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1. Introduction

Many results in extremal graph theory can be framed in terms of determining feasible
combinations of subgraph densities, which are known as local profiles. For example,
a recent breakthrough in extremal graph theory obtained by Razborov [Raz08], Niki-
forov [Nik11], and Reiher [Rei16], describes the possible densities of complete graphs
in graphs with a given edge density; also see [PR17, LPS20] for results on the struc-
ture of extremal graphs. Local profiles of other combinatorial structures such as tour-
naments have been studied by Linial and Morgenstern [LM16]; also see [CGKN20,
GKLV22]. Another recent result on local profiles of graphs by Huang, Linial, Naves,
Peled, and Sudakov [HLN+14] determines the possible limit densities of K3 and K3;
also see [HLN+16]. On the other hand, determining the minimum possible sum of
densities of K4 and K4 is one of the most intriguing problems in extremal graph the-
ory, and has remained open for more than five decades despite the work of many re-
searchers [Tho89,Tho97,FR93,Fra02,JvvT96,Gir79,Nie12,Spe11,Wol10]. The chal-
lenging nature of the shape of graph profiles for some particular graphs is in line with
undecidability results on homomorphism inequalities by Hatami and Norine [HN11],
and results on the complex structure of graphs limits [GKL20,CKM18]. In this paper,
we are concerned with local profiles of trees as studied by Bubeck and Linial [BL16];
in particular, we answer three questions on the local profiles of trees posed by them.

In order to state our results precisely, we introduce the following definitions. Let T
be a tree. We denote by Zk(T ) the number of k-vertex subtrees in T . An embedding of
a tree S in T is a subtree of T isomorphic to S. Note that in our usage, an embedding
can be associated with (possibly multiple) injective homomorphisms from S to T , and
all injective homomorphisms from S to T with the same image are associated with a
single embedding. The density of a k-vertex tree S in T , denoted by d(S, T ), is the
number of embeddings of S in T divided by Zk(T ); if the number of vertices of T is
less than k, we set d(S, T ) = 0. The k-profile of a tree T , denoted by p(k)(T ), is the
vector whose entries are indexed by all non-isomorphic k-vertex trees, where the entry
of p(k)(T ) indexed by a tree S is equal to d(S, T ). Note that if the number of vertices
of T is less than k, then p(k)(T ) is the zero vector, and if the number of vertices of T is
at least k, then the entries of p(k)(T ) sum to 1.

We say that a sequence (Tn)n∈N of trees is convergent if the k-profiles p(k)(Tn)
converge entrywise for every k ∈ N. By Tychonoff’s theorem, every sequence of trees
has a convergent subsequence. The inducibility of a tree S is defined as the maximum
limit density of S in a convergent sequence of trees. In other words, the inducibility
of S is equal to

lim sup
n→∞

max{d(S, T ) : T is an n-vertex tree}.

This concept was introduced for graphs by Pippenger and Golumbic [PG75]; also see
[EZL15, BS94, Yus19, HHN14, Hir14, Š84, HT18, KNV19]. The definition for trees
used here is by Bubeck and Linial [BL16], and it differs slightly from the definition
used in [CSW17a,CDOSW20,DOW18,DOW19].
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Clearly, paths have inducibility 1 since every subtree of a path is a path. Similarly,
stars have inducibility 1 since every subtree of a star is a star. Bubeck and Linial [BL16]
proved that paths and stars are the only trees with inducibility 1. Motivated by this
result, they asked [BL16, Problem 4] whether there are additional trees with inducibility
arbitrarily close to 1, or if not, whether there are infinitely many trees with inducibility
bounded away from 0 by a fixed constant:

• Does there exist ε > 0 such that the inducibility of every tree that is neither a star
nor a path is at most 1− ε?

• Does there exist ε > 0 such that there are infinitely many trees with inducibility
at least ε?

We answer both these questions affirmatively. The first question is answered in The-
orem 6.2 in Section 6. The proof relies on several preliminary results in Sections 3
to 5. The second question is answered in Theorem 7.1 in Section 7; this proof is self-
contained. Both theorems give explicit values for ε, although we make no attempt to
optimize these values.

In the case of general graphs, it is well-known that the Erdős-Rényi random
graph Gn,p is a universal graph with high probability; that is, the limit density of every
graph is positive in Gn,p. Bubeck and Linial [BL16, Problem 5] asked whether there
exist universal trees:

• Does there exist a convergent sequence (Tn)n∈N of trees in which the limit density
lim
n→∞

d(S, Tn) of every tree S is positive?

Our final result is an explicit construction of such a sequence of trees (Theorem 8.1 in
Section 8).

Regarding the state of the other problems appearing in [BL16], Bubeck, Edwards,
Mania and Supko [BEMS16] and Czabarka, Székely and Wagner [CSW17b] indepen-
dently resolved [BL16, Problem 3] by showing that if the limit density of a k-vertex
path Pk in a (convergent) sequence of trees equals 0, then the limit density of the k-
vertex starSk equals 1. Further, results on 5-profiles of trees can be found in [BEMS16],
where additional questions raised in [BL16, Problems 1 and 7] have been answered.

2. Preliminaries

The number of vertices of a graph G is denoted by |G|. Given a vertex v in a tree T ,
a branch of T rooted at v is a subtree of T formed by a component of the graph T \ v
together with its edge to v. A branch is non-trivial if it is not a single edge; in other
words, it does not correspond to a leaf of T . A non-trivial branch rooted at a vertex v is
a fork if it is isomorphic to a star (note that v must be a leaf of this star). The order of
a fork is its number of (non-root) leaves. A branch is major if it is a non-trivial branch
that is not a fork. A caterpillar is a tree T such that every vertex of T is the root of
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at most two non-trivial branches. Finally, a vertex of a tree that is not a leaf is called
internal. Observe that a tree is a caterpillar if and only if its internal vertices induce a
path.

Czabarka, Székely and Wagner [CSW17b, Theorem 1 and Lemma 4] proved the
following result about limit densities in trees of bounded radius.

Proposition 2.1 ([CSW17b]). Let (Tn)n∈N be a convergent sequence of trees
with |Tn| → ∞. If there exists an integer K such that the radius of each Tn is at
most K, then

lim
n→∞

d(Sk, Tn) = 1

for every k ∈ N, where Sk is the k-vertex star.

As mentioned in the introduction, the result below is proved independently
in [BEMS16, Theorem 2] and [CSW17b, Theorem 1].

Proposition 2.2 ([BEMS16, CSW17b]). Let k ⩾ 4 and let (Tn)n∈N be a convergent
sequence of trees with |Tn| → ∞. If lim

n→∞
d(Pk, Tn) = 0, then lim

n→∞
d(Sk, Tn) = 1.

A center of a tree T is a vertex v such that each branch rooted at v has at most |T |/2
edges. Every tree T has either one or two centers. Moreover, if T has two centers,
then |T | is even, the two centers are adjacent, each center has a branch rooted at it with
exactly |T |/2 edges, and the other center is its neighbor in this branch. A hub of a tree T
is a vertex v that is the only vertex on the path from v to the nearest center of T that is
the root of at least three non-trivial branches. In particular, if a center of T is the root
of at least three non-trivial branches, then it is a hub.

Proposition 2.3. Every tree T that is not a caterpillar has at least one and at most two
hubs.

Proof. Let T ′ be the tree obtained from T by removing all of its leaves. The degree of
a vertex v in T ′ is equal to the number of non-trivial branches rooted at v in T . Since T
is not a caterpillar, T ′ is not a path. Therefore, T ′ contains a vertex of degree at least 3,
so T has at least one hub.

Let W be the set of vertices of T ′ with degree at least 3. Suppose that T has a single
center vC . If vC has degree at least three in T ′, then vC is the only hub of T . Otherwise,
the degree of vC in T ′ is equal to 1 or 2 and there exists at least one and at most two
vertices w ∈ W such that there is no other vertex of W on the unique path between vC
and w. These vertices w are the hubs of T .

In the case that T has two centers vC and v′C , which are necessarily adjacent, then
each center is a hub if its degree in T ′ is at least three. Otherwise, there exists at most
one vertex w ∈ W such that the unique path between vC and w contains neither another
vertex of W nor v′C . Similarly, there exists at most one vertex w ∈ W such that the
unique path between v′C and w contains neither another vertex of W nor vC . Hence, T
has at most two hubs.
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Figure 2.1: Two embeddings of 7-vertex trees that can be obtained from each other by
moving two edges. The edges of the embeddings are in bold.

Let S0 and S be embeddings of trees in a tree T with |S0| = |S| = n, and let k be
an integer less than n. (In fact, we only use k ⩽ 3). We say that S can be obtained
from S0 by moving k edges if the intersection of S0 and S is a subtree of T with n− k
vertices (see Figure 2.1). In this sense, S is said to be obtained from S0 by removing
the edges of S0 that are not contained in S, and then adding the edges of S that are not
contained in S0.

We next bound the number of vertices that can become a center of an embedding
of a tree when at most three edges are moved.

Proposition 2.4. Let S0 be an embedding of a tree with at least 17 vertices in another
tree T . There exists a set X of at most 8 vertices of T such that if three or fewer edges
of S0 are moved to produce an embedding S of a tree in T , then each center of S is
contained in X .

Proof. Let n = |S0| ⩾ 17. Let X be the set of vertices v of S0 such that each branch
rooted at v has at most n/2 + 3 edges. We claim that X has the property given in the
statement of the lemma. Indeed, if S is an embedding obtained from S0 by moving
at most three edges and w is a center of S, then each branch of S rooted at w has at
most n/2 edges and so each branch of S0 rooted at w has at most n/2+3 edges. Hence,
w is contained in X .

It remains to estimate |X|. We call a branch B of S0 significant if B is rooted
at a center of S0, has at least n/2 − 3 edges, and does not contain the other center
(if another center exists). Every vertex x ∈ X is either a center or is contained in a
significant branch—otherwise, the branch rooted at x containing the center(s) has at
least (n− 1)− (n/2− 4) + 1 = n/2 + 4 edges. Since significant branches are edge-
disjoint and 3(n/2− 3) = (n− 1)+ (n/2− 8) > n− 1, S0 has at most two significant
branches. Note that each significant branch has at most ⌊n/2⌋ edges since it is rooted at
a center of S0, so the other branches rooted at the same center contain at least ⌈n/2⌉−1
edges in total.

Therefore, if n is odd, each significant branch has at most three vertices w such that
the branch rooted at w containing the center vertex has at most ⌈n/2⌉+2 = ⌊n/2⌋+3
edges. If n is even and S0 has two centers, then the branches rooted at each center that
contain the other center have exactly n/2 edges. So again, each significant branch has
at most three vertices w such that the branch rooted at w containing the center(s) has
at most n/2 + 3 edges. Lastly, if n is even and S0 has only one center, then we use the
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fact that there is at most one significant branch with exactly n/2 edges. This branch,
if it exists, has at most four vertices w such that the branch rooted at w containing the
center has at most n/2 + 3 edges; any other significant branch has at most three such
vertices w. In each case, |X| ⩽ 8.

Note that the bound on |X| in Proposition 2.4 is best possible since it is attained
when S0 is a path with an even number of vertices.

We finish this section by bounding the number of vertices that can become a hub of
an embedding of a tree when at most three edges are moved.
Proposition 2.5. Let S be a non-caterpillar tree with at least 17 vertices, and fix an
embedding of a tree S ′ with |S ′| = |S| in a tree T . There exists a set X of at most 144
vertices of T such that if an embedding of S in T can be obtained by moving three or
fewer edges of S ′, then each hub of the obtained embedding of S is contained in X .

Proof. Let X0 be the set of the vertices from Proposition 2.4 applied with S0 = S ′,
and let D be the set of distances between the hubs of S and the nearest center in S. By
Proposition 2.3, S has at most two hubs, so |D| ⩽ 2.

For a vertex z in the embedding of S ′, define the resistance of z as the number of
edges not incident with z that are contained in branches of S ′ rooted at z with the two
largest branches excluded. Informally speaking, the resistance of z is the number of
edges that must be removed from S ′ so that z is no longer the root of three non-trivial
branches, and therefore not a candidate hub.

Consider a vertex x ∈ X0 that is a center of an embedding of S in T obtained by
moving at most three edges of S ′. Observe that in this embedding of S, a vertex v ̸= x
of T can be a hub whose nearest center is x only if the following holds:

• v is an internal vertex of S ′,

• the distance d between v and x belongs to the set D, and

• the sum of the resistance of x and the resistances of the internal vertices on the
path between v and x is at most 3.

Let X be the union of X0 with the set of vertices v that satisfy these three conditions
for some x ∈ X0.

For a vertex x ∈ X0, let Zx be the union of {x} with the set of internal vertices z
of S ′ such that the sum of the resistance of x and the resistances of the internal vertices
on the path between z and x is at most 3. Observe that if a vertex z belongs to Zx, then
all vertices on the path between z and x also belong to Zx. Define SZ to be the subtree
of S ′ induced by Zx, and note that the resistance of z is an upper bound on the number
of leaves of SZ lying in non-trivial branches rooted at z with the two largest branches
excluded. Let δ be the number of branches of SZ rooted at x. Since each of the δ
branches of SZ rooted at x has at most 4− γ ⩽ min{4, 6− δ} leaves, where γ ⩾ δ− 2
is the resistance of x, the tree SZ has at most 9 leaves. This implies that the number of
vertices of Zx lying at a distance contained in D from x is at most 18. Hence, the set X
contains at most 8 · 18 = 144 vertices.
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3. Inducibility of trees with three large branches

In this section, we present a part of the proof of Theorem 6.2 for trees with three large
branches rooted at a hub. For a k-vertex tree S and a host tree T , one approach would
be to construct a function fS,T that maps each embedding of S in T to an embedding of
a k-vertex subtree of T non-isomorphic to S such that at most α embeddings of S are
mapped to the same subtree of T , where α is a constant independent of S and T . This
would imply that the inducibility of S is at most α/(α+1). An explicit construction of
such a function fS,T is technical, so we prove its existence implicitly using a discharging
argument.

Theorem 3.1. Assume S is a k-vertex tree (k ⩾ 17) with a fixed hub vS that is either
adjacent to at most one leaf, or is the root of at least three major branches and at most
one fork. If T is a tree with radius at least 4k, then d(S, T ) ⩽ 1− 10−7.

Proof. Let vT be a vertex of T such that there exist (2k + 1)-vertex paths P1 and P2

starting at vT that are disjoint except at vT itself; such a choice is possible because the
radius of T is at least 4k. For every vertex v of T , fix a linear order ⪯v of the edges
incident with v.

If there is at most one leaf adjacent to vS , then we say that every non-trivial branch
rooted at vS is important; otherwise, a branch rooted at vS is said to be important
only if it is major. Note that there are at least three important branches regardless of
which of the two cases described in the statement of the theorem apply. In this proof, a
stub is an embedding of a (k− 3)-vertex tree S ′ in T with a distinguished vertex v′ and
three distinguished branches, together with a correspondence between the distinguished
branches and three (isomorphism classes of) branches of S rooted at vS such that it is
possible to add a single leaf to each of the distinguished branches of S ′ so that there
is an isomorphism from S ′ to S that maps v′ to vS and the vertices of each of the
distinguished branches of S ′ to the vertices of the corresponding branch of S. The
three distinguished branches of the stub are referred to as grafts.

We next introduce a canonical way of obtaining a stub from an embedding of S in T .
For an embedding of S in T , let vS→T be the vertex of T corresponding to the hub vS; if
there are two possible choices for vS→T , we choose an arbitrary one. Consider the three
important branches of the embedding rooted at vS→T whose edges incident with vS→T

appear earliest in the linear order ⪯v. These three branches will be denoted by SA, SB,
and SC ; we will decide which branch is SA, which is SB, and which is SC later in the
proof. Consider the DFS traversal of the branches SA, SB, and SC from vS→T such that
the edges at each vertex v of the branches are visited in the order given by ⪯v; that is, a
part of the branch joined by an edge earlier in the order ⪯v is explored first. We obtain
the stub S ′ by removing the leaf of the embedding that appears last in the DFS traversal
in the branch SA, the leaf that appears last in the branch SB, and the leaf that appears
last in the branch SC . The branches obtained from SA, SB, and SC are the grafts of the
stub S ′.
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Let vA, vB, and vC be the vertices of the branches SA, SB, and SC adjacent to the
removed leaves of the embedding, and let dA, dB, and dC be the degrees of vA, vB,
and vC in the embedding of S, respectively. Fix the indexing of the branches SA, SB,
and SC so that dA ⩾ dB ⩾ dC ⩾ 2. The edges of T incident with vA, vB, and vC ,
respectively, that appear in the orders ⪯vA , ⪯vB , and ⪯vC after the edge of the embed-
ding of S that is visited second-last by the DFS traversal are referred to as active, with
the possible exception of the edge towards the vertex vS→T ; that is, the edge incident
with vA, vB, or vC on the path to vS→T is never active. In particular, if dA = 2 then
all edges incident with vA except the one towards the vertex vS→T are active. Observe
that no active edges are contained in the stub S ′ and the only active edges contained in
the embedding of S are the three edges incident with the removed leaves. Let sA, sB,
and sC be the number of active edges incident with vA, vB, and vC , respectively.

Observe that if a stubS ′ is fixed, including the choice of the distinguished vertex and
grafts, the vertices vA, vB and vC are uniquely determined: they are the last vertices
in the DFS traversal uniquely determined by the orders ⪯v whose distance is 1 less
than the distance of the missing leaf. Hence, the same stub S ′ can be obtained from
exactly sAsBsC embeddings of a tree S in the tree T .

Define Q to be the unique path in the tree T between the vertices vS→T and vT
prolonged by P1 if P1 does not contain the edge from vT towards vS→T and prolonged
by P2 otherwise. Since P1 and P2 each have 2k + 1 vertices, Q has at least k + 1
vertices not contained in the embedding of S. We next construct a set S of embeddings
of several k-vertex trees non-isomorphic to S in T as follows.

• If sA ⩾ 3 and sA ⩾ sB, then S contains all embeddings obtained from S ′ by
adding two active edges incident with vA and an active edge incident with vC .

• If 3 ⩽ sA < sB and sB ⩾ sC , then S contains all embeddings obtained from S ′

by adding an active edge incident with vA and two active edges incident with vB.

• If 3 ⩽ sA < sB < sC and dB ̸= dC+1, then S contains all embeddings obtained
from S ′ by adding an active edge incident with vA and two active edges incident
with vC .

• If 3 ⩽ sA < sB < sC and dA−1 ̸= dB = dC+1, then S contains all embeddings
obtained from S ′ by adding two active edges incident with vB and an active edge
incident with vC .

• If 3 ⩽ sA < sB < sC and dA−1 = dB = dC+1, then S contains all embeddings
obtained from S ′ by adding an active edge incident with vB and two active edges
incident with vC .

• If sA < 3, sB ⩾ 3 and sB ⩾ sC , then S contains all embeddings obtained from S ′

by adding an active edge incident with vA and two active edges incident with vB.
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• If sA < 3 ⩽ sC , sB < sC and dB ̸= dC + 1, then S contains all embeddings
obtained from S ′ by adding an active edge incident with vA and two active edges
incident with vC .

• If sA < 3 ⩽ sC , sB < sC and dA ̸= dB = dC+1, then S contains all embeddings
obtained from S ′ by adding an active edge incident with vB and two active edges
incident with vC .

• If sA < 3 ⩽ sC , sB < sC and dA = dB = dC+1, then S contains all embeddings
obtained from S ′ by adding three active edges incident with vC .

• If sA, sB, and sC are all less than 3, thenS contains the unique tree that is obtained
from S ′ by adding the first three edges of Q that are not already contained in S ′.

The above ten cases cover all values of sA, sB, sC , dA, dB, and dC satisfying
sA, sB, sC ⩾ 1 and dA ⩾ dB ⩾ dC ⩾ 2. In each case, the degree sequence of ev-
ery tree in S is different from the degree sequence of S. For example, in the first case,
trees in S contain more vertices of degree dA + 1 than S, and in the last case, the tree
in S has fewer leaves than S. Therefore, none of the embeddings in S is an embedding
of a tree isomorphic to S. In all but the last case, |S| ⩾ sAsBsC/12. For example, in
the first case,

|S| =
(
sA
2

)
sC =

sA(sA − 1)sC
2

⩾
s2AsC
3

⩾
sAsBsC

3
⩾

sAsBsC
12

.

In the last case, |S| = 1 ⩾ sAsBsC/8. This implies that |S| is at least the number of
embeddings of S yielding the stub S ′ divided by 12.

Fix an embeddingS ′′ of a k-vertex tree that is not isomorphic toS. We now estimate
the number of stubs S ′ associated with an embedding of S whose corresponding set S
contains S ′′. We will create a stub S ′ from S ′′ by following constructive steps that
we next describe. The steps sometimes result in a tree that cannot be a stub of an
embedding of the tree S, however, any stub S ′ associated with an embedding of S such
that the corresponding set S contains S ′′ can be created by following the described
steps.

The distinguished vertex of S ′ must be a hub vS→T of an embedding of S that
can be transformed into S ′′ by moving at most three edges. By Proposition 2.5, there
are at most 144 choices for vS→T . Once the vertex vS→T is chosen, it needs to be
decided which three branches of S ′′ rooted at vS→T correspond to grafts of the stub S ′.
Suppose S has at most one leaf adjacent to vS , which implies that every non-trivial
branch rooted at vS is important. Every graft of S ′ corresponds to either a leaf (as an
important branch can be become trivial after the removal of a single edge—note that
at most three additional leaves can be created in this way), or to one of the first four
non-trivial branches rooted at vS in the order given by ⪯vS (as a new non-trivial branch
can be created by adding the first three edges of Q). Hence, there are at most eight
branches of S ′′ that could possibly be grafts in S ′ when vS→T is chosen. Similarly,



10 Timothy F. N. Chan et al.

if S has at most one fork rooted at vS , every graft of S ′ corresponds to either a fork (as
an important branch can become a fork after the removal of a single edge—again, at
most three additional forks can be created in this way), or to one of the first four major
branches rooted at vS in the order given by ⪯vS . Again, there are at most eight branches
of S ′′ that could possibly be grafts in S ′.

Next, fix a triple among the at most eight branches that could be the three grafts
of S ′. Observe that the degree of vS→T in S ′′ is the same as the degree of vS in S unless
a new branch at vS→T was created by adding the first three edges on Q; that is, these
three edges form a branch rooted at vS→T in S ′′. In the latter case, remove the three
edges of Q that have been added to get the same number of branches in the embedding
as in S ′. The correspondence between the branches of the embedding and S ′ different
from the grafts is given by their isomorphism to the branches of S rooted at vS . Three
branches of S remain unmatched in this way and these can correspond in 3! = 6 ways
to the grafts. When the correspondence of these three branches and the grafts is fixed,
it is uniquely determined which edges of S ′′ need to be removed to get the stub S ′. For
example, if one of the branches of S ′′ has two additional edges but not two additional
leaves compared to the corresponding branch of S, then the last of the ten cases applied
(that is, three edges from Q were added), and we just remove the three edges of Q to
get S ′. Otherwise, the difference between the number of edges in the three branches
of S ′′ chosen as grafts and the corresponding branches of S determine the number
of edges to be removed to get S ′, and the correct edges to be removed are uniquely
determined by the linear orders ⪯v.

We conclude that for every k-vertex tree S ′′, there are at most

144 ·
(
8
3

)
· 6 ⩽ 48 384

stubs S ′ such that S ′ is associated with an embedding of S that the corresponding
set S contains S ′′; the estimate follows from the fact that there are at most 144 choices
of vS→T , each of which leads to at most

(
8
3

)
choices of grafts and at most six ways in

which the grafts can correspond to the branches of S rooted at vS .
The bound on the density of S in T is obtained as follows. Assign a charge of

48 384·12 = 580 608 to each embedding of a k-vertex treeS ′′ inT that is not isomorphic
to S. Each such embedding sends 12 units of charge to each of the at most 48 384
stubs S ′ associated with an embedding of S whose corresponding set S contains S ′′.
In this way, every stub S ′ receives at least sAsBsC units of charge, where sA, sB and sC
are defined as above (note that the quantities sA, sB and sC are uniquely determined by
the stub S ′). Finally, the stub S ′ sends one unit of charge to each embedding of S in T
whose associated stub is S ′. Since every embedding of S in T receives at least one unit
of charge, the density of S in T is at most 1− 580 609−1 ⩽ 1− 10−7.
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4. Inducibility of trees with forks

In this section, we analyze the inducibility of non-caterpillar trees that are not covered
by Theorem 3.1. A similar argument applies to a large class of caterpillars and so we
formulate a single theorem to cover all cases.

Theorem 4.1. Let S be a k-vertex tree (k ⩾ 17) that has a fixed vertex vS satisfying
one of the following:

• S is not a caterpillar, and vS is a hub of S that is the root of at least one fork and
is adjacent to at least two leaves,

• S is a caterpillar with at least four internal vertices, and vS is the root of a fork
of order at least two and is adjacent to a leaf, or

• S is a caterpillar with exactly three internal vertices, and vS is the root of a fork
and is adjacent to a leaf.

If T is a tree with radius at least 4k, then d(S, T ) ⩽ 1− 10−4.

Proof. The assumptions guarantee that vS is the root of at least two non-trivial bran-
ches, and that there is at most one vertex v′S ̸= vS of S such that S has an automorphism
mapping the vertex vS to v′S . Let ℓ be the maximum order of a fork rooted at vS; since vS
is the root of a fork, ℓ > 0 is well-defined.

Notation. Fix a tree T with radius at least 4k. Let vT be a vertex of T such that
there exist (2k + 1)-vertex paths P1 and P2 starting at vT that are disjoint except at vT
itself; such a choice is possible because the radius of T is at least 4k. We show that
the density of S in T is at most 1 − 10−4 using a discharging argument that assigns
each embedding of a k-vertex tree non-isomorphic to S a charge of 9 999 units and
redistributes this charge to embeddings of S so that each one receives at least one unit
of charge.

Consider an embedding of S in T and let vS→T be the vertex of T corresponding
to vS; if there are two valid choices, choose vS→T arbitrarily among them. Let R0 be
the set of leaves of the embedding of S adjacent to vS→T and let Ri be the neighbors
of vS→T that are contained in a fork of order i for i ∈ {1, . . . , ℓ}. Note that R0 ̸= ∅
and Rℓ ̸= ∅. In addition, observe that ℓ > 1 or |R0| > 1; in the last case described in
the statement of the lemma, this is because |S| ⩾ 17. Set R = R0 ∪ · · · ∪ Rℓ. Let α
be the number of edges of T incident with vS→T that are not contained in S, and for a
vertex v ∈ R, let βv be the number of edges incident with v that are not contained in S.
Finally, define Q to be the unique path in T between vS→T and vT prolonged by P1

if P1 does not contain the edge from vT towards vS→T and prolonged by P2 otherwise.
Since P1 and P2 each have 2k + 1 vertices, Q has at least k + 1 vertices not contained
in the embedding of S.
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Definition of correspondence. We next define sets SA, SB and SC of embeddings
of trees non-isomorphic to S, and in some cases, we also define a set SD. Each of the
embeddings contained in SA, SB and SC can be obtained from the embedding of S by
moving an edge, and some of these sets can be empty.

Let SA be the set of embeddings obtained by removing a leaf adjacent to vS→T and
adding a leaf to a fork of order ℓ rooted at vS→T . Note that the number of leaves of S
that are adjacent to a vertex that is the root of exactly one non-trivial branch (that is,
the number of leaves contained in a fork) is one fewer than the number of such leaves
in the obtained embedding. Hence, the trees in SA are not isomorphic to S. Observe
that

|SA| = |R0| ·
∑
v∈Rℓ

βv,

and let
εA =

|SA|
(ℓ+ 1)(α + 1)

=
|R0| ·

∑
v∈Rℓ

βv

(ℓ+ 1)(α + 1)
.

Let SB be the set of embeddings obtained by removing a leaf adjacent to vS→T and
adding a leaf to a fork of order ℓ− 1 if ℓ ⩾ 2 or adding a leaf to another leaf adjacent
to vS→T if ℓ = 1. Since the number of leaves of S that are adjacent to a vertex that is
the root of exactly one non-trivial branch is one fewer than the number of such leaves in
the obtained embedding, the trees in SB are not isomorphic to S. Observe that if ℓ ̸= 1,
then

|SB| = |R0| ·
∑

w∈Rℓ−1

βw,

and if ℓ = 1, then
|SB| = (|R0| − 1) ·

∑
w∈Rℓ−1

βw.

Finally, let

εB =
|SB|

(|Rℓ|+ 1)ℓ(α + 1)
⩾

|R0| ·
∑

w∈Rℓ−1
βw

2(|Rℓ|+ 1)ℓ(α + 1)
;

the inequality holds since ℓ > 1 or |R0| > 1.
Next, letSC be the set of embeddings obtained by removing a leaf of a fork of order ℓ

rooted at vS→T and adding a leaf adjacent to vS→T . Unless ℓ = 1, the number of leaves
of S that are adjacent to a vertex that is the root of exactly one non-trivial branch is
one more than the number of such leaves in the obtained embedding. If ℓ = 1, then the
number of leaves of S is one less than the number of leaves in the obtained embedding.
In both cases, the trees contained in SC are non-isomorphic to S. Observe that

|SC | = |Rℓ| · ℓ · α,

and let
εC =

∑
v∈Rℓ

ℓ · α

(|R0|+ 1)
(
βv + 1 +

∑
w∈Rℓ−1

βw

) .
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If ℓ ⩾ 2, then we also define SD to be the set of embeddings obtained by removing
a leaf adjacent to vS→T and a leaf of a fork of order ℓ rooted at vS→T , and adding the
first two edges of Q not contained in the embedded tree. Since the number of leaves
of S is at least one more than the number of leaves in the obtained embedding, the
obtained embedding is not an embedding of S. Unlike in the previous three cases, the
embeddings obtained in this way need not all be embeddings of the same tree since one
of the removed edges can be contained in Q and then added back. Observe that

|SD| = |R0| · |Rℓ| · ℓ,

and let
εD =

∑
v∈Rℓ

|R0| · ℓ

(α + 1)
(
βv + 1 +

∑
w∈Rℓ−1

βw

) .
Discharging argument. Given an embedding S ′ of a k-vertex tree in T , the number
of choices of a vertex vS→T in S ′ such that S ′ is contained in one of the sets SA, SB, SC ,
and SD for an embedding of S with the vertex vS mapped to vS→T is at most 144 by
Proposition 2.5 if S is not a caterpillar. If S is a caterpillar, then the number of choices
of a vertex vS→T in S ′ such that S ′ is contained in SA, SB, or SC for an embedding of S
with the vertex vS mapped to vS→T is at most 4: if S ′ is a caterpillar then vS→T must be
its first, second, second-last, or last internal vertex, and if S ′ is not a caterpillar, then it
can only be contained in SB and vS→T is its unique vertex with two forks. Furthermore,
the number of choices of a vertex vS→T in S ′ such that S ′ is contained in SD for an
embedding of S with the vertex vS mapped to vS→T is at most 4: there are at most two
choices of edges that could have been added as part of Q and, once these edges are
chosen and removed, vS→T is either its second or second-last internal vertex (assuming
the tree is a caterpillar). We conclude that if S is a caterpillar, then the number of
choices of a vertex vS→T in S ′ such that S ′ is contained in one of the sets SA, SB, SC

and SD for an embedding of S with the vertex vS mapped to vS→T is at most 8.
For each choice of vS→T , the embedding S ′ distributes 10 units of its charge equally

to the embeddings of S with vS→T such that S ′ is in the corresponding set SA, 10 units
of its charge equally to the embeddings such that S ′ is in the corresponding set SB,
10 units of its charge equally to the embeddings such that S ′ is in the corresponding
set SC , and, if ℓ ⩾ 2, an additional 10 units of its charge equally to the embeddings such
that S ′ is in the corresponding set SD. In this way, the embedding S ′ distributes at most
8 · 40 = 320 charge if S is a caterpillar, and at most 144 · 40 = 5 760 units of charge
if it is not. We remark that there will be additional charge distributed by S ′ by rules
described later in the proof. Each embedding of S receives at least 10(εA + εB + εC)
units of charge and, if ℓ ⩾ 2, at least 10(εA+εB+εC+εD) units of charge. In particular,
the considered embedding receives at least one unit of charge unless εA, εB, εC , and εD
are all less than 1/10.

We next show that one of εA, εB and εC is at least 1/10 unless α = 0 or∑
w∈Rℓ−1

βw =
∑

v∈Rℓ
βv = 0. Suppose that α ̸= 0. Let B be the maximum value
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of βv for v ∈ Rℓ. If B >
∑

w∈Rℓ−1
βw, then

εAεC =
|R0| ·

∑
v∈Rℓ

βv

(ℓ+ 1)(α + 1)
·
∑
v∈Rℓ

ℓ · α

(|R0|+ 1)
(
βv + 1 +

∑
w∈Rℓ−1

βw

)
⩾

|R0| ·
∑

v∈Rℓ
βv

4ℓα
· |Rℓ| · ℓ · α
2(|R0|+ 1)B

⩾
|R0|

8(|R0|+ 1)
⩾

1

16
.

Hence, εA or εC is at least 1/10. If B ⩽
∑

w∈Rℓ−1
βw and

∑
w∈Rℓ−1

βw ̸= 0, then

εBεC ⩾
|R0| ·

∑
w∈Rℓ−1

βw

2(|Rℓ|+ 1)ℓ(α + 1)
·
∑
v∈Rℓ

ℓ · α

(|R0|+ 1)
(
βv + 1 +

∑
w∈Rℓ−1

βw

)
⩾

|R0| ·
∑

w∈Rℓ−1
βw

8|Rℓ|ℓα
·
∑
v∈Rℓ

ℓ · α
3(|R0|+ 1)

∑
w∈Rℓ−1

βw

=
|R0|

24(|R0|+ 1)
⩾

1

48
.

Hence, εB or εC is at least 1/10. We conclude that if α ̸= 0, then one of εA, εB and εC
is at least 1/10 unless

∑
w∈Rℓ−1

βw = 0 and
∑

v∈Rℓ
βv = 0. So, we need to analyze the

cases when α = 0 or when
∑

w∈Rℓ−1
βw =

∑
v∈Rℓ

βv = 0.

Analysis of non-caterpillars. Suppose that S is not a caterpillar and α = 0. Let S ′

be obtained from the embedding of S by removing any two leaves adjacent to vS→T

and adding the first two edges on Q not contained in the embedding. Since S ′ has at
least one less leaf than S, it is not isomorphic to S. The embedding S ′ sends one unit
of charge to the considered embedding of S. Note that the embedding S ′ sends by this
rule at most 2 · 144 units of charge in addition to the charge sent earlier: when S ′ is
fixed, there are at most two choices of edges that could have been added as part of Q,
and at most 144 choices of vS→T by Proposition 2.5. The leaves adjacent to vS→T that
were removed are uniquely determined since α = 0.

Suppose that S is not a caterpillar, α > 0 and
∑

w∈Rℓ−1
βw =

∑
v∈Rℓ

βv = 0.
If ℓ ⩾ 2, then

εC =
|Rℓ|ℓα
|R0|+ 1

and εD =
|Rℓ|ℓ|R0|
α + 1

.

It follows that εCεD ⩾ 1/4; that is, εC or εD is at least 1/10. If ℓ = 1 and |R1| ⩾ 2,
then let S ′ be obtained from the embedding of S by removing a leaf from two forks
rooted at vS→T and adding the first two edges of Q. Since the embedding S ′ has fewer
leaves contained in forks, S ′ is not isomorphic to S. The embedding S ′ sends one
unit of charge to the considered embedding of S. Each embedding S ′ sends in this
way at most 2 · 144 units of charge in addition to the charge sent earlier: when S ′ is
fixed, there are at most two choices of edges that could have been added as part of Q,
and at most 144 choices of vS→T by Proposition 2.5. The leaves adjacent to vS→T to
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be changed to a fork are uniquely determined and so are the edges to be added since∑
w∈Rℓ−1

βw =
∑

v∈Rℓ
βv = 0.

If ℓ = |R1| = 1, then let e be the edge incident with the leaf of the fork rooted
at vS→T . If vS→T has a neighbor w in T that is not contained in S and that has degree
at least two in T , then remove the edge e and add the edge vS→Tw to obtain an em-
bedding S ′. The embedding S ′ has more leaves than S and so is not isomorphic to S.
The embedding S ′ sends one unit of charge to the considered embedding of S. Each
embedding S ′ sends in this way at most 2 · 144 units of charge in addition to the charge
sent earlier as there are at most two leaves adjacent to vS→T that can be changed to a
fork with the unique edges to be added (as

∑
w∈Rℓ−1

βw =
∑

v∈Rℓ
βv = 0). Hence,

we can assume that all neighbors of vS→T in T are leaves except its neighbors that are
contained in the non-trivial branches of S.

If e is not contained in Q, then let S ′ be the embedding obtained from S by remov-
ing e and adding the first edge of Q not contained in S, and let S ′′ be the embedding
obtained from S by removing the fork containing e and adding the first two edges of Q
not contained in S. Observe that S ′ or S ′′ is not isomorphic to S since at least one of
them has a different number of leaves from S. The embedding that is not isomorphic
sends one unit of charge to S and each embedding sends at most 4 · 144 units of charge
in this way (it can appear in the role of S ′ and S ′′, there are at most two choices of edges
that could have been added as part of Q, and there are at most 144 choices of vS→T ,
each determining the embedding S uniquely).

If e is contained in Q, then let S1 be the set of embeddings obtained by remov-
ing a leaf adjacent to vS→T and adding the edge of Q following the edge e; note
that |S1| = |R0|. Let S2 be the set of embeddings obtained by removing the edge e
and adding an edge incident with vS→T not contained in S; note that |S2| = α. Since
the embeddings in S1 and S2 have different numbers of leaves than S, they are not
isomorphic to S. Each embedding in S1 distributes one unit of charge equally among
all α+ 1 embeddings of S that can be obtained in this way, and each embedding in S2

distributes one unit of charge equally among all |R0|+ 1 embeddings of S that can be
obtained in this way (note that vS→T is uniquely determined as the vertex in the embed-
ding with degree greater than 2 that is closest to the added edges of Q, and the fork of
an embedding of S is created only by adding an edge to a leaf adjacent to vS→T whose
degree in T is 2). We conclude that the embedding of S receives at least

|R0|
α + 1

+
α

|R0|+ 1
⩾

1

2

(
|R0|
α

+
α

|R0|

)
⩾ 1

units of charge.

Analysis of caterpillars. We next analyze the case when S is a caterpillar. If α = 0
and |R0| ⩾ 2, then let S ′ be obtained from the embedding of S by removing any two
leaves adjacent to vS→T and adding the first two edges onQ not contained in the embed-
ding. Since S ′ has fewer leaves than S, S ′ is not isomorphic to S. The embedding S ′

sends one unit of charge to the considered embedding of S. Note that in this way the
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embedding S ′ sends at most 2 · 2 units of charge in addition to the charge sent earlier:
there are at most two choices of edges that could have been added as part ofQ and, once
these edges are chosen and removed, the vertex vS→T is either the second or second-last
internal vertex of the resulting caterpillar.

If α = 0, |R0| = 1 and ℓ ⩾ 2, then we derive along the lines used in the general case
that εAεD ⩾ |R0|2

4(α+1)2
= 1

4
or εBεD ⩾ |R0|2

12(α+1)2
= 1

12
unless

∑
w∈Rℓ−1

βw=
∑

v∈Rℓ
βv=0.

However, if
∑

w∈Rℓ−1
βw =

∑
v∈Rℓ

βv = 0, then εD = |R0|·|Rℓ|·ℓ
α+1

⩾ 2.
If α = 0 and |R0| = ℓ = 1, then εA ⩾ 1/2 unless

∑
v∈Rℓ

βv = 0. If α = 0,
|R0|=ℓ=1, and

∑
v∈Rℓ

βv = 0, and more generally whenever ℓ=1 and
∑

v∈Rℓ
βv = 0,

then we are in the third case from the statement of the lemma, and |Rℓ| = 2. In other
words, S is a star with two different edges subdivided. Consider S ′ obtained from
the embedding of S by removing the edges that are incident with the leaves of the
two forks of S and adding the first two edges on Q not contained in the embedding.
Observe that S ′ is not isomorphic to S. The embedding S ′ sends one unit of charge to
the considered embedding of S. Note that in this way the embedding S ′ sends at most
one unit of charge in addition to the charge sent earlier; the edges of S ′ that were added
as a part of Q are the unique edges whose removal creates a star, the vertex vS→T is
the internal vertex of this star, and the remaining two edges of the embedding of S are
uniquely determined since

∑
v∈Rℓ

βv = 0.
The final case to consider is when α > 0,

∑
w∈Rℓ−1

βw =
∑

v∈Rℓ
βv = 0, and ℓ ⩾ 2

(note that the case ℓ = 1 is covered in the previous paragraph). As in the non-caterpillar
case, it follows that εCεD ⩾ ℓ2|Rℓ|2/4 ⩾ 1/4; that is, εC or εD is at least 1/10.

Conclusion. According to the rules set above, each embedding of a tree non-isomor-
phic to S distributes at most 320+4+1 = 325 units of charge if S is a caterpillar, and
at most 5 760 + 10 · 144 + 2 = 7 202 units of charge if it is not. Thus, the density of S
in T is at most 1− 7203−1 ⩽ 1− 10−4.

5. Inducibility of caterpillars

In this section, we complete the analysis of the inducibility of caterpillars. We start
with caterpillars whose second or second-last internal vertex is the root of a fork of
order 1 and is adjacent to a leaf.

Lemma 5.1. Let S be a non-path caterpillar with k ⩾ 10 vertices that has at least four
internal vertices and has a fixed vertex vS that is the root of a fork of order 1 and is
adjacent to a leaf. If T is a tree with radius at least 4k, then d(S, T ) ⩽ 1− 10−3.

Proof. Let ℓ > 0 be the number of leaves adjacent to vS . Since S is a caterpillar with
at least four internal vertices, vS is the root of exactly one fork; the order of this fork
is 1 by the assumption of the lemma.
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Figure 5.1: The trees S, S ′, S ′′ and S ′′′ used in the proof of Lemma 5.1 when ℓ = 3.

Let vT be a vertex of T such that there exist (2k+1)-vertex paths P1 and P2 starting
at vT that are disjoint except at vT itself; such a choice is possible because the radius
of T is at least 4k.

We next define trees S0, S ′, S ′′ and S ′′′ (see Figure 5.1). Let S0 be the tree obtained
from S by removing the fork and all leaves adjacent to vS . If ℓ ⩾ 2, then let S ′ be the
tree obtained from S by removing a leaf adjacent to vS and turning another leaf adjacent
to vS into a fork of order 1; if ℓ = 1, then S ′ is not defined. Let S ′′ be the tree obtained
from S by removing a leaf adjacent to vS and adding a leaf to the fork rooted at vS .
Finally, let S ′′′ be the tree obtained from S be removing the leaf of the fork rooted at vS
and adding a leaf adjacent to vS . The trees S, S ′ (if defined), S ′′, and S ′′′ are mutually
non-isomorphic, since S ′ is the only one that is not a caterpillar, S ′′′ has fewer internal
vertices than S and S ′′, and the numbers of leaves adjacent to the first and last internal
vertices of S and S ′′ differ.

In this proof, a stub is an embedding of S0 with a distinguished vertex vS→T such
that the embedding of S0 can be extended to an embedding of S with vS→T correspond-
ing to vS . Let Q be the unique path in T between the vertices vS→T and vT prolonged
by P1 if P1 does not contain the edge from vT towards vS→T and prolonged by P2 oth-
erwise. Let D ⩾ ℓ + 1 be the degree of vS→T in T minus 1 and let d1, . . . , dD be the
degrees of its neighbors not contained in the embedding of S0 minus 1. The numbers
of ways that the embedding of S0 can be extended (with vS→T corresponding to vS) to
an embedding of S, S ′, S ′′, and S ′′′ are∑
1⩽i⩽D

di

(
D − 1

ℓ

)
,

∑
1⩽i<j⩽D

didj

(
D − 2

ℓ− 2

)
,
∑

1⩽i⩽D

(
di
2

)(
D − 1

ℓ− 1

)
, and

(
D

ℓ+ 2

)
,

respectively. Let N , N ′, N ′′ and N ′′′ be these numbers. We claim that

N ⩽ 54(N ′ +N ′′ +N ′′′ +NQ),

whereNQ is the number of extensions of S0 to an embedding of a tree SQ that is defined
later. Note that NQ > 0 only if

∑
1⩽i⩽D di = 1 or ℓ = d1 = d2 = 1; we set NQ = 0

otherwise.
The following three paragraphs concern the case when

∑
1⩽i⩽D di = 1; note that

N ′ = N ′′ = 0 in this case. Fix an embedding ofS and denote the internal vertices of the
embedding by v1, . . . , vm so that v2 = vS . Consider the first edge of Q not contained in
this embedding. If this edge is incident with vm, then let SQ be the embedding obtained
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from S by removing one of the leaves adjacent to vS→T and adding the first unused edge
of Q. The sum of the degrees of the first and last internal vertices of SQ is greater than
that of S, so SQ is not isomorphic to S. Furthermore, the number NQ of ways that the
embedding of S0 can be extended to an embedding of SQ (with the added edge of Q
fixed) is

(
D−1
ℓ−1

)
.

Now suppose that the first edge of Q not contained in the embedding of S is in-
cident with a vertex other than vm; note that this edge is not incident with v2 because∑

1⩽i⩽D di = 1. Let SQ be the embedding obtained from S by removing the leaf of the
fork rooted at vS→T and one of the leaves adjacent to vS→T , and then adding the first
two unused edges of Q. The resulting embedding is not isomorphic to S: if the first
unused edge is incident with one of v3, . . . , vm−1 or their adjacent leaves, then SQ is
not a caterpillar, and if the first unused edge is incident with a leaf of v1 or vm, then SQ

has more internal vertices than S. Again, the number NQ of ways that the embedding
of S0 can be extended to an embedding of SQ (with the edge v1v2 and the added edges
of Q fixed) is

(
D−1
ℓ−1

)
.

It follows that

N =

(
D − 1

ℓ

)
=

(
D − 1

ℓ− 1

)
D − ℓ

ℓ
,

N ′′′ =

(
D

ℓ+ 2

)
=

(
D − 1

ℓ− 1

)
D(D − ℓ)(D − ℓ− 1)

(ℓ+ 2)(ℓ+ 1)ℓ
, and

NQ =

(
D − 1

ℓ− 1

)
.

If D ⩽ 2ℓ, then N ⩽ NQ. If D ⩾ 2ℓ + 1, then D − ℓ − 1 ⩾ ℓ ⩾ 1
2
(ℓ + 1) and

D ⩾ ℓ + 2, so N ⩽ 2N ′′′. Therefore, regardless of the relationship between D and ℓ,
we have N ⩽ 2(N ′′′ +NQ).

In the rest of the proof, we analyze the case when
∑

1⩽i⩽D di ⩾ 2. If D = ℓ + 1,
then the numbers of ways that the embedding of S0 can be extended to an embedding
of S, S ′ and S ′′ (note that N ′′′ = 0) are

N =
∑

1⩽i⩽D

di, N ′ =
∑

1⩽i<j⩽D

(ℓ− 1)didj, and N ′′ =
∑

1⩽i⩽D

ℓ

(
di
2

)
,

respectively. If ℓ ⩾ 2, then N ⩽ 2N ′ unless only one of the di is non-zero, in which
case N ⩽ N ′′. If ℓ = 1, then N = d1 + d2, N ′ = 0 and N ′′ =

(
d1
2

)
+
(
d2
2

)
, in which

case N ⩽ 2N ′′ + 2 ⩽ 4N ′′ unless d1 = d2 = 1. Finally, if ℓ = d1 = d2 = 1, then
consider the embedding SQ defined in the same way as in the case

∑
1⩽i⩽D di = 1

unless the first edge of Q not contained in the embedding of S is incident with the leaf
adjacent to vS→T ; note that the embedding SQ is well-defined as the first edge of Q
not contained in the embedding of S cannot be incident with v2 as D = ℓ + 1. If the
first edge of Q not contained in the embedding of S is incident with the leaf adjacent
to vS→T , then remove the fork rooted at vS→T and add the first two edges of Q not
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contained in S; the resulting embedding SQ is a caterpillar with diameter greater than
that of S and so is non-isomorphic to S (note that the embedding SQ is the same for both
embeddings of S that can be obtained from the same stub). In all cases describe above,
the embedding SQ is uniquely determined by the embedding of the stub, so NQ = 1,
which implies that N = 2 ⩽ 2NQ.

Next assume that D ⩾ ℓ+ 2. If ℓ ⩾ 2, then

N ⩽ 2

(
D − 2

ℓ− 2

) ∑
1⩽i⩽D

di
D(D − ℓ)

ℓ2
,

N ′ ⩾

(
D − 2

ℓ− 2

) ∑
1⩽i<j⩽D

didj,

N ′′ ⩾

(
D − 2

ℓ− 2

) ∑
1⩽i⩽D

(
di
2

)
, and

N ′′′ ⩾
1

8

(
D − 2

ℓ− 2

)
D2(D − ℓ)2

ℓ4

Hence,

N ′ +N ′′ ⩾
1

4

(
D − 2

ℓ− 2

)( ∑
1⩽i⩽D

di

)2

,

which implies that N ⩽ 8(N ′ +N ′′ +N ′′′) by the AM-GM inequality.
If ℓ = 1, then

N ⩽
∑

1⩽i⩽D

Ddi ⩽ D2 +
∑

1⩽i⩽D
di⩾2

D(di − 1) ⩽ D2 +D3 +
∑

1⩽i⩽D
di⩾2

(di − 1)2,

N ′′ =
∑

1⩽i⩽D

(
di
2

)
⩾
∑

1⩽i⩽D
di⩾2

(di − 1)2

2
, and

N ′′′ =

(
D

3

)
⩾

D3

27
.

It follows that

N ⩽ D2 +D3 +
∑

1⩽i⩽D
di⩾2

(di − 1)2 ⩽ 54(N ′′ +N ′′′).

In all cases, we have proved that N ⩽ 54(N ′ +N ′′ +N ′′′ +NQ). Each embedding
of a k-vertex tree non-isomorphic to S sends 72 charge to each stub that it extends. In
this way, each stub receives at least 54(N ′ + N ′′ + N ′′′ + NQ) ⩾ N charge, which it
can then distribute to its N extensions into embeddings of S.

To complete the discharging argument, it remains to bound the total amount of
charge that each embedding of a k-vertex tree non-isomorphic to S sends. If the em-
bedding is isomorphic to S ′, then vS→T is the unique vertex that is the root of two forks.
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If the embedding is isomorphic to S ′′, then vS→T is either the second or second-last in-
ternal vertex. If the embedding is isomorphic to S ′′′, then vS→T is either the first or last
internal vertex. Finally, if the embedding is isomorphic to SQ, then there are at most
two choices of edges that could have been added as part of Q, and once these edges
are chosen and removed, vS→T is either the first, second, second-last, or last internal
vertex of the resulting caterpillar. When the edge(s) added from Q are removed from
the embedding and vS→T is chosen, the edges of the stub can be recovered by remov-
ing the forks and leaves rooted at vS→T from the embedding. Hence, the embedding
sends at most 54 · (max{1, 2, 2}+ 2 · 4) ⩽ 999 charge, and the density of S in T is at
most 1− 10−3.

The next lemma deals with caterpillars S that are not covered by Theorem 4.1 and
Lemma 5.1.

Lemma 5.2. Let S be a caterpillar with k ⩾ 10 vertices that is not a path such that
the path v1, . . . , vm formed by its internal vertices satisfies either m = 2,
or m ⩾ 3 and the degrees of v2 and vm−1 equal 2. If T is a tree with radius at least 4k,
then d(S, T ) ⩽ 1− 10−3.

Proof. Let α > 0 and β > 0 be the number of leaves adjacent to v1 and vm respectively.
By symmetry, we can assume that α ⩽ β. Let S ′ be the caterpillar obtained from S by
removing the α leaves adjacent to v1 and β leaves adjacent to vm.

Let vT be a vertex of T such that there exist (2k+1)-vertex paths P1 and P2 starting
at vT that are disjoint except at vT itself; such a choice is possible because the radius
of T is at least 4k.

In this proof, a stub is an embedding of S ′ in T together with a choice of orientation
for the longest path in the embedding. (The length of this path is the same as the distance
between v1 and vm.) Given a stub, let v′1, . . . , v′m be the vertices of the longest path in the
embedding, ordered according to the chosen orientation, and letA andB be the degrees
of v′1 and v′m minus 1. Let Q be the unique path in T between the vertices vS→T and vT
prolonged by P1 if P1 does not contain the edge from vT towards vS→T and prolonged
by P2 otherwise.

We analyze the case when α = β = 1 separately at the end of the proof, so for now
suppose that β ⩾ 2. The number of ways the embedding of S ′ can be extended to an
embedding of S with each v′i corresponding to vi is

(
A
α

)(
B
β

)
. We will associate to each

embedding of S ′ in T a set of N embeddings of k-vertex trees non-isomorphic to S so
that (

A

α

)(
B

β

)
⩽ 9N.

Note that if A < α or B < β, then there is nothing to prove, so we assume that A ⩾ α
and B ⩾ β.

If B = β, then we consider extensions obtained from the embedding of S ′ by
adding α leaves to v′1, β−2 leaves to v′m and then the first two edges of Q not contained
in the embedding. If the obtained embedding is a caterpillar, then the sum of the degrees
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of its first and last internal vertices is less than the sum of the degrees of the first and
last internal vertices of S. Therefore, the N =

(
A
a

)
=
(
A
α

)(
B
β

)
obtained embeddings are

not isomorphic to S.
If A = α ⩾ 2, then consider extensions obtained from the embedding of S ′ by

adding α−2 leaves to v′1, β leaves to v′m and then the first two edges of Q not contained
in the embedding. Again, if the obtained embedding is a caterpillar, then the sum of
the degrees of its first and last internal vertices is less than the sum of the degrees of
the first and last internal vertices of S. Therefore, the obtained embeddings are not
isomorphic to S, and their number is N =

(
B
β

)
, which is equal to

(
A
α

)(
B
β

)
.

If A = α = 1 but 2 ⩽ β < B, then the number of extensions to S is
(
B
β

)
, and we

consider extensions of S ′ obtained by either adding β + 1 leaves to v′2 or adding β − 1
leaves to v′2 and the first two edges of Q not contained in the embedding; the number N
such extensions is

N =

(
B

β − 1

)
+

(
B

β + 1

)
⩾

(
B

β

)
.

Hence, we can assume that A > α and B > β in the remainder of the analysis of
the case β ⩾ 2. We first deal with the case when α ̸= β − 1. Consider extensions
obtained from the embedding of S ′ by either adding α+1 leaves to v′1 and β−1 leaves
to v′m or adding α−1 leaves to v′1 and β+1 leaves to v′m; the number of such extensions
is

N =

(
A

α + 1

)(
B

β − 1

)
+

(
A

α− 1

)(
B

β + 1

)
=

(
A

α− 1

)(
B

β − 1

)(
(A− α + 1)(A− α)

α(α + 1)
+

(B − β + 1)(B − β)

β(β + 1)

)
⩾

1

4

(
A

α− 1

)(
B

β − 1

)(
(A− α + 1)2

α2
+

(B − β + 1)2

β2

)
⩾

1

2

(
A

α− 1

)(
B

β − 1

)
A− α + 1

α

B − β + 1

β
=

1

2

(
A

α

)(
B

β

)
.

It remains to analyze the case α = β − 1. Consider extensions obtained from the
embedding ofS ′ by either addingα+2 leaves to v′1 and β−2 leaves to v′m or addingα−1
leaves to v′1 and β + 1 leaves to v′m; the number of such extensions is

N =

(
A

α + 2

)(
B

β − 2

)
+

(
A

α− 1

)(
B

β + 1

)
,

unless A = α + 1. We next argue that
(
A
α

)(
B
β

)
⩽ 9N . If

(
A

α−1

)(
B

β+1

)
⩽ 1

9

(
A
α

)(
B
β

)
,

then 9 ⩽ (β+1)(A−α+1)
α(B−β)

and(
A

α + 2

)(
B

β − 2

)
=

β(β − 1)(A− α)(A− α− 1)

(α + 2)(α + 1)(B − β + 2)(B − β + 1)

(
A

α

)(
B

β

)
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⩾
22

34 · 62

(
(β + 1)(A− α + 1)

α(B − β)

)2(
A

α

)(
B

β

)
⩾

92

36

(
A

α

)(
B

β

)
=

1

9

(
A

α

)(
B

β

)
,

so N ⩾ 1
9

(
A
α

)(
B
β

)
.

Finally, we deal with the case A = α + 1. Consider extensions obtained from the
embedding of S ′ by adding α− 1 leaves to v′1, β− 1 leaves to v′m and then the first two
edges of Q not contained in the embedding, or adding α − 1 leaves to v′1 and β + 1
leaves to v′m; as before, these extensions are not isomorphic to S, and the number of
such extensions is(

A

α− 1

)(
B

β − 1

)
+

(
A

α− 1

)(
B

β + 1

)
⩾

(
A

α + 1

)(
B

β − 1

)
+

(
A

α− 1

)(
B

β + 1

)
,

which is at least
(
A
α

)(
B
β

)
/2 as established in the case α ̸= β − 1.

We complete the case β ⩾ 2 by a discharging procedure similar to that used in the
proof of Lemma 5.1. Each embedding of a k-vertex tree non-isomorphic to S sends a
charge of 9 to each stub that it extends. In this way, each stub receives 9N ⩾

(
A
α

)(
B
β

)
charge, which is then distributed to the extensions of the stub into embeddings of S.

To finish the analysis of the discharging argument, it remains to bound the total
amount of charge that each embedding of a k-vertex tree non-isomorphic to S sends.
Fix an embedding of a k-vertex tree non-isomorphic to S and suppose that it can be
obtained from a stub by at least one of the above processes. If this process does not
involve adding two unused edges of Q, then the embedding is a caterpillar and the
vertex that corresponds to v′1 is either the first or last internal vertex of the embedding,
or the unique leaf of the first internal vertex if the first internal vertex has degree 2, or
the unique leaf of the last internal vertex if the last internal vertex has degree 2. For each
choice of v′1 there is at most one valid choice of v′m at the correct distance in T , and the
stub is then determined by removing the leaves of the embedding adjacent to v′1 and v′m.
Thus, the embedding sends at most 9 · 4 units of charge in this way. If the embedding
can be obtained from a stub by a process that does involve adding two unused edges
of Q, then there are at most two places where these edges could have been added. After
choosing which of these sets of two edges to remove from the embedding, we follow
the same procedure as above to obtain the possible stubs, so the embedding sends at
most 9 · 2 · 4 additional charge in this way. In total, each embedding of a k-vertex tree
non-isomorphic to S sends at most 9 · 3 · 4 < 999 units of charge, so the density of S
in T is at most 1− 10−3.

Finally, we return to the case α = β = 1; the argument is again based on a dis-
charging procedure. Since S is not a path, we have m ⩾ 5. Consider extensions of
the embedding of S ′ obtained by either adding two leaves to the vertex v′1 or adding
two leaves to the vertex v′m. The number of such extensions is

(
A
2

)
+
(
B
2

)
⩾ 1

4
AB

unless A = B = 1. If A = B = 1, then
(
A
α

)(
B
β

)
= 1 and we consider the embedding
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obtained from S ′ by adding the first two edges of Q that are not contained in S ′. If
the first of these two edges attaches to a vertex of S ′ other than v′1, v′2, v′m−1, or v′m,
then the obtained embedding is not a caterpillar. If it attaches to v′2 or v′m−1, then the
second or second-last internal vertex of the obtained caterpillar has degree 3. Thus the
obtained embedding is not isomorphic to S unless the added edges attach to v′1 or v′m.
By symmetry, we assume that they attach to v′m. Any isomorphism between S and the
obtained embedding maps the vertex vm−1 of S to the vertex v′3 of the obtained embed-
ding. In particular, if the two trees are isomorphic, then the degree of v′3 in S ′ is 2, and
we instead consider the embedding obtained from S ′ by adding a leaf to v′2 and a leaf
to v′m, if such an embedding exists. If such an embedding does not exist, we instead
consider the embedding obtained from S ′ by removing the edge v′1v

′
2 and adding the

first three edges of Q. In all cases above from the analysis of the case A = B = 1, the
obtaining embedding is non-isomorphic to S.

Thus, when each embedding of a k-vertex tree non-isomorphic to S sends 4 units
of charge to each stub that it extends, each stub such that A ̸= 1 or B ̸= 1 receives at
leastAB units of charge, which it can then redistribute to its extensions into embeddings
of S. We next estimate additional charge because of embeddings considered in the case
A = B = 1; for this analysis, fix an embedding of a k-vertex tree non-isomorphic to S.

• If the embedding can be obtained from the process of adding the first two unused
edges of Q, then there are at most two places where these edges could have been
added. After choosing which of these two choices of two edges to remove, the
vertices v′1 and v′m must correspond to the unique leaves of the first and last in-
ternal vertices, and the stub is determined once a choice for the correspondence
is made.

• If the embedding can be obtained from the process of adding a leaf to v′2 and
v′m−1, then either the first or last internal vertex of the embedding has two leaves,
and this vertex corresponds to either v′2 or v′m−1. One of the two leaves then
corresponds to either v′1 or v′m, and the stub is determined by choosing the corre-
spondence, removing the other leaf, and removing the unique leaf of the terminal
internal vertex at the other end of the caterpillar.

• If the embedding can be obtained from the process of removing the edge v′1v′2 and
adding the first three unused edges of Q, there are at most two places where these
edges could have been added. After choosing which of these two options of three
edges to remove, v′3 is the first or last internal vertex of the resulting caterpillar,
v′2 is the unique leaf of v′3 in the caterpillar, and v′1 is the unique neighbor of v′2
in T that is not in the caterpillar.

Each embedding of a k-vertex tree non-isomorphic to S sends at most 12 additional
units of charge and so it sends at most 16 < 99 units of charge in total. We conclude
that if α = β = 1, then d(S, T ) ⩽ 1− 10−2.

The next theorem summarizes our analysis of caterpillars.
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Theorem 5.3. Every caterpillar S with |S| ⩾ 17 that is neither a star nor a path has
inducibility at most 1− 10−4.

Proof. The limit density of S in any sequence of trees with bounded radius is 0 by
Proposition 2.1, so it remains to investigate the density of S in trees with unbounded
radius. Since S is not a star, S has more than one internal vertex. The case where S
has two internal vertices is covered by Lemma 5.2, the case where S has three inter-
nal vertices is covered by Lemma 5.2 and the third case of Theorem 4.1 (depending
on whether the middle internal vertex has degree 2), and the case where S has four
or more internal vertices is covered by Lemma 5.1, Lemma 5.2, and the second case
of Theorem 4.1 (depending on the order of forks rooted at the second or second-last
internal vertex of S and their degrees).

6. Inducibility bounded away from 1

As detailed in the proof of Theorem 6.2 below, the results in the preceding sections
show that the inducibility of every tree with at least 17 vertices is at most 1− 10−8. On
the other hand, the inducibility of every k-vertex tree X that is neither a path nor a star
is less than 1, since for every convergent sequence of trees (Tn)n∈N with |Tn| → ∞,
if limn→∞ d(X,Tn) = 1, then limn→∞ d(Pk, Tn) = limn→∞ d(Sk, Tn) = 0, contra-
dicting Proposition 2.2. In particular, trees with at most 16 vertices have inducibility
bounded away from 1. These two results combined imply that the inducibility of every
tree is at most 1 − ε for some fixed constant ε > 0. In the interest of obtaining an
explicit value of ε, we provide a crude upper bound on the inducibility of small trees.

Lemma 6.1. For k ⩾ 5, the inducibility of every k-vertex tree S that is neither a path
nor a star is at most 1− k−(2k−3).

Proof. Since the inducibility of S is defined with respect to d(S, T ) where |T | → ∞,
it suffices to show that d(S, T ) ⩽ 1 − k−(2k−3) for every tree T with |T | ⩾ kk. We
prove the bound by a discharging argument. Every embedding of a k-vertex tree in T
that is not isomorphic to S begins with one unit of charge and distributes the charge
according to the following rules.

Every embedding S ′′ of a k-vertex tree that is neither isomorphic to S nor a star dis-
tributes its charge equally among all embeddings S ′ of k-vertex trees that share an edge
with S ′′ such that the maximum degree of a vertex of S ′ in T is at most k. Since there
are at most (k − 1)!(k − 1)k−2 ⩽ k2k−3 such embeddings S ′ for every embedding S ′′,
each embedding S ′ of a k-vertex tree such that the maximum degree of a vertex of S ′

in T is at most k receives at least k−(2k−3) units of charge.
Every embedding S ′′ of a k-vertex star distributes its charge as follows. Let v be

the center of S ′′ and d its degree in T . The embedding S ′′ distributes its charge equally
among all embeddings S ′ of k-vertex trees that share an edge with S ′′ such that the
maximum degree of the vertices of S ′ in T is at most d. Each such embedding S ′ re-
ceives charge from at least

(
d−1
k−2

)
embeddings of stars and each embedding of a k-vertex



combinatorial theory 2 (3) (2022), #2 25

star centered at v sends charge to at most (k − 1)!k(d − 1)k−2 ⩽ k!dk−2 embeddings
of S. Hence, each embedding S ′ of a k-vertex tree such that the maximum degree of
the vertices of S ′ in T is d > k receives at least(

d− 1

k − 2

)
1

k!dk−2
⩾

1

k!kk−2
⩾ k−(2k−3)

units of charge.
Since d(S, T ) < 1 and every embedding of a k-vertex tree in T (regardless of

whether the embedding is of S or not) has at least k−(2k−3) units of charge at the end
of the process described above, it follows that d(S, T ) ⩽ 1− k−(2k−3).

We now combine the results of Sections 3 to 6 to prove the first main result of this
paper. As mentioned earlier, we do not attempt to optimize the upper bound on the
inducibility presented in the theorem.

Theorem 6.2. The inducibility of every tree S that is neither a star nor a path is at
most 1− 10−35.

Proof. Since S is neither a star nor a path, |S| ⩾ 5. If |S| ⩽ 16, then the inducibility
of S is at most 1− 16−29 ⩽ 1− 10−35 by Lemma 6.1. Now assume that |S| ⩾ 17. If S
is a caterpillar, then the inducibility of S is at most 1 − 10−4 by Theorem 5.3. If S is
not a caterpillar, then consider an arbitrary hub v of S. By the definition of a hub, v
is the root of three non-trivial branches. If v is adjacent to at most one leaf, or is the
root of at most one fork and at least three major branches, then the inducibility of S is
at most 1 − 10−7 by Theorem 3.1. Otherwise, v is adjacent to at least two leaves, and
additionally is either the root of at least two forks or at most two major branches. In
either case, v is the root of a fork since every non-trivial branch is either a fork or is
major. Theorem 4.1 then guarantees that the inducibility of S is at most 1− 10−4.

7. Inducibility bounded away from 0

A sparkler is a graph obtained from a star by subdividing one of its edges once. The fol-
lowing result shows that sparklers are an infinite class of trees with inducibility bounded
away from 0, thus answering Problem 4 of Bubeck and Linial [BL16] in the affirmative.

Theorem 7.1. The inducibility of every sparkler with at least four edges is at
least 13/165.

Proof. Fix k ⩾ 4, and let S ′
k be the sparkler with k edges; that is, the graph obtained

from the star with k − 1 leaves by subdividing one of its edges. We will construct
a sequence (Tn)n∈N of trees with |Tn| → ∞ such that d(S ′

k, Tn) ⩾ 13/165, which
implies the theorem.

As illustrated in Figure 7.1, letTn be the tree obtained from a path withn(k + 1) + k
vertices (called the spine) by adding 3k leaves to its (j(k + 1))-th vertex for
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Figure 7.1: The tree T3 constructed for k = 4 in the proof of Theorem 7.1.

j ∈ {1, . . . , n}; each of the n vertices to which the leaves are attached is called a ver-
tebra.

Observe that the number of copies of S ′
k in Tn is

2n

(
3k + 1

k − 2

)
.

We next count the number of all k-edge subtrees of Tn. Each k-edge subtree of Tn

contains exactly one of the vertebrae. The number of k-edge subtrees that contain
exactly j edges from the spine of Tn for j ∈ {0, . . . , k} is

(j + 1)n

(
3k

k − j

)
.

Thus the total number of k-edge subtrees of Tn is

n
k∑

j=0

(j + 1)

(
3k

k − j

)
. (7.1)

Observe that (
3k
k−j

)(
3k

k−j−1

) =
2k + j + 1

k − j
⩾ 2

for every j ∈ {0, . . . , k−1}, which can be used iteratively on (7.1) to bound the number
of k-edge subtrees of Tn:

n
k∑

j=0

(j + 1)

(
3k

k − j

)
⩽

(
3k

k

)
n

k∑
j=0

j + 1

2j
⩽

(
3k

k

)
n

∞∑
j=0

j + 1

2j
.

The arithmetico–geometric series in the last expression sums to 4, so it follows that the
density of S ′

k in Tn is at least

2
(
3k+1
k−2

)
n

4
(
3k
k

)
n

=
(3k + 1)k(k − 1)

2(2k + 3)(2k + 2)(2k + 1)
⩾

13

165
,

where the last inequality holds since k ⩾ 4.

We remark that the construction from Theorem 7.1 can be optimized by adding
⌈αk⌉ leaves instead of adding 3k to the vertebrae for α ≈ 2.8507, which yields that the
inducibility of sufficiently large sparklers is at least 0.19004, while the bound presented
in the proof converges to 3/16 for k tending to infinity.
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8. Universal sequence of trees

In this section, we prove the existence of a universal sequence of trees.

Theorem 8.1. There exists a sequence (Tn)n∈N of trees in which the limit density
lim
n→∞

d(S, Tn) of every tree S is positive.

Proof. To describe the construction, we first define a gluing operation on trees, which
we denote by ⊕; this operation has already been used in the context of tree profiles
in [BL16]. If T and T ′ are trees, then T ⊕ T ′ is any tree obtained from the disjoint
union of T and T ′ by joining a vertex of T and a vertex of T ′ by an edge. The resulting
tree depends, of course, on which vertices are chosen to be joined by an edge, but
the choice will not influence our arguments as long as the maximum degree of the
resulting tree is controlled when we do a sequence of these operations. In particular,
if we always choose a leaf of T and a leaf of T ′, then the maximum degree does not
increase (unless T ∼= K2 or T ′ ∼= K2).

Observe that if ∆(T ⊕ T ′) is the maximum degree of the resulting tree, then the
number of k-vertex trees containing the gluing edge is at most

(k − 1)k−1 (∆(T ⊕ T ′)− 1)
k−1 ⩽ (k(∆(T ⊕ T ′)− 1))

k−1

(start with the gluing edge and then add k − 1 edges iteratively, having at most
(k − 1) (∆(T ⊕ T ′)− 1) at each iteration), which yields that

Zk(A) + Zk(B) ⩽ Zk(A⊕B) ⩽ Zk(A) + Zk(B) + (k(∆(T ⊕ T ′)− 1))
k−1 (8.1)

We further define an iterative version of the gluing operation ⊕ by setting T⊕1 = T
and T⊕ℓ = T⊕(ℓ−1) ⊕ T for ℓ ⩾ 2.

Let Bd be the complete d-ary tree of depth d; that is, Bd is the rooted tree such
that every internal vertex has d children and every leaf is at distance d from the root.
Observe that |Bd| = 1 + d + d2 + · · · + dd = dd+1−1

d−1
⩽ dd+1, the maximum degree

of Bd is d + 1 if d ⩾ 2 and 1 if d = 1, and the tree Bd contains a copy of every tree
with d vertices. We now define the sequence (Tn)n∈N in the statement of the theorem.
The tree Tn is obtained by gluing copies of the trees B1, . . . , Bn in a ratio such that a
significant proportion of the k-vertex subtrees in the resulting tree Tn arises from copies
of B1, . . . , Bk. Formally, set T1 = B1, and for n ⩾ 2, define

Tn = Bn ⊕
(
T⊕n2

n−1

)
,

where the gluing operation is performed so that ∆(Tn) ⩽ n + 1. Observe that Tn

consists of
(
n!
d!

)2 copies of Bd for d ∈ {1, . . . , n}. See Figure 8.1 for an illustration.
Fix a k-vertex tree S with k ⩾ 3 for the rest of the proof, and note that

d(S, Tn) ⩾
1

Zk(Tn)
·
(
n!

k!

)2

(8.2)
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B1 B2 T2 T2

Figure 8.1: The trees B1, B2, and two possible choices of T2. Edges added by the
operation ⊕ are dashed.

for every n ⩾ k. We next upper bound the number of k-vertex subtrees in Tn using
(8.1):

Zk(Tn) ⩽ Zk(Bn) + Zk(T
⊕n2

n−1 ) + (kn)k−1

⩽ Zk(Bn) + n2Zk(Tn−1) + n2(kn)k−1

= Zk(Bn) + n2Zk(Tn−1) + kk−1nk+1.

Iterating the inequality, we obtain that

Zk(Tn) ⩽

[
n∑

d=k+1

(
n!

d!

)2 (
Zk(Bd) + kk−1dk+1

)]
+

(
n!

k!

)2

Zk(Tk).

We next analyze the sum from the above expression:

lim
n→∞

n∑
d=k+1

(
n!
d!

)2 (
Zk(Bd) + kk−1dk+1

)
(
n!
k!

)2 =
∞∑

d=k+1

(
k!

d!

)2 (
Zk(Bd) + kk−1dk+1

)
⩽

∞∑
d=k+1

(
k!

d!

)2 (
dd+1kk−1dk−1 + kk−1dk+1

)
⩽ (k!)2kk−1

∞∑
d=k+1

2dd+k

(d!)2

⩽ 2(k!)2kk−1

∞∑
d=k+1

dd+ke2d−2

d2d

⩽ 2(k!)2kk−1e2k.

This combines with (8.2) to imply that

d(S, Tn) ⩾
1

2(k!)2kk−1e2k + Zk(Tk)
> 0.
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Considering a convergent subsequence of (Tn) if necessary, we deduce that there exists
a convergent sequence of trees in which the limit density of every tree S is positive.

We remark that the choice of the vertices for the gluing operation permits creating
sequences of trees with different “shapes”. For example, the trees can be grown to the
depth as the left tree T2 in Figure 8.1 or along a path as the right tree T2 in Figure 8.1.
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[FR93] F. Franek and V. Rödl. 2-colorings of complete graphs with a small
number of monochromaticK4 subgraphs. Discrete Math., 114:199–203,
1993. doi:10.1016/0012-365X(93)90366-2.
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