UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
Transient periodicity in chaos

Permalink
https://escholarship.org/uc/item/9gc3r594

Journal
Physics Letters A, 177(1)

Authors

Kendall, Bruce E.
Schaffer, William M.
Tidd, Charles W.

Publication Date
1993-05-31

DOI
10.1016/0375-9601(93)90366-8

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/9gc3r59t
https://escholarship.org
http://www.cdlib.org/

Physics Letters A 177 (1993) 13-20
North-Holland

Transient periodicity in chaos

PHYSICS LETTERS A

Bruce E. Kendall, W.M. Schaffer and C.W. Tidd
Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA

Received 19 August 1991; revised manuscript received 8 January 1993; accepted for publication 31 January 1993

Communicated by A.R. Bishop

Chaotic time series can exhibit rare bursts of “periodic” motion. We discuss one mechanism for this phenomenon of “transient
periodicity”: the trajectory gets temporarily stuck in the neighborhood of a semiperiodic “semi-attractor™ (or “chaotic saddle”).
This can provide insight for interpreting such phenomena in empirical time series; it also allows for a novel partition of the phase
space, in which the attractor may be viewed as the union of many such chaotic saddles.

An experimental time series can often exhibit what

- appears to be qualitatively different dynamics at var-

ious stages in its evolution. Particularly striking ex-
amples are ones in which periodic episodes are in-
terspersed with intervals of much more irregular
dynamics. There are a number of ways such a phe-

~ nomenon can arise: the system could be under the

influence of external perturbations, there may be a
varying control parameter, or the switching may be
intrinsic to the dynamics. A perturbation could knock

-the trajectory off of an attracting periodic orbit and

onto a chaotic repeller [1,2], leading to an episode
of irregular dynamics; it could also cause the system
to switch between two distinct attractors [3]. Vari-
ation in a control parameter can cause bifurcations
between periodic and chaotic dynamics; the pattern
of observed switching then depends on the nature of
the fluctuations in the parameter (monotonic, sin-
usoidal, etc.). Finally, both the periodic and irreg-
ular motions may be part of the asymptotic dynam-
ics, but there is some sort of “dynamical bottleneck™
that temporarily traps the trajectory into one or an-
other region of the phase space, with different dy-
namics associated with the various regions. This is
what occurs in intermittency [4]: much of the time
series looks periodic, with occasional bursts of large
amplitude oscillations occurring when the trajectory
finally escapes from the region of periodic motion.
In this paper we discuss another type of spontaneous
switching which is a generalization of “crisis-

induced intermittency” [5]. The latter has only been
examined for parameter values close to the associ-
ated crisis, with an eye to finding scaling laws, but
we have found that the topological structures in-
volved can influence the dynamics over a wide range
of parameter values. Furthermore, it has much more
in common with transient dynamics and repellers (as
we show below) than it does with the classic forms
of intermittency (such as type I); for this reason, and
to avoid confusion, we prefer to call the phenome-
non ‘““transient periodicity”.

After describing the phenomenology of transient
periodicity, we discuss the topology underlying it,
building on the results from ref. [5]. We will dwell
at some length on the mechanism by which a peri-
odic episode begins, for this has not been discussed
in the literature, and indeed it offers some interest-
ing implications for how we conceive of chaotic at-
tractors in dissipative systems. We will conclude with
a discussion of empirical applications of transient
periodicity. For conceptual simplicity, the theoreti-
cal section will be restricted to two-dimensional
maps, but the results are generally applicable to higher
dimensional maps and flows. Similarly, we will only
consider periodic orbits arising from saddle-node bi-
furcations, but under the appropriate conditions,
other sorts of periodic orbits may produce the same
phenomenon.

Transient periodicity is characterized by sponta-
neous switching between apparently periodic and
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chaotic dynamics (fig. 1). The “periodic” dynamics
are not truly periodic, but are modulated by small
chaotic oscillations. Depending on the parameter
values of the system, the proportion of the time se-
ries exhibiting periodic dynamics can vary tremen-
dously: near the crisis the periodic component con-
stitutes nearly the entire time series, while at the other
extreme the time series in almost entirely chaotic,
with only rare periodic bursts. For a fixed parameter
value, the frequency distribution of the number of
iterates spent in a given periodic episode can be ap-
proximated by a negative exponential function [6],
although the frequency of short episodes can deviate
from this: the latter is governed by the way in which
the trajectory is injected into the region of transient
periodicity, which is a global feature of the system,
whereas the former is governed by the local topol-
. ogy. The periodic dynamics are localized in n (where
n is the period) distinct regions in the phase space
among which the trajectory moves in order (fig. 2).
Because the system is deterministic, the last few it-
erates before the onset of a periodic episode (what
we shall call the preimages of the episode) always lie
within a well-defined region of the phase space.

We now turn to the topology that underlies this
phenomenon. Consider a continuous diffeomorph-
ism f;: R2—R? which generates a chaotic attractor for
some set of parameter values A. Furthermore, let there
be a hyperbolic fixed point p, in the attractor, and
let f, generate a “protohorseshoe” [7]: there is a re-
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Fig. 1. Every seventh value of x for a time series generated by the
Hénon map with a=1.282, b=0.3. The nearly constant intervals
represent episodes of transient periodicity.
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Fig. 2. The Hénon attractor with ¢=1.282, =0.3. Points in the
neighborhood of the “period-seven” semi-attractor (sce text) are
darkened. The letters indicate the order in which the trajectory
visits the various segments of the semi-attractor; crosses mark
the location of the two nonstable period-seven orbits.

gion A containing the attractor whose image under
f,is folded, with f,(A) < A. For other values of 4 there
is a true horseshoe [8], in which only a fractal subset
of A remains in A under repeated iteration of f;. A
well-studied example, which we use to generate our
illustrative figures, is the Hénon map [9]: f25(x, ¥)
= (1—ax?+y, bx) (fig. 2). We fix b=0.3 and allow
a to vary as the control parameter.

As 4 is varied to change the protohorseshoe to a
horseshoe (without loss of generality, assume that
this transition occurs by increasing 1), there is an in-
finite sequence of saddle-node and period-doubling
bifurcations [10]; a sample “periodic window” is
shown in fig. 3. The initial saddle-node bifurcation
creates a period-n orbit; as 4 is increased, there is a
sequence of period-doubling bifurcations creating
orbits of period 2n, 4n, 8n, ... Beyond the accu-
mulation point of the period-doubling bifurcations
(marked III in fig. 3), the attractor is made up of n
distinct pieces. The trajectory hops among the pieces
in the same order as it does among the points on the
periodic orbit p, at II, but the motion within each
piece is chaotic. This is called a “semiperiodic” at-
tractor [11]. At the right end of the window, there
is an “interior crisis” [7], in which each piece of the
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Fig. 3. Part of a bifurcation diagram for the Hénon map with
b=0.3, showing a period-seven window. sn: saddle-node bifur-
cation; ic: interior crisis; I-IV delineate the different dynamical
regimes discussed in the text.

semiperiodic attractor intersects the stable manifold
of the associated nonstable period-n saddle orbit, s,
(compare figs. 4c and 4d). At this point in param-
eter space, A.,, a horseshoe is formed for f 7, the nth
composition of f;, and for A>41_, this horseshoe
forms an escape hatch through which trajectories
leave the neighborhood of what had been the semi-
periodic attractor. The semiperiodic invariant set,
which is organized around all the nonstable period
kn orbits, keN, is now a repeller, and indeed a spe-
cial type of repeller called a “semi-attractor” [12],
as we shall see below. Because the horseshoe has a
well defined location in the phase space, there is a
constant mean probability of escape per iteration,
determined by the size and. location of the escape
hatch and the invariant probability distribution on
the repeller; this is what gives riseto the exponential
decay of residence times. ‘

Once the trajectory leaves the vicinity of the semi-
periodic repeller, its motion is governed by the large
amplitude chaotic attractor-that “reappears” when
the periodic window ends. The reappearance of the
chaotic attractor is not as magical as it might appear
from examining bifurcation diagrams like fig. 3: the
topological structures that make up the region I at-
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tractor are still present in regions II and III. These
structures are merely unstable, with almost all tra-
jectories ultimately going to the periodic or semi-
periodic attractor. The topology governing the large
amplitude fluctuations is little changed in the tran-
sition from III to IV: almost every trajectory in re-
gion IV eventually lands on the semiperiodic object,
just as in III. Indeed the only change as A passes
through A, is the fate of the trajectory after it lands
on the semiperiodic object. Thus we can say that the
semiperiodic object in IV has attracting as well as
repelling “directions”, and call it a semi-attractor (it
has also been called a “chaotic saddle” [13]). To
show how the attracting part of the semi-attractor
works, we will first discuss the mechanism by which
the chaotic transient decays in the periodic window
and then show how this extends to region IV.

The easiest way to understand this mechanism is
in terms of manifolds. A chaotic attractor contains,
and to a large extent is defined by, the unstable man-
ifolds of p,, W"(py). The stable manifolds of p,,
W*(py), intersect the unstable manifolds infinitely
many times, in a homoclinic tangle: it is the folded
structure of the stable manifolds that determines how
the trajectory hops from point to point on the un-
stable manifold, and governs the rate of separation
of nearby trajectories. These intersections are not, in
general, dense on W*"(p,) (fig. 4a). In particular,
when the system is in a periodic window with a sta-
ble periodic orbit p, there is a neighborhood N of p,,
which the stable manifold does not penetrate. This
follows from the fact that any trajectory that is pre-
cisely on W*(p,) must ultimately. approach po,
whereas points in N are governed by the local linear
dynamics around p,;: all trajectories in N ultimately
approach the periodic orbit. In fact, this local basin
of attraction is defined by the stable manifold of s,
(fig. 4b). The basin is not fully enclosed: it has one
or more “tails” that fold around and intersect
W"(p,). Points in this first intersection will map,
under # iterations, to N. As the tail is followed out
further, it folds and intersects the unstable manifold
repeatedly, so that the union of these intersections is
dense on W"(p,). A typical trajectory hops from tail
to tail until it arrives in the local basin, at which point
the local dynamics of p,, take over. At II this is mono-
tonic convergence to p,; at III, where p, has gone
through its period-doubling sequence, the local dy-
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Fig. 4. Manifold structure in the vicinity of a period-seven orbit in the Hénon map, b=0.3. (a) Before the saddle-node bifurcation,
a=1.22 (I): dark line: W*(po); light line: W*(p,). The box marks the region of the phase space shown in (b)—(d). (b) Stable periodic
- orbit, a=1.23 (II): (X) ps; (+) so; solid line: W$(s;); dotted line: W*(p,). (c) Semiperiodic attractor, a=1.27 (III); solid line:
W*(s,); dotted line: W*(py). (d) Transient chaos, a=1.28 (IV); solid line: W*(s,); dotted line: W*(p,).

namics are determined by W*(p,) and W*(p,) (fig.
4c).

Now let us examine the situation in region IV, past
the interior crisis. The neighborhood N of p, (de-
fined by the primary lobe of W*(s,,) ) still exists (fig.

4d), and the associated tails still govern the ap-

16

proach of the trajectory to N (fig. 5). However, at
the crisis there is not one but an infinite number of
heteroclinic tangencies (tangential intersections be-
tween W'(p,) and W*(s,)) involving secondary
lobes of W*(s,) (this follows from the fact that
{W*(p,) " W*(s,)} is an invariant set, and all it-
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Fig. 5. Preimages of the period-seven semi-attractor in the Hénon map; a=1.28. The white lines delineate the semi-attractor, and the
colors indicate the number of iterates required to reach the semi-attractor: dark red represents 1, purple represents 14, and intermediate
values follow the spectrum. Points requiring more than 14 iterates are left black. By including preimages from off the attractor, the “tails”
defined by the stable manifolds (see text) are clearly visible.

erates of one point of intersection must also be points
of intersection). The first (and largest) such sec-
ondary lobe is shown in fig. 4d. Points below this lobe
are in a sense “‘outside” the region bounded by
Ws(s,), and so are subject to the influence of W*(p,)
and eventually escape to the rest of the attractor. If
we define E to be the union of all regions outside the
secondary lobes, we find that EAN is dense on
W*™(p,), so almost every trajectory eventually es-
capes from N.

Let us review what we have. A trajectory starting
near p, will have the following evolutions for the var-
ious regimes labeled in fig. 3:

(I) chaos [attractor];

(II) chaos [repeller ] —periodicity [attractor];

(IIT) chaos [repeller] —semiperiodicity [attrac-
tor];

(IV) chaos [?]-semiperiodicity [repeller]—
chaos—periodicity—....

What should we call the chaotic object in IV? It is
clearly not an attractor, for trajectories escape from
it just as they do in II. The actual attractor is the
union of the chaotic and semiperiodic sets. But the
“chaotic attractor” in I is itself the union of all the
semiperiodic repellers formed in earlier saddle-node
bifurcations. While W*(p,) does extend into N, the

17
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neighborhood of the semi-attractor, its shape is con-
strained by W*(s,). A trajectory landing in N must
negotiate the labyrinth defined by W*(s,) before it
can escape from N. For many practical purposes the
dynamics within the semi-attractor can be regarded
as independent of the dynamics on the rest of the at-
tractor. Thus, at least in the region of the proto-hor-
seshoe, where the rigorous concepts of strange at-
tractors [14] are not fully applicable, we may think
of the attractor as the union of these strange saddles,
each of which has a “basin of attraction” extending
into all the others.

Considering the attractor as a collection of semi-
periodic semi-attractors is analogous to describing it
as a collection of nonstable periodic orbits, which has
already proven to be a useful approach [15]. In fact,
its picks out the “fundamental” periodicities (those
formed by saddle-node, rather than the subsequent
period-doubling, bifurcations). The dynamical in-
variants (Lyapunov exponents, dimension, etc.) of
the attractor as a whole are, in ergodic systems, just
the weighted averages of the measures associated with
the various semi-attractors. Since some of these local
invariants may be estimated from the escape rate
from the semi-attractor [16], this may prove to be
a rather robust way to characterize attractors. Fur-
thermore, the primary lobe of W(s,) may be used
to crudely partition the attractor into regions of “pe-
riod-n” versus “chaotic” dynamics; the chaotic part
may be further subdivided by the stable manifolds
of other periodic orbits that arose in other saddie-
node bifurcations. A symbolic dynamics can then be
constructed, based on the dominant semiperiodic
motions. Among other things, one could then con-
struct a matrix of transition probabilities among the
various periods, both as a characterization of the at-
tractor and as a useful tool for prediction and control
of the system.

If transient periodicity is to be useful in an em-
pirical setting, we must be able to distinguish it from
the various types of intermittency and externally in-
duced transitions outlined in the introductory para-
graph. Perhaps of most interest is the contrast with
type I intermittency, which exhibits two major phe-
nomenological differences from transient periodic-
ity. The first is the distribution of residence times
(fig. 6): in contrast with the exponential tail of tran-
sient periodicity, type-I intermittency is character-

18
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Fig. 6. Frequency distribution of “periodic” episodes (measured
in period-seven orbits) in the Hénon map. Episodes were col-
lected from a time series of 10 000 points by finding points that
recurred (within 15% of the size of the attractor) after seven it-
erates and counting the number of such points that followed in
sequence. (a) Intermittency; a=1.225. (b) Transient periodic-
ity:a=1.28.

ized by a maximum episode length, with a strong
peak at that maximum value [17]. The second dif-
ference is in the modulation of the trajectory within
a periodic episode: whereas in transient periodicity
these are chaotic, in intermittency they are mono-
tonic. At a=1.225 (intermittency) all periodic ep-
isodes of length greater than five orbits have a sig-
nificant positive correlation of x with iterate number;
at a=1.28 (transient periodicity) there are no such
significant correlations. The former distinction is ro-
bust to observational noise (fig. 7); however, the
differences are erased by only modest levels of “dy-
namical noise”, or perturbations to the system. What
do we mean by “modest”? Recall that in the periodic
window, if the trajectory is perturbed sufficiently far
from the periodic or semiperiodic attractor, then it
leaves the local domain of attraction and moves on
the chaotic semi-attractor for a while before return-
ing to the attractor. It turns out that as the magni-
tude and/or the frequency of the noise is increased,
there is a rather abrupt transition from chaotic ex-
cursion being rare to chaotic excursions being fre-
quent [18]. The precise location of this transition
depends of course on the details of the topology, but
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Fig. 7. Same as fig. 6, but with simulated observational noise.
The time series was corrupted by adding random variates drawn
from a Gaussian distribution with zero mean and 0.05 standard
deviation,

typically occurs for noise magnitudes less than one
percent of the size of the attractor. When there is this
much noise in the system, then the escape rate from
transient periodic episodes is dominated by the noise-
driven perturbations across the bounding manifolds,
rather than the escape hatches discussed above. In
intermittency, there is not such a well defined
boundary in the phase space to mark the region of
periodicity, but there is region of near recurrence;
again in the presence of these modest noise levels,
the escape rate from the region of recurrence is dom-
inated by the noise rather than the topology. Never-
theless, there are many experimental examples of in-
termittency in which the monotonic trend of the
trajectory through a periodic episode is quite clear,
suggesting that the noise level will often be low
enough to clearly distinguish between the two
phenomena.

In a bifurcation phenomenon the distribution of
residence times will depend as much on the dynam-
ics of the varying parameter as on the dynamics of
the system, and no a priori predictions can be made.
Depending on the nature of the bifurcation, there
may or may not be consistent localization in the
phase space of the transitions between regimes. Fur-
thermore, invoking a bifurcation introduces a whole
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new layer of complexity to one’s understanding of
the system, and should probably be avoided unless
there is direct evidence that a parameter is varying
in concert with the dynamical shifts.

How would one go about using this in empirical
applications? The easiest situation is when there is
a relatively simple model which gives qualitatively
similar dynamics as the data. The bifurcation struc-
ture of the model can be examined for semiperiodic
attractors that correspond (in the phase space) to
the periodic episodes found in the data. This is the
approach taken in ref. [19] to analyze measles ep-
idemics, which in some cities show episodes of bien-
nial outbreaks interspersed with more irregular dy-
namics. In the model, the biennial dynamics
correspond to a four-piece semiperiodic attractor
which is destabilized when it collides with a large
amplitude chaotic repeller; the trajectory subse-
quently switches back and forth between the “peri-
odic” and chaotic regimes.

When the bifurcation structure of the system can-
not be determined either experimentally or numer-
ically, more inferential techniques must be used. If
there are enough periodic episodes, the exponential
distribution of residence times can be sought. As an
example of this approach, consider epilepsy. Some
variants of this disease are good candidates\for anal-
ysis in terms of transient periodicity because the sei-
zures, which are characterized by a highly coherent
signal in the brain electrical activity, seem to begin
and end spontaneously. Some patients have multiple
seizures in a short time period, especially during
sleep, so it should be possible to construct a fre-
quency distribution of seizure lengths. Another ap-
proach, if the data are well enough resolved and the
dimension of the underlying attractor is not too high,
is to examine the preimages of the periodic regions
to find evidence of the “tails” discussed above.

Determining the mechanisms underlying the
switching between periodic and chaotic dynamics is
important for understanding the system under study,
but it is critical from a prediction and control stand-
point. For example, suppose that the chaotic epi-
sodes were undesirable, and one wished to restrict
the system to the periodic regime. If the system were
exhibiting perturbations onto a chaotic repeller one
would use very different techniques (noise reduc-
tion) than if it were subject to transient periodicity

19
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(change the control parameter to bring the system
into the periodic window). We feed that the con-
cepts of transient periodicity may be useful in a wide
variety of such applications. '

This work was supported by NIH grant ROl
AI23534-04 to WMS. We thank the anonymous re-
viewer for helpful criticisms.
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