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ABSTRACT OF THE DISSERTATION

Examining NeuroHIV-Induced Immune Responses Through Gene Expression and a
Newly Designed Machine Learning-Based Tool for Automatic Image Analysis

by

Theodore John Kataras

Doctor of Philosophy, Graduate Program in Genetics
Genomics and Bioinformatics.

University of California, Riverside, December 2022
Dr. Marcus Kaul, Chairperson

Human Immunodeficiency Virus (HIV) remains a global health concern even as

antiretroviral therapies (ART) improve livelihood outcomes for infected individuals. Viral

infection in the brain presents a reservoir removed from the effects of these treatments. As the

population of HIV infected individuals ages with greater longevity, neurocognitive decline has

remained prevalent despite ART. Addressing this neurocognitive decline requires altering the

chronic immuno-activation that appears to drive the dysfunction and developing interventions

within a complete understanding of immune pathways involved.

This dissertation seeks to provide novel insight into genes involved in HIV induced

neurodegeneration as well as introducing a program designed to enhance the throughput of this

and similar studies on dynamic cellular systems. ACCT: Automatic Cell Counting with Trainable

Weka Segmentation was developed to be accessible in both computational and computer science
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expertise requirements and we have compared its performance to similar programs on

neurological datasets. While we developed this program using data from neuroscience, it stands

as a broadly accessible and useful tool across any imaging data with sufficiently defined objects

to be quantified.

The primary resident immune cells of the brain are the microglia. These cells champion

the innate immune response to viruses via the type 1 and 2 interferon response. Interferon

response genes (IRG), however, also have the capability of feeding back on the pathway itself to

modify the throughput of the immune response. Two genes which have regulatory effects on type

1 interferon response are Interferon Regulatory Factor 7 (IRF7), a promoter of induction and

enhancement of type 1 interferon activity and Guanylate Binding Protein 4 (GBP4), an inhibitor

of IRF7 function.

I have associated the ortholog to this GBP gene with immune response to HIV in an HIV

infection model using gene expression data with population specific enrichment analysis (PSEA).

I have also examined this protein’s localization in mouse cortex, and observed distinct staining

populations of immune cells. This dissertation seeks to advance understanding through increased

understanding of HIV-induced neurodegeneration. The open-access design of ACCT is intended

to increase researchers’ ability to perform similar analyses using this computational tool that we

have designed and contextualized within and against similar automatic image quantification

methods.
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Introduction

HIV causes mortality through a systemic drop in broad populations of immune cells due

to chronic activation of activated CD4+ lymphocytes and macrophages. HIV additionally leads to

a cascading immune response where the primary driver of dysfunction is not the infection itself,

but the resulting chronic immune activation (Kaul et al., 2001; Laurence, 1993).

Advances in antiviral therapies have been successful in controlling the systemic HIV

infection and massively improving the livelihood of individuals living with the virus. While these

individuals live longer, it has become clear that HIV makes its way early during infection into the

brain and presents different challenges to limit infection in the body at large (Kanmogne et al.,

2020; Kaul et al., 2001).

The developed antiviral treatments for HIV have massively limited penetration beyond

the blood-brain barrier. Because of this separation, it may be more effective to control HIV in the

brain by altering the relationship between the existing immune mechanisms in the brain which

drive dysfunction in response to HIV (Grant et al., 1999; Saloner & Cysique, 2017).

The immune landscape of the brain is unique behind the blood-brain barrier. The primary

form of immune response in the brain relies on ubiquitous gene expression channels present in all

cells, as well as a unique immune cell population. These unique immune cells are called

microglia, and they are drivers of the innate immune response which targets broad types of
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biological threats via an assortment of receptors that recognize elements common to viruses,

bacteria, and other pathogens (D’Agostino et al., 2012; Gomez-Nicola & Perry, 2015).

The innate immune response to HIV and other immune threats is primarily comprised of

ISGs (interferon stimulated genes). There are two type I interferon genes that transduce varied

signaling and cytokine pathways in different manners. In the context of HIV, interferon alpha of

type I interferon response has been found to be primarily responsible for the chronic immune

activation that brings neurodegeneration, while interferon beta has been indicated to have a role in

controlling the innate immune response to HIV (Savan, 2014; Singh et al., 2020; Thaney et al.,

2017; Thaney & Kaul, 2019).

The interferon response is controlled through a network of transducers and repressors.

IRF7 is an ISG which controls induction and continued transduction of the type I IFN pathway.

This gene promotes initial activation, but also increases the intracellular availability of signaling

molecules leading to further increased ISG activation (Honda et al., 2005; Kawai et al., 2004;

Ning et al., 2011).

While IRF7 heavily influences the action of the interferon pathways, it is not itself inert

to regulation. GBP4 is a regulatory factor that represses the function of IRF7 through direct

inhibition of the phosphorylation process critical to the IRF7’s function (Hu et al., 2011; Sun &

Wang, 2012). GBP4 is a member of the guanylate binding protein family, a family of genes found

both in mice and humans that has been shown to interact broadly with the innate immune

response to a variety of threats including viruses (Braun et al., 2019; Selleck et al., 2013; Vestal &

Jeyaratnam, 2011). The inhibition of IRF7 function by GBP4 could provide critical pressure to tip

2

https://paperpile.com/c/7OVri3/8vr2+AjZX
https://paperpile.com/c/7OVri3/vTX3+fyNM+EDPt+3aVJ
https://paperpile.com/c/7OVri3/vTX3+fyNM+EDPt+3aVJ
https://paperpile.com/c/7OVri3/z1De+BFTa+uIvL
https://paperpile.com/c/7OVri3/z1De+BFTa+uIvL
https://paperpile.com/c/7OVri3/yNXc+S1Yp
https://paperpile.com/c/7OVri3/yNXc+S1Yp
https://paperpile.com/c/7OVri3/9xcj+IB3i+nkR5
https://paperpile.com/c/7OVri3/9xcj+IB3i+nkR5


the scales of immune response to HIV away from neurodegeneration in the brain. A visual

summary of the relationship between the interferon response, IRF7 and GBP4 is presented in

Figure 1.

Fig 1. IRF7 and GBP4 in Type I Interferon Response to Virus. In a simplified representation,
IRF7 is phosphorylated resulting from the activity of pattern recognition receptors after exposure
to intracellular virus. This phosphorylation is required to enter the nucleus and stimulate genes in
the type I and II interferon pathways. The type I interferon pathway then in turn produces more
IRF7, which can be activated via intracellular virus. GBP4 is an interferon-stimulated gene in the
guanylate binding protein family, which has been shown to prevent the phosphorylation and
therefore activation of IRF7 during viral infection.

Genes in the guanylate binding protein gene family have demonstrated functions in

controlling bacterial and viral infection, including reducing the infectivity of HIV (Braun et al.,

2019; Degrandi et al., 2013; Ghimire et al., 2018; Krapp et al., 2016; Tretina et al., 2019). These

genes are interferon-induced themselves, primarily by the type II IFN response (IFNɣ). However,

GBP family members such as GBP1, GBP2 and GBP5 have been previously identified as

upregulated in response to HIV viral infection (Vestal & Jeyaratnam, 2011).
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Studying HIV-induced deleterious neurological patterns presents a distinct challenge.

Research on living human tissue can only be conducted in separated human cells in culture,

which sacrifices the biological context of a full organism with diverse interactions between and

within organ systems. We are able to capture some of this diversity in communication using

mouse models of NeuroHIV, but we must be cognizant of genetic and physiological differences

between the model organism and the human health outcomes we wish to alter. Mouse GBPs have

developed in an orthologous pattern compared to the gene family in humans (Olszewski et al.,

2006). The mouse ortholog of GBP4, Gbp3 has been shown to be upregulated in mouse models of

NeuroHIV [Kaul lab data, unpublished]. I then set out to determine methodologies for identifying

GBP cellular contribution with tissue staining analysis. I report our findings here, including

observation of distinct staining populations of immune cells in the brain. The first chapter of this

dissertation will focus on this GBP-IRF7-neuroHIV relationship.

The relevance of specific genes within the context of HIV-induced neurodegeneration is

often examined via cell quantification, as well as by gene expression analysis. This research relies

on tissue imaging to extract information about disease progression. While advances in technology

have allowed an explosion in available imaging techniques and ability to store and move digital

images, quantification is still often done by hand. While quantification performed by a single

researcher is held up as the gold standard for extracting information from images, this massively

limits the speed at which critical research can be performed in ongoing health crises, such as that

of HIV infection (Jensen, 2013).

Additionally, hand counts from individual researchers can be difficult to standardize (von

Bartheld et al., 2016). Dividing work between researchers can increase the speed of overall
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processing, but creates disparities between results from different researchers’ counts, arising from

innate biases. To avoid this issue, most cell quantification projects fall to a single researcher for

consistency. However, even in this case, fatigue and increasing experience make it difficult to

retain the same decision criteria or biases across an entire dataset which may constitute hundreds

of images and thousands of cells. These difficulties have prompted the development of automatic

cell counting methods which can address the issue of timeliness with mathematical consistency.

The increase in available processing power has also led to a meteoric rise in the

prevalence of computerized methods to quantify cell information in images. Programs such as

Unet use advanced neural networks run on large computing clusters, and while such programs are

effective they are often out of reach for many research laboratories due to prohibitive barriers of

cost and required expertise (Falk et al., 2019; Morelli et al., 2021). Other programs use machine

learning to bring automated quantification to labs with greater accessibility, but they often do not

include the full suite of tools to assess and validate model accuracy in the cell quantification task

(Berg et al., 2019).

Therefore, the second chapter in this dissertation describes ACCT: Automatic Cell

Counting with Trainable Weka Segmentation [Kataras et al. submitted for publication]. ACCT is

built on the machine learning interface of Trainable Weka Segmentation (TWS) in ImageJ, a

ubiquitous free image processing and analysis platform. We synthesize the powerful and intuitive

training process of TWS and the scripting and processing capability within ImageJ and Python to

produce a suite of code that guides the user through training, validation, full experimental

analysis, and a final dataset audit to ensure the accuracy and consistency of cell counting. All of
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this process is done without requiring the use of large external computing resources or any

manipulation of code.

The modern research stage is defined by plentiful data, but limited by understanding. Our

ability to address neurological dysfunction behind the blood-brain barrier is limited by the

restriction of treatment penetrance and difficulty in studying this delicate closely-guarded system.

This dissertation seeks to provide tools and guidance for researchers pushing forward the

development of treatments for neuroHIV. In the process, I have identified Gbp4 as a gene that

may shape the deleterious chronic immune activation during HIV infection. I have also produced

and validated ACCT to enhance speed and consistency of cell quantification experiments with

minimal barriers to accessibility.
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Abstract:

Human Immunodeficiency Virus type 1 (HIV-1, hereafter referred to as HIV) infects

CD4+ immune cells, lymphocytes and macrophages as well as microglia in the brain. This causes

chronic activation of the innate immune system which also enhances the activity and number of

microglia, the resident immune cell of the brain. Chronic activation of microglia leads to the

release of neurotoxic factors which cause neurological disorder as well as exacerbate aging

related neurological diseases.

The guanylate binding protein family of genes (GBP) are Interferon (IFN)-induced

cell-autonomous immune response genes to viruses and other pathogens. GBP genes have been

tied to the IFN responses for specific pathogens, including HIV. We have found Gbp3 to be

upregulated in mouse brains expressing transgenic HIV envelope protein gp120 as transgene

(gp120tg), as well as in HIV infected human macrophage cultures.

Additionally, in the gp120tg mouse model of HIV brain infection (NeuroHIV), Gbp3

expression was correlated with imputed increases in microglia population size and HIV protein

presence in the brain. GBP4 (murine ortholog Gbp3) was one of the most significantly
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upregulated genes in RNA-sequencing analysis of HIV infected human macrophages. We hope to

further define the distinct pathways of GBP interface with host-pathogen interactions in

HIV-induced neurodegeneration.

Introduction

HIV and the neuroimmune system

HIV was discovered in 1983 as the cause of Acquired Immunodeficiency Syndrome

(AIDS) (Barré-Sinoussi, 1983; Gallo et al., 1984; Gallo and Montagnier, 2003; Montagnier, 2002,

Popovic et al., 1984). In 2021 HIV affected 38.4 million people worldwide (UNAIDS, 2022).

HIV primarily infects two types of immune cells: Activated CD4+ lymphocytes and

macrophages. This infection causes a dramatic systemic drop in CD4+ and CD8+ lymphocyte

numbers, eventually leading to AIDS (Laurence, 1993). Though the lymphocytes are far more

numerous and suffer the largest decline, the macrophages are of particular interest due to their

pivotal role in bringing the HIV infection into the central nervous system (CNS). The disorders

and diseases associated with HIV infection of the CNS were originally called NeuroAIDS and are

now generally referred to as NeuroHIV.

The pathology of NeuroHIV includes a chronic activation of macrophages and microglia

in the brain. This sustained activation can further increase the activity and number of microglia as

well as astrocytes in the brain (Borjabad et al., 2010; Kaul et al., 2001).

Microglia are the resident CNS macrophages, and are chronically activated by HIV

infection, contact with HIV protein, or through cell signaling from nearby activated or injured

cells. This activation can lead to neurotoxicity (Borjabad et al., 2010; Kaul et al., 2001). Both
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circulating macrophages and microglia are immune cells with receptors for HIV binding and the

capacity to release cytokines and promote apoptosis in response to a variety of pathogens

(DePaula-Silva et al., 2019; Perry and Gordon, 1988). However, microglia differ from circulating

macrophages in development and distinct response profiles (DePaula-Silva et al., 2019; Perry and

Gordon, 1988). Astrocytes are glial cells that are critical for regulating and maintaining healthy

synaptic functionality of neurons. They cannot sustain HIV infection, but have receptors for HIV

protein binding and are activated by HIV proteins, which contribute to neurodegeneration.

However, there is a gap in available knowledge directly linking the genetic mechanics of immune

activation to the inflammatory cytokines and neurotoxins produced by activated microglia and

astrocytes which cause neurodegeneration. This is evidenced by the lack of broadly effective

treatments or biomarkers for disease progression in the NeuroHIV (Ellis et al., 2009; Kanmogne

et al., 2020; Major et al., 2000).

The CNS injury caused by HIV results from inflammation, not only infection. HIV

exposure causes neuronal damage through the activation of the IFN pathway leading to the

release of cytotoxic factors, including cytokines, lipid mediators, reactive oxygen species (ROS)

and excitotoxic amino acids. This leads to atrophy of neuronal synapses, dendrites and eventually

neuronal death in rodent in vitro and in vivo models and human in vitro studies (Saylor et al.,

2016). This HIV driven neuronal injury is also evidenced in human ex-vivo brain studies of HIV

infected individuals (Kaul et al., 2001). Importantly, neuronal injury can be caused equally by

recombinant viral protein without infection or by viral proteins released by infected macrophages

and microglia (Ellis et al., 2009; Iskander et al., 2004).

12



HIV-induced neurodegeneration can be modeled with HIV gp120-transgenic (tg) mice,

which constitutively express the soluble viral envelope protein gp120 in astrocytes in the mouse

brain under the control of the promoter for glial fibrillary acidic protein (GFAP). HIVgp120tg

mice recapitulate several of the hallmark neurodegenerative features observed in the brains of

humans with NeuroHIV including: 1) decreased neuronal synaptic and dendritic density; 2) an

increase in activated microglia and astrocytes; 3) patterns of differential gene expression; 4)

behavioral deficits (D’Hooge et al., 1999; Krucker et al., 1998; Maung et al., 2014; Toggas et al.,

1994).

The Guanylate Binding Protein Family

The guanylate binding protein (GBP) gene family has been implicated in

pathogen-specific cell-autonomous immunity induced by IFN (Kim et al., 2012; MacMicking,

2012; Tripal et al., 2007).The GBP family is composed of 7 members in humans (hGBP) and 11

in mice (mGbp) with non-parallel homology (Olszewski et al., 2006). Specifically, Mouse Gbp1,

Gbp2, Pseudogene Gbp1, Gbp3 and Gbp5 are respectively orthologous to human GBP1, GBP2,

GBP3, GBP4 and GBP5.

Individual GBP proteins have been tied to HIV-specific immune responses: GBP2 and 5

have been shown to reduce HIV infectivity in human immune cell culture by preventing viral

envelope formation. The reduction in HIV infectivity from GBP2 and 5 results from direct GBP

binding to furin, a protease which cleaves proteins to activate their biological function, and is

necessary for HIV envelope formation (Braun et al., 2019; Krapp et al., 2016).

Several other GBP family members have been found to be upregulated in response to

specific HIV viral proteins (Braun et al., 2019; Fanibunda et al., 2013; Krapp et al., 2016;
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Woollard et al., 2014). One of these upregulated genes, Gbp4 inhibits the function of Irf7, an

inducer and promoter of the type 1 IFN pathway, during Sendai virus infection of mouse

macrophages, and has been implicated in human lung culture with viral infection as well. In

human cells, GBP4 competitive binding to IRF7 is responsible for the repression of

transcriptional regulation of IFN response without GTPase activity (Hu et al., 2011, p. 20; Kim et

al., 2012; Sun and Wang, 2012, p. 4).

The IFN pathway is a well-studied immune response pathway which has two types, or

paths of response. Type 1 IFNs (IFN-α and IFN-β) are generally involved in the inflammatory

response to viral infection and other intracellular pathogens. Type 2 IFN (IFN-γ) responds to

bacterial threats and fills an immunomodulatory role. GBPs as a whole are preferentially induced

by the type 2 IFN, but are upregulated by HIV infection in macrophages and likely microglia as

well (Appelberg et al., 2017). IFN-β, of type 1 IFN response, has been identified as critical to

neuroprotection in the brain against HIV-induced inflammation (Barber et al., 2004; Thaney et al.,

2017).

GBP4’s murine ortholog was significantly upregulated in the HIVgp120tg mouse model,

and the gene’s expression was correlated with the estimated size of the microglial cell population.

Mouse Gbp4 inhibits the type 1 IFN pathway downstream of IFN-α or IFN-β receptor signaling

in vitro (Sun and Wang, 2012, p. 4). The IFN-β derived neuroprotection was reliant on the

presence of the IFN-α receptor, and altering the throughput of IFN-α and IFN-β could lead to a

more neuroprotective antiviral state during HIV infection.
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I also conducted an additional, ancillary study of Gbp3 localization though mouse brain

tissue staining and imaging to expand on the findings from our PSEA analysis of the mouse

model of neuroHIV. In determining adequate imaging methodologies through antibody titration

and costaining analysis, I observed broad but variable distribution of GBP in Resting and

Activated tissues as well as differential staining in populations of immune cells in the cortex

partial to either Iba-1 or P2ry12 staining.

Materials and Methods:

Population Specific Enrichment Analysis

The brains of HIVgp120tg mice in addition to wild type mice of the same genetic

background were used in microarray analysis to study the genetic factors involved in

HIV-induced neurodegeneration (Maung et al., 2014; Toggas et al., 1994). In brief, the study

includes only the wild type and HIVgp120tg animals from a cross involving a HIVgp120tg

HIPEX strain founder line crossed with CCR5 knockout mice (CCR5KO,

B6.129P2-Ccr5tm1Kuz/J) purchased from The Jackson Laboratory. The resultant F2 animals

heterozygous for CCR5 and HIVtgp1201tg were used to generate the new mouse line (Maung et

al., 2014).

In our Population Specific Enrichment Analysis (PSEA), we chose 4 of the most

prevalent cell types in the brain for population estimation: neurons, astrocytes, microglia, and

oligodendrocytes. We approximated each cell population size with a combination of probes from

multiple genes tied to each cell type in the literature (citations and probe IDs provided in

Appendix A, in brief neuron: Nefm, Gad1; astrocyte: Gfap, Aldh1l1, ; microglia: Cd68, Aif1;

oligodendrocyte: Mog, Mbp, Mag ). The genes were chosen based on primary literature and their
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probes selected to maximize agreement within cell types while minimizing overlap with other cell

types (Fig 1.). The quantitative cutoffs for probe inclusion in cell population estimates were total

mean R2 within cell populations > 0.5, and other probe sets < 0.5. This is similar to the

methodology reported in (Capurro et al., 2014).

Fig 1. Correlation coefficient plot of wild type and HIVgp120tg used for cell population size
estimation in PSEA. Selection criteria: total mean R2 within cell populations > 0.5, and other
probesets < 0.5. Multiple probes used for individual genes indicated by numbers after the period.
Citations and probe IDs provided in Appendix A.

We then used these estimates to identify genes specifically associated with only a single

cell type and upregulated in response to HIV via multiple linear regression. The linear models are

constructed modularly from combinations of the 4 cell population estimates and the HIV protein

presence regressor (Fig. 2). This methodology for identifying cell type specific pathogen response

genes was previously applied to Huntington’s Disease (Kuhn et al., 2015).
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Fig. 2 Explanation of PSEA process on mouse brain microarray data. Single cell type expression was
assigned by computing the correlation between each probeset and the reference signals and restricting
further analyses to the cases where the correlation was larger than 0.8 for a single cell type (e.g., neurons)
and less than 0.2 for the other three cells types (e.g., astrocyte, oligodendrocyte and microglia). We then
calculated regressions with only one cell-type regressor (neurons in the above example) plus the
corresponding auxiliary regressor (for differential expression between disease and control). This general
methodology for estimating changing cell populations in mixed tissue analysis was designed by Alexander
Kuhn in 2015.
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Monocyte Derived Macrophage RNA Sequencing

Human monocyte-derived macrophage (MDM) cell culture: white blood cell concentrates

(WBC) were purchased from the San Diego Blood Bank and further purified via a Ficoll-Paque

density gradient centrifugation as described in previous work by the Kaul lab (Medders et al.,

2010).

The fraction containing monocytes, which can be differentiated into macrophages, were

isolated. islation was achived by centrifugation of heparinized blood at 200g for 20 min, buffy

coat cells using density gradients of Ficoll-paque (r 1.073; GE Health Life Sciences, Piscataway,

NJ) and transferred into 75-cm2 cell-culture flasks. Media with human serum was then used for

in vitro differentiation into macrophages. after allowing adherence in RPMI 1640 containing 2

mM glutamine, antibiotics (penicillin/streptomycin), and 10% human AB serum (RPMI-ABS) at

37 ̊C, 6% CO2, in humidified atmosphere. Nonadherent cells were removed by rigorous washing

with warm RPMI 1640 (37 ̊C). Adherent monocytes were then cultured for 7 days in the above

serum-containing medium to allow for differentiation into MDMs. Cells were detached and

harvested for experimentation with a rubber policeman in a rinse of PBS containing

Ethylenediaminetetraacetic acid (EDTA) (0.2 g/l; Sigma, St. Louis, MO) for 5–10 min at 37 ̊C.

Cultures were paired after splitting, with two uninfected and two infected cultures per

individual. Each culture was seeded with 5x105 MDMs into 12 or 24 well plates after washing

with PBS and cultured for 11-13 days in RPMI-ABS. Dead cells were identified with trypan blue

to observe culture health. HIV infection was performed with type 1 HIV-BaL strain culture fluid

acquired from the NIH and confirmed with detection of the p24 viral protein. Inoculation period
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was 4 hours with 500𝜇l of HIV-BaL followed by 3 washes in phosphate buffered saline. The cells

were infected with HIV for 5 days before harvesting for analysis. RNA extraction was performed

using the QIAshredder column and RNeasy minikit by Dr. Ana Sanchez [Sanchez et al., Kaul Lab

unpublished]. Sequencing analysis was performed via sequencing with an Illumina HiSeq 2500

using both single and paired end reads. The raw data of the RNA-seq were then transferred to

Cory White and Christopher Woelk at University of California, San Diego for analysis.

Comparative expression values were calculated in EdgeR and normalized via the weighted

trimmed mean of M-values methodology.

THP-1 macrophage RT-qPCR

To examine the potential for use in further studies on GBP4-HIV interaction, human

monocytic THP-1 cells (macrophage-like) were cultured and interrogated with RT-qPCR analysis

for RNA expression after stimulation with bacterial lipopolysaccharides (LPS) as an

immune-stimulant.

Cells were grown in medium containing 90% RPMI 1640 (Life Technologies, Carlsbad,

CA), 10% FBS (Hyclone), 0.05μM 2- mercaptoethanol, 2 μML-glutamine (Sigma), and a

combination of 100 μml penicillin with 100 mg/ml streptomycin (Sigma) incubated at 37 ̊C with

5% CO2. The cells were split 1:3–1:4 once or twice a week after reaching 1x106 cells/ml. The

cells were exposed in a 6 well plate to LPS stimulation or PBS control for either 6 or 24 hours.

Gene expression was evaluated for GBP1, GBP4, IRF7 and IFIT1 measured via purified RNA

extract from each culture. RT-qPCR was performed using novel primers for GBP4 and IRF7, as

well as previously validated primers for GBP1 and IFIT1. Novel primers were designed using

Primer3 and Primer-Blast software, and reverse transcription was performed with 2-4µg of RNA.
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Amplification reactions were performed using a QuantStudio 6 plus Flex Real-Time PCR system.

RNA isolation, cDNA synthesis and PCR procedures were carried out as described in previous

publication (Singh et al., 2020).

Mouse cortex staining

I additionally conducted preliminary analyses to determine adequate methodology for

confirming Gbp3 localization in mouse brain via tissue imaging, specifically the cortex. I have

included a description of the methodology and preliminary observations here as a baseline from

which to begin further studies. Microscopy was performed with a Zeiss 200 M fluorescence

deconvolution microscope with computer-controlled 3D stage and filters for DAPI, FITC, Cy3

and Cy5. All images were collected using Slidebook software (version 6, Intelligent Imaging

Innovations, Inc., Denver, CO).This imaging analysis was performed using mouse 40µm thick

frozen brain samples previously stored in cyropreservative medium (30% glycerol, 30%ethylene

glycol in phosphate buffered saline (PBS). Tissue was selected from two male mice. Tissue was

permeabilized with 0.5% Triton X-100 for 30 minutes and blocked with 10% goat serum for 1.5

hours. The mice had a mixed C57BL/6.129/SJL genetic background and were 5 months old at

harvest. Mice were selected to include one wild type control (Resting, n = 1) and one transgenic

(HIVgp120tg, Activated, n = 1). No randomization was performed.

For resolving Gbp3 localization in tissue, I tested concentrations of 8,13, and 18 µg/ml of

Gbp3 antibody (Abbexa, abx176742) with Alexa 488 (Invitrogen, A11034) secondary antibody at

dilution of 1:200 in PBST and Hoechst 33342 (ThermoFisher, 62249) nuclear staining at dilution

of 1:150 in PBS. Primary staining was performed overnight, and secondary staining was

performed for 1 hour at room temperature and nuclear staining for 5 minutes. A total of three 5
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minute washes were performed between all permeabilizing, blocking and staining steps in PBS or

PBST (PBS + 0.2% Tween-20).

Our chosen antibodies for Gbp3 and our preferred microglial marker, Iba-1, required the

same secondary antibody hosting, so we next compared Iba-1 staining to staining for P2ry12, an

additional microglial marker stain (Okunuki et al., 2018). P2ry12 antibody (BioLegend ,848001)

was used at 1.25, 2.5, and 5 µg/ml for evaluation with Alexa 647 (Molecular Probes, A-31573)

secondary antibody at 2.5 µg/ml. Iba-1 (Wako Chemicals , ID 019-19741) was used for staining

at a dilution of 1:500 and visualized with Alexa 488 secondary antibody at dilution of 1:400.

We also examined tomato lectin staining in order to find a suitable marker for

colocalization studies that would allow us to measure the changes in Gbp3 staining intensity in

tissue locations specifically overlapping with microglia (Villacampa et al., 2013). We examined

the use of a tomato lectin for visualizing the microglia along with Iba-1 staining for confirmation

and Gbp3 staining as well. This lectin is known to stain immune cells in the brain as well as

endothelial tissue such as blood vessels. We used Iba-1 and Gbp3 staining separately (as they both

are rabbit IgG and rely on the same secondary antibody host) to compare with the immune cells

visualized by Tomato lectin (Lycopersicon esculentum, Vector Laboratories Fl-1171) in wild type

and transgenic animals (Fig. 5). Iba-1 and Gbp3 staining was run as described previously with

Gbp3 antibody used at 2.5 µg/ml and secondary antibody Alexa 594 (Molecular Probes, A11037)

for both at 1:400 dilution. The lectin was left on tissue for one hour during staining at dilution of

1:200. Hoechst nuclear staining was also performed as previously stated.
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Results

The gp120 transgenic mouse brains displayed increased GBP expression and indicated microglia

association of GBP4 through Population Specific Enrichment Analysis (PSEA) (Fig. 3a). To

extend our findings beyond the transgenic mouse brain microarray and into human cells, we

examined the transcription of human monocyte-derived macrophage (MDM) culture with RNA

Seq, and found that GBP genes were again upregulated by HIV infection in a similar pattern

within the GBP family (Fig. 3b).

Fig 3. Guanylate Binding Proteins respond to HIV in immune cells inside and outside the
brain. Microarray expression of HIVgp120tg mice associated murine Gbp3 with microglia
population and transgenic HIV protein presence via multiple linear regression, quantile plot t-test
P = 8.17e-12 and multiple regression with R2 = 0.74, P=2.2e-16 (a). Probes associated GBP genes
and human orthologs in a previously described microarray (red) and an RNA Seq experiment on
Human cultured Immune cells with HIV infection (purple) for 24 hours showed upregulation of
GBP genes in HIV context (b).

These cells indicated a possible restrictive relationship between GBP4 and IRF7, where

cultures with lower amounts of GBP4 showed a trend for greater amounts of IRF7, indicating that

GBP4 may be restricting the self-amplification of virus-induced type 1 IFN signaling (Fig. 4a).
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Additionally, we assessed a THP-1 macrophage culture with LPS stimulation with

RT-qPCR to examine the validity of the model system and newly designed primers for human

GBP4 and IRF7. We found increased expression of GBP4 at 24 hours of LPS stimulation vs 6

hours, and IRF7 was upregulated similarly at both of the time points (Fig. 4b). However, both

increases were smaller in magnitude than the expression changes in GBP1 and IFIT1, which were

increased in both time points. As this was a preliminary study, there was a single technical

replicate for each condition and no biological replicates, so the results are to be taken as

preliminary findings, without calculated statistical significance.

`

Fig 4. GBP4 and IRF7 in human macrophage culture. MDM from healthy donors with 6 day
in vitro HIV infection, 2 technical replicates each. Expression calculated as counts-per-million
reads (cpm) in EdgeR from RNA Sequencing on Illumina Hi Seq 2500. GBP4 shows a negative
trend with IRF7 (a). A preliminary experiment with THP-1 human macrophage culture was used
to validate primers at 6 and 24 hour time points with RT-qPCR. Of the ISGs GBP4 showed less
responsiveness to the LPS used to stimulate an immune response than GBP1, and IFIT1. IRF7 did
not trend with GBP4 under these time points and stimulus, possibly indicating that HIV and LPS
differ in the ways they engage the IFN response (b).

In our examination of tissue staining methods for further examining Gbp3 localization,

we found similar definition of Gbp3 protein in cells at all tested antibody concentrations. This

staining revealed the presence of Gbp3 in many cells in the cortex, not just microglia. However,
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in the transgenic, Activated tissue images we saw heterogeneous cell shapes within the cortex that

were distinct from other round cells (Fig. 5).

Fig. 5 Gbp3 antibody in Activated mouse cortex at 10x magnification. HIVgp120 cortex
tissue stained at concentrations of 18 µg/ml of Gbp3 antibody with Alexa 484 secondary antibody
(green) and Hoechst nuclear staining (blue).

These heterogeneously shaped cell objects were not visible in the wild type, Resting

tissue, indicating that they have some connection to the innate immune response in our mouse

model of HIV induced neurodegeneration (Fig. 6). Additionally, it was apparent from this initial

imaging, this cell population seemed to appear in multiple layers throughout the cortex.
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Fig. 6 Gbp3 antibody titration in mouse cortex. 40x magnification images of wild type,
Resting (top row) and Activated, HIVgp120 (bottom row) tissue tested at Gbp3 antibody
concentrations of 8,13, and 18 µg/ml with Alexa 488 secondary antibody (green) and Hoechst
nuclear staining (blue).

The P2ry12 co-staining with Iba-1 revealed two separate, non-overlapping populations of

stained cells. Iba-1 had a greater tendency to bind to processes than P2ry12 did, but I did not

observe any overlapping cell body staining of the two antibodies (Fig. 7). This finding presents an

avenue for further research into characterizing these two apparently distinct populations of cells,

but given the disparity we could not use P2ry12 as a reliable marker to visualize microglia in the

brain as we had with Iba-1 for comparison to Gbp3 localization.
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Fig. 7 Iba-1 and P2ry12 co-staining in mouse cortex. 40x magnification images of P2ry12
antibody (red) staining with Alexa 647 secondary antibody and Iba-1 antibody (green) with Alexa
488 and  Hoechst nuclear staining (blue) of wild type (left) and HIVgp120tg tissue (right).
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Fig. 8 Tomato lectin with Iba-1 or Gbp3 staining in mouse cortex. 40x magnification images
of tomato lectin (Lycopersicon esculentum) staining (green) and Hoechst nuclear staining (blue)
were used with Iba-1 (red, top row) or Gbp3 (red, bottom row) staining with Alexa 594 secondary
antibody in wild type, Resting (left column) and HIVgp120tg, Activated (right column) mouse
cortex tissue.

Last, I compared Gbp3 and Iba-1 staining to a tomato lectin staining (Fig. 8). Again, the

Gbp3 staining in Activated tissue revealed heterogeneously shaped cell objects, but these did not

colocalize with the lectin staining. The lectin, however, also showed little to no colocalization
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with the Iba-1 staining for microglia. So, an alternative is still needed to confirm the identity of

these cells and allow us to use image analysis techniques to measure specific Gbp3 expression

localization. Despite the lack of antibodies for Gbp3 and Iba1 that are suitable for combined

staining, the large number of cells labeled for Gbp3 clearly indicates that the protein is widely

expressed in cerebral cortex and unlikely to be limited to microglia.

Discussion

GBPs are strongly induced by IFN signaling but for most members of the GBP family,

the downstream effects of the proteins during immune cell activation are unclear. Our data and

the related literature suggest that multiple members of the GBP family play roles in the response

to HIV (DePaula-Silva et al., 2019; Hu et al., 2011; Krapp et al., 2016; Vestal and Jeyaratnam,

2011). We have identified a possible connection in the HIVgp120-transgenic mouse brain for

Gbp3 (GBP4 mouse ortholog) and putative microglia population size due to HIV protein

exposure. Additionally, I have identified a negative trend in expression of GBP4 and IRF7 in the

HIV-infected human monocyte-derived macrophage culture. This interaction sheds light into a

corner of the complex interplay between neuroprotection and neurodegeneration that takes place

in the brain during HIV infection.

Preliminary mRNA analysis of THP-1 macrophages after stimulation with LPS indicates

that GBP changes may be reduced in magnitude in this cell model. However, by comparison to

uninfected control cultures, even the smaller changes are detectable via RT-qPCR, as

demonstrated with the THP-1 cells and GBP4. These somewhat minute changes were not entirely

unexpected, as the GBP proteins in general show decreased activation in iPSC-derived microglia

in response to a bacterial lipopolysaccharide (LPS), a lipid-bound sugar, compared to ex vivo

measures  (Hasselmann et al., 2019).
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However, GBP effects in circulating and brain resident immune cells in the context of

HIV-induced neurodegeneration remain to be fully characterized. It will be important to

determine which genes in the IFN response pathway may have regulatory relationships with GBP

family members. All GBPs are IFN stimulated, but mGbp4/huGBP4 and possibly others interact

with the IFN signaling itself within the cell, potentially acting as positive or negative feedback

mechanisms.

Efforts to develop a methodology for Gbp3 colocalization with microglia revealed that

the spread of Gbp3 was broader than previously anticipated, but that the differential expression

may still be driven by the heterogeneous cell shape population that we have not yet been able to

colocalize with accepted markers. Additionally, the tissue staining revealed two distinct and

non-overlapping populations of immune cells in the cortex in both Resting and Activated tissues.

The Iba-1 marker and P2ry12 marker for immune cell staining in the brain were found to isolate

themselves to wholly separate cell bodies, which lays important groundwork for further

characterizing these antibodies and the populations of cells they bind to.

Examination of the protein localization will help to further characterize the role of GBP4

in HIV response at the protein level, but our present analyses lay the groundwork for

understanding the interaction between this particular member of the gene family and the

interferon signaling system through IRF7.
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Appendix A:

Genes used in PSEA:

Neurons: Neurofilament Medium (NCBI gene id 4741) and Glutamate Decarboxylase (Kodama
et al., 2012);

Astrocytes: Glial Fibrillary acidic protein (Sofroniew and Vinters, 2010) and Aldehyde
Dehydrogenase 1 Family Member L1 (Adam et al., 2012);

Microglia: CD68 (Ulvestad et al., 1994) and Allograft Inflammatory Factor 1 (Deininger et al.,
2002);

Oligodendrocytes: Myelin Oligodendrocyte Glycoprotein (Scolding et al., 1989), Myelin Basic
Protein (Barbarese, 1991) and Myelin Associated Glycoprotein  (Quarles, 1983).

Illumina Probeset IDs used in PSEA:

Neuron: ILMN_1225279 (Nefm), ILMN_2632416 (Nefm), ILMN_2938820 (Nefm),
ILMN_2621743 (Gad1)

Astrocyte: ILMN_1214715 (Gfap), ILMN_1215847 (Gfap), ILMN_3100276 (Aldh1l1)

Microglia: ILMN_2689785 (Cd68), ILMN_1212938 (Aif1), ILMN_2804487 (Aif1)

Oligodendrocyte: ILMN_1259536 (Mog), ILMN_2615034 (Mog), ILMN_1227299 (Mbp),
ILMN_1237021 (Mag)
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ABSTRACT

Counting cells is a cornerstone of tracking disease progression in neuroscience. A

common approach for this process is having trained researchers individually select and count

cells within an image, which is not only difficult to standardize but also very time-consuming.

While tools exist to automatically count cells in images, the accuracy and accessibility of such

tools can be improved. Thus, we introduce a novel tool ACCT: Automatic Cell Counting with

Trainable Weka Segmentation which allows for flexible automatic cell counting via object

segmentation after user-driven training. ACCT is demonstrated with a comparative analysis of

publicly available images of neurons and an in-house dataset of immunofluorescence-stained

microglia cells. For comparison, both datasets were manually counted to demonstrate the

applicability of ACCT as an accessible means to automatically quantify cells in a precise manner

without the need for computing clusters or advanced data preparation.
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Introduction

Quantifying cells in immunofluorescent images has long been a limiting step in both time

and required effort for the analysis of microscopy data used in research. These selective image

analysis techniques can provide valuable physiological information and manual counts by trained

professionals have been held up as the “gold standard” for quantification (Jensen, 2013;

Schneider et al., 2012; von Bartheld et al., 2016).

Here we used multiple separate observers’ complete manual counts for comparison to an

automatic cell counting methodology. Traditionally, an important aspect of maintaining

consistency in cell quantification has been ensuring that a dataset is counted by a single observer

who strives for accuracy and reproducibility while ideally being blinded to the experimental

conditions. This massively limits the speed at which cell counting data can be processed, as

increases in manpower do not always translate to increased speed. Manual counting can struggle

with reproducibility and consistency across a dataset due to human error and fatigue. Such issues

can be avoided by utilizing computational models which remain consistent over any number of

images.

For that purpose we introduce here ACCT: Automatic Cell Counting with Trainable

Weka Segmentation (TWS) is publicly hosted for download on GitHub at

github.com/tkataras/Automatic-Cell-counting-with-TWS.git. TWS provides a machine learning

basis for our accessible automatic cell counting methodology, with additional image processing

potential provided by scripts in ImageJ, Python, and BeanShell (Arganda-Carreras et al., 2017;

Schneider et al., 2012). The TWS program provides a graphical user interface (GUI) for training

and applying a machine learning classifier that differentiates between cell and non-cell pixels,
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which are then grouped into cell objects and counted. ACCT is built around this pixel

segmentation to provide quantitative validation at the cellular level and assist in optimal classifier

selection and application (Fig. 1).

Two datasets are used in this study to demonstrate performance in varied imaging

contexts. The first dataset used is comprised of imaged microglia in mice with and without

immune-and-inflammation-activating conditions brought on by the transgenic expression of the

envelope protein gp120 of human immunodeficiency virus-1 (HIV-1) (Toggas et al., 1994). This

model of NeuroHIV (HIVgp120tg mouse) provides an observable outcome from the manual

counts, an increase in microglia in the presence of HIVgp120 (referred to hereafter as Activated)

versus the absence of the viral protein (non-transgenic littermate control, referred to as Resting).

ACCT was used to assess the difference in microglia cell numbers from images represented in

Fig. 2. For an automatic counting methodology to be effective in an experimental context, it must

be able to accommodate the variability in data presentation resultant from experimental

conditions (Lynch, 2009). Microglia are known to undergo morphological changes during

activation that alter their morphology and appearance when imaged through immunofluorescent

staining (Gomez-Nicola & Perry, 2015; Karperien et al., 2013).

We focus on a dataset of images of cells immunofluorescence-labeled for ionized

calcium-binding adaptor protein-1 (Iba-1) which is a cell type-specific marker and enables

visualizing microglia. However, the methodology and accompanying scripts allow for automatic

quantification of cells in a wide array of imaging contexts.
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The second dataset used is a publicly available set of images of monosynaptic retrograde

tracer stained neurons at 200x magnification (Fig. 3). This dataset, which we refer to as the

Fluocell dataset, was used in the generation of novel additions to the U-net neuronal network for

cell segmentation (Clissa, 2021; Morelli et al., 2021). We use this dataset to demonstrate ACCT

under a different set of challenges on data produced outside our lab.

Accessibility

The existence of software tools for use in the life sciences does not inherently lead to an

improvement in function (Goecks et al., 2010). The prerequisite technical knowledge to operate

new software tools effectively can create barriers to novel methodologies based on their

accessibility. The goal of ACCT is to reduce the barrier to entry for the execution of full

semi-supervised imaging studies. ACCT provides the tools to leverage user expertise in

handcrafting training data, while providing quantitative tools to efficiently assess training

accuracy from a variety of approaches. By reducing the programming knowledge required from

users with GUI elements, ACCT increases accessibility of automatic cell counting. Additionally,

ACCT performs statistical analysis from the counted images, reducing the technical workload and

additionally increasing the tool’s accessibility.

Related Works

There are many ways to address an image segmentation problem. This complex problem

centers on assigning an appropriate label for every pixel in an image. The TWS program we

utilize is just one of several software tools, including machine learning implementations such as

Ilastik (Berg et al., 2019) and neural nets like U-Net, ResUNet, and c-ResUnet (Diakogiannis et

al., 2020; Morelli et al., 2021; Ronneberger et al., 2015).
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We have chosen to work with TWS (Arganda-Carreras et al., 2017) over Ilastik (Berg et

al., 2019) due to the increased breadth of default available features, as well as the integration with

Fiji and ImageJ that streamlines automated image processing and analysis. This integration with

ImageJ made TWS more accessible to build upon for this and future automatic imaging tools.

While programs like TWS and Ilastik provide excellent pixel segmentation with an

accessible interface, there is an additional need to assess accuracy and performance at the cell

level, rather than the pixel level. ACCT provides a framework for users to accomplish this with

minimal file manipulation at the command line. Ilastik’s segmentation does not test models

against a validation stage following training of their machine learning model, which increases the

risk of overfitting to the training dataset. Thus, we compare the performance of Ilastik to ACCT

in our study.

Additionally, we compare the performance of ACCT against CellProfiler, which is a tool

commonly used for image analysis which allows users to create modular pipelines (Stirling et al.,

2021). This tool provides pixel level segmentation, although it does not provide automated cell

counting with machine learning models without its companion tool CellProfiler Analyst (Dao et

al., 2016). However, CellProfiler Analyst requires the users to manually modify text and database

files in SQL, which requires user knowledge of code editors. For this reason, we do not compare

against CellProfiler Analyst.

Finally, ResUNet is a convolutional neural net approach (CNN) to image segmentation

and exists as a general tool for image labeling. It was demonstrated to make effective use of

training data to make accurate cell segmentation on images with a large variance in the number of
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cells, as well as the presence of non-cell artifacts. This is a development on U-Net, which has

proven effective at bulk cell counting tasks in a variety of contexts. Further, c-ResUnet is an

extension of ResUNet (Morelli et al., 2021). However, CNN models require high processing

power to generate results in a reasonable amount of time, which may require accessing expensive

computational centers. ACCT is designed to be efficiently functional on commercially available

consumer laptops and computers.

Methods

Iba-1 Microglia Dataset

A dataset comprised of images of Iba-1 positive microglial cells was generated following

procedures recently published by our group (Singh et al., 2020). In brief, the dataset was derived

from brain sections of a mouse model for HIV-induced brain injury (HIVgp120tg), which

expresses soluble gp120 envelope protein in astrocytes under the control of a modified GFAP

promoter5. The mice were in a mixed C57BL/6.129/SJL genetic background, and two genotypes

of 9 month old male mice were selected: wild type controls (Resting, n = 3) and transgenic

littermates (HIVgp120tg, Activated, n = 3). No randomization was performed. HIVgp120tg mice

show among other hallmarks of human HIV neuropathology an increase in microglia numbers

which indicates activation of the cells compared to non-transgenic littermate controls (Singh et al.

2020). All experimental procedures and protocols involving animals were performed in

compliance with National Institutes of Health (NIH) guidelines and approved by the Institutional

Animal Care and Use Committees (IACUC) of the Sanford Burnham Prebys Medical Discovery

Institute (SBP), The Scripps Research Institute (TSRI), and the University of California Riverside

(UCR). The study follows ARRIVE guidelines.
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Figure

Fig. 1 A visual overview of ACCT components and process. (A) Weka and a set of training
images are employed to create multiple classifiers through iterative training. (B) These classifiers
are then evaluated in bulk against validation images and the best classifier is chosen by the user.
(C) The chosen classifier is applied to the experimental dataset for cell quantification, producing a
set of counted images, as well as information about the cell morphology.

The procedures for brain tissue harvest, immunofluorescence staining, and microscopy of

microglia have been described in a recent publication by our group (Singh et al. 2020). In brief,

mice were terminally anesthetized with isoflurane and transcardially perfused with 0.9% saline.

The mouse brains were removed and fixed for 72 hours at 4°C in 4% paraformaldehyde. Brain

sections were obtained using a vibratome (Leica VT1000S, Leica Biosystems, Buffalo Grove, IL)

and cerebral cortex in 40 µm thick sagittal sections spaced 320 µm apart medial to lateral from

brains of of each genotype. Staining was performed with rabbit anti-ionized calcium-binding
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adaptor molecule 1 (Iba-1) IgG (1:125; Wako) with secondary antibody Fluorescein

isothiocyanate (FITC). For quantification of Iba-1 stained microglia, cell bodies were counted in

the cerebral cortex from three fields of view for three sections each per animal. Between 2 and 3

images were collected per field of view to capture as many cells as possible in sufficient focus for

identification. Microscopy was performed with a Zeiss 200 M fluorescence deconvolution

microscope with a computer-controlled 3D stage and FITC filter. All images were collected using

Slidebook software (version 6, Intelligent Imaging Innovations, Inc., Denver, CO). Images were

acquired at 10X magnification and pixel resolution 1280x1280 and cropped to 1280x733 pixel

area to exclude irregular tissue edges. Representative examples are shown in Fig. 2.

Manual Counts

Manual counts were performed by three observers, who were allowed to adjust the image

brightness to best facilitate counting accuracy. Images were collected as a Z-stack consisting of

two to three planes of focus 0.5 µm apart per field in order to allow the observer to confirm the

presence of Iba-1 positive cell bodies that were only partially in focus. The plane showing most

cells in focus was used as the primary plane for counting. The observers used different

visualization software during counting. Observer A used the Slidebook software (Intelligent

Imaging Innovations, Denver, CO) paired with the microscope and Observers B and C used the

Fiji distribution of ImageJ 2.1.0 for manual counting. Additionally, Observer A’s count was

performed prior to the start of this project, and count markers were placed on images in close

proximity to cell bodies for rapid total summation. Observer B and C placed counts within cell

bodies to allow for later cell-level accuracy assessment. Microglia counts were normalized to area

in cases where a part of the image area was unsuitable for cell detection, due to tissue damage or

thickness irregularity (n = 3 images out of 62 total in study).
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Figure 2. Images of immunofluorescence-labeled microglia before and after segmentation.
An example of processed paired images of Iba-1 immunolabeled microglia in cerebral cortex
(layer III; Upper panel) of wild-type, non-transgenic (‘Resting’) and of HIVgp120tg mice
(‘Activated’), and the accompanying final segmentation images generated via ACCT (lower
panel). Resulting object segmentations are colored coded (blue = true positive, red = false
positive, yellow = false negative). Segmented objects from images in the same field of view were
projected with a size exclusion minimum of 50 pixels for counting. Immunofluorescence staining
and acquisition of images are described in previous publications and the Methods Section. Scale
bar: 100 µm.

Fluocell Public Dataset

To further examine and develop the effectiveness of ACCT on a variety of data, we also

performed a cell counting study using a publicly available image set (Morelli et al. 2021; Clissa

2021). The 283 1600x1200 pixel images were taken at 200x magnification of 35 µm thick slices

of mouse brain tissue with neurons stained via a monosynaptic retrograde tracer (Cholera Toxin

b). This tracer highlighted only neurons connected to the toxin injection site.
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This dataset contains images with both high and low cell density, as well as varying

amounts of noise and artifacts (Supplementary Fig. S2). We also observed that many images

contain overlapping or touching cells. The Fluocell dataset presents different challenges when

compared to our Iba-1 positive microglia dataset where cells are more evenly distributed and the

number of cells per image is more consistent. A representative example of Fluocell data is shown

in Fig. 3.

In the Fluocell analysis of this data, a subset of the images were manually counted by the

authors, and the remaining images were counted via automatically thresholding9. Since we wish

to compare ACCT to human placed cell counts as ground truth labels to assess performance of

our tool versus human cell counting, we manually counted the entire 283 image dataset (one

observer). This allows us to validate our tool against manual observer cell counts rather than

another automatic process. In addition, the authors of the Fluocell dataset wrote their own

automated cell counting program using a CNN approach named c-ResUnet which builds upon

ResUNet9. Thus, we also compare the performance of ACCT versus c-ResUnet and Ilastik on the

Fluocell dataset with our manual counts.

Automatic Counting Methodology

ACCT is open source at github.com/tkataras/Automatic-Cell-counting-with-TWS.git. Our

machine learning classifier was built using the TWS plugin version 3.2.34 in ImageJ 2.1.0

included in the Fiji distribution18. In addition, the open source Python packages: scipy, pandas,

numpy, matplotlib, imageio, and scikit-learn were used in ACCT (Virtanen et al. 2020; McKinney

2010; Harris et al. 2020; Hunter 2007; Kleine 2021; Pedregosa et al. 2011).
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ACCT allows for the selection of several different types of machine learning approaches.

Machine learning here refers to dynamic models trained on user specified input data to select cell

pixels within an image. Users can also upload additional machine learning approaches compatible

with Weka if desired. For this paper, we use an implementation of the Random Forest approach,

called Fast Random Forest (Arganda-Carreras et al. 2017; Breiman 2001). This is the default

machine learning approach in TWS and the following default features were used:

• Gaussian blur • Sobel filter • Hessian • Difference of Gaussian
• Membrane Projections • Membrane thickness = 1
• Membrane patch size = 19 • Minimum sigma = 1.0 • Maximum sigma = 16.0

Figure 3. Image of fluorescence-labeled neurons before and after segmentation. A cropped
image taken from the Fluocell dataset paired with cell segmentation (a). This depicts segmented
cell objects from image MAR38S1C3R1_DMR_20_o reported in the publicly available Fluocell
dataset segmented by c-ResUnet10 (b) and ACCT with classifierBayes3 (c). Resulting object
segmentations are colored coded (blue = true positive, red = false positive, yellow = false
negative). ACCT was set to filter out objects smaller than 250 pixels and greater than 5,000 pixels
to remove noise. We applied the watershed algorithm to this dataset. ACCT correctly identified
84.6% of the hand counts in this image and c-ResUnet 86.2%, while ACCT was correct with
86.9% of all predictions and c-ResUnet with 93.3%. The scale bar represents a length of 50 µm.
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We additionally use a Bayesian Network model, which is also implemented in Weka4.

This approach, called BayesNet, follows a Bayesian statistical model to determine the probability

that observed features are conditionally dependent, or caused, by the object of interest26. For this

study, we use the following parameters for Bayesian pixel classification, in addition to the above

listed features:

• Variance • Mean • Minimum • Maximum
• Median • Anisotropic Diffusion • Bilateral • Lipschitz • Kuwahara
• Gabor • Entropy • Neighbors

During cell detection, small and large cellular processes or artifacts can be classified as

cell bodies given similar enough appearance to cells. We address this noise by implementing a

minimum and maximum cell object size parameter when counting cells. Thus, objects outside the

specified size range are excluded from the automatic count. This range is empirically determined

by observed cell bodies during model training and validation.

An additional challenge for cell detection is when two or more cells abut or overlap. This

causes multiple cells to be identified as one large cell, so ACCT must separate these objects to

increase accuracy. Thus, we optionally enable a watershed algorithm post pixel segmentation

(Vincent and Soille 1991). This algorithm is used to separate objects by contour, which allows for

separated objects to be counted independently. We use the default implementation of the

watershed algorithm provided in ImageJ.
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Cell Body Detection

The machine learning models in TWS generate a probability map for each image which is

a representation of each pixel in the image as the probability that it is part of an object of interest.

This probability is compared to a confidence threshold, which is the minimum probability a pixel

must be to be considered part of an object. The user can set different threshold values, which

affects how conservative or liberal the program will be in identifying objects. By default, ACCT

starts at a threshold of 0.5 which can be modified by users through the user interface.

Conventionally, stricter thresholds lead to fewer false positives but also fewer true positives. The

inverse also holds with a more relaxed threshold identifying more true positives, but also more

false positives. The performance of ACCT at various thresholds is represented visually on a

Receiver Operator Characteristic (ROC) curve. However, some models usable with TWS in

ACCT only give a binary zero or one for their confidence values which prevents generation of

meaningful ROC curves.

Iterative Training and Validation

Training on the Iba-1 microglia dataset was drawn from 10 randomly selected images not

used in the counting analysis. These images were collected using the above described methods

from mice distributed equally between experimental genotypes (Fig. 2). Incremental adjustments

to training data and resulting changing pixel classification was observed in real time and the

classifiers were saved sequentially.

To avoid overtraining, classifiers are updated a few pixels at a time with new training

data and the updated pixel segmentations on training data are observed immediately in TWS.

Subsequent training data is selected to address areas of incorrect segmentation. We continue this
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over successive iterations of classifiers, saving a version of the classifier after each addition of

training data. This iterative classifier creation scheme continues until the classifier does not

appear to be improving on the data. ACCT then performs accuracy assessment on validation data

and ground truth markers, accounting for experimental conditions, to help the user select the

classifier iteration with the greatest accuracy and consistency across the validation dataset.

Multiple sequential classifiers were applied to the validation dataset (Fig. 1,

Supplementary Fig. S1). Ultimately, 25 classifiers were trained on the Iba-1 microglia data. The

Iba-1 microglia validation dataset was comprised of 10 images (Resting n = 5, Activated n = 5)

from the main dataset which was then excluded from all further analyses. Cell body location

specific count markers were placed in these images by Observer B, and performance was

calculated via precision, recall, F1 score, accuracy, as well as a Student’s T-Test of differential

accuracy between the Resting and Activated images. ACCT is also able to perform ANOVA

calculations for further analyses including more than two experimental groups.

In the Fluocell data, 10 training images were selected from the dataset to represent the

variety of segmentation challenges within the dataset: highly variable intensity, highly variable

cell density, overlapping cell images, and images with non-cell artifacts. The validation dataset

was made with a different set of 10 images selected to represent a similar distribution of

challenges.
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Classifier Selection

True positive scores for each image are determined by the localization of manual count

markers which are checked against the pixel location values of each object for the automatic

counting process. False positives for each image are represented as the total number of

automatically generated cell objects that do not contain a single manual count. False negatives for

each image are determined by the total number of manual count markers that are not contained

inside of an automatically generated object by the program, plus the number of manual count

markers inside of a single cell object in excess of one, indicating insufficient object separation.

As we assess accuracy based on cell location and do not differentiate between background pixels,

ACCT does not include determination of true negative cell locations (Morelli et al. 2021). Thus,

we calculate accuracy as:

Where:

TP = true positive = a cell object with a hand placed marker inside

FP = False positive = a cell object lacking a hand placed marker

FN = false negative = a hand placed marker outside of any cell object

We assess the performance of our classifiers using measures of precision, recall, F1 score,

and accuracy. Precision is the proportion of automatic counts that are correct based on manually

placed markers, and recall is the proportion of the total manually placed cell markers that were

successfully identified by the automatic count. The F1 score is the harmonic average of precision

and recall. The accuracy is assessed specifically as the number of true positive cell counts as a

proportion of all manual and automatic counts, including false negatives. Multiple classifiers can

be evaluated through automatically calculated statistical analysis. Statistical measures, such as
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mean absolute error (MAE), are additionally calculated through ACCT to evaluate the

performance of different classifiers. We used these statistics to assess the performance of ACCT

against other automatic cell counting tools based on these metrics.

Fig. 4 Summary of individual classifier performance on the Iba-1 microglia dataset during
the validation stage. A chart of the most and least accurate three incrementally trained
classifiers, ranked by F1 score of 25 trained classifiers (n = 10 images). Error bars represent
standard error of the mean on calculated performance statistics from each image, where the
statistic itself is calculated from total cells in the dataset. The parameters used in ACCT: 0.5
threshold, 50 minimum pixel size, and 1,000 maximum pixel size.

This statistical information is shown in Fig. 4 and Fig. 8. Fig. 4 is a subset of the full data

which can be found in Supplementary Table T1. Fig. 8 shows selected accuracy statistics at

different confidence thresholds. Classifier selection via the best F1 score or different weighting of

precision and recall, are all valid metrics for selecting a classifier. However, for this study we

have selected the classifier based on the highest F1 score.

Experimental Dataset Analysis

As the next step, the selected classifier is applied to the experimental dataset of images.

This experimental dataset excludes images used in training and validation. The automated

counting methodology is repeated in this analysis and reports the total number of cells counted in
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addition to other statistical information per image. Morphological information about each

identified cell is reported by ACCT to users. An example of this can be found in Supplementary

Table T2, which lists some of the reported morphological information generated from analysis.

Selected Classifier Performance Audit

The audit requires further manual counting and is identical to how we assess the

performance of classifiers during the validation stage. This step is intended to determine how

similarly the classifier performed on the experimental dataset compared to the validation set in

situations where all images have not been manually counted. The audit can be performed using a

subset of the experimental dataset, or even the whole dataset, if the user chooses to complete an

entire manual count to assess model accuracy. These images are known as the audit set. We

randomly selected 5 images each of Activated and Resting microglia experimental images for the

Iba-1 audit set. An audit of the Fluocell data was performed on a sample of 10 images from the

Fluocell experimental dataset.

Results

Iba-1 Microglia Dataset

Microglia Density

All statistical tests on Iba-1 microglia images include all images except those used for

training and validation (Resting n = 22, Activated n = 20). We report classifier 10’s automatic

count instead of classifier 4 because classifier 10 provided the maximum performance on the

experimental dataset and audit set that we observed. The significant increase in microglia density

in images of gp120 positive (Activated) mice was consistent across the dataset via two way

ANOVA (p = 3.39E−16; Resting n = 22, Activated n = 20) (Fig. 5). Accounting for genotype

variance within the dataset, a trend for decreases in mean microglia density were found between
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the automated count and Observer A, but no significant differences were found between the

ACCT count and Observers B and C (Observer A p = 0.060; Observer B p = 0.514; Observer C

p= 0.440). Additionally, the per image microglia density demonstrated significant correlations

among the automatic count and all observers with stronger correlations in Resting microglia

images (Table 1). Visual representation of the data is found in Supplementary Fig. S3 as scatter

plots with regression lines. The following represents the total cell counts:

• Validation: Observer A/B 1263/1380 cells over 10 images.

• Experimental Dataset: Observer A/B/C 5158/5035/5056 cells over 42 images.

• Audit Set: Observer A/B/C 1239/1207/1262 cells over 10 images.

Precision and Recall

The overall precision and recall achieved by the TWS methodology were similar in the

validation dataset, experimental dataset, and audit dataset with overall accuracy and F1 increased

in the experimental dataset compared to validation as shown for classifier 10 in Fig. 6. However,

within the experimental dataset, the TWS classifier was more conservative in the Resting images

compared to Observer B’s manual counts, with the automatic count having higher precision in

images of Resting than Activated samples (Precision p = 0.007477) (Fig. 6). When compared to

Ilastik and CellProfiler, ACCT had a similar, and slightly stronger performance than both tools in

each set of Iba-1 images, with Ilastik slightly outperforming CellProfiler. We additionally

compared these tools against basic functionality that users can manually select in Fiji, to illustrate

how ACCT builds upon existing Fiji functionality. We used the subtract background with rolling

ball, adjust threshold, and watershed tools in Fiji for this analysis, with background subtraction at

25 pixel area and pixel intensity threshold of 90. Without applying minimum and maximum
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object size this analysis resulted in near 0 precision, thus we used a 50 minimum and 1000

maximum pixel size as in the other tools. Classifier 10 outperforms the basic Fiji tools in most

metrics except for precision. The basic Fiji application also narrowly outperforms Ilastik and

CellProfiler in most metrics in the Iba-1 images.

Resting Resting Activated Activated

Correlation p val. Adj. R2 p val. Adj. R2

Classifier 10 vs Observer A 6.49E−8 0.764 6.01E−4 0.4606

Classifier 10 vs Observer B 2.42E−7 0.7313 4.19E−5 0.5944

Classifier 10 vs Observer C 3.30E−5 0.5653 1.11E−4 0.5498

Observer B vs Observer A 7.38E−6 0.6243 4.15E−4 0.4814

Observer C vs Observer A 2.05E−4 0.4816 9.04E−7 0.7327

Observer B vs Observer C 7.14E−9 0.8103 6.28E−4 0.4581

Table 1. Correlation analysis of microglia density. The automatic count correlated with manual
counts in both experimental conditions as well as correlations between manual counts, showing
similar variability via correlation between the observer counts (Resting n = 22, Activated n = 20).
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Fig. 5 Mean microglia density by experimental genotype in manual and automated counts.
All counting methods found an increase in microglia density in Activated microglia images by
two way ANOVA with interaction effect and Tukey HSD post-hoc analysis. The difference
between counting method and the interaction effect did not display statistical significance.
(Genotype: p = 3.39E−16; Counting Method: p = 0.096; Genotype:Counting Method: p = 0.224;
Resting n = 22, Activated n = 20). There were not significant differences between the automatic
count and Observer B and C. However, the ACCT count density trended lower overall than
Observer A’s (p = 0.0599; Resting n = 22, Activated n = 20). This suggests that classifier 10 may
have excluded some faintly stained or not well-in-focus cells in the Resting group images that
Observer A did count. Error bars represent standard deviation.
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Fluocell Dataset

In contrast to the Iba-1 microglia dataset, the Fluocell dataset does not compare two

different experimental conditions. All Fluocell statistical tests include all Fluocell images except

those used in training and validation (n = 263). In Fig. 7, we compared the performance of the

Fast Random Forest and BayesNet models implemented within ACCT versus c-ResUnet and

Ilastik (Morelli et al. 2021; Berg et al. 2019). Fig. 7 shows ClassifierRandomForest3

outperforming BayesNet on most statistical metrics. Additionally, the c-ResUnet model

outperformed on most metrics compared to these two classifiers. In contrast to the other tools,

Ilastik has much greater recall than precision in the experimental and audit datasets, with ACCT

and c-ResUnet outperforming on precision. However, Ilastik has the greatest F1 score in the

experimental dataset. In the context of this dataset, the following represents the total cell count:

• Validation: 137 cells over 10 images.

• Experimental Dataset: 3307 cells over 263 images.

• Audit Set: 247 cells over 10 image
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Fig. 6 ACCT vs Ilastik vs CellProfiler vs Manual Fiji on images of Iba-1 positive microglia. The performance of ACCT classifier 10
versus Ilastik, CellProfiler, and basic use of Fiji tools. The audit set is a selection of 10 images, which is equal to the size of the validation



Fig. 7 ACCT vs c-ResUnet vs Ilastik on the Fluocell dataset. ClassifierRandomForest3 and ClassifierBayes3 are the third trained
iterations of a Fast Random Forest and BayesNet model in ACCT, respectively. The three tools’ automatic counts of the Fluocell images
are compared to our manual count of the Fluocell dataset. Error bars represent standard error of the mean on calculated performance
statistics from each image, where the statistic itself is calculated from total cells in the dataset. The audit set is a selection of 10 images,
which is equal to the size of the validation image set, chosen from the experimental dataset. The parameters used are: a 0.5 threshold, 250
minimum pixel size, 5,000 maximum pixel size, and with the watershed algorithm applied.



Receiver Operator Characteristic

ACCT automatically generates ROC curves for each trained classifier. This visualizes the

tradeoffs between precision and recall as well as the true positive rate and the false positive rate.

Fig. 8 demonstrates a ROC curve of ACCT classifier 10 applied to the Iba-1 microglia dataset.

The threshold represents the required probability from the classifier to determine if a pixel will be

designated as a cell pixel. The data represented in these graphs were generated using the

scikit-learn Python library which performed statistical analysis (Pedregosa et al. 2011).

Fig. 8 demonstrates the tradeoff in which the false positive rate decreases at a faster rate

than the true positive rate when a higher threshold is applied. For example, increasing the

threshold for pixel segmentation in the Iba-1 dataset reduced the false positive rate compared to

the default of 0.5. In this study, the 0.5 threshold was used for reported calculations, as overall

accuracy did not increase due to a decrease in true positive cell identifications.

Fig. 8 An ROC curve generated by ACCT following the validation stage on Iba-1 microglia
images. It depicts the false positive, true positive, recall, and precision rates of classifier 10 at
different confidence thresholds on the Iba-1 stained microglia images. Objects were filtered to a
minimum size of 50 pixels and a maximum size of 1,000 pixels. The watershed algorithm was not
applied to the Iba-1 dataset, due to consistent cell separation in the sample tissues.
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Discussion

ACCT is a step towards more accessible computation tools for cell counting and image

segmentation. The main current advantage of this strategy is the shorter time required to train and

apply the automatic counting strategy compared to manually counting each image. Our study

demonstrates the general applicability of this tool to quickly explore large amounts of data.

The training process is critical for the success of this automatic cell counting

methodology and relies on a researcher’s specific knowledge of their imaged cell type. Each

image set comes with its own unique set of challenges due to variability in cell and media

characteristics, so providing accurate training data requires a firm and consistent understanding of

the images in question. ACCT is able to help users adjust for these features in their images. Users

can select specific features to be analyzed in their selected machine learning models to better

represent their image data. Since every user has different data, this added flexibility improves the

ability for ACCT to analyze users-specific images.

The results demonstrate that ACCT performs strongest on precision, indicating that most

of the ’called’ cells were real cells. Recall tends to be substantially lower than precision, leading

to decreased F1 scores and accuracy in all ACCT classifiers tested on these datasets. This

indicates that these models tend to be more conservative than expert manual counts. However, the

results indicate that when models classify an object as a cell, they tend to be correct based on the

high precision.

Additionally, microglia density analysis in Fig. 5 and in Table 1 demonstrate that ACCT

counts cells similarly to expert observers. Counts of all observers identified a similar mean
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difference in microglia density between experimental genotypes. ACCT correlates strongly with

human cell counting results and can replicate the difference between experimental conditions

similar to manual counting. Thus, it is a useful tool for image analysis between multiple

experimental conditions.

We acknowledge that in the future more accurate automatic cell counting tools are likely

to evolve from ACCT or other software packages. However, currently ACCT shows strong

performance while being a more accessible tool to researchers than other approaches which

require large computer networks or computing clusters. In some cases ACCT outperforms other

cell counting tools, but not in every dataset. However, users may find the accessibility in the

ImageJ environment and speed of ACCT worth trading for the slight loss in performance in some

image data sets.

In terms of computational power, all work was performed on commercially available

consumer laptops such as a Dell Inspiron 15-7559 (released Feb. 2017). Other automatic cell

counting tools are often designed to make use of large computational resources. For example,

Morelli et al. used 4 V100 GPUs to process their CNN approach (Morelli et al. 2021). CNN based

tools recommend using a cluster, or network of multiple computers, which allows access to

greater computational power. However, computer clusters are not available for all researchers and

they additionally may require knowledge of command lines for effective utilization. ACCT is not

limited by substantial computer specifications, additionally it is more accessible to less command

line-oriented researchers.

Reproducible results are a major concern in scientific research, and ensuring

reproducibility via manual cell counting can be costly and time consuming. Since ACCT stores
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classifiers as single model files, they are easy to share and download. Thus, researchers can share

reproducible results and statistical analysis of a cell counting study by sharing the model file and

set of analyzed images. Since analysis generated by ACCT is stored as files editable in Excel, it is

easy for users to share and communicate their results.

Building ACCT around the graphical interface implemented by TWS broadens usability

by providing infrastructure for quantitative classifier validation and application in a full

experimental context onto the flexible and intuitive training apparatus4. Since ACCT makes use

of existing tools for cell imaging analysis such as TWS, researchers familiar with the program

should find it easier to learn how to use ACCT as well.

ACCT includes accessible documentation, with an instruction manual that explains the

program’s function and usage found on its GitHub page. Documentation is important for users to

understand and learn how to use software tools. Many other software tools document their

components’ functions inside of the tool itself, requiring users to navigate code to understand and

use the tool. This is avoided by having detailed instructions written on the website for ACCT

which explain the use of the tool without ever requiring the users to manually access the code

itself.
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ACCT could also be applied more generally to image segmentation problems. While the

focus of our study is on cell counting in the context of neuroscience, so long as an image has

object characteristics that can be separated from its background, ACCT is able to quantify the

objects. However, more complex object shapes and less distinctive backgrounds may require

selecting more complex models than demonstrated in this study. We provide a simple example of

this in Supplementary Fig. S4 using the Fast Random Forest model, which is an image segmented

for buildings against a field (Yan et al. 2021). While not as distinct as cells, it demonstrates that

ACCT is applicable beyond the biological context. Overall, ACCT should greatly increase the

accessibility of automatic analysis involving cell counting for a wide audience in neuroscience

research and beyond.

Data Availability

The Iba-1 dataset, its analysis, and the Fluocell dataset analysis during the current study

is available in the ACCT-Data Repository, https://github.com/tkataras/ACCT-Data-Repository.git.

The Fluocell dataset analyzed is publicly available as published in

http://amsacta.unibo.it/6706/.

Code Availability

ACCT can be accessed and downloaded from GitHub at

https://github.com/tkataras/Automatic-Cell-counting-with-TWS.git.
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Supplementary Figures

Figure S1. Map of the files and folders included in the ACCT pipeline. Folders are found
under two primary folders: training area and testing area. The only folders the user will need to
interface with directly are: Classifiers, the Results folders, Validation Data, Validation hand
counts, Images, Audit images and Audit Hand counts
.
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Figure S2. A comparison of the differences in images contained in the Fluocell dataset.
These images demonstrate the challenging variance in cell presentation and density.
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Figure S3. Scatter plots with repression lines for all correlative comparisons between observer and automatic counts. Automatic
counts from classifier 10 for the experimental dataset used for automatic counts. All relationships showed significant overall correlations
(p and Adj. R2 values included in figure; n = 42).



Figure S4. ACCT applied on image of aerial photography. An image taken from a public
dataset by Yan et al. with permission granted under MIT license. The image consists of houses in
a field along with the image segmented for houses by ACCT. a threshold of 0.5 was used with a
minimum pixel size for objects of 300 and maximum of 1000. The segmentation shows the rough
positions or irregularities in the landscape, demonstrating the potential of ACCT outside the
biological context.
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Supplementary_Table_T1. Best 10 Classifier’s Performance in the Validation Stage of the Iba-1 Dataset

classifier precision recall F1 accuracy MAE MPE

classifier4 0.948567 0.815217 0.876851 0.780708 19.4 0.014058

classifier2 0.944915 0.807971 0.871094 0.771626 20 0.014493

classifier10 0.971243 0.758696 0.851912 0.742027 30.2 0.021884

classifier5 0.968606 0.760145 0.851807 0.741867 29.7 0.021522

classifier9 0.971857 0.750725 0.847097 0.734752 31.4 0.022754

classifier8 0.970037 0.750725 0.846405 0.733711 31.2 0.022609

classifier21 0.976099 0.739855 0.841715 0.72669 33.4 0.024203

classifier11 0.972407 0.74058 0.840806 0.725337 32.9 0.023841

classifier7 0.972355 0.73913 0.839852 0.723918 33.1 0.023986

classifier16 0.97541 0.689855 0.808149 0.678063 40.4 0.029275

classifier17 0.977249 0.684783 0.805283 0.674037 41.3 0.029928

classifier1 0.97319 0.526087 0.682973 0.518571 63.4 0.045942

classifier3 0.968571 0.245652 0.391908 0.24371 103 0.074638

Supplementary Table T1. Top 10 classifiers on Iba-1 validation data. Classifiers are trained
iteratively in TWS using small additions in training data. Reported statistics are calculated from
the total of all cells in each image in the dataset except for mean absolute error (MAE) and mean
paired error (MPE) (n = 10 images). Statistics include the following categories. Precision which
is the number of true positive automatically counted cells divided by the total number of
automatically counted cells. Recall which is the number of true positive automatically counted
cells divided by the total number of hand placed counts. F1 which is the harmonic average of
precision and recall. Accuracy which is the number of true positive automatically counted cells
divided by the total of the number of automatically counted cells plus false negatives.
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Supplementary table T2. This is an example of the per cell morphological measurements recorded by ACCT on a single image in
the Fluocell dataset. The morphological results are calculated for the following variables and measures described at
https://imagej.nih.gov/ij/docs/menus/analyze.html. Label is the identification number of a cell counted by ACCT in the listed image file;
formatted as the file name, identification number of the cell.  Size and location measurements in pixels.



Conclusion

The immune landscape of the brain is a delicate battlefield in constant flux: immunity

must come from wide populations of cells working together behind the blood-brain barrier and

beyond the reach of general adaptive immunity (Kanmogne et al., 2020; Kaul et al., 2001). Here,

microglia are relied on to quickly dispose of infected or malfunctioning cells in a tightly

controlled manner to avoid damage to the precarious communication channels between neurons

(Laurence, 1993).

Changing cell populations make it difficult to resolve the progression of disease from

measures of complete gene expression (Capurro et al., 2014). Here, I employed linear modeling

concepts in a rapid computational setting to uncover previously hidden trends in gene expression

(Kuhn et al., 2011). These relationships implicated regulatory elements of some of the central

pathways involved in viral immune response in the brain, i.e. the interferon response. Further, this

particular set of pathways has been identified as a driving force in HIV induced

neurodegeneration.

Previous studies demonstrated that GBP family members played diverse roles in

responses to pathogens via innate immunity (Feng & Man, 2020; Kim et al., 2011; Shenoy et al.,

2012). We found that Gbp3/GBP4 were upregulated in conjunction with immune cell populations

through Population Specific Enrichment Analysis of whole brain microarray expression data, as

well as RNA Seq in cultured human immune cells. The PSEA analysis both identified a positive

correlation between putative microglia population size in the brain samples and Gbp3, and an
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increase in Gbp3 in HIV model animals when accounting for that existing positive relationship.

This analysis involved bulk linear model creation and filtering for genes where the best fitting

model only involved a single cell population measure. Gbp3 was one of the genes quantitatively

most highly associated with a single cell type, namely microglia. The question of whether or not

Gbp3 is in fact localized to microglia or other cell types in the brain remains to be addressed

experimentally, for example  using immunofluorescence staining and quantification using ACCT.

Further RNA expression level information indicated an increase in GBP4 and IRF7

expression with HIV infection in human monocyte derived macrophage cell culture. The RNA

sequencing also revealed a negative trend in expression between GBP4 and IRF7. IRF7 is an

important promoter of the interferon pathways (Sun & Wang, 2012). This interaction could result

in control of the chronic immune activation resulting from HIV related chronic immune activation

in the brain.

Examining these genes in human cell culture revealed a positive, but muted response of

GBP3 and IRF7 during immune activation prompted by exposure to the bacterial membrane

lipid-bound sugar, LPS. We compared the expression of GBP4 and IRF7 to GBP1 and IFIT1,

genes canonically activated by the type II interferon response which has been identified

previously to respond to bacterial threats. GBP1 and IFIT1 were more significantly upregulated,

indicating that the LPS stimulation was successful. However, the brain-resident microglia may

not possess the same levels of reactivity as the monocyte-derived macrophages for the study of

our genes of interest in the interferon pathways (Dello Russo et al., 2018).
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Preliminary methodology analysis for determining Gbp3 colocalization revealed

interesting avenues for further research. Gbp3 itself was widespread, but appears highly variable

in an as-of-yet unidentified cell type. In attempting to verify existing microglial markers, I

observed full separation of cell body staining for Iba-1 and P2ry12 in mouse cortex in both wild

type animals and our transgenic model of neuroHIV.

In the crucial work of understanding the pathways of HIV infection and the resulting

immune response, digital information which may hold the key to understanding and reversing

damage is largely processed slowly, by hand. While cell counting software has advanced rapidly,

the cutting edge has left behind labs with less computational resources and experience (Goecks et

al., 2010). So, I have developed ACCT: Automatic Cell Counting with Trainable Weka

Segmentation.

This program requires no large external computational resources and minimal user

experience. At no point is the user required to edit code files while the program applies numerous

Python and ImageJ scripts to assisting in training, validation and implementing machine learning

cell counting models. This program is freely available on Github, allowing users in

neuroimmunology and beyond access to an alternative to other automatic cell quantification

platforms that is unique in its accessibility and complete validation and auditing structure.

Further development for ACCT will progress in both effectiveness and accessibility. The

next major advancement for the program will be enabling the use of 3D image data. This

information provides much greater clarity of cellular localization, especially in tissue, but

presents a logistical challenge in updating the methods of accuracy assessment to accommodate
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an additional axis of variation. To increase accessibility, the next step will be to package the

program and its scripts into the ImageJ GitHub repository directly for automatic updating and

access bundled with installations of ImageJ itself.

Now that GBP4/Gbp3 have been implicated in HIV-induced neurodegeneration through

interaction with the interferon pathways, further research can focus on confirming the

downstream effects of the gene in neuroHIV. To examine this interaction in a human cell model, a

coculture of neurons, astrocytes, and microglia can be used to simulate the intercellular

interactions critical to immune response in the brain as was used in previous studies of

HIV-induced neurodegeneration from the Kaul lab (Thaney et al., 2017). With exposure to HIV

protein, we could determine if the localization observed in mouse brains of Gbp3 holds for the

ortholog GBP4 in human cells. This would identify a central component of the central nervous

system’s immune response to HIV.

The goal of this dissertation has been to present a handhold for future researchers on the

journey to greater understanding of the role of important components of the innate immune

system, interferons and microglia, in NeuroHIV. I have provided context on the complex process

of adverse immune response in the nervous system. GBP4 is positioned to play an important role

in the innate immune response to HIV, and the trajectory towards damage as the response

progresses. I have also presented a tool to accelerate difficult research with greater consistency.

ACCT was designed with accessibility in mind, making the most of existing analysis tools with

Trainable Weka Segmentation, and built up in ImageJ, a popular, free imaging platform already

employed by many labs.
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