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Tissue-Specific Cell Cycle Indicator Reveals Unexpected 
Findings for Cardiac Myocyte Proliferation

Maretoshi Hirai, Ju Chen, and Sylvia M. Evans
Skaggs School of Pharmacy and Pharmaceutical Sciences (M.H., S.M.E.), Department of 
Medicine (J.C., S.M.E.), and Department of Pharmacology (S.M.E.), University of California, San 
Diego, La Jolla

Abstract

Rationale—Discerning cardiac myocyte cell cycle behavior is challenging owing to commingled 

cell types with higher proliferative activity.

Objective—To investigate cardiac myocyte cell cycle activity in development and the early 

postnatal period.

Methods and Results—To facilitate studies of cell type–specific proliferation, we have 

generated tissue-specific cell cycle indicator BAC transgenic mouse lines. Experiments using 

embryonic fibroblasts from CyclinA2-LacZ-floxed-EGFP, or CyclinA2-EGFP mice, demonstrated 

that CyclinA2-βgal and CyclinA2-EGFP were expressed from mid-G1 to mid-M phase. Using 

Troponin T-Cre;CyclinA2-LacZ-EGFP mice, we examined cardiac myocyte cell cycle activity 

during embryogenesis and in the early postnatal period. Our data demonstrated that right 

ventricular cardiac myocytes exhibited reduced cell cycle activity relative to left ventricular 

cardiac myocytes in the immediate perinatal period. Additionally, in contrast to a recent report, we 

could find no evidence to support a burst of cardiac myocyte cell cycle activity at postnatal day 15.

Conclusions—Our data highlight advantages of a cardiac myocyte–specific cell cycle reporter 

for studies of cardiac myocyte cell cycle regulation.
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Cell cycle regulation is a key factor in disease and regeneration. 1–4 Healing responses to 

injury often require cell cycle re-entry of tissue parenchyma and cognate vascular stro-mal 

fraction, comprising endothelial cells, vascular mural cells, and fibroblasts.1,3 Tissues that 

heal well in response to injury are able to replenish both tissue parenchymal cells and 

vascular stroma because of the ability of these cells to re-enter the cell cycle, or to be 

provided by tissue-resident stem cells.1,4,5 Some tissues, however, are composed of 

parenchymal cells that are refractory to cell cycle re-entry, and a major goal of regenerative 
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medicine is to understand factors regulating cell cycle within these cell types toward 

manipulations that may promote cell cycle re-entry. One such tissue is the heart, where adult 

cardiac myocytes are withdrawn from the cell cycle.6,7

Understanding cardiac myocyte cell cycle regulation lies at the heart of regenerative 

therapies for cardiac diseases and has been the subject of intensive study. One of the great 

challenges to this field is to clearly define the myocyte identity of proliferating cells.8 This is 

particularly challenging because myocytes comprise less than one half of all cell types 

within the heart9 and are closely intermingled with multiple other cell types of smaller size, 

including fibroblasts, pericytes, vascular smooth muscle cells, and endothelial cells.

Studies of cell cycle regulation can be facilitated by cell cycle reporter transgenes. Previous 

cell cycle reporter mice have been generated by in-frame fusion of fluorescent reporter 

transgenes to genes encoding protein fragments that are destabilized at discrete stages of the 

cell cycle.10 Initial iterations of this kind of reporter were generated using a cytomegalo-

virus-based enhancer, were subject to issues with transgene expression, and were not cell 

type–specific, although in more recent iterations, tissue conditional expression is 

possible.11,12 Investigation of cardiac myocyte proliferation with these reporters was 

recently reported.13 Here, we undertook a distinct approach and generated a CyclinA2-

reporter fusion protein under the control of the endogenous CyclinA2 locus. We adopted this 

strategy because CyclinA2 is an essential regulator of cell cycle expressed in all cycling cells 

from S to M phase,14 reasoning that this approach would give us a robust and sensitive 

reporter of cell cycle activity in any cell type of interest.

To facilitate studies of cell type–specific cell cycle behavior, we generated a BAC transgenic 

line, CyclinA2-lacZ-EGFP, that contained a transgene encoding a lacZ fusion in frame to the 

C-terminal coding sequence of cyclinA2. In these mice, the CyclinA2-lacZ fusion reporter is 

expressed under control of the cyclinA2 locus within BAC sequences and, on Cre-mediated 

excision, is converted to a cyclinA2-EGFP fusion gene, expressed under the control of the 

cyclinA2 locus only in the cell type that expressed Cre.

In this report, we demonstrate and characterize cell cycle–specific expression of cyclinA2-
lacZ and cyclinA2-EGFP fusion reporter transgenes and use this new tool, in concert with a 

cardiac myocyte–specific Cre, Troponin T (TnT)-Cre,15 to uncover unexpected findings 

concerning cardiac myocyte cell cycle regulation.

Methods

Transgenic Animals

All animals were maintained and experiments performed in accordance with institutional 

guidelines at University of California, San Diego. Protamine-Cre16 and TnT-Cre15 were 

purchased from Jackson Laboratories. CyclinA2-EGFP allele was produced by crossing 

CyclinA2-LacZ-EGFP with Protamine-Cre line. CyclinA2-LacZ-EGFP transgenics have 

been bred into a Black Swiss outbred background for >15 generations and has not exhibited 

gene silencing. Genotyping for transgene was performed by PCR, using following primers, 
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forward primer: 5′-CAGCCACAACGTCTATATCATGGC-3′, reverse primer: 5′-
TTGTCTGTGGCTATACCATC-3′, giving rise to 405bp amplicon.

Generation of BAC Transgenic Mice

BAC clone RP23-297G4 containing cyclinA2 was purchased from BACPAC Resources 

Center. BAC recombineering was performed with galK selection, and recombineering was 

performed as detailed (https://ncifrederick.cancer.gov/research/brb/protocol.aspx). After 

linearization with AscI, BAC DNA was purified by Sepharose column fractionation. DNA 

purity was examined by pulse field gel electrophoresis, and a fraction with highest purity 

was used for pronuclear injection.

Southern Blotting

Genomic DNA was purified from tail tip biopsies, followed by digestion with NcoI. 

Digested genomic DNA was separated by agarose gel electrophoresis. Short sequence of 

vector backbone adjacent to linearized AscI site was used as a probe (Figure 1A, pink bar). 

The probe was amplified by PCR using following primers, forward primer: 5′-
TAAAGTAGTGGTAATACTCCTGCTTAC-3′, reverse primer: 5′-
TCTATCTGCTACATAACTTACTT-3′.

Cell Culture and Cell Synchronization

Mouse embryonic fibroblasts (MEFs) were isolated by trypsinization of skin tissues of 

embryonic day 14.5 mouse embryos. MEFs were maintained in DMEM (Gibco), 10% fetal 

bovine serum at 37°C in 5% CO2. MEFs were synchronized in G0 phase by culturing in 

DMEM, 0.1% fetal bovine serum at 37°C in 5% CO2 for 72 hours.

Immunofluorescence

Embryos were fixed in 4% paraformaldehyde and embedded in Tissue-Tek OCT after 

sucrose gradient treatment. After denaturation with 1% SDS for 5 minutes, frozen sections 

were blocked with 10% donkey serum, 3% skim milk, 0.1% Triton, donkey anti-mouse IgG 

Fab fragment (715-007-003, Jackson Immunoresearch, 1:100), followed by incubation with 

following primary antibodies. Primary antibodies used for immunohistochemistry were anti-

TnT mouse monoclonal (13-11, Thermo Scientific, 1:200), anti-GFP rabbit polyclonal 

(ab290, Abcam, 1:400), anti-Serine28 phosphoHistone H3 rat monoclonal (HTA28, BD 

Pharmingen, 1:25), anti-Serine 10 phosphoHistone H3 rabbit polyclonal (06-570, Millipore, 

1:200), anti-α-actinin (Sarcomeric) mouse monoclonal (EA53, Sigma, 1:100), anti-

PDGFRα goat poly-clonal (AF1062, R&D Systems, 1:100), anti-CD31 rat monoclonal 

(ME13.3, BD Pharmingen, 1:50), anti-CD45 rat monoclonal (30-F11, eBioscience, 1:50), or 

anti-CD146 rat monoclonal (ME-9F1, BioLegend, 1:50). Secondary antibodies used were 

Alexa 488, 555, or 647 anti-rabbit, mouse, rat, or goat IgG (Life Technologies), followed by 

nuclear staining with DAPI. Stained sections were mounted with Dako fluorescence 

mounting medium and visualized using an Olympus confocal microscope (FV1000). 5-

Ethynyl-2′-deoxyuridine (EdU; 30 μg/g, dose per mouse body weight; Life Technologies) 

was injected 2 to 10.5 hours before dissection and detected with the Click-iT EdU Alexa 

Fluor 647 Imaging Kit (Life Technologies). EdU was intraperitoneally injected in pregnant 
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dams and adult mice or subcutaneously injected in the back of postnatal day (PN) 0 and PN1 

mice.

Quantitative Analysis

Quantitative analysis was performed using Image J software or Volocity software. To 

determine the number of myocardial nuclei of postnatal heart tissue sections, nuclei 

surrounded by staining with anti-PDGFRα, anti-CD31, anti-CD45, or anti-CD146 antibody 

were subtracted from total number of nuclei.

Results

Using BAC recombineering technology with galK selection,17 a BAC plasmid containing 

83.2 kbp upstream and 87.4 kbp downstream of the cyclin A2 transcription start site was 

engineered to insert a lacZ cassette flanked by loxP sites, followed by an EGFP cassette in 

frame immediately before the stop codon of cyclin A2 (Figure 1A). Thus, the cyclinA2-lacZ 
fusion gene would be expressed under control of the cyclin A2 locus as contained within 

BAC sequences. On Cre-mediated excision, CyclinA2-EGFP would be expressed under 

control of the cyclinA2 locus only in lineages that had expressed Cre (Figure 1B). After 

linearization, recombineered BAC DNA was injected into pronuclei (Online Figure IA). 

Southern blot screening confirmed 2 independent mouse lines (CyclinA2-lacZ-EGFP; 

Figure 1C).

To define phases of cell cycle in which CyclinA2-EGFP was expressed, a CyclinA2-EGFP 

mouse line was generated by germline ablation of the lacZ cassette in cyclinA2-lacZ-EGFP, 

using Protamine Cre.16 In this line, CyclinA2-EGFP should be expressed under control of 

the cyclinA2 locus within BAC sequences. MEFs were harvested from CyclinA2-EGFP 

embryos. MEFs were synchronized in G0 by serum starvation,18 then induced to re-enter 

cell cycle by addition of 10% fetal bovine serum in the presence of EdU (12 μM; Figure 

2A). Cultures were fixed with 4% paraformaldehyde every 6 hours, then immunostained 

with antibodies to GFP, the M phase–specific marker, Serine 28 phosphohistone 3,19 and 

stained for EdU, with DAPI nuclear staining. Attempts to visualize CyclinA2-EGFP 

expression by live imaging were not successful, for reasons which are not clear, but may be 

owing to low levels of transgene expression or quenching of EGFP within the context of the 

CyclinA2 fusion protein.

As shown in Figure 2B, MEFs initiated expression of CyclinA2-EGFP by 18 hours after 

serum induction (Figure 2B, c2), at mid-G1 when no cells yet demonstrated EdU 

incorporation (Figure 2B, c3). EdU incorporation, marking S phase, was evident by 24 hours 

after induction, and all cells marked by EdU were also positive for CyclinA2-EGFP (Figure 

2B, d2, d3). By 30 hours after induction, the M phase marker, Serine 28 phosphohistone 3, 

was observed (eg, in cells undergoing telophase as shown in Figure 2B, e4, yellow ellipses). 

CyclinA2-EGFP expression was no longer evident in cells at telophase (Figure 2B, e2, 

yellow ellipses). This observation was consistent with CyclinA2-EGFP dispersion 

throughout the cytosol during metaphase (Figure 2C, c2) and its absence at late telophase 

(Figure 2C, d2). Altogether, the foregoing indicated that CyclinA2-EGFP was expressed 

from mid-G1 to mid-M phase.
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Quantitative analysis revealed dynamics of CyclinA2 and EdU labeling (Figure 2D and 2E). 

CyclinA2(+)/EdU(−) cells reached a peak at mid-G1 phase, followed by a peak of 

CyclinA2(+)/EdU(+) cells at S phase. At M/G0, CyclinA2(+)/ EdU(−) cells began to 

disappear, whereas CyclinA2(−)/EdU(+) cells began to appear. From foregoing data, as 

schematically diagrammed in Figure 2F, CyclinA2-EGFP appeared somewhat earlier than 

EdU and disappeared at telophase, whereas, as expected, EdU label remained after cell 

division, indicating that CyclinA2-EGFP provided a more sensitive and accurate read-out for 

current cell cycle activity than EdU.

To examine dynamics of CyclinA2-β-galactosidase expression, MEFs were harvested from 

CyclinA2-lacZ-EGFP embryos and used for a time-course experiment, performed as 

described earlier. After fixation, cultures of MEFs were stained with X-gal and 

immunostained with Ser10 anti-phosphohistone 3 antibody, marking G2 to M nuclei,20 and 

DAPI nuclear staining. As observed for CyclinA2-EGFP and as shown in Figure 3A, 

CyclinA2-β-galactosidase was first evident at mid-G1 (Figure 3A, c2) and remained evident 

through S/G2 phase (Figure 3A, d2, e2). At metaphase, CyclinA2-β-galactosidase was 

dispersed throughout the cytosol, (Figure 3A, e2, white circles and Figure 3B, c2; and 

Online Figure II, b2) and was no longer evident in telophase (Online Figure II, c2). 

Therefore, timing of CyclinA2-β-galactosidase expression during cell cycle mirrored that of 

CyclinA2-EGFP.

Next, to further verify that CyclinA2-EGFP expression was not carried over from one cell 

cycle to the next, MEFs were synchronized in G0 by serum starvation, then induced to re-

enter cell cycle by addition of 10% fetal bovine serum. At 24 hours after stimulation (t=0, 

Figure 3D, a1–3), when most cells were in S phase, MEFs were again subjected to serum 

starvation to arrest cell cycle (Figure 3C). At t=0, as expected, all cells expressed CyclinA2-

EGFP (Figure 3D, a2). However, 6 hours after serum withdrawal, most cells had ceased 

CyclinA2-EGFP expression, reflecting entry into late M/G0 (Figure 3D, b1–3), although 

cells in M phase, including early telophase as marked by Serine 28 phosphohistone 3, still 

exhibited faint transgene expression (Figure 3D, b2, white ellipse). At 12 hours after serum 

withdrawal, CyclinA2-EGFP had disappeared completely (Figure 3D, c2, d2). Thus, 

CyclinA2-EGFP had disappeared by late telophase/G0.

To understand cardiac myocyte cell cycle regulation during heart development, CyclinA2-

lacZ-EGFP mice were crossed with a cardiac myocyte–specific Cre mouse line, TnT-Cre.15 

To compare in vivo expression of our cell cycle indicator with EdU labeling, pregnant dams 

were injected intraperitoneally with EdU (30 μg/g; dose per body weight) 2 hours before 

harvest. Embryos were harvested at embryonic day 10.5, 12.5, 14.5, and 18.5, fixed with 4% 

paraformaldehyde, and immunostained with antibodies to GFP, TnT, stained for EdU, and 

with DAPI (Figure 4A).

As expected,13,21,22 at embryonic day 10.5, 12.5, and 14.5, CyclinA2-EGFP was selectively 

expressed in the ventricular compact zone, not in trabeculae. Most CyclinA2-EGFP-positive 

cardiac myocytes overlapped with EdU staining (white arrows). Some CyclinA2-EGFP-

positive cardiac my-ocytes were EdU-negative, as expected, because CyclinA2-EGFP is 

expressed from mid-G1 through M phase, whereas EdU is taken up only by cells undergoing 
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S phase during the EdU pulse. From quantitative analysis, ≈81% of CyclinA2-EGFP-

positive cardiac myocytes were also positive for EdU staining (Online Figure III). As 

expected, EdU staining was also observed in noncardiac myocyte lineages that were not 

stained for TnT. Thus, Cyclin A2-EGFP was expressed in a lineage-specific manner and 

allowed for sensitive detection of cycling cardiac myocytes.

Quantitative analysis of CyclinA2-EGFP expression during examined embryonic stages 

showed that, as previously found,6,21 the proliferation rate of cardiac myocytes gradually 

decreased with progressive development (Figure 4B, left panel). Quantitative analysis 

demonstrated a consistent profile of CyclinA2-EGFP expression and EdU labeling of 

cardiac myocytes, identified by TnT staining (Figure 4B, right panel). Overall, consistency 

of these results with previous studies of embryonic cardiac myocyte proliferation6,13 

validated CyclinA2-EGFP as a cardiac myocyte–specific cell cycle indicator.

At birth, the circulatory system undergoes radical changes, profoundly affecting cardiac 

physiology.23 To examine proliferation of cardiac myocytes perinatally, EdU labeling was 

performed on TnT-Cre;CyclinA2-lacZ-EGFP mice by subcutaneous injection 4 hours before 

harvest. Hearts were harvested at postnatal day 0 (PN0), 1 (PN1), 5 (PN5), and 10 (PN10), 

fixed with 4% paraformaldehyde, sectioned, and immunostained with antibodies to GFP and 

stained for EdU with DAPI nuclear staining (Figure 5A). Identification of myocyte nuclei in 

the context of postnatal heart tissue is challenging.8 Because of the large area comprised by 

individual cardiomyocytes relative to other cardiac cell types, immunostaining for highly 

expressed myocyte cytoskeletal markers, such as TnT, can appear to encompass nuclei that 

are in fact nonmyocyte. Therefore, to identify myocyte nuclei, we used a negative staining 

protocol, using a cocktail of antibodies that comprehensively detected nonmyocyte cell types 

within the heart, including fibroblasts (PDGFRα), endothelial cells (CD31 and CD146), 

blood cells (CD45), and vascular support cells (CD146).24,25 Results of this analysis 

demonstrated that, as expected,6 the number of CyclinA2-EGFP-positive cardiac myocytes 

was reduced between PN0 and PN1 and further reduced by PN10. Intriguingly, during the 

immediate perinatal period (PN0-PN1), we noted fewer cardiac myocytes expressing 

CyclinA2-EGFP in right ventricle relative to left ventricle (LV) or interventricular septum. 

As seen during embryonic stages, from stages examined from PN1 to PN10, most CyclinA2-

EGFP cardiac myocytes exhibited EdU staining. As expected, however, a majority of EdU 

staining at these stages was observed within noncardiac myocyte populations.6

Quantitative analysis of CyclinA2-EGFP and EdU labeling of cardiac myocyte nuclei during 

perinatal stages (Figure 5B) showed expected overall agreement between CyclinA2-EGFP 

and cardiac myocyte EdU labeling. Quantitative analyses confirmed lower rates of cell cycle 

activity of right ventricle cardiac myocytes relative to LV and interventricular septum 

cardiac myocytes at PN0 and PN1 (Figure 5B, right panel).

Binucleation of cardiac myocytes, where they undergo a round of cell cycle with 

karyokinesis but not cytokinesis, occurs from PN4 to PN7,6 suggesting that CyclinA2-EGFP 

expression at PN5 reflected cell cycle activity during binucleation. To address this, PN5 

cardiac myocytes were isolated and plated on glass slides, immunostained with antibodies to 

GFP and sarcomeric-α-actinin, stained for EdU, and with DAPI. Quantitative analysis with 
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isolated cardiac myocytes (n=451) demonstrated that ≈60% of myocytes at this stage were 

mononucleated and ≈35% were binucleated (Figure 6A). Approximately 14% of mono-

nucleated cardiac myocytes expressed CyclinA2-EGFP, whereas only 2% of binucleated 

cardiac myocytes were positive for CyclinA2-EGFP (Figure 6B). The extent of EdU labeling 

of either mononucleated or binucleated cardiac myocytes was again in overall agreement 

with CyclinA2-EGFP expression (Figure 6B). Representative mononucleated and binucle-

ated cardiac myocytes isolated at PN5 are shown (Figure 6C). Together, these results 

indicated that, as expected, CyclinA2-EGFP was expressed during cell cycle events required 

for bi-nucleation, but disappeared after binucleation.

Recent results suggested that a proliferative burst of ventricular cardiac myocytes occurs at 

PN15.26 If this were the case, our CyclinA2-EGFP should be expressed accordingly in 

cardiac myocytes at this stage. To investigate this, and guided by protocols used in the 

previous study,26 EdU (30 μg/g) was injected into TnT-Cre;CyclinA2-lacZ-EGFP mice at 

11:30 am or 9:30 pm on PN14 or 11:30 am on PN15. Hearts were harvested 10.5 hours after 

each EdU injection, at 10 pm on PN14, 8 am on PN15, or 10 pm on PN15. Heart tissue 

sections were immunostained with antibodies to GFP, TnT, and stained for EdU, and with 

DAPI. Extremely rare Cyclin A2-EGFP cardiac myocytes were observed, some of which 

were also positive for EdU label (Figure 7A). As expected, the majority of EdU-positive 

cells were labeled by the cocktail of antibodies to noncardiac myocyte markers (Figure 7B, 

blue circles). Quantitative analysis revealed that the number of CyclinA2-EGFP-positive 

cells per total cardiac myocytes gradually decreased in the range from 0.025% to 0.010% 

throughout PN14 and PN15 (Figure 7C). These numbers are consistent with quantitative 

analysis of cardiac myocyte proliferation rates in young adult mice using stable isotope 

labeling.27 We further investigated rates of cardiac myocyte cell cycle activity from PN14 to 

PN20 by quantification of CyclinA2-EGFP- and EdU-labeled cells. As shown in Online 

Figure IV, rates of cardiac myocyte cell cycle activity gradually and steadily decreased from 

PN14 throughout PN20.

To ensure that CyclinA2-lacZ-EGFP transgenes could be expressed at this stage, EdU 

labeling of Protamine-Cre;CyclinA2-EGFP mice was performed by peritoneal injection 6 

hours before harvest, and hearts were harvested at PN15. CyclinA2-EGFP-positive cells that 

colocalized with EdU staining were observed within the LV wall at PN15 (Online Figure 

VA). Sections of PN15 hearts from CyclinA2-lacZ-EGFP mice were also stained for X-gal. 

CyclinA2-β-galactosidase cells were observed scattered throughout the heart (Online Figure 

VB). Thus, CyclinA2-LacZ and -EGFP transgenes could be expressed at these stages.

Discussion

In summary, we have generated a CyclinA2-EGFP transgene that reports cell cycle activity 

in a Cre-dependent manner, providing sensitive readout of cell cycle activity in cardiac 

myocytes or other cell types of interest. One advantage of our indicator relative to recently 

described tissue-specific FUCCI (fluorescent ubiquitination-based cell cycle indicator) 

indicators11,12 is that our indicator relies on a single fluorescence marker to report cell cycle 

activity, leaving other fluorescence channels available for additional markers. CyclinA2-

EGFP was expressed from mid-G1 to mid-M phase, similar to endogenous cyclinA2,14,28 
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although slightly earlier and later, perhaps owing to enhanced sensitivity of detection or 

transgene stability. Using TnT-Cre, we compared cardiac myocyte–specific expression of 

CyclinA2-EGFP to results with EdU labeling. Owing to tissue complexity, attribution of 

cardiac myocyte–specific EdU staining is extremely challenging.8 In contrast, CyclinA2-

EGFP provided a robust and sensitive readout of cardiac myocytes actively engaged in cell 

cycle activity. Additionally, the CyclinA2-EGFP reporter indicates cells that are actively 

engaged in cell cycle at the time of harvest, whereas EdU label can also be present in cells 

that have exited cell cycle. Another potential advantage to our reporters is that nucleosides 

and nucleoside analogs like thymidine and EdU are also incorporated during DNA repair 

consequent to DNA damage, whereas CyclinA2 is activated during bona fide cell cycle 

activity. This issue may be of particular relevance in the perinatal period, where cardiac 

myocytes exhibit increased DNA damage in response to increased oxidative stress, 

promoting cell cycle withdrawal.29

Using CyclinA2-EGFP, we discovered that rates of cell cycle activity in right ventricular 

cardiac myocytes at P0 and P1 were reduced relative to those of LV cardiac myocytes. This 

differential rate of cardiac myocyte cell cycle activity might, at least in part, contribute to 

differences in size between postnatal right ventricle and LV and may reflect relative 

increased pressures experienced by the LV and interventricular septum after birth.23

Utilization of the cardiac myocyte–specific cell cycle indicator allowed us to re-examine 

recent findings of a burst of myocyte cell cycle re-entry at PN15.26 Examination of 

CyclinA2-EGFP expression consequent to TnT-Cre activity, in concert with EdU labeling, 

demonstrated that cardiac myocytes do not exhibit a burst of proliferative activity at PN15. 

These findings serve to illustrate the challenges of attributing observed cell cycle activity to 

cardiac myocytes within complex cardiac tissue in the absence of a clear myocyte-specific 

indicator, as now provided by this new cell-specific cell cycle reporter. We also describe the 

development of a complementary method to negatively define cardiac myocyte nuclei by 

utilization of a cocktail of antibodies that comprehensively marks nonmyocyte populations 

within the heart.

In this report, we have focused on the utility of our reporter for studying cardiac myocyte 

cell cycle activity. It should be noted that the CyclinA2-lacZ-EGFP transgene will also have 

great utility in the context of other cell types during development and in the adult and in the 

context of both regenerative medicine and cancer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Novelty and Significance

What Is Known?

• Understanding and promoting postnatal cardiac myocyte cell cycle regulation 

is a major goal of regenerative therapies for heart disease.

• Studies of myocyte proliferation in postnatal heart are challenging owing to 

tissue complexity.

What New Information Does This Article Contribute?

• We characterize a novel cell-type–specific cell-cycle reporter and use it to 

examine cardiac myocyte proliferation.

• We found reduced proliferation of right ventricular cardiac myocytes relative 

to left ventricular cardiac myocytes in perinatal period.

• In contrast to a recent study, there was no proliferative burst of cardiac 

myocytes at postnatal day (PN) 14 or PN15.

We have developed a new transgenic mouse line that enables visualization of cell cycle 

activity in specific cell types, including cardiac myocytes, consequent to Cre activity. 

Characterization of CyclinA2-floxed:LacZ-GFP mice demonstrated excellent agreement 

between pulse EdU labeling and CyclinA2-reporter expression. CyclinA2-fusion 

reporters were expressed from mid-G1 to late-M phase. Unexpectedly, studies using the 

Troponin T-Cre;CyclinA2-floxed:LacZ-GFP mice revealed reduced proliferation of right 

ventricular cardiac myocytes relative to left ventricular cardiac myocytes in the perinatal 

period. In contrast to a recent study, studies with Troponin T-Cre;CyclinA2-floxed;LacZ-

GFP mice showed no proliferative burst of cardiac myocytes at PN14 or PN15. 

CyclinA2-floxed;LacZ-GFP reporter mice can be used to selectively visualize 

proliferating cardiac myocytes during embryonic development and in the postnatal 

period, addressing a current limitation in the field.
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Figure 1. A, Diagram of CyclinA2 indicator bacterial artificial chromosome (BAC) transgene
A floxed lacZ cassette and an enhanced green fluorescent protein (EGFP) cassette were 

inserted in frame immediately before the cyclinA2 stop codon. B, CyclinA2-LacZ will be 

expressed under control of cyclinA2 sequences on the BAC. TnT-Cre;CyclinA2-LacZ-EGFP 

mice express CyclinA2-EGFP selectively in cardiac myocytes. C, Southern blot confirming 

transgene integration.
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Figure 2. 
A, Diagram of time-course experiment shown in B. B, Time-course experiment after 

synchronization of CyclinA2-enhanced green fluorescent protein (EGFP) mouse embryonic 

fibroblasts (MEFs). Cells were immunostained with antibodies to green fluorescent protein 

(GFP), Serine 28 phosphohistone 3 (S28pH3), and stained for 5-ethynyl-2′-deoxyuridine 

(EdU) and with DAPI. Scale bar: 100 μm. C, Fluorescence microscope images of CyclinA2-

EGFP MEFs in mid G1 (a1–4), S (b1–4), metaphase (c1–4), and telophase (d1–4). Note 

cytosolic dispersion of CyclinA2-EGFP in metaphase (c2) and its disappearance in telophase 

(d2). Scale bar: 50 μm. D, Quantitative analysis of CyclinA2-EGFP or EdU-positive cells at 

each time point. E, Quantitative analysis of CyclinA2-EGFP/EdU double- or single-positive 

cells at each time point. F, Schematic diagram of CyclinA2-EGFP expression and EdU 

incorporation throughout cell cycle.
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Figure 3. A, Time-course experiment after synchronization of CyclinA2-LacZ-enhanced green 
fluorescent protein (EGFP) mouse embryonic fibroblasts (MEFs)
MEFs were stained with X-gal, followed by immunostaining with anti-Serine10 

phosphohistone 3 antibody (S10pH3) and staining with DAPI. Cells begin to express 

CyclinA2-βgal at mid G1 (c2). Scale bar: 50 μm. B, Images of CyclinA2-LacZ-EGFP MEFs 

at G0 (a1–3), S (b1–3), and M phase (c1–3). Cells were stained with X-gal, followed by 

immunostaining for S10pH3 and staining with DAPI. CyclinA2-β-galactosidase (β-gal) was 

expressed during S phase (b2) and dispersed within cytosol at M phase (c2). C, Diagram of 

time-course experiment shown in D. D, Time-course experiment after serum starvation of 

CyclinA2-EGFP MEFs. MEF cells were stained for CyclinA2-EGFP, S28pH3, and DAPI. 

CyclinA2-EGFP disappeared at telophase after serum starvation (b1–3, white circles), then 

completely disappeared (c1–3, d1–3). Scale bar: 100 μm.
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Figure 4. A, Fluorescence microscopy of embryonic day (ED) 10.5, ED12.5, ED14.5, and ED18.5 
heart sections of Troponin T (TnT)-Cre;CyclinA2-LacZ-EGFP mice
Sections were immunostained for CyclinA2-EGFP and Troponin T and stained for 5-

ethynyl-2′-deoxyuridine (EdU) and with DAPI. CyclinA2-EGFP expression was largely 

confined to the compact layer. CyclinA2-EGFP/EdU double-positive cells are indicated by 

white arrows. For lower magnification (upper three panels), scale bar denotes 50 μm; for 

higher magnification images (lower panel), scale bar denotes 20 μm. B, Quantitative 

analysis of CyclinA2-EGFP and EdU-positive myocardial cells at ED10.5, ED12.5, ED14.5, 

and ED18.5. Myocardial cells were defined by Troponin T staining. Note gradual and steady 

decrease of CyclinA2-EGFP- and EdU-positive myocardial cells. Cmpt indicates compact 

layer; and Trbc, trabecula.
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Figure 5. A, Fluorescence microscopy of heart sections from postnatal day 0 (PN0), day 1 (PN1), 
day 5 (PN5), and day 10 (PN10) TnT-Cre;CyclinA2-LacZ-EGFP mice
Sections were immunostained with antibodies for CyclinA2-EGFP, a cocktail of antibodies 

to PDGFRα, CD31, CD45, and CD146 stained for 5-ethynyl-2′-deoxyuridine (EdU) and 

DAPI. Images of left ventricle (LV), right ventricle (RV), and interventricular septum (IVS) 

are shown. CyclinA2-EGFP/EdU double-positive cells are indicated by white arrows. Note 

reduced number of CyclinA2-EGFP- or EdU-positive cardiac myocyte nuclei in RV relative 

to LV or IVS at PN0 and PN1. Scale bar: 50 μm. B, Quantitative analysis of CyclinA2-

EGFP- and EdU-positive myocardial nuclei at PN0, PN1, PN5, and PN10. Myocardial cells 

were defined by excluding nonmyocardial cells labeled with either PDGFRα, CD31, CD45, 

or CD146. Note that all CyclinA2(−)/EdU(+) cells were labeled with either PDGFRα, 

CD31, CD45, or CD146.
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Figure 6. A, Quantitative analysis of the fraction of mononucleated and binucleated cardiac 
myocytes from PN5 TnT-Cre;CyclinA2-LacZ-enhanced green fluorescent protein (EGFP) hearts
A total of 451 cardiac myocytes were subjected to quantification. B, Quantitative analysis of 

the percentage of mononucleated or binucleated cardiac myocytes that were positive for 

CyclinA2-EGFP or 5-ethynyl-2′-deoxyuridine (EdU). C, Fluorescence microscopy of 

cardiac myocytes isolated from PN5 TnT-Cre;CyclinA2-LacZ-EGFP hearts. Cells were 

immunostained for CyclinA2-EGFP, sarcomeric-α–actinin, stained for EdU and DAPI. 

Scale bars: 20 μm.
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Figure 7. A, Fluorescence microscopy of heart sections from TnT-Cre;CyclinA2-LacZ-enhanced 
green fluorescent protein (EGFP) mice at PN14 and PN15 stained for CyclinA2-EGFP, Troponin 
T, 5-ethynyl-2′-deoxyuridine (EdU), and DAPI
Mice were labeled with EdU during indicated time frames. CyclinA2-EGFP-positive cells 

were extremely rare. A single CyclinA2-EGFP-positive cardiac myocyte in the field is 

shown (white circle). CyclinA2-EGFP-positive but EdU-negative cardiac myocytes were 

also observed. Scale bar: 50 μm. B, Fluorescence microscopy of heart sections from TnT-

Cre;CyclinA2-LacZ-EGFP mice at PN14 stained for CyclinA2-EGFP, PDGFRα, CD31, 

CD45, CD146, EdU, and DAPI. All EdU-positive/ CyclinA2-EGFP-negative cells were 

labeled with either anti-PDGFRα, anti-CD31, anti-CD45, or anti-CD146 antibody (blue 

circles). Scale bar: 50 μm. C, Quantitative analysis of CyclinA2-EGFP myocardial cells 

throughout PN14 and PN15. Note gradual and steady decrease.

Hirai et al. Page 18

Circ Res. Author manuscript; available in PMC 2017 July 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Methods
	Transgenic Animals
	Generation of BAC Transgenic Mice
	Southern Blotting
	Cell Culture and Cell Synchronization
	Immunofluorescence
	Quantitative Analysis

	Results
	Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7



