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Abstract 

Vladimir Z. Kresin and William A. Lester, Jr.+ 
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We present a new approach to the dynamics of chemical reactions. 

Central to the theory is the concept of a chemical reaction as a transi-

tion from reactants to products caused by a nonadiabatic interaction. 

The bound and continuous state of the system is evaluated by analogy with 

our theory of photodissociation. As an illustration of the approach, we 

apply it to a model collinear reaction. 
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Introduction 

The computation of cross sections for chemical reactions can be 

formulated on the basis of the formal theory of scattering. The problem 

of evaluating the T matrix for most systems. however, presents serious 

computational difficulties (see, e.g., [1-3]). For this reason, the 

majority of studies have involved the classical· trajectory (CT) method 

(see, e.g., [4]). Because of the inability of the CT method to describe 

reliably state-to-state properties, as well as tunneling, threshold, 

resonance, and superposition effects, the search for methods that avoid 

these limitations femains of interest. 

The present paper presents an alternative approach to the study of 

chemical reactions. It is a generalization of an adiabatic method 

developed by the authors for polyatomic photodissociation [5]. The 

approach enables one to use perturbation theory to obtain product energy 

distributions for.chemical reactions. 

Nonadiabatic Operators. Rearrangement as a Nonadiabatic Transition 

Consider a bimolecular reaction 

a + a ~ y + 0 

where a, a are reactants and y, o are products and represent, in the 

general case, polyatomic molecules. According to the Born-Oppenheimer 

(BO) approximation, the total wavefunction for a specific electronic 

state can be written in the form 

'so(;,~) = ~e1(;,~)~(~) 

( 1) 

( 2) 
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-+ 
where '!'e£ is a solution of the electronic Schrodinger equation, {r} are 

the electronic coordinates and {R} are the nuclear coordinates. The 
-+ 

wavefunction 0(R) is a solution of the nuclear Schrodinger equation 

Here 

where 

is the kinetic energy operator and V(R) is the potential energy for 

nuclear motion (in units of~= 1 which will be used throughout this 

paper). 

As is well known, the wavefunction (2) is not the exact solution of 

the Schrodinger equation for the total system. Corrections to the 80 

zeroth-order approximation (2) are described by nonadiabatic operators 
A 

H'. One of the more important for polyatomic molecules is the nuclear 

kinetic energy operator, which can be defined by how it operates on a 80 

wavefunction [5,6]: 

The spin-orbit interaction provides another example. The interaction of 

a molecular system with an external electromagnetic field can also be 

considered an H'. 

Let us consider the initial state (I) of a reactive system. The 

(3) 

(4) 

(5) 

(6) 
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nuclear wavefunction 0I(R) for this state is a solution of Eq. (3) and 

describes both the internal and relative motion of the reactants. 

Similarly, the final state (F) of the system is described by a 

nuclear wavefunction l(R) for the products which is also an 

eigenfunction of the operator ~N. Chemical reaction can be viewed as a 

quantum transition I ~· F governed by the matrix element 

H'F ~I= f /*(;,R) H''i'I(;,R) 
-+ -+ 

drdR 

where 
F -+-+ F -+-+ F-+ 

'¥ (r,R) = 1J;eR.(r,R)0 (R); 

I -+ ~ I -+ +· I -+ 
'¥ ( r, R 1 = 1J;e Q,( r, R ) 0 ( R ) 

The nonadiabatic operator H' causes transitions among the eigenstates of 
-+ -+ 

the zeroth-order Hamiltonian, i.e., among the BO states 'i'(r,R) and 

therefore is the main mechanism for rearrangement. 

The ~ajor contribution to the integral (7) comes from the region of 

overlap of the nuclear wavefunctions 01 and 0F, a region corresponding 

(7) 

(8) 

( 9) 

to short distances between reactants (products). Note, that invoking the 

Condon approximation allows one to approximate the electronic factors as 

constants (see Eqs. (24) below). The accuracy of this approximation is 

of the order K = (m/M) 1/4, where m and M are the electron and nuclear 

masses. 

Note that we do not follow the common approach of using separate 

Hamiltonians for reactants and products, i.e., 
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A A 
Hint H = HR = + VR R (10) 

and 

H = Hp = Hint 
p + Vp (11) 

Aint ~ 
where HR(P) is the internal Hamiltonian and VR(P) is the intermolecular 

potential for reactants (products). This procedure presents difficulties 

in quantum mechanical theories of chemical reactions because-of the need 

to match reactant and product solutions at a dividing surface to obtain 

scattering information. In addition, such a formulation cannot be used 

in a perturbative approach because the potentials VR and Vp are large 

at short distances. In the present treatment the interaction between 

reactants (products) is included in the zeroth-order approximation. 

The Probability of Chemical Reaction 

Let us turn to the problem of evaluating Eq. (7). The specification 

of H' was discussed in the previous section. The nuclear wavefunctions 

0I and 0F are eigenfunctions of HN and have both a bound and a 

continuous part. By this we mean 0I(F) describes the internal (bound) 

motion of the reactants (products) and their relative (continuous) 

motion. Because intermolecular interactions are strong at small 

distances, the variables in (3) cannot be separated so that the problem 

of determining 0I(F) is nontrivial, see discussion in refs. [5]. 

The evaluation of the nuclear wavefunction for a state that has bound 

and continuous parts has been considered in our theory of 

photodissociation [5]. Polyatomic photodissociation is a transition from 
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a bound to a bound-continuous state, while a chemical reaction is a 

transition from a bound-continuous state of reactants to a bound-

continuous state of products. As was proven in refs. 5, a 

bound-continuous nuclear wavefunction • can be written 

a =I, F (12) 

Here p0 is the distance between the centers of mass in the initial (I) 

or final (F) arrangement, and • "b and •t are the vibrational and v1 r 

translational parts of the wavefunction. In the harmonic approximation, 

• .b(e~, p0
) is a product of harmonic oscillator wavefunctions. 

V1 1 

and e~ is the set of normal mode wavefunctions. For present 
1 

purposes we need not treat the rotational part of • explicitly. We 

emphasize, that the normal mode frequencies n~ and the equilibrium 

positions q~q depend on p. Exact expressions for r2°(p 0
) and 

q~q(p 0 ) are determined by the relative magnitudes of the internal 

energy and the translational energy. For example, if the vibrational 

motion of the products is accompanied by slow translational motion 

F 2 F F F2 
= w.(p) = 1/2 (a U(p ,Q.)/aQ. ) • 

1 1 1 eq 
In the opposite case, 

F F w. , where w. are the frequencies of the products in the 1,as 1,as 
asymptotic region. A detailed analysis is given in Ref. [5]. The 

function -~r(p 0 ) which describes the relative motion of the reactants 

(products), is a solution of 

(13) 
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Her:e, 

Ea ( P a) - ~- ( v a,.. + 1 I 2 ) na,. ( P a) ' vib - L..J 
i 

and lla is the reduced mass. Equation (13) can be solved readily in 

the usual semiclassical approximation (far from classical turning 

points). The general solution, including the turning point region, 

can also be obtained. 

The interfragment interactions VR and Vp, Eqs. (11) and (12), 

are taken into account in two ways. First, the vibrational frequencies 

and the equilibrium geometry depend on the distance pa, and second, the 

effective potential energy v:ff' describing the relative motion, 

contains the vibrational energy E~ib(pa). 

Using Eqs. (8), (9), (12)-(15), one can evaluate the matrix element 

(7) where, as was mentioned above, the electron factors can be approxi-

mated as constant. Then from perturbation theory one can calculate the 

(14) 

(15) 

probability of the I ~- F trans it ion. For example, if the reaction takes 

place without interaction with radiation, one obtains 

dwF ~ I = 2w JH • F ~ I 12 c5 (EF - E I) dvF (16) 

where vF is the set of the quantities that describes the F state. It 

is of course, necessary to take into account the degeneracy of the I and 

F states; see, e.g., Ref. 7. Equation (16) enables one to calculate the 

energy and angular-distributions of the.products. 

)"'· 
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Collinear Reaction 

To illustrate our method, consider a collinear reaction 

AB + C ~ A + BC. The general case of three-dimensions and polyatomic 

molecules is straightforward and will be treated elsewhere. The matrix 

element H•F ~ I' Eq. (7), becomes 

f F* -+ F* " I -+ I 
H·F~I = 1jJ (r,p2'~) (J (p2,~) H\inW (r,p1,Q.1) (J (p1,Q.1)J dQ.1dQ.2 (17) 

where Q. 1 is the AB internuclear distance and Q. 2 is the BC 

internuclear distance, p 1 is the distance from atom C to the center 

of mass of AB, and p2 is the distance from atom A to theJcenter of 

mass of BC. The function (J~ is defined by Eq. (12), i.e., 

We assume the harmonic approximation for (J:ib' i.e., 

(18) 

v 
(J a . b = ( K I rr ) 1 I 4 ( 2 av ! ) - 1 I 2 ex p ( - K T 

2 I 2 ) H ( T VK ) ( 19 ) 
Vl a a a a V a a a 

a~d a semiclassical expression for (J~r' in particular, 

(20) 

In Eqs. (17)-(20), 

(21) 
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p 
a 

T = 
a •(•.l = J 

where a~ is the classical turning point, and 

We choose i 1, i 2 as independent variables, and J is the Jacobian 

of the transformation. The coordinates P1 and p 2 can then be 

expressed in terms of ~ 1 and ~2 : 

Introducing the Condon approximation reduces the electronic factors 

and na( p ) and naq( p ) to constants. Their numeri ca 1 va 1 ues then · 
a e a 

become those of the overlap region of the wavefunctions. 

(22) 

(24) 

Based on Eqs. (18)-(24), one can carry out the analytical evaluation 

of the matrix element (17). For simplicity, we assume that the reactant 

AB is in the ground vibrational state vi = 0. 

we arrive at the result 

H L'I +L"I F ~ I = 1 2 

After some manipulations, 

(25) 
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where L' and L" are defined by Eq. (24), I. 
1 

::1:: ,._ 

+ I sino+ 
K -

(-l)(v-1)/2 

P ::1: p . 
l = ~11 1 a21 2' 

+ 
COSo 

even v 

odd v 

oO = o(a ); 
a eq 

+ + + 
To evaluate Il one simply replaces v , z;, a by v-, z;, a 

in Eq. (26). The term I2 is given to 

I + -
I2 = 2 + I2 ; 

-2 If P11(Piw1) << 1, one can neglect the second term in (25). 

Equations (25)-(31) together with Eq. (16) describe the vibrational 

and. translational distribution of the products .• The translational 

(27) 

(28) 

(29) 

(30) 

(31) 

energy of the products and v can be chosen as the quantities vF required 

in Eq. (16). Generally speaking, one sees that the dependence of the 

distribution on v is non-monotonic. We also emphasize the dependence of 
-the matrix element (25) on the linear combination of momenta Pi and 

~2 (see Eq. (28)). 
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For reactions involving the exchange of atoms of light mass, i.e., for 

( 32) 

( =)2 -2 ( =)2 -2 we have s = p 1 ~ y = p2, and the momenta are separated. 

In this case we obtain 

(33) 

Here •n{z) is the parabolic cylinder function (see, e.~., [8]), and 

(34) 

A similar equation can be obtained for Il. We have assumed also 

that s/L << 1 and p2S << 1, where s = Ia~- P2,eql and L is the 

characteristic distance over which the potential V varies by an appreci-

able amount. 
: 

Then a depends primarily on p1• If vi = 0, then 

(35) 

The quantity K2 in Eq. (34) can be written in the form K2 = (;~/2~·Fw 2 )l, 
where l = 2(w2p•Ftw1pi). For concreteness, we choose the numerical 

values: l = 1.25 (this value approximates the reaction OH + D ~ OD +H)~ 

E = (4.5)w2 + O.Olw2, a total energy slightly above the v = 4 

vibrational state~ The product energy distributions are presented in 

Fig. 1. The main feature is an inverse distribution. It would be useful 

to have measurements of product energy distributions for OH + D ~ OD + H 

to compare with the present predictions. Note that inverted distributions 

have been obtained previously using other methods.[ 9] 
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It is worth noting that product energy distributions for the 

reactions H + ClBr ~· HBr + Cl [10] and H + IBr • HI + Br [11] are 

characterized by _inversion. Both systems approximately satisfy condition 

(32). Hence, there is qualitative agreement between experimental data 

and the collinear model based on the theory outlined in this paper. 
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Product energy distributions (fa/f~ax) for a model collinear 

system with parameters chosen to approximate OH + 0 ~ 00 + H 

·- 2 . I 1/2 (a) relative translational distribu~ion; x = (p2/2pFw2) 

and (b) vibrational distribution of BC. 
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