is a finitely generated, free k[[u]]-module, and thus derived
complete. It follows that

M∆,R := M∆ ⊗k[[u]] R ⊂ H i
¯
∆
(WOC

/AC)

is a free R-module, where the inclusion follows from Lemma 2.1.8.
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By 2.1.5(4), there is an isomorphism

H i
¯
∆
(XD/A)⊗A AC

∼
−→ H i

¯
∆
(XD,OC

/AC).

Thus using Lemma 2.1.6 we have maps

(2.2.4) H i
¯
∆
(XD/A)⊗A AC [1/ξ] ≃ H i

ét(XD,C ,Fp)⊗Fp R[1/ξ]

→ H i
ét(WC ,Fp)⊗Fp R[1/ξ]→ H i

∆̄
(WOC

/AC)[1/ξ],

the composite being the natural map. Hence

dimFpIm (H i
ét(XD,C ,Fp)→ H i

ét(WC ,Fp)) ≥ dimR[1/u]M∆,R[1/u].

As M∆ finite free over k[[u]], it suffices to show that dimkM∆/uM∆ ≥ h0,iX,D.

Using Lemma 2.2.1 again, we see that Hj
¯
∆
(XD/A) is u-torsion free for

0 ≤ j ≤ i+1. This torsion freeness for j = i, i+1 combines with 2.1.5(1) to
give an isomorphism

H i(Xk,Ω
•
Xk/k

(logDk)) ≃ H i

∆̄
(XD/A)⊗A/pA,ϕ k

and thus a map

(2.2.5) H i(Xk,Ω
•
Xk/k

(logDk)) ≃ H i

∆̄
(XD/A)⊗A/pA,ϕ k →M∆ ⊗A/pA,ϕ k

→ H i
¯
∆
(WOC

/AC)⊗AC/pAC ,ϕ k → H i(Wk,Ω
•
Wk/k

),

where the composite is the natural map. This shows the image of (2.2.5)
has dimension ≤ dimkM∆/uM∆, and it suffices to show that the dimension

of the image is ≥ h0,iX,D. Since W ⊂ X is dense, the map

H0(Xk,Ω
i
Xk/k

(logDk))→ H0(Wk,Ω
i
Wk/k

),

is injective. Hence by Lemma 2.1.2, the image of (2.2.5) has dimension at

least dimkH
0(Xk,Ω

i
Xk/k

(logDk)) ≥ h0,iX,D, where the last inequality follows

from the upper semi-continuity of h0,i. �

Corollary 2.2.6. Suppose that H i+1

∆̄
(XD/A) is u-torsion free. Then the

conclusion of Proposition 2.2.3 holds for i ≤ p−2. In particular, the conclu-
sion holds for i ≤ p− 2 if X is the formal completion of an abelian scheme
over OK , and D is empty.

Proof. The stronger assumption i + 1 < p − 1 was used in the proof of
Proposition 2.2.3 only to know that H i+1

∆̄
(XD/A) is u-torsion free, so the

first claim follows. For the second claim, we remark that Anschütz-Le Bras
[ALB23, Prop. 4.58, Cor. 4.64] have shown that when X is the formal com-
pletion of an abelian scheme, the ringH•

¯
∆
(X/A) is the exterior algebra on the

k[[u]]-module H1
¯
∆
(X/A) which is free of rank 2g = 2dimXK over k[[u]]. �
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2.2.7. Our next goal is to explain a variant of Proposition 2.2.3 which will
be useful in obtaining lower bounds on the essential dimension of covers
whose groups are elementary p-groups. Let

h0,1 i
X,D := dimK(Im(∧iH0(XK ,Ω1

XK/K(logD))→ H0(XK ,Ωi
XK/K(logD))),

and

h0,1 i
Xk,Dk

:= dimk(Im(∧iH0(Xk,Ω
1
Xk/k

(logD))→ H0(Xk,Ω
i
Xk/k

(logD))).

Proposition 2.2.8. Let W ⊂ X − D be a dense open formal subscheme,
and p > max{i+ 1, 3}. Then

dimFpIm (∧iH1
ét(XD,C ,Fp)→ H i

ét(WC ,Fp)) ≥ h0,1 i
Xk ,Dk

,

where the map is given by the cup product followed by restriction of classes
to WC .

Proof. As the proof is analogous to that of Proposition 2.2.3, we only sketch
it. Let

M∆ = Im (∧iH1

∆̄
(XD/A)→ H i

∆̄
(W/A)).

Arguing as in Proposition 2.2.3, since i < p − 1, one sees that it suffices to

show dimkM∆/uM∆ ≥ h0,1 i
Xk,Dk

. Since p > 3, H2
¯
∆
(XD/A) is u-torsion free by

Lemma 2.2.1, and we reduce to showing that the image of

∧iH1(Xk,Ω
•
Xk/k

(logDk))→ H i(Wk,Ω
•
Wk/k

),

has dimension ≥ h0,1 i
Xk,Dk

. It then suffices to check that the image of the
composite

∧iH0(Xk,Ω
1
Xk/k

(logDk))→ H0(Xk,Ω
i
Xk/k

(logDk))→ H0(Wk,Ω
i
Wk/k

)

has dimension ≥ h0,1 i
Xk ,Dk

. By definition, the image of the first map has di-

mension h0,1 i
Xk,Dk

, and the second map is injective, so the result follows. �

2.2.9. We now want to deduce analogues of the above results for schemes.
Let Y be a smooth scheme over C, equipped with a normal crossings divisor

D ⊂ Y. As above, we write h0,iY,D = dimCH
0(Y,Ωi

Y/C(logD)).

We will denote by Y ad and Dad the adic spaces attached to Y, and D re-
spectively. Then (Y ad,Dad) is a logarithmic adic space. We begin by record-
ing a lemma comparing the étale cohomology of logarithmic adic spaces and
logarithmic schemes.

Lemma 2.2.10. Let Y be a proper smooth scheme over C, equipped with a
normal crossings divisor D ⊂ Y, and set U = Y −D. Then for i ≥ 0 there
are natural isomorphisms

H i
ét(Y

ad
Dad ,Fp) ≃ H i

ét(YD,Fp) ≃ H i
ét(U,Fp)
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Proof. For second isomorphism see [Ill02, Thm. 7.4]. The first isomorphism
follows from [Ill02, Thm 7.2, Cor 7.5], [DLLZ19, Lem. 4.6.2] and [Hub96,
Prop. 2.1.4, Thm 3.8.1]. More precisely, let ε : YD,két → Yét be the natural
morphism of sites, and set M = Rε∗Fp. Then the first two references show
that

• H i
ét(Y,M) is naturally isomorphic to H i

ét(YD,Fp).

• If Mad denotes the pullback of M to Y ad
ét , then H i

ét(Y
ad,Mad) is

naturally isomorphic to H i
ét(Y

ad
Dad ,Fp).

The two results in [Hub96] then provide a natural isomorphism H i
ét(Y,M) ≃

H i
ét(Y

ad,Mad). �

Proposition 2.2.11. Let X be a proper smooth scheme over OK , equipped
with a relative normal crossings divisor D ⊂ X. Set U = X\D, and let
W ⊂ UC be a dense open subscheme. If 0 ≤ i < p− 2, then

dimFpIm (H i
ét(UC ,Fp)→ H i

ét(W,Fp)) ≥ h0,iXC ,DC
.

If X is an abelian scheme and D is empty, then the same statement holds
for i ≤ p− 2.

If p > max{i+ 1, 3} then

dimFpIm (∧iH1
ét(UC ,Fp)→ H i

ét(W,Fp)) ≥ h0,1 i
Xk ,Dk

.

Proof. Let kC be the residue field of C. We may replace X by its base change
to W (kC), and assume that C and K have the same residue field. Denote

by X̂ and D̂ the formal completions of X and D. Let Z be the closure of

XC −W in XOC
, and let Ŵ ⊂ X̂ be the formal open subscheme, which is

the complement of Z⊗k in X̂. Note that we have ŴC ⊂W ad. Thus we have
a commutative diagram of natural maps

H i
ét(XD,C ,Fp) //

∼

��

H i
ét(W,Fp)

��

H i
ét(W

ad,Fp)

��

H i
ét(X̂D,C ,Fp) // H i

ét(ŴC ,Fp)

where the isomorphism on the left is given by Lemma 2.2.10. By Propo-
sitions 2.2.3, 2.2.8 and Corollary 2.2.6, we have the inequalities claimed

in the proposition, but for the dimension of the images of H i
ét(X̂D,C ,Fp)

and ∧iH1
ét(X̂D,C ,Fp) in H i

ét(ŴC ,Fp). The proposition now follows from the
commutative diagram above, as well as Lemma 2.2.10. �

2.2.12. The previous results apply for schemes that are smooth over OK .
We now want to reformulate these results to show that they hold for any
algebraically closed field of characteristic 0, for p≫ 0. Thus we now assume
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that C is algebraically closed of characteristic 0, but we no longer assume it
is equipped with a complete p-adic valuation.

Let Y be a proper, smooth scheme over C, and D ⊂ Y a normal crossings
divisor. We say that (Y,D) has good reduction at p if there exists a p-adic
valuation on C (which we do not assume complete), with ring of integers OC ,
and Y extends to a smooth proper OC-scheme Y ◦ with a relative normal
crossings divisor D◦ ⊂ Y ◦ over OC , extending D. We say that (Y,D) has
unramified good reduction at p if in addition (Y ◦,D◦) can be chosen so that
it descends to an absolutely unramified discrete valuation ring (with respect
to the given valuation) O ⊂ OC .

Let k be the residue field of O. Then we have the invariants h0,1 i
Y ◦

k
,D◦

k
defined

as in 2.2.7. We set h0,1 i
Y,D,p = maxh0,1 i

Y ◦

k
,D◦

k
with the maximum taken over all

choices of (Y ◦,D◦) as above.

Corollary 2.2.13. Let Y be a proper, smooth scheme over C, D ⊂ Y a
normal crossings divisor, and W ⊂ U = Y − D a dense open subscheme.
Suppose that (Y,D) has unramified good reduction at p. If 0 ≤ i < p − 2,
then

dimFpIm (H i
ét(U,Fp)→ H i

ét(W,Fp)) ≥ h0,iY,D.

If Y is an abelian scheme, then the same statement holds for i ≤ p− 2.
If p > max{i+ 1, 3} then

dimFpIm (∧iH1
ét(U,Fp)→ H i

ét(W,Fp)) ≥ h0,1 i
Y,D,p.

Proof. If C ⊂ C ′ is any algebraically closed field, then the étale cohomology
groups in the corollary do not change if we replace (Y,D) and W by their
base change to C ′. Thus we may assume that C is complete. We may then
also assume that O ⊂ OC in 2.2.12 is p-adically complete, and unramified.
The result now follows from Proposition 2.2.11. �

2.2.14. We remark that when (Y,D) is a generic member of a good moduli
space, then (Y,D) has unramified good reduction at all primes, and this
condition in Corollary 2.2.13 can then be suppressed.

More precisely, suppose Y → M is proper smooth, with M a smooth,
faithfully flat, connected, separated Deligne-Mumford stack over Z, as in
[LMB00, Definition 4.1, 4.14]. Let D ⊂ Y be a relative normal crossing
divisor over M. If SpecC →M is a map whose image is the generic point
η ∈ M, then (Y,D) = (Y ×M SpecC,D ×M SpecC) has unramified good
reduction at all primes. 2

To see this, note that our assumptions on M imply that there exists an
étale presentation M̃ →M, with M̃ a scheme which is smooth and faithfully
flat over Z. Hence η lifts to a generic point η̃ ∈ M̃(C), which admits a unique

specialization to a characteristic p point ¯̃η ∈ M. As M̃ is smooth over Z,

2Note that we are not asserting that all points in an open substack have good unramified
reduction at all primes. Indeed, unless D is empty, there will be no such open substack
even if we ask for good unramified reduction at a single prime.
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the local ring OM̃, ¯̃η is a discrete valuation ring with uniformizer p, and

this induces the required unramified p-adic valuation on C. This discussion
applies, for example, to the universal family of principally polarized abelian
varieties or curves.

Corollary 2.2.15. Let Y be a proper, smooth scheme over C, D ⊂ Y a
normal crossings divisor, U = Y −D, and η ∈ Y the generic point. Then
for i ≥ 0, and p≫ 0,

dimFpIm (H i
ét(U,Fp)→ H i

ét(η,Fp)) ≥ h0,iY,D.

and
dimFpIm (∧iH1

ét(U,Fp)→ H i
ét(η,Fp)) ≥ h0,1 i

Y,D,p.

Proof. By Corollary 2.2.13, it suffices to show that (Y,D) has unramified
good reduction at p for sufficiently large p. Since Y is of finite type, there
exists finite type Z-algebra A ⊂ C such that (Y,D) descends to a proper
smooth A-scheme YA equipped with a relative normal crossings divisor
DA ⊂ YA.

We may replace A by its normalization, and assume it is normal. Since
A⊗Q is reduced, it is geometrically reduced. Hence for p≫ 0, the Fp-algebra
A/pA is reduced [EGA, IV, Prop. 4.6.1, Thm. 9.7.7]. SinceA is of finite type
over Z, for p≫ 0, p is the image of a prime p ∈ SpecA of height 1. Fix p such
that A/pA is reduced, and p exists. Since A/pA is reduced, Ap is a discrete
valuation ring, with uniformizer p. Extend the corresponding valuation vp
to C. Then (Y,D) descends to (YA,DA), so (Y,D) has unramified good
reduction at p. �

2.3. Characteristic classes. We continue to denote by C an algebraically
closed field of characteristic 0.

2.3.1. Let X be a proper, connected, smooth C-scheme, equipped with a
normal crossings divisor D, and let U = X −D. We fix a geometric point η̄
mapping to the generic point η ∈ X. Let G be a finite quotient of π1,ét(U, η̄).
For any i there are canonical maps

(2.3.2) H i(G,Fp)→ H i(π1,ét(U, η̄),Fp)→ H i
ét(U,Fp),

where the first map is inflation of classes from G to π1,ét(U, η̄), and the
second map is induced by considering π1,ét(U, η̄)-representations as étale
sheaves on U. In the proposition below we will consider the condition that
the composite of the two maps above is surjective. Note that since π1,ét(U, η̄)
is topologically finitely generated, we can always choose G such that the first
map is surjective. In particular, if U is an étale K(π, 1) we can choose G so
that the composite is surjective, but this is not the case in general.

Finally for a G-cover Y → U, let ed(Y/U ; p) denote the p-essential di-
mension of Y over U [RY00], i.e. ed(Y/U ; p) is the least d for which there
exists:

(1) a dense Zariski open V ⊂ U ,
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(2) a finite étale map π : E → V with p ∤ deg(π),
(3) a morphism f : E → Z with dimZ = d, and

(4) a G-cover Z̃ → Z for which f∗Z̃ ≃ Y ×U E.

Proposition 2.3.3. Suppose that i < p− 2 and that (X,D) has unramified
good reduction at p. Let G be a finite group and let Y → U be a G-cover.

Suppose that h0,iX,D 6= 0 and that the (restriction of the) classifying map

(2.3.4) H i(G,Fp)→ H i
ét(U,Fp)

is surjective. Then ed(Y/U ; p) ≥ i. If X is an abelian variety and D = ∅,
the above holds for i ≤ p− 2.

Proof. Let U ′ → U be a finite, connected covering which has prime to p
degree over η, and let η′ ∈ U ′ be the generic point. We have to show that
ed(Y ′/U ′) ≥ i, where Y ′ = Y ×U U ′. Consider the composite map

H i(G,Fp)→ H i(π1,ét(U, η̄),Fp)→ H i
ét(U,Fp)→ H i(η,Fp)→ H i(η′,Fp).

Our assumptions imply that the composite of the first two maps is surjec-

tive. By Corollary 2.2.13, the third map is nonzero, as h0,iX,D 6= 0. Thus
the composite of the first three maps is nonzero. The composite of the
fourth map and the trace map H i(η′,Fp) → H i(η,Fp) is multiplication by
deg(η′/η), hence injective, as η′/η has degree prime to p. Thus the final map
is an injection and the composite of all four maps is nonzero.

Suppose ed(Y ′/U ′) < i. Then for some dense open W ⊂ U ′, there is
a map of C-schemes W → Z, with dimZ < i, and a G-cover Y ′

Z → Z,
such that Y ′|W ≃ Y ′

Z ×Z W as W -schemes with G-action [FKW21, 2.1.4].
Shrinking Z and W if necessary, we may assume that Z is affine. The above
constructions, then give us a commutative diagram

H i(G,Fp) // H i
ét(Z,Fp)

��

H i(G,Fp) // H i
ét(W,Fp) // H i

ét(η
′,Fp)

Since Z is affine of dimension < i it follows that H i
ét(Z,Fp) = 0. This im-

plies that the composite of the maps in the bottom row is 0. This contradicts
what we saw above. �

Corollary 2.3.5. Let X/C be an abelian variety of dimension g. Let p ≥
g + 2, and suppose that X has unramified good reduction at p. Let X ′ = X,
viewed as a (Z/pZ)2g-cover of X via the multiplication by p map X ′ → X.

Then ed(X ′/X; p) = g. In particular, this equality holds for p≫ 0.

Remark 2.3.6. Corollary 2.3.5 resolves almost all of a conjecture of Bros-
nan [FS22, Conj. 6.1]. Note that [FS22, Cor. 6.7] establishes Brosnan’s
conjecture for dimX ≤ 3 and a positive density set of primes (depending on
X), and one can also deduce the conjecture for a sufficiently generic abelian
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variety from [FS22, Lemma 6.2]. Prior work of Gabber [CT02] established
the result for a very general product of elliptic curves.

Proof of Corollary 2.3.5. By definition, g = dimX ≥ ed(X ′/X; p), so it
suffices to prove that ed(X ′/X; p) ≥ g. Let G = (Z/pZ)2g be the quotient
of π1,ét(X, η̄) corresponding to X ′ → X. Note that, in our present situation,
the map (2.3.4) is surjective because H•

ét(X,Fp) is the exterior algebra on

H1
ét(X,Fp). Since h0,gX = 1, the inequality ed(X ′/X; p) ≥ g follows from

Proposition 2.3.3.
The final claim follows as in the proof of Corollary 2.2.15, as X has

unramified good reduction at all sufficiently large primes p. �

2.3.7. We now explain a generalization of Corollary 2.3.5, for the mod
p homology cover Y → U. Recall that this is the cover corresponding to
the maximal quotient of π1,ét(U, η̄) which is an elementary abelian p-group.
When U is proper, this is just the pullback to U of the cover described in
Corollary 2.3.5 applied to the Albanese variety of U. We define the invariant

h0,1 i
X,D as in 2.2.7.

Theorem 2.3.8. Suppose (X,D) has unramified good reduction at p, and
that p > max{dimX+1, 3}. Then the mod p homology cover Y → U satisfies

ed(Y/U ; p) ≥ max{i : h0,1 i
X,D,p > 0}.

In particular, if p≫ 0 then

ed(Y/U ; p) ≥ max{i : h0,1 i
X,D > 0}.

Proof. As in the proof of Proposition 2.3.3, let U ′ → U be a finite, connected
covering which has prime to p degree over η, and let η′ ∈ U ′ be the generic

point. Let G = Gal(Y/U), choose i such that h0,1 i
X,D,p > 0, and consider the

composite map

∧iH1(G,Fp) ≃ ∧
iH1

ét(U,Fp)→ H i(η,Fp)→ H i(η′,Fp).

By Corollary 2.2.13, the second map is nonzero, and the last map is injective
as U ′ has degree prime to p over η. As the composite map factors through
H i(G,Fp), it follows that

H i(G,Fp)→ H i(η′,Fp)

is nonzero, which implies that ed(Y/U ; p) ≥ i, as in the proof of Proposition
2.3.3.

This proves the first statement, and the second statement follows as for

each i, h0,1 i
X,D = h0,1 i

X,D,p for p≫ 0. �

2.3.9. Suppose that D is empty. Then the quantity max{i : h0,1 i
X,D > 0}

which appears in Theorem 2.3.8, is the dimension of the image of X under
the Albanese map αX : X → Alb(X). This is called the Albanese dimension
of U = X. To see this, note that H1(X,Ω1

X/C) is isomorphic to the global

1-forms on Alb(X), that these generate the global i-forms on Alb(X), and
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that X is generically smooth over its image in Alb(X), as char(C) = 0
(cf. the argument in Proposition 2.3.10 below).

The following Proposition makes the result for p ≫ 0 in Theorem 2.3.8,
effective when D is empty.

Proposition 2.3.10. Let p be a prime of good unramified reduction for X,
so that X arises from a smooth proper scheme X◦ over a valuation ring OC

as in 2.2.12. Then

(1) αX extends to a map α◦
X : X◦ → Alb(X)◦ over OC , with Alb(X)◦

an abelian scheme.
(2) If the special fiber of X◦ is generically smooth over its image under

α◦
X , then

ed(Y/U ; p) ≥ dimαX(X),

where Y → U denotes the mod p homology cover as above.

Proof. Let A = Alb(X)∨, the dual abelian variety. Then A ≃ Pic0X , and
any point of X(C) gives rise to a Poincaré line bundle L → X × A. By
[Koi60, Thm. 2], Alb(X) and A extend to abelian schemes Alb(X)◦ and A◦

over OC . More precisely, X◦ descends to a discrete valuation ring O as in
2.2.12, and one may apply loc. cit to this descent.

As X◦ × A◦ is regular, L extends to a line bundle L◦ → X◦ ×A◦, which
corresponds to a map

X◦ → Pic0A◦/OC
≃ A◦∨ ≃ Alb(X)◦,

where A◦∨ denotes the dual abelian scheme of A◦. This proves the first claim.
As before denote by k the residue field of OC , and let i = dimαX(X).

Suppose that the special fiber of X◦ is generically smooth over its image
under α◦

X . Let η be the generic point of α◦
X(X◦

k), and κ(η) the residue field
at η. Then

∧iH0(A◦∨,Ω1
A◦∨

k
/k) ≃ H0(A◦∨,Ωi

A◦∨

k
/k)

generates the κ(η)-vector space Ωi
κ(η)/k 6= 0. As X◦

k is smooth over η,

Ωi
κ(η)/k → Ωi

X◦

k
/k ⊗OX◦ κ(η) is injective. In particular, this implies that

h0,1 i
X,D,p > 0, and the second claim follows from Theorem 2.3.8. �

2.3.11. We say that αX is unramified at p if OC and X◦ can be chosen
so that the special fiber of X◦ is generically étale over its image under α◦

X .
Recall that X is said to have maximal Albanese dimension if its Albanese
dimension is equal to dimX. Then we have the following.

Corollary 2.3.12. Suppose X is a smooth, proper C-scheme of maximal
Albanese dimension. If p is a prime of unramified good reduction for X at
which αX is unramified, and Y → X is the mod p homology cover, then we
have

ed(Y/X; p) = dimX.

In particular, this holds for p≫ 0.

Proof. This follows from Proposition 2.3.10. �
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3. Torus embeddings and Shimura varieties

In this section, we use the results above to obtain lower bounds on the p-
essential dimension of certain coverings that arise naturally in the context of
torus embeddings and Shimura varieties. We assume that p > 2 throughout
this section, so that F×

p is nontrivial.3 In §3.1, we compute the cohomology
of certain generalized finite Heisenberg groups. In §3.2 we consider certain
torus bundles over abelian varieties. These have covers whose groups are
the finite Heisenberg groups, and we use the results of §3.1 and Proposition
2.3.3 to show that these covers are p-incompressible. We then show a variant
of this p-incompressibility result, where we restrict covers to analytic (not
just Zariski) neighborhoods of the boundary in these torus bundles. Fi-
nally, in §3.3, we apply this last result to show p-incompressibility of certain
congruence covers.

3.1. Cohomology of generalized Heisenberg groups.

3.1.1. In this subsection, we will be concerned with central extensions of
abelian groups, which are either finitely generated free abelian pro-p-groups ,
or elementary abelian p-groups. We begin by considering a central extension
of elementary abelian p-groups

0→ N → E → H → 0.

Such extensions are classified by the cohomology group [BC92, §10]

H2(H,N) ≃ H2(H,Fp)⊗N ≃ ∧2H∗ ⊗N ⊕H∗ ⊗N.

Here the term ∧2H∗ is the image of H1(H,Fp)
⊗2 = H∗⊗2 in H2(H,Fp)

under the cup product, while the H∗ in the second term is the image of the
Bockstein map H1(H,Fp)→ H2(H,Fp) (see also [AM04, Ch. II., Cor. 4.3]).

Recall that if c ∈ Z2(H,N) is a 2-cocycle, the corresponding central
extension E is defined by taking the underlying set of E to be N ×H with
the group law given by

(n1, h1) · (n2, h2) = (n1 + n2 + c(h1, h2), h1 + h2).

We call the extension E a finite Heisenberg group 4 (or just Heisenberg group
if the context is clear) if its class inH2(H,N) is represented by an alternating
bilinear form H ⊗H → N.

For an Fp-vector space V with an action of F×
p , we say that V has weight

n ∈ Z/(p − 1)Z if α ∈ F×
p acts by α−n. In general, we denote by Vn ⊂ V

the direct summand of weight n. The following lemma gives a number of
characterizations of Heisenberg groups, as well as showing that this property
depends only on E as a group, and not as an extension.

3This will allow us to deduce results from an analogue of “weights” with F×

p playing

the role of Gm.
4We remark that this is a small abuse of terminology, as this name is often reserved

for the case when dimFpN = 1.
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Lemma 3.1.2. The following conditions on the extension E are equivalent:

(i) E is a finite Heisenberg group.
(ii) The class c ∈ H2(H,N) defining E is contained in ∧2H∗ ⊗N.
(iii) E has exponent p.
(iv) The extension E admits an action of F×

p , such that H has weight −1
and N has weight −2.

Proof. (ii) ⇒ (i): Suppose c satisfies (ii). Write c =
∑k

i=1(αi ∪ βi) ⊗ ni ∈
Z2(H,N), where αi, βi ∈ Z1(H,Fp) and ni ∈ Ni. Then c is also represented
by

1

2

k∑

i=1

(αi ∪ βi − βi ∪ αi)⊗ ni,

which is an N -valued alternating form.
(i) ⇒ (iv): Recall that, as a set, E is identified with N ×H. Define the

F×
p action on E by α · (n, h) = (α2n, αh). This evidently induces an action

of F×
p on E as a set, and from the explicit description of the group law on E

one sees that this action respects the group structure (cf. [Pey08, Prop. 6]).
(iv) ⇒ (iii): Consider the multiplication by p map on E. This gives a

map H → N which commutes with any automorphism of E. In particular
it commutes with the F×

p -action, but H and N have distinct weights, so this
map is 0.

(iii) ⇒ (ii): First note that (i) ⇒ (iii), as, if c is alternating, then
c(nh, h) = 0 for any positive integer n. Now suppose E has exponent p, and
let c ∈ H2(H,N) be its class. Write c = a + b in (ii) with a ∈ ∧2H∗ ⊗ N,
and b ∈ H∗ ⊗N. By what we just saw, the extension E−a corresponding to
−a has exponent p. Replacing E by the Baer sum of E−a and E, we may
assume that c ∈ H∗ ⊗ N. If c 6= 0, there exist linear forms s : H∗ → Fp

and t : N → Fp such that s ⊗ t(c) ∈ Fp ≃ H2(Fp,Fp) is nonzero. If E has
exponent p then so does the extension Es,t obtained by pulling back and
pushing out E by s and t respectively. However Es,t corresponds to s⊗ t(c)
which is in the image of the Bockstein map, and hence Es,t ≃ Z/p2Z, which
is a contradiction. Hence c = 0, which implies (ii). �

3.1.3. We now change our setup, and consider a central extension

(3.1.4) 0→ N → E → H → 0

where N and H are finitely-generated, free abelian pro-p groups. That is
N ≃ Zr

p and H ≃ Zs
p for some r, s.

For a finitely-generated free Zp-module V, equipped with an action of Z×
p ,

we say that V has weight n ∈ Z if α ∈ Z×
p acts by α−n on V. Of course this

notion makes sense for any character of Z×
p , but we will not need it in this

generality.

Lemma 3.1.5. For E as in (3.1.4) the following hold:
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(i) We have H2(H,N) ≃ Λ2
Zp
H∗ ⊗ N, so that the class of E is repre-

sented by an alternating bilinear form.
(ii) There exists a Z×

p action on E such that H has weight −1 and N
has weight −2.

Proof. The proof of (i) is analogous to the proof of (ii)⇒ (i) in Lemma 3.1.2,
and the proof of (ii) is then analogous to (i) ⇒ (iv) in that lemma. �

Lemma 3.1.6. The Hochschild-Serre spectral sequence

Ei,j
2 = H i(H,Hj(N,Fp))⇒ H i+j(E,Fp)

degenerates at the E3-page if p ≥ min{rk ZpN + 1, rk ZpH}.

Proof. The Z×
p -action on E constructed in Lemma 3.1.5 acts compatibly

on the spectral sequence, and induces an action of F×
p on the terms. The

weights of this F×
p -action are elements of Z/(p− 1)Z.

The source and target of dr : Ei,j
r → Ei+r,j−r+1

r have weights i+ 2j and
i + 2j + (2 − r) respectively. Thus, if r = 3, . . . , p, these weights are not
equal and dr = 0. If r ≥ p + 1, then our assumption on p forces dr to be 0,

as Ei,j
r = 0 unless 0 ≤ i ≤ rk ZpH, 0 ≤ j ≤ rk ZpN. �

3.1.7. A reduction mod p of the extension E of (3.1.4) is a map of central
extensions

0 // N //

��

E //

��

H //

��

0

0 // N̄ // Ē // H̄ // 0

which identifies N̄ and H̄ with N/pN and H/pH respectively, and such that
Ē is a finite Heisenberg group.

Below we will repeatedly use that for a finitely-generated, free abelian
pro-p group F, and a finitely-generated elementary abelian group with trivial
F -action M,

H•(F,M) = (∧•H1(F,Fp))⊗M.

This is elementary (see e.g. [Ser02, Ch. 3.2, Example 1 and Ch. 3.3,
Prop.14]) and follows from Künneth for M = Fp, and the universal coeffi-
cient theorem for general M .

Lemma 3.1.8. Any central extension E, as in (3.1.4) admits a mod p re-
duction Ē. The extension class of Ē is uniquely determined by that of E.

Proof. Let N̄ = N/pN, H̄ = H/pH. The map H1(H̄, N̄ ) → H1(H, N̄ ) is a
bijection. Hence the composite

∧2H1(H̄,Fp)⊗ N̄ → H2(H̄, N̄)→ H2(H, N̄) ≃ ∧2H1(H,Fp)⊗ N̄ .

is again a bijection. This implies that the pushout of E by N → N̄ arises
from an extension Ē, whose class lies in the image of the first map above,
and this class is uniquely determined by the class of E. �
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Proposition 3.1.9. Let E be as in (3.1.4), and let Ē be a mod p reduction
of E. If p > 1

2(rk ZpH + 3 rk ZpN + 1), then the map of cohomology rings

H•(Ē,Fp)→ H•(E,Fp) is surjective.

Proof. Recall the Hochschild-Serre spectral sequence, which converges to the
mod p cohomology of E :

Ei,j
2 = ∧iH̄∗ ⊗ ∧jN̄∗ = H i(H,Hj(N,Fp))⇒ H i+j(E,Fp).

By Lemma 3.1.6 and our assumptions on p, the spectral sequence Er de-
generates on the E3 page. There is also the analogous spectral sequence Ēr

converging to H i+j(Ē,Fp):

Ēi,j
2 = H i(H̄,Fp)⊗Fp H

j(N̄ ,Fp) = H i(H̄,Hj(N̄ ,Fp))⇒ H i+j(Ē,Fp).

As observed above (by [BC92, §10] or [AM04, Ch. II, Cor. 4.3]), the coho-
mology ring H•(H̄,Fp) is a tensor product of an exterior and a symmetric
algebra:

H•(H̄,Fp) = ∧
•H̄∗(1) ⊗ Sym•H̄∗(2),

where H̄∗(1), H̄∗(2), denote the Fp-dual of H̄ considered in degree 1 and
2 respectively. One also has the analogous description of H•(N̄ ,Fp). Let

Ẽi,j
2 ⊂ Ēi,j

2 be the subgroup generated by the image of

∧iĒ1,0
2 ⊗∧

jĒ0,1
2 ≃ ∧iH1(H̄,Fp)⊗∧

jH1(N̄ ,Fp) ≃ ∧
iH1(H,Fp)⊗∧

jH1(N,Fp)

under the cup product. The inclusion Ẽi,j
2 ⊂ Ēi,j

2 induces a splitting of the
projection Ē•,•

2 → E•,•
2 as graded groups.

We now make use of the F×
p -action on Ē given by Lemma 3.1.2. This

induces an F×
p -action on the spectral sequence Ēr. In particular, the differ-

ential

d2 : N̄
∗ ≃ Ē0,1

2 → Ē2,0
2 ≃ ∧2H̄∗ ⊕ H̄∗

respects weights, and so satisfies d2(Ē
0,1) ⊂ Ẽ2,0

2 . Since Ē•,•
2 is a differen-

tial graded algebra, this implies that Ẽ•,•
2 is stable under d2. Denote the

cohomology of (Ẽ•,•
2 , d2) by Ẽ•,•

3 . Then Ẽ•,•
3 ⊂ Ē•,•

3 induces a splitting of
the projection Ē•,•

3 → E•,•
3 , as graded groups, so again the latter map is

surjective.
To prove the proposition it suffices to show that for r ≥ 2, and 0 ≤ i ≤

rk ZpH, 0 ≤ j ≤ rk ZpN, the map Ēi,j
r → Ei,j

r is surjective, as the target of
this map is trivial for i, j outside this range. Thus we assume from now on
that i, j satisfy these inequalities.

The above description of the cohomology rings H•(H̄,Fp), H•(N̄ ,Fp)

shows that the weights of Ēi,j
2 are represented by integers in the interval

[12(i + 2j), i + 2j]. Our assumptions on i, j and p imply that this interval
has length less than p − 1, i.e. the set of integers in it maps injectively to

Z/(p−1)Z. In particular, the weight i+2j piece (Ēi,j
2 )i+2j ⊂ Ēi,j

2 is precisely

Ẽi,j
2 , and so Ẽi,j

3 = (Ei,j
3 )i+2j .



24 BENSON FARB, MARK KISIN AND JESSE WOLFSON

Now for r ≥ 3, consider the differential dr : Ēi,j
r → Ēi+r,j−r+1

r . The

weights appearing in Ēi+r,j−r+1
r are represented by integers in [12 (i + 2j −

r+2), i+2j− r+2]. Our assumptions on i, j, and p imply that the interval
[12(i + 2j − r + 2), i + 2j] has length less than p − 1 for r = 3, . . . , j + 1.

This implies that (Ēi+r,j−r+1
r )i+2j = 0, and so dr|(Ēi,j

r )i+2j
= 0. On the other

hand for r > j + 1 dr|Ēi,j
r

= 0 as the target of this map is trivial.

We now show by induction on r that (Ēi,j
r )i+2j maps isomorphically to

Ei,j
r , which in particular implies that Ēi,j

r → Ei,j
r is surjective, finishing the

proof of the proposition. We have already seen this for r = 3. Assume the
result for some r ≥ 3. As dr|(Ēi,j

r )i+2j
= 0 it follows that

(Ēi,j
r )i+2j ։ H(Ēr)

i,j
i+2j ≃ (Ēi,j

r+1)i+2j → Ei,j
r+1 ≃ Ei,j

r ,

where the final isomorphism follows from Lemma 3.1.6. The composite is
the natural map, which we are assuming is an isomorphism. Hence all the
maps above are isomorphisms, which completes the induction. �

3.2. Toric varieties.

3.2.1. Throughout this section we work over an algebraically closed field
C of characteristic 0. Let T be a torus over C, S an abelian variety over C,
and U/S a T -torsor. Fix a geometric point x̄ of U, and let s̄ be its image
in S. We will apply the results of the previous section to U. For a profinite
group G, denote by Gp its maximal pro-p quotient.

Lemma 3.2.2. The C-scheme U is an étale K(π, 1), and π1(U, x̄) is a
central extension of free abelian profinite groups

(3.2.3) 0→ π1,ét(Us̄, x̄)→ π1,ét(U, x̄)→ π1,ét(S, s̄)→ 0,

whose maximal pro-p quotient is an extension

(3.2.4) 0→ π1,ét(Us̄, x̄)
p → π1,ét(U, x̄)

p → π1,ét(S, s̄)
p → 0.

The natural map H•(π1,ét(U, x̄)
p,Fp) → H•(π1,ét(U, x̄),Fp) is an isomor-

phism.

Proof. Note that S and Us̄ are étale K(π, 1)’s. Indeed, for each of these
varieties, both their cohomology and the cohomology of the respective étale
fundamental group are exterior algebras on their cohomology in degree 1.
Now the fact that U is a K(π, 1) follows by comparing the Hochschild-
Serre spectral sequence for π1,ét(Us̄, x̄) ⊂ π1,ét(U, x̄) and the Leray spectral
sequence for the map U → S.

It is well known that π1,ét(U, x̄) is an extension as in 3.2.3. That this is a
central extension follows from the fact that the T -torsor U is Zariski locally
trivial (Hilbert’s Theorem 90) [SGA4, IX, Thm. 3.3].

That the maximal pro-p quotient of (3.2.3) is an extension as in (3.2.4)
follows easily from the fact that any central extension of two finite abelian
groups of coprime order is trivial. It follows that the kernel of π1,ét(U, x̄)→
π1,ét(U, x̄)

p is a prime to p profinite group, which implies the final claim. �
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3.2.5. Keep the assumptions above, and consider the extension (3.2.4).
We have the notion of a mod p reduction of such an extension given in
3.1.7. In particular, such a mod p reduction gives rise to a surjection of
π1,ét(U, x̄) ։ Ē onto a finite Heisenberg group Ē. We write U(Ē) → U for
the finite cover corresponding to Ē.

3.2.6. We again denote by T the split torus over Z with character group
X∗(T ). We say U → S has good reduction at p if there exists a p-adic
valuation on C, with ring of integers OC , such that U → S extends to a
T -torsor over an abelian scheme over OC◦ , U◦ → S◦. We say U → S has
unramified good reduction if U◦ → S◦ can be chosen so that it descends to
a T -torsor over an absolutely unramified discrete valuation ring O ⊂ OC .

Proposition 3.2.7. Suppose that p > dimU+ 1
2(dimUs̄+1), and that U → S

has unramified good reduction at p. Then ed(U(Ē)/U ; p) = dimU.

Proof. Since U has unramified good reduction, there is a p-adic valuation
on C, and an absolutely unramified discrete valuation ring O ⊂ OC , such
that U descends to a T -torsor over an abelian scheme U◦ → S◦ over O.
Fix a basis for X∗(T ). Then U◦ corresponds to a collection of line bundles
L1, . . . ,Lt over S

◦, where t = dimUs̄. Let P
◦
i = ProjOS◦

(OS◦ ⊕L∨i ), and set
P ◦ = P ◦

1 ×S◦ P ◦
2 ×S◦ · · · ×S◦ P ◦

t . Then P ◦ is a smooth projective scheme
S◦-scheme, and D◦ = P ◦−U◦ is a normal crossings divisor. We set P = P ◦

C
and D = D◦

C .
Let d = dimU. Fix an identification T ≃ Gt

m, and let z1, . . . zt be the
standard co-ordinates on Gt

m. By Hilbert’s Theorem 90, Zariski locally on

S, we can identify U with S×T ≃ S×Gt
m. The differential ωT = dz1

z1
∧· · ·∧ dzt

zt
is T -invariant, and hence does not depend on the identification S × T ≃ U.
(It is independent of our fixed isomorphism T ≃ Gt

m up to a sign). It follows
that ωT gives rise to a global section of Γ(P,Ωt

P (logD)). Let r = dimS, and

ωr ∈ Γ(S,Ωr
S) a nonzero r-form. Then ωr⊗ωT ∈ Γ(P,Ωd

P (logD)) is nonzero,

so h0,d(P,D) 6= 0.

Now consider the maps

Hd(Ē,Fp)→ Hd(π1(U, x̄)
p,Fp)→ Hd(π1(U, x̄),Fp)→ Hd(U,Fp).

The first map is surjective by Proposition 3.1.9, and the second and third

maps are isomorphisms by Lemma 3.2.2. As h0,d(P,D) 6= 0, the Proposition

follows from Proposition 2.3.3. �

3.2.8. We want to prove a variant of Proposition 3.2.7 which will be used
in the next subsection to show p-incompressibility of certain coverings of
Shimura varieties. To explain it, we recall some facts about families of toric
varieties [Ful93], [KKMSD73], [Pin90, §5]. Note that the family P → S,
which appeared in the proof of Proposition 3.2.7 is an example of such a
family.

Let k be a field. A toric variety, or torus embedding X over k is a normal
k-scheme X, equipped with an action of a split torus T, such that X admits
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a dense open T -orbit U, which is a T -torsor. These can be described in
terms of fans, which are certain collections Σ of convex polyhedral cones in
X∗(T )Q. In particular, proper toric varieties correspond to complete fans,
which are certain decompositions of X∗(T )Q into convex polyhedral cones.

Since we are assuming that T is a split torus, it extends canonically to a
torus over Z, which we again denote by T. Thus, a fan Σ actually defines a
torus embedding X(Σ) over Z. That is, X(Σ) is a normal scheme, equipped
with an action of T, containing a dense T -torsor. The fiber of X(Σ) over
any point Speck → SpecZ is the toric variety over k corresponding to Σ.

We will need the relative version of this notion. Let S be a scheme and
X → S a map of schemes, equipped with an action of T. Then X/S is
called a torus embedding over S if, Zariski locally on S, X → S can be
T -equivariantly identified with X(Σ) ×Z S for a fan Σ. In this case there is
an open subset U ⊂ X, which is a T -torsor, and which is dense in the fiber
over every point of S. The complement D = X − U, is called the boundary
of X.

We remark that it may appear more natural to make this definition with
the condition on X → S imposed only étale locally on S. However these
two notions are the same: As X(Σ) contains an open dense T -torsor U(Σ),
AutT (X(Σ) ×Z S) = AutT (U(Σ) × S) = T (S). Hence any X → S which is
étale locally isomorphic to X(Σ) × S gives rise to an étale T -torsor. As in
the proof of Proposition 3.2.7, such a torsor is Zariski locally trivial.

Lemma 3.2.9. Suppose that S is irreducible, and fix T as above. Then there
is an equivalence of categories between torus embeddings X → S containing
a dense open T -torsor, and pairs (U,Σ), where U is a T -torsor over S, and
Σ is a fan in X∗(T )Q.

Proof. Given X → S, we can associate to it the open T -torsor U ⊂ X, and
the fan Σ corresponding to the torus embedding Xη , where η ∈ S is the
generic point. Conversely, given (U,Σ), Σ defines a toric variety X0 over C,
which is even defined over Z. We take X = (X0 × U)/T. One checks easily
that these two constructions are quasi-inverses. �

3.2.10. Now suppose that S is a C-scheme, and let X → S, U and D
be as above. Then D has a stratification D0 ⊂ D1 ⊂ D2 . . . , which may
be described as follows: Zariski locally, X = X0 × S as torus embeddings,
where X0 is a torus embedding over C. We set Dj ⊂ D to be the product
of S and the closure of the j-dimensional T -orbits in X0. Then D0 is étale
over S, and, if X is proper, it is finite étale.

Let X1 → X be the blow up of D0 on X. Since D0 is fixed by T, X1 is
again a torus embedding over S, and we denote its boundary by D1. If X is
smooth over S, with D a relative normal crossings divisor, then the same is
true for X1 and D1. We can continue this construction to obtain a sequence
of blow ups X ← X1 ← X2 . . . , with boundary Di ⊂ Xi. Finally, we denote

by X̂i the completion of Xi along Di, and by X̂ the completion of X along
D.
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The following lemma implies that if (X,D) has unramified good reduction
at p, then so does (X1,D1) :

Lemma 3.2.11. Suppose that X/S is smooth, and that D is a normal cross-
ings divisor. If the T -torsor U has unramified good reduction at p, then
(X,D) has unramified good reduction at p.

Proof. Suppose U/S descends to a T -torsor U◦ over a discrete valuation ring
O ⊂ C. By Lemma 3.2.9, as a torus embedding X is determined by (U,Σ)
for some fan Σ. Then (U◦,Σ) determines a torus embedding X◦ over O. The
property that X is smooth and D is a normal crossings divisor can be read
off from the fan Σ [KKMSD73, II.2,Thm. 4*]. It implies that X◦ is smooth
over O, and that its boundary D◦ is a relative normal crossings divisor. �

Lemma 3.2.12. Suppose that S and X/S are smooth, with D ⊂ X a relative

normal crossings divisor. Let Z ⊂ X̂ be a formal subscheme of codimension

1, and Zi ⊂ X̂i its proper transform. Then there exists a dense open subset
W ⊂ S and an integer i ≥ 1 such that Di

0|W * Zi.

Proof. Let πi : X̂i → X̂. Recall that the proper transform Zi is defined
to be the union of those components of π−1

i (Z) which are not contained

in π−1
i (D0). It suffices to show the lemma with S replaced by one of its

generic points, so we may assume that S = Specκ is a field. By induction
on the number of irreducible components of Z, we may assume that Z is an
irreducible Cartier divisor in X.

Let x ∈ D0, and let z1, . . . zn be a system of local co-ordinates at x, such
that the ideal ofD at x is given by z1z2 . . . zn. Then in a formal neighborhood
of x, the ideal of Z is generated by a nonzero power series f =

∑
I aIz

I ,
where I = (i1, . . . , in) runs over n-tuples of non-negative integers, and aI ∈
κ. Choose such an n-tuple J = (j1, . . . , jn) such that aJ 6= 0 and |J | =
j1 + · · · + jn is as small as possible. If |J | = 0, then x /∈ Z, and the lemma
holds without blowing up X. In general we proceed by induction on |J |.

We may assume without loss of generality that j1 6= 0. There is a point

x1 ∈ D1
0 ⊂ X̂1 such that the functions z1, u2, u3, . . . , un, with ui =

zi
z1

are

a system of local co-ordinates at x1, and the ideal of D1 is generated by

z1u2 . . . un. The ideal of the proper transform Z1 ⊂ X̂1 is generated by the

function z
−|J |
1 f, whose expansion contains the term aIu

j2
2 . . . ujnn . Thus the

result follows by induction on |J |. �

3.2.13. We now assume that C = C, the complex numbers, and we denote
by Xan the complex analytic space associated to X. Recall that a Zariski
closed subset of a complex analytic space Y is a closed subset Z ⊂ Y, which
is locally defined by (local) analytic functions on Y. We call the complement
of a Zariski closed analytic subset a Zariski open subset of Y. Note that if
Y →W is an open embedding of complex analytic spaces, it is not in general
the case that a Zariski open U ⊂ Y is a Zariski open of W ; this is only the
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case if the closed analytic subset Z ⊂ Y is of the form Z = Y ∩Z ′ for some
closed analytic subset Z ′ ⊂W .

Proposition 3.2.14. Let S be an abelian scheme and let X/S be a proper
torus embedding with boundary D ⊂ X, and dense open T -torsor U ⊂ X.
Let d = dimX, and suppose that U/S has unramified good reduction at a
prime p > d+ 2.

Let V ⊂ Xan be an analytic open subset containing Dan, and V ′ ⊂ V a
non-empty Zariski open subset of V . Then the map

Hd(U,Fp)→ Hd(U ∩ V ′,Fp)

is nonzero.

Proof. After replacing X by a blow up, we may assume that X/S is smooth
and D ⊂ X is a normal crossings divisor. Such blow ups are obtained
by subdividing the rational cone decomposition of X∗(T )Q defining X, see
[Ful93, p 48]. Then (X,D) has unramified good reduction at p by Lemma
3.2.11.

Next the same proof as in Proposition 3.2.7 shows that h0,d(X,D) 6= 0. In fact

the differential ωr ⊗ ωs defined there is in H0(X,Ωd
X (logD)) for any torus

embedding (X,D) with open dense T -torsor U ⊂ X.
Shrinking V ′ as necessary, we may assume that Z = V − V ′ has codi-

mension 1 in V. Let Ẑ ⊂ X̂ denote the formal completion of Z along D.

We apply Lemma 3.2.12 to Ẑ. Then, after replacing X by a blow up and Z
by its proper transform, we may assume there is a non-empty Zariski open
W ⊂ S such that D0|W * Z. Shrinking W if necessary, since D0 is étale
over S, we may assume that there is an irreducible component D′

0 of D0

which does not meet Z, and that X|W = W ×X0 for a toric variety X0 over
C. Then D′

0 has the form W × x0 for a T -fixed point x0 ∈ X0. We write
U0 ⊂ X0 for the open T -orbit.

By [Loj64, Thm. 4], there exists a compact subsetW− ⊂W such that the
inclusion induces a homotopy equivalence. Denote by DX0 the boundary of
X0. Let Y0 ⊂ X0 be a ball around x0 which is small enough that Y0\DX0 →
U0 is a homotopy equivalence, W− × Y0 ⊂ V, and W− × Y0 does not meet
Z. Here we are using the compactness of W− for the second and third
properties. Let

Y ∗ = (W− × Y0)\D ≃W− × (Y0\DX0).

Then Y ∗ → UW− ≃W−×U0 is a homotopy equivalence, and Y ∗ ⊂ U ∩ V ′.
Now consider the composite

Hd(U,Fp)→ Hd(U |W ,Fp)→ Hd(U |W− ,Fp)→ Hd(Y ∗,Fp).

Since h0,dX,D 6= 0, and (X,D) has unramified good reduction at p, we may
apply Corollary 2.2.13 to deduce that the first map is nonzero. The other
two maps are induced by homotopy equivalences, hence are isomorphisms.
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Thus the composite map is nonzero. However, as Y ∗ ⊂ U∩V ′, the composite
map factors through Hd(U ∩ V ′,Fp) which implies the Lemma. �

3.2.15. We are nearly ready to show the variant of Proposition 3.2.7 that
will be used in the next subsection. To formulate it we need a notion of
essential dimension at p for complex analytic spaces. This is defined in a
similar way as for algebraic varieties, but there is an important difference
in that we do not insist the auxiliary coverings of order prime to p are
étale. Unlike the algebraic situation, one cannot reduce ramified coverings
to the unramified case, because the notion of Zariski open subsets of complex
analytic spaces is not transitive.

Let V1 → V be a finite map of (reduced) complex analytic spaces. The
essential dimension ed(V1/V ) is the smallest integer e such that for some
dense Zariski open V ′ ⊂ V, there exists a finite map of analytic spaces
Y1 → Y, and a map V ′ → Y such that V1|V ′ → V ′ is isomorphic to the
normalization of V ′×Y Y1. The p-essential dimension ed(V1/V2; p) is defined

as the minimum value of ed(Ṽ1/Ṽ ), where Ṽ → V runs over finite maps of

degree prime to p, and Ṽ1 is the normalization of Ṽ ×V V1. Note that the
map Ṽ → V is finite flat over some Zariski open; its degree is defined as the
degree over any such Zariski open.

3.2.16. Keep the notation of Proposition 3.2.14 , and consider a surjection
onto a finite Heisenberg group π1,ét(U, x̄) → Ē, as in 3.2.5. We denote by
X(Ē)→ X the normalization of U(Ē)→ U.

Corollary 3.2.17. With the assumptions of Proposition 3.2.14, suppose
that p > dimU + 1

2(dimUs̄ + 1), and write V (Ē) := X(Ē)an|V . Then

ed(V (Ē)/V ; p) = d.

Proof. Let π : Ṽ → V be a finite covering of degree prime to p, and Ṽ ′ ⊂ Ṽ
a dense Zariski open. We claim that the map Hd(U,Fp) → Hd(Ṽ ′|U ,Fp) is
nonzero.

The complement Z̃ = Ṽ \Ṽ ′, is a Zariski closed subspace of everywhere

positive codimension. Hence π(Z̃) ⊂ V is Zariski closed with everywhere

positive codimension. Let V ′ = V \π(Z̃).We may replace Ṽ ′ by the preimage

of V ′, and assume that π restricts to Ṽ ′ → V ′. Now consider the composite

Hd(U,Fp)→ Hd(U ∩ V ′,Fp)→ Hd(Ṽ ′|U ,Fp).

The first map is nonzero by Proposition 3.2.14, and the second map is injec-
tive, as in the proof of Proposition 2.3.3, hence the claim. As in the proof
of Proposition 3.2.7, it follows that the composite

Hd(Ē,Fp)→ Hd(U,Fp)→ Hd(Ṽ ′|U ,Fp)

is nonzero.
Write Ṽ ′(Ē) for the normalization of V (Ē) ×V Ṽ ′. If Ṽ ′(Ē) → Ṽ ′ is the

normalized pullback of an Ē-covering Y1 → Y of dimension < d, then as in
the proof of Proposition 2.3.3, the map Hd(Ē,Fp) → Hd(Ṽ ′|U ,Fp) factors
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throughHd(Y,Fp). Shrinking Y and Ṽ ′ as necessary, we can assume that Y is

Stein. By Andreotti-Frankel [AF59], dimY < d implies that Hd(Y,Fp) = 0.
This gives a contradiction, and proves the corollary. �

Corollary 3.2.18. Keep the assumptions of Corollary 3.2.17, but suppose
that dimS = 0. Then the conclusion of 3.2.17 holds with no restriction on
p.

Proof. The restriction on p in the proof of 3.2.17 come from the application
of Corollary 2.2.13 and Proposition 3.1.9, which guarantee that the maps

Hd(Ē,Fp)→ Hd(U,Fp)→ Hd(U |W ,Fp)

are injective for W ⊂ S dense open. When dimS = 0, the second map
is vacuously bijective, and the first map is surjective, because in this case
π1,ét(U, x̄) is abelian, Ē = π1,ét(U, x̄)/pπ1,ét(U, x̄), and the cohomology ring
H•(U,Fp) is generated in degree 1. �

3.2.19. We remark that Corollary 3.2.18 is originally due to Burda [Bur12],
and our proof in this case reduces to a variant of his. The key point in the
argument is the construction of the subset Y ∗ in the proof of Propostion
3.2.14. Burda does this by considering annuli in U with carefully chosen
radii, rather than by using blow ups; see [Bur12, Thm. 18].

3.3. Shimura Varieties.

3.3.1. Let (G,X) be a Shimura datum [Del79, §1]. Recall that this consists
of a reductive group G over Q, together with a G(R)-conjugacy class, X,
of homomorphisms h : S = ResC/RGm → G satisfying certain conditions.
These imply, in particular, that X is a Hermitian domain, and that for any
neat compact open K ⊂ G(Af ), the quotient

ShK(G,X) = G(Q)\X ×G(Af )/K

has the structure of a complex algebraic variety. Here Af denote the finite
adeles over Q.

For h ∈ X, define a G-valued cocharacter µh over C, as follows. For
a C-algebra R, we have R ⊗R C = R ⊕ c∗(R), where c denotes complex
conjugation. The first factor gives an inclusion R× ⊂ (R ⊗R C)×, which
gives a map Gm → S over C, and µh is the composite of this map and h.
The cocharacter µh is miniscule [Del79, 1.2.2], and the axioms for a Shimura
variety imply that it is nontrivial.

3.3.2. Now consider the Dynkin diagram ∆(G) of G, which is equipped
with an action of Gal(Q̄/Q). To simplify the discussion, we assume from now
on that Gad is Q-simple, so that the Gal(Q̄/Q)-action on ∆(G) is transitive.
The subgroup of Gal(Q̄/Q) that acts on ∆(G) trivially corresponds to a
field K∆ that is either CM or a totally real field. The action of complex
conjugation c ∈ Gal(K∆/Q) is given by the opposition involution of the root
system of G. Recall that this is given by (−1) ◦ w0, where w0 is the longest
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element of the Weyl group WG. Thus KD is a totally real field exactly when
−1 ∈WG.

Fix a maximal torus T ⊂ Gad and a set of positive roots ∆+ ⊂ X∗(T )
for G. The vertices of ∆(G) correspond to the simple roots in ∆+. For
α ∈ ∆(G), let µα ∈ X∗(T ) be the cocharacter which takes the value 1 on
α and vanishes otherwise. For a subset R ⊂ ∆(G), define µR ∈ X∗(T ) by
µR :=

∏
α∈R µα. If we do not specify ∆+, then the conjugacy class of µR is

still well defined, and we will denote it by [µR].
Let PR ⊂ G be the parabolic associated to µR. Recall that PR is charac-

terized by the condition that its Lie algebra LiePR is the sum of root spaces
on which µR is non-negative [SGA3, XXVI, 1.4]. As for µR, if we do not
specify ∆+ then the conjugacy class of PR is still well defined, and we denote
it by [PR].

Since µh is miniscule, it corresponds to a collection of vertices Σ ⊂ ∆(G),
with each component of ∆(G) containing at most one element of Σ. Let

Σ̃ = Σ ∪ c(Σ).

Lemma 3.3.3. Let µΣ̃ be in [µΣ̃ ], PΣ̃ the associated parabolic and UΣ̃ ⊂ PΣ̃
the unipotent radical of PΣ̃ . Then UΣ̃ is a central extension of additive groups

0→ Z(UΣ̃)→ UΣ̃ → UΣ̃/Z(UΣ̃)→ 0,

and UΣ̃ = Z(UΣ̃) if c fixes Σ. The cocharacter wΣ̃ = µΣµc(Σ) acts with
weight 2 on Z(UΣ̃) and weight 1 on UΣ̃/Z(UΣ̃).

Proof. Write Gad
R =

∏r
i=1G

ad
R,i, where each factor Gad

R,i is absolutely simple.

For each i the Dynkin diagram of Gad
R,i corresponds to a component ∆(G)i

of ∆(G), and it suffices to prove the statement of the Lemma with UΣ̃,i =

UΣ̃ ∩Gad
C,i in place of UΣ̃. We set Σi = Σ ∩∆(G)i and Σ̃i = Σ̃ ∩∆(G)i.

The root spaces which appear in LieUΣ̃ are exactly those which corre-
spond to roots whose expressions as a sum of simple roots in ∆+ contain an
element of Σ̃. If Σi is empty, then UΣ̃,i = 0, and there is nothing to prove.

Suppose that Σi is non-empty.
If c fixes Σi then Σ̃i = Σi and µΣi

is nonzero on exactly one simple root
in ∆(G)i. As µh is miniscule, so is µΣi

, so the root in Σi can appear in the
expression for a root in ∆+ with multiplicity at most 1. This implies that
UΣ̃,i is abelian, and µΣi

acts with weight 1 on UΣ̃,i, so µΣi
µc(Σi) = µ2

Σi
acts

with weight 2.
Now suppose that c does not fix Σi. Then Σ̃i has exactly two elements and

µΣ̃ is nonzero on the two corresponding simple roots, which are exchanged
by c. If α ∈ Σi, and eα is the corresponding root, then eα and ec(α) both

appear in the expression for the longest root in ∆+ as a sum of simple roots.
Using this, one sees that the root spaces appearing in LieZ(UΣ̃,i) correspond

to β ∈ ∆+ whose expression as a sum of simple roots contains both α and
c(α), and that [UΣ̃i

, UΣ̃i
] ⊂ Z(UΣ̃i

). Moreover the description of the root
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spaces appearing in the Lie algebras of UΣ̃,i and Z(UΣ̃,i) implies the claim

about the weights of µΣi
µc(Σi) = µΣ̃i

. �

3.3.4. We will be interested in the following condition

(3.3.5) The conjugacy class [µΣ̃ ] contains a cocharacter defined over Q.

Note that this condition implies that [µΣ̃ ] is fixed by Gal(Q̄/Q). We can
rephrase this condition in terms of the parabolic PR ⊂ GC associated to µR.

Lemma 3.3.6. The conjugacy class [µΣ̃ ] contains a cocharacter defined over
Q if and only if [PΣ̃ ] contains a parabolic defined over Q.

Proof. If [µΣ̃] contains a cocharacter µΣ̃,Q defined over Q, then the subspace

of LieG on which µΣ̃,Q is non-negative is the Lie algebra of a parabolic in

[PΣ̃ ], which is defined over Q.
Conversely if [PΣ̃ ] contains a parabolic PΣ̃,Q defined over Q, then PΣ̃,Q

is associated (as above) to some cocharacter µΣ̃ (not necessarily defined
over Q) in [µΣ̃]. Let UΣ̃,Q ⊂ PΣ̃,Q denote the unipotent radical. As PΣ̃,Q is

its own normalizer, µΣ̃ is determined up to conjugation by points of PΣ̃,Q.

Hence the conjugacy class of µΣ̃ as a PΣ̃,Q/ZG-valued cocharacter is defined

over Q, where ZG denotes the center of G. On the other hand, the composite

Gm
µ
Σ̃→ PΣ̃,Q/ZG → PΣ̃,Q/UΣ̃,QZG

is central, hence defined over Q. Now this composite can be lifted to a
PΣ̃,Q/ZG-valued cocharacter defined over Q, and any such lift is in [µΣ̃ ], by

[SGA3, IX, Thm. 3.6]. �

3.3.7. Somewhat more explicit conditions which guarantee that 3.3.5 holds
are given by the following lemma.

Lemma 3.3.8. Suppose that Gad is Q-simple. Then Gad = ResF/QG0 where
F is a totally real field, and G0 is an absolutely simple group over F. If

(1) Σ̃ is Gal(Q̄/Q)-stable, and
(2) for some (and hence any, by (1)) embedding F → R, the F -rank of

G0 is equal to its R-rank,

then condition 3.3.5 holds.

Proof. For the fact that Gad has the form ResF/QG0 see [Del79, 2.3.4(a)].
Now suppose that the conditions (1) and (2) are satisfied. Fix an embedding
F → R, so that G0,R is a factor of Gad

R , and corresponds to a connected

component ∆(G)0 of the Dynkin diagram of G. Let Σ̃0 = Σ̃ ∩∆(G)0, and
let µΣ̃0

be the corresponding Gad
R,0-valued cocharacter.

By [AMRT10, §3.2], the conjugacy class of the parabolic subgroup of G0,R

corresponding to µΣ̃0
contains a parabolic defined over R, and hence the

conjugacy class [µΣ̃0
] contains a cocharacter defined over R, as in the proof

of 3.3.6. By (2), after conjugation by an element of G0(R), this cocharacter,
which we again denote by µΣ̃0

, factors through an R-split torus which is
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defined over F, and F -split. Thus we have a map of F -groups µΣ̃0
: Gm →

G0.
By definition of the restriction of scalars, µΣ̃0

induces a map µ′
Σ̃
: Gm →

Gad over Q. To see that µ′
Σ̃
∈ [µΣ̃], note that, by (1), [µΣ̃ ] is Gal(Q̄/Q)-

stable. Thus it suffices to check that the projections of [µΣ̃] and [µ′
Σ̃
] onto

G0 are equal. But these are both equal to [µΣ̃0
].

�

3.3.9. Let us explain how to apply Lemma 3.3.8 in examples. First, the
condition (1) implies that X has the form Xm

0 for some irreducible Hermit-
ian symmetric domain X0. When X0 is not of type DH

n , then (1) is actually
equivalent to this condition. In the case of type DH

n , there are two con-
jugacy classes of cocharacters of G0,R, which are exchanged by an outer
isomorphism of G0, and give rise to isomorphic (via the outer isomorphism)
Hermitian symmetric domains. If the outer isomorphism is induced by com-
plex conjugation, which happens when n is odd, then X having the form
Xm

0 still implies (1), but if n is even, then the condition is stronger.
The condition (2) can also be made more explicit in many cases: If G is

of type B or C or Dn with n even, then Gad
R is split, and (2) means that G0

is a split group, or (in this context) that G is quasi-split. If G is of type An

then (2) means that G0 is the adjoint group of a unitary group over F - that
is one associated to a Hermitian form on a vector space over a quadratic CM
extension of F - and not just an inner form of such a group. In particular,
when n = 1 this covers the case of Hilbert modular varieties.

The following lemma gives a way of constructing many examples when X
is irreducible.

Corollary 3.3.10. For any irreducible Hermitian domain X, and any qua-
dratic imaginary extension L/Q, there exists a Shimura datum (G,X) such
that G is an absolutely simple group which splits over L, and 3.3.5 holds.

Proof. Let GR be the absolutely simple reductive R-group associated to X,
and G0,R its quasi-split inner form. Consider the Dynkin diagram of G0,R

with its action of Gal(C/R) ≃ Gal(L/Q). This corresponds to a quasi-split
group G0 over Q, which splits over L. Now by [PR06, Thm. 1], there exists
an inner form G of G0, which becomes isomorphic to GR over R (as an
inner form of G0,R), and whose Q-rank is equal to the R-rank of G0,R. (Note
that in loc. cit. the number of i satisfying the condition (ii) with v = ∞
is precisely the split rank of GR.). The corollary now follows from Lemma
3.3.8. �

3.3.11. We will now apply the theory of toroidal compactifications of
Shimura varieties to our situation. We refer the reader to the book of
Ash-Mumford-Rapoport-Tai [AMRT10], and Pink’s thesis [Pin90]; see also
Madapusi-Pera’s paper [MP19, §2] for a convenient summary. We suppose
from now on that the condition 3.3.5 holds.
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Let P ∈ [PΣ̃ ] be defined over Q, and let U ⊂ P be its unipotent radical,
and Z ⊂ U the center of of U. Abusing notation slightly, write U(Z) =
U(Q) ∩ K, Z(Z) = Z(Q) ∩ K. Let ξK = U(Z)\U(R)Z(C), and CK =
(Z(C)/Z(Z))\ξK . Then CK is an abelian scheme and ξK → CK is a torus
bundle. Fix a fan Σ, in X∗(Z(C)/Z(Z))Q so that the resulting torus em-
bedding is smooth with a normal crossings divisor at the boundary. As
in Lemma 3.2.9, we obtain a smooth torus embedding over CK , ξK(Σ) →
CK whose boundary DK(Σ) is a normal crossings divisor, see [Pin90, §3],
[MP19, 2.1.7].

Note that in the constructions of loc. cit. one gets a smooth torus embed-
ding over a base which is itself an abelian scheme over a Shimura variety.
That is because those constructions start with the preimage under P → P/U
of a factor of the reductive group P/U. However, for our specific choice of
parabolic PΣ̃ the relevant factor of P/U is a torus, and the Shimura variety
is 0-dimensional. In the notation of [Pin90, §4.7], our parabolic P is what
Pink denotes by Q, and the preimage mentioned above is denoted by P1.
These groups are denoted by P and QP in [MP19, §2].

3.3.12. By an analytic neighborhood of DK(Σ) we mean an analytic open
subset VK ⊂ ξK(Σ)(C), containing DK(Σ). We write V ∗

K = VK\DK(Σ).
Write ShK = ShK(G,X). Fix a connected component X+ ⊂ X, and

let Sh+K ⊂ ShK be the corresponding connected component of Sh+K . Then

Sh+K = Γ\X+, where Γ = K ∩G(Q)+, and G(Q)+ ⊂ G(Q) is the subgroup

mapping to the connected component of the identity in Gad(R) [Del79, 2.1.2].
In particular, for any choice of base point, this allows us to identify the
fundamental group of Sh+K with Γ.

For any smooth C-scheme Y, by an ncd compactification of Y we mean a
dense embedding Y ⊂ Ȳ into a proper smooth C-scheme Ȳ , such that Ȳ \Y
is a normal crossings divisor. We collect the results we need in the following
proposition.

Proposition 3.3.13. There exists an ncd compactification ShK(Σ)+ of ShK
and an analytic neighborhood VK of DK(Σ) such that

(1) The inclusion V ∗
K → ξK(C) induces an isomorphism of topological

fundamental groups.
(2) There is an étale map of complex analytic spaces

πK : VK → ShK(Σ)+

such that π−1
K (ShK(Σ)+\Sh+K) = DK(Σ), and πK : V ∗

K → Sh+K in-
duces the natural map U(Z) →֒ Γ on fundamental groups.

Proof. By [Pin90, 4.11], [MP19, 2.1.6] there is an open immersion of complex
analytic spaces X+ → U(R)Z(C). Now set V ∗

K = U(Z)\X+, then there is
an induced open immersion V ∗

K → ξK(C) (see [Pin90, 6.10], [MP19, 2.1.13])
which induces an isomorphism on fundamental groups, by construction. By
[Pin90, 6.13], [MP19, 2.1.22], the latter open immersion extends to an ana-
lytic neighborhood VK of DK(Σ). The existence of ShK(Σ)+ and the map
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πK with the properties in (2) is the main result of [Pin90, §6], see also
[MP19, 2.1.26]. We remark that the ncd compactification ShK(Σ)+, de-
pends on more choices than just Σ, but as these will play no role for us, we
omit them from the notation. �

3.3.14. We continue to assume that condition 3.3.5 holds. Suppose that G
admits a reductive model GZp over Zp. As the scheme of parabolic subgroups
is projective [SGA3, XXVI, Cor. 3.5], P extends to a parabolic subgroup
PZp ⊂ GZp . Denote by UZp ⊂ PZp the unipotent radical. We will sometimes
write G, P and U for GZp , PZp and UZp if this causes no confusion.

Lemma 3.3.15. The group UZp(Zp) is a central extension of finitely gener-
ated, free abelian pro-p groups. The map U(Zp)→ U(Fp) is surjective, and
U(Fp) is a reduction of U(Zp) mod p.

Proof. As in the proof of Lemma 3.3.6, one sees that PZp ⊂ GZp corresponds
to a cocharacter µZp in [µΣ̃ ], defined over Zp. As UZp is unipotent, it is an
iterated extension of additive groups. It then follows by Lemma 3.3.3 that
UZp is a central extension of additive groups, so that U(Zp) is a central
extension of finitely generated, free, abelian pro-p groups. As UZp is smooth,
U(Zp)→ U(Fp) is surjective.

To check that U(Fp) is a reduction of U(Zp) mod p, we have to check that
U(Fp) is a Heisenberg group. This condition is vacuous if U is abelian. If U
is not abelian, then by Lemma 3.3.3, µZp has weight 2 on Z(UZp) and weight

1 on UZp/Z(UZP
). Hence F×

p acting via µZp has weight 2 on Z(UZp)(Fp) and
weight 1 on UZp/Z(UZp)(Fp). Thus U(Fp) is a Heisenberg group by Lemma
3.1.2. �

3.3.16. Now suppose that K = KpK
p, with Kp = G(Zp), and Kp ⊂ G(Ap

f )

compact open. Let K1
p = ker (G(Zp)→ G(Fp)), and K1 = K1

pK
p. As above,

let Γ = K∩G(Q)+, and set Γ1 = K1∩G(Q)+. A covering, Γ1\X
+ → Γ\X+,

with Γ,Γ1 of the above form is called a principal p-covering.

Theorem 3.3.17. Assume that 3.3.5 holds, and that G extends to a re-
ductive group scheme over Zp. If Σ 6= c(Σ) then we assume that p >
dimX+ 1

2 (dimZ+1), and that p is a prime of unramified good reduction for
ξK . Then

ed(Γ1\X
+ → Γ\X+; p) = dimX.

Proof. Let VK be an analytic neighborhood as in Prop. 3.3.13, and fix a base
point s̄ ∈ VK . By Proposition 3.3.13(1), we may identify π1(V

∗
K , s̄) with

π1(ξK(C), s̄) ≃ U(Z). By the strong approximation for unipotent groups,
the pro-p completion of U(Z) is U(Zp).

The pullback of Γ1\X
+ → Γ\X+ by the map πK in Proposition 3.3.13(2)

is a covering, one of whose components V ∗
K1 → V ∗

K , corresponds to the kernel
of the composite

U(Z)→ Γ→ K → G(Zp)→ G(Fp).
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That is, it is the kernel of U(Z) → U(Fp). Using the strong approximation
for unipotent groups, as above, it follows that V ∗

K1 → V ∗
K is a covering with

group U(Fp), and is the restriction of a covering of schemes ξK1 → ξK with
group U(Fp). Let ξK1(Σ) be the normalization of ξK(Σ) in ξK1, and set
VK1 = ξK1(Σ)an|VK

.
Next suppose B ⊂ Sh+K = Γ\X+ is a Zariski closed subset. Let B̄ be its

Zariski closure in Sh+K(Σ). Then π−1
K (B̄) is Zariski closed in VK . It follows

that

ed(Γ1\X
+ → Γ\X+; p) ≥ ed(VK1 → VK ; p).

Here we are using the notion of p-essential dimension for analytic spaces
introduced in 3.2.15.

As U(Fp) is a mod p reduction of U(Zp) by Lemma 3.3.15, the theorem
follows from Corollary 3.2.17 if c(Σ) 6= Σ and from Corollary 3.2.18 if c(Σ) =
Σ. �

Corollary 3.3.18. With the assumptions of Theorem 3.3.17, suppose that
(G,X) is of Hodge type. Then p is a prime of unramified good reduction for
ξK , and the conclusion of the theorem holds without this assumption.

Proof. This is a consequence of the main result of Madapusi-Pera [MP19].
�

Corollary 3.3.19. Let X be an irreducible symmetric domain, and let L/Q
be a quadratic extension. Then there exists a Shimura datum (G,X) with G
an absolutely simple group which splits over L, such that for any principal
p-covering Γ1\X

+ → Γ\X+, we have

ed(Γ1\X
+ → Γ\X+; p) = dimX,

provided p satisfies the following conditions if X is not a tube domain:

• If X is of classical type, then p > 3
2dimX.

• If X is of type E6, then p is sufficiently large.

Proof. Apply Corollary 3.3.10, to obtain a Shimura datum (G,X) such that
G is an absolutely simple group which splits over L, and such that 3.3.5
holds. Our definition of principal p-coverings already assumes that G admits
a reductive model over Zp, so we assume this from now on.

If X is of tube type (that is c(Σ) = Σ), or X is of type E6, then the
corollary follows from Theorem 3.3.17.

Suppose X is not a tube domain and is of classical type. Then (G,X) is
of abelian type [Del79, 2.3.10]. Recall that this means (since G is adjoint),
that there is a morphism of Shimura data (G′,X ′)→ (G,X), induced by a
central isogeny G′ → G, with (G′,X ′) of Hodge type. As in [Kis10, 3.4.13],
we can assume that G′ again has a reductive model over Zp.

Now we apply 3.3.18 to a principal p-covering Γ′
1\X

+ → Γ′\X+, coming
from the group G′. We obtain the p-incompressibility of this covering for
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p > dimX + 1
2(dimZ + 1). As

dimX =
1

2
(dimU + dimZ) =

1

2
dim(U/Z) + dimZ,

we have

dimX +
1

2
(dimZ + 1) = dimX +

1

2
(dimX −

1

2
(dimU/Z) + 1) ≤

3

2
dimX.

Now a calculation as in [FKW21, 4.3.12] shows that the kernel and cokernel
of Γ′

1\Γ
′ → Γ1\Γ are finite groups of order prime to p. The result now follows

by [FKW21, 2.2.7]. �
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Algébrique du Bois-Marie 1963–1964 (SGA 4), avec le collaboration de P.
Deligne et B. Saint-Donat.



40 BENSON FARB, MARK KISIN AND JESSE WOLFSON

[Tot16] Burt Totaro, Complex Varieties with Infinite Chow Groups Modulo 2, Ann.
of Math. (2) 183 (2016), 363–375.
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