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Acute Effects on Blood Pressure Following Controlled Exposure to
Cookstove Air Pollution in the STOVES Study
Kristen M. Fedak, PhD; Nicholas Good, PhD; Ethan S. Walker, MPH; John Balmes, MD; Robert D. Brook, MD; Maggie L. Clark, PhD;
Tom Cole-Hunter, PhD; Robert Devlin, PhD; Christian L’Orange, PhD; Gary Luckasen, MD; John Mehaffy, MS; Rhiannon Shelton, MPH;
Ander Wilson, PhD; John Volckens, PhD; Jennifer L. Peel, PhD

Background-—Exposure to air pollution from solid fuel used in residential cookstoves is considered a leading environmental risk
factor for disease globally, but evidence for this relationship is largely extrapolated from literature on smoking, secondhand smoke,
and ambient fine particulate matter (PM2.5).

Methods and Results-—We conducted a controlled human-exposure study (STOVES [the Subclinical Tests on Volunteers Exposed
to Smoke] Study) to investigate acute responses in blood pressure following exposure to air pollution emissions from cookstove
technologies. Forty-eight healthy adults received 2-hour exposures to 5 cookstove treatments (three stone fire, rocket elbow, fan
rocket elbow, gasifier, and liquefied petroleum gas), spanning PM2.5 concentrations from 10 to 500 lg/m3, and a filtered air
control (0 lg/m3). Thirty minutes after exposure, systolic pressure was lower for the three stone fire treatment (500 lg/m3

PM2.5) compared with the control (�2.3 mm Hg; 95% CI, �4.5 to �0.1) and suggestively lower for the gasifier (35 lg/m3 PM2.5;
�1.8 mm Hg; 95% CI, �4.0 to 0.4). No differences were observed at 3 hours after exposure; however, at 24 hours after exposure,
mean systolic pressure was 2 to 3 mm Hg higher for all treatments compared with control except for the rocket elbow stove. No
differences were observed in diastolic pressure for any time point or treatment.

Conclusions-—Short-term exposure to air pollution from cookstoves can elicit an increase in systolic pressure within 24 hours.
This response occurred across a range of stove types and PM2.5 concentrations, raising concern that even low-level exposures to
cookstove air pollution may pose adverse cardiovascular effects. ( J Am Heart Assoc. 2019;8:e012246. DOI: 10.1161/JAHA.
119.012246.)

Key Words: air pollution • blood pressure • cardiovascular disease risk factors

N early 40% of the world’s population uses solid fuel for
cooking.1 Exposure to the resulting household air

pollution is a major contributor to global disease, particularly
in the form of cardiovascular diseases.2 Although some
studies have shown cardiovascular health benefits from
improved stove designs that reduce emissions compared
with traditional stoves,3–5 questions remain regarding the
level of exposure reduction needed to reduce cardiovascular
health burden.6,7

The connections between household (ie, cookstove-
generated) air pollution and cardiovascular disease risk is
extrapolated primarily from research on other pollution
sources (ie, active cigarette smoking, secondhand smoke,
and ambient air pollution).8,9 Additional research is needed to
explore emissions across a wide variety of cookstove
practices, exposure levels, and health responses.

Blood pressure is an established marker of cardiovascu-
lar disease risk10–12 that can increase following acute and
chronic exposure to ambient and household air pollu-
tion.4,13–18 Several field studies have investigated relation-
ships between household air pollution exposures and blood
pressure,4,5,17,19–24 with results ranging from null associa-
tions to upward of 10-mm Hg increases in systolic pressure
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for traditional-stove users compared with improved-stove
users. Few controlled wood-smoke exposure studies
exist,25–34 and even fewer consider blood pressure; in 2
studies that did measure blood pressure, no effects
immediately after exposures were found.35,36 However,
these studies did not include longer follow-up times and
observed other acute hemodynamic responses suggestive of
vascular impairment and acute autonomic nervous system
perturbations.

As part of the STOVES (Subclinical Tests on Volunteers
Exposed to Smoke) Study, this work examines changes in blood
pressure up to 24 hours following 2-hour exposures to cook-
stove emissions from5 stove technologies at characteristic fine
particulate matter (PM2.5) mass concentrations between 10 and
500 lg/m3 and a filtered air control.

Methods
Methods are described briefly herein; more information is in
the Supplemental Material. Data from this study are
available from the corresponding author upon reasonable
request.

Eligibility Criteria and Recruitment Methods
Forty-eight healthy nonsmoking volunteers were recruited
through articles in the local and university news, advertise-
ments sent to various university email lists, and word of
mouth. Eligibility criteria were based on age, weight, history of
disease, drug use, and occupational or incidental pollution
exposure, current cardiovascular health status, medication
use, and ability to complete the study protocols (full criteria in
Data S1). Individuals with occupations that may result in
increased air pollution exposures were excluded. Individuals
who were interested in participating in the study completed a
screening questionnaire and attended an in-person screening
examination and physical to ensure they met study criteria
(see Data S1). All study protocols were approved by the
Colorado State University institutional review board; proce-
dures followed were in accordance with institutional guide-
lines. All participants provided written informed consent.

Study Design
A sample size of 48 was chosen based on a number of factors
including statistical power, budget, reasonability for recruiting
in our target population, and maximizing our study design and
facility capacities. Each participant underwent six 2-hour
exposure treatments over 13 to 16 weeks, with a minimum 2-
week period between treatments. We conducted the study in
3 rounds. Within each round, 2 groups of 8 participants
alternated weeks until completion of all 6 treatments. Within
each week, 4 participants started their study sessions on
Mondays and 4 on Wednesdays. Treatment-assignment
sequences were determined following a Williams square
design, a Latin square crossover that balances treatments and
first-order carryover effects.37 This design is robust for time-
invariant factors at the person level (ie, subject effects)—each
person receives each treatment—and time-variant factors
that might differ across study sessions (eg, ambient condi-
tions, caffeine or alcohol consumption) because the distribu-
tion of these variables is expected to be similar across all
treatments when data are balanced.38,39 Participants who
missed a scheduled study session could make up the missed
treatment at the end of their sequence. Participants were not
told which treatment they were assigned to on each visit.

Study Session Protocol
The timeline of a study session is illustrated in Figure 1.
Participants were instructed to abstain from medications,
nutritional supplements, and vitamins starting 72 hours
before each study day and from caffeine, alcohol, strenuous
exercise, and smoke exposures (eg, campfires/wood stoves,
secondhand smoke) starting 24 hours before and continuing

Clinical Perspective

What Is New?

• We used a novel study design—a controlled human-
exposure study—to investigate acute responses in blood
pressure following exposure to air pollution emissions from
cookstove technologies.

• Results demonstrated that short-term exposures to cook-
stove-generated air pollution can acutely perturb systolic
blood pressure, with a small decrease immediately after
exposure and a 2- to 3-mm Hg increase 24 hours after
exposure compared with filtered air control.

• Responses were consistent across a range of stove
treatment types, with fine particular matter (PM2.5) levels
ranging from 10 to 500 lg/m3.

What Are the Clinical Implications?

• Nearly 40% of the world’s population that uses solid fuels for
cooking, and replacement of traditional stove technologies
with lower particulate matter–emitting technologies has
been a major public health focus.

• Our results suggest that household air pollution may be
detrimental to cardiovascular health, even at low PM2.5

levels.
• Given these findings, public health practitioners and
researchers need to carefully consider the intended conse-
quences of cookstove intervention programs and the
timelines of exposure-response observations.
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through the 24-hour follow-up period. Participants were also
asked to avoid high-fat and high-cholesterol foods on study
days. Surveys were administered to determine compliance
with these protocols (see Health and Additional Measure-
ments). There were no restrictions on lifestyle, food, or
activity between study sessions aside from maintaining
compliance with the eligibility criteria.

Participants arrived at the facility at the same time and
followed the same protocols and schedule each study
session. Participants were asked about current or recent
illnesses at the start of each session, and an on-site physician
approved participation each day. Baseline health measure-
ments were conducted on arrival (see Health and Additional
Measurements). Participants then spent 2 hours in the
exposure chamber receiving the treatment; the physician
remained on-site during exposures and confirmed that
participants did not have any acute concerns on exiting the
chamber; the physician was also available on call for 24 hours
after the end of the exposure period. Additional rounds of
health measurements were conducted starting immediately
after exposure and 3 hours after exposure. Participants
remained on-site between measurements, and lunch was
provided (low fat or low cholesterol; same each session).
Participants returned for a final round of health measure-
ments 24 hours after the end of the exposure treatment.

Treatments and Administration
The exposure chamber consisted of a main exposure room
(2.7 m height93.5 m width92.8 m length) and an airlock/
anteroom. Up to 4 participants could be in the chamber at the
same time. Participants’ blood pressure, heart rate, and
oxygen saturation levels were recorded by a registered nurse
every 15 minutes during the exposure, for safety purposes.

Treatments consisted of a high-efficiency particulate air–
filtered control and pollution generated from 5 different
cookstoves, chosen to represent commonly used technolo-
gies and span the International Standard Organization’s
(ISO’s) cookstove performance tiers.40 A target PM2.5 expo-
sure concentration was chosen for each stove. Setting target

concentrations with a narrow tolerance for each stove allowed
for increased statistical power to resolve between-stove
differences while abiding by protocols for participant safety
and informed consent. Target concentrations were aligned
with the ISO performance tiers and values realistically
expected for the stove when used in the real world20,41–43

while considering the feasibility of achieving the level with
each stove within our facility and maintaining distinct
distributions of exposures for each treatment. Cookstoves
were a liquefied petroleum gas (LPG) stove (10 lg/m3), a
gasifier (35 lg/m3), a forced-draft (fan-powered) rocket
elbow (“fan rocket,” 100 lg/m3), a natural-draft rocket elbow
(“rocket elbow,” 250 lg/m3), and a three stone fire (500 lg/
m3). Pollution was generated within a total-capture fume
hood, diluted with high-efficiency particulate air–filtered
laboratory air, and then drawn into the exposure chamber.
Carbon monoxide, PM2.5, oxygen, temperature, and humidity
in the chamber were monitored in real time; a dynamic control
system (LabVIEW, v15.0 32-bit; National Instruments) auto-
mated the real-time PM2.5 averaging and dilution process.
Real-time PM2.5 was measured using a DustTrak DRX (model
8533; TSI Inc).

Additional treatment emissions characterization was con-
ducted at the end of the study. The facility was operated for
2 hours under the same conditions as during human expo-
sures but without participants present, on at least 2 occasions
per treatment. Air was sampled from the facility for
measurement of PM2.5 mass, particle-number size distribu-
tions (10 to 500 nm), organic and elemental carbon (EC)
concentrations, nitrogen oxide, nitrogen dioxide, volatile
organic compounds, and carbonyls (see Data S1).

Health and Additional Measurements
Brachial blood pressure was measured 4 times per session:
before exposure, immediately after exposure, 3 hours after
exposure, and 24 hours after exposure. Measurements were
performed on the left upper arm with participants in a supine
position after a minimum 10-minute rest period using an
automated oscillatory monitor (SphygmoCor XCEL; AtCor

Figure 1. Timeline of a study session. Participants arrived at the facility at the same time on each of their assigned study session dates
(between 7:30 and 9 AM) and completed the same protocols at each session according to the timeline shown. Participants completed sessions
with a minimum of 10 days (typically 2–3 weeks) between sessions.
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Medical Pty Ltd). Three readings were taken 1 minute apart;
the average of the last 2 measurements was used in the
analysis.44

Questionnaires were administered to assess compliance
with protocols and other factors across study sessions, such
as the participant’s mode of commute to our facility and
incidental smoke exposures. Hourly ambient data for the
24 hours before and throughout each study session were
downloaded from the US Environmental Protection Agency’s
Air Quality Data air pollution index and a local weather
station.45,46

Statistical Analysis
Data processing and statistical analyses were performed in R
(v3.3.1; R Foundation for Statistical Computing).

Summary statistics (mean�SD, range) were calculated for
anthropometric values for the total population and by sex.
Each participant’s mean PM2.5 and CO exposures were
determined by averaging the 1-second data over the 2-hour
exposure window; the population standard deviation and
range were determined from the 2-hour averages. Additional
emissions-characterization measurements (collected after the
study ended) were averaged across each treatment.

Linear mixed-effect models were employed (using the lme4
package47) to estimate the difference between blood pressure
at each post-exposure time point for each stove treatment
compared with the control. Separate models were run for
each time point (immediate, 3-hour, 24-hour) and for each
blood pressure metric (systolic, diastolic). Model assumptions
were evaluated by examining the normality of the model’s
residuals, linearity of the fitted models, and equality of the
error variance. We also identified potential outliers in the data
and examined the impact of the outliers on model fit.

The primary models contained a fixed effect of categorical
treatment, a random person intercept to account for nonin-
dependence across repeated measures within the crossover
design, a random effect for date to account for within-day
correlation for individuals who received treatments on the
same day, and the pre-exposure blood pressure value to
account for differences in individuals’ starting blood pressure
across treatments or study sessions (which captures infor-
mation similar to a pre-/post-exposure change model but is
more efficient and easier to interpret).48,49 By using stove
treatment type in the model, we capture the combined effect
of all the emissions from the stove (eg, particle and gases) on
blood pressure compared with control. The study design
eliminates the need to control for individual-level confounders
(eg, age, sex), as each person participates in each treatment,
and external confounders that might vary across study days
(eg, ambient conditions, caffeine or alcohol consumption), as
each person participates in each treatment and treatments

are balanced across time.38,39 Descriptive statistics and
bivariate analyses were conducted to confirm that associa-
tions between these covariates and the treatment groups did
not occur by chance or because of imbalances caused by
missing data.

Additional models were evaluated as alternatives to the
main model. We developed a mixed-effect model that
considered more structured study design parameters relevant
to our Williams square, including assigned sequence group
and day of the week (Monday versus Wednesday). Only data
that were collected within the intended sequence (ie, not
including makeup sessions) were used in this model. We also
ran the same model as the primary model but (1) excluding
data collected outside of the intended sequence and (2)
excluding data from study sessions in which the exposure
mean was outside of a narrowed range around the target
value.

Results

Participants
The 48 participants (26 male, 22 female) ranged from 21 to
36 years old (mean�SD: 27.5�3.6 years), were within the
normal or low-overweight body mass index (kg/m2) cate-
gories (mean�SD: 23.4�2.2), and on average had nonhyper-
tensive baseline blood pressure (mean�SD for systolic/
diastolic: 116�9/69�6 mm Hg; Table 1). Values were com-
parable between men and women. Participants predominantly
identified as non-Hispanic white (42/48; 88%). Reported use
of alcohol, caffeine, and medication were low throughout the
study; bivariate analyses indicated no meaningful associations
between these or other potentially confounding covariates
(eg, ambient PM2.5 and CO) and the various treatments (see
Data S2 and Tables S2–S11).

The total missing data rate was 6% (see Data S2). Of the 48
participants, 22 (46%) completed the study in the intended,
assigned order with no missed treatments. Age, sex, and body
mass index were comparable between participants who
missed sessions and those who did not (see Data S2). Using
makeup dates at the end of a study round to complete missed
treatments, 79% of participants (38/48) contributed data
relevant to all 6 treatments, and 94% (45/48) had data for at
least 5 treatments.

Exposure Conditions
The means and ranges of individual 2-hour exposure averages
within each treatment are provided in Table 2. The means of
participants’ averaged PM2.5 mass exposure concentrations
were within 10% of the target for the fan rocket, rocket elbow,
and three stone fire treatments (+5, +4, and �37 lg/m3,
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respectively), 20% for the LPG treatment (+2 lg/m3), and
30% for the gasifier treatment (+16 lg/m3). The mean of
participants’ averaged CO exposures per treatment type
generally increased with increasing PM2.5, ranging from
2 ppm for the control up to 9 ppm for the three stone fire.

Additional pollutant measurements conducted after the
end of the study were used to characterize particle properties
and quantify the coemitted gases in the cookstove smoke
compared with the control filtered air. Nitrogen oxide
concentrations were elevated for all stove treatments com-
pared with the control, with the largest differences for the fan
rocket and rocket elbow stoves (24 ppb each, compared with
1 ppb for the control, 4 ppb for LPG and three stone fire, and

2 ppb for gasifier). Nitrogen dioxide levels were similar for all
treatments, including the control (range: 8–12 ppb). Gaseous
carbonyls were measured in all treatments including the
control, with the highest levels for LPG, rocket elbow, and
three stone fire (197, 194, and 293 lg/m3, respectively,
versus 107, 128, and 131 lg/m3 for control, gasifier, and fan
rocket). EC concentration was notably higher for the rocket
elbow stove (94 lg/m3; EC:PM2.5 ratio: 0.7) compared with
the other treatments (0, 3, 29, 38, and 30 for control, LPG,
gasifier, fan rocket, and three stone fire; EC:PM2.5 ratios of
0.1–0.5). Although total particle number generally increased
in a PM2.5 mass-dependent manner, ultrafine particle number
fraction was considerably higher for the LPG treatment than
all others (<95% of particles were <100 nm versus 60–70%
for all others). Within the smallest measured size, 10 to
30 nm, the absolute particle number for the LPG treatment
was �4 times higher than for the gasifier and three stone fire
(which were similar), 65% higher than for the rocket elbow,
and 25% higher than for the fan rocket. Additional detail is
provided in Data S2, Table S1, and Figure S1.

Differences in Blood Pressure for Stove
Treatments Compared With Control
Blood pressure measurements occurred on average 30 min-
utes (SD: 4.2 minutes) after exposure for the immediate time
point, 3 hours and 26 minutes (SD: 4.8 minutes) for the 3-hour
time point, and 24 hours and 13 minutes (SD: 30 minutes) for
the 24-hour time point (see Data S2). Mean blood pressure
across all participants, treatments, and time points was
nonhypertensive (average: 115.7/68.9 mm Hg), although
some individual measurements were within a hypertensive
range (measurements with systolic pressure ≥130 mm Hg: 9%;
measurements with diastolic pressure ≥80 mm Hg: 8%).

Table 1. Description of Study Participants

Variable All (n=48) Female (n=22) Male (n=26)

BMI, kg/m2 23.4 [2.2],
19.4, 28.7

23.5 [2.6],
19.7, 28.7

23.3 [2.0],
19.4, 26.0

Age, y 27.5 [3.6],
20.5, 36.1

27.5 [3.4],
22.8, 34.0

27.4 [3.9],
20.5, 36.1

Baseline SBP, mm Hg 116 [9],
99, 135

113 [9],
100, 135

118 [8],
99, 135

Baseline DBP, mm Hg 69 [6],
59, 86

69 [7],
60, 86

69 [5],
59, 80

Participants with data
for all 6 treatments†

79 82 77

Participants with data
for at least 5 treatments†

94 100 88

Data are shown as mean [SD],* minimum, maximum, or percentage. BMI indicates body
mass index; DBP, diastolic blood pressure; SBP, systolic blood pressure.
*Mean calculated as the population mean of each individuals’ average baseline health
measurement across their completed study sessions.
†Participant was counted if he or she had data for baseline measurement and at least 1
post-exposure measurement.

Table 2. Distributions of the Individual Mean 2-Hour Pollutant Exposures Measured During Treatments

Treatment* Fuel
Participants Completing
Treatment (n)

PM2.5 (lg/m3) CO (ppm)

Mean [SD]†
Min, Max
Individual Exposure† Mean [SD]†

Min, Max Individual
Exposure†

Control None 47 1 [2] �1‡, 9 2 [2] 1, 10

LPG Propane 44 8 [3] 3, 13 3 [1] 1, 6

Gasifier Wood chips 44 46 [9] 30, 76 5 [3] 1, 14

Fan rocket Wood sticks 44 95 [9] 77, 111 8 [2] 5, 12

Rocket elbow Wood sticks 45 254 [9] 236, 276 6 [2] 3, 11

Three stone fire Wood sticks 47 463 [41] 367, 531 9 [4] 4, 20

LPG indicates liquefied petroleum gas; max, maximum; min, minimum; PM2.5, fine particular matter.
*Target PM2.5 levels for each treatment were high-efficiency particulate air-filtered air (0 lg/m3), LPG (10 lg/m3), gasifier (35 lg/m3), fan rocket (100 lg/m3), rocket elbow (250
lg/m3), and three stone fire (500 lg/m3). CO did not have a target level and was not controlled but rather varied naturally.
†Measured pollutant mean is of the participants’ 2-h average values, calculated by determining the 2-h average of the 1-s exposure data for each participant and then averaging across all
participants for each treatment. Min and max individual values are the lowest and highest 2-h average value measured for a single participant.
‡Negative values are a result of a DustTrak calibration artifact.
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Average pre-exposure blood pressure varied by treatment type
(highest: three stone fire, 117.0/70.2 mm Hg; lowest: fan
rocket, 115.0/68.2 mm Hg).

Effect estimates and 95% CIs for the difference in blood
pressure after exposure for each stove treatment compared
to the control from the main model are presented in Table 3
and Figure 2. Alternative model results were consistent with
the main model (see Data S2, Table S12, and Figures S2–
S5).

At the immediate post-exposure measurement, systolic
pressure was significantly lower compared with the filtered air
control for the three stone fire treatment (500 lg/m3 PM2.5:
�2.3 mm Hg; 95% CI, �4.5 to �0.1) and suggestively lower
for the gasifier (35 lg/m3 PM2.5: �1.8; 95% CI, �4.0 to 0.4).
Other treatments were not meaningfully different from the
control at the immediate post-exposure time point.

No significant differences were observed for systolic
pressure between the control and treatments at 3 hours
post-exposure. However, effect estimates were �2 mm Hg
lower than the control for the fan rocket (100 lg/m3 PM2.5:
�1.76 mm Hg; 95% CI, �4.02 to 0.50) and three stone fire
(500 lg/m3 PM2.5: �2.05; 95% CI, �4. to 0.15) treatments.
Effect estimates were �1 mm Hg higher than the control for
the LPG (10 lg/m3 PM2.5: 1.10 mm Hg; 95% CI, �1.1 to
3.33) and gasifier (35 lg/m3 PM2.5: 0.99 mm Hg; 95% CI,
�1.2 to 3.23) treatments.

At 24 hours post-exposure, systolic pressure was signif-
icantly higher than the control by 2 to 3 mm Hg for all
treatments except the rocket elbow. These large significant

effects followed a consistent pattern across stoves, with
effect estimates ranging from 2.3 to 3.1 mm Hg and 95% CIs
ranging from 0.1 to 5.3 mm Hg for the LPG, gasifier, fan
rocket, and three stone fire treatments (LPG: 3.11 mm Hg
[95% CI, 0.65–5.27]; gasifier: 2.3 mm Hg [95% CI, 0.11–
4.48]; fan rocket: 2.54 mm Hg [95% CI, 0.39–4.70]; three
stone fire: 2.41 mm Hg [95% CI, 0.28–4.53]).

Differences were consistent with the null for diastolic
pressure at every time point for all stove treatments
compared with the control except for the rocket elbow
treatment at 24 hours after exposure, which was suggestive
of lower diastolic pressure compared with the control.

Discussion
Exposure to household air pollution is a leading contributor to
disease worldwide, yet there are many gaps in our under-
standing of how different stoves and exposure levels
contribute to health effects. We observed evidence that
short-term exposures to cookstove emissions resulted in a 2-
to 3-mm Hg increase in systolic pressure compared with
filtered air control at 24 hours after exposure. Conversely,
30 minutes after exposure we observed small nonsignificant
decreases in systolic pressure compared with control that
generally returned to no difference 3 hours after exposure.
These differences were seen across stove types at PM2.5

levels from 10 to 500 lg/m3 and did not appear to follow an
exposure-response pattern that corresponded with increasing

Table 3. Mean Difference in Blood Pressure for Stove Treatments Compared With Control at Each Measurement Time

Treatment
Baseline*Value
mmHg [Mean (SD)]

Effect Estimate (95% CI) [mm Hg Difference Compared With Control Treatment]†

Immediately After Exposure 3 h After Exposure 24 h After Exposure

Systolic pressure

LPG 116.5 (10.7) �0.2 (�2.5 to 2.0) 1.1 (�1.1 to 3.3) 3.1 (1.0–5.3)

Gasifier 115.7 (10.8) �1.8 (�4.0 to 0.4) 1.0 (�1.2 to 3.2) 2.3 (0.1–4.5)

Fan rocket 115.0 (9.2) �0.4 (�2.7 to 1.8) �1.8 (�4.0 to 0.5) 2.5 (0.4–4.7)

Rocket elbow 115.6 (9.7) �0.58 (�2.8 to 1.6) �0.5 (�2.7 to 1.7) �0.1 (�2.2 to 2.1)

Three stone fire 117.0 (11.3) �2.3 (�4.5 to �0.1) �2.1 (�4.3 to 0.2) 2.4 (0.3–4.5)

Diastolic pressure

LPG 69.2 (6.7) �0.7 (�2.2 to 0.8) �0.0 (�1.7 to 1.7) 0.3 (�1.6 to 2.2)

Gasifier 69.1 (6.9) �0.8 (�2.2 to 0.7) 0.25 (�1.5 to 2.0) �0.4 (�2.3 to 1.5)

Fan rocket 68.2 (7.3) �0.1 (�1.6 to 1.4) �0.4 (�2.2 to 1.3) �0.1 (�1.9 to 1.8)

Rocket elbow 69.1 (7.3) 0.4 (�1.1 to 1.8) 0.2 (�1.5 to 1.9) �1.7 (�3.6 to 0.2)

Three stone fire 70.2 (7.6) �0.9 (�2.3 to 0.60) �0.8 (�2.5 to 0.9) 0.8 (�1.0 to 2.7)

LPG indicates liquefied petroleum gas.
*Control value at baseline: systolic: 115.2 (9.6) mm Hg; diastolic: 68.6 (6.6).
†All estimates are adjusted for baseline (pre-exposure) blood pressure.
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PM2.5 or CO concentrations. Results for diastolic pressure
were generally consistent with the null hypothesis for all times
and stove treatments.

Particulate matter air pollution is hypothesized to elicit
vascular dysfunction through a variety of mechanistic pathways
including activation of the autonomic nervous system and
increased parasympathetic responses, proinflammatory
responses leading to oxidative stress and inflammation, and
direct interaction of particleswithmolecules in blood circulation
that regulate endothelial function and cell signaling.13 Recent
evidence supports an adrenal stress response (eg, increased
glucocorticoids due to hypothalamic–pituitary–adrenal axis
activation) may also be involved in particulate matter–induced
blood pressure elevations.50 Our observed responses suggest
that short-term exposure to air pollution from most cookstoves
(regardless of PM2.5 levels) produced a delayed increase in
systolic pressure that was observable within 24 hours. As
reviewed elsewhere,18 a delayed increase is suggestive of
biological pathways with slower onset but more persistent

actions. This could include hypothalamic–pituitary–adrenal axis
activation and/or vasomotor dysfunction induced by slower
proinflammatory (eg, cytokine-mediated) mechanisms. Further
work to investigate circulating inflammatory or hypothalamic–
pituitary–adrenal axis markers would help confirm this
hypothesis. The lack of acute increase in blood pressure
does not support autonomic nervous system activation.14

There are multiple mechanisms through which air pollution
exposures could result in biological changes that affect
systolic pressure more than diastolic pressure; for example, if
air pollution exposure causes increased arterial stiffness (as
suggested by some work51), this would favor greater changes
in systolic pressure. More work is needed to elucidate these
pathways.

The post-exposure times for health measurements were
chosen because of a combination of logistical considerations
within our study protocols and because they represent
potentially key response times within the mechanistic path-
way for cardiovascular effects from air pollution.14 However, it
is possible that the timing of our measurements (starting
30 minutes after the exposure ended) missed an immediate
blood pressure increase during particle inhalation. Prior
controlled inhalation studies with diesel particles and con-
centrated PM2.5 have shown that blood pressure can increase
by ≥2 mm Hg immediately (within minutes) during short-
duration exposures in the 100- to 200-lg/m3 PM2.5 range but
does not stay elevated after particle inhalation ceases
(subsiding within a few minutes to hours).16,18,52–55 Only 1
of the identified studies maintained follow-up through
24 hours; no effect was observed at this time.52 If this acute
autonomic blood pressure elevation occurred in our study, we
may not have observed it given our design. Perturbations that
may have occurred during the exposure window, which are
likely to be through an immediate autonomic nervous system
activation pathway, might have subsided by the time post-
exposure measurements were conducted. Future studies that
assess the blood pressure responses concomitant with
exposure can help clarify this issue. Alternatively, if small
changes in systolic pressure occurred at the immediate or
3-hour time point, our study may not have been sufficiently
powered to detect them. Our study may have been under-
powered to detect effects in diastolic pressure at any time
point because diastolic pressure is measured with less
accuracy than systolic pressure, is more variable, and has a
smaller absolute value and range.

Previous work suggests that the adverse cardiovascular
effects of diesel exhaust exposure are entirely attributed to
the particulate phase.56 It is possible that the complex mix
of gaseous and particle pollutants in cookstove combustion
results in competing vasoconstricting and vasodilatory
effects that manifest differently across different stove
types. For example, coemitted NO may have elicited a

Figure 2. Effect estimates and confidence intervals for differ-
ence in blood pressure for stove treatment compared with
control, by stove type and post-exposure time point. Top: Systolic
pressure. Bottom: Diastolic pressure. LPG indicates liquefied
petroleum gas.
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vasodilation response that obfuscated an immediate PM2.5-
induced blood pressure elevation. However, we do not have
sufficient data on the multipollutant exposures to further
support this hypothesis. Further work to assess blood
pressure changes in studies that remove gaseous coexpo-
sures, leaving only cookstove particles, could help clarify
these speculations.

Moreover, it is possible that we did not observe
immediate effects on blood pressure (as is seen in ambient
studies) because compositional differences in LPG and wood
combustion emissions compared with ambient pollution
result in different responses. The pollutant characterization
tests conducted after the study ended demonstrated differ-
ences in particle composition (eg, EC and ultrafine levels)
across stove types, suggesting that acute responses to air
pollution of similar PM2.5 levels but from different sources
may not be comparable. Few controlled wood-smoke
exposure studies exist and none use advanced cookstoves
or nonbiomass LPG fuel; investigation of blood pressure in
these studies is further limited. However, results generally
align with our findings. Unosson et al35 found no changes in
systolic or diastolic pressure during the 1 hour after a
3-hour exposure to birch wood smoke (300 lg/m3 PM2.5)
generated by a Nordic chimney stove compared with filtered
air exposure. Evans et al36 reported no immediate effects on
systolic pressure following 20-minute exposure sessions to
environmental tobacco smoke, cooking oil fumes, and cedar
wood smoke (peak concentration target 350 lg/m3, gener-
ated by open burning) compared with a water vapor control.
Neither study included a delayed follow-up measure (eg,
24 hours). Hunter et al57 found no changes in blood
pressure among firefighters during a 1-hour controlled
exposure to birch wood smoke generated by a Nordic
chimney stove (1000 lg/m3) or at follow-up 6 and 24 hours
after exposure ended; however, this population may be less
susceptible to acute impacts of smoke than a general
population.

We did not observe an acute exposure-response relation-
ship between PM2.5 mass and blood pressure. A possible
explanation for these findings is that other smoke con-
stituents (besides PM2.5 mass) may be responsible for
eliciting some or all of the observed blood pressure
responses. No single pollutant provides an obvious expla-
nation for the similar systolic pressure responses across
most of the stove treatments or the null response for the
rocket elbow treatment compared with the control at
24 hours post-exposure. Alternatively, an exposure-response
curve for cookstove smoke and blood pressure may
not exist on the timescale studied (2-hour exposures,
24-hour follow-up). Previous work suggesting supralinear
exposure-response curves for air pollution are for different
cardiovascular end points (eg, ischemic heart disease,

cardiovascular mortality) and long-term exposures;9,58

although some limited cross-sectional analyses of in-field
cookstove exposures and blood pressure suggest that a
nonlinear relationship exists for individuals with chronic
exposures.20,51 Studies of acute cigarette exposures suggest
that changes in subclinical cardiovascular function may
occur at similar levels for active and passive smoking.59,60

Our results suggest an acute threshold effect may occur for
cookstove air pollution, with similar responses in blood
pressure following exposure regardless of PM2.5 concentra-
tion levels or source (eg, LPG versus wood). It is unclear
how the results of our study might translate under long-
term-exposure scenarios.

Participants were young, predominantly white, healthy
individuals with limited air pollution exposures in their daily
lives; therefore, the generalizability of results to cookstove
users globally may be limited. This population was feasible to
study in this context in terms of participant safety and allowed
us to minimize confounding or interactions by age, comorbid
disease status, or other pollution exposures. Our study has
strong internal validity accomplished by the controlled
exposure design, and this strengthens the study’s ability to
balance data gaps of potentially more generalizable but less
internally valid observational studies.

Our study expands on previous air pollution controlled
exposure studies by incorporating more exposure levels,
allowing for confidence in statistically suggestive trends;
including more participants for greater power; and generating
treatment exposures from multiple cookstove types. The
Williams square crossover design and restrictive study
protocols allowed for within-person comparisons and elimi-
nated many potential confounders, resulting in efficient
analyses comparing more stove types and exposure levels
than observational designs.

We demonstrated that short-term exposures to cook-
stove-generated air pollution can acutely perturb systolic
pressure, with a small decrease immediately after exposure
and a 2- to 3-mm Hg increase 24 hours after exposure
compared with filtered air control. Responses were consis-
tent across a range of stove treatment types, with PM2.5

levels ranging from 10 to 500 lg/m3, which suggests that
household air pollution may be detrimental to cardiovascular
health, even at low PM2.5 levels. Given these findings, public
health practitioners and researchers need to carefully
consider the intended consequences of cookstove interven-
tion programs and the timelines of exposure-response
observations. Further work is needed to better characterize
the multipollutant exposures from household air pollution
and aid in understanding the relationship to blood pressure
across a range of smoke exposure compositions. Research-
ers must also carefully consider how acute exposure-
response relationships seen in controlled exposure studies

DOI: 10.1161/JAHA.119.012246 Journal of the American Heart Association 8

STOVES Study: Cookstoves and Blood Pressure Fedak et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H



translate to real-world, chronic exposures because different
exposure and response timelines and populations may affect
results.
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Supplemental Methods 

Eligibility and Recruitment/Screening Process 

Eligibility criteria were:  

• 18 to 35 years old at the time of recruitment;  

• never smokers;  

• body mass index between 19 to 28 kg/m2 with body weight greater than 50 kg;  

• no history of heart disease, diabetes, kidney disease, systemic sclerosis, or any chronic 

inflammatory disease such as asthma, arthritis, or severe allergies;  

• normal non-hypertensive blood pressure, normal electrocardiogram, spirometry values 

greater than 70% of the predicted value for the age/gender, and normal blood test results 

(including no evidence of iron-deficient anemia), as determined at the screening exam;  

• not currently taking statins, anti-inflammatory medication, or other medications unless 

cleared by the study physician during the screening exam (cleared medications: oral 

contraceptives, some daily anti-depression/anxiety medications);  

• no use of tetrahydrocannabinol or illicit drugs within the past three months;  

• no ear or abdominal/thoracic surgery in the past month; no cancer (current or in remission 

for less than six months); no central intravenous line or port; never had a mastectomy;  

• no pacemaker;  

• not currently pregnant, breastfeeding, or planning a pregnancy within six months;  

• not regularly exposed to smoke, dust, fumes, or solvents (occupationally or recreationally/at 

home), or regularly burned candles or incense within the last three months;  



 

 

• no history of claustrophobia;  

• no fear of needles;  

• not planning to donate blood during the timeframe of participation;  

• no latex allergy; and  

• live within 20 miles of the study facility and not planning to move more than 20 miles away 

within six months.  

Individuals interested in participating in the study completed a screening questionnaire to 

determine potential eligibility. Individuals who appeared to meet criteria based on this 

questionnaire were asked to attend an in-person screening exam to ensure that the participant met 

health-based eligibility criteria. At the screening exam, medical staff measured the individual’s 

height, weight, and blood pressure. A physician reviewed the recruitment questionnaire with the 

individual, conducted a physical exam, and reviewed the individual’s medical history, including 

family history of cardiovascular and respiratory disease. Additionally, the individual performed an 

electrocardiogram, spirometry test, and a blood draw for analysis of complete blood count, 

comprehensive metabolic panel, lipid levels, and serum ferratin. A physician reviewed all results 

from the screening exam to make a final determination of eligibility for the study. 

Additionally, individuals received a tour of the study facility and an overview of the study 

process, requirements, and expectations at the time of their screening exam. The goal of the tour 

and overview was to familiarize potential participants with the exposure facility, protocols, and 

staff, to reduce drop-out rates and alleviate potential stress-related reactions to the contrived 

exposure experience during their participation. During the tour, study staff showed individuals 

examples of cookstoves such as those used for the treatments, explained how the exposure chamber 

worked and safety features of the chamber (e.g., non-locking doors, the intercom and messaging 



 

 

system to communicate with staff, emergency shut-offs, and pollution level monitoring), and 

described what the participant experience was like during exposure periods and throughout the 

health measurements. Individuals were able to see the exposure chamber and, if not in use during 

the time of their screening exam, enter the exposure chamber. 

Treatment Sequence Assignments 

The study protocol called for each participant to receive six exposure treatments (a clean 

air control and five treatments of cookstove air pollution). There was a washout period between 

treatments that was typically two weeks but up to six weeks by design, due to holidays and other 

similar schedule constraints. Our study followed a modified Williams square design, which is a 

Latin square crossover design that is balanced across treatments and first-order carry-over effects. 

We specified six unique sequences of treatments. Each sequence contained all six treatments 

administered in a unique order across the participant’s six study sessions. Across all sequence 

groups, each treatment appeared once in each of the six “periods” (visit numbers) of the treatment 

orders (e.g., first through last assigned study session) and was both followed by and preceded by 

each other treatment exactly once. This design controls for time-invariant personal level factors 

and is robust to time-variant factors that might differ from one study session to the next. 

Participants were blinded to their sequence. 

We conducted the study in three rounds (October 2016 to February 2017; March to June 

2017; August 2017 to January 2018). In each round, two sequence groups (8 participants each) 

completed their full set of six treatments on alternating weeks. Additionally, within each sequence 

group, we divided participants into two subgroups (4 participants each) who completed their 

session on different days of the week (Mondays or Wednesdays). For the four participants who 

completed their study sessions on the same day, we staggered start times by 30 minutes. 



 

 

Participants who missed a scheduled study session (due to illness or unforeseen conflict) were 

allowed to make up the missed treatment at the end of the sequence. 

Participants were scheduled each study day with 30-minute staggered start times between 

7:30AM and 9AM; each participant was scheduled for the same start time for each of their six 

study sessions. Assignment of participants into sequence groups, week days, and time slots was 

random; however, we did consider each participant’s availability for aspects of the randomization 

(i.e., participants were recruited on a rolling basis into the ongoing study round and were allowed 

to specify whether they were not available to be placed into certain dates/time slots). Researchers 

were blind to the treatment orders within each sequence during the assignment process. 

Participants who missed a scheduled study session (due to illness or other unforeseen 

conflict) were allowed to make up the missed session at the end of the sequence. Makeups were 

not necessarily completed on the same day of week or starting time as their regular schedule. 

Makeups were conducted ten days to 14 weeks after the last scheduled treatment, scheduled based 

upon participant and study schedule constraints. Participants remained blind to the treatment 

during makeups. 

Treatments and Administration 

Stove makes/models were as follows: 

1. Liquefied petroleum gas [LPG] stove: Classic Single Burner 25000 BTU, WokSmith, 

China  

2. Gasifier: Ace 1 Gasifier, African Clean Energy (Pty) Ltd, Lesotho 

3. Forced draft (fan-powered) rocket elbow: HomeStove, Biolite, USA 

4. Natural draft rocket elbow: G3300, Envirofit International, USA 

5. Traditional three stone fire: open fire, bricks in U-shape used to contain fuel  



 

 

The filtered air (target PM2.5: 0 µg/m3) was generated by drawing conditioned laboratory air 

through a high-efficiency particulate air (HEPA) filter. Pollution was generated within a 

total-capture fume hood, diluted with HEPA-filtered laboratory air, and then drawn into the 

exposure chamber. A nephelometer (DustTrak DRX 8533, TSI Incorporated, USA) with a PM2.5 

size-selective cyclone inlet was calibrated to the wood and LPG stoves separately (based on 

gravimetric filter data). The DustTrak and a gas analyzer (Siemens Ultramat 6E, Siemens AG, 

Germany) were used to monitor PM2.5, carbon monoxide (CO), and oxygen levels in the chamber 

in real time; humidity and temperature were also monitored (Omega HX94BC transmitter and 

Type K thermocouple, OMEGA Engineering, USA). A dynamic control system (LabVIEW™, 

v15.0 32-bit, National Instruments, USA) was used to automate the flows of both dilution of 

pollution air based on real-time PM2.5 data received from the DustTrak.  

While in the exposure chamber, participant were asked to remain seated at assigned desks 

and to avoid watching suspenseful videos, talking to each other, or talking on a cell phone for the 

duration of the exposure period; however, activities within the facility were not otherwise 

restricted (participants were allowed to use computers/internet, read books, listen to music, nap, 

etc.). Participants wore noise-canceling headphones while inside the exposure chamber, which 

reduced the noise generated by the exposure delivery system and allowed the study nurse to 

communicate with them from outside the chamber via intercom. We attempted to blind participants 

to their treatments on a given study day; however, full blinding was not feasible as higher-PM 

treatment levels (e.g., fan rocket, rocket elbow, three stone fire) have a distinct wood smoke smell 

that participants could identify when they entered the exposure chamber. 

Additional characterization of stove emissions within the facility was conducted at the end 

of the study, at least twice per treatment type in randomized order. For each characterization test, 



 

 

the facility was operated for two hours under the same conditions as during human exposures, but 

without participants present, on at least two occasions per treatment type. Air was sampled at 

breathing zone height 1 m from the wall of the facility (approximating the location where 

participants sat). Gravimetric PM2.5 measurements were made by sampling air at 16.7 L/min 

through a PM2.5 size-selective cyclone (URG Corporation, USA) onto polytetrafluoroethylene 

membrane filters (47mm, Tisch Environmental, USA), which were analyzed offline. Particle 

number size distributions (10 to 500 nm) were measured with a scanning mobility particle sizer 

(SMPS 3081-3785, TSI Inc., USA). Elemental and organic carbon concentrations were determined 

using thermo-optical analysis (OCEC Analyzer, Sunset Laboratory, USA) on pre-baked quartz 

filters (Tissuequartz, Pall Life Sciences, USA). The quartz filter samples were collected by 

sampling at 16.7 L/min through the PM2.5 size-selective cyclone. Nitrogen oxide and nitrogen 

dioxide were measured at 1 Hz via chemiluminescence (Model 42i-TL, Thermo Scientific, USA). 

Gas-phase carbonyls were measured by sampling onto 2,4-dinitrophenylhydrazine silica-based 

cartridges downstream of an ozone scrubber (Sep-Pak, Waters, USA) and analyzed offline using 

high-performance liquid chromatography with ultraviolet detection. Whole air samples were 

collected in 2-liter electropolished stainless steel canisters equipped with Silonite-coated flow 

controller valves (Entech Instruments Inc., USA) and analyzed offline for volatile organic 

compounds using gas chromatography/mass spectrometry.  

Health Measurements 

A series of cardiovascular and pulmonary health measurements was taken at four time 

points: before exposure, immediately after exposure, 3 hours post exposure, and 24 hours post 

exposure. Each series of measurements took approximately one hour to complete. Measurements 

were taken in the same order at each time point and across each study session, as indicated below: 



 

 

1. Apply Holter monitor for heart rate variability (HRV) measurement (at the baseline time 

point only; the Holter monitor remained in place for the first three time points only). 

2. Rest period in supine position lasting twenty minutes during time points one, two, 

and three (HRV data collected during last 10 minutes) and ten minutes during time 

point 4 (no HRV data collected). 

3. Blood pressure and pulse wave analysis (for Augmentation Index) using 

SphygmoCor device (participant remained in supine position; measurements 

conducted on left side using appropriately sized cuffs). 

4. Pulse wave velocity using SphygmoCor device (participant remained in supine 

position). 

5. Spirometry using Easy-on device (participant in seated position). 

6. Venous blood draw for analysis of inflammatory markers, complete blood count, 

and lipid levels. 

Safety Considerations and Informed Consent 

We received approval to conduct this study from the funding agency (NIH) and the 

Colorado State University Institutional Review Board. As part of this process, we provided both 

agencies with extensive justifications related to participant safety.  

Only one of the study treatments (the traditional open fire wood stove; 500 µg/m3) resulted 

in exposure levels above the US daily regulatory standard for fine particulate matter (currently 35 

µg/m3 for the 24-hour average); assuming 500 µg/m3 exposure for 2 hours and 8 µg/m3 for the rest 

of the 24 hours in a day (typical background concentration in Fort Collins, Colorado, the study 

location) would result in a 24-hour average of 49 µg/m3. Using similar calculations, the rest of the 

study treatments result in daily exposure averages below the daily standard for particulate matter 



 

 

(and below the standards for other ambient criteria pollutants). Furthermore, the US Environmental 

Protection Agency National Ambient Air Quality Standards are set to protect all citizens, including 

those who are most susceptible (e.g., children, the elderly, or those with existing cardiovascular or 

respiratory disease). Our study included only healthy, never-smoker adults to minimize potential 

risks. 

We used strict eligibility criteria to ensure participants in this study were healthy and 

therefore, at low risk of both acute and chronic harm from exposure to the air pollution in the 

study. We excluded potential participants who: had a history of heart disease, diabetes, or any 

chronic inflammatory disease (such as asthma, arthritis, or severe allergies); body mass index 

(BMI) less than 19 or greater than 25; were currently pregnant or planning a pregnancy during the 

exposure period; regularly taking statins or other anti-inflammatory medication; occupationally 

exposed to dust, fumes, solvents, or secondhand smoke. All participants were examined by a 

board-certified cardiologist prior to enrollment to determine eligibility, including a full medical 

history and routine physical exam, EKG, spirometry, and bloodwork. Normal EKG, spirometry, 

and blood work were prerequisites for entry into the study. Participants were instructed to tell study 

staff if they had any change in health during their participation in the study, so that we could 

reassess eligibility.  

The exposure chamber facility was monitored in real-time by trained staff to ensure PM2.5 

concentrations were maintained within reasonable ranges of the target, planned concentrations and 

that CO, oxygen, temperature, and humidity remained within acceptable levels. The facility was 

equipped with an alarm that would trigger if the PM concentration delivered to the chamber 

exceeds 600 µg/m3 across a 2-min average, at which point the cookstove exhaust would 

automatically shut off and subjects were to be instructed to leave the chamber immediately (this 



 

 

did not ever occur). Participants were informed of additional safety features, including non-locking 

doors that could easily be pushed open at any time, windows through which they could see study 

staff (and were being watched by study staff, including a registered nurse, at all times), monitoring 

of blood pressure and pulse oxygen every 15 minutes, and various methods for communicating 

with staff who were outside the facility. A physician and registered nurse were present during the 

controlled exposure periods; the physician remained on-call for 24 hours after the end of the 

exposure period.  

The informed consent document contained a description of each of the exposures, 

comparing the level to easy-to-understand references (e.g., for 250 µg/m3 PM2.5, we noted that 

similar exposures occurred in Fort Collins during the 2012 High Park fire, a major wildfire that 

occurred in a nearby area). The consent form described the risks of air pollution exposures, with 

following statements: 

• Short-term exposure to air pollution (PM2.5), like that which will be experienced in this study, 

poses limited risks to young, healthy participants. Long-term (over the course of decades) 

exposure to air pollution may increase the chance of adverse health effects, but this study is 

considered short-term exposure.  

• Short-term exposure to carbon monoxide (CO) has been associated with headaches, 

dizziness, nausea, and/or vomiting. With the exception of headaches, these symptoms 

typically occur at concentrations higher than the maximum concentration (200 ppm) 

participants may experience while inside the SET facility. Participants will immediately be 

escorted out of the SET facility should CO concentrations in the SET facility exceed the 

recommended exposure limit (200 ppm) set forth by the National Institute for Occupational 

Safety and Health.  



 

 

All participants went through the informed consent document in-person with study staff, 

who verbally explained the details in the written document to ensure participants understood the 

types of exposures and exposure levels. Participants were given the chance to ask questions.  

Statistical Analysis: Confounders 

Descriptive statistics were calculated and bivariate analyses were conducted to confirm 

that associations between these covariates and the treatment groups did not occur by chance or due 

to imbalances caused by missing data.  

For categorical variables (e.g., yes/no consumption of alcohol; bike, car, walk, bus mode 

of commute), we tallied the number of individuals who reported each category by treatment type. 

We also tallied the number of individuals who changed their reported answer from one study 

period to the next. For continuous variables (e.g., ambient CO concentrations), we calculated the 

mean, minimum, and maximum value per treatment type. Descriptive analyses for continuous 

variables included determining mean, minimum, and maximum values for the variable by 

treatment type.  

For variables that showed variation across treatments, we ran models to predict the 

confounder status by treatment type, to determine if there were meaningful differences in the 

variable by treatment type. The models predicted the outcome of the confounder status (e.g., binary 

alcohol, caffeine, and medication consumption status; continuous ambient conditions) with a fixed 

effect of categorical treatment type and a random person intercept to account for non-independence 

across repeated measures within our crossover design (i.e., each individual completing multiple 

treatments). We also ran a multivariable model that contained the treatment effect adjusted for 

multiple potential confounders.  

  



 

 

Data S2. 

 

Supplemental Results 

Treatments 

Summaries of the addition pollutant characterizations are provided in Table S1 and Figure 

S1. Gravimetric measurements and time-resolved PM2.5 measurements made during the emissions 

characterization were consistent with the target concentrations for each stove on study days.   

Study Completion/Missing Data  

Of the 26 participants who missed study sessions, 12 missed only one session. 

Approximately half of the missed study sessions were due to scheduling conflicts that arose after 

a participant enrolled in the study; one quarter were due to illnesses on scheduled study dates, and 

one quarter were due to the participants being enrolled in the study late, after the rest of their 

sequence cohort had completed the first study session.  

Four participants withdrew from the study prior to completing six study sessions. 

Additionally, errors with data logging and our exposure chamber operation resulted in the loss of 

data relevant to single sessions that were not repeated for five participants. Finally, one participant 

completed six study sessions, however after the first session, we switched from left-side 

measurements to right-side to accommodate a medical implant in their left arm; their first session 

was therefore censored from the dataset. More study sessions were missing from the LPG, gasifier, 

and fan rocket treatments (44 of the 48 participants completed these treatments) than other 

treatments (rocket elbow: 45, three stone fire and control: 47). Within the sessions completed, 11 

individual data points are missing. Reasons for missing individual data points included scheduling 



 

 

conflicts for participants that resulted in them leaving a study day without completing the 

three-hour or 24-hour follow-up time point or a data recording error that resulted in loss of data. 

Age, sex, and BMI were comparable between participants who missed sessions and those 

who did not. For the 22 participants who completed all treatments within sequence, 55% were 

male, average BMI was 23.4 ± 2.3 kg/m2 (range 19.4 to 28.7), and average age was 28.4 ± 4.0 

years (range 20.7 to 36.1). For the 26 participants who completed all treatments within sequence, 

54% were male, average BMI was 23.4 ± 2.2 kg/m2 (range 19.4 to 27.6), and average age was 26.9 

± 3.1 years (range 21.9 to 34.1). 

Health Measurement Timing  

Baseline pre-exposure measurements occurred on average 25 minutes before entering the 

exposure facility (range 66 to 12 min). The three sets of post-treatment health measurements were 

scheduled to start immediately post-exposure, three hours post exposure, and 24 hours 

post-exposure. The average times of blood pressure measurements were 30 minutes (range: 16 to 

49 min; standard deviation: 4.2 minutes), 3 hours and 26 minutes (range: 3 hours 12 min to 3 hours 

47 min; standard deviation: 4.8 minutes), and 24 hours and 13 minutes (range 22 hours 13 min to 

25 hours 44 min; standard deviation: 30 minutes) post-exposure. Individuals were consistent with 

themselves across sessions: the average difference in time of day at which each individual’s health 

data were collected was 10 minutes, 11 minutes, and 38 minutes for immediately, three hours, and 

24 hours post-exposure, respectively.  

 

Potential Confounders 

Alcohol, Caffeine, and Medication Use 



 

 

Reported alcohol consumption, caffeine intake, and medication use among participants was 

low (see Tables S2 and S3). Univariate models did not find statistically significant associations 

between alcohol use, medication use, or caffeine use and treatment type (not shown).  

Mode of Commute 

Participants were asked to use the same mode of commute into the facility on each study 

day. Driving was the most common mode of commute (59% of all trips to the facility for the first 

study day and 56% of all trips for the second study day involved a car), followed by bike (36% of 

all trips on the first study day and 31% on the second study day; see Tables S4 and S5). Twenty-five 

of the 48 participants did not change their habits regarding first day commute mode across the six 

study sessions (i.e., consistently reported the exact same mode for all six sessions). Twenty-two 

of the 48 participants did not change their habits regarding the second day commute mode use 

across the six study sessions. 

Sleep Quantity 

Most participants reported getting an “average” amount of sleep (self-defined “average” as 

the typical hours of sleep per night; 74% for the night before the study session began and 75% for 

the night before the second study day); the amount of people reporting below-average sleep was 

less for the second study day than the first (19% for the night before the study session began vs. 

10% for the night before the second study day; see Tables S6 and S7). Only 11 of the 48 

participants did not change their habits regarding sleep prior to the start of a study session across 

the six study sessions (i.e., consistently reported the exact same sleep levels for all six sessions). 

Thirteen of the 48 participants did not change their habits regarding sleep the night before the 

24-hour measurements across the six study sessions. 

Ambient PM2.5 



 

 

Mean ambient PM2.5 (measured outdoors at a monitoring site approximately 1 mile from 

the study facility) in the 24-hours prior to the start of a study day ranged from 4.9 µg/m3 (control) 

to 9.8 µg/m3 (fan rocket; see Table S8). Minimum recorded mean PM2.5 was 0.9 µg/m3 (three stone 

fire) and maximum recorded mean PM2.5 was 17.6 µg/m3 (fan rocket). Ambient PM2.5 was higher 

for all treatments compared to the control except the gasifier. However, the range of ambient PM2.5 

overall was narrow. We ran a model that was the same as the main model but with an additional 

covariate of 24-hour average ambient PM2.5; results were comparable to the main model (See 

Figure S2).  

Additionally, we considered whether the rolling average for the 24 hours prior to a blood 

pressure measurement (e.g., the 24 hours prior to a baseline measurement, 24 hours prior to the 3-

hour post-exposure measurement) was associated with that measurement. We ran a linear mixed 

effect model that estimated the change in systolic blood pressure (in mmHg) for an interquartile 

range (IQR) change in average ambient PM2.5 24 hours prior to the blood pressure measurement, 

accounting for correlation between within-person measurements of blood pressure with a random 

person effect, day of week and season using a random date effect, and average ambient temperature 

24 hours prior to the blood pressure measurement. Ambient PM2.5 was not meaningfully associated 

with blood pressure at any measurement time point (see Table S9).  

Ambient CO 

Mean ambient CO in the 24-hours prior to the start of a study day ranged from 0.25 (rocket 

elbow) to 0.35 ppm (three stone fire; see Table S10). Minimum recorded mean CO was 0.13 ppm 

(LPG) and maximum recorded mean CO was 0.70 ppm (three stone fire). Ambient CO was higher 

for the LPG and three stone fire treatments compared to the control. However, the range of ambient 

CO overall was determined to be narrow enough to exclude this variable in the main model. We 



 

 

also considered average CO levels for the six hours prior to the start of a study day; results were 

similar. 

 

Ambient Temperature 

Mean temperature in the 24-hours prior to the start of a study day ranged from 6.0 °C 

(43 °F; three stone fire) to 15.9 °C (61°F; fan rocket). Minimum recorded mean temperature 

was -8.5 °C (17 °F; rocket elbow) and maximum recorded mean temperature was 24.2 °C (76 °F; 

rocket elbow; see Table S11). Temperature was higher for the LPG, fan rocket, and rocket elbow 

treatments compared to the control. However, the range of temperatures overall was determined 

to be narrow enough to exclude this variable in the main model.  

Fully-Adjusted Model 

None of the variables explored appeared to be confounders based on limited variation 

across the population and/or no association with the treatment type. However, we ran a 

multivariable model that was equivalent to our main model (containing a random person effect, 

random date effect, baseline blood pressure term, and categorical treatment) but additionally 

included variables for alcohol use, caffeine use, medication use, sleep quantity, ambient PM2.5, 

and ambient temperature. For models estimating blood pressure immediately and 3-hours post-

exposure, we used the value of the binary variables that was reported for the 24 hours prior to the 

baseline measurement; for the 24-hour post-exposure measurement, we used the value reported 

for the time between the 3-hour post-exposure measurement and the 24-hour post-exposure 

measurement. For PM2.5, and ambient temperature, we used the rolling average for the 24 hours 

prior to the measurement. Results of the model indicated that none of the added variables were 



 

 

significant predictors for blood pressure; further, inclusion of the variables in the model did not 

meaningfully change the main effect estimates for treatment type (see Figure S3).  

 

 

Alternative Models 

Baseline blood pressures were lowest for the fan-rocket treatment (115.0/68.2 mmHg) 

followed by the control (115.2/68.6 mmHg) and highest for the three stone fire (117.0/70.2 

mmHg). As such, inclusion of a baseline term in the model is justified. 

Model with more structured study design parameters, in sequence data only (no makeups) 

We developed a mixed-effect model that considered more structured study design 

parameters relevant to our Williams square, such as each individual’s assigned sequence group 

and the day of week (Monday vs. Wednesday), and only included data that was collected within 

the intended sequence. Results of this model for systolic pressure indicate no statistical 

significance (p <0.05) for the various fixed effect “design” terms (day of week, sequence group, 

or the sequence/day interaction term) (Table S12; Figure S4). There are no differences in main 

effect estimates compared to the main model with all data (Table S12; Figure S4). 

Main model, in sequence only (no makeups) 

We ran the main model but on a data set that excluded data collected outside of the intended 

treatment sequence. Results of this model for systolic pressure indicate no differences in main 

effect estimates compared to the main model with all data (Table S12; Figure S4). 

Main model, remove when exposure value outside narrow range of target 

We ran the main model excluding data from study sessions where the exposure mean was 

outside of a narrowed range around the target value. The narrowed ranges were: 



 

 

Control: less than 5 µg/m3 (n = 45; 2 removed) 

LPG: 5-15 µg/m3 (n = 37; 7 removed) 

Gasifier: 20-60 µg/m3 (n = 40; 4 removed) 

Fan rocket: 75-125 µg/m3 (n = 44; 0 removed) 

Rocket elbow: 175-300 µg/m3 (n = 45; 0 removed) 

Three stone fire: 350-600 µg/m3 (n = 47; 0 removed) 

Results indicated no considerable differences between the estimates for the treatment effects 

between this model and the main model (see Figure S5). 

 

 

 

 

 

 

 

  



 

 

Table S1. Characterization of exposure treatments: average emissions.  

 

 control LPG gasifier 
fan 

rocket 

rocket 

elbow 

three 

stone fire 

Number of tests 2 2 2 2 3 2 

PM2.5 (µg/m3; gravimetric) 2 10 44 69 196 345 

PM2.5 (µg/m3; time-resolved) 2 12 50 214 171 445 

particle number, 

10-500 nm* (/cm3) 
935 17,707 15,255 54,383 69,388 104,739 

particle number,  

10-100 nm* (/cm3) 
584 17,254 8,925 38,433 39,427 61,404 

particle number,  

10-30 nm* (/cm3) 
117 15,267 3,504 12,065 9,193 4,435 

particle number,  

10-50 nm* (/cm3) 
304 16,620 6,156 23,783 21,985 20,550 

Percent of total particle 

number <100 nm* 
62% 97% 59% 71% 57% 59% 

Percent of total particle 

number <50 nm* 
33% 94% 40% 44% 32% 20% 

EC (µg/m3) -1† 3 29 38 94 30 

OC (µg/m3) 6 3 8 18 43 132 

EC:PM2.5 ratio 0.0 0.3 0.7 0.5 0.5 0.1 

acetaldehyde (µg/m3) 18 32 23 19 24 62 

acetone (µg/m3) 34 47 40 33 70 75 

formaldehyde(µg/m3) 10 44 15 24 28 50 

hexaldehyde (µg/m3) 3 6 4 9 10 21 

propionaldehyde (µg/m3) 31 52 34 35 46 53 

all carbonyls (µg/m3) 107 197 128 131 194 293 

NO (ppb) 1 4 2 24 24 4 

NO2 (ppb) 8 10 9 9 10 12 

benzene (ppbv) 1 1 6 7 19 35 

toluene (ppbv) 4 3 4 5 7 14 

ethylbenzene (ppbv) 0 0 0 0 1 2 

xylenes‡ (ppbv) 2 1 3 3 4 5 
 

*electrical mobility diameter 
†Negative value due to small positive EC mass measured on one artifact filter 
‡Sum of o-xylene and m,p-xylene  

 

 

 



 

 

Table S2. Alcohol, caffeine, and medication intake by treatments: 24 hours before session 

start. 

 

 

 

Variable Control LPG Gasifier 
Fan 

rocket 

Rocket 

elbow 

Three 

stone 
Total 

% of 

total  

Total responses 47 44 44 44 45 47 271  

Consumed alcohol 1 1 1 1 3 1 8 3 

Consumed caffeine 4 4 4 5 5 2 24 9 

Used medications* 4 7 6 5 7 8 37 14 

Exposed to smoke 0 1 0 0 1 0 2 1 

 

*This includes some use of daily medications that were approved by the study physician, such as 

oral contraceptives.  



 

 

Table S3. Alcohol caffeine, and medication intake by treatments: during the study session. 

 

 

  

Variable Control LPG Gasifier 
Fan 

rocket 

Rocket 

elbow 

Three 

stone 
Total† 

% of 

total 

Total responses 46 44 42 43 43 47 266  

Consumed alcohol 2 1 0 0 0 0 3 1 

Consumed caffeine 2 4 2 1 2 2 13 5 

Used medications* 5 4 8 6 4 7 34 13 

Exposed to smoke 0 0 1 2 0 0 3 1 

 

*This includes some use of daily medications that were approved by the study physician, such as oral 

contraceptives.  
†Total is lower than in table S2 because some participants missed the 24-hour follow-up period.  

 



 

 

Table S4. Mode of commute to facility by treatments: before session start. 

 

Mode Control LPG Gasifier 
Fan 

rocket 

Rocket 

elbow 

Three 

stone 
Total 

Bike 15 16 17 16 18 14 96 

Bike+walk 0 1 1 0 1 0 3 

Bus 0 0 0 0 0 0 0 

Bus+walk 0 0 1 0 1 0 2 

Car 27 24 23 25 24 29 153 

Car+walk 3 1 1 1 0 2 8 

Walk 2 2 1 1 1 1 8 

Not 

applicable* 
0 0 0 1 0 1 2 

total 47 44 44 44 45 47 271 

 

*Not applicable: The participant did not report. 

 

 



 

 

Table S5. Mode of commute to facility by treatments: prior to the 24-hour health 

measurements. 

 

Mode Control LPG Gasifier 
Fan 

rocket 

Rocket 

elbow 

Three 

stone 
Total 

Bike 14 15 12 14 14 12 81 

Bike+walk 0 0 1 0 1 1 3 

Bus 1 1 0 2 0 0 4 

Bus+walk 2 2 3 2 3 4 16 

Car 26 23 24 23 21 29 147 

Car+walk 2 1 1 0 2 0 6 

Walk 1 1 0 1 2 1 6 

Not 

applicable* 
1 1 3 2 2 0 9 

Total 47 44 44 44 45 47 271 

 

*Not applicable: The participant did not report or the participant was not present for the 24-hour 

measurements.  



 

 

Table S6. Sleep quantity by treatment: night prior to start of study session. 

 

Sleep Control LPG Gasifier 
Fan 

rocket 

Rocket 

elbow 

Three 

stone 
Total 

Above 

average 
4 2 4 0 5 4 19 

Average 33 36 32 36 32 32 201 

Below 

average 
10 6 8 8 8 11 51 

Total 47 44 44 44 45 47 271 

 

 



 

 

Table S7. Sleep quality by treatment: night prior to the 24-hour health measurements. 

 

Sleep Control LPG Gasifier 
Fan 

rocket 

Rocket 

elbow 

Three 

stone 
Total 

Above 

average 
6 7 6 8 6 7 40 

Average 35 34 33 31 32 35 200 

Below 

average 
5 3 3 4 6 5 26 

Not 

applicable* 
1 0 2 1 1 0 5 

Total 47 44 44 44 45 47 271 

 

*Not applicable: Participant missed the 24-hour follow-up period/survey.  

 

 



 

 

Table S8. Ambient PM2.5 Levels* by Treatment: 24 Hours before Session Start.  

 

PM2.5 Control LPG Gasifier 
Fan 

rocket 

Rocket 

elbow 

Three 

stone 

mean 4.9 7.2 5.3 9.8 6.4 6.6 

min 1.5 2.9 1.0 2.0 2.6 0.9 

max 9.8 18.8 11.2 17.6 10.6 12.7 

 

*24-hour average in µg/m3 

 



 

 

Table S9. Change in systolic pressure per interquartile range change in ambient PM2.5.  

 

Measurement time point IQR 24-hour average 

ambient PM2.5 

Change in systolic pressure (mmHg) 

Estimate (95% CI) 

Baseline 4.4 -0.10 (-0.96, 0.75) 

Immediately post-exposure 4.5 -0.15 (-1.07, 0.76) 

Three hours post-exposure 4.7 -0.45 (-1.42, 0.51) 

24 hours post-exposure 5.6 -0.34 (-1.44, 0.76) 

 

 



 

 

Table S10. Ambient CO levels* by treatment: 24 hours before session start. 

 

CO Control LPG Gasifier 
Fan 

rocket 

Rocket 

elbow 

Three 

stone 

mean 0.27 0.31 0.28 0.29 0.25 0.35 

min 0.16 0.13 0.19 0.17 0.17 0.17 

max 0.46 0.48 0.45 0.50 0.44 0.70 

 

*24-hour average in ppm 

 



 

 

Table S11. Mean temperature* (°C) by treatment: 24 hours before study session.  

 

Temp Control LPG Gasifier 
Fan 

rocket 

Rocket 

elbow 

Three 

stone 

mean 7.0 10.9 8.2 15.9 13.3 6.0 

min -7.3 2.9 0.5 4.6 -8.5 -3.1 

max 20.2 23.9 14.0 22.3 24.2 15.3 

 

*24-hour average in °C 

 

 

 



 

 

Table S12. Comparison of model results for three model options: effect estimates and 95% confidence intervals for all model 

parameters. For random variables, value is the variance and standard deviation.  

 

Parameter MAIN MODEL MAIN MODEL, IN SEQUENCE DATA DESIGN MODEL, IN SEQUENCE DATA 

SYSTOLIC PRESSURE 

 
immediately 

post 

exposure 

3 hours 

post 

exposure 

24 hours 

post 

exposure 

immediately 

post 

exposure 

3 hours  

post 

exposure 

24 hours 

post 

exposure 

immediately 

post 

exposure 

3 hours 

post 

exposure 

24 hours 

post 

exposure 

n 271 267 264 243 240 240 243 240 240 

random  

date 

0.5  

(0.7) 

0.04  

(0.2) 

0.0  

(0.0) 

0.65  

(0.8) 

0.24  

(0.5) 

0.0  

(0.0) 

0.8  

(0.9) 

0.4  

(0.6) 

0.0  

(0.0) 

random 

person*  

26.6  

(5.2) 

32.6  

(5.7) 

50.2  

(7.1) 

29.3  

(5.4) 

30.8  

(5.5) 

53.9  

(7.3) 

32.3  

(5.7) 

34.9  

(5.9) 

52.3  

(7.3) 

random 

residual 

27.3  

(5.2) 

28.9  

(5.4) 

26.6  

(5.2) 

21.9  

(4.7) 

29.8  

(5.5) 

22.9  

(4.8) 

21.2  

(4.6) 

28.4  

(5.3) 

22.4  

(4.7) 

intercept 
62.5  

(50, 75) 

71.5  

(58.5, 84.6) 

83.1  

(69.5, 96.7) 

65.3  

(53.1, 77.6) 

69.7  

(56.1, 83.4) 

87.8  

(74.3, 101.2) 

74.1  

(60.1, 88.2) 

84.1  

(68.4, 99.7) 

96.0  

(80.5, 111.3) 

Baseline 

BP 

0.5  

(0.4, 0.6) 

0.4  

(0.3, 0.5) 

0.3  

(0.2, 0.4) 

0.4  

(0.3, 0.5) 

0.4  

(0.28, 0.51) 

0.2  

(0.1, 0.3) 

0.4  

(0.3, 0.5) 

0.3  

(0.2, 0.4) 

0.2  

(0.1, 0.3) 

LPG 
-0.2  

(-2.5, 2.0) 

1.1  

(-1.1, 3.3) 

3.1  

(1.0, 5.3) 

0.0  

(-2.1, 2.2) 

1.6  

(-0.8, 4.1) 

2.4  

(0.3, 4.6) 

0.0  

(-2.2, 2.2) 

1.6  

(-0.8, 4.1) 

2.3  

(0.2, 4.5) 

gasifier 
-1.81  

(-4.0, 0.4) 

1.0  

(-1.2, 3.2) 

2.3  

(0.1, 4.5) 

-1.0  

(-3.3, 1.3) 

1  

(-1.61, 3.61) 

2.2  

(-0.1, 4.5) 

-1.0  

(-3.3, 1.3) 

0.95  

(-1.6, 3.5) 

2.1  

(-0.2, 4.4) 

fan rocket 
-0.4  

(-2.7, 1.8) 

-1.8  

(-4.0, 0.5) 

2.5  

(0.4, 4.7) 

-0.5  

(-2.7, 1.7) 

-1.35  

(-3.9, 1.19) 

2.0  

(-0.2, 4.2) 

-0.6  

(-2.8, 1.6) 

-1.5  

(-4.1, 1.0) 

1.9  

(-0.3, 4.1) 

rocket 

elbow 

-0.6  

(-2.8, 1.6) 

-0.5  

(-2.7, 1.7) 

-0.1  

(-2.2, 2.1) 

-1.3  

(-3.5, 0.9) 

-0.31  

(-2.78, 2.17) 

-0.2  

(-2.4, 1.9) 

-1.3  

(-3.4, 0.9) 

-0.3  

(-2.7, 2.2) 

-0.3  

(-2.4, 1.9) 

three stone 
-2.3 

(-4.5, -0.1) 

-2.1  

(-4.3, 0.2) 

2.4  

(0.3, 4.5) 

-1.7  

(-3.8, 0.5) 

-1.7  

(-4.1, 0.7) 

2.6  

(0.4, 4.7) 

-1.6  

(-3.7, 0.5) 

-1.5  

(-3.9, 0.9) 

2.6  

(0.5, 4.7) 

day       -0.0  

(-8.6, 8.5) 

0  

(-9.0, 9.0) 

3.4  

(-7.2, 14.0) 

sequence b       6.4  

(-2.1, 14.9) 

4.4  

(-4.6, 13.3) 

8.4  

(-2.1, 19.0) 

sequence c       -1.8  

(-10.2, 6.7) 

-4.5  

(-13.3, 4.3) 

-3.9  

(-14.3, 6.6) 

sequence d       -1.9  -1.2  0.1  



 

 

(-10.3, 6.5) (-10.0, 7.7) (-10.3, 10.6) 

sequence e       -3.5  

(-12.0, 5.0) 

-6.8  

(-15.7, 2.1) 

-2.1  

(-12.6, 8.4) 

sequence f       -1.4  

(-9.9, 7.0) 

-4.5  

(-13.4, 4.4) 

-5.6  

(-16.1, 4.9) 

day: 

sequence b 
      -10.2  

(-22.4, 2.0) 

-12.0  

(-24.9, 0.9) 

-15.7 

(-30.7, -0.6) 

day: 

sequence c 
      1.8  

(-10.2, 13.8) 

4.6  

(-8.0, 17.2) 

2.7  

(-12.2, 17.5) 

day: 

sequence d 
      -4.0  

(-16.2, 8.2) 

-6.6  

(-19.5, 6.3) 

-12.9  

(-27.9, 2.2) 

day: 

sequence e 
      -0.2  

(-12.3, 11.8) 

2.0  

(-10.7, 14.6) 

-5.0  

(-19.9, 9.8) 

day: 

sequence f 
      -4.1  

(-16.2, 8.0) 

-2.5  

(-15.2, 10.2) 

-3.6  

(-18.5, 11.3) 

DIASTOLIC PRESSURE 

random  

date 

0.0  

(0.0) 

0.0  

(0.0) 

0.0 

(0.0) 

0.0  

(0.0) 

0.0  

(0.0) 

0.0  

(0.0) 

0.0  

(0.0) 

0.0  

(0.0) 

0.0  

(0.0) 

random 

person* 

10.8  

(3.3) 

12.3  

(3.5) 

16.7  

(4.1) 

11.6  

(3.4) 

11.6  

(3.4) 

16.6  

(4.1) 

8.6  

(2.9) 

10.9  

(3.3) 

15.9  

(4.0) 

random 

residual 

13.0  

(3.6) 

17.4  

(4.2) 

20.2  

(4.5) 

12.5  

(3.5) 

17.8  

(4.2) 

16.9  

(4.0) 

12.7  

(3.6) 

17.8  

(4.2) 

15.8  

(4.0) 

intercept 
35.3  

(28.4, 42.2) 

33.7  

(25.8, 41.6) 

44.8  

(36.0, 53.6) 

36.7  

(30.0, 44.0) 

33.6  

(25.4, 41.9) 

46.2  

(37.8, 54.6) 

38.1  

(30.1, 46.1) 

35.6  

(26.2, 45.0) 

50.0  

(40.0, 60) 

Baseline 

BP 

0.5  

(0.4, 0.6) 

0.5  

(0.4, 0.6) 

0.4  

(0.2, 0.5) 

0.5  

(0.4, 0.6) 

0.5  

(0.4, 0.6) 

0.3  

(0.2, 0.5) 

0.5  

(0.4, 0.6) 

0.5  

(0.4, 0.6) 

0.3  

(0.2, 0.4) 

LPG 
-0.7  

(-2.2, 0.8) 

-0.0  

(-1.7, 1.7) 

0.3  

(-1.6, 2.2) 

-0.4  

(-2.0, 1.2) 

0.0  

(-1.9, 1.9) 

-0.6  

(-2.4, 1.2) 

-0.5  

(-2.1, 1.1) 

0.02  

(-1.9, 1.9) 

-0.8  

(-2.6, 1.0) 

gasifier 
-0.8  

(-2.2, 0.74) 

0.3  

(-1.5, 2.0) 

-0.4  

(-2.3, 1.5) 

-0.5  

(-2.2, 1.2) 

-0.4  

(-2.4, 1.6) 

-0.8  

(-2.7, 1.2) 

-0.6  

(-2.2, 1.1) 

-0.4  

(-2.4, 1.6) 

-0.8  

(-2.7, 1.1) 

fan rocket 
-0.13  

(-1.63, 1.4) 

-0.41  

(-2.2, 1.3) 

-0.1  

(-1.9, 1.8) 

0.1  

(-1.5, 1.7) 

-0.4  

(-2.3, 1.5) 

-1.2  

(-3.0, 0.7) 

0  

(-1.6, 1.6) 

-0.5  

(-2.4, 1.5) 

-1.3  

(-3.2, 0.5) 

rocket 

elbow 

0.4  

(-1.1, 1.8) 

0.2  

(-1.5, 1.9) 

-1.7  

(-3.6, 0.2) 

0.1  

(-1.5, 1.7) 

0.1  

(-1.9, 2.0) 

-2  

(-3.8, -0.2) 

0.1  

(-1.5, 1.7) 

0.2  

(-1.7, 2.1) 

-2.0 

(-3.8, -0.2) 

three stone 
-0.9  

(-2.3, 0.6) 

-0.8  

(-2.5, 0.9) 

0.8  

(-1.0, 2.7) 

-0.7  

(-2.3, 0.9) 

-0.9  

(-2.8, 1.0) 

0.5  

(-1.3, 2.3) 

-0.7  

(-2.3, 0.8) 

-0.9  

(-2.7, 1.0) 

0.5  

(-1.2, 2.3) 

day       -1.5  

(-6.2, 3.2) 

-0.5  

(-5.9, 4.9) 

1.2  

(-4.9, 7.3) 



 

 

sequence b       2.1  

(-2.6, 6.7) 

1.0  

(-4.3, 6.2) 

4.2  

(-1.9, 10.3) 

sequence c       -2.9  

(-7.5, 1.7) 

-3.2  

(-8.5, 2.1) 

-3.3  

(-9.3, 2.7) 

sequence d       -4.1  

(-8.8, 0.47) 

-0.4  

(-5.6, 4.9) 

-0.8  

(-6.8, 5.2) 

sequence e       -2.9  

(-7.6, 1.7) 

-4.0  

(-9.3, 1.3) 

-0.9  

(-6.9, 5.1) 

sequence f       -3.5  

(-8.2, 1.1) 

-1.9  

(-7.2, 3.3) 

-1.6  

(-7.7, 4.4) 

day: 

sequence b 
      -3.9  

(-10.5, 2.7) 

-2.4  

(-9.9, 5.0) 

-7.3  

(-15.9, 1.3) 

day: 

sequence c 
      2.0  

(-4.5, 8.6) 

4.2  

(-3.3, 11.7) 

1.4  

(-7.1, 10.0) 

day: 

sequence d 
      1.7  

(-5.0, 8.3) 

-2.9  

(-10.5, 4.7) 

-7.7  

(-16.3, 0.9) 

day: 

sequence e 
      -2.4  

(-9.0, 4.2) 

-1.3  

(-8.9, 6.2) 

-3.2  

(-11.7, 5.4) 

day: 

sequence f 
      0.34  

(-6.3, 6.9) 

-0.9  

(-8.4, 6.7) 

-2.3  

(-10.9, 6.2) 

 

*In the main model and main model using in-sequence data only, variable is a random person effect. In the design model, the variable is a random person 

effect nested within the day and sequence group. 

 

 

 



 

 

Figure S1. Pollutant characterization in exposure facility, by treatment.  

 

Top left: Carbonyl concentrations; top right: 

elemental carbon (EC) and organic carbon 

(OC) concentrations; middle left: nitrogen 

oxide (NO) and nitrogen dioxide (NO2) 

mixing ratios; middle right: particle number 

concentration by size fraction; bottom left: 

VOC concentrations. 

 

 

 

 

 



 

 

Figure S2. Effect estimates and 95% confidence intervals for mean difference in systolic 

pressure (mmHg) for stove treatments compared to control for main model compared to the 

model including ambient PM2.5 variable.  

 

 
 

  



 

 

Figure S3. Effect estimates and 95% confidence intervals for mean difference in systolic 

pressure (mmHg) for stove treatments compared to control for the main model versus the 

fully adjusted model. Fully adjusted model contains additional variables of alcohol consumption, 

caffeine consumption, medication use, sleep quantity, ambient PM2.5, and ambient temperature.  

 

 

 

 

  



 

 

Figure S4. Effect estimates and 95% confidence intervals for mean difference in systolic 

pressure (mmHg) for stove treatments compared to control for the three model types. 

 

 

 

  



 

 

Figure S5. Effect estimates and 95% confidence intervals for mean difference in systolic 

pressure (mmHg) for stove treatments compared to control: comparison of main model to 

model with exposure outliers removed. 

 

 

 




