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Abstract

Efficient and Scalable Architectures for

Persistent Memory Systems

by

Matheus Ogleari

Memory systems are evolving in a multitude of ways in state-of-the-art computer sys-

tems and in computer architecture. The changes range from the low-level underlying technol-

ogy used to implement memory, to the high-level ways in which memory systems are structured

and organized. These changes have tremendous implications on the fundamental performance

of computer systems because of how integral a role memory plays in the design of these sys-

tems. Traditionally, the memory hierarchy has been the bottleneck for how well computer sys-

tems perform and the resources they consume. Computer architects face significant challenges

in meeting the growing memory demands and efficiently integrating these new technologies.

Computer architecture must adapt to these changes in a high-performance, cost-effective way.

Modern problems require modern solutions.

This thesis proposes efficient architecture solutions for two primary contemporary

developments in memory: persistent memory and memory networks. Persistent memory is a

subset of nonvolatile memory with similar properties of storage systems. As such, it comes

with not only many benefits, but also a number of challenges inherent to both storage systems

but to new technologies in general. Similarly, memory networking shares similar properties

to network on-chip as well as computer networking design. Persistent memory and memory

networks can go hand in hand to implement high performance computing or database systems

to meet the demands of current applications.

First this thesis tackles persistent memory and proposes a persistency-aware prefetcher

design, eFetch. This design considers redo and undo logging, a commonly used technique

in persistent memory systems. It capitalizes on memory access patterns and commonly used

prefetching techniques to improve system performance. Development and analysis of this de-

sign motivates this thesis to additionally investigate cacheable logging and the balance between

software and hardware in addressing these challenges. Across various microbenchmarks, this

ix



design achieves up to 1.33× IPC improvement, 1.24× higher throughput, a 1.39× reduction in

dynamic memory energy consumption, and a 1.36× decrease in overall memory traffic.

Second, this thesis proposes an efficient undo+redo logging hardware mechanism for

persistent memory that accommodates more recent advancements in persistent memory. It bet-

ter leverages the existing underlying hardware. It also explores implementation in RISC-V

and enables future research and hardware evaluation and experimentation in persistent memory.

Evaluating this using both real workloads as well as microbenchmarks shows a significant im-

provement in system throughput (up to 2.7×). It also reduces both dynamic energy (by up to

2.43×) and memory traffic.

Finally, this thesis addresses memory networks and the current problems in contend-

ing with increasing memory application and server demands. This thesis establishes three pri-

mary features for memory networks: scalability, arbitrary scale, and elasticity. As such, this

thesis proposes String Figure, a memory network design and topology that attains three of

these goals while still performing well against baseline or alternative memory network designs.

String Figure competes with other memory network designs and out performs them in a number

of network traffic patterns and real workloads.
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Chapter 1

Introduction

The field of computer architecture has yielded tremendous achievement in advancing

and improving technology for a large variety of applications and uses in daily life. With Moore’s

Law coming to its end, architects are increasingly resorting to alternate ways to improve perfor-

mance of computer systems. These alternatives include hardware acceleration and chip special-

ization. These are able to achieve high performance and energy efficiency by directly targeting

the specific application or class of applications. This is substantially more important with the

advent of newer memory technologies. Memory systems have often been the bottleneck in

the costs and performance of computer systems. The biggest question is how much improve-

ment and optimization architects can exact from improvements to hardware. The most optimal

solutions require the deepest levels of understanding of the underlying microarchitecture.

1.1 Persistent Memory

Persistent memory presents a new tier of data storage components for future computer

systems. By attaching Non-Volatile Random-Access Memories (NVRAMs) [24, 59, 124, 150]

to the memory bus, persistent memory unifies memory and storage systems. NVRAM offers

the fast load/store access of memory with the data recoverability of storage in a single device.

Consequently, hardware and software vendors recently began adopting persistent memory tech-

niques in their next-generation designs. Examples include Intel’s ISA and programming library

support for persistent memory [57], ARM’s new cache write-back instruction [9], Microsoft’s

storage class memory support in Windows OS and in-memory databases [29, 36], Red Hat’s

1



persistent memory support in the Linux kernel [99], and Mellanox’s persistent memory support

over fabric [35].

Though promising, persistent memory fundamentally changes current memory and

storage system design assumptions. Reaping its full potential is challenging. Previous persistent

memory designs introduce large performance and energy overheads compared to native memory

systems, without enforcing consistency [52, 102, 146]. A key reason is the write-order control

used to enforce data persistence. Typical processors delay, combine, and reorder writes in

caches and memory controllers to optimize system performance [54, 73, 109, 146]. However,

most previous persistent memory designs employ memory barriers and forced cache write-

backs (or cache flushes) to enforce the order of persistent data arriving at NVRAM. This write-

order control is sub-optimal for performance and does not consider natural caching and memory

scheduling mechanisms.

1.1.1 Prefetching

Most previous persistent memory designs focus on optimizing software-based logging

algorithms to reduce the overhead of data persistence [30] [135] [89]. Several recent studies

strive to reduce such overhead by optimizing hardware-based versioning and write-order con-

trol mechanisms [146] [64] [85] [109] [148] [116] [73]. Yet the data persistence property

obviates many basic assumptions of current memory architecture design, leading to significant

degradation performance and energy efficiency. In particular, this thesis observes that the hard-

ware prefetcher designs employed in commodity processors can substantially increase conflict

misses in CPU caches when executing persistent memory applications. This is because tra-

ditional prefetchers do not distinguish between the working data and the log. They tend to

over-prefetching the non-reusable log blocks, which can kick the working data out of caches.

Moreover, this thesis identifies that substantial opportunities exist in exploiting intel-

ligent hardware prefetcher design to optimize persistent memory performance. In particular,

prefetching can be leveraged to parallelize and merge the memory requests to perform logging

and working data updates. As a result, unnecessary memory access and data movement can be

significantly reduced.

These issues and opportunities manifest in the use of persistent memory that archi-

tects must rethink hardware prefetcher design to reap the full potential of persistent memory
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technique. As such, this thesis proposes rethinking the hardware prefetcher design. This the-

sis proposes a persistence-aware prefetcher design, eFetch1, which consists of persistent write

tracking, redo log prefetching, and undo logging triggered prefetching mechanisms. eFetch

adopts a special log address buffer, which stores the cache tags associated with the log memory

addresses. Such memory address tracking prevents the over-prefetching that can stretch to the

log. Furthermore, this thesis proposes two intelligent prefetching mechanisms, which lever-

age prefetching to i) relax the ordering constraints between persistent memory access and ii)

parallelize logging and working data updates in redo and undo log based systems, respectively.

1.1.2 Hardware Undo+Redo Logging

Several recent studies strive to relax write-order control in persistent memory sys-

tems [73, 109, 146]. However, these studies either impose substantial hardware overhead by

adding NVRAM caches in the processor [146] or fall back to low-performance modes once

certain bookkeeping resources in the processor are saturated [73].

A goal of this thesis is to design a high-performance persistent memory system with-

out (i) an NVRAM cache or buffer in the processor, (ii) falling back to a low-performance mode,

or (iii) interfering with the write reordering by caches and memory controllers. The key idea is

to maintain data persistence with a combined undo+redo logging scheme in hardware.

Undo+redo logging stores both old (undo) and new (redo) values in the log during a

persistent data update. It offers a key benefit: relaxing the write-order constraints on caching

persistent data in the processor. This thesis shows that undo+redo logging can ensure data

persistence without needing strict write-order control. As a result, the caches and memory

controllers can reorder the writes like in traditional non-persistent memory systems (discussed

in Section 3.1.2).

Previous persistent memory systems typically implement either undo or redo logging

in software. However, high-performance software undo+redo logging in persistent memory

is infeasible due to inefficiencies. First, software logging generates extra instructions in soft-

ware, competing for limited hardware resources in the pipeline with other critical workload

operations. Undo+redo logging can double the number of extra instructions over undo or redo
1A system with nonvolatile main memory may also employ volatile DRAM, controlled by a separate memory

controller. This work focuses on the case where persistent data updates need to be maintained in nonvolatile main
memory, which is a common case in database and file system applications.
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logging alone. Second, logging introduces extra memory traffic in addition to working data

access [146]. Undo+redo logging would impose more than double extra memory traffic in

software. Third, the hardware states of caches are invisible to software. As a result, software

undo+redo logging, an idea borrowed from database mechanisms designed to coordinate with

software-managed caches, can only conservatively coordinate with hardware caches. Finally,

with multithreaded workloads, context switches by the operating system (OS) can interrupt the

logging and persistent data updates. This can risk the data consistency guarantee in multi-

threaded environment (Section 3.1.3 discusses this further).

Several prior works investigated hardware undo or redo logging separately [73, 97]

(Section 5.2). These designs have similar challenges such as hardware and energy overheads [97],

and slowdown due to saturated hardware bookkeeping resources in the processor [73]. Support-

ing both undo and redo logging can further exacerbate the issues. Additionally, hardware log-

ging mechanisms can eliminate the logging instructions in the pipeline, but the extra memory

traffic generated from the log still exists.

To address these challenges, this thesis proposes a combined undo+redo logging

scheme in hardware that allows persistent memory systems to relax the write-order control

by leveraging existing caching policies. The design consists of two mechanisms. First, a

Hardware Logging (HWL) mechanism performs undo+redo logging by leveraging write-back

write-allocate caching policies [54] commonly used in processors. The HWL design causes a

persistent data update to automatically trigger logging for that data. Whether a store generates

an L1 cache hit or miss, its address, old value, and new value are all available in the cache

hierarchy. As such, this design utilizes the cache block writes to update the log with word-size

values. Second, this thesis proposes a cache Force Write-Back (FWB) mechanism to force

write-backs of cached persistent working data in a much lower, yet more efficient frequency

than in software models. This frequency depends only on the allocated log size and NVRAM

write bandwidth, thus decoupling cache force write-backs from transaction execution.

1.2 Memory Networks

The volume of data has skyrocketed over the last decade, growing at a pace compa-

rable to Moore’s Law [96]. This trend drives the popularity of big data analytics [19, 120], in-

memory computing [45,137], deep learning [121,131,132], and server virtualization [19], which
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Figure 1.1: Expanding server memory demand.

are frequently insatiable memory consumers. As a result, these applications demand a contin-

uous expansion of server memory capacity and bandwidth to accommodate high-performance

working data access. As shown in Figure 1.1, cloud server memory capacity has been rapidly

growing since the debut of cloud service for in-memory computing [4, 20, 119].

Unfortunately, DRAM capacity scaling falls far behind the pace of the application

demand with current DDRx based architectures [100]. One conventional solution to increasing

server memory capacity is to add more CPU sockets to maintain additional memory channels.

In commodity systems, each processor can support up to 2TB memory. As a result, EC2 1Xe

adopts four CPU sockets to accommodate the 4TB memory capacity [20]. Azure S960 servers

can adopt 20 Intel Xeon processors to accommodate 20TB of memory [4]. However, purchasing

extra CPU sockets substantially increases the total system cost [144, 145]. The extra hardware

cost adds significant, often nonlinear overheads to the system budget, making this solution

unsustainable.

A promising technique to tackle these memory challenges is memory networking,

whereby the server memory system consists of multiple 3D die-stacked memory nodes inter-

connected by a high-speed network. The interconnected memory nodes form a disaggregated

memory pool shared by processors from different CPU sockets in the server (Figure 4.1). Ide-

ally, the memory network can enable more scalable performance and capacity than traditional

DDRx-based memory systems, as shown by academia [67, 112, 144] and industry efforts from

HPE [8] and IBM [130]. However, the memory network scalability relies on the scalability of

the memory fabric that interconnects the memory nodes [112, 144].

Previous memory network designs investigated platforms with limited numbers of

memory nodes. Scalability and flexibility were not considered in their the design goals. Given
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that each memory node (a 3D memory stack) can offer 8GB capacity [144], state-of-the-art 4TB

server memory system requires 512 memory nodes. Recent works have proposed optimizing

NoC network topologies to support up to 128 memory nodes in integrated CPU+GPU (APU)

systems [112]. However, the design partitions clusters of memory nodes to separate channels,

where each processor can only access a subset of the memory space. State-of-the-art planar

topologies [69, 70] offer high network throughput at a large scale. However, the number of

required router ports and links increases as the network size grows, which imposes undesirable

cost in routers integrated with memory nodes. The challenges of scaling up server memory

capacity still remain.

A goal of this thesis is also to design a high-performance, scalable, and flexible mem-

ory network architecture that can support over a thousand interconnected memory nodes shared

by processors in a cloud server. This memory network is designed around three primary design

principles: scalability, arbitrary network sizing, and elasticity. These are discussed further in

depth.

To achieve this, this thesis proposes String Figure, a scalable and elastic memory network archi-

tecture that consists of three design components. First, this thesis proposes a network construc-

tion scheme to efficiently generate random network topologies that interconnect an arbitrary

number of memory nodes with high network throughput, near-optimal path lengths, and limited

router ports. Second, this thesis develops an adaptive greedy routing protocol, which signif-

icantly reduces the computation and storage overhead of routing in each router. Finally, this

thesis proposes a network reconfiguration scheme, which allows the network scale, topology,

and routing to change according to power management and design reuse requirement. Perfor-

mance and energy experiments show that String Figure can interconnect up to 1296 memory

nodes with significantly higher throughput and energy efficiency than previous designs, across

various of synthetic and real workloads.

1.3 Thesis Overview

This thesis proposes three designs: eFetch, undo+redo hardware logging, and String

Figure. This thesis goes in-depth on these designs, elaborating on the necessity of each in

sequential chapters. At the end of each chapter, it also explains how these designs relate to

each other and how this bridge was formed over the course of the research. In particular, the
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sequence of these three designs also represents the growing scale and breadth of challenges

associated with new memory technologies and techniques. EFetch starts with a system focusing

on one aspect of a processor with persistent memory (a prefetcher). With hardware undo+redo

logging, the entire system is considered with how best to deal with persistent memory accesses.

With String Figure, the thesis expands to large scale memory systems and the interconnection

of various nodes and memory subsystems across vast networks.

Chapter 2 details and describes the design for eFetch as well as the baseline assump-

tions for persistent memory. Despite its breadth of research and underlying foundations, there

is still debate about what these assumptions should be. For example, should persistent mem-

ory logs be cached? If not, how does a processor deal with uncacheable logs? Is this the

most efficient way? How do other units within the processor deal with logging, a technique so

commonly used in persistent memory? EFetch presents an early design for understanding and

exploring the design space for persistent memory, and addressing the challenges that manifest

in the performance gap between persistent and traditional memory systems.

Chapter 3 describes hardware undo+redo logging and its design. It represents the next

step in evolution from eFetch. It more fully encompasses the entire chip and shifts persistent

memory design focus less on software and more toward hardware. This chapter justifies this

choice and presents an efficient and cost effective way to achieve this. It also further advocates

for assumptions made from eFetch about the underlying persistent memory system and the

implications for future work. In particular, it strives to expand persistent memory research into

modern processors and computer systems like RISC-V. Additionally, this chapter brushes on

additional requirements for persistent memory and changes needed in hardware when dealing

with RDMA requests over networks to persistent memory.

Chapter 4 describes the design for String Figure, a scalable and elastic memory net-

work design. This design was motivated by the necessity of optimally handling persistent mem-

ory requests across networks via RDMA or other paradigms. String Figure takes this a step

further, offering a topology and set of network design goals that meet the demands for large

scale memory networks that are not just persistent or for persistent applications. The perfor-

mance gains and features offered by String Figure benefits all memory systems, persistent or

otherwise. It also

Chapter 5 catalogs the vast body of related work on prefetching, persistent memory,
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and memory networks. It solidifies the novelty and impact of the designs proposed in this

thesis. Chapter 6 summarizes and elaborates on the contributions of this thesis, highlighting the

potential for future work and research in these topics.

The primary contributions of this thesis are condensed as follows:

• This thesis identifies new performance and energy issues associated with current persis-

tent memory systems and how persistent-aware prefetching can reduce data movement

across the memory bus.

• This thesis enables efficient undo+redo logging for persistent memory systems in hard-

ware using lightweight software support and low complexity processor modifications.

This relaxes write ordering constraints and addresses the challenges inherent to using

both undo and redo logging together.

• This thesis constructs a memory network topology and design that is able to scale with

very large number of nodes, support any number of nodes in its network without perfor-

mance loss, and supports adding or removing nodes from its network at low cost without

having to rebuild the entire system.

1.4 Collaboration, Funding, and Previous Publications

This thesis would not have been possible without the immense effort and dedication

of all those involved in my publications. This includes professors as well as graduate and

post-graduate students with whom I have had the pleasure of working. My advisor, Jishen

Zhao, was a key collaborator in all my work by helping to iteratively evolve the ideas and

key concepts behind the designs described in this paper. Her experience in persistent memory

systems attributes to this. The framework from her previous work in persistent memory helped

propel my own research. She also helped me organize and refine the narrative and how it

is presented in this thesis. Professors Ethan Miller and Chen Qian at University of California,

Santa Cruz provided invaluable insight and basis for the primary designs described in this thesis.

Professor Miller’s expertise in storage systems and Professor Qian’s expertise in networking

were strong foundations in this regard.

Collaborators from my and other research groups are also responsible for making this

thesis possible. Mengjie Li in my group was a great resource in helping to study and learn
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the effects of cacheable versus uncacheable logging in persistent memory. My work with Xing

Hu at University of California, Santa Barbara sparked my interest in exploring RDMA and

network design as another side of improving not only persistent memory performance but large

memory systems in general. Ye Yu from the University of Kentucky (now Google) provided a

starting framework from his Space Shuffle design that directly helped the development of String

Figure. My exposure and contribution to work on processing-in-memory with Hengyu Zhao of

my group emphasized the memory demands of modern applications for me which motivates

String Figure. My invaluable internship opportunity at Western Digital thanks to my manager

Martin Lueker-Boden opened up my work in persistent memory to RISC-V support and design

exploration. The internship gave me access to industry-standard tools (like the Xilinx Zynq

zc706 FPGA), support, and experience of an engineering company. Co-workers Tung Hoang,

Pi-feng Chiu, and Christoph Hellwig helped guide me in this.

Two previous publications have contributed significantly to this thesis. My work on

undo+redo logging [104] and String Figure [105] are the basis for Chapters 3 and 4, respec-

tively. My collaboration with Xing Hu on Persistence Parallelism Optimization [55] contributed

to the RDMA network discussion in Chapter 3. My collaboration with Mengjie Li on Logging

in Persistent Memory [79] motivated and led to many design decisions throughout this thesis,

discussed more in Chapter 2.
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Chapter 2

Prefetching and Logging in Persistent

Memory

Persistent Memory functions as a hybrid of traditional storage systems with main

memory. It combines the benefits of both worlds – the persistence of storage disks with the

byte-addressability and load-store interface of main memory. It improves upon the emerging

nonvolatile memory (NVRAM) technologies by persisting data with full integrity even dur-

ing crashes and power outages. Yet, persistent memory systems impose additional memory

accesses to maintain data persistence (a traditional storage property) in memory, by employ-

ing multiversioning mechanisms (e.g., logging) or copy-on-write mechanisms inherited from

disk-based storage systems, such as databases and file systems. This chapter observes that

such additional memory demand causes increased conflict misses with prefetched data in the

cache, substantially hurting the performance of persistent memory applications. Furthermore,

intelligent hardware prefetching can offer substantial opportunities in relaxing the performance

constraint of persistent memory systems.

This the goal in this chapter is to achieve high-performance and energy-efficient hard-

ware prefetching in persistent memory systems. This thesis proposes an efficient persistence-

aware hardware prefetching mechanism, eFetch, which mitigates the performance and energy

loss in persistent memory applications while leveraging prefetching to relax the ordering con-

straints in log-based persistent memory systems. Evaluation across various persistent mem-

ory applications demonstrates that this design leads to 1.33× IPC improvement, 1.24× higher
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throughput, a 1.39× reduction in dynamic memory energy consumption, and a 1.36× decrease

in overall memory traffic.

2.1 Background and Prefetching

Persistent memory bridges the the benefits of memory and storage. It allows data

to be persisted directly through a fast load/store memory interface, obviating the performance

and energy overhead of accessing slow storage components such as disks and flash. As such,

systems incorporating persistent memory can offer promising data storage solutions for various

computer systems, whether they be cloud systems, embedded, or mobile, which are expected

to generate, process, and store increasingly large volumes of data despite operating with con-

strained voltage/thermal margins or unreliable power sources.

2.1.1 Supporting Data Persistence in Memory

Persistent memory systems need to protect data integrity against partial or reordered

writes to nonvolatile main memory (NV memory), despite crashes and power outages. Taking

an example of inserting a node in a linked list stored in NV memory, write-back caches and

memory controllers can reorder the writes; eventually, the pointer can be written into NV mem-

ory before the node data. If the system loses power when the node data still remains in volatile

CPU caches, the pointer becomes a dangling pointer and retains in NV memory across system

reboots. As such, the linked list is broken and the inconsistent state will remain from that point

on. To avoid this, persistent memory systems perform versioning and write-order control to

ensure data persistence in memory.

Versioning can be implemented by two commonly-used methods: logging [135] [30]

and copy-on-write [32]. Among the two, logging is an essential component in most database

and file systems that are likely to run on persistent memory. Therefore, eFetch focuses on

improving the performance and energy efficiency of log-based persistent memory systems.

Logging can be implemented as redo logging [135] [30], undo logging, or a combina-

tion of both (i.e., undo+redo logging) [95] [51]. Redo logging writes new data updates, along

with their addresses, into a log before updating their original locations. If system loses power

before logging is completed, persistent memory can always recover, using the intact original
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data in memory. Some systems can employ undo logging, which instead writes old values of

data into the log and updates the original data with new values. Many database systems adopt

undo+redo logging [95] [51]. For example, ARIES [95] combines a physical redo logging with

a logical undo logging process across transactions to ensure that the database can be recovered

after crashes. Yet performing undo+redo logging through the memory bus can introduce sub-

stantial performance overhead on top of the fast load/store interface. Therefore, most existing

persistent system designs adopt either undo or redo logging. Most previous logging schemes

can be categorized as write-ahead logging (WAL), e.g., they commit log records before updating

corresponding original data. Recent studies show that write-behind logging (WBL), which up-

dates data before committing to the log, can improve persistent memory performance in certain

scenarios [44] [16].

In most previous persistent memory designs, the log is supposed to be used during

system recovery; once a log entry is updated, it is not reused throughout applications execution.

Therefore, most previous persistent memory systems do not cache the log. Write-order control

enforces the order of log and original data updates arriving at NV memory. Otherwise, both

types of updates can be simultaneously issued to NV memory; system crashes can interrupt

these writes and leave both the log and the original data partially updated. Write-order control

is enforced by a memory barrier between the writes to the log and writes to the original locations

in memory. Such memory barriers are implemented by uncacheable writes or cache flush and

memory fence instructions, such as clflush, clwb, mfence, and pcommit.

2.1.2 Hardware Prefetching

A hardware prefetcher is a hardware component used in microprocessors to speed up

program execution by reducing the average memory access latency [39]. Modern microproces-

sors run much faster than the main memory. Therefore, main memory accesses typically lead

to stalled cycles on the microprocessor. Prefetching occurs when a processor requests data or

instructions from main memory before it is actually needed. Once a prefetched data or instruc-

tion comes back from memory, it is placed in the cache until it is accessed; reading the data or

instruction from caches is much faster than if the microprocessor had to request it from main

memory [46]. Yet the cache becomes populated more quickly and thus are more susceptible

to conflict misses. This issue leads to a loss of overall performance by increasing the average
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memory access latency (AMAL).

Current microprocessor designs adopt various hardware prefetching schemes, such

as next-line prefetching, stride prefetching [46], locality-based prefetching [125], and Markov

prefetching [62]. These are designed for conventional memory systems without data persistence

support. This thesis studies the issues with traditional hardware prefetcher design in persistent

memory systems and offers persistence-aware prefetching mechanisms that can work with var-

ious previous prefetcher designs.

2.2 The Case for Prefetching

This section discusses the reasons and motivation for pursuing performance speedups

in prefetching for persistent memory systems.

The premise of prefetching is to generate values to populate the cache sooner, which

can lead to additional cache hits (hence greater performance) in following memory accesses.

Toward this end, most traditional hardware prefetchers exploit spatial locality by prefetching

the addresses near the desired ones. Persistent memory systems typically allocate the log and

temporarily data buffer in one or more contiguous regions in the physical address space. As a

result, once the first data block of a log entry is accessed, hardware prefetchers can prefetch the

subsequent data blocks. While persistent memory logs are not supposed to be cached (discussed

in Section 2.1.1), hardware prefetchers can bring logs into caches. This thesis refers to this issue

as over-prefetching of log data.

There are many prefetching algorithms designed for specific use cases or that target

sets of applications. Prefetching policies are diverse and no single strategy has yet been pro-

posed which provides optimal performance in all cases [133]. New prefetching techniques

emerge with new technology and applications. Much how the emergence of newer applications

with different memory access patterns have driven development of these techniques, so too does

persistent memory. Persistent memory provides a new kind of predictable memory access pat-

tern that can be used in new or existing code. Given this predictability, this thesis develops a

prefetcher scheme fitting for these persistent applications.

The log is typically uncacheable because it has no reuse (Section 2.1.1); subsequent

reads of the same data will need to wait until the working data is updated (shown in Figure 2.3(a)

(the example code without redo log prefetching)). Yet new data values are actually already per-
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sistent after redo log updates are completed. Therefore, the ordering constraint between working

data updates and subsequent reads can be relaxed by allowing proactive reads from the redo log.

However, redirecting the reads to the redo log can substantially complicate persistent memory

design. As described in Section 2.3, eFetch allows such proactive reads without redirecting

them.

Hardware Prefetching vs. Software Prefetching. Prior works have studied the differences

between hardware prefetching and software prefetching [28]. This study and [152] cite that

software prefetching uses compile-time information to do complex analysis. However, hard-

ware prefetching has the advantage of dynamic information. While both improve miss rates in

caches through prefetching, software prefetching actually leads to a higher overhead cost. These

types of study have laid the foundation for modern prefetching research and prefetcher designs.

The policies used are typically implemented in hardware and are lightweight. This thesis uses

the same motivation for pursuing hardware-based prefetching for the eFetch design.

2.3 eFetch Design Overview

Overview. This thesis proposes eFetch, a hardware prefetcher design that addresses the afore-

mentioned over-prefetching issue and exploits the opportunity of relaxing the ordering con-

straint. This prefetching scheme can be used in persistent memory systems that adopt undo

logging, redo logging, or both to enforce data persistence. EFetch introduces three novel de-

sign principles to achieve this goal. First, persistent write tracking ensures that the hardware

prefetcher can distinguish the addresses of working data and log updates, such that it can em-

ploy different prefetching policies for the two. Persistent write tracking effectively reduces

the aforementioned over-prefetching issue. Second, redo log prefetching leverages prefetch-

ing of the latest redo log updates to simultaneously accommodate working data updates and

enable proactive reads. Third, undo logging triggered prefetching exploits the fact that work-

ing data updates typically follow log updates to proactively starting working data updates in

caches. The redo log prefetching and undo logging triggered prefetching mechanisms leverage

prefetcher’s support to relax the ordering constraint on persistent memory access; the two mech-

anisms also stretches the persistent memory performance by reducing redundant data movement

across the memory bus. The realization of these three principles improves system performance

and reduces system energy consumption as evaluated in the results. Furthermore, eFetch also
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Figure 2.1: High-level overview of eFetch and how it interacts with the rest of the system and
the application.

monitors the NV memory bandwidth utilization and prevents prefetching to interference with

ordinary memory requests. Figure 2.1 depicts eFetch configuration. A step-by-step overview of

how all mechanisms work together will be presented in Section 2.3.4.

2.3.1 Persistent Write Tracking

The goal to prevent traditional prefetching policies from prefetching non-reusable

log updates. To achieve this, this thesis allows hardware prefetchers to identify the addresses

of log updates. To this end, eFetch keeps track of the starting addresses of log updates by

buffering the starting and the end addresses (virtual or physical addresses determined by which

is used by the prefetcher) of each allocated log regions in NV memory. When the prefetcher

initiates prefetching requests guided by traditional prefetching policies (e.g., next-line, stride,

locality-based, Markov, etc.), it performs an “address check” against the buffered addresses.

If the requesting address falls into a memory region for log, the prefetcher skips that request.

Figure 2.2 summarizes this mechanism.

Making the Log Uncacheable. To comply with the persistence model described in Section 2.1,

there first needs to be a mechanism to allow detecting memory accesses into the log to prevent

them from caching in the original request. To this end, this design employs a software inter-

face (discussed in Section 2.4) that distinguishes log accesses from other memory accesses.

This software interface is similar to the ones adopted in previous persistent memory system

designs [135]. This way, the existence and location of the logs are known at compile-time. It
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Figure 2.2: High-level flow chart for eFetch. Red highlighted regions shows added eFetch
functionality atop traditional hardware prefetcher design.

can pass along this information to the eFetch hardware. As such, load and store instructions

associated with accessing the log will be flagged to be treated differently than working data

access, bypassing the cache hierarchy. This prevents the log access from polluting the cache

with additional conflict misses.

Address Tracking. For the log to be uncacheable, the system needs to have the knowledge

about its address in the memory space to prevent the cache from normally sending requests.

This same mechanism can be used to identify when eFetch triggers. This trigger expands to

the prefetcher to pass along the information of known log memory requests and the subsequent

areas in memory. There can exist memory regions that share spatial locality with the log but not

much else. Efetch does not prefetch these adjacent addresses because they tend to be isolated

from the rest of the code, more specifically, from the desired persistent data structure. Further-

more, the prefetcher is also aware of memory accesses preceding the log that could trigger any

over-prefetching into the log.

While the eFetch persistent write tracking reduces performance and energy degrada-

tion by ensuring that traditional prefetching policies are aware of log updates, eFetch performs

one step further to leverage prefetching to improve the performance and energy of working data
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access. The described write-tracking and address-tracking opens up for the next two mecha-

nisms to work and improve persistent memory system performance.

2.3.2 Redo Log Prefetching

The key idea of this mechanism is to perform working data updates in cache and sub-

sequent reads of the same data simultaneously with a single redo log prefetching (Figure 2.3).

Efetch does not cache the redo log. Therefore, as shown in the figure, the CPU is supposed to

issue new write requests to the working data A. Depending on the size of data A, the write can

consists of one or several store instructions. Subsequent reads of A need to wait until Write

A is performed. It is fine if the size of the data is small. But persistent memory systems can

manipulate large data structures in databases and file systems, where waiting for Write A

and then performing Read A take a long time. Instead of doing so, eFetch allows Read A

to start right after Write redo log A is completed; Read A will trigger the prefetching of

redo log A from NV memory into the cache blocks that are supposed to store the working data

A. As such, eFetch leverages the redo log to update the working data without relying on the

CPU to issue new requests; meanwhile, the subsequent read requests are serviced.

Accessing Data from Log. In most logging schemes, log updates rely on key-value information

for referencing updates done or to be done to the persistent data structure. To maintain such

information, the redo log records the new value of that data element (to be “redone”) and the

location of the actual persistent data item within the working data updated. These two values

are coupled within a single log entry. The latter allows obtaining the address of the value of the

working data and cache that data block instead of the block containing the log. This also allows

us to use the address to trigger eFetch to prefetch additional members of the data into the cache.

Doing so increases hits in the cache by having the data values and adjacent addresses already

in the cache on future accesses. It also improves the performance of further log requests and

updates, which rely on the same scheme during execution. As shown in Figure 2.3, in the case

of a cache hit on the cache block containing A during the redo log update of A, no additional

work is required aside from updating the value of A within that block.

Shrinking Persistent Memory Footprint in Cache. There is an additional advantage to ac-

cessing data directly during the log update and caching that instead. A log update requires a

key-value pair (two values) to store in memory. A regular persistent data item only requires
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Without	eFetch:	
	
Write redo_log_A
Memory barrier
Write A
Read A

With	eFetch:	
	
Write redo_log_A
Memory barrier
Read A

Time	

Write	
redo_log_A	 Write	A	

Barrier	

Time	

Write	
redo_log_A	

Prefetch	redo_log_A	to	
the	cache	blocks	
belonging	to	A	

Read	A	

With	
eFetch	

Without	
eFetch	

Replace	Write	A	
and	Read	A	with	
prefetching	of	
redo_log_A	into	
the	cache	

(a)	Example	codes.	

(b)	Timeline.	

Figure 2.3: Redo log prefetching mechanism. (a) Example application (or system software)
codes without and with the proposed redo log prefetching mechanism. (b) A timeline that
illustrates the saved time by using this mechanism.

one value to store in memory and therefore also in the cache. By replacing memory requests to

the log with those of the desired persistent structure, this design reduces the memory footprint

of persistent memory in the cache. The original log request would store one value instead of

two values, thus halving the memory footprint. Furthermore, accommodating a separate cache

block to be used for the persistent data later after the log request is unnecessary. Instead, eFetch

processes both the log request and the persistent memory access together, saving time as well

as space in the cache to be used for accommodating more reusable data.

2.3.3 Undo Logging Triggered Prefetching

The idea of this mechanism is to proactively start working data updates, so that they

complete earlier than usual in undo-log-based persistent memory. As shown in Figure 2.4, the
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Figure 2.4: Undo logging triggered prefetching

level-1 (L1) cache needs to fetch data A from lower levels, if Write A misses in the cache; an

working data update (Write A) therefore involves two steps: 1) servicing cache misses and

2) updating the cache blocks corresponding to A. EFetch proactively performs the first step by

leveraging the observation that working data updates will follow undo log updates in WAL. In

addition, prefetching would only load the data from lower levels in the memory hierarchy; it

does not modify data values and therefore does not violate data persistence. EFetch leverages

such observations to proactively trigger prefetching of working data. As illustrated in Fig-

ure 2.4, the eFetch implementation ensures that subsequent writes to the fetched cache blocks

corresponding to A are performed after Write undo log A is written into NV memory.

Distinguishing Undo Log from Redo Log. From the perspective of the prefetcher in hardware,

there is no difference between an application that uses redo log and one that uses undo log.

Both are uncacheable and require a reserved address space in which no prefetching can occur.

However, the key difference is how many writes occur in hardware and whether the software

still requires to execute write instructions update the working data. Efetch distinguishes between

undo and redo log in its software interface. This is further discussed in Section 2.4. Unlike in

the redo log case, the write cannot directly perform be performed to the working data (the main
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persistent data structure), because the new data values are not yet available. Therefore, with

undo logging, eFetch still requires the write A in the code to properly update the values.

Preemptive Cache Write-Allocate. Similar to the redo log, the undo log mechanism makes

use of the information packed with the update of the undo log request to expedite following

requests to the persistent data structure. The difference with processing undo logs is that it is

not yet known what the new value to write to the working data will be, only the old value (to

be “undone”) is known. However, the undo log access is treated like the main data access. Like

with redo logging, an undo log update provides the address of where the element in the working

data will be placed. This address is used to preemptively fetch the cache block containing the

working data from memory.

Normally in a cache, all write request misses must be write-allocated regardless, this

is a standard property of most caches [108]. This cache block allocation typically occurs

during cache misses on writes. If the subsequent write to the original data ends up missing in

the cache, the cache will have to perform an allocate regardless. EFetch can start to perform

the cache write-allocate process early. This leads to a significant reduction in the chance of a

cache miss on the write to the working data, because the cache will already be allocated. This

expedites the working data write requests and completes them sooner than usual. In the case of

a cache hit during the initial log update cache request, no additional work is needed because the

cache block containing the working data and its old value (the undo value) should already be in

the cache. However, since eFetch treat this as an access to the working data, it will also prefetch

additional address blocks related to this data as part of its prefetching algorithm.

2.3.4 Putting It All Together

Figure 2.1 illustrate a step-by-step overview of how all three mechanisms discussed

in this section work together to implement eFetch.

1. A persistent memory update occurs in the code. This is denoted by the use of a redo or

undo log call followed by a memory fence. This can be detected at compile time.

2. At all times during execution of the code, eFetch is running its prefetching policy (e.g.,

next-line, stride, locality-based, Markov, etc.). EFetch uses a reservation buffer check to

determine which generated prefetch requests are for addresses in memory containing a

the log. These requests are ignored.
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3. There is an undo or redo log update in the code.

(a) If it is a redo log, code does not require an update to the persistent structure.

(b) If it is an undo log, code looks similar to implementation without eFetch.

4. The undo or redo log update occurs.

(a) In either case, log update bypasses the cache and goes straight to NVRAM. This is

triggered by the address of the store instructions lying within the address space of a

log data structure.

(b) While requesting, eFetch detects the request belongs to a log and instead generates

a cacheable request for the persistent member belonging to that log. For both forms

of logging, eFetch obtains the address of this member from the provided entry.

(c) If this new cacheable request hits in the undo log case, request and log update end

and no further work is required.

(d) If this new cacheable request hits in the redo log case, the cache block containing

the persistent data value is updated with the new value, provided in the log entry.

(e) If this new cacheable request misses in the cache in either log case, the processor

must allocate the block in the cache as per write-allocate policy.

(f) After write allocation, the fetch request will also write to that new cache block the

new value provided with the log update if it is a redo log.

(g) eFetch generates additional memory requests according to its algorithm.

5. The write request to the persistent data structure occurs after the memory fence but only

in the case of an undo log. It is not necessary in the redo case because the new value is

already in the cache in the correct block.

2.4 Implementing eFetch

This section addresses implementation details of eFetch, including software interface,

hardware prefetcher design (log address buffer, prefetching policies, and prefetching controller),

and hardware memory barrier.
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Software Interface. eFetch software interface provides software programmers or runtime li-

braries (can be used in either case) with a way to define log and working data updates, and

dependent reads. These are software hints that eFetch hardware takes to determine the appro-

priate prefetching mechanisms. For example, eFetch uses a pair of log functions, redo log()

and undo log(), which defines redo and undo log updates, respectively. In redo-log-based

applications, software can leverage the redo log prefetching mechanism by eliminating those

working data updates followed by reads of the same data. An example is shown in Figure 2.3(a)

(the example code with redo log prefetching). EFetch also provides software with an interface,

log alloc() and log dealloc(), to allocate and deallocate redo/undo log entries.

Log Address Buffer. eFetch employs a log address buffer in the hardware prefetcher. Persistent

memory applications can allocate one or several consecutive memory regions to store the log.

Furthermore, the log size can grow during application execution, creating new memory regions

for log or growing size of a memory region. With its software interface, eFetch can receive

corresponding hints on the change of the memory regions from software and adjusts the address

buffering accordingly. The evaluation adopts a ten-entry buffer, which can accommodate the

evaluated applications very well.

Figure 2.5 shows an example of a log address buffer with address checking logic that

produces a valid signal determining whether or not the prefetching request is even valid. The

logic shows an exhaustive check for the addresses, which is similar to a cache tag array of

a fully-associative cache. Yet full-associativity is not very pragmatic for most cache designs.

Ideally, the address check in the prefetcher needs to use the same associativity as the cache

itself, because it is possible for the same tag to exist across multiple cache lines without there

being a conflict miss. However, the hardware prefetcher does not have knowledge of the cache

structure, so treating it as a fully-associative helps account for the worst-case scenario. However,

if information about the cache’s structure was available to the prefetcher, this log address buffer

could match its associativity when performing the address check. This would lead to even better

performance than the evaluation shows.

Prefetching Policies. eFetch can employ various prefetching policies, such as next-line, stride,

locality-based, and Markov prefetching, with ordinary (not log updates, working data updates,

or dependent reads) data accesses. The persistent write tracking only ensures that existing

prefetching policies bypass the prefetching of memory regions for log. On top of the prefetch-
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Figure 2.5: An example of a log address buffer with address checking logic that produces a
valid signal determining whether or not the prefetching request is even valid.

ing policy used (which can be any of the various policies), eFetch performs redo log prefetching

to manipulate log updates, working data updates, and dependent reads with redo-log-based per-

sistent memory applications. If a persistent memory application employs undo logging instead,

eFetch performs undo logging triggered prefetching on top of the prefetching policies used.

Prefetching Controller. The eFetch prefetching controller performs log address tracking; it

also initiates prefetching requests based on the prefetching policies used and determines the

proposed prefetching mechanisms. Yet NV memory bandwidth is a critical resource for per-

sistent memory application performance. Prefetching can hurt performance, if it interference

with ordinary memory requests. Therefore, the eFetch prefetching controller monitors the NV

memory bandwidth utilization, which is calculated as the ratio between the demanded mem-

ory bandwidth and peak memory bandwidth. The eFetch prefetching controller calculates de-

manded memory bandwidth by periodically sampling the hardware counter events such as NV

memory reads and writes within a given time period. The peak memory bandwidth is known as

memory bus frequency × bus width.

Hardware Memory Barrier. The eFetch Undo logging triggered prefetching proactively ser-
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vices L1 cache misses of working data updates before completing undo logging updates. How-

ever, to ensure data persistence, writes to these prefetched cache blocks cannot be performed

until after the undo logging updates are written into NV memory. As such, eFetch needs to

adopt a hardware memory barrier between undo log updates and writes to the cache blocks of

the working data. The hardware memory barrier is implemented in L1 cache controller. The

controller will reject the writes to the prefetched cache blocks until it receives a signal from

the memory controller, indicating that the log updates are already written into the NV memory.

Note that low-level persistent memory instructions, such as Intel’s pcommit can ensure that

the log writes arrive at NV memory by forcing them out of processor buffers.

2.5 Prefetching and Persistent Memory Experiments

This section describes the experiments and the tools needed to perform evaluation on

eFetch.

2.5.1 Framework

This chapter uses McSimA+ [11] to simulate the systems described in the previous

Design section. This simulator, although it has fewer configuration options than alternate sim-

ulators, provides a simpler configuration interface. The source code is modular and flexible for

modifying. It allows iterating more quickly on design ideas. Additionally, there is prior per-

sistent memory research done with this simulator [148]. This reassures the confidence of the

results.

The experiments configure the simulator to use a multi-core out-of-order processor,

shown in Table 2.1. Each L1 cache has a 64-entry stride prefetcher. This means that its depth

and stride are 64. Note there is no L3 cache in this simulator, but the L2 is configured to match

the Last Level Cache (LLC) of the corresponding processor. The prefetcher’s stride policy

is not required for eFetch. Any prefetching policies may be used with eFetch’s mechanisms.

Efetch uses stride because it is commonly used and can speedup the chosen persistent bench-

marks. This is further discussed below and the effects of a standard stride prefetcher is shown

in Section 2.6.
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Processor Similar to Intel Core i7 / 22 nm
Cores 4 cores, 2.5GHz, 2 threads/core
IL1 Cache 32KB, 8-way set-associative,

64B cache lines, 1.6ns latency,
64-entry stride prefetcher

DL1 Cache 32KB, 8-way set-associative,
64B cache lines, 1.6ns latency,
64-entry stride prefetcher

L2 Cache 8MB, 16-way set-associative,
64B cache lines, 4.4ns latency

Memory Controller 64-/64-entry read/write queues
8GB, 8 banks, 2KB row

NVRAM DIMM 36ns row-buffer hit, 100/300ns
read/write row-buffer conflict [76].

Power and Energy Processor: 149W (peak)
NVRAM: row buffer read (write):
0.93 (1.02) pJ/bit, array
read (write): 2.47 (16.82) pJ/bit [76]

Table 2.1: Processor and memory configurations.

2.5.2 Benchmarks

This section evaluates common persistent memory microbenchmarks in the experi-

ments. The microbenchmarks randomly update persistent data structures, performing functions

such as value swaps, key-value stores, and item deletions. The data structures used are: hash

table, red-black tree, array, B+tree, and graph. These structures are studied in previous works

on persistent memory [30].

Table 2.2 summarizes the these microbenchmarks. The experiments later in this chap-

ter use multiple versions of each benchmark, varying data types and data set sizes. Persistent

structures with integer elements cache less data per write, whereas their string version require

many cache blocks per update. This shows the affect of eFetch on applications with both com-

plex and lightweight data structures. These benchmarks are compiled in native x86 to run on

McSimA+ through Intel’s pin tool Pthreads.

First, this thesis runs a sensitivity study on these microbenchmarks. The sensitiv-

ity study compares the results and performance of these benchmarks without any prefetching

to versions with a standard prefetcher (not eFetch). These two experiments are run without
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Memory
Name Footprint Description
Hash 256 MB Searches for a value in an
[30] open-chain hash table. Insert

if absent, remove if found.
RBTree 256 MB Searches for a value in a red-black
[146] tree. Insert if absent, remove if found
SPS 1 GB Random swaps between entries
[146] in a 1 GB vector of values.
BTree 256 MB Searches for a value in a B+ tree.
[22] Insert if absent, remove if found
SSCA2 16 MB A transactional implementation
[17] of SSCA 2.2, performing several

analyses of large, scale-free graph.

Table 2.2: A list of evaluated microbenchmarks.

persistent memory. This allows comparing the differences in adding prefetching between per-

sistent and non-persistent systems. The results are meant to motivate eFetch and address issues

discussed in Section 2.2.

The primary experiment of this chapter implements eFetch in the persistent applica-

tions and compares it to a baseline system with a standard prefetcher. These experiments are

run in single-core, 2-core, and 4-core system configurations. The sensitivity study only runs

single-core because it’s used primarily for motivation. However, this thesis wants to analyze

eFetch’s scalability across multi-core configurations. This is important for persistent memory

applications because it’s better representative of real-world use cases in database systems and

high-performance computing.

2.6 eFetch Evaluation

To demonstrate the advantages of eFetch and motivate its need, the experiments study

the following metrics: instructions per cycle (IPC), operational throughput, dynamic memory

energy consumption, and overall memory traffic. Note that The experiments look at overall

memory traffic, not just write traffic. Persistent memory research typically focuses on writes

because they are significantly more expensive than reads. However, prefetching directly impacts

read request so reads are included in the memory traffic. Operational throughput refers to
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the the number of executed application-level operations per unit time. The operations vary

with benchmarks, see Section 2.5. In the microbenchmarks, the experiments scale number of

operations with the size of the data structure, reflected under “memory footprint” in Table 2.2.

However, in the string versions of the hash, rbtree, and sps benchmarks scale up the size per

element rather than the number of operations.

All numerical values shown are speedup values (higher is better). This speedup is

relative to a baseline implementation. The primary baseline used is a persistent memory bench-

mark with a standard prefetcher (not eFetch). Note that in the case of dynamic memory energy

and memory traffic, this “speedup” refers to a reduction factor. Therefore, all speedup values

over 1 for all metrics corresponds to an improvement. The dashed lines represents the reference

baseline for that particular experiment.

Performance Sensitivity to Prefetching in Persistent Memory. To motivate (Section 2.2)

eFetch (Section 2.3) and experiments (Section 2.5), this thesis runs a sensitivity study showing

the average effects of prefetching on persistent memory applications across all benchmarks and

metrics. Figure 2.6 shows this impact. The left bar is the baseline case showing the average

speedup of prefetching for non-persistent versions of the benchmarks. This value is treated

as a “target” because eFetch should be just as good, if not better. The right bar is the aver-

age speedup of the baseline prefetching (Section 2.5) in the persistent memory benchmarks.

Note that prefetching does not necessarily improve but hurts performance in some benchmarks.

This demonstrates the fact that not all prefetch policies benefit all applications equally (further

discussed in Section 2.2). It also motivates the research and the need for eFetch.

The main experiments expand on this sensitivity study, showing the details of each

microbenchmark individually. For each benchmark, multi-core versions of each are run. The

experiments study single-core, duo-core, and quad-core implementations. This allows observ-

ing the scalability of eFetch. Each core has two L1 caches, and each cache has a prefetcher.

The data caches have eFetch while the instruction caches use a standard stride prefetcher. This

thesis makes the following major observations out of the evaluation results.

Performance Analysis. Overall there is an improvement in IPC (Figure 2.7), operational

throughput (Figure 2.8), memory energy (Figure 2.9), and memory traffic (Figure 2.10) with

the proposed eFetch mechanisms. The eFetch design improves IPC by up to 1.7× over the

baseline, with a 1.33× average speedup across all benchmarks. Operation throughput increases

27



0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

IPC Op Throughput Memory Energy Memory Traffic

P
re

fe
tc

h
in

g 
A

ve
ra

ge
 S

p
ee

d
u

p prefetch prefetch-persistent

Figure 2.6: Sensitivity study showing the average speedup across all benchmarks between per-
sistent and non-persistent applications. The over-prefetching of log data by the prefetcher in
persistent memory applications is detrimental to its performance.
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Figure 2.7: IPC speedup of microbenchmarks (normalized to the unsafe baseline, dashed line)

by up to 1.56×, with average of 1.24× speedup. eFetch reduces NVRAM memory traffic, by

up to 1.79× and an average factor of 1.36×. Related to memory traffic reduction, eFetch de-

creases dynamic memory energy consumption by up to 1.82× and an average factor of 1.39×
across all benchmarks. The overall decrease in memory accesses leads to a decrease in the

Average Memory Access Latency (AMAL) which directly improves IPC and thus operational

throughput.
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Figure 2.8: Operational throughput speedup of microbenchmarks (normalized to the unsafe
baseline, dashed line).

0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

h
as

h
-i

n
t-

1
c

h
as

h
-s

tr
-1

c

rb
tr

ee
-i

n
t-

1
c

rb
tr

ee
-s

tr
-1

c

sp
s-

in
t-

1
c

sp
s-

st
r-

1
c

ss
ca

2
-1

c

b
tr

ee
-1

c

av
er

ag
e-

1
c

h
as

h
-i

n
t-

2
c

h
as

h
-s

tr
-2

c

rb
tr

ee
-i

n
t-

2
c

rb
tr

ee
-s

tr
-2

c

sp
s-

in
t-

2
c

sp
s-

st
r-

2
c

ss
ca

2
-2

c

b
tr

ee
-2

c

av
er

ag
e-

2
c

h
as

h
-i

n
t-

4
c

h
as

h
-s

tr
-4

c

rb
tr

ee
-i

n
t-

4
c

rb
tr

ee
-s

tr
-4

c

sp
s-

in
t-

4
c

sp
s-

st
r-

4
c

ss
ca

2
-4

c

b
tr

ee
-4

c

av
er

ag
e-

4
c

M
em

o
ry

 E
n

er
gy

 R
ed

u
ct

io
n

efetch-redo efetch-undo

Figure 2.9: Dynamic energy reduction across all microbenchmarks (normalized to unsafe base-
line, dashed line).

Multicore Scalability. Results show that there are not significant differences between bench-

marks with a different number of cores. Visual or numerical differences between corresponding

benchmarks (e.g., hash-int-1c and hash-int-2c) are all within a small error margin. This er-

ror margin is caused by different random seeds between benchmarks, whose effects propagate

through multi-core systems differently depending on the number of cores. Note also, however,

that there is not a clear pattern to the results from increasing or decreasing the number of cores.
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Figure 2.10: Memory write traffic reduction across all microbenchmarks (normalized to unsafe
baseline, dashed line).

This is shown by average-*c results which are all within 5% of each other.

Redo vs Undo Logging. Note that there is a difference in performance between redo and undo

logging in each result. This difference stems from the difference between the two mechanisms

(more details in Section 2.3). In the best case scenario, undo logging achieves as good a speedup

as redo logging. In most cases, however, undo logging performs worse than redo logging, but

not worse than the baseline. Benchmarks with redo and undo logging are most similar with

regard to memory traffic and memory energy consumption. The reason is that the mechanisms

do not add or remove total accesses to memory during prefetching or on the initial log update.

There are discrepancies between redo and undo logging under eFetch in the results of IPC and

operational throughput. Recall that the undo logging mechanism still requires the instruction

call to update the data value. The eFetch redo logging mechanism always removes this need,

leading to fewer instructions through the pipeline and thus a better IPC and throughput. Both

redo and undo logging reap the benefits of eFetch, but persistent memory applications with redo

logging benefits more.

Performance Recovery and eFetch Summary. Figure 2.11 is similar to Figure 2.6 in structure.

The leftmost two bars of each cluster correspond to the same bars in the sensitivity study. This

graph shows the results of eFetch in comparison to the baseline without eFetch. Recall that the

goal of eFetch was to recover the performance loss from prefetching with persistent memory.

Figure 2.11 shows that eFetch either meets the “target” (i.e., the leftmost bar) or surpasses
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Figure 2.11: Shows the average improvement of eFetch across all benchmarks, shown in com-
parison with sensitivity study.

it entirely. This shows that eFetch is viable and compares not only with baseline persistent

memory implementation with standard prefetching, but also with prefetching for non-persistent

applications.

2.7 eFetch Hardware Overhead

Impact on Instruction Count and Cycle Time. Two metrics the evaluation does not explore

is the program instruction count and the cycle time.

For program instruction count, eFetch does not change the instruction count of persis-

tent memory programs that use undo log. Section 2.3 discusses this further. However, persistent

applications that use redo logging does reduce the instruction count. Every write to persistent

data objects typically requires at least two writes (one for the log, one for the data). By removing

one of the writes, eFetch can halve the total memory write traffic (and thus store instructions)

in the best case scenario. In the worst case scenario, one store instruction is removed per trans-

action.

A problem with hardware-based solutions arises when the physical cost of the design

outweighs the benefit. This occurs when the design is too complex that it explodes metrics

like chip area, power consumption, or cycle time. The eFetch implementation and experi-

ments use a functional level simulator, too high-level to give a good analysis of how much

31



Mechanism Logic Type Size
Prefetch reserve bits flip-flops 128 Bytes
Log head pointer register flip-flops 8 Bytes
Log tail pointer register flip-flops 8 Bytes
eFetch Muxes/Decoders medium scale integration
eFetch Logic Gates small scale integration

Table 2.3: Summary of major hardware overhead.

area or power overhead eFetch has. For cycle time, however, the eFetch changes to hardware

prefetching are not on the critical path of the processor. This is consistent with similar works on

prefetching [126] [48]. Therefore, eFetch should not slow clock frequency from the additional

hardware.

Implementation Overhead Estimation. Yet, this thesis can make an estimation for eFetch’s

hardware overhead. Table 2.3 shows this overhead. The few components added to the hardware

outline the simplicity of the design. Note that the size of the overhead is determined by the size

of the prefetcher. In the eFetch implementation and experiments, eFetch is set to be large and

aggressive enough to prefetch up to 64 addresses’ worth of data. The amount of overhead is

also determined by the number of prefetchers in the overall system. The implementation in this

chapter has one prefetcher per L1 cache. The aggressiveness and prefetch policy may be tuned

down to save on hardware overhead.

Memory Consistency and Transaction Model. The eFetch design and experiments use the

same memory consistency model as an i7 processor. Section 2.5 outlines further details of the

system. The impact of eFetch has no implication on either the consistency or transaction model.

It’s possible to use eFetch on legacy code, but will not yield the full advantages without changing

their software model to match the eFetch model. EFetch does not require strict ordering criteria

in its benchmarks like other models.

In other software-based logging schemes like [16], their ordering of logging and up-

dating persistent structures is flipped. Their write-behind logging design performs the update

first, and this appears to violate the eFetch modeling expectations. However, this simply means

that implementing eFetch on their model will not incur benefits from the redo and undo log-

ging mechanisms. However, it will still benefit from the eFetch write-tracking mechanism and

removal of over-prefetching into the cache of log data.
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2.8 Discussion on Uncacheable Logging versus Cacheable Logging

One major question this thesis had when designing eFetch was about whether the

log should be cacheable or uncacheable. As noted earlier in the chapter, this thesis assumes

an uncacheable log for the persistent memory system which is consistent with previous studies.

However, this assumption is not a given and in designing the hardware and simulator for eFetch,

the implementation of uncacheable logging raised questions about how well supported it is in

x86, the ISA of the simulator. In theory, caching the log should contaminate critical cache

resources, thus degrading performance.

This motivated contribution in a previous study analyzing the differences and trade-

offs between cacheable and uncacheable logging [79]. That study showed that cache bypass-

ing in commodity processors (e.g. x86) is sub-optimal for supporting uncacheable log writes.

Specifically, bypassing the caches for logging is shown to degrade persistent memory system

performance compared to cacheable logging. In particular, common processors use special in-

structions and a write-combining buffer to implement uncacheable writes. Those instructions

end up requiring more cycles and does not perform as well as experiments with cached writes.

A big factor that contributes to this performance loss is due to the write-combining

buffer and how these uncacheable writes coalesce before writing out to memory. In current

implementations of uncacheable logging, this write-combining buffer writes the log at a granu-

larity smaller than a cache line, causing partial writes. This means there is an underutilization of

hardware resources and hence lower performance. That paper still notes, however, that there are

still observed advantages to uncacheable logging that comply with the theory (e.g., lower miss

rates in the cache). This suggests that the problem lies in the implementation rather than the

concept. It also proposes that a hardware-based approach for persistent memory would indeed

benefit from a more holistic approach that covers multiple parts of the microarchitecture. The

next chapter in this thesis takes this holistic approach and corrects these shortcomings with un-

cacheable logging. This will further strengthen the case for hardware and architecture solutions

for persistent memory.
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Chapter 3

Steal but No Force: Efficient

Hardware Undo+Redo Logging for

Persistent Memory Systems

Persistent memory is a new tier of memory that combines the benefits of both stor-

age systems and main memory. It has the data persistence of storage with the fast load/store

interface of memory. Most previous persistent memory designs place careful control over the

order of writes arriving at persistent memory. This can prevent caches and memory controllers

from optimizing system performance through write coalescing and reordering. This thesis iden-

tifies that such write-order control can be relaxed by employing undo+redo logging for data in

persistent memory systems. However, traditional software logging mechanisms are expensive

to adopt in persistent memory due to performance and energy overheads. Previously proposed

hardware logging schemes are inefficient and do not fully address the issues in software.

To address these challenges, this thesis proposes a hardware undo+redo logging de-

sign which maintains data persistence by leveraging the write-back, write-allocate policies used

in commodity caches. Furthermore, this thesis develops a cache force-write-back mechanism

in hardware to significantly reduce the performance and energy overheads from forcing data

into persistent memory. The evaluation across persistent memory microbenchmarks and real

workloads demonstrates that the design described in this thesis significantly improves system

throughput and reduces both dynamic energy and memory traffic. It also provides strong con-
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Tx_begin 
  do some reads 
  do some computation 
  Uncacheable_log( addr(A), new_val(A), old_val(A) ) 
  write new_val(A)     //new_val(A) = A’ 
  clwb     // can be delayed 
Tx_commit 

Tx_begin 
  do some reads 
  do some computation 
  Uncacheable_Ulog( addr(A), old_val(A) ) 
  write new_val(A)     //new_val(A) = A’ 
  clwb  //force writeback 
Tx_commit 

Tx_begin 
  do some reads 
  do some computation 
  Uncacheable_Rlog( addr(A), new_val(A) ) 
  memory_barrier 
  write new_val(A)    //new_val(A) = A’ 
Tx_commit 

… 

… 

Redo logging of the transaction 

Undo logging of store A1 

Time 

Time 

“Write A” consists of N store instructions 

Tx commit 

Ulog_A1 Ulog_A2 Ulog_AN 

store A’1 

Logging 

store A’1 store A’N 

Tx begin 

Write A 

… 
Rlog_A’1 Rlog_A’2 Rlog_A’N 

store A’1 store A’1 store A’N 
… 

clwb A’1..A’N 

Tx commit 

… 

… 
Time 

Tx commit Rlog_A’1 Rlog_A’2 Rlog_A’N 

store A’1 store A’1 store A’N 

… 
Ulog_A1 Ulog_A2 Ulog_AN 

(a) 
 
 
 
 
(b) 
 
 
 
 
(c) 

Undo logging only 

Redo logging only 

Undo+redo logging 

Logging 

Write A 

Logging 

Write A 

Uncacheable Cacheable 

Memory_barrier	

Figure 3.1: Comparison of executing a transaction in persistent memory with (a) undo logging,
(b) redo logging, and (c) both undo and redo logging.

sistency guarantees compared to software approaches. This chapter elaborates on the design of

hardware undo+redo logging.

3.1 Background on Persistent Memory and Logging

Persistent memory is fundamentally different from traditional DRAM main memory

or their NVRAM replacement, due to its persistence (i.e., crash consistency) property inher-

ited from storage systems. Persistent memory needs to ensure the integrity of in-memory data

despite system crashes and power loss [10, 25, 64, 72, 85, 88, 89, 98, 109, 111, 135]. The persis-

tence property is not guaranteed by memory consistency in traditional memory systems. Mem-

ory consistency ensures a consistent global view of processor caches and main memory, while

persistent memory needs to ensure that the data in the NVRAM main memory is standalone

consistent [72, 109, 135].

3.1.1 Persistent Memory Write-order Control

To maintain data persistence, most persistent memory designs employ transactions to

update persistent data and carefully control the order of writes arriving in NVRAM [16, 109,

135]. A transaction (e.g., the code example in Figure 3.1) consists of a group of persistent

memory updates performed in the manner of “all or nothing” in the face of system failures.

Persistent memory systems also force cache write-backs (e.g., clflush, clwb, and dccvap)
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and use memory barrier instructions (e.g., mfence and sfence) throughout transactions to

enforce write-order control [16, 30, 73, 135, 146].

Recent works strived to improve persistent memory performance towards a native

non-persistent system [73,109,146]. In general, whether employing logging in persistent mem-

ory or not, most face similar problems. (i) They introduce nontrivial hardware overhead (e.g.,

by integrating NVRAM cache/buffers or substantial extra bookkeeping components in the pro-

cessor) [116, 146]. (ii) They fall back to low-performance modes once the bookkeeping com-

ponents or the NVRAM cache/buffer are saturated [73, 146]. (iii) They inhibit caches from

coalescing and reordering persistent data writes [146] (details discussed in Section 5.2).

Forced cache write-backs ensure that cached data updates made by completed (i.e.,

committed) transactions are written to NVRAM. This ensures NVRAM is in a persistent state

with the latest data updates. Memory barriers stall subsequent data updates until the previous

updates by the transaction complete. However, this write-order control prevents caches from

optimizing system performance via coalescing and reordering writes. The forced cache write-

backs and memory barriers can also block or interfere with subsequent read and write requests

that share the memory bus. This happens regardless of whether these requests are independent

from the persistent data access or not [85, 148].

3.1.2 Why Undo+Redo Logging

While prior persistent memory designs only employ either undo or redo logging to

maintain data persistence, this thesis observes that using both can substantially relax the afore-

mentioned write-order control placed on caches.

Logging in persistent memory. Logging is widely used in persistent memory designs [30, 72,

73, 135]. In addition to working data updates, persistent memory systems can maintain copies

of the changes in the log. Previous designs typically employ either undo or redo logging. Fig-

ure 3.1(a) shows that an undo log records old versions of data before the transaction changes the

value. If the system fails during an active transaction, the system can roll back to the state before

the transaction by replaying the undo log. Figure 3.1(b) illustrates an example of a persistent

transaction that uses redo logging. The redo log records new versions of data. After system

failures, replaying the redo log recovers the persistent data with the latest changes tracked by

the redo log. In persistent memory systems, logs are typically uncacheable because they are
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meant to be accessed only during the recovery. Thus, they are not reused during application

execution. They must also arrive in NVRAM in order, which is guaranteed through bypassing

the caches.

Benefits of undo+redo logging. Combining undo and redo logging (undo+redo) is widely used

in disk-based database management systems (DBMSs) [95]. Yet, this thesis finds that persistent

memory design can leverage this concept to relax the write-order constraints on the caches.

Figure 3.1(a) shows that uncacheable, store-granular undo logging can eliminate the

memory barrier between the log and working data writes. As long as the log entry (Ulog A1)

is written into NVRAM before its corresponding store to the working data (store A′
1), the

partially completed store can be undone after a system failure. Furthermore, store A′
1 must

traverse the cache hierarchy. The uncacheable Ulog A1 may be buffered (e.g., in a four to

six cache-line sized entry write-combining buffer in x86 processors). However, it still requires

much less time to get out of the processor than cached stores. This naturally maintains the write

ordering without explicit memory barrier instructions between the log and the persistent data

writes. That is, logging and working data writes are performed in a pipeline-like manner (like in

the timeline in Figure 3.1(a)). However, a downside is that undo logging requires a forced cache

write-back before the transaction commits. This is necessary to recover the latest transaction

state after system failures. Otherwise, the data changes made by the transaction will not be

committed to memory.

Instead, redo logging allows transactions to commit without explicit cache write-

backs because the redo log, once updates complete, already has the latest version of the trans-

actions (Figure 3.1(b)). However, memory barriers are necessary to complete the redo log of A

before any stores of A reach NVRAM. The dashed blue line in the timeline shows this ordering

constraint. Otherwise, a system crash when the redo logging is incomplete, while working data

A is partially overwritten in NVRAM (by store A′
k), causes data corruption.

Figure 3.1(c) shows that undo+redo logging combines the benefits of both. This can

eliminate the memory barrier, as a result, between the log and persistent writes. A forced cache

write-back (e.g., clwb) is unnecessary for an unlimited sized log. However, it can be postponed

until after the transaction commits for a limited sized log (Section 3.1.3).
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Tx_begin(TxID) 
do some reads 
do some computation 
Uncacheable_log(addr(A),  
                       new_val(A),  
                         old_val(A)) 
 
write new_val(A) // A’ 
clwb  //conservatively used 
Tx_commit 

Micro-ops: 
load A1 
load A2 
… 
store log_A1 
store log_A2 
... 

(a)	 (b)	

Micro-ops: 
store log_A’1 
store log_A’2 
... 
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Memory Controller 

… Core 
cache 

Processor  
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Ulog_A 
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Ulog_B 

clwb 

A’k 

A’ 
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Rlog_C 
Ulog_C 

A 

A’k still in 
caches 

Nonvolatile 
Volatile 

Figure 3.2: Inefficiency of logging in software.

3.1.3 Why Undo+Redo Logging in Hardware

Though promising, undo+redo logging is not used in persistent memory system de-

signs because previous software logging schemes are inefficient (Figure 3.2).

Extra instructions in the CPU pipeline. Logging in software uses logging functions in trans-

actions. Figure 3.2(a) shows that both undo and redo logging can introduce a large number of

instructions into the CPU pipeline. As demonstrated in the experimental results (Section 3.5),

using only undo logging can lead to more than doubled instructions compared to memory sys-

tems without persistent memory. Undo+redo logging can introduce a prohibitively large number

of instructions to the CPU pipeline, occupying compute resources needed for data movement.

Increased NVRAM traffic. Most instructions for logging are loads and stores. As a result,

logging substantially increases memory traffic. In particular, undo logging must not only store

to the log, but it must also first read the old values of the working data from the cache and

memory hierarchy. This further increases memory traffic.

Conservative cache forced write-back. Logs can have a limited size1. Suppose that, without

losing generality, a log can hold undo+redo records of two transactions (Figure 3.2(b)). To log a

third transaction (Ulog C andRlog C), an existing log record must be overwritten, sayUlog A

and Rlog A (transaction A). If any updates of transaction A (e.g., A′
k) are still in caches, these

1Although log size can grow on demand, this introduces extra system overhead on managing variable size
logs [135]. Therefore, this thesis studies fixed size logs.
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Figure 3.3: Overview of the proposed hardware logging in persistent memory.

updates must be forced into the NVRAM before overwriting their log entry. The problem is that

caches are invisible to software. Therefore, software does not know whether or which particular

updates to A are still in the caches. Thus, once a log becomes full (after garbage collection),

software may conservatively force cache write-backs before committing the transaction. This

unfortunately negates the benefit of redo logging.

Risks of data persistence in multithreading. In addition to the above challenges, multithread-

ing further complicates software logging in persistent memory, when a log is shared by multiple

threads. Even if a persistent memory system issues clwb instructions in each transaction, a con-

text switch by the OS can occur before the clwb instruction executes. This context switch inter-

rupts the control flow of transactions and diverts the program to other threads. This reintroduces

the aforementioned issue of prematurely overwriting the records in a filled log. Implementing

per-thread logs can mitigate this risk. However, doing so can introduce new persistent memory

API and complicates recovery.

These inefficiencies expose the drawbacks of undo+redo logging in software and war-

rants a hardware solution.

3.2 Designing Undo+Redo Logging in Hardware

To address the challenges, this thesis proposes a hardware undo+redo logging design,

consisting of Hardware Logging (HWL) and cache Force Write-Back (FWB) mechanisms. This

section describes the design principles. Section 3.3 describes detailed implementation methods
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and the required software support.

3.2.1 Assumptions and Architecture Overview

Figure 3.3(a) depicts an overview of the processor and memory architecture. The fig-

ure also shows the circular log structure in NVRAM. All processor components are completely

volatile. This thesis uses write-back, write-allocate caches common to processors. This design

supports hybrid DRAM+NVRAM for main memory, deployed on the processor-memory bus

with separate memory controllers [135, 146]. However, this thesis focuses on persistent data

updates to NVRAM.

Failure Model. Data in DRAM and caches, but not in NVRAM, are lost across system reboots.

This design focuses on maintaining persistence of user-defined critical data stored in NVRAM.

After failures, the system can recover this data by replaying the log in NVRAM. DRAM is used

to store data without persistence [135, 146].

Persistent Memory Transactions. Like prior work in persistent memory [72, 135], this thesis

uses persistent memory “transactions” as a software abstraction to indicate regions of memory

that are persistent. Persistent memory writes require a persistence guarantee. Figure 3.2 il-

lustrates a simple code example of a persistent memory transaction implemented with logging

(Figure 3.2(a)), and with this design (Figure 3.2(b)). The transaction defines object A as critical

data that needs persistence guarantee. Unlike most logging-based persistent memory transac-

tions, transactions in this design eliminate explicit logging functions, cache forced write-back

instructions, and memory barrier instructions. Section 3.3 describes the software interface de-

sign.

Uncacheable Logs in the NVRAM. For this design, this thesis uses a single-consumer, single-

producer Lamport circular structure [75] for the log. The supported system software can allocate

and truncate the log (Section 3.3). The hardware mechanisms append the log. A circular log

structure is used because it allows simultaneous appends and truncates without locking [75,135].

Figure 3.3(a) shows that log records maintain undo and redo information of a single update

(e.g., store A1). In addition to the undo (A1) and redo (A′
1) values, log records also contain the

following fields: a 16-bit transaction ID, an 8-bit thread ID, a 48-bit physical address of the data,

and a torn bit. A torn bit per log entry is used to indicate the update is complete [135]. Torn

bits have the same value for all entries in one pass over the log, but reverses when a log entry
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is overwritten. Thus, completely-written log records all have the same torn bit value, while

incomplete entries have mixed values [135]. The log must accommodate all write requests of

undo+redo.

The log is typically used during system recovery, and rarely reused during application

execution. Additionally, log updates must arrive in NVRAM in store-order. Therefore, this

design makes the log uncacheable. This is in line with most prior works, in which log updates

are written directly into a write-combine buffer (WCB) [135,148] that coalesces multiple stores

to the same cache line.

3.2.2 Hardware Logging (HWL)

The goal of the Hardware Logging (HWL) mechanism is to enable feasible undo+redo

logging of persistent data in the microarchitecture. HWL also relaxes ordering constraints on

caching in a manner that neither undo nor redo logging can. Furthermore, the HWL design

leverages information naturally available in the cache hierarchy but not to the programmer or

software. It does so without the performance overhead of unnecessary data movement or exe-

cuting logging, cache force-write-back, or memory barrier instructions in pipeline.

Leveraging Existing Undo+Redo Information in Caches. Most processor caches use write-

back, write-allocate caching policies [108]. On a write hit, a cache only updates the cache line

in the hitting level with the new values. A dirty bit in the cache tag indicates cache values are

modified but not committed to memory. On a write miss, the write-allocate (also called fetch-

on-write) policy requires the cache to first load (i.e., allocate) the entire missing cache line

before writing new values to it. HWL leverages the write-back, write-allocate caching policies

to feasibly enable undo+redo logging in persistent memory. HWL automatically triggers a log

update on a persistent write in hardware. HWL records both redo and undo information in the

log entry in NVRAM (shown in Figure 3.2(b)). It gets the redo data from the currently in-flight

write operation itself. It then gets the undo data from the write request’s corresponding write-

allocated cache line. If the write request hits in the L1 cache, HWL reads the old value before

overwriting the cache line and use that for the undo log. If the write request misses in L1 cache,

that cache line must first be allocated anyway, at which point HWL gets the undo data in a

similar manner. The log entry, consisting of a transaction ID, thread, the address of the write,

and undo and redo values, is written out to the circular log in NVRAM using the head and tail
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pointers. These pointers are maintained in special registers described in Section 3.3.

Inherent Ordering Guarantee Between the Log and Data. This undo+redo hardware logging

design does not require explicit memory barriers to enforce that undo log updates arrive at

NVRAM before its corresponding working data. The ordering is naturally ensured by how

HWL performs the undo logging and working data updates. This includes i) the uncached log

updates and cached working data updates, and ii) store-granular undo logging. The working

data writes must traverse the cache hierarchy, but the uncacheable undo log updates do not.

Furthermore, HWL also provides an optional volatile log buffer in the processor, similar to

the write-combining buffers in commodity processor design, that coalesces the log updates.

The number of log buffer entries is configured based on cache access latency. Specifically,

log updates certainly write out of the log buffer before a cached store writes out of the cache

hierarchy. Section 3.3.3 and Section 3.5 further discuss and evaluate this log buffer.

3.2.3 Decoupling Cache FWBs and Transaction Execution

Writes are seemingly persistent once their logs are written to NVRAM. In fact, a

transaction can commit once logging of that transaction is completed. However, this does

not guarantee data persistence because of the circular structure of the log in NVRAM (Sec-

tion 3.1.1). However, inserting cache write-back instructions (such as clflush and clwb) in

software can impose substantial performance overhead (Section 3.1.1). This further complicates

data persistence support in multithreading (Section 3.1.3).

This design eliminates the need for forced write-back instructions and guarantee per-

sistence in multithreaded applications by designing a cache Force-Write-Back (FWB) mecha-

nism in hardware. FWB is decoupled from the execution of each transaction. Hardware uses

FWB to force certain cache blocks to write-back when necessary. FWB introduces a force

write-back bit (fwb) alongside the tag and dirty bit of each cache line. A finite state machine in

each cache block (Section 3.3.4) maintains the state using the fwb and dirty bits. Caches already

maintain the dirty bit: a cache line update sets the bit and a cache eviction (write-back) resets it.

A cache controller maintains the fwb bit by scanning cache lines periodically. On the first scan,

it sets the fwb bit in dirty cache blocks if unset. On the second scan, it forces write-backs in all

cache lines with {fwb, dirty} = {1, 1}. If the dirty bit ever gets reset for any reason, the fwb

bit also resets and no forced write-back occurs.
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The FWB design is also decoupled from software multithreading mechanisms. As

such, this mechanism is impervious to software context switch interruptions. That is, when the

OS requires the CPU to context switch, hardware waits until ongoing cache write-backs com-

plete. The frequency of the forced write-backs can vary. However, forced write-backs must be

faster than the rate at which log entries with uncommitted persistent updates are overwritten in

the circular log. In fact, force write-back frequency (associated with the scanning frequency) is

determined based on the log size and the NVRAM write bandwidth (discussed in Section 3.3.4).

The evaluation shows the frequency determination (Section 3.5).

3.2.4 Instant Transaction Commits

Previous designs require software or hardware memory barriers (and/or cache force-

write-backs) at transaction commits to enforce write ordering of log updates (or persistent data)

into NVRAM across consecutive transactions [85, 146]. Instead, this design gives transaction

commits a “free ride”. That is, no explicit instructions are needed. The hardware logging

mechanisms also naturally enforce the order of intra- and inter-transaction log updates: log

updates issue in the order of writes to corresponding working data. The log updates write into

NVRAM in the order they are issued (the log buffer is a FIFO). Therefore, log updates of

subsequent transactions can only be written into NVRAM after current log updates are written

and committed.

3.2.5 Putting It All Together

Figure 3.3(b) and (c) illustrate how the hardware logging works. Hardware treats all

writes encompassed in persistent transactions (e.g., write A in the transaction delimited by

tx begin and tx commit in Figure 3.2(b)) as persistent writes. Those writes invoke the

HWL and FWB mechanisms. They work together as follows. Note that log updates go directly

to the WCB or NVRAM if the system does not adopt the log buffer.

The processor sends writes of data object A (a variable or other data structure), con-

sisting of new values of one or more cache lines {A′
1, A

′
2, ...}, to the L1 cache. Upon updating

an L1 cache line (e.g., from old value A1 to a new value A′
1):

1. Write the new value (redo) into the cache line (Ê).
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(a) If the update is the first cache line update of data object A, the HWL mechanism

(which has the transaction ID and the address of A from the CPU) writes a log

record header into the log buffer.

(b) Otherwise, the HWL mechanism writes the new value (e.g., A′
1) into the log buffer.

2. Obtain the undo data from the old value in the cache line (Ë). This step runs parallel to

Step-1.

(a) If the cache line write request hits in L1 (Figure 3.3(b)), the L1 cache controller

immediately extracts the old value (e.g., A1) from the cache line before writing the

new value. The cache controller reads the old value from the hitting line out of the

cache read port and writes it into the log buffer in the Step-3. No additional read

instruction is necessary.

(b) If the write request misses in the L1 cache (Figure 3.3(c)), the cache hierarchy must

write-allocate that cache block as is standard. The cache controller at a lower-level

cache that owns that cache line extracts the old value (e.g.,A1). The cache controller

sends the extracted old value to the log buffer in Step-3.

3. Update the undo information of the cache line: the cache controller writes the old value

of the cache line (e.g., A1) to the log buffer (Ì).

4. The L1 cache controller updates the cache line in the L1 cache (Í). The cache line can be

evicted via standard cache eviction policies without being subjected to data persistence

constraints. Additionally, the log buffer is small enough to guarantee that log updates

traverse through the log buffer faster than the cache line traverses the cache hierarchy

(Section 3.3.4). Therefore, this step occurs without waiting for the corresponding log

entries to arrive in NVRAM.

5. The memory controller evicts the log buffer entries to NVRAM in a FIFO manner (Í).

This step is independent from other steps.

6. Repeat Step-1-(b) through 5 if the data object A consists of multiple cache line writes.

The log buffer coalesces the log updates of any writes to the same cache line.

7. After log entries of all the writes in the transaction are issued, the transaction can commit

(Î).
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8. Persistent working data updates remain cached until they are written back to NVRAM by

either normal eviction or cache FWB unit.

3.2.6 Discussion

Types of Logging. Systems with non-volatile memory can adopt centralized [63] or distributed

(e.g., per-thread) logs [56, 140]. Distributed logs can be more scalable than centralized logs

in large systems from software’s perspective. Undo+redo hardware logging works with either

type of logs. With centralized logging, each log record needs to maintain a thread ID, while

distributed logs do not need to maintain this information in log records. With a centralized log,

the hardware design effectively reduces the software overhead and can substantially improve

system performance with real persistent memory workloads as show in the experiments. In

addition, this design also allows systems to adopt alternative formats of distributed logs. For

example, the physical address space can be partitioned into multiple regions and maintain a log

per memory region.

NVRAM Capacity Utilization. Storing undo+redo log can consume more NVRAM space

than either undo or redo alone. For its log, this design uses a fixed-size circular buffer rather

than doubling any previous undo or redo log implementation. The log size trades off with the

frequency of the cache FWB (Section 3.3). The software support discussed in Section 3.3.1

allow users to determine the size of the log. The FWB mechanism will adjust the frequency

accordingly to ensure data persistence.

Lifetime of NVRAM Main Memory. The lifetime of the log region is not an issue. Suppose a

log has 64K entries ( 4MB) and NVRAM (assuming phase-change memory) has a 200 ns write

latency. Each entry will be overwritten once every 64K × 200 ns. If NVRAM endurance is

108 writes, a cell, even statically allocated to the log, will take 15 days to wear out, which is

plenty of time for conventional NVRAM wear-leveling schemes to trigger [114, 115, 151]. In

addition, this scheme has two impacts on overall NVRAM lifetime: logging normally leads to

write amplification, but the design in this thesis improves NVRAM lifetime because the caches

coalesce writes. The overall impact is likely slightly negative. However, wear-leveling will

trigger before any damage occurs.
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void persistent_update( int threadid )
{
tx_begin( threadid );
// Persistent data updates
write A[threadid];
tx_commit();

}
// ...
int main()
{

// Executes one persistent
// transaction per thread
for ( int i = 0; i < nthreads; i++ )

thread t( persistent_update, i );
}

Figure 3.4: Pseudocode example for tx begin and tx commit, where thread ID is transac-
tion ID to perform one persistent transaction per thread.

3.3 Implementation Details

This section describes the implementation details of the hardware logging design and

its overhead. Section 3.2.6 covered the impact of NVRAM space consumption, lifetime, and

endurance.

3.3.1 Software Support

This design has software support for defining persistent memory transactions, allo-

cating and truncating the circular log in NVRAM, and reserving a special character as the log

header indicator.

Transaction Interface. This design uses a pair of transaction functions, tx begin( txid

) and tx commit(), that define transactions which do persistent writes in the program. It can

use txid to provide the transaction ID information used by the HWL mechanism. This ID is

groups writes from the same transaction. This transaction interface has been used by numerous

previous persistent memory designs [30, 146]. Figure 3.4 shows an example of multithreaded

pseudocode with the transaction functions.
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System Library Functions Maintain the Log. The HWL mechanism performs log updates,

while the system software maintains the log structure. In particular, it uses system library func-

tions, log create() and log truncate() (similar to functions used in prior work [135]),

to allocate and truncate the log, respectively. The system software sets the log size. The mem-

ory controller obtains log maintenance information by reading special registers (Section 3.3.2),

indicating the head and tail pointers of the log. Furthermore, a single transaction that exceeds

the originally allocated log size can corrupt persistent data. There are two options to prevent

overflows: 1) The log create() function allocates a large-enough log by reading the max-

imum transaction size from the program interface (e.g., #define MAX TX SIZE N); 2) An

additional library function log grow() allocates additional log regions when the log is filled

by an uncommitted transaction.

3.3.2 Special Registers

The txid argument from tx begin() translates into an 8-bit unsigned integer (a

physical transaction ID) stored in a special register in the processor. Because the transaction

IDs group writes of the same transactions, the design can simply pick a not-in-use physical

transaction ID to represent a newly received txid. An 8-bit length can accommodate 256

unique active persistent memory transactions at a time. A physical transaction ID can be reused

after the transaction commits.

This design also uses two 64-bit special registers to store the head and tail point-

ers of the log. The system library initializes the pointer values when allocating the log using

log create(). During log updates, the memory controller and log truncate() function

update the pointers. If log grow() is used, it employs additional registers to store the head

and tail pointers of newly allocated log regions and an indicator of the active log region.

3.3.3 An Optional Volatile Log Buffer

To improve performance of log updates to NVRAM, this design provides an optional

log buffer (a volatile FIFO, similar to WCB) in the memory controller to buffer and coalesce log

updates. This log buffer is not required for ensuring data persistence, but only for performance

optimization.

Data persistence requires that log records arrive at NVRAM before the corresponding

47



tag 
tag 

tag 

... 

v 
v 

v 

d 
d 

d 

f 
f 

f 

1b 1b 1b 
FLAG	

IDLE	

FWB	

~dirty 

~dirty 
dirty 

fwb = 0 

fwb = 1 

dirty 

dirty = 0 

write-
back 

IDLE	 FLAG	 FWB	

write-
back 

dirty dirty 

~dirty 

~dirty 

fwb = 0 fwb = 1 dirty = 0 

reset 
force-write-back 

cache 
line 
write set 

fwb=1 

write-back 

not 
dirty fwb,dirty 

={0,0} 
fwb,dirty  
= {0,1} 

fwb,dirty  
= {1,1} 

reset 

IDLE	
	

FLAG	
	

FWB	
	

Figure 3.5: State machine in cache controller for FWB.

cache line with the working data. Without the log buffer, log updates are directly forced to the

NVRAM bus without buffering in the processor. Choosing to adopt a log buffer with N entries

means a log entry will take N cycles to reach the NVRAM bus. A data store sent to the L1

cache takes at least the latency (cycles) of all levels of cache access and memory controller

queues before reaching the NVRAM bus. The the minimum value of this latency is known at

design time. Therefore, it is guaranteed that log updates arrive at the NVRAM bus before the

corresponding data stores by designing N to be smaller than the minimum number of cycles for

a data store to traverse through the cache hierarchy. Section 3.5 evaluates the bound of N and

system performance across various log buffer sizes based on the used system configurations.

3.3.4 Cache Modifications

Implementing the cache force write-back scheme requires adding one fwb bit to the

tag of each cache line, alongside the dirty bit as in conventional cache implementations. FWB

maintain three states (IDLE, FLAG, and FWB) for each cache block using these state bits.

Cache Block State Transition. Figure 3.5 shows the finite-state machine for FWB, imple-

mented in the cache controller of each level. When an application begins executing, cache

controllers initialize (reset) each cache line to the IDLE state by setting fwb bit to 0. Standard

cache implementation also initializes dirty and valid bits to 0. During application execution,

baseline cache controllers naturally set the dirty and valid bits to 1 whenever a cache line is

written and reset the dirty bit back to 0 after the cache line is written back to a lower level

(typically on eviction). To implement the state machine, the cache controllers periodically scan

the valid, dirty, and fwb bits of each cache line and performs the following.
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• A cache line with {fwb, dirty} = {0, 0} is in IDLE state; the cache controller does

nothing to those cache lines;

• A cache line with {fwb, dirty} = {0, 1} is in the FLAG state; the cache controller sets

the fwb bit to 1. This indicates that the cache line needs a write-back during the next

scanning iteration if it is still in the cache.

• A cache line with {fwb, dirty} = {1, 1} is in FWB state; the cache controller force

writes-back this line. After the forced write-back, the cache controller changes the line

back to IDLE state by resetting {fwb, dirty} = {0, 0}.

• If a cache line is evicted from the cache at any point, the cache controller resets its state

to IDLE.

Determining the Cache FWB Frequency. The tag scanning frequency determines the fre-

quency of the cache force write-back operations. The FWB must occur as frequently as to

ensure that the working data is written back to NVRAM before its log records are overwritten

by newer updates. As a result, the more frequent the write requests, the more frequent the log

will be overwritten. The larger the log, the less frequent the log will be overwritten. There-

fore, the scanning frequency is determined by the maximum log update frequency (bounded

by NVRAM write bandwidth since applications cannot write to the NVRAM faster than its

bandwidth) and log size (see the sensitivity study in Section 3.5). To accommodate large cache

sizes with low scanning performance overhead, the size of the log can also grow to reduce the

scanning frequency accordingly.

3.3.5 Summary of Hardware Overhead

Table 3.1 presents the hardware overhead of the implemented design in the processor.

Note that these values may vary depending on the native processor and ISA. This implementa-

tion assumes a 64-bit machine, hence why the circular log head and tail pointers are 8 bytes.

Only half of these bytes are required in a 32-bit machine. The size of the log buffer varies based

on the size of the cache line. The size of the overhead needed for the fwb state varies on the

total number of cache lines at all levels of cache. This is much lower than previous studies

that track transaction information in cache tags [146]. The numbers in the table were computed

based on the specifications of all the system caches described in Section 3.4.
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Mechanism Logic Type Size
Transaction ID register flip-flops 1 Byte
Log head pointer register flip-flops 8 Bytes
Log tail pointer register flip-flops 8 Bytes
Log buffer (optional) SRAM 964 Bytes
Fwb tag bit SRAM 768 Bytes

Table 3.1: Summary of major hardware overhead.

Note that these are major state logic components on-chip. The undo+redo logging de-

sign also also requires additional gates for logic operations. However, these gates are primarily

small and medium-sized gates, on the same complexity level as a multiplexer or decoder.

3.3.6 Recovery

The steps of recovering the persistent data in systems that adopt this design are out-

lined as follows:

Step 1: Following a power failure, the first step is to obtain the head and tail pointers

of the log in NVRAM. These pointers are part of the log structure. They allow systems to

correctly order the log entries. Only one centralized circular log is used for all transactions for

all threads.

Step 2: The system recovery handler fetches log entries from NVRAM and use the

address, old value, and new value fields to generate writes to NVRAM to the addresses speci-

fied. The addresses are maintained via page table in NVRAM. Writes that did not commit are

identified by tracing back from the tail pointer. Log entries with mismatched values in NVRAM

are considered non-committed. The address stored with each entry corresponds to the address of

the persistent data member. Aside from the head and tail pointers, a torn bit is used to correctly

order these writes [135]. Log entries with the same txid and torn bit are complete.

Step 3: The generated writes bypass the caches and go directly to NVRAM. The

caches are volatile, so their states are reset and all generated writes on recovery are persistent.

Therefore, they can bypass the caches without issue.

Step 4: The head and tail pointers of the circular log get updated for each generated

persistent write. After all updates from the log are redone (or undone), the head and tail pointers

of the log point to entries to be invalidated.
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Processor Similar to Intel Core i7 / 22 nm
Cores 4 cores, 2.5GHz, 2 threads/core
IL1 Cache 32KB, 8-way set-associative,

64B cache lines, 1.6ns latency,
DL1 Cache 32KB, 8-way set-associative,

64B cache lines, 1.6ns latency,
L2 Cache 8MB, 16-way set-associative,

64B cache lines, 4.4ns latency
Memory Controller 64-/64-entry read/write queues

8GB, 8 banks, 2KB row
NVRAM DIMM 36ns row-buffer hit, 100/300ns

read/write row-buffer conflict [76].
Power and Energy Processor: 149W (peak)

NVRAM: row buffer read (write):
0.93 (1.02) pJ/bit, array
read (write): 2.47 (16.82) pJ/bit [76]

Table 3.2: Processor and memory configurations.

3.4 Setup for Simulation

This thesis evaluates this design by implementing it in McSimA+ [12], a Pin-based [90]

cycle-level multi-core simulator. The simulator is configured to model a multi-core out-of-order

processor with NVRAM DIMM described in Table 3.2. This simulator also models additional

memory traffic for logging and clwb instructions. The performance simulation results are fed

into McPAT [82], a widely used architecture-level power and area modeling tool, to estimate

processor dynamic energy consumption. The experiments modify the McPAT processor config-

uration to model the desired hardware modifications, including the components added to support

HWL and FWB. The experiments also adopt phase-change memory parameters in the NVRAM

DIMM [76]. Because all the performance numbers shown in Section 3.5 are relative (speedups),

the same observations are valid for different NVRAM latency and access energy. This work fo-

cuses on improving persistent memory access so there is no DRAM access evaluation in these

experiments.

The evaluation includes both microbenchmarks and real workloads in the experi-

ments. The microbenchmarks repeatedly update persistent memory storing to different data

structures including hash table, red-black tree, array, B+tree, and graph. These are data struc-
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Memory
Name Footprint Description
Hash 256 MB Searches for a value in an
[30] open-chain hash table. Insert

if absent, remove if found.
RBTree 256 MB Searches for a value in a red-black
[146] tree. Insert if absent, remove if found
SPS 1 GB Random swaps between entries
[146] in a 1 GB vector of values.
BTree 256 MB Searches for a value in a B+ tree.
[22] Insert if absent, remove if found
SSCA2 16 MB A transactional implementation
[17] of SSCA 2.2, performing several

analyses of large, scale-free graph.

Table 3.3: A list of evaluated microbenchmarks.

tures widely used in storage systems [30]. Table 3.3 describes these benchmarks. These exper-

iments use multiple versions of each benchmark and vary the data type between integers and

strings within them. Data structures with integer elements pack less data (smaller than a cache

line) per element, whereas those with strings require multiple cache lines per element. This al-

lows exploring complex structures used in real-world applications. In these microbenchmarks,

each transaction performs an insert, delete, or swap operation. The number of transactions

is proportional to the data structure size, listed as “memory footprint” in Table 3.3. These

benchmarks compile in native x86 and run on the McSimA+ simulator. Both singlethreaded

and multithreaded versions of each benchmark are evaluated. In addition, this thesis evalu-

ates the set of real workload benchmarks from the WHISPER persistent memory benchmark

suite [102]. The benchmark suite incorporates various workloads, such as key-value stores, in-

memory databases, and persistent data caching, which are likely to benefit from future persistent

memory techniques.

3.5 Evaluating with Microbenchmarks and WHISPER

The design is evaluated in terms of transaction throughput, instruction per cycle (IPC),

instruction count, NVRAM traffic, and dynamic energy consumption. The experiments com-

pare among the following cases.
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• non-pers – This uses NVRAM as a working memory without any data persistence or

logging. This configuration yields an ideal yet unachievable performance for persistent

memory systems [146].

• unsafe-base – This uses software logging without forced cache write-backs. As such,

it does not guarantee data persistence (hence “unsafe”). Note that the dashed lines in

the figures show the best case achieved between either redo or undo logging for that

benchmark.

• redo-clwb and undo-clwb – Software redo and undo logging, respectively. These invoke

the clwb instruction to force cache write-backs after persistent transactions.

• hw-rlog and hw-ulog – Hardware redo or undo logging with no persistence guarantee

(like in unsafe-base). These show an extremely optimized performance of hardware undo

or redo logging [146].

• hwl – This design includes undo+redo logging from the hardware logging (HWL) mech-

anism, but uses the clwb instruction to force cache write-backs.

• fwb – This is the full implementation of the hardware undo+redo logging design with

both HWL and FWB.

3.5.1 Microbenchmark Results

This thesis makes the following major observations of the microbenchmark experi-

ments and analyze the results. The benchmark evaluation is configured from single to eight

threads. The prefixes of these results correspond to one (-1t), two (-2t), four (-4t), and eight

(-8t) threads.

System Performance and Energy Consumption. Figure 3.6 and Figure 3.7 compare the trans-

action throughput and memory dynamic energy of each design. This thesis observes that pro-

cessor dynamic energy is not significantly altered by different configurations. Therefore, only

memory dynamic energy in the figure is shown. The figures illustrate that hwl alone improves

system throughput and dynamic energy consumption, compared with software logging. Note

that this design supports undo+redo logging, while the evaluated software logging mechanisms

only support either undo or redo logging, not both. Fwb yields higher throughput and lower
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Figure 3.6: Transaction throughput speedup (higher is better), normalized to unsafe-base.
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Figure 3.7: Dynamic energy reduction (higher is better), normalized to unsafe-base (dashed
line).
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Figure 3.8: Memory write traffic reduction (higher is better), normalized to unsafe-base (dashed
line).

energy consumption: overall, it improves throughput by 1.86× with one thread and 1.75× with

eight threads, compared with the better of redo-clwb and undo-clwb. SSCA2 and BTree bench-

marks generate less throughput and energy improvement over software logging. This is because

SSCA2 and BTree use more complex data structures, where the overhead of manipulating the
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Figure 3.9: IPC speedup (higher is better) and instruction count (lower is better), normalized to
unsafe-base.

data structures outweigh that of the log structures. Figure 3.8 shows that the undo+redo logging

design substantially reduces NVRAM writes.

The figures also show that unsafe-base, redo-clwb, and undo-clwb significantly de-

grade throughput by up to 59% and impose up to 62% memory energy overhead compared

with the ideal case non-pers. Undo+redo hardware logging brings system throughput back up.

Fwb achieves 1.86× throughput, with only 6% processor-memory and 20% dynamic memory

energy overhead, respectively. Furthermore, the design’s performance and energy benefits over

software logging remain as the number of threads increases.

IPC and Instruction Count. The evaluation also studies IPC number of executed instructions,

shown in Figure 3.9. Overall, hwl and fwb significantly improve IPC over software logging.

This appears promising because the figure shows the undo+redo hardware logging design exe-

cutes much fewer instructions. Compared with non-pers, software logging imposes up to 2.5×
the number of instructions executed. The fwb design only imposes a 30% instruction overhead.

Performance Sensitivity to Log Buffer Size. Section 3.3.3 discusses how the log buffer size

is bounded by the data persistence requirement. The log updates must arrive at NVRAM before

its corresponding working data updates. This bound is≤15 entries based on the aforementioned

processor configuration. Indeed, larger log buffers better improve throughput as studied using

the hash benchmark (Figure 3.10(a)). An 8-entry log buffer improves system throughput by

10%; the implementation with a 15-entry log buffer improves throughput by 18%. Further

increasing the log buffer size, which may no longer guarantee data persistence, additionally

improves system throughput until reaching the NVRAM write bandwidth limitation (64 entries

based on the NVRAM configuration). Note that the system throughput results with 128 and 256
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tion, transaction throughput, and NVRAM write traffic, normalized to unsafe-base (the dashed
line).

entries are generated assuming infinite NVRAM write bandwidth. Throughput also improves

over baseline hardware logging hw-rlog and hw-ulog.

Relation Between FWB Frequency and Log Size. Section 3.3.4 discusses that the force write-

back frequency is determined by the NVRAM write bandwidth and log size. With a given

NVRAM write bandwidth, these experiments study the relation between the required FWB

frequency and log size. Figure 3.10(b) shows that forced write-backs only need to occur every

three million cycles with a 4MB log. As a result, the fwb tag scanning only introduces 3.6%

performance overhead with a 8MB cache.
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3.5.2 WHISPER Results

Compared with microbenchmarks, there are even more promising performance and

energy improvements in real persistent memory workloads in the WHISPER benchmark suite

with large data sets (Figure 3.11). Among the WHISPER benchmarks, ctree and hashmap

benchmarks accurately correspond to and reflect the results achieved in the microbenchmarks

due to their similarities. Although the magnitude of improvement vary, the undo+redo log-

ging design leads to much higher performance, lower energy, and lower NVRAM traffic than

the baselines. Compared with redo-clwb and undo-clwb, the undo+redo logging design sig-

nificantly reduces the dynamic memory energy consumption of tpcc and ycsb due to the high

write intensity in these workloads. Overall, undo+redo logging (fwb) achieves up to 2.7× the

throughput of the best case in redo-clwb and undo-clwb. This is also within 73% of non-pers

throughput of the same benchmarks. In addition, this design achieves up to a 2.43× reduction

in dynamic memory over the baselines.

3.6 Discussion on RISC-V and RDMA Networking

This chapter has shown the high potential for hardware-based persistent memory de-

sign. Although promising, there is more that can be done to make hardware undo+redo logging

fully robust. This section talks about two of those ways. First, implementing the design and ex-

panding persistent memory support to RISC-V should enable many avenues of continued work.

Second, supporting remote persistent requests via RDMA or memory networks.

3.6.1 RISC-V Support for Persistent Memory

Most persistent memory research is done using x86 due to extensive support in its

instruction set [58]. Additionally, Intel has made a major push with development of its own

non-volatile memory device: 3D Xpoint memory [59]. In particular, RISC-V [141] is widely

used in academia but also more recently in industry-based research. Both academia and industry

are investing in persistent memory and developing its technology, with examples shown earlier

in this chapter. However, almost no support or work is being done for persistent memory using

RISC-V. This is despite the fact that RISC-V is quickly growing in popularity and acceptance

in both domains.
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This thesis additionally proposes changes for RISC-V to support persistent memory.

Current work is being done to fully integrate persistent memory and logging into a RISC-V

system running on an FPGA as proof of concept. This implementation would enable identify-

ing key challenges and optimizations for persistent memory not found on other ISAs. It also

introduces new avenues of research into persistent memory using different architecture. Ad-

ditionally, it would make RISC-V compatible with existing persistent memory work including

benchmarks, file systems, and logging mechanisms.

In this chapter, as previously noted, the hardware undo+redo logging design is im-

plemented in McSimA+ [12], a high-level C++ simulator and pin tool. Despite the hardware-

intensive nature of the design, the limitations of this simulator and its ISA prevents a full study

on the hardware complexity and challenges of hardware undo+redo logging. This would not be

the case with RISC-V, whose current development includes chips and their RTL code for direct

modification and design. In particular, this thesis does implement hardware undo+redo logging

in the RTL design of the BOOM chip. This is accompanied by a design flow for including

necessary changes to the system and to synthesize it on an FPGA for evaluation and experi-

ments. This is a work in progress, but the ongoing work and planned future work in RISC-V

are outlined in Section 6.2.

3.6.2 A Holistic Approach from Memory Bus to RDMA Network

The design in this chapter considered the entire system for its approach to imple-

menting efficient hardware undo+redo logging. This design modified critical parts of existing

microarchitecture and added new mechanisms to achieve its goal. However, this thesis imple-

mented and studied hardware undo+redo logging in a single system. The assumption is that the

persistent memory requests originated in the local system. However, this thesis has explored the

possibility of persistent memory requests originating remotely. Although the fundamentals of

hardware undo+redo logging could be expanded to account for this, this thesis does not explore

that aspect in depth.

However, the work in this thesis has motivated contribution to a paper focusing on

persistence parellelism optimization [55]. Specifically, the contribution is in regards to the

observation that paper makes that the Remote Direct Memory Access (RDMA) network data

path was being severely under-utilized in persistent memory. That paper also observes that

58



both industry and academia are considering and adopting remote NVM systems. Those types

of system systems rely on memory persistence through an RDMA network, also known as

network persistence.

Supporting persistent memory access through a network is becoming increasingly

important. The software community already acknowledges the potential of remote persistent

memory systems to provide fast write replication for better system availability in storage work-

loads and data center applications. In fact, remote persistent memory can replace SSDs for

metadata storage in some high performance systems. The techniques developed in this the-

sis for hardware undo+redo logging inspired the proposed design in that paper and the design

principles supplemented it.

Involvement in that paper underscored the significant role of networks and networking

in the performance of memory systems. As state-of-the-art applications increase in memory

demand and push the limits of memory models, it is clear that networks require attention. This

motivates the focus and design of the next chapter in this thesis on memory networks. That

design approach is not exclusive to persistent memory, rather it universally encompasses all

types of memories. Nonetheless, persistent memory systems can reap the benefits of that design

which furthers the goals of this thesis.
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Chapter 4

String Figure: A Scalable and Elastic

Memory Network Architecture

Demand for server memory capacity and performance is rapidly increasing due to

expanding working set sizes of modern applications, such as big data analytics, in-memory

computing, deep learning, and server virtualization. One promising techniques to tackle this

requirements is memory networking, whereby a server memory system consists of multiple 3D

die-stacked memory nodes interconnected by a high-speed network. However, current memory

network designs face substantial scalability and flexibility challenges. This includes (1) main-

taining high throughput and low latency in large-scale memory networks at low hardware cost,

(2) efficiently interconnecting an arbitrary number of memory nodes, and (3) supporting flexi-

ble memory network scale expansion and reduction without major modification of the memory

network design or physical implementation.

To address the challenges, this thesis proposes String Figure1, a high-throughput,

elastic, and scalable memory network architecture. String Figure consists of (1) an algorithm to

generate random topologies that achieve high network throughput and near-optimal path lengths

in large-scale memory networks, (2) a hybrid routing protocol that employs a mix of computa-

tion and look up tables to reduce the overhead of both in routing, (3) a set of network recon-

figuration mechanisms that allow both static and dynamic network expansion and reduction.

The experiments in this thesis using RTL simulation demonstrate that String Figure can inter-
1String Figure is a game formed by connecting strings between fingers of multiple people. This memory network

topology appears like a string figure formed using memory nodes.
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connect over one thousand memory nodes with a shortest path length within five hops across

various traffic patterns and real workloads. This chapter details the design of String Figure and

how it achieves these goals.

4.1 The Case for Memory Networks

This section briefly discuss the limitations of conventional DDRx-based memory sys-

tems, opportunities with memory networks, and the challenges of scalable memory network

design.

4.1.1 Limitations of Commodity Server Memory Architectures

Traditional server memory systems face substantial challenges in scaling up memory

capacity due to cost and performance issues. Increasing the number of CPU sockets enables

adding more memory channels with more DIMMs. However, extra CPU sockets, which are

added for memory capacity rather than compute requirement, can substantially increase hard-

ware cost in an economically infeasible manner. Prior studies show that increasing memory

capacity from 2TB to 4TB by doubling the number of CPU sockets can lead to over 3× increase

in server system cost [145]. Commodity clusters allow developing scale-out memory systems,

which distribute the working set of applications across multiple server nodes [34]. However, the

scale-out approach can only accommodate a limited subset of use cases with data-parallel, light

communication algorithms. In remaining applications, the scale-out solution either requires

programmers to rewrite their software, or system architects to adopt a low-latency interconnect

fabric. This shifts the memory scaling burden to the software and communication infrastruc-

tures. However, recent studies that explored disaggregated memory system design [83, 91]

require substantial changes in the virtual machine system software, such as a hypervisor. The

String Figure design is in line with recent industry and academic approaches on implementing

disaggregated memory pool with memory fabric, such as Gen-Z [1] and memory-centric system

integration [67, 68, 144].
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Figure 4.1: A disaggregated memory pool in a quad-socket server. Memory modules are inter-
connected by a memory network shared by four processors.

(a) String Figure topology. 
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Figure 4.2: An example of String Figure topology design with nine memory nodes (stacks) and
four-port routers. (a) String Figure topology. (b) Virtual space organization for random network
generation. (c) Shortcuts generation for Node-0. (d) High-level design of a reconfigurable
four-port router.

4.1.2 Memory Network

To address the memory capacity demand challenges, recent works introduce mem-

ory network design [67, 68]. A memory network consists of a set of 3D die-stacked memory

nodes interconnected by a high-speed network. Figure 4.1 shows an example server system

with four CPU sockets attached to a memory network. The processors can be connected to any

edge memory nodes in the network. As 3D die-stacking technology is maturing, various 3D

die-stacked memory designs are either already used in commodity systems or close to the mar-

ket [2,5,15,94]. 3D die-stacked memory typically employs several DRAM dies on top of a logic

die. For example, one type of die-stacked memory, Hybrid Memory Cube (HMC) [94,101], of-

fers 8GB capacity per memory stack with link speeds up to 30Gbps (versus 1.6Gbps supported

by DDR4) and peak aggregate bandwidth of 320GB/s/link. Recent studies show that die-stacked
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memory capacity is likely to scale to 16GB [112]. Memory network design has attracted both

academic [66–68, 112, 144] and industry [1, 8, 130] efforts. Recent studies demonstrate that

memory network can lead to more promising main memory expansion opportunities than tradi-

tional DIMM-based memory systems.

4.1.3 Challenges of Memory Network Design

Memory networks are constructed by interconnecting a large number of memory

nodes. Therefore, performance and scalability of the interconnect network are essential to mem-

ory network performance and capacity scaling. Previous studies investigated how to best adopt

traditional Network-on-Chip (NoC) topologies and protocols in memory network design, such

as mesh, ring, crossbar, chain, skip list, butterfly, and tree [67, 68, 112, 144]. However, tradi-

tional memory network topologies can lead to substantial scalability challenges. In fact, most

previous memory network designs can only interconnect tens of memory modes shared by all

CPU sockets [67, 68, 112, 144]. To support terabytes of memory capacity, hundreds or over

one thousand memory nodes need to interconnect with high network throughput and low access

latency. As such, this thesis motivate this work with the following scalability and flexibility

challenges that are not effectively addressed in prior works.

Network Scalability. As shown in recent studies, the shortest path lengths of various traditional

memory network topologies can substantially increase with large-scale memory networks [112].

Instead, topologies used in data centers, such as Flattened Bufferfly [70], Dragonfly [69], Fat-

Tree [14], and Jellyfish [122], can offer high bisection bandwidth and short routing path lengths

in large-scale networks. However, these topologies are not directly applicable to memory net-

work due to following reasons. First, data center networks adopt stand-alone network switches

with rich link and storage resources. Second, most of these topologies require continuously in-

creased router ports as the network scales up [14,69,70]. Finally, routing with most data center

network topologies [122] requires large routing tables to store global routing information; the

forwarding state cannot be aggregated. These issues hamper the memory networks from adopt-

ing data center network topologies in memory networks because of limited storage resources

in on-chip routers and the high-bandwidth memory access requirement of in-memory applica-

tions. As a result, neither traditional memory networks nor data center network topologies can

efficiently meet the scalability requirement of memory networks.
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Arbitrary Network Scale. Many rigid network topologies require the number of routers and

memory nodes to be specific numbers, such as a power of two. This reduces the flexibility of

memory system scaling. Furthermore, these constraints on the network scale can increase the

upgrade cost of memory systems and limit the potential of design reuse. For example, say there

is the budget to purchase one more memory node to upgrade an existing memory network. It

is difficult to upgrade because the rigid network topology only allows adding certain number of

memory nodes (or none) to maintain the network scale as a power of two.

Elastic Network Size. Traditional memory systems allow users to reconfigure the memory

capacity to a certain extent. For example, commodity computer systems typically reserve a

certain number of memory slots for users to expand the memory capacity in the future. The same

basic DIMM-based memory system designs in each DDRx generation are also shared across

various design versions with different memory capacities. This flexibility allows future memory

network designs to deliver cost-efficient memory system solutions. Furthermore, support for

dynamic scaling up and down memory networks also enables efficient power management, by

power gating off under-utilized links and idle memory nodes. Therefore, an elastic network

size (static and dynamic network expansion and reduction) is a missing yet preferable feature

for future memory networks.

4.2 String Figure Topology and Design

Overview. To achieve the design goals, this thesis proposes String Figure, a scalable, flexible,

and high-performance memory network architecture. Figure 4.2 depicts an overview of these

design goals and components – arrows in the figure map the proposed design components to

the goals of this chapter. String Figure consists of three design principles. First, this thesis

proposes an easy-to-implement random network topology construction algorithm that enables

a) scalable memory network interconnecting large, arbitrary number of memory nodes with

arbitrary number of router ports and b) support for elastic network scale. Second, this thesis

proposes a compute+table hybrid routing scheme, which reduces the computation and storage

overhead of routing large-scale networks by integrating a lightweight routing table with greed-

iest computation-based routing mechanisms. Finally, this thesis proposes a network reconfigu-

ration scheme, which enables elastic memory network scale. Beyond achieving the scalability

goals, String Figure further enables memory access pattern aware performance optimization
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and efficient memory network power management.

While String Figure is broadly applicable to a wide range of server memory systems,

this thesis uses a working example throughout this chapter to make this proposal more con-

crete. This working example assumes a maximum 16TB memory system that consists of 1296

interconnected 3D die-stacked memory nodes shared by four CPU sockets (Figure 4.1). Each

memory node has one router and is 8GB, with the same capacity and memory configuration

parameters adopted in previous works [66, 112, 144]. Detailed baseline system configuration is

described in Table 4.1.

4.2.1 Network Topology Construction Scheme

Prior studies in data center networks, such as Jellyfish [122], demonstrated that “suf-

ficiently uniform random graphs” (i.e., graphs sampled sufficiently uniform-randomly from

the space of all r-regular graphs) empirically have the scalability properties of random regu-

lar graphs [122] and achieve throughput within several percent to the upper bound on network

throughput, at the scale of several thousand nodes. Such random topologies compare favorably

against traditional fat-tree topologies, supporting a larger number of nodes at full throughput.

However, most previous random topologies are developed for data center networks, which need

to tolerate large forwarding state storage. Directly adopting these random topologies in mem-

ory networks, which is constrained by the storage capacity in routers and routing latency, can

impose prohibitive scaling issues.

To address these challenges, this thesis proposes a novel network topology String Fig-

ure inspired by S2 [143] to enable scalable random topology in memory networks at low routing

cost. The String Figure topology design also enables elastic memory network scale, i.e., flexible

expansion and reduction of network scale. The topology consists of a basic balanced random

topology and a set of shortcuts. The balanced random topology ensures scalability, intercon-

nection of arbitrary number of memory nodes. The shortcuts provide extra links that maintain

high network throughput, when the network scale is reconfigured (expansion or reduction) after

being deployed (Section 4.2.3). Figure 4.2(a) illustrates an example topology interconnecting

nine memory nodes, where each memory node has a four-port router. String Figure topology is

generated offline before the memory network is deployed.

Balanced random topology generation algorithm. To simplify the topology construction pro-
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Figure 4.3: Algorithms for generating (a) balanced random topologies and (b) the used balanced
coordinate generation function BalancedCoordinateGen(), where D is circular distance defined
in in the routing protocol.

cess for system developers, this thesis designs a topology generation algorithm, which answers

two critical questions: (i) Randomness – how do we ensure that the generated networks are

uniformly-random? (ii) Balance – how do we ensure balanced connections? Imbalanced con-

nections are likely to increase congestion. Figure 4.3 illustrates the random topology generation

algorithm used in String Figure. The example in Figure 4.2(b) explains this design. Inputs of

the algorithm include the number of memory nodes N and the number of router ports p. This

approach consists of four steps:

• Constructing L virtual spaces, where the number of virtual space L =
⌊p
2

⌋
. For example,

a memory network with four-port routers (not including the terminal port) will lead to

maximum two virtual spaces: Space-0 and Space-1.

• Virtually (i.e., logically) distributing all the memory nodes in each virtual space with a

random order. Random orders are generated by assigning random coordinates to memory

nodes. For example, the coordinates of Node-2 is 0.20 and 0.87 in Space-0 and Space-1,
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respectively.

• Interconnecting the neighboring memory nodes in each virtual space. For instance, Node-

2 is connected with Node-1 and Node-3 in Space-0; it is also connected with Node-6 and

Node-8.

• Interconnecting pairs of memory nodes with free ports remaining. For example, because

Node-5 and Node-4 are connected in both spaces, Node-5 will have a free port left. There-

fore, String Figure can additionally connect Node-5 with Node-3, which also has a free

port. When multiple choices exist, String Figure selects the pairs of memory nodes with

the longest distance.

The solid lines in Figure 4.2(a) illustrate an example of generated basic random topol-

ogy. The String Figure topology generation algorithm only determines which nodes are inter-

connected. Both uni-directional and bi-directional connections are allowed (discussed in Sec-

tion 4.3). The four router ports in this example are all used to connect to other memory nodes

in the network. To connect to processors, each router has an additional port, i.e., each router in

this example would have five ports in total. Processors can be attached to any subset memory

nodes, or all of them (evaluated in Section 4.6).

Shortcuts generation. The goal of adding extra connections is to maintain high network

throughput, when the memory network needs to scale down after it is deployed, e.g., by shutting

down (power-gating [144]) routers and corresponding links (more details in Section 4.2.3). To

achieve this goal, String Figure generates shortcuts for each memory node to its two and four

hop neighbors – within short circular distance – distributed in Virtual Space-0 in a clockwise

manner Figure 4.2(c) shows shortcuts generated for Node-0. Nodes only connect to a node

with node id larger than itself. For example, String Figure does not connect Node-5 to Node-0,

although Node-0 is Node-5’s four-hop neighbor. As such, it limits the link and router hardware

overhead by adding maximum two shortcut connections for each node. The connections not

existing in the basic balanced random topology are added into the network (e.g., the red dash

line between Node-0 and Node-2). Figure 4.2(a) depicts the final topology combining the basic

random topology (black solid lines) and shortcuts (red dash lines). The rationale behind is two-

fold. First, it demonstrate that one-, two-, and four-hop connections efficiently accommodate

data access of big-data workloads, such as query in a distributed hash table [127]. Second, if
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1 0 02 0.20

1 1 03 0.33
1 1 08 0.88

1 0 15 0.58
1 0 16 0.75

…

…

…
(a)                                                              (b)

1
1

1
1

1
1

Figure 4.5: Greedy routing protocol. (a) Circular distances (D) and minimum circular distances
to Node-2 (MD) from Node-7 and Node-7’s neighbors. (b) Routing table entries (16 entries in
total).

String Figure divides Virtual Space-0 into four sectors (A, B, C, and D in Figure 4.2(a)), the

combination of the random topology and the shortcuts ensures that the memory network has

direct connections between both short- and long-circular-distance nodes in every two sectors;

when the network is scaled down, the shortcuts can maintain high throughput by fully utilize

router ports.

Sufficiently uniform randomness of the topology. To show that String Figure provides suffi-

ciently uniform random graphs (SURGs), this thesis compares the average shortest path length

of the String Figure topology with Jellyfish [122] and S2, which are proved to offer SURG.

Empirical results String Figure topology leads to similar average shortest path lengths with the

same path length bounds across various network scales.
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4.2.2 Routing Protocol

A desired routing protocol in memory network needs to be scalable, deadlock free,

while fully utilizing the bandwidth of the network topology. Conventional routing schemes

on random topologies employ k-shortest path routing with global information stored in the

routing table (a look-up table) of each router [122]. Given a memory network with N memory

nodes, the routing table size and routing algorithm complexity can be up to O(NlogN) and

O(N2logN). In order to maintain sub-linear increase of routing overhead – consisting of look-

up table size and routing algorithm complexity – String Figure adopts a hybrid compute+table

routing scheme. Section 4.3 discusses the deadlock avoidance mechanism used.

Greediest routing. To achieve high-performance routing with small routing table storage,

String Figure employs a scalable greedy routing protocol, namely greediest routing [143]. Most

previous greedy routing protocols only minimize distance to the destination in a single space.

The basic random topology used in String Figure consists of multiple virtual spaces. Therefore,

it needs a routing protocol that can identify the shortest distance to the destination among all

neighbors in all virtual spaces. To this end, String Figure makes forwarding decisions by a

fixed, small number of numerical distance computation and comparisons. This thesis defines

circular distance (D) as the distance between two coordinates u and v in each virtual space:

D(x, y) = min{|u− v|, 1− |u− v|}

The routing algorithm then calculates the minimum circular distance between two

nodes as the following, given the two nodes with the set of coordinates in L virtual spaces
−→
U =< u1, u2, ..., uL > and

−→
V =< v1, v2, ..., vL >.

MD(
−→
U ,
−→
V) = min{D(ui, vi)}

Forwarding decision making: To forward a packet from Node-s to destination Node-

t, the router in Node-s first selects a neighbor Node-w such that w minimizes MD(
−→
Xw,
−→
Xt)

to the destination. The packet is then forwarded to Node-w. This process will continue until

Node-w is the destination. For instance, Node-7 needs to send a packet to Node-2. Figure 4.5(a)

shows the minimum circular distances to Node-2 from Node-7 and Node-7’s one-hop neighbors

in the example (Figure 4.2). Node-7 has four neighbors Node-0, 3, 6, and 8. Based on the
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computation, Node-8 has the minimum MD from Node-7. The packet is then forwarded to

Node-8. Node-8 will then determine the next stop for the packet by computing a new set

of MDs based on its local routing table. The router in each memory node only maintains

a small routing table that stores coordinates of its one- and two-hop neighbors in all virtual

spaces (Figure 4.5(b)). To further reduce the routing path lengths, String Figure computes

MD with both one- and two-hop neighbor information (based on the sensitivity studies in

the results section) stored in the routing table in each router. Routing table implementation

is discussed in Section 4.3. The forwarding decision can be made by a fixed, small number

of numerical distance computation and comparisons; the decisions are made locally without

link-state broadcast in the network wide.

Adaptive routing. By only storing two-hop neighbors in routing tables, the greediest routing

algorithm does not guarantee shortest routing path. As such, String Figure offers path diversity

across different virtual spaces, i.e., can have multiple paths satisfying the MD requirement. By

leveraging path diversity, String Figure employs adaptive routing to reduce network congestion.

This only divert the routing paths by tuning the first hop forwarding decision. With a packet to

be sent from node s to destination t, Node-s can determine a set W of neighbors, such that for

any w ∈ W , MD(
−→
Xw,
−→
Xt) < MD(

−→
Xs,
−→
Xt), where t is the destination. Node-s then selects

one neighbor in W based on traffic load across s’s router ports. A counter is used to track the

number of packets waiting at each port to estimate the network traffic load on each outgoing

link. At the first hop, the source router can select the links with lightly loaded port satisfying

the greediest routing requirement, rather than a heavily loaded port with the queue filled by a

user-defined threshold (e.g., 50%). This enforces that String Figure routing reduces the MD to

the destination at every hop, eventually finding a loop-free path to the destination (Section 4.3).

4.2.3 Reconfigurable Memory Network

To achieve the goal of an elastic network scale, this thesis proposes a set of reconfig-

urable memory network mechanisms. String Figure naturally supports memory network scaling

up and down at low performance and implementation cost, because it (i) allows arbitrary num-

ber of memory nodes, (ii) always fully utilizes the ports in each router, and (iii) only requires

local routing table information to make routing decisions. This thesis also designs a topology

switch (Figure 4.6) in the routers to reconfigure the links (details described in Section 4.3).
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Figure 4.6: An example topology switch design.

Dynamic reconfiguration for power management. This design allows the memory network

to dynamically scale up and down (e.g., by power gating routers and links) to enable efficient

power management. Memory network power management needs to be carefully designed with

most traditional topologies, such as meshes and trees. Otherwise, some nodes can be isolated

and require a long wake-up latency on the order of several microseconds [144]. To address this

issue, this thesis designs a dynamic reconfiguration mechanism that maintains high network

throughput after turning off routers. This dynamic network scale reconfiguration involves four

steps. First, it blocks corresponding routing table entries (Figure 4.5(b)) in associated routers.

Second, it enables and disables certain connections between memory nodes. The shortcuts are

used to maintain high network throughput after disabling certain links. Third, it validates and

invalidates corresponding routing table entries in associated routers. Finally, it unblocks the

corresponding routing table entries. The first and last steps ensure atomic network reconfigu-

ration. For example, to turn off Node-1 in Figure 4.2(a), String Figure will disconnect Node-1

from its one-hop neighbors Node-0, Node-2, Node-5, and Node-6. In each of these nodes,

it invalidates the routing table entries that store Node-1’s coordinates. The shortcuts between

Node-0 and Node-2 are enabled because both nodes now have one free port. The corresponding

routing table entries are then modified for these two nodes, indicating that the original two-hop

neighbors are now one-hop neighbors. Bringing Node-1 back into the network uses the same
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steps but in reverse. Because the String Figure routing protocol maintains two-hop neighbors in

each router, each update of routing table entries is simply flipping the blocking, valid, and hop#

bits without needing to add or delete entries. Updates in different routers can be performed in

parallel.

Static network expansion and reduction for design reuse. Design reuse can reduce the cost

and effort of redesigning, re-fabricating, and upgrading systems. Specifically, design reuse

allows system developers to reuse a a memory network design or fabrication across server

memory systems with different capacity requirement. The previously outlined steps of the

dynamic network reconfiguration are used while offline to enable network expansion and re-

duction. To support network expansion, system developers can implement a larger network size

than currently needed and deploy the memory network with only a subset of memory nodes

mounted. The excess nodes are “reserved” for future use. String Figure enables and validates

corresponding links and routing table entries based on the mounted memory nodes. As such,

network expansion does not require redesign or re-fabrication of the entire memory network.

If memory nodes are interfaced through PCBs (e.g., HMC-style), the memory network can be

expanded by mounting additional memory nodes on the PCB, followed by a link and routing

table reconfiguration in the same way as dynamic reconfiguration. As a result, String Figure

can reduce the cost and effort of re-fabricating PCBs. Network scale reduction is performed in

reverse, by unmounting memory nodes. If the memory nodes are mounted on a silicon inter-

poser (e.g., HBM-styled), chips need to be fabricated with added memory nodes by reusing the

original memory network design. However, the design stays the same, substantially reducing

non-recurring engineering (NRE) cost.

4.3 Router Design and Deadlock Avoidance

This section describes implementation details of String Figure, including deadlock

avoidance, reconfigurable router design, and physical implementation.

4.3.1 Deadlock Avoidance

Two conditions must be met to avoid deadlocks in the String Figure topology. First,

route paths must be loop-free from source to destination. Second, the network cannot have
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cyclical resource dependencies whereby routers wait on each other to free up resources (like

buffers). String Figure’s greedy routing naturally ensures that route paths are loop-free. String

Figure uses virtual channels to avoid deadlocks from resource dependencies.

Loop-free routing paths. String Figure ensures the routes between any source-destination pair

are loop-free because it always routes greedily within our network topology. This is guaranteed

by the progressive and distance-reducing property (Section 4.4) of our greedy routing protocol.

Section 4.4 formally proves that packet routes are loop-free.

Avoiding deadlocks with virtual channels. String Figure adopts two virtual channels [21, 78,

92] to avoid deadlocks. Packets use one virtual channel when routing from a source of a lower

space coordinate to a destination of a higher space coordinate; packets use the other virtual

channel when routing from a source of higher space coordinate to a destination of a lower space

coordinate. This avoids deadlocks because in the String Figure topology (which is not truly

random), packets are only routed through to networks with a strictly increasing coordinate or

a strictly decreasing coordinate; the only dependency is between the virtual channels in the

router, which is insufficient to form cycles [21]. Whereas virtual channels can increase the

required buffering, String Figure allows the number of router ports to remain constant as the

network scales up. Therefore, the buffer size overhead is less of an issue compared with prior

works [21, 53] (evaluated in Section 4.6).

4.3.2 Router Implementation and Reconfiguration

This thesis designs the router on each memory node to facilitate the routing table

design, reconfigurable links, and counters for adaptive routing.

Routing table implementation. Figure 4.5(b) illustrates the routing table implementation.

Each routing table stores information of its one- and two-hop neighbors, including log2N mem-

ory node number, 1-bit blocking bit, 1-bit valid bit, 1-bit hop number (’0’ for one-hop and ’1’

for two-hop),
⌈
log2

p
2

⌉
virtual space number, and 7-bit virtual coordinate. The routing table en-

tries initialize accordingly, while the network topology generates. Once the network topology

is generated, only the blocking, valid, and hop bits update during network reconfiguration. A

memory node has maximum two one-hop neighbors in each virtual space; each of the one-hop

neighbors has two one-hop neighbors of their own in each virtual space. As the maximum num-

ber of virtual spaces is half of the number of ports (p), each routing table has a maximum of
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p(p+ 1) entries.

Enabling link and topology reconfiguration with switches. The String Figure memory net-

work reconfiguration requires connecting and disconnecting certain links between neighbor

memory nodes. Its basic balanced random network topology already fully utilizes all router

ports. However, each node also has at most two shortcut connections (Section 4.2.1). To ac-

commodate the shortcuts, String Figure uses a switch to attach the two shortcut connections to

two of the router ports at each node. Figure 4.6 shows the topology switch design. It is com-

prised of a set of multiplexers similar to prior reconfigurable NoC designs [61,128]. As a result,

the topology switches allow selecting p (the number of router ports) connections out of all the

random connections and shortcuts provided by the String Figure topology.

Tracking port utilization with packet counters. With adaptive routing, String Figure uses

counters at each port to track the queue length at the port. The number of counter bits is log2q,

where q is the number of queue entries of the port. The counter provides an additional variable

for determining routing paths. It specifically tracks the congestion of each path by counting

how often packets route to specific outputs ports. The routing algorithm uses these counter

values to make smarter decisions. If an output port has too many packets routed to it, the

algorithm detects this through counters and chooses alternate, yet still greedy, output ports to

send the packet. This helps avoid congestion in the network and still achieve low latency, high

throughput performance overall. These counters are reset after the network is reconfigured.

4.3.3 Physical Implementation

The goal of the physical implementation is to reduce both the area overhead and long

wires in String Figure.

Bounded number of connections in the network. With the String Figure network topology,

the number of connections coming out of each node is bounded by the number of router ports

(p) and remains constant, independent of network scale (N ). Each node has p
2 one-hop neigh-

bors in the basic random topology and a maximum of two shortcuts (some generated shortcuts

will overlap with connections in the basic random topology). Therefore, the total number of

connections coming out of each node Cnode ≤ p
2 + 2. For example, a memory node with an

8-port router only requires six connections per node. Given N memory nodes in total, the total

number of required connections in the network Cnetwork ≤ N × (p2 + 2), which grows linearly
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with the number of memory nodes.

Uni-directional versus bi-directional connections. Bi-directional connections allow packets

to traverse the network both forward and backwards. Uni-directional connections typically have

worse packet latency than their bi-directional counterparts, due to reduced path diversity. How-

ever, uni-directional networks have lower hardware and energy cost than bi-directional connec-

tions. The sensitivity studies in Section 4.6 demonstrate that uni-directional networks perform

almost the same as bi-directional networks; their discrepancy diminishes with increasing num-

ber of nodes in the network. Therefore, String Figure uses uni-directional connections.

Memory node placement and wire routing. When building String Figure, memory nodes

are placed in the memory network (on PCB or silicon interposer) as a 2D grid. The goal of

memory node placement is to reduce long wires. Memory network implementations are con-

strained by wire lengths [3,94]. For example, HBMs [3] (with a 7 mm dimension in HBM1 and

12 mm in HBM2) are implemented with interposers to support large-scale memory networks;

previous works demonstrate that memory nodes can be clustered with MetaCubes [112] (i.e.,

clustered memory nodes integrated with an interposer), which is further interconnected with

other interposer-integrated clusters. To achieve the goal of this memory network design, String

Figure set two priority levels that prioritize the clustering of one-hop and two-hop neighbors.

For example, it ensures that all one-hop neighbors are placed within ten grid distance with place

and routing. The String Figure network topology also naturally supports MetaCube [112] ar-

chitecture. It provides connections with various circular distances. As such, memory nodes are

placed with short circular distances in the same MetaCubes. Inter-MetaCube links are imple-

mented by connections with long circular distances.

Processor placement. The flexibility of String Figure topology and routing protocol allows

attaching a processor to any one or multiple memory nodes. The router at each memory node

has a local port connecting to the processor. As such, attaching a processor to multiple memory

nodes can increase processor-memory bandwidth. By tuning traffic patterns of the synthetic

workloads, the evaluation examines ways of injecting memory traffic from various locations,

such as corner memory nodes, subset of memory nodes, random memory nodes, and all memory

nodes.
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4.4 Proofs and Lemmas Used For String Figure

This section formally presets the lemmas used in designing String Figure.

The following lemma formally proves the proposition on loop freedom by two lem-

mas similar to those derived in data center networks [143].

Lemma 1. In a virtual space with a given a coordinate x, if a memory node s is not the node

that has the shortest circular distance to x in this space, then s must have an adjacent router s′,

such that D(x, xs′) < D(x, xs).

Proof. 1. Let w be the node closest to x among all memory nodes in the virtual space.

2. The ring of this space is divided by s and x into two arcs. At least one of the arcs

has a length no greater than 1
2 . Suppose that x̄s, x with length l(x̄s, x). This means

D(xs, x) = l(x̄s, x) ≤ 1
2 .

3. If w is on x̄s, x, let the arc between s and w be ẋs, xw.

(a) If s has an adjacent node q with coordinate on ẋs, xw, then l(x̄q, x) < l(x̄s, x).

Hence, D(q, x) = l(x̄q, x) < l(x̄s, x) < D(xs, x).

(b) If s has no adjacent node on ẋs, xw,w is x’s adjacent node. Hence, s has an adjacent

node w, such that D(x, xw) < D(x, xs).

4. If w is not on x̄s, x, there is an arc ¸�xs, x, xw. For the arc x̆, xw on ¸�xs, x, xw, then

l(x̆, xw) < l(x̄s, x). (Assuming to the contrary, if l(x̆, xw) ≥ l(x̄s, x), then there cannot

be D(x, xw) < D(x, xs). There is contradiction.)

(a) If s has an adjacent memory node q with coordinate on ¸�xs, x, xw, then l(x̄q, x) <

l(x̄s, x) ≤ 1
2 . Hence, D(q, x) = l(x̄q, x) < l(x̄s, x = D(xs, x).

(b) If s has no adjacent memory node on ¸�xs, x, xw, w is x’s adjacent node. Hence, s

has an adjacent node w, such that D(x, xw) < D(x, xs).

5. Combining (3) and (4), s always has an adjacent node s′, such thatD(x, xs′) < D(x, xs).

�
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Lemma 2. Suppose the source and destination of a packet are routers s and t, respectively.

Coordinates of the destination router in all virtual spaces are
−→
Xt. Let w be the router that has

the minimum MD to t among all neighbors of s, then MD(
−→
Xw,
−→
Xt) < MD(

−→
Xs,
−→
Xt).

Proof. 1. Suppose the minimum circular distance between s and t is defined by their circular

distance in the jth space, i.e., D(xtj , xsj) =MDL(
−→
Xs,
−→
Xt).

2. In the jth space, t is the memory node with the shortest circular distance to xtj , which is

D(xtj , xtj) = 0. Because s 6= t, s is not the node with the shortest circular distance to

xtj .

3. Based on Lemma 1, s has an adjacent memory node s′, such thatD(xtj , xs′j) < D(xtj , xsj).

4. Then, MDL(
−→
Xs′ ,
−→
Xt) ≤ D(xtj , xx′j) < D(xtj , xsj) =MDL(

−→
Xs,
−→
Xt).

5. Because w is the node that has the shortest MD to
−→
Xt among all neighbors of s, then

MDL(
−→
Xw,
−→
Xt) ≤MDL(

−→
Xs′ ,
−→
Xt ≤MDL(

−→
Xs,
−→
Xt).

�

Lemma 2 states on a packet’s route, if a router s is not the destination, it must find a

neighbor whose MD is smaller than s’s MD to the destination.

Proposition 3. Greediest routing finds a loop-free path of a finite number of hops to a given

destination in the String Figure topology.

Proof. 1. Suppose memory node s receives a packet with destination node t. If s = t, then

s is the destination. The packet arrives at the destination.

2. If s 6= t, according to Lemma 2, s will find a neighbor w, such that MDL(
−→
Xw,
−→
Xt) <

MDL(
−→
Xs,
−→
Xt), and forward the packet to w.

3. The MD from the current memory node to the destination coordinates strictly reduces at

each hop. Routing keeps making progress. Therefore, there is no routing loop.

�
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Table 4.1: System configuration.
CPU 4 sockets; 2GHz; 64B cache-line size
Memory up to 1296 memory nodes; 8GB per

memory node (stack)
DRAM
timing

tRCD=12ns, tCL=6ns, tRP=14ns,
tRAS=33ns

CPU-
memory
channel

256 lanes in total (128 input lanes and
128 output lanes); 30Gbps per lane

SerDes
delay

3.2ns SerDes latency (1.6ns each) per
hop

Energy Network: 5pJ/bit/hop; DRAM
read/write: 12pJ/bit

Topology Number of Nodes (N), Number of Ports per Router (p) Routing Scheme N 16 17 32 61 64 113 128 256 512 1024 1296 
Distributed-Mesh (DM)/  
Optimized DM (ODM) p 4 N 4 N 4 N 4 4 4 4 4 Greedy + adaptive 

Flattened Butterfly (FB) p 20 24 31 33 Minimal + adaptive 

Adapted FB (AFB) p 13 17 23 25 Minimal + adaptive 

Space Shuffle Ideal (S2-ideal) p 4 4 4 4 4 4 4 8 8 8 8 Look-up table 

String Figure (SF) p 4 4 4 4 4 4 4 8 8 8 8 Look-up table + greediest + adaptive 

Figure 4.7: Evaluated network topologies and configurations (“N” indicates unsupported net-
work scale).

Table 4.2: Summary of network topology features and requirements.
Topology Requires High-Radix Routers Router Port Reconfigurable Network
ODM No No No
AFB Yes Yes No
S2-ideal No No No
SF No No Yes

4.5 Traffic Patterns and Experimental Setup

4.5.1 RTL Simulation Framework

This thesis evaluates String Figure via RTL design using SystemVerilog [118] and

PyMTL [87]. This thesis develops synthesizeable RTL models of each network topology, rout-

ing protocol, memory node, router configuration, and wire lengths. Table 4.1 describes the
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Table 4.3: Description of network traffic patterns.
Traffic Pat-
tern

Formula Description

Uniform
Random

dest = randint(0,
nports-1)

Each node produces requests to a
random destination node in the net-
work.

Tornado dest = (src+nports/2) %
nports

Nodes send packets to a destination
node halfway around the network.

Hotspot dest = const Each node produces requests to the
same single destination node.

Opposite dest = nports - 1 - src Sends traffic to opposite side of net-
work like a mirror.

Nearest
Neighbor

dest = src + 1 Each node sends requests to its near-
est “neighbor” node, one away.

Complement dest = src ⊕ (nports-1) Nodes send requests to their bitwise
complement destination node.

Partition 2 dest =
randint(0,nports-1) &
(nports/2-1) | (src &
(nports/2))

Partitions the network into two
groups of nodes. Nodes randomly
send within their group.

modeled system configurations. The experiments use the same configuration, timing, and en-

ergy parameters evaluated in previous works. The experiments estimate the dynamic energy

used in the network using average picojoule-per-bit numbers to provide a fair comparison of

memory access energy [68, 112, 144]. Network clock rate is the same as memory nodes clock

speed, e.g., 312.5MHz with HMC-based memory nodes. Static energy is not evaluated, as

static power saving is highly dependent on the underlying process management assumptions

(e.g., race-to-idle). The experiments also model the network link latency based on wire length

obtained from 2D grid placement of memory nodes. The configuration adds an extra one-hop

latency with a wire length equal to ten memory nodes on the 2D grid (based on the wire length

supported by HMC). The RTL simulator can run workload traces collected using an in-house

trace generation tool, which is developed on top of Pin [90]. The experiments collect traces with

100,000 operations (e.g., grep for Spark-grep, queries for Redis) after workload initialization.

The experiment trace generator models a cache hierarchy with 32KB L1, 2MB L2, and 32MB

L3 with associativities of 4, 8, and 16, respectively. This trace generator does not contain a de-

tailed core model and thus can only obtain the absolute instruction ID of each memory access.
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Table 4.4: Description of evaluated real workloads.
Workload Description
Spark-
wordcount

A ”wordcount” job running on Spark, which counts the number of oc-
currences of each word in the Wikipedia data set provided in Big-
DataBench [139].

Spark-grep A ”grep” job running on Spark, which extracts matching strings from text
files and counts how many times they occurred with the Wikipedia data set
provided in BigDataBench [139].

Spark-sort A ”sort” job running on Spark, which sorts values by keys with the
Wikipedia data set provided in BigDataBench [139].

Pagerank A measure of Twitter influence. From the graph analysis benchmark in
CloudSuite [42]. Twitter data set with 11M vertices.

Redis An in-memory database system which simulates running 50 clients at the
same time sending 100,000 total queries [6].

Memcached From CloudSuite [42], which simulates the behavior of a Twitter caching
server using the Twitter data set with 8 client threads, 200 TCP/IP connec-
tions, and a get/set ratio of 0.8.

Matrix Mul Multiplying two large matrices stores in memory and storing their result in
memory.

Kmeans Clustering Algorithm partitions n observations into k clusters where each
observation belongs to cluster with the nearest mean.

However, multiplying the instruction IDs by an average CPI number generates a timestamp for

each memory access.

Considered topologies. The experiments compare String Figure to a variety of network topolo-

gies and routing protocols summarized in Figure 4.7. Table 4.2 describes their features and

requirements. The number of router ports does not include the terminal port connecting to the

local memory node. String Figure allows arbitrary network scale. However, to provide concrete

examples in the evaluation and demonstrate support for elastic network scale, this thesis im-

plements two basic topologies with 128 nodes (4 router ports) and 1296 nodes (8 router ports),

respectively. The basic topologies are reconfigured to evaluate networks with fewer of nodes.

Mesh is widely explored in previous memory network designs as one of offering the best per-

formance among various topologies [67, 144]. This thesis implements a baseline Optimized

Distributed Mesh (ODM) topology [67] for memory network. In addition, the experiments

compare String Figure with several network designs optimized for scalability of distributed

systems, including a 2D Adaptive Flattened Butterfly (AFB) [70] and S2 [143]. S2 does not
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support down-scaling with the same original topology (it requires regenerating new topologies

and routing tables with a smaller number of nodes). Therefore, the evaluation of S2 provides

an impractical ideal baseline. The experiments refer to it as S2-ideal. Additionally, the experi-

ment results focuses on evaluating performance, energy, and scalability of the network designs.

However, most of the baseline topologies require high-radix routers [70, 81] and the number of

ports and links continues to grow with network scale, leading to non-linear growth of router

and link overhead in memory networks. Furthermore, none of the baseline topologies offer the

flexibility and reconfigurability in memory networks as provided by String Figure.

Bisection bandwidth. To provide a fair point of comparison, this thesis evaluates network de-

signs based on the same (or similar) bisection bandwidth. Because String Figure and S2 [143]

have random network topologies, their empirical minimum bisection bandwidths are calculated

by randomly splitting the memory nodes in the network into two partitions and calculating the

maximum flow between the two partitions. The minimum bisection bandwidth of a topology is

calculated from 50 random partitions. The experiments adopt the average bisection bandwidth

across 20 different generated topologies. With a fixed network size, the bisection bandwidth

of FB with high-radix routers can be much higher than the other topologies. However, mesh is

lower. To match the bisection bandwidth, this chapter also evaluates an Adaptive FB (AFB) im-

plemented by partitioned FB [21] with fewer links and an optimized DM (ODM) with increase

the links per router to match the bisection bandwidth of String Figure and S2 at each memory

network scale.

4.5.2 Workloads

This thesis evaluates both network traffic patterns and real workloads on the simu-

lation framework. Traffic patterns: It evaluates different traffic patterns running on String

Figure and baseline designs. Table 4.3 lists details about these traffic patterns. These traffic

patterns are used to evaluate the memory network designs and expose the performance and

scalability trends. The experiments sweep through various memory network sizes, router con-

figurations, and routing protocols listed in Figure 4.7. To exercise the memory network design,

each memory node sends requests (similar to attaching a processor to each memory node) at

various injection rates. For example, given an injection rate of 0.6, nodes randomly inject

packets 60% of the time. Real workloads: This thesis also evaluates various real workloads
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Figure 4.8: (a) Average hop counts of various network designs as the number of memory nodes
increases. (b) Normalized energy-delay product (EDP) (the lower the better) with various work-
loads, when a certain amount of memory nodes are power gated off.

with trace-driven simulation. The experiments run various in-memory computing workloads in

CloudSuite [42], BigDataBench [139], and Redis benchmark [6] on a Dell PowerEdge T630

server. Spark 1.4.1 [7] is used for all of the Spark jobs. Table 4.4 summarizes the workload

and data set characteristics. The input data size of each real workload benchmark are scaled to

fill the memory capacity. Data is distributed among the memory nodes based on their physical

address.

4.6 String Figure Evaluation

This thesis evaluates String Figure with various metrics including average path lengths,

network saturation, average packet latency, workload instruction throughput (IPC), memory dy-

namic energy, and energy efficiency. The evaluation shows that String Figure achieves close to

or better than the performance and scalability of the best of prior designs (ODM, AFB, and

S2-ideal), yet leads to lower energy consumption and higher energy efficiency with (i) fewer

router ports and wires needed and (ii) elastic network scale.

Path lengths. Figure 4.8(a) shows the average shortest path lengths of various network designs

across synthetic traffic patterns and real workloads. When the memory network has over 128

memory nodes, the average hop count of DM and ODM network increases superlinearly with

increasing network size. Specifically, the average hop count of these two topologies is 2
3 t where

t is the average of their two dimensions. Rather, the other network topologies, S2-ideal, FB,

AFB, and String Figure, do not incur significant increase in the average shortest path lengths
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Figure 4.9: Network saturation points across various numbers of nodes.

in large-scale memory networks. FB achieves the best average shortest path lengths among all

the network topologies, because it employs many more ports in routers than other topologies as

the network scales up. With a maximum of eight ports per router, String Figure still achieves

4.75 and 4.96 average hop counts when the network scales up to 1024 and 1296 memory nodes,

respectively. This thesis also evaluates 10% and 90% percentile shortest path lengths. String

Figure can achieve 4 hops and 5 hops with over one thousand nodes, at 10% and 90% percentile,

respectively. Therefore, String Figure path length is scalable to memory network size over one

thousand nodes.

Network saturation. The experiments evaluate network saturation with several traffic patterns

shown in Figure 4.9. String Figure can achieve close to the best of all other network architec-

tures. In order to clearly visualize all the curves, only the results of the rest of the network archi-

tectures are shown. Traffic patterns uniform random, hotspot, and tornado are par-

ticularly noteworthy and show different results. The remaining traffic patterns partition2,

complement, opposite, and neighbor, have similar behavior as shown. In almost all

traffic patterns, the mesh network topologies, DM and ODM, saturates first at the lowest in-

jection rate. Nearest-neighbor routing is the exception to this. SF perform worse with nearest-

neighbor than ODM. This is because in mesh topologies, nodes are always one-hop away from

their nearest neighboring node. Note, that the experiments generated nearest-neighbor network

traffic using the router IDs rather than number of hops. Therefore, “neighboring” nodes in SF

are not necessarily one hop away from each other which means this network has higher latency.

However, an exception to mesh saturating first is in networks with very few nodes. At the

fewest node configuration (i.e., 16 nodes), ODM slightly edges out SF. However, as the num-
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Figure 4.10: Performance of traffic patterns at less than one thousand nodes.

ber of memory nodes increases, SF scales significantly better. ODM also saturates at a higher

injection rate than other network designs with hotspot traffic pattern. Network saturation in

tornado traffic pattern are not observed with all topologies, except for mesh. Network latency

remains steady even in high injection rates and large number of memory nodes. The reason

is the geometric structure of the network designs. With either one of AFB, FB, S2-ideal, and

SF, it is typically easy for packets in a network to traverse half or the entire network in just

a hop or two to reach their destination. Traffic patterns, such as tornado, generate traffic in a

mathematically geometric manner which is advantageous in such topologies.

Average packet latency. The experiments evaluate the average travel time (latency)

between any two nodes in a network shown in Figure 4.10. Each traffic pattern graph shows

the latency in the leftmost data point for each network. S2-ideal and SF appear to scale well

with the number of memory nodes. As the number of nodes in the network increases, these

topologies show almost no degradation in their network saturation points. SF has slightly longer

latency than S2-ideal with networks down-scaled from the original size, because shortcuts and

adaptive routing can degrade the randomness among network connections. However, SF still

demonstrates lower latency than AFB at large network scales. The memory access latency of

various traffic patterns are also evaluated.

Performance and energy of real workloads. The experiments evaluate system performance

and memory dynamic energy consumption with several real workloads running in a memory

system, where the total memory capacity is 8TB distributed across the 1024 (down-scaled from

1296) memory nodes in the network. It takes into account dynamic reconfiguration overhead
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Figure 4.11: Normalized (a) system throughput (higher is better) and (b) dynamic memory
energy (lower is better) with various real workloads.

to perform power gating in the RTL simulation by implementing SF reconfiguration mecha-

nisms. The sleep and wake-up latency of a link is conservatively set to 680ns and 5µs similar to

prior works [67,144]. To minimize the performance impact of reconfiguration, the experiments

set the reconfiguration granularity (i.e., the minimum allowed time interval between reconfig-

urations) to be 100us. Figure 4.11(a) shows the throughput of real workloads with varying

memory network architectures, normalized to DM. The results demonstrate that String Figure

can achieve close to the best performance across various workloads. The String Figure design

achieves 1.3× throughput compared with ODM. Figure 4.11(b) illustrates normalized memory

dynamic energy consumption with the experiment workloads, normalized to AFB. String Figure

design can achieve the lowest energy consumption across these network topologies. S2-ideal

also achieves similarly low energy consumption, due to its energy reduction in routing. On

average, SF reduces energy consumption by 36% compared with AFB.

Memory network power management. The experiments also evaluate memory network power

management by powering gating off various portions of the memory system with total 1296

nodes. Figure 4.8(b) shows the energy efficiency of String Figure’s power management by con-

sidering both energy saving and system performance overhead. As demonstrated in the results,

String Figure can achieve significantly improved energy efficiency, as more parts of the memory

network are power gated.
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Chapter 5

Related Work

This chapter discusses the related work on both persistent memory and memory net-

works. It also contains related work on prefetching, uncacheable logging, and RDMA networks.

5.1 Prefetching and Logging in Persistent Memory

Exploiting Memory Accesses through Prefetching. Simple prefetching provided a straight-

forward way to predict memory access patterns and improve cache performance. More complex

adaptive prefetching techniques have sought to focus on certain applications and scenarios that

commonly arise. In [117] and [23], the prefetching solutions focus on improving file I/O. In

[49], prefetching is used for access patterns in file systems. Prefetching can be used in large

workload systems with multiple streams [50] to adapt to changing workloads. All of these

papers show the the success of the prefetcher used to address memory-specific problems and

applications.

Persistent memory provides another subset of memory-related performance issues to

be addressed, discussed in previous section. The prefetcher is an appropriate block for dealing

this family of persistent applications because of its close ties to memory and memory accesses.

EFetch similarly seeks to exploit what other works have used to justify changes to prefetching:

the predictability of memory access patterns for those applications. In the case of persistent

memory, the memory access patterns are predictable which justifies the eFetch mechanism.

Logging is a very common way to implement persistent memory [135] [30] [72].

Other works have developed techniques to improve upon logging and how it interacts with
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the persistent data structures. Opting for redo logging over undo logging is one such tech-

nique [135] [30] that yield greater performance from relaxing writing back committed updates.

EFetch relies on this precedent, but also analyzes the effect under undo logging systems. In

[16], they propose an alternative logging scheme to the standard write-ahead logging. This im-

provement comes from shorter data recovery time and decreased memory footprint. EFetch can

also work with this, but instead the value would be prefetched ahead of the log.

Similar to other persistent memory designs [136] [31] [134] [123], eFetch requires

modification to legacy code to adapt eFetch for the persistent applications. However, Section 2.4

outlines a fairly lightweight software API that requires little change to the code.

Persistent memory work within Operating Systems and file systems [142] [38] shift

the responsibility of logging data and persistence implementation to the systems level. They

rely on existing structures and file system techniques. Although eFetch does this at the user-

level, the software interface may also be implemented at the systems level and the hardware

changes can also apply. A common thread between many of these logging schemes is that their

designs have minimal to no hardware support. This thesis and other works have demonstrated

benefit in coupling hardware support for persistent memory.

Other such studies have proposed hardware support for log-based persistent mem-

ory and are viable in improving system performance. Works like [89] and [73] have more

hardware-intensive solutions and both show an improvement over baseline software-only sys-

tems. The eFetch hardware changes and accompanying software interface are lightweight (low

complexity) and retain similar advantages.

Hardware Support for Persistent Memory without Prefetching. Prefetching isn’t the only

hardware block used for improving the performance of persistent memory applications. Prior

works make changes to other hardware blocks to provide support and assistance [116]. EFetch

is also not the first to propose or implement a solution that is complemented or supported by

hardware [93] [33] [147] [98] [111] [65] [86] [110] [89] [149]. Most of these papers also

use a software API similar to eFetch, but rely on other hardware blocks to support their design.

EFetch exploits the predictability of the persistent memory applications to provide a lightweight

solution. Efetch improves the performance under these systems while maintaining the perfor-

mance in non-persistent systems at low cost in the hardware.
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5.2 Logging and Persistent Memory

Compared to prior work in architecture support for persistent memory systems, the

undo+redo logging design described in this thesis further relaxes ordering constraints on caches

with less hardware cost.1

Hardware support for logging. Several recent studies proposed hardware support for log-

based persistent memory design. Lu et al. proposes custom hardware logging mechanisms

and multi-versioning caches to reduce intra- and inter-transaction dependencies [89]. How-

ever, they require both large-scale changes to the cache hierarchy and cache multi-versioning

support. Kolli et al. proposes a delegated persist ordering [73] that substantially relaxes per-

sistence ordering constraints by leveraging hardware support and cache coherence. However,

the design relies on snoop-based coherence and a dedicated persistent memory controller. In-

stead, undo+redo logging is flexible because it directly leverages the information already in

the baseline cache hierarchy. ATOM [63] and DudeTM [84] only implement either undo or

redo logging. As a result, the studies do not provide the level of relaxed ordering offered by

undo+redo logging described in this thesis. In addition, DudeTM [84] also relies on a shadow

memory which can incur substantial memory access cost. Doshi et al. uses redo logging for data

recoverability with a backend controller [37]. The backend controller reads log entries from the

log in memory and updates data in-place. However, this design can unnecessarily saturate the

memory read bandwidth needed for critical read operations. Also, it requires a separate victim

cache to protect from dirty cache blocks. Instead, undo+redo hardware logging directly uses

dirty cache bits to enforce persistence.

Hardware support for persistent memory. Recent studies also propose general hardware

mechanisms for persistent memory with or without logging. Recent works propose that caches

may be implemented in software [80], or an additional non-volatile cache integrated in the

processor [74,146] to maintain persistence. However, doing so can double the memory footprint

for persistent memory operations. Other works [85, 129, 148] optimize the memory controller

to improve performance by distinguishing logging and data updates. Epoch barrier [30,32,109]

is proposed to relax the ordering constraints of persistent memory by allowing coarse-grained

transaction ordering. However, epoch barriers incur non-trivial overhead to the cache hierarchy.

Furthermore, system performance can be sub-optimal with small epoch sizes, which is observed
1Volatile TM supports concurrency but does not guarantee persistence in memory.
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in many persistent memory workloads [102]. Undo+redo hardware logging, however, design

uses lightweight hardware changes on existing processor designs without expensive non-volatile

on-chip transaction buffering components.

Persistent memory design in software. Mnemosyne [135] and REWIND [27] are prior works

that utilize write-ahead logging implemented in software. These rely on instructions, such

as clflush, clwb, and pcommit, to achieve persistency and enforce log-data ordering in

their critical path. Undo+redo logging does not require these persistent instructions that have

shown can clog the pipeline and are often inefficient or unnecessary. JUSTDO [60] logging

also relies on these instructions (for manual flushing by the programmer). Additionally, these

works’ programming models all falter because Intel’s pcommit instruction is now deprecated.

Undo+redo logging works on legacy code and does not have strict functionality requirements on

the programming model. This makes it immune to relying on instructions or software functions

that become deprecated.

5.3 RDMA and Memory Networks

To the knowledge of this thesis, String Figure is the first memory network architec-

ture that offers both scalability and elastic network scale in a single design. Most previous

memory network designs do not take into account scalability as a primary design goal. Kim et

al. [67, 68] explored memory network with mesh, butterfly, and dragonfly topologies with 64

HMC-based memory nodes. The study showed that distributed mesh outperforms other network

topologies at this scale. Zhan et al. [144] investigated performance and energy optimization on

a mesh-based memory network design up to 16 memory nodes. Poremba et al. [112] extended

the memory network capacity to 2TB implemented by 128 HMC-like memory nodes used in

CPU+GPU systems. However, the memory nodes are mapped separate processor channels,

rather than shared by all the processors. Fujiki et al. [47] proposes a random network topology

to support scalability of memory networks, yet does not support the flexibility and reconfigura-

bility as String Figure.

Scalability and flexibility are central themes in data center network [69–71, 106, 122,

143]. Recent planar topologies, such as a Flattened Butterfly [70] and Dragonfly [69], offer

promising scalability and high network throughput. However, these designs require high-radix

routers and substantial increase of number of ports, which can impose non-linearly increasing
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router area and power [81]. This leads to prohibitively high cost in routers and the amount

wiring at large-scale memory network. Furthermore, butterfly-like topologies typically have

symmetric layout. This can lead to isolated nodes or suboptimal routing, when subsets of nodes

are turned down. Jellyfish [122] employs random topology to achieve close-to-optimal network

throughput and incremental growth of network scale. Yet, Jellyfish provides high throughput

by requiring k-shortest path routing; the size of forwarding tables per router can increase super-

linearly with the number of routers in the network. This is impractical in a memory network,

where routers have limited storage space. String Figure uses greedy routing due to the topol-

ogy with randomly assigned coordinates in multiple spaces. As such, String Figure can achieve

both high-throughput routing and constant forwarding state per router. S2 [143] adopts ran-

dom topologies and computation-based routing mechanisms with scalable routing tables. Yet,

S2 [143] requires cable plug in/out to increase the network size, which is impractical in memory

networks that have pre-fabricated link wires. S2 does not support network downscaling, unlike

String Figure.

Recent NoC designs tackle scalability and fault tolerance issues, when interconnect-

ing processor cores. Slim NoC [21] enables low-diameter network in NoC. However, the de-

sign requires increasing router ports and wires as the network scales up. Furthermore, these

topologies does not support the level of flexibility and reconfigurability as String Figure. Small

world network [106] also employs greedy routing, but it does not produce the shortest paths

and can be difficult to be extended to perform multi-path routing that can fully utilize network

bandwidth. Previous network fault tolerance schemes [13, 18, 40, 41, 43, 77, 107, 113, 138] al-

low NoC to continue efficient functioning when routers are taken out of the network. How-

ever, most previous designs are developed for limited network scales and certain network

topologies [40] and impose high router area overhead by employing one or several routing

tables [13, 18, 41, 43, 77, 107, 113, 138].
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Chapter 6

Conclusion

This thesis proposed three designs for improving the performance and reducing the

hardware and energy cost of state-of-the-art memory systems. It also analyzed the balance

between hardware and software design and examined the costs and trade-offs of each. The

experimental evaluation of all three of these designs over a variety of benchmarks yielded higher

performance with lower energy cost and lightweight hardware overhead. The rest of this chapter

summarizes the key points and primary contributions of the this thesis and the proposed designs.

The contributions of each design are outlined.

6.1 Thesis Summary and Contributions

This thesis proposed eFetch, a persistent-aware prefetcher design with two intelligent

prefetching mechanisms. These mechanisms use prefetching to i) relax the ordering constraints

between persistent memory access, and ii) parallelize logging and working data updates in redo

and undo log based systems, respectively. EFetch addressed the issue of over-prefetching of

log updates and leverages prefetching for relaxing ordering constraints in persistent memory

applications.

Popular persistent memory techniques increasingly rely on the immediate availability

and reuse of log-based and other persistence mechanisms. Therefore, hardware units that clash

with the accessibility of these instruments manifest in the performance loss incurred from im-

plementing persistent memory. The work in this chapter re-examines the design of a commonly-

used hardware prefetcher amid expanding demand for persistent memory and nonvolatile tech-
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nologies.

The experimental evaluation on diverse persistent workloads show that despite strictly

less, yet smarter prefetching, there is a net improvement in throughput and performance. These

gains outweigh the costs of less aggressive prefetching, but significant gains are made in terms

of performance and dynamic power consumption. This holds true across multi-core implemen-

tation which underlines the complexity-effectiveness and scalability of eFetch.

The contributions of eFetch are as follows:

• This thesis identified new performance and energy issues associated with current hard-

ware prefetching schemes in persistent memory systems. The design also identify the

opportunities in leveraging prefetching to improve system throughput and reduce data

movement across the memory bus by parallelizing logging and working data updates.

• This thesis proposed a new persistence-aware hardware prefetching scheme to improve

persistent memory system throughput and energy-efficiency. This prefetching scheme

consists of three design principles, including a persistent write tracking scheme that pre-

vents prefetching of non-reusable log data, a redo log prefetching mechanism that accom-

modates working data updates and dependent reads with a single prefetching, and a undo

logging triggered prefetching mechanism that proactively updates working data before

undo logging is completed.

• This thesis presented a set of efficient design techniques to implement eFetch, including

software interface, log address buffer design, prefetching policies, prefetching controller,

and hardware support for memory barriers.

This thesis proposed an efficient hardware undo+redo logging design that relaxes

the write-order control in persistent memory. It did this by capitalizing on existing caching

policies. The design consists of two mechanisms. A Hardware Logging (HWL) unit auto-

matically performs undo+redo logging by relying on write-back write-allocate caching, widely

used in processors. Persistent memory writes trigger HWL to create a log for the data. The

values required for a log entry: its address, old value, and new value are readily available in the

cache hierarchy. Therefore, this design utilizes the cache block writes to update the log with

word-size values. Hardware undo+redo logging also uses a cache Force Write-Back (FWB)
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mechanism to force write-backs of cached persistent working data efficiently while guarantee-

ing persistency. It did all this without non-volatile buffers or caches in the processor. This

thesis demonstrated that hardware undo+redo logging excels over traditional software logging

for persistent memory. The evaluation shows that undo+redo hardware logging significantly

increases performance while reducing memory traffic and energy. This thesis summarizes the

contributions of hardware undo+redo logging as follows:

• This was the first design to exploit the combination of undo+redo logging to relax order-

ing constraints on caches and memory controllers in persistent memory systems. This

design relaxes the ordering constraints in a way that undo logging, redo logging, or copy-

on-write alone cannot.

• This design enabled efficient undo+redo logging for persistent memory systems in hard-

ware, which imposes substantially more challenges than implementing either undo- or

redo- logging alone.

• This design used a hardware-controlled cache force write-back mechanism, which signif-

icantly reduces the performance overhead of force write-backs by efficiently tuning the

write-back frequency.

• This design was implemented with lightweight software support and processor modifica-

tions.

This thesis also proposed String Figure, a high-performance, scalable, and flexible

memory network architecture. With String Figure, this thesis examined the critical scalability

and flexibility challenges facing memory network architecture design in meeting the increasing

memory capacity demand of future cloud server systems. String Figure offered numerous bene-

fits towards practical use of memory network architecture in server systems, such as scaling up

to over a thousand memory nodes with high network throughput and low path lengths, arbitrary

number of memory nodes in the network, flexible network scale expansion and reduction, high

energy efficiency, and low cost in routers. The design goals of String Figure were achieved and

are summarized as follows:

• Scalability. String Figure supports over a thousand memory nodes shared by all CPU

sockets in a server. It met the three-part scalability requirement. Path lengths: When the
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network size (i.e., the number of memory nodes) grows, the routing path lengths grows

sub-linearly. Routing overhead: The computation and storage overheads of routing

decision-making are sublinear and independent of the network scale. Link overhead:

The number of required router ports and links is also either sublinear and independent of

the network size.

• Arbitrary network scale. String Figure maintains a high-throughput interconnect of an

arbitrary number of memory nodes, without the shape balance limitation of traditional

topologies, such as a mesh or tree.

• Elastic network scale. String Figure supports flexible expansion and reduction of the

network size, in terms of the number of memory nodes. The elastic network scale allows

effective power management by turning on and off routers and corresponding links. It also

enables design and implementation reuse across various server system configurations.

This thesis explored a subset of a larger question about how computer architects can

build systems that work well with the latest advancement in memory technology and techniques.

On one hand, traditional models such as in networks on-chip, storage systems, and prefetching

allows for some accommodation of these new techniques with sufficient software support. On

the other hand, however, trends in computer architecture point towards hardware design, accel-

eration, and specialization for exacting the full potential of these modern systems. There is no

one definitive correct answer for which is the best path to pursue. Regardless, this thesis made

the case for how hardware design can achieve tremendous improvements in performance and

efficiency. The best chance of success for computer architects might be to innovate across the

entire computing stack and reap the most benefits where they manifest.

6.2 Future Work

Hardware design for persistent memory is promising, and as introduced in Section 3.6.1,

has a lot of potential in future work with RISC-V. Some work has already been done towards

this. The following proposals summarizes the ongoing and future work of persistent memory in

RISC-V, depicted in Figure 6.1:
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Figure 6.1: Overview of changes to RISC-V.

• Add persistent memory instructions to the RISC-V ISA. Most of this change is in the core

(Figure 6.1Ê).

• Create a RISC-V compatible version of pmemlib, required persistent memory evaluation

using WHISPER.

• Modify the RISC-V architecture to enable persistent memory data paths (Figure 6.1Ì),

so that key techniques such as logging can be implemented in its hardware.

• Implement a state-of-the-art persistent memory design on a real RISC-V system and eval-

uate its performance and hardware costs.

• Demonstrate the overall effectiveness of the changes to RISC-V by running it on an FPGA

using a real phase-change memory (PCM) device.

RISC-V Overview. There is a strong case for RISC-V, an open ISA [141]. Open ISAs were

tried before RISC-V, but they never became popular. The demand for them is here now, thanks

to the low cost IoTs and the desire for an open-source alternative to x86. RISC-V contains

a standard set of optional extensions that have evolved over time. These extensions enable

additional applications and usages for RISC-V, such as persistent memory.

ISA Extensions. A number of persistent memory instructions are needed in the RISC-V ISA.

These instructions will serve as a baseline for future research in persistent memory. In partic-

ular, it is a strong basis for comparison with the ongoing RISC-V implementation of hardware

undo+redo logging as described in this thesis. The following list defines these instructions:

• ucst: Instruction performs an uncacheable store to memory given the address and value.

It completely bypasses the cache hierarchy and goes directly to the memory controller to

be scheduled to memory.
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• ucld: similar to ucst, but is an uncacheable load.

• clwb: Instruction forces a cache-line write-back to occur in the cache-line corresponding

to its given address.

• sfence: Instruction orders stores in the program. All store instructions before this instruc-

tion must commit to memory before all store instructions following this instruction.

There are challenges with implementing these instructions in the current RISC-V in-

struction set. Specifically, the data path currently does not support uncacheable memory opera-

tions of any kind. Additionally, write-order control and non-standard cache operations are not

supported either.

Architecture Changes. RISC-V requires specific architecture changes for the ISA. The afore-

mentioned persistent memory instructions require updating the data path with new connections

and I/O. The uncacheable load and store instructions must connect directly from the processor to

the memory controller. Within the memory controller, RISC-V needs a write-combining buffer

to coalesce the uncacheable memory requests to schedule them alongside in-flight cacheable

requests. This functionality is already available in the design for hardware undo+redo logging.

The clwb instruction requires changes to the RISC-V cache controllers to handle a new request

for writing back cache lines. Aside from standard read or write requests, the new clwb function

for the cache will cause a write-back of the dirty cache block associated with the given address

without invalidating it.

The open-source RISC-V chip, Rocket (and its out-of-order version, BOOM) [26]

was fully implemented in RTL and has already been taped out. They are synthesizable and

programmable to FPGA boards. Ongoing work from this thesis has already modified their

design to integrate the persistent memory techniques from hardware undo+redo logging. These

changes can program on a Xilinx Zynq zc706 board. However, it has not yet been evaluated

so completing this endeavor with a strong evaluation akin to those found in this thesis is future

work. The added level of design with RISC-V provides programmers an aspect of control

not obtainable through conventional commodity ISAs. By being able to directly modify the

hardware of the machine while having the appropriate software support, it can provide a more

thorough and robust study of persistent memory. It can also provide a level of accuracy in

results not previously achieved, while exposing problems that can arise in the complexity of the
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hardware.

These RISC-V changes will enable benchmarking of persistent memory applications

and their execution, such as WHISPER [103]. Whisper is a persistent memory benchmark

suite comprised of ten persistent memory applications. It covers a wide variety of persistent

interfaces. It covers applications that access persistent memory directly, those using a persistent

transactional library such as Mnemosyne [135], and those accessing persistent memory through

a file system interface. Most recent persistent memory research, like in this thesis, evaluate

using WHISPER because the community trusts its breadth and depth. Therefore, it is critical

that RISC-V be able to run these benchmarks as well to properly support evaluating persistent

memory benchmarks.

Persistent Memory Aware Systems. Even the most hardware-intensive persistent memory

solutions require some amount of software or systems-level awareness. Specifically, crash con-

sistency and recovery is important for proper functionality [109]. More robust systems-level

work in persistent memory–persistent memory aware file systems such as NOVA [142] are de-

pendent on the aforementioned persistent memory instructions. This ongoing and future work

opens many such avenues of research into persistent memory systems thanks to the flexibility

and adaptability of RISC-V architecture.
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